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120  Chapter7

with an appropriate part of its physical environment as ana-log.ous to
a computer, and seek to describe functional relahong mthlp this
larger system? Why not seek to characterize reference, in partlc'ular,
as a functional relation between representations used by organisms
and things which may be either inside or outside those orgamsxqs?
Although the discussion which followed focused on vyhat I have just
described as the “epistemological” difficulties, there is a remarkable
“ontological” presupposition contained in the very statement of' the
project. The project simply assumes from the' outset t,,,mt tMe isa ;mgle
system (“the organisms and their physical environment ) which contains gll
the objects that anyone could refer to. The picture is that there is a certain
domain of entities such that all ways of using words referen@a}ly are
just different ways of singling out one or more of thqsg entities. In
short, the picture is that what an “object” of reference is is fixed once
and for all at the start, and that the totality of objects in some scien-
tific theory or other will turn out to coincide with the totality of All
The Objects There Are. '

But, from my “internal realist” perspective at least: therg is no fuch
totality as All The Objects There Are, inside or outside science. Ob-
ject” itself has many uses, and as we creatively invent new uses of
‘words, we find that we can speak of “objects” that were nqt ”vah.xes
of any variable” in any language we previously spoke. (The invention
of “set theory” by Cantor is a good example of this.) What 190ked like
an innocent formulation of the problem—“Here are the objects to 'be
referred to. Here are the speakers using words. How can we describe
the relation between the speakers and the objects?”—becomes far
from innoccent when what is wanted is not a “natural-language pro-
cessor” that works in some restricted context, but a “theory of refef-
ence.” From an internal realist point of view, the very problem is
nonsensical. ‘

Of course, from my point of view the “epistemological” and'th'e
“ontological” are intimately related. Truth and reference are inti-
mately connected with epistemic notions; the open texture of the no-
tion of an object, the open texture of the notion of reference, the open
texture of the notion of meaning, and the open texture of reason 1?self
are all interconnected. It is from these interconnections that serious

philosophical work on these notions must proceed.
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Appendix

Theorem. Every ordinary open system is a realization of every abstract
finite automaton.

Physical Principles. The proof I shall give requires the following two
physical principles (which hold in classical physics when (1) the fields
have no sources except particles; and (2) the number of point particles
is at most denumerably infinite):

Principle of Continuity. The electromagnetic and gravitational fields
are continuous, except possibly at a finite or denumerably infinite set
of points. (Since we assume that the only sources of fields are par-
ticles, and that there are singularities only at point particles, this has
the status of a physical law.)

Principle of Noncyclical Behavior. The system S is in different maximal
states at different times. This principle will hold true of all systems
that can “see” (are not shielded from electromagnetic and gravita-
tional signals from) a clock. Since there are natural clocks from which
no ordinary open system is shielded, all such systems satisfy this
principle. (N.B.: It is not assumed that this principle has the status of
a physical law; it is simply assumed that it is in fact true of all ordi-
nary macroscopic open systems.)

In the sequel, we shall make use of the fact that this principle holds
true both on the boundary of any ordinary open system (i.e., the
state of the boundary of such a system is not the same at two different
times) and a little way inside the boundary as well.

Lemma. If we form a system S’ with the same spatial boundaries as S
by stipulating that the conditions inside the boundary are to be the
conditions that obtained inside S at time ¢ while the conditions on the
boundary are to be the ones that obtained on the boundary of S at
time t', where t # t' [note that this will be possible only if the spatial
boundary assigned to the system S is the same at t and at '], then
the resulting system will violate the Principle of Continuity.

Proof (of the lemma): Every ordinary open system is exposed to
signals from many clocks C (say, from the solar system, or from things




122 Appendix

which contain atoms undergoing radioactive decay, or from the sys-
tem itself if it contains such radioactive material—in which latter case
the system § itself coincides with the clock C). In fact, according to
physics, there are signals from C from which it is not possible to
shield S (for example, gravitational signals). These signals from C
may be thought of, without loss of generality, as forming an “image”
of C on the surface of S. For the same reason, there are also “images”
of C inside the boundary of S. The “image” of C at, say, t' = 12 may
be thought of as showing a “hand at the 12 position”; while the “im-
age” of C at, say, t = 11 shows a “hand at the 11 position.” Thus, for
these values of ¢ and t', the system S’ would have a “12 image” on its
boundary and an “11 image” at an arbitrary small distance inside its
boundary; but this is to say that the fields which constitute the “im-
ages” would have a discontinuity along an entire continuous area,
and hence at nondenumerably many points.

Proof of the Theorem. (I have stated the theorem in terms of finite au-
tomata, but the technique is easily adapted to other formalisms.) A
finite automaton is characterized by a table which specifies the states
and the required state-transitions. Without loss of generality, let us
suppose the table calls for the automaton to go through the following
sequence of states in the interval (in terms of “machine time”) that
we wish to simulate in real time: ABABABA. Let us suppose we are
given a physical system S whose spatial boundary we have exactly
defined, at least during the real-time interval we are interested in
(say, a given 7-minute interval, e.g., from 12:00 to 12:07). We wish to
find physical states A and B such that during the time interval we are
interested in the system S “obeys” this table by going through the
sequence of states ABABABA, and such that given just the laws of
physics (including the Principle of Contiruity) and the boundary
conditions of S, a Laplacian supermind could predict the next state
of the system (e.g., that S will be in state B from 12:03 to 12:04) given
the previous state (given that S was in state A from 12:02 to 12:03).
This will show that S “realizes” the given table during the interval
specified. Since the technique of proof applies to any such table, we
will have proved that S can be ascribed any machine table at all, and
the description will be a “correct” one, in the sense that there really
are physical states with respect to which $ is a realization of the table
ascribed.

I shall use the symbolic expression St (S, ) to denote the maximal
state of S at ¢ (in classical physics this would be the value of all the
field parameters at all the points inside the boundary of S at t). Let
the beginnings of the intervals during which § is to be in one of its

e
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stages .A or B be ty b, . . ., t, (in the example given, n = 7, and the
times in question are ¢, = 12:00, t, = 12:01, ¢, = 12:02, t, = 12:03
ts = 12:04, ty = 12:05, t, = 12:06). The end of the real-time intervai
during which we wish S to “obey” this table we call ¢
(= t3 = 12:07, in our example). For each of the intervals ¢. to Lnﬂ
f. = '1,2, cee define a (nonmaximal) interval state s, whiclh is 't;lle’
region” in phase space consisting of all the maximal states St(S. 1)
with L =t <t,, (Le, Sisinsjustin case S is in one of the maxir;xal
states in this “region.”) Note that the system § is in s, from ¢, to ¢,, in
s,fromt,tot, ..., ins, fromt, to t,.;. (Left endpoint inc]ludeii’ in
all' cases but not the right—this is a convention to ensure the “ma-
chine” is in exactly one of the s; at a given time.) The disjointness of
the states s, is guaranteed by the Principle of Noncyclical Behavior
DeﬁneA=s,vsavssvs7;B=szvs,vs6. .
Then, as is easily checked, S is in state A from t,tot,, fromt, tot
from ¢; to t,, and from t, to t,, and in state B at all other times be:wee;'ll
fl and ;. So S “has” the table we specified, with the states A,B we
)tu;: defined as the “realizations” of the states A,B described t;y the
able. .
To ghow that being in state A at times t with ¢, < t < t,“caused” S
to go into state B during the interval t, < t < t, (and simifarly for the
other state transitions called for by the table), we argue as follows:
lee.n that S is in state A4 at a time ¢ (ty st < t), and letting the.;
maximal state of the boundary of S at that time t be B, it follows from
tl.1e le’{nma that St (S, t) is the only maximal state in any of the “re-
gions” (nonmaximal states) s,s,, . . . ,s, that a system S under the
boun'dar.y condition B, could be in without violating the Principle of
Continuity. (If the shape, size, or location of S changes with time
then unless S resumes the boundary it had at t at least once the’
boux'1dary of S at t will be the cnly boundary associated with, any
maxu.n'al state in the union of these regions which fits the boundary
condition B,, and the lemma is unnecessary.) A fortiori, St (S, t) is the
on])f maximal state in A compatible with B,. Hence, given t’he infor-
mation that the system was in state A at ¢, and given the information
th;j\t the boundary condition at t was B,, a mathematically omniscient
being can determine from the Principle of Continuity that the system
S must have been in St (5, #), and can further determine, given the
boundary conditions at subsequent times and the other laws of na-

gng, I;\ow S evolves in the whole time interval under consideration.

Discussion. When we model cognitive functions, we do not, of course,
model them by means of automata without inputs and outputs.
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Rather, we imagine that the “automaton” is connected with input
devices—sensors, such as eyes or ears (or, in the simplest case, a
“paper tape” on which the operator can print messages in a specified
alphabet); and also connected with output devices—motor organs,
speech organs, etc. (or, in the case originally imagined by Turing,
another “paper tape” on which the automaton can print messages in
another specified alphabet). These inputs and outputs have specified
realizations, or at least their realizations must be of certain con-
strained kinds depending on our purposes; usually we are not al-
lowed to simply pick physical states to serve as their “realizations,” as
we are allowed to do with the so-called “logical states” of the
automaton. )

If a physical object does not have motor organs or sensors of the
specified kind, then, of course, it cannot be a model of a description
which refers to a kind of automaton which, ex hypothesi, possesses
motor organs and sensors of that kind. And even if it does possess
such “inputs” and “outputs,” it may behave in a way which violates
predictions which follow from the description (e.g., print two “1”s in
a row when it is a theorem that the machine with the given descrip-
tion never does this). So there is no hope that the theorem just
proved will also hold, unchanged, for automata which have inputs
and outputs which have been specified (or at least constrained) in
physical terms.

Imagine, however, that an object S which takes strings of “1”s as
inputs and prints such strings as outputs behaves from 12:00 to 12:07
exactly as if it had a certain description D. That is, S receives a certain
string, say “111111,” at 12:00 and prints a certain string, say “11,” at
12:07, and there “exists” (mathematically speaking) a machine with
description D which does this (by being in the appropriate state at
each of the specified intervals, say 12:00 to 12:01, 12:01 t0 12:02, . . .,
and printing or erasing what it is supposed to print or erase when it
is in a given state and scanning a given symbol). In this case, S too
can bc interpreted as being in these same logical states A,B,C, . . . at
the very same times and following the very same transition rules;
that is to say, we can find physical states A,B,C, . . . which S possesses
at the appropriate times and which stand in the appropriate causal
relations to one another and to the inputs and the outputs. The
method of proof is exactly the same as in the theorem just proved
(the unconstrained case). Thus we obtain that the assumption that
something is a “realization” of a given automaton description (possesses a
specified “functional organization”) is equivalent to the statement that it be-
haves as if it had that description. In short, “functionalism,” if it were
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correct, would imply behaviorism! If it is
mental states is simply to possess a certain
then it is also true that to possess given
possess certain behavior dispositions!

true that to possess given
“functional organization,”
mental states is simply to




