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- Word Concepts: A Theory and

Simulation of Some Basic
- Semantic Capabilities

-

M. Ross Quillian’s pioneering work on semantic memory models in the
mid to late 1960’s has greatly influenced almost all subsequent work in
Knowledge Representation. Quillian is generally acknowledged to have
originated the idea of a semantic network, in which dictionary-like defini-
tions are encoded with nodes interconnected with associative links. This
relatively difficult-to-find paper is a nice summary of Quillian’s 1966 Ph.D.
dissertation, in which he produced a simulation program intended to be
able to “compare and contrast the meanings of arbitrary pairs of English
words” Although the work described in this paper is somewhat simplistic
compared to what has since appeared (e.g., compare Quillian’s networks to
the complexity of KRL [Bobrow and Winograd, Chapter 13]), and was
designed primarily as a psychological model of human language behavior,
Quillian’s memory model was responsible for a large number of concepts
that have become fundamental to work in the field, including the type/
token distinction and spreading activation search for inference. This work
and its influence on representation history is treated in [Brachman,

Chapter 10].

Appeared in Behavioral Science 12, 1967, 410-430.
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COMPUTERS IN BEHAVIORAL SCIENCE

WORD CONCEPTS: A THEORY AND SIMULATION OF SOME BASIC
SEMANTIC CAPABILITIES'

by M. Ross Quillian
Bolt, Beranek, and Newman, Cambridge, Massachusells

In order to discover design principles for a large memory that can enable it to serve
as the base of knowledge underlying human-like language behavior, experiments with a
model memory are being performed. This model is built up within a computer by “‘re-
coding” a body of information from an ordinary dictionary into a complex network of
elements and associations interconnecting them. Then, the ability of a program to
use the resulting model memory effectively for simulating human performance pro-
vides a test of its design. One simulation program, now runming, is given the model
memory and is required to compare and contrast the meanings of arbitrary pairs of
English words. For each pair, the program locates any relevant semantic information
within the mod .l memory, draws inferences on the basis of this, and thereby discovers
various relationships between the meanings of the two words. Finally, it creates English
text to express its conclusions. The design principles embodied in the memory model,
together with some of the methods used by the program, constitute a theory of how
human memory for semantic and other conceptual material may be formatted, or-

ganized, and used.

A Memory Model

HE purpose of the research reported

here is both to develop a theory of the
structure of human long-term memory, and
to embody this theory in a computer model
such that the machine can utilize it to
perform complex, memory-dependent tasks.
The concepts of primary concern for storage
in the model memory are those generally
called the “meaning” of commonplace
words, such as  “machine,” ‘‘family,”

! Research contributing to this report was done
partly at Carnegie Institite of Techuology, partly
at the System Development Corporation, and was
supported in part by NIH Grant, MU 07722.

A much more extended treatment of the same
and related research is given in Quillian (1966).
The work is being continued at Bolt, Beranek, and
Newman Ine., Cambridge. Mass. This manuscript,
at one stage or another, has benefited from critical
readings by George W. Bavlor, Daryl J. Bem,
Walter’It. Reitman, and Robert F. Simmons. To
all of these the author expresses grateful thanks,
as well as to Mrs. Jean Long and Miss Barbara
Zimmerman, who have encoded much of the data.
Along with almost anvone who atiempts to test a
psyehologieal model by computer simulation, the
author is alse deeply indebted o Herbert AL SRimon
and Allen Newell.
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“chair,” and so on, it being assumed that
such word meaning concepts are held in
memory in a manner not fundamentally
different from long-term concepts in general.
The model employs much of the machinery
traditionally used in psychology for repre-
senting concepts—conjunctive, disjunctive,
and relational sets of attributes, criteriality,
and so on, (see for example, Bruner, Good-
now, and Austin, 1956). It also utilizes
other representational devices, some of
which bear a close resemblance to those used
by “transformational” linguistics for repre-
senting the ‘‘deep structure” of sentences
{secc Chomsky, 1965). However, the model’s
general organization is quite distinet from
cither of these representational systems.
Although the model is proposed as part of
a theory of human memory organization, it
is not at present intended to handle all the
kinds of information that people presumably
store in their heads. It is designed to hokl
only denotative, factual information, and
not a person’s plans for doing things (sce

the “sehemata” of Piaget, 1950), a person's

feelings about words (Osgood, Suci, amd
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Tannenbaum, 1957) nor his knowledge of
the conditional. probabilities of word se-
quences. The theory also deals only with
the structure and use of well-developed
memory, having little to say as yet about the
acquisition of stored information. At present
the problem of how humans acquire long-
term concepts is simply finessed by taking
the information to be cncoded into the
memory model from two already developed
" sources. These are, first, an ordinary English
dictionary and, second, the fund of common
knowledge that anyone who encodes this
dictionary information into the model must
have, that is, his own semantic memory.

The model memory consists, basically, of
a mass of nodes, interconnected by different
kinds of associative links. Each node may for
the moment be thought of as named by an
English word, but by far the most important
feature of the model is that a node may be
related to the meaning of its name word in
one of two different ways. The first is
directly; that is, its associative links may
lead directly into a configuration of other
nodes that represents the meaning of its
name word. A node that does this is called a
tvpe node. In contrast, the second kind of
node in the memory refers indirectly to a
word concept, by having one special kind of
associative link that points to that concept’s
tvpe node. Such a node is referred to as a
token node, or simply token, although this
usage implies more than is generally meant
by a “token,” since, within the model
memory, a token is a permanent node. For
any one word meaning there can be exactly
one and only one type node in the memory,
but there will in general be many token nodes
scattered throughout the memory, cach
with a pointer to the single unique type
node for the concept. To see the reason for
postulating both type and token nodes
within the memory, it will be useful to
reflect briefly on the way words are defined
in an ordinary dictionary.

For defining one word, the dictionary
builder always utilizes tokens of other words.
However, it is not sufficient for the reader of
cuch a dictionary to consider the meaning of
the defined word to be simply an unordered
ageregation of the other word concepts used
in its definition. The particular configuration

of these word coneepts s erueial; it both
madifies the meanimgs of the mdividual
word concepts that make up 1= parts, and,
with them, ereatesa new gestalt which repre-
sents the meaning of the word beimg defined.
In our memory madel, the configurational
meaning of a coneept is eaptured by building
up, for each defintion, what = best thougin
of as one plane of token nodes. Fach and
every token node lies in such a plane, and has
both its special associative link pointing “out
of the plane” to its type node and other
associtive links pointing on  within  the
planc to other token nodes comprising the
configuration. In short, token nodes make it
possible for a word’s meaning both to be
buit up from other word meanings as
ingredients, and at the same time to
maodify and recombine these ingredients into
a new configuration. Although the detailed
structure of a plane will not be described
until later in this paper it will be uscful for
understanding the model’s overall organiza-
tion to Jook at Figure 1 at this point.

Figure la illustrates the planes of three
word coneepts, corresponding to  three
meanings of “plant.” The three-cireled words
“plant,” “plant 2,” and “plant 3,” placed at
the heads (upper left-hand corners) of the
three planes, represent type nodes; every
other word shown in the figure’s planes
represents a token node. The nonterminated
arrows from tokens indicate that each has
its speeial pointer leading out of its plane to
its type definition, that is, to a type node
standing at the head of its own plane some-
where clse in the memory. Each of these
planes, in turn, is itself entirely made up of
tokens, exeept for the type word which
heads it. Figure 1b illustrates one of these
planes. Therefore, the overall structure of
the complete memory forms an enormous
aggregation of planes, each conxisting
entirely of token nodes except for its “head”
node which is always a type node.

Now, what is the full content of a word
concept in such a memory? Let us define a
full word concept, as distinguished from its
planc or “immediate definition,” so as to
include all the type and token nodes one e¢an
get to by starting at the initial type node, or
“patriarch,” and moving first within its
immediate definition plane to all the token
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Key to Figure 1

Associative Link (type-to-token, and token-to-token, used within a plane)

1. (only where A is a type node ) B names
a class of which A is a subclass.
B8
A
2, { only where A is a token node ) B modifies A,
B
OR
3 T N\ A,B, and C form a disjunctive set.
A B C
AND
o P N A,B, and C form a conjunctive set.
A 8 C
A
B, a subject, is refated to C, an
5 8 object, in the manner specified by
an.d A, the retation. Either the link
6 to B or to C may be omitted in a
’ plane, which implies that A's normal
subject or object is to be assumed.
C

Associative Link { token-to-type, used only between planes )

A !\3 s: A,B, and C are token nodes,

6. / \\ / for, respectively, A,B, and C
1, \ l,
P ]

®

©

Fii. 1. Sample Plaves from the Memory.

nades found there, then on “through” to the
type nodes named by each of these nodes,
then on to all the token nodes in each of
their immediate definition planes, and so on,

until every token and type node that ean be
reached by this process has been traced
through at least onee.

Thus one may think of a full coneept

—




Woro CONCEPTS

/

101

analogically ax consisting of all the informa-
vjon one would have if he looked up what
will be called the patriareh” word in a
Jietionary, then looked up every word in
ench of its definitions; then looked up cevery
word found in cach of these, and so on,
continually branching outward until every
word he could reach by this proeess had been
Jooked up once. However, sinee a word
meaning includes structure as well as ingred-
jents, one must think of the person doing the
looking up as also keeping account of all the
relationships in which each word he eneoun-
tered had been placed by all earlier defini-
tions.

To summarize, a word’s full conceptl is
defined in the model memory to be all the nodes
that can be reached by an cxhaustive tracing
process, originating al its mitial, partriarchical
{ype node, together with the total sum of re-
lationships among these nodes specified by
within-planc, token-to-loken links.

We now assert that such a memory organi-
zation is useful in performing semantic
tasks, and constitutes a reasonable descrip-
tion of the general organization of human
memory for such material.

To take the latter point immediately,
suppose, for example, that a subject were
asked to state everything he knows about
the concept “machine.” Each statement he
makes in answer is recorded, and when
he decides he is finished, he is asked to
elaborate further on each thing he has said.
As he does so, these statements in turn are
recorded, and upon his “completion” he is
asked if he cannot elaborate further on each
of these. In this way the subject can clearly
be kept talking for several days, if not
months, producing a voluminous body of
information. This information will start off
with the more “compelling” facts about
machines, such as that they are usually
man-made, involve moving parts, and so on,
and will proceed ‘“down” to less and less
inclusive facts, such as that typewriters are
machines, and then eventually will get to
much more remote information about ma-
chines, such as the fact that a typewriter has
a stop which prevents its carriage from
flying off each time it is returned. We are
suggesting that this information can all be
usefully viewed as part of the subject’s

coneept of “machine.” The order in which
such a concept tends to be brought forth,
from general, inclusive faets 10 obseure or
les=< and less closely related ones, suggests
that the information comprising o word
concept in the subjeet’s head is differentially
accessible, forming something that may be
viewed as a hierarchy beneath the patriareh
word. Our memory model’s general organiza-
tion ix designed to make a full concept ex-
actly this sort of hierarchieally  ordered,
extensive body of information.

Clearly, a subjeet could produce hierarchi-
=l outputs similar to his output for “ma-
chine” for any one of innumerable other word
coneepts: “war,” “family,” “government,”
and so on, so that the overall amount of
information he could pull out of his memory
in this way scems almost unlimited. The
sheer amount of information involved in
such concepts argues strongly that both the
human subject’s memory, and our model of
it, contain as little redundaney as possible.
In this regard we note that the mformation a
subject can generate as the meaning of
“machine” will include all the information
he can generate for ‘“‘typewriter,” among
other things, and there is no need to restate
the information constituting his concept of
“typewriter” cach time it oceurs as part of
the concept named by some other word such
as “machine, 7 “office,” and so on. Inshort,
a word concept like “machine” seems to be

‘made up, in large part, of a particular

ordered arrangement of other word con-
cepts such as “typewriter,” “drill press,”
and so forth.

Again, a large memory structured as we
have outlined above capitalizes on this
redundancy, by running the pointer from
every token node for a word meaning to the
same type node. Note that in such a memory
any given type node will have many token
nodes, located in various other planes, all
pointing to it, and its full coneept may well
contain token nodes pointing back to the
type node that heads one of these planes. In
other words, there is no restriction to prevent
reentries or loops within a full coneept, so
that all routines that secarch through or
process concepts in  the memory  must
take account of these possibilities. Viewed
most ahstractly, the model memory forms




PLANT. 1. Living struclu

re which is nol an animal, frequently

wilth leaves, getting its food from air, water, earth,

2. Apparatus used for any process in industry.

3. Put {seed, ptant, etc.) in earth for growth,

OR

t A STRUCTURE

Plk'lﬂ 3

{ T Y

-

U

e

N
g

s

4

PERSON

18c1 Y _

TN
PN

s YR
S[fD PLANT 08 JECT

FOR 4
1 N Y 12¢1
/ EARTH \

V4 []

o GROW | \ |‘

- H i 1 1

p sg ! Vo

’ i \ \

/ / i \
‘ 4 s N

I
i AND
]
/) LivE ANIMAL WITH 3 boGers
| =
s flock 11Cl DN
hd 1 ] ] [} t
/ S / b FROM 3
’ / / LEAF \ ' F0OD
L / / izn) b ! \[’ V_OR
Id 1 '
-7 S H / o i AR\ WATER  EARTH
~ ' ,/ ! n ] \‘ \ \ !
e / \ [} \ \ l\
ya 4 \ \
// N\ 4 N

* A APPARATUS
Bel

-
-

h

PEOPLE
12N} \\

2 A Rimiadad

>

=z

)

1
.’\
y INDUSTRY
\ \

i, T, Three Planes Representing Three Meanings of “Plant.”

N/

cot

/

SNOIVLNIS3HdIY TVNOILVIOOSSY




Worp CONCEPTS

/

103

FOOD:

1. That which living being has to take in to keep it living and for growth.

Things forming meals, especially other than drink

~
A
Y
[y
\
\

= A TH'NN—\
- HAS-TO FORM OTHER-THAN

V:A K

;
MEAL +
\

Fic. 1b. The Plane Representing “Food.”

simply a large, very complex network of
nodes and one-way associations between
them. Most importantly, in such a model of
semantic memory there is no predetermined
hierarchy of superclasses and subclasses ;
every word is the patriarch of its own sep-
arate hierarchy when some search process
starts with it. Similarly, every word lies at
various places down, within the hierarchies
of a great many other word concepts.
Moreover, there are no word concepts as
such that are ‘“primitive.” Everything is
simply defined in terms of some ordered
configuration of other things in the memory.

Two Constraints on the Memory

Having established the general structure
of the model memory as consisting of
“planes” each made up of one type and a
number of token nodes, it is further neces-
sary to determine the format of the nodes
themselves, and the specific varieties of
associative links between nodes to be used
within a plane.

As to the nature of the nodes themselves,
we assume that the relevant units of human
conceptual stores are not in fact words, nor
are they sentences, nor are they visual pic-
tures; instead they are closer to what we
ordinarily call “properties.” This assumption
is now common in work on coneepts (see,
for example, Hunt, 1962, or Kelly, 19535),
since properties provide a more elemental
and, hence, more flexible medium than visual
pictures or words, and since either a mental
picture or a language concept may be
thought of as some bundle of propertics
(attribute values) and labeled associations
among them,

Thus, the nodes of the memory model
actually correspond more to properties than
to words, although, as will be shown below,
this actually need be little different from
considering them to bhe words.

A much more important. constraint arises
from our assumption that, in order to
continue to parallel the propertics of human
semantic memory, the model must be able
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to link nodes together into configurations
that are at least as varied and rich as the
ideas expressed in natural language. Hence,
simply attempting to represent natural-
language definitions accurately in the model
becomes a very powerful constraint dic-
tating the model’s structural properties.
Over a considerable period of attempting
to cncode English text into such network
representations, it has always been found

“necessary to have available several dif-

ferent kinds of associative links, rather
than the simple undifferentiated associ-
ations assumed in most classical psycholog-
ical studies of word association. At the same
time, the model must represent all infor-
mation in a form that is sufficiently stand-
ardized to allow processing by rules that
can be specified explicitly, or it will be no
more manageable as a theory of memory
than is English itself. (See Simmons, 1963,
for the most thorough attempt to use
English itself as a computer’s store of infor-
mation on which to base the performance
of complex tasks.) The representation now
used in the memory model therefore lies
at a level somewhere between the freedom
of English itself and the standardization
of, say, symbolic logic. In the memory
model, complex configurations of differ-
entiated associations must be built up to
adequately represent the meaning inherent
in dictionary definitions. These are the
structures we have called planes. (It will
be seen below that the kinds of links uti-
lized in the model to represent configu-
rational meaning correspond roughly to
the “syntactic” interrelations between words
of text: verb-to-subject, pronoun-to-refer-
ent, word-to-modifiers, phrase-to-other-
phrase via some conjunction, and so on.)
While the attempt to get the meaning of
Inglish definitions accurately represented
as planes of nodes within the memory
model  constitutes  one  major constraint
on its structure, a second is provided by
the attempt to write programs that can do
something interesting by using this memory.
To some degree these two constraints on
the model balanee one another: the first
urges elaboration and complexity to rep-
resent the meaning of definitions acceurately,
while the second urges that the model be

as simple and standardized as possible to
make processing feasible.

In selecting a task to perform with a
memory model, one thinks first of the
ability to understand unfamiliar sentences.
It seems reasonable to suppose that people
must necessarily understand new sen-
tences by retrieving stored information
about the meaning of isolated words and
phrases, and then combining and perhaps
altering these retrieved word meanings to
build up the meanings of sentences. Ac-
cordingly, one should be able to take a
model of stored semantic knowledge and
formulate rules of combination (such as
the “projection rules” of Katz and Postal,
1964) that would describe how sentence
meanings get built up from stored word
meanings. A good many reasonable specu-
lations about such combination rules can
in fact be made. (For example, see CIiff,
1959. For a good over-view of these and the
empirical work they have produced, see
Osgood, 1963.) The bulk of an earlier paper
(Quillian, 1963) and of Katz and Postal’s
recent work consists of such speculations.

It further seems likely that if one could
manage to get a small set of basic word
meanings adequately encoded and stored
in a computer memory, and a workable
set of combination rules formalized as a-
computer program, he could then boot-
strap his store of encoded word meanings
by having the computer itself “understand”’
sentences that he had written to constitute
the definitions of other single words (Quil-
lian, 1962b). That is, whenever a new, as
yet uncoded, word could be defined by a
sentence using only words whose meanings
had already been encoded, then the repre-
sentation of this sentence’s meaning—which
the machine could build by using its pre-
vious knowledge together with its com-
bination rules—would be the appropriate
representation to add to its memory . s
the meaning of the new word. Unfortu-
nately, two vears of work on this problem
led to the conclusion that the task is much
too difficult to execute at our present stuge

of knowledge. The processing that goes -on

in a person’s head when he “‘understands"
a seutence is very large indeed, practieally
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“all of it being done without his conscious
knowledge.

As one example, consider the sentence,
~After the strike, the president sent him
away.” One understands this sentence
casily, probably without realizing that he
has had to look into his stored knowledge
of “*president” to resolve a multiple meaning
of the word *'strike.” (Consider, for example,
the same sentence with the word “umpire”
substituted for ‘president.”) Just what
subconscious processing is involved in
unearthing and using the fact that presidents
more typically have something to do with
labor strikes than with strikes of the base-
ball variety is by no means obvious, and a
good part of this paper is devoted to stating
vne way that this can be accomplished,
given that it has been' decided that “pres-
ident” is the correct word to attend to.
Since sentence understanding involves a
great number of such, at present, poorly
understood processes, the two language
functions that the present program per-
forms are considerably humbler than sen-
tence understanding.

The first of these functions is to compare
and contrast two word concepts: given
any two words whose meanings are encoded
in the model memory, the program must
find the more compelling conceptual simi-
larities and contrasts between their mean-
ings. Since, in the usual case, each of the
two words to be compared will have several
possible meanings, the program is also to
specify, for each semantic similarity or
contrast it finds, just which meaning of
each word is involved. This is one step
toward the resolution’ of semantic ambi-
guity in text. The second major task of the
program is to express all the similarities
and contrasts found between the two com-
pared words in terms of understandable,
though not necessarily grammatically per-
fect, sentences.

Although the above tasks are only a part
of what apparently is involved in sentence
understanding, their performance in a
fashion comparable to human performance
still calls for a basic degree of semantic
horse-sense in which, heretofore, computers
have been conspicuously lacking and which,
apparently, must be based on an extensive

and expressively rich store of conceptual
knowledge. Thus, being able to get a com-
puter to perform these tasks indicates to
some degree the plausibility of the semantic
memory mode] used.

In briefest form, the program that is
presently running is used as follows:?

1. The experimenter selects a group of
words whose definitions are to provide
the total store of information in the
memory model during a given series of
tests.

2. He looks up each of these words in
some ordinary dictionary.

3. He encodes each of the definitions
given for each word into a specified
“semantic” format, and loads them into
the machine with a program that com-
bines them into a single network of token
and type nodes and associative links, the
machine’s model of 2 human memory.

4. The experimenter is then free to
select arbitrarily any pair of words in
the store and to ask the program to
compare and contrast the meanings of
those two words (requiring that its
answers be expressed in sentences).

5. He may give some fluent speaker
the same pair of words, asking him also
to compare and contrast them.

6. He can compare the sentences the
program generates to those the human
has produced or, more simply, he can
just judge for himself whether or not the
machine’s output is one that might
reasonably have been produced by a
subject.

If the above procedure reveals any
changes the experimenter would like to see
in the program’s performance, he must
then revise either some part of the program,

* The major effort at representation of a human-
like memory structure in a computer so far has
probably been the construction of list processors
(see, for example, Newell, 1963). These provide
counterparts to ‘‘associative links’”’ and to “‘la-
beled associative links,’’ plus processes for manip-
ulating data stored in such form. By writing
the present model and program in one of these,
namely, IPL, it has been possible to begin upon
the substantial foundation of design and develop-
ment existing in that language, and to use “asso-
ciations” and ‘labeled associations” freely as
building blocks for the model memory.

T
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or some part of the menory structure or
content, or all of these, and further test
new examples to see if the program now
operates in a manner closer to what he
desires. Repetitions of this kind of test-
correet-retest cyvele constitute the cssence
of the rescarch method; however, it is
important to realize that for the purposes
of developing a theory of memory, the
result of this development process should
not be thought of as the computer outputs
the program will now produce, but rather
as what now may or may not have become
clear about the characteristics of workable
concept-like memories. The more general
of these characteristics have been outlined
above; unfortunately, the rest amount to
more or less fine details of the theoretical
memory and of how its provisions should
be used to build up configurations corre-
sponding to particular meanings of English
text. Therefore, the next section explains
these technicalities in some detail; after
that, we return to a more general level to
describe the actual program’s performance.

Details of the Model Memory

As stated above, the relational complexity
built up in an English definition is always
represented in the memory by a configu-
ration of token nodes linked together to
form one “plane.” Each token in a plane
is linked to its type node (which lies out of
the plane) by a kind of association that we
show in Figure 1 as a dotted line, while it
is related to other token nodes (in the plane)
by one or more of the six distinet kinds of
assnciative link listed in the key to Figure 1.
In encoding dictionary definitions, these
intraplane links are used, respectively, as
follows:?

3 Stated this way, it appears that the semantic
model amounts in structure to a kind of parsing
system, and that encoding dictionary definitions
into it is in part, at least, similar to parsing these
definitions.

This is true, and in fact what appears on one
plane of the memory model has many points of
correspondence with what Chomsky (1965) ealls
a ‘‘deep structurc.” In particular, the ternary
relationships formed by our subject-object links
are a lot like what used to be called the structure
of “kernel” sentences. However, our use of terms
such as ‘“‘subjeet,” “‘object’” and “*modifier” does

1. Dictionary definitions require the
use of the subclass-to-superclass pointer
whenever they define a word by stating
the name of some larger class of which
it is a subelass. IFor example, in the
dictionary definition of ‘plant” shown
in Figure la, the word’s third meaning
is said to be a subclass of the class of
“putting.” ,

2. Any word or phrase used adjectively
or adverbially dictates use of the modifi-
cation pointer.

3. The multiple meanings of a word,
and any phrase such as “air, earth, or
water,” require the formation of a dis-
junctive set.

4. Any phrase like '“‘old, red house”
or ‘“old house with a red porch” re-
quires that the modifiers of “house” be
formed into a conjunctive set.

3-6. Together these two links form
the open-ended category, by means of
which all the remaining kinds of relation-
ships are encoded. This is necessary
because in natural language text almost
anything can be considered as a relation,
so that there is no way to specify in
advance what relationships are to be
needed (see Raphael, 1964). This means
that 2 memory model must provide a
way to take any two tokens and relate
them by any third token, which by virtue
of this use becomes a relationship.

It will be recalled that we feel that the
nodes of conceptual memory are most

‘usefully considered to represent properties

rather than words as such. Representing a

not always correspond to that of linguisties; and,
also, a plane encodes the meaning of a number of
sentences, whereas a deep structure is explicitly
limited to the representation of what can be repre-
sented in a single sentence (Ibid., p. 138ff). Also
notice that the correspondence, in as far as it
exists, is between one of vur planes and one of
Chomsky's deep structures, not between a plane
and a generative grammar. A generative grammar
is an attempt to state explicitly when and how
structural information can be related tu sentence,
whereas the job of a person encuding dictionary
definitions into our memory model is simply to
get a representation of their structures, that is,
to go ahead and use his language-processing
abilities, rather than to deseribe these. Hence our
cader does transformations, rather than describing
them. .
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property requires the nume of something
that is variable, an attribute, plus some
value or range of values of that attribute.
This feature is achieved in the memory
model by the fact that every token is
considered to have appended to it a spec-
ification of its appropriate amount or
intensity in the particular concept being
defined. Omitting this specification from a
token, which is gencrally what is done,
means that no restriction is placed on the
total range of variation in amount of
intensity open to the attribute. On the
other hand, whenever such specification
does appear overtly with a token node, it
consists principally of numerical values,
stating how the node’s total possible range
of amount of intensity is restricted. These
values allow encoding restrictions to a
fineness of nine gradations, that is, they
permit nine degrees of “absolute diserimi-
nation” to be represented (see Miller,
1956). The exact use and rationale for this
kind of specification “‘tag” has been de-
scribed elsewhere (Quillian, 1962b, 196G3),
along with that of the two other tags (rep-
resenting the “number” and the *‘criteri-
ality” of a token; see Bruner et al., 19306)
that are available in the model. Here it will
only be noted that in encoding dictionary
definitions all grammatical inflections, along
with all words such as “a,” “six,” “much,”
“very,” ‘‘probably,” ‘‘not,” “perhaps,”’
and others of similar meaning vanish, that
I8 do not become nodes themselves but
instead dictate that various range-restrict-
ing tags be appended to the token nodes of
certain other words. Removing all inflec-
tions during encoding permits all nodes in
the memory model to represent canonical
forms of words, which is of importance
both in reducing the model’s overall size,
and in locating conceptual similarities
within it (see the following section).

Certain other words besides those men-
tioned above are also dropped during the
encoding process, such as “and,” “or”
“is,” “which,” “there,” and “that,” these
being interpreted either directly as relation-
ships that are basic structural aspeets of
the model or else as directions to the coder
.about how he is to form the plane structure
—as specifications for how the configu-

rations of tokens on a plane are to be strue-
tured. Punctuation similarly shows up only
in the associative strueture of the model,
All pronouns, as well ax all words used
to refer uagain to something  mentioned
previously in the definition, are replaced in
the model by explicit references to the
carlier nodes. (In Figure 1 such referencing
Is being done by =A and =B, where some
higher token node in the plane has been
designated temporarily to be A or B by
giving it a prefix of =A or =B. A more
recent version of the loading program also
allows referring to any token node in any
plane, by a sort of “indirect addressing”
feature.) This ability to, in essenee, reuse
tokens repeatedly in a plane, perhaps
modifying them slightly each time, s
extremely important in making the: model
correspond to human-like memory. In the
course of coding a great many words into
the current and earlier network represen-
tations, I have come to believe that the
greatest difference between dictionary en-
tries and the corresponding semantic con-
cepts that people have in their heads is
that, while dictionary makers try hard to
specify all the distinctions between separate
meanings of a word, thev make only a very
haphazard effort to indicate what these
various meanings have in common con-
ceptually. Although they may not be aware
of it, there is a very good reason for this
seeming oversight: the best the dictionary
maker has available for showing common
elements of meaning is an outline-like
format, in which meanings with something
in common are brought together under the
same heading. However, as anvone who
has ever reorganized a paper several times
will realize, an outline organization is only
adequate for onc hierarchical grouping,
while in fact the common elements existing
between various meanings of a word eall
for a complex cross-classification. That is,
the common clements within and between
various meanings of a word are many, and

any one outline designed to get some of

these together under common h adings
must at the same time necessarily separate
other common clements, cqually valid from
some other point of view. By makmg the
present memory - network a general graph,
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rather than a tree (the network equivalent
of an outline), and by setting up tokens as
distinet nodes, it becomes possible to loop
as many points as necessary back into any
single node, and hence in effect to show
any and every common element within
and between the meanings of a word. The
= A notation causes the network-building
program to create such a link.

In all this, it is clear that not only dic-
tionary definitions but also much of the
everyday knowledge of the person doing
the coding are being tapped and represented
in the memory model being built up. I'or
instance, the reader will already have
noticed that a numeral is suffixed to the
end of some words (a “1” is to be assumed
whenever no such numetal appears). This
is simply because it is convenient to have
each sense of a word named distinctly
within the memory, in order to be able to
use these in building other configurations.
This means that a person building such
configurations for input to the model must
always decide which possible sense is
intended for every token, and use the
appropriate suffix.

In attempting to encode dictionary defini-
tions it was found that the memory must
provide a mechanism for stating that
certain nodes in the immediate definition

" plane of a type node are variable param-

eters. A value for one of these parameters
will be provided only when the word in
whose concept the parameter symbol
appears is used in text. Other words within
that surrounding text will then form cer-
tain parts of the current word’s concept;
the parameter symbols tell how. To ac-
complish this, parameter symbols are of
three kinds, corresponding to certain ways
that other words in text may be related to
the word to which the parameter symbols
belong. 8 is the parameter symbol whose
value is to be any word related to the
present word as its subject; D is the pa-
rameter symbol whose value is to be any
word related to the present word as its
direct object; and 1/ is the parameter
symbol whose value is to be any word that
the present word directly modifies.
Therefore, to include a parnmeter symbol
in a word’s definition plane is to state

where within that concept related subjects,
objects, and modificands are to be placed,
if one or more of these is provided by the
text in which the present word is used.
For example, when the verb *to comb”
is defined by the phrase, “to put a comb
through (hair), to get in order,” this defini-
tion is saying that, when used in text, the
verb *‘to comb” is likely to have an object,
which is then to be integrated into its
meaning in a certain place, namely, as the
object of the node *through.” In coding
the above definition of “to comb,” the
object parameter symbol, D, would be
used as a sort of “slot” to hold a place for
this object until “comb” is actually used
in text. It is important not to confuse the
sense in which D refers to some object of
“‘comb” and the sense in which there are
object links within a plane. D always refers
to an object of the word in whose defining
plane it appears, while its placement in
that plane—indicated by the kind of link
from some other token node to it—is another
matter. For example, notice in Figure 1a,
in the plane for “plant 3,” the symbol D
(which happens also to have been labeled
by = B). This D symbol has been placed
as the subject of “in 9,” but it is still a D,
because it refers to any direct object of the
verb ‘“‘to plant.” The symbol D specifies
that any such object of ‘“plant” is to be
integrated into the meaning of “plant 3"
at the place where the D is placed.

A dictionary definition, in addition to
stating where within a concept particular
sorts. of parameter value information are
to be *“placed,” may offer one or more clue
words about what such information is
likely to be. Thus, in the definition of *‘to
comb’ quoted above we are told that its
direct object is likely to be *hair.”

Clue words play several roles in the
memory model, one of which corresponds
approximately to the role that transfor-
mational linguists aseribe to *selectional
restrictions.” In other words, the material
comprising a full word coneept in the
memory madel ean be viewed as consisting
of two sorts of information. On the one
hand, there is information about the con-
tent of the concept itself; on the other
there is information about what that con-
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copt is lik(‘l.\" to (-nmb.inv \\'ilh. \.\'lu'n l'hv
word is used in text. This fatter lllf(ll'l]l{ltl()ll
i« represented by the clie words :ls.’s‘()’('l:ll(‘d
with its parameter svmbols. It is significant
that this same distinetion has been iden-
tified in verbal association studies, the
associations subjeets give to words being
divided into paradigmatic (content infor-
mation) and syntagmatie (parameter clue
information) (see, for example, Deese,
1962). Ervin (1961) has shown that the
number of content associations, relative to
svntagmatic associations, given by voung
children steadily increases with age.

In the versions of the memory model
used in the programs to be described in
this paper, clue words have been sought
and coded only reluctantly, both they and
the parameter symbols having initially
been included only because the sort of
information comprising them was embar-
rassingly present in some dictionary defini-
tions. However, it turns out that parameter
symbols of some kind play a very crucial
role in any such memory, because they make
it possible to recognize that two different
ways of stating the same thing are in fact
synonymous. (See Quillian, 1966.)

As a final point, we note that the model’s
range readings on tags, together with its
ability to form disjunctive sets of attributes,
provide it with a ready facility for repre-
senting information having a great deal of
vagueness. This is essential. It is the very
vagueness of the meaning of most language
terms that makes them useful—indeed,
speech as we know it would be completely
impossible if, for instance, one had to
specify exactly which machines he made
reference to every time he said “machine,”
and similarly, for every other term whose
meaning contains some ambiguity.

To summarize, the memory model, to-
gether with the process by which dictionary
information is encoded into it, are such
that what begins as the English definition
of a word seems better viewed after encoding
as a complexly structured bundle of at-
tribute values—a full concept, as defined
above—whose total content typically ex-
tends to an enormous size and complexity
throughout the memory. Over all, the
memory is a complex network of attribute-

vilue nodes and Iabeled assoeiations between
them. These associations ereate both within-
plane and between-plane ties, with several

links emanating from  the typical token

node, and many links coming into almost
every tvpe node.
Performance of the Search Program
It will be recalled that the present pro-
gram ix designed to compare and contrast,
the meaning of any two word-concepts i
the memory store, and then to generate

English text to express each of its findings.

Notice that this is not the same task as
merely using the two words in sentences,
a vastly simpler job, for which one need not
even consider the semantic concepts . as-
sociated with the words (Yngve, 1960).
The actual processing syvstem is made up
of three separate programs. The first of
these transforms input - data (definitions
which have been encoded as described in
the last section) into IPL form and inter-
laces these to form the total memory ncodel.
This program will not be considered further
here. The second program compares and
contrasts the two given word concepts.
It puts out anything found, but in a form
expressed in the model memory’s own
internal language of nodes and links. The
third program takes these findings one at a
time, and for each generates English text
sufficient to cxpress its meaning. Thus,
this third program states (in a sort of “me
Tarzan, you Jane” style of English) each
similarity or contrast of meaning that the
second program has found between the
two given words. '
It is in the operation of the second pro-
gram, the comparing and contrasting of
two concepts, that the interlocking, token-
type structure of the overall memory bégins
to pay off. For, in order to do this job, it
is no longer necessary in such a memory to
line up some representation of each of the
two concepts side by side and try to com-
pare them. Instead, the entire investigation
is simply a matter of searching for points
in the memory at which the two full con-
cepts intersect (recall how a full concept
was defined in the first section above).
To see how this is accomplished, reeall that
the entire memory is a network of nodes
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and connecting links. Beginning with the
two nodes that the program is given to
compare (the two patriarch words), this
program works alternately on one full
word concept and then the other, moving
out node by node along the various tokens
and types within cach. While it will be
convenient to visualize this as creating two
slowly expanding spheres of activated nodes
around cach patriarch, actually there is
no geometric significance to the expansion
of a concept; the nodes in one concept may
be located anywhere in the memory model.

The program simulates the gradual
activation of each concept outward through
the vast proliferation of associations origi-
nating from each patriarch, by moving out
along these links, tagging each node en-
countered with a special two-part tag, the
“getivation tag.” Part of this tag always
names the patriarch from which the search
began, that is, the name of the concept
within which the current node has been
reached. Now, the program detects any
intersection of meaning between the two
concepts simply by uasking, every time a
node is reached, whether or not it already
contains an activation tag naming the

other patriarch, that is, showing that thix
node has previously been reached in the
tracing out of the other concept. If there
is no such tag, the program next checks
to see if there is already an activation tag
naming the current patriarch, that is,
indicating that this node has been reached
previously in tracing out this same concept.
If so, the program must take account of
this, to inhibit retracing out from the node
again and hence repeating its effort, per-
haps getting into a loop. Only if neither
such tag is found is the node tagged, and
further search leading to the nodes it points
to considered legitimate.

The second part of each activation tag
is the name of the “immediate parent” of
the current node,—the node at which the
associative link leading directly to it origi-
nated. Thus, the “activated” areas of the
memory are turned from a one-way network
into a two-way network, and, whenever
a tag from the opposite patriarch is found,
these “‘immediate parent’”’ parts of activation
tags permit the program to trace back
“yp” from the intersection node to the two
patriarchs. This produces two paths, except
when the intersection node is one of the
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Fii. 2a. Two Paths Divect from Plant to Live.
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Fig. 2b. A Path from “Cry” and a Path from “Comfort’’ Which Reach the Same
(that is, an intersection) Node.

patriarchs, in which case only a single path
is needed, leading from one patriarch di-
rectly to the other. Examples of such paths
and pairs of paths occur in Figures 2a and
2b, respectively. The paths from a patriarch
to an intersection node produced by the
second program should not be confused with
the “activation” it makes from each patri-
arch. While this activation is equivalent to
an expanding “sphere,” a path is only one
particular “line” from the center of the
sphere to some point within it, onc at
which it intersects the other full concept’s
“sphere.”

Expanding the two concepts alternately
is extremely important; in effect this makes
both concepts into searchers for each other,
and gives both the maximal number of
targets to look for at any given stage of the
search.

Performance of the Sentence Generator
and Overall Program

The third program, which generates a
piece of text to express cach path given it
by the second program, produces output of
the sort illustrated in Table 1. (In this table
the paths which the third program has
heen given to work on are omitted, although

the paths for examples 1 and 2 are those of
Figure 2.)

The most important point about the
sentence producer is that there would seem
to be considerable justification for con-
sidering it, when taken in conjunction with
the first two programs, as an inference
maker rather than just a retriever of infor-
mation. From a relatively small amount of
input data, the overall program will indeed
derive a very large number of implicit
assertions (see calculations below), and
make each such assertion cxplicit in the
form of English text. As an example of its
most interesting type of ‘“inferential”
behavior to date, the reader’s attention is
directed to the output shown in Table 1
as example 2B. The path that this output
expresses is the longer of those shown in
Figure 2a. As can be seen from a study of
Figure 2a, this kind of performance is
made possible by the fact that the menory
model closely interconnects related infor-
mation which has been fed in from a great
many different definitions, so that, in order
to answer some particular question, the
search program can trace out a “plane-
hopping” path. While a path lyving com-
pletely within one plane (except for its

v
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TABLE 1

ExampLE oF OvTeuT FROM THE CURRENT PROGRAM
(Paths have been omitted, but see Figure 2)

Example 1. Compare: CRY, COMFORT
A. Intersect: SAD

(1) CRY2 IS AMONG OTHER THINGS TO MAKE A SAD SOUND
2) TO COMFORT3 CAN BE TO MAKE2 SOMETHING LESS2 SAD.
(Note that the program has selected particular meanings of ‘“‘ery” and *‘comfort”
as appropriate for this intersection. The path on which this output is based is

shown in Figure 2b.)
Example 2. Compure: PLANT, LIVE
A. 1st Intersect: LIVE

(1) PLANT IS A LIVE STRUCTURE.

B. 2nd Intersect: LIVE

(1) PLANT IS STRUCTURE WHICH GET3 FOOD FROM AIR. THIS FOOD IS
THING WHICH BEING2 HAS-TO TAKE INTO ITSELF TO7 KEEP LIVE.
(The paths which these two replies express are shown in Figure 2a.)

Example 3. Compare: PLANT, MAN
. A. 1st Intersect: ANIMAL

(1) PLANT IS NOT A ANIMAL STRUCTURE.

(2) MAN IS ANIMAL.
B. 2nd Intersect: PERSON

(1) TO PLANT3 IS FOR A PERSON SOMEONE TO PUT SOMETHING INTO

EARTH.
(2) MAN3 IS PERSON.

(Here the program is treating ‘‘person’’ as an adjective modifier of ‘‘someone.”)

Example 4. Compare: PLANT, INDUSTRY
A. 1st Intersect: INDUSTRY

(1) PLANT2 IS APPARATUS WHICH PERSON USE FOR5 PROCESS IN IN-

DUSTRY.
Example 5. Compare: EARTH, LIVE
A. 1st Intersect: ANIMAL

(1) EARTH IS PLANET OF7 ANIMAL.
(2) TO LIVE IS TO HAVE EXISTENCE AS7 ANIMAL.

Example 6. Compare: FRIEND, COMFORT
A. Ist Intersect: PERSON
(1) FRIEND IS PERSON.

(2) COMFORT CAN BE WORD TO+ PERSON.

Example 7. Compare: FIRE, BURN
A. Ist Intersect: BURN

(1) FIRE IS CONDITION WHICH BURN.

B. 2nd Intersect: FIRE

(1) TO BURN2 CAN BE TO DESTROY2 SOMETHING BY4 FIRE.

C. 3rd Intersect: BURN

(1) FIRE IS A FLAME CONDITION. THIS FLAME CAN BE A GAS TONGUE4.
THIS GAS IS GGAS WHICH BURN.
(The seuntence producer starts a-new sentence whenever it needs to say something
more about something it has used adjectively.)

4+ «“AMONG OTHER THINGS” and “CAN
BE’’ are canned phrases which the program inserts
when the next thing it is going to mention is one
out of a set of things recorded in its memory. At
one point, the program was programmed to insert
“AMONG OTHER THINGS" whenever it was
about to assert one fact out of such a set. We
expected this to make its output have a proper,
scientifically cautious ring. However, where it
had been saying, (rather clodishly, we felt) “TO
CRY I8 TO MAKE A SAD SOUND,” it now
said: “TO CRY, AMONG OTHER THINGS,

1S, AMONG OTHER THINGS, TO MAKE,
AMONG OTHER THINGS, A, AMONG OTHER
THINGS, SAD SOUND.” (!) In short, it turns
out that if the program is really made to hedge
whenever it knows more than it is going to say,
one sits around the console all day waiting for it
to get around to saying anything. This may not
be such a bad simulation of certain individuals,
but wasn’t what we had had in mind. Thus, the
program is now severely restricted as to just when
it can hedge. Ncience marches on.
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TABLE 1—Continucd

l:xample 8. (‘ompare BUSINESS, COMFORT
. 1st Interseet: PERSON

(1) BUSINESS5 IS8 ACT3 WITICH PERSON Do,
(2) COMFORT2 IS CONDITION3 WHICH PERNON HAVE NEED4.

(The code contains information indieating that

sperson’’ should be plural here,

but the sentence producer does not yet make use of this information.)

B. 2und Intersect: PERSON

(1) BUSINESS5 IS ACT3 WHICIT PERSON DO.
(2) COMFORT CAN BE WORD TO4 PERSON.

(‘ompare MAN, BUSINESS
. 1st Intersect: PERSON
(1) MANS3 IS PERSON.

Example 9.

(2) BUSINESS CAN BE ACTIVITY WHICH PERSON MUST DO WORK2.
(Something wrong here. 1 believe a miscoding in the input data.)

B. 2ud Intersect: GROUP

(1) MAN2 IS MAN AS9 GROUP.

(2) BUSINESS2 IS QUESTION3 FOR ATTENTION OF GROUP,

Example 10. Compare: MAN, LIVE
A. 1st Intersect: ANIMAL
(1) MAN IS ANIMAL.

(2) TO LIVE IS TO HAVE EXISTENCE AS7 ANIMAL.

B. 2nd Intersect: LIVE
(1) MAN IS A LIVE BEING2.

terminal points) amounts only to a rep-
resentation of some piece of the information
put into the memory, a “plane-hopping”
path represents an idea that was implied
by, but by no means directly expressed in,
the data that was input. By analogy, sup-
pose we fed a machine “A is greater than
B,” and “B is greater than C.” If then, in
answer to the question “what is A greater
than?” the machine responded “B,” we
would not want to call this an inference,
but only a ‘recall.” However, if it went on
to say, ““A is also greater than C,” then we
would say that it had made a simple in-
ference. The kind of path that we have been
calling ‘“plane-hopping” is exactly the
representation of such an inference, since it
connects information fed in in one definition
with that fed in in another. But the fact that
our planes are not simple propositions but
rather sizeable configurations, every node of
which provides the possibility of branching
off to another plane, means that the number
of “inferential” paths becomes very large
as paths of any appreciable length are
considered. Moreover, the possibility that a
path may contain fragments from several
planes, would seem to indicate clearly that
the inferences need not be at all simple,
although we do not as yet have actual
computer output with which to demon-
strate this very conclusively.

Assuming a ‘“‘complete” semantic memory
—one in which every word used in any
definition also has a definition encoded—a
concept fans out very rapidly from its
patriarch. It appears that in such a full
model memory the average node would
branch to at least three other nodes, con-
sidering both its ties to tokens and to its
type, if it is itself a token. This means that
the average number of paths of, say, up to
ten nodes in length emanating from any
type of node would be over 88,000, cach of
which would require at least one unique
sentence to express. This is to be compared
to 2,046 paths emanating from such a type
node if no token-to-type links are available.
Another way to look at the potential of a
memory store such as the theory specifies
is to compute what the present programs
could generate if one could get, say, defi-
nitions of 850 words encoded and stored in
a model memory. There would then be
360,000 word pairs to ask it about. Since at.
a conservative estimate a memory model
this size would provide ten nontrivial
semantic connections, and hence sentences
or sentence sets, between the average
word pair, the present programs would have
the capability to generate well over three-
and-one-half million short batches of text
to express this total conceptual knowledge,
ignoring all that information present only

e T————
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in longer paths. Definitions of 850 words
comprise considerably more information
than one could model in the core of today’s
computers, but calculations such as these
scem relevant in evaluating the potential
of the model as a general theory of long-
term conceptual memory.

While o path represents an idea, it is up
to the sentence-producing program to get
that idea expressed in English. Thus this
program must check a path for restriction
tags and other features which make it
necessary to insert words such as “not”
or “among other things” into the sentence
generated to express its meaning.

In attempting to cxpress the meaning
of a path, this program also deletes, re-
arranges, and adds words to those given in
the path. It works not only with nodes
mentioned in the path itself but sometimes
looks around these nodes in the memory
model to rvetrieve additional information
and to check on things it considers saying.

In cexpressing a complex path such as
that of Ilgure 2a, this text-producing
program realizes when the capability of its
sentence grammar is being exceeded and
starts o new sentence. (See for example,
7.c.1 of Table 1.) Unfortunately, it does
this rather often, and a more powerful
grammar would clearly be one which,
instead of the two sentences shown in Table 1
as example 3.A.1 and 3.A.2, would produce
the single sentence: “A plant is not an
animal but & man is.”” Some of the minor
improvements of this sentence over the
two which the program now produces
would not be difficult to program, but the
unification of the two paths into one is a
bit more complicated. Clearly, this involves
something very close to what Chomsky
calls transformations.

In summary, although we have not de-
scribed the operation of the sentence pro-
ducer in detail, it should be clear that it
has little in common with other sentence
generation  programs, and, in fact, its
whole philosophy is contradictory to a good
part of the spirit of modern linguisties,
inasmuch as this attempts to treat syntactice
facts in isolation from semantie ones. Thus
other sentence generation programs pro-

duce sentences that, in syntax, are gram-
matical, but which are in meaning either
completely random (Yngve, 1960), or
random permutations of the *‘dependency”
constraints imposed by an input text
(Klein and Simmons, 1963). The program
is also designed in complete contradiction
to the subordinate place for semantic
information that the formulation of Katz
and Postal (1964) would seem to imply for

.a performance model.® As a theory, the

program implies first that a person has
something to say, expressed somehow in
his own conceptual terms (which is what
a “path” is to the program), and that all
his decisions about the syntactic form that
a generated sentence is to take are then
made in the service of this intention. The
sentence producer works entirely in this
fashion, figuring out grammatical properties
of sentences only as these are needed to
solve the problem of expressing a path
given to it by the search program.

Thus far, the programs have only been
tested on very small model memories,
built from no more than 50 or 60 defini-
tions (about 5,000 IPL cells), and on only
a few such memories (see Table 2). A small
total memory means that most branches of
the proliferating search of a concept are
always getting cut short by reaching a
type node for which no definition has yet
been encoded. One of the most surprising
findings from running the program has
been that even with this relative paucity of
overall information, the program almost
always succeeds in finding some intersections
of meaning. Actually, Table 1 lists only a
selected sample of the program’s output for
cach compared pair of words; there are
usually five or six pairs of sentences gen-
erated for each problem pair given to it,
although most of these are only trivial
variations of a couple of basic sentences
such as those we have selected for Table 1.
The larger the model memory, the greater

§ While on the one hand the transformation-
alists explicitly deny that their work is a model
of performance, at the same time they often seem
willing to draw psychological conclusions from
their models. (See, for example, Katz and Postal,
1064, pp. 1-2; Chomsky, 1965, pp. 139-141).
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TABLE 2
Wonrns withH DEFINITIONS EXCODED Fon
UsE 1IN MobEL MEMORIES®

instrument cause live
insurance attack level
invent argue lif1
interest business letter
iron burn learn
ice build leather
idea hread land
friend hehave Kiss
develop ery know
event country laugh
earth desire Jight
exist sex language
drink plant law

fire family lead
flame meal jelly
experience animal journey
fact food jump
comfort man judge
cloth

NoOTE: Space limitations have so far required
that definitions of no more than twenty of these
words be used to constitute a model memory
during a given series of word comparisons. Since
this paper was written, almost all of the 850 words
of basic English have heen encoded, but not yet
run in the program.

the number of search branches that remain
active, so that the search program becomes
able to unearth a great many more semantic
connections at a relatively shallow depth
beneath any two patriarchs. Ultimately
this can only improve the program’s per-
formance, although it may also require
that more concern be given to directing
searches than is so far the case. At present,
but for one exception, a search just “pro-
gressively proliferates” along all possible
branches from the two patriarchs (until

¢ It is hoped that the program can be tested on
somewhat larger memory models in the not too

distant future, although it would also be inter-

esting to attempt to improve the dictionary
entries from which data are taken. So far defini-
tions given in Ogden (1942) have been used. This
was selected in order to make sure that definitions
loop back into one another as often as possible,
and because its definitions are short. It now seems
there is no worry at all about having enough
intersections, and several other dictionaries have
been investigated as possible sources of input
data. Funk and Wagnalls (1959), although not
consistent on this point, makes much the most
thorough effort to arrange the various meanings
of a word into some sort of outline, hence indicat-
ing which meanings have something in comimon.

it has covered a given number of nodes,
such ax 400).

The one exception to this blind, “breadth
first,” search occurs whenever two coneepts
are found to interseet on a word used
prepositionally, such as “for 5" in the
concept “plant 2.7 Instead of treating this
ax i substantive semantie intersection, the
search  program  merely  concentrates  an
immediate burst of search activity out from
the two tokens of the preposition. The
reasoning here isx simply that, while a1 mateh
on such a word is not in itselfl sufficient to
be treated as a  significant  conceptual
similarity, it is a good bet to examine im-
mediately the subjects, objeets, and modi-
fiers of such prepositions, rather than con-
tinue the usual scarch schedule which
normally would not get to these nodes for
some time. Unfortunately there is not vet
enough evidence available to assess the
value of this search heuristic, since its
effectiveness, if any, will not show up until
the memory model is relatively large.

Discussion

In the current programs, all activation
tags are erased after comparison of two-
word concepts is completed, but in order
to illustrate the generality of the memory
model their relevance to two other phe-
nomena will be mentioned. The first of
these is the state a person gets into by
reading part of a text; namely he gets “in
context.” In this state he will, for example,
be able to decide which of several possible
meanings of a new word that he encounters
in the text fits the context. To explain this,
let us suppose that the person’s memory is
indeed organized and utilized as is our
model memory. Suppose, for example, that
the text is about bascball. As the subject
has been reading, he has been firing acti-
vation “spheres” from the patriarch nodes
corresponding to many of the words in the
text. The activation tags applied in this
manner are not immediately erased, so
that they accumulate throughout much of
the memory, on nodes such as *“batter,”
“ball,” “pitcher,” and so on. Now, upon
encountering, say, the word “strike,” the
reader fires one activation sphere from the
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tvpe node heading its baseball meaning,
another from the one heading its labor
union meaning. Clearly, intersections will
pile up very quickly beneath one of these
meanings, and much more slowly beneath
the other. The ambiguity is resolved almost
instantaneously; if the reader is a human, he
would say that one meaning is *“in context,”
the other not. (An experiment demonstrating
the use of the model for such automatic
meaning resolution is described in Quillian,
1966.)

The considerable effort that has been
invested in building automatic parsing pro-
grams (see Bobrow, 1963), all assumes that
natural language can be dealt with without
using any such semantic contextual infor-
mation, or at least without using it until
after all parsing has been accomplished by
purely syntactic information. This may be
so, but it seems to me more likely that to
attack the problem in this way is to pose
the wrong, and probably an insoluble, prob-
lem. I suspect that successful mechanical
language processors must stay much closer
to the way humans process language, in
which syntax and semantics are surely
interwoven at every stage.

Katz and Foder (1963) and Katz and
Postal (1964) propose to describe the “struc-
ture of a semantic theory,” with almost
exactly the same machinery Chomsky has
used to advantage for describing syntactic
structure. However, aside from also as-
suming that stored semantic information
ix always to be placed beneath the syn-
tactic information associated with a word,
Isatz and his coworkers seem to offer us
little more about how this information is
to be represented than to assert that it
can always be arranged into a single tree
structure of **markers” and “distinguishers.”
We have already described (above) why
such a single outline type of organization
will not suffice to capture the information
which people know and use in dealing with
words.

As n theory of semantics our memory
model has greater flexibility and  expres-
siveness, and correspondingly greater com-
plexity and cumbersomeness  to  process,
than that of formats generally considered,

such as set theoretic or symbolic logic
frameworks. However, various attempts to
translate English into such terminologiex
have as yet not met with any general suc-
cess, and in some cases it is clear that there
are formidable difficultics in the way (Dar-
lington, 1964). Others have proposed iso-
lating a set of semantic “glements,” either
by linguistic methods (Lamb, 1964) or
psychologically, by analyzing word mean-
ings into Titchnerian sensory units (Quil-
lian, 1961, 1962a). Even if some such
reduction is possible, however, its relation
to the way people really encode semantic
information, and even its usefulness to any
sort of empirical semantic investigation,
seem unclear. The problem of semantics,
it seems to me, lies more in how to rep-
present and arrange information than in
how to discover more of it, a problem to
which dictionary and encyclopedia com-
pilers have applied themselves with some
diligence.

In any case, the model of memory pro-
posed here is both purely semantic and
very elaborate, and one may speculate
about what changes will be required if it
is to serve as a basis for the explanation
and simulation of other functions that
people perform with the aid of long-term
memory. Programming such new tasks is
crucial to establish the generality of the
memory model. Doing so would further
test the current features of the model, and
get at some of its properties that are hardly
tested at all by the current programs, such
as the parameters S, D, and M. As the model
is tested by programming such tasks,
changes in its details are inevitable. The
pertinent question is whether or not a model
essentially similar to this one is likely to
prove useful for supporting the simulation
of other memory-dependent functions, and,
of course, for guiding other research on
memory functions.

In summary, four key assumptions about
word concepts stored in memory have been
made: that the information in them is
large, differentially accessible, exceedingly
rich in expressive power, and yet composed
of units that represent properties. The
realization of these features in an explieit
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model has required a complicated network
of associative links, plus a number of other
devices, The resulting model has been tested
for its ability to allow the meaning of
Eunglish text to be encoded accurately and,
once a model memory has been built up in
this way, for its ability to support simu-

lation of two behaviors: the recognition -

of semantic similarities and contrasts, and
the expression of these in sentences. It has
been asserted that the memory model and
the programs processing it constitute a
theory of the general structure and corre-
sponding uses of human memory, although
we are aware that a behavioral theory
couched in computer terms is sufficiently
unfamiliar to make some psychologists
feel uneasy.

For those who, like this author, are
disposed to consider this model a psycho-
logical theory, a great many new problems
open up. In addition to exploring the
sufficiency of the memory model for other
types of behavior, there is the task of
discovering how variations in such a strue-
ture affect performance, and subsequently
of correlating specific features of the model
with individual variations of subjects’
behavior. Some computer-framed theories
have, at least for specific problem-solving
behaviors, reached this level of development
(see, for example, Newell, Shaw, and Simon,
1962; Simon and Feigenbaum, 1964; or
Simon and Kotovsky, 1963). At that point
the “information-processing’”’ methodology
merges with the main stream of psycho-
logical research. For those whose interest
is primarily in artificial intelligence per se,
let me conclude by suggesting that further
advances in reproducing human performance
with a computer critically depend on giving
such programs memories which can ef-
fectively provide them with a “knowledge
of the world.”
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Pictorial form is the possibility that things are related to one
another in the same way as the elements of the picture.
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