Artificial Intelligence

Second Edition

Elaine Rich

Microelectronics and Comiputer
Technology Corporation

Kevin Knight

Carnegie Mellon University

§ 1012 Comeeprhnal Payirbony

lo-2: Scoy f&

© 191

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotd Caracas
Hamburg Lisbon London Madrid Mexico Milan Montreal
New Delhi Paris San Juan S3o Paulo Singapore Sydney
Tokyo Toronto

278 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES %

4
{

{o a
R P man ;

p)
I & ATRANS — book <+

from

-

where the symbols have the following meanings:

¢ Arrows indicate direction of dependency.
¢ Double arrow indicates two way link between actor and action.
¢ p indicates past tense.

o ATRANS is one of the primitive acts used by the theory. It indicates transfer of
possession.

¢ o indicates the object case relation.

R indicates the recipient case relation.
Figure 10.1: A Simple Conceptual Dependency Representation

As a simple example of the way knowledge is represented in CD, the event repre-
sented by the sentence

[gave the man a book.

would be represented as shown in Figure 10.1.

In CD. representations of actions are built from a set of primitive acts. Although
there are slight differences in the exact set of primitive actions provided in the various
sources on CD, a typical set is the following, taken from Schank and Abelson (1977]:

ATRANS Transfer of an abstract relationship (e.g., give)

PTRANS Transfer of the physical location of an object (e.g., go)
PROPEL Application of physical force to an object (e.g., push)

MOVE Movement of a body part by its owner (e.g., kick)

GRASP Grasping of an object by an actor (e.g., clutch)

INGEST Ingestion of an object by an animal (e.g., eat)

EXPEL Expulsion of something from the body of an animal (e.g., cry)
MTRANS Transfer of mental information (e.g., tell)

MBUILD Building new information out of old (e.g., decide)

SPEAK Production of sounds (e.g., say)

ATTEND Focusing of a sense organ toward a stimulus (e.g., listen)

—— T . e - . e . -

Chapter 10 ‘

1

Strong Slot-and-Filler -
Structures

The slot and filler structures described in the previous chapter are very general. Indi-
* vidual ic networks and frame systems may hdve specialized links and inference
procedures ut there are no hard and fast rules about what kinds of objects and links are
good in general for knowledge representation. Such decisions are left up to the builder
of the semantic network or frame system.

The three structures discussed in this chapter, conceptual dependency, scripts, and
CYC, on the other hand, embody specific notions of what types of objects and relations
are permitted. They stand for powerful theories of how Al programs can represent and
use knowledge about common situations.

10.1 Conceptual Dependency

Conceptual dependency (ofteh nicknamed CD) is a theory of how to represent the kind

.* of knowledge about events that is usually contained in natural language sentences. The

i* goal is to represent the knowledge in a way that

‘ .

4 £ ¢ Facilitates drawing inferences from the sentences.

o Is ;n&'épendeﬁt’of the language in which the sentences wére originally stated.

|

Because of the two concerns just mentioned, the CD representation of a sentence is
built not out of primitives corresponding to the words used in the sentence, but rather
out of conceptual primitives that can be combined to form the meanings of words in any
Particular language. The theory was first described in Schank [1973] and was further

. developed in Schank [1975]. It has since.been implemented in a variety of programs
that read and understand natural language text. Unlike semantic nets, which provide

. only a structure into which nodes representing information at any level can be placed,
Conceptual dependency provides both a structure and a specific set of primitives, at
4 particular level of granularity, out of which representations of particular pieces of
information can be constructed.

' \ 277

= g o -
. — - P

278 J* CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

. P [
] to *
————® man
p o R _ [y

I &) ATRANS *— book *+—. from

I o
where the symbols have the following meanings: ~

\
¢ Arrows indicate direction of dependency.

¢ Double arrow indicates two way link between actor and action.
o p indicates past tense.

o ATRANS is one of the primitive acts used by the theory. It indicates transfer of
possession. :

o indicates the object case relation.

R indicates the recipient case relation.
Figure 10.1: A Simple Conceptual Dependency Representation
As a simple example of the way knowledge is represented in CD, the event repre-
sented by the sentence
!,
I gave the énan a book.
would be represénted as shown in Figure 10.1.
In CD, representations of actions are built from a set of primitive acts. Although

there are slight differences in the exact set of primitive actions provided in the various
sources on CD, a typical set is the following, taken from Schank and ‘.!‘son [1977]:

i A i
ATRANS s Transfer of an abstract relationship (e.g., give) |
PTRANS '

| Transfer of the physical location of an object (e.gJ. go
PROPEL ‘ Application of physical force to an object (e.g., push)

MOVE Movement of a body part by its owner (e.g., kick)

GRASP ! Grasping of an object by an actor (e.g., clutch)

INGEST | Ingestion of an object by an animal (e.g., eat) !
EXPEL | _ Expulsion of something from the body of an animal (e.g., cry)
MTRANS f Transfer of mental information (e.g., tell) \ "
MBUILD * Building new information out of old (e.g., decide) 4"
SPEAK T Production of sounds (e.g., say) bl
ATTEND ‘ Focusing of a sense organ toward a stimulus (e.g., listl:n)

i.

10.1. CONCEPTUAL DEPENDENCY 279

A second set of CD building blocks is the set of allowable dependencies among
the conceptualizations described in a sentence. There are four primitive conceptual
categories from which dependency structures can be built. These are

ACTs Actions]

PPs Objects (picture producers)

AAs Modifiers of actions (action aiders)
PAs Modifiers of PPs (picture aiders)

In addition, dependency structures are themselves conceptualizations and can serve
as components of larger dependency structures.

The dependencies among conceptualizations correspond to semantic relations among
the underlying concepts. Figure 10.2 lists the most important ones allowed by CD.!
The first column contains the rules; the second contains examples of their use; and the
third contains an English version of each example. The rules shown in the figure can be
interpreted as follows: I '4

* Rule 1 describes the relationship between an actor and the event he or she causes.
This is a two-way dependency since neither actor nor event can be considered
primary. The letter p above the dependency link indicates past tense.

¢ Rule 2 describes the relationship between a PP and a PA that is being asserted
to describe it. Many state descriptions, such as height, are represented in CD as
numeric scales.

e Rule 3 describes the relationship between two PPs, one of which belongs to the
set defined by the other. ’

. & Rule 4 describes the relationiship between a PP and an attribute that has already
been predicated of it. The direction of the arrow is toward the PP being described.

¢ Rule 5 describes the relatiqnship between two PPs, one of which provides a
particular kind of information about the other. The three most common types
of information to be provided in this way are possession (shown as POSS-BY),
location (shown as LOC), and physical containment (shown as CONT). The
direction of the arrow is again toward the concept being described.

® Rule 6 describes the relationship between an ACT and the PP that is the object of
that ACT. The direction of the arrow is toward the ACT since the context of the
specific ACT determines the meaning of the object relation.

¢ Rule 7 describes the relationship between an ACT and the source and the recipient
of the ACT. !

¢ Rule 8 describes the relationship between an ACT and the instrument with which
it is performed. The instrument must always be a full conceptualization (i.e., it
must contain an ACT), not just a single physical object.

I'The table shown in the figure is adapted from several tables in Schank {1973},

280

CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

p .
pr &P act sohn €= PTRANS
i é PA Jobhn é height (> average)
PP é PA Jbhn é doctor
PP boy
+
PA nice
PP dog
s T poss-by
PP John p
o
ACT Q-n— PP John @ PROPEL ¢=— cart
John
PP P R
act & tohn € ATRANS ‘—i
P to Mary
book
p \ John
act «— o €= icest +)
do
o
ice cream T o
spoon

[: field
PP P D

ACT D John @ PTRANS

PP ' ° bag

fentilizer
size > x
plants
size = x

M M

heslth(-10)
Bob
; p [:

(@) @
Mo
Lo
(‘i‘) John <§> PTRANS
<'_f> 1 <?mms Py {m
Lo

[
o R CcP
1 <:>MTRANS —
i eyes

g U
cp
<:> <:> MTRANS ¢—em fm{ .

Figure 10.2: The Dependencies of CD

R
Bill € PROPEL 4= buller 4-|

R,

John ran.
John is tall.

John is a doctor.

A nice boy.

John's dog.

John pushed

the cart.

John took the

book from Mary.

John ate ice
cream with
a spoon.

John fenilized
the field.

The plants grew.

Bob

Bill shot Bob.

gun

John ran
yesterday.

While going
home, I saw
afrog.

1 heard a frog
in the woods.

10.1.

CONCEPTUAL DEPENDENCY © 281

® Rule 9 describes the relationship between an ACT and its physical source and

destination.

¢ Rule 10 represents the relationship between a PP and a state in which it started

and another in which it ended.

Rule 11 describes the relationship between one conceptualization and another that
causes it. Notice that the arrows indicate dependency of one conceptualization on
another and so point in the opposite direction of the implication arrows. The two
forms of the rule describe the cause of an action and the cause of a state change.

Rule 12 describes the relationship between a conceptualization and the time at
which the event it describes occurred. :

Rule 13 describes the relationship between one conceptualization and another that
is the time of the first. The example for this rule also shows how CD exploits
a model of the human information processing system; see is represented as the
transfer of information between the eyes and the conscious processor.

Rule 14 describes the relationship between a conceptualization and the place at
which it occurred.

Conceptualizations representing events can be modified in a variety of ways to
supply information normally indicated in language by the tense, mood, or aspect of a
verb form. The use of the modifier p to indicate past tense has already been shown. The
set of conceptual tenses proposed by Schank [1973] includes

p Past ’

f Future

t Transition

ty Start transition
t Finished transition
k Continuing

? Interrogative

/ Negative

nil Present

delta Timeless

c Conditional

As an example of the use of these tenses, consider the CD representation shown in
Figure 10.3 (taken from Schank [1973]) of the sentence

Since smoking can kill you, I stopped.

The vertical causality link indicates that smoking kills one. Since it is marked c,
however, we know only that smoking can kill one, not that it necessarily does. The
horizontal causality link indicates that it is that first causality that made me stop smoking.
The qualification tr» attached to the dependency between I and INGEST indicates that

the smoking (an instance of INGESTING) has stopped and that the stopping happened
in the past.

282 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

—— one

R
one ¢=> INGEST <— smoke &

< cigarette

! '
=02 —1)

INGEST «—— smoke <4— '

L cigarette
——» dead

one &

P L« alive

Figure 10.3: Using Conceptual Tenses

There are three important ways in which répresenting know]edgé using the concep-
tual dependency model facilitates reasoning with the knowledge: -

1. Fewer inference rules are needed than would be required if knowledge were not
broken down into primitives.

2. Many inferences are already contained in the representation itself.

3. The initial structure that is built to represent the information contained in one
sentence will have holes that need to be filled. These holes can serve as an
attention focuser for the program that must understand ensuing sentences.

Each of these points merits further discussion.

The first argument in favor of representing knowledge in terms of CD primitives
rather than in the higher-level terms in which it is normally described is that using the
primitives makes it easier to describe the inference rules by which the knowledge can be
manipulated. Rules need only be represented once for each primitive ACT rather than
once for every word that describes that ACT. For example, all of the following verbs
involve a transfer of ownership of an object:

Titny,

o Give
o Take
o Steal

e Donate

If any of them occurs, then inferences about who now has the object and who once
had the object (and thus who may know something about it) may be important. In a
CD representation, those possible inferences can be stated once and associated with the
primitive ACT ATRANS.

A second argument in favor of the use of CD representation is that to construct it,
we must use not only the information that is stated explicitly in a sentence but also a set

10.1. CONCEPTUAL DEPENDENCY 283

'

John Bill 4

t ' g
') Poss-by
{ Bill nose &—————— John
P I
Bill ¢ MTRANS 4> Hem
ml 'o doI
John &) believe 4—,

John & do2

]

Bill & do,

1

nose € broken

broken

Poss-by 3
John
Figure 10.4: The CD Representation of a Threat

of inference rules associated with the specific information. Having applied these rules
once, we store these results as part of the representation and they can be used repeatedly
without the rules being reapplied. For example, consider the sentence

Bill threatened John with a broken nose.

The CD representation of the information contained in this sentence is shown in Fig-
ure 10.4. (For simplicity, believe is shown as a single unit. In fact, it must be represented
in terms of primitive ACTs and a model of the human information processing system.)
it says that Bill informed John thaf he (Bill) will do something to break John's nose.
Bill did this so that John will believe that if he (John) does some other thing (different
from what Bill will do to break his nose), then Bill will break John's nose. In this
representation, the word “believe” has been used to simplify the example. But the idea
behind believe can be represented in CD as an MTRANS of a fact into John’s memory.
Th'e actions doj and do; are dummy placeholders that refer to some as yet unspecified
actions.

A third argument for the use of the CD representation is that unspecified elements of
the representation of one piece of information can be used as a focus for the understanding
of later events as they are encoun!gred. So, for example, after hearing that

«
h

284 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

Bill threatened John with a broken nose.

we might expect to find out what action Bill was trying to prevent John from performing.
That action could then be substituted for the dummy action represented in Figure 10.4
as doy. The presence of such dummy objects provides clues as to what other events or
objects are important for the understanding of the known event.

Of course, there are also arguments against the use of CD as a representation
formalism. For one thing, it requires that all knowledge be decomposed into fairly low-
level primitives. In Section 4.3.3 we discussed how this may be inefficient or perhaps
even impossible in some situations. As Schank and Owens [1987] put it,

CD is a theory of representing fairly simple actions. To express, for exam-
ple, “John bet Sam fifty dollars that the Mets would win the World Series”
takes about two pages of CD forms. This does not seem reasonable.

Thus, although there are several arguments in favor of the use of CD as a model for
representing events, it is not always completely appropriate to do so, and it may be
worthwhile to seek out higher-level primitives.

Another difficulty with the theory of conceptual dependency as a general model for
the representation of knowledge is that it is only a theory of the representation of events.
But to represent all the information that a complex program may need, it must be able
to represent other things besides events. There have been attempts to define a set of
primitives, similar to those of CD for actions, that can be used to describe other kinds
of knowledge. For example, physical objects, which in CD are simply represented
as atomic units, have been analyzed in Lehnert [1978]. A similar analysis of social
actions is provided in Schank and Carbonell [1979]. These theories continue the style
of representation pioneered by CD, but they have not yet been subjected to the same
amount of empirical investigation (i.e,, use in real programs) as CD.

We have discussed the theory of conceptual dependency in some detail in order to
illustrate the behavior of a knowledge representation system built around a fairly small
set of specific primitive elements. But CD is not the only such theory to have been
developed and used in Al programs. For another example of a primitive-based system,
see Wilks {1972].

10.2 Scripts

CD is a mechanism for representing and reasoning about events. But rarely do events
occur in isolation. In this section, we present a mechanism for representing knowledge
about common sequences of events.

A script is a structure that describes a stereotyped sequence of ﬁms in a particular
context. A script consists of a set of slots. Associated with each&lot may be some
information about what kinds of values it may contain as well asla default value to
be used if no other information is available. So far, this definition of a script looks
very similar to that of a frame given in Section 9.2, and at this level of detail, the two
structures are identical. But now, because of the specialized role to be played by a script,
we can make some more precise statements about its structure.

10.2. SCRIPTS 285

Figure 10.5 shows part of a typical script, the restaurant script (taken from Schank
and Abelson [1977]). It illustrates the important components of a script:

Entry conditions Conditions that must, in general, be satisfied before the events de-
scribed in the script can occur.

Result Conditions that will, in general, be true after the events described in
the script have occurred.

Props Slots representing objects that are involved in the events described
: in the script. The presence of these objects can be inferred even if
they are not mentioned explicitly.

Roles Slots representing people who are involved in the events described
in the script. The presence of these people, too, can be inferred
even if they are not mentioned explicitly. If specific individuals are
mentioned, they can be inserted into the appropriate slots.

Track The specific ygriation on a more general pattern that is represented
by this particular script. Different tracks of the same script will
share many but not all components.

Scenes The actual sequences of events that occur. The events are repre-
sented in conceptual dependency formalism.

Scripts are useful because, in the real world, there are patterns to the occurrence of
events. These patterns arise because of causal relationships between events. - Agents
will perform one action so that they will then be able to perform another, The events
described in a script form a giant causal chain. The beginning of the chain is the set
of entry conditions which enable the first events of the script to occur, The end of the
chain is the set of results which, may enable later events or event sequences (possibly
described by other scripts) to wur. Within the chain, events are connected both to
earlier events that make them possible and to later events that they enable.

If a particular script is known to be appropriate in a given situation, then it can be very
useful in predicting the occurrence of events that were not explicitly mentioned. Scripts
can also be useful by indicating how events that were mentioned relate to each other.
For example, what is the connection between someone’s ordering steak and someone’s
eating steak? But before a particular script can be applied, it must be activated (i.e., it
must be selected as appropriate to the current situation). There are two ways in which it
may be useful to activate a script, depending on how important the script is likely to be:

» For fleeting scripts (ones that are mentioned briefly and may be referred to again
but are not central to the situation), it may be sufficient merely to store a pointer to
the script so that it can be accessed later if necessary. This would be an appropriate
strategy to take with respect to the restaurant script when confronted with a story

such as
1

Susan passed her favorite restaurant on her way to the museum. She
really enjoyed the new Picasso exhibit.

o For nonfleeting scripts it is appropriate to activate the script fully and to attempt to
fill in its slots with particular objects and people involved in the current situation.

286 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES ‘ 10.2. SCRIPTS 287

The headers of a script (its preconditions, its preferred locations, its props, its
roles, and its events) can all serve as indicators that the script should be activated.
In order to cut down on the number of times a spurious script is activated, it has
Script. RESTAURANT | Scene 1: Entering proved useful to require that a situation contain at least two of a script’s headers

fore t ript wi activated.
Track: Coffee Shop S PTRANS § into restaurant be he script will be activated
Props: I:blzs S ATTEND eyes to tables Once a script has been activated, there are, as we have already suggested, a variety of
en: i . . . P
F = Food $ MBUILD where to sit ways in which it can be useful in interpreting a particular situation. The most important
- S PTRANS S to table . s . .
Check S MOVE § to sitting position of these is the ability to predict events that have not explicitly been observed. Suppose,
Money for example, that you are told the following story:

Scene 2: Ordering

™ table) (W brings menu) (S asks for menu) John went out to a restaurant last night. He ordered steak. When he paid
enu on table

Roles: S = Customer S PTRANS menu to S S MTRANS signal to W . for it, he noticed that he was running out of money. He hurried home since
W = Waiter W PTRANS W to table it had started to rain.
C = Cook S MTRANS ‘need menu' to W
M = Cashier W PTRANS W to menu If you were then asked the question
O = Owner)
:vv m&:ssm‘;: :::l; ‘ Did John eat dinner last night?
7
S MTRANS W 1o table L you would almost certainly respond that he did, even though you were not told so
*S MBUlLl)SC‘f°‘°°l °”v:v _ explicitly. By using the restaurant script, a computer question-answerer would also be
;T’IT;QZS s\:/g't‘: (:t’)lc . able to infer that John ate dinner, since the restaurant script could have been activated.
S MTRANS I wantF to W Since all of the events in the story correspond to the sequence of events predicted by the
i ~ script, the program could infer that the entire sequence predicted by the script occurred
;: \\z%A:rfSYX;:ANS P10 C : normally. Thus it could conclude, in particular, that John ate. In their ability to predict
: Entry conditions: P ~— unobserved events, scripts are similar to frames and to other knowledge structures that
Sish C MTRANS 'no FS“’ w C DO (prepare F script) - represent stereotyped situations. Once one of these structures is activated in a particujar
s ;;s‘:::gz'y. x %’Xﬁs\:":‘, ©S to Scenc 3 situation, many predictions can be. made.
(20 back to *) or : A second important use of scripts is to provide a way of building a single coherent B
Results: (go to Scene 4 at no pay path) interpretation from a collection of observations. Recall that a script can be viewed as a
Scene 3: Eating . giant causal chain. Thus it provides information about how events are related to each
§ has less moncy. C ATRANS F to W other. Consider, for example, the following story:

O has more money.
S is not hungry. W ATRANSFto S

S is pleased (optional) S INGESTF Susan went out to lunch. She sat down at a table and called the waitress.
is pleased (optional).

(Option: Retum to Scene 2 to order more; The waitress brought her a menu and she ordered a hamburger.
otherwise, go to Scene 4) N ider th .
. Exiti R ow consider the question
Scene 4: Exiting \ s ANS to W
- ANS check to S i i i 9

W MOVE (write check) (W ATRANS o3) Why did the waitress bring Susan a menu?
W PTRANS Wio S
W ATRANS check to § : The script provides two possible answers to that question:
S ATRANS tipto W
SPTRANS Sto M ’ ® Because Susan asked her to. (This answer is gotten by going backward in the
S ATRANS moncy to M . causal chain to find out what caused her to do it.)

(No pay path) S PTRANS S to out of restaurant

® So that Susan could decide what she wanted to eat. (This answer is gotten by
Figure 10.5: The Restaurant Script going forward in the causal chain to find out what event her action enables.)

A third way in which a script is useful is that it focuses attention on unusual events.
Consider the following story:

J

288 CHAPTER 10. STRONG SLOT-AND-FILLER STRUCTURES

John went to a restaurant. He was shown to his table. He ordered a large
steak. He sat there and waited for a long time. He got mad and left.

The important part of this story is the place in which it departs from the expected
sequence of events in a restaurant. John did not get mad because he was shown to his
table. He did get mad because he had to wait to be served. Once the typical sequence
of events is interrupted, the script can no longer be used to predict other events. So, for
example, in this story, we should not infer that John paid his bill. But we can infer that
he saw a menu, since reading the menu would have occurred before the interruption.
For a discussion of SAM, a program that uses scripts to perform this kind of reasoning,
see Cullingford [1981].

From these examples, we can see how information about typical sequences of events,
as represented in scripts, can be useful in interpreting a particular, observed sequence of
events. The usefulness of a script in some of these examples, such as the one in which
unobserved events were predicted, is similar to the usefulness of other knowledge
structures, such as frames. In other examples, we have relied on specific properties of
the information stored in a script, such as the causal chain represented by the events
it contains. Thus aithough scripts are less general structures than are frames, and so
are noj suitable for representing all kinds of knowledge, they c very effective for
rcpres;nting the specific kinds of knowledge for which they wergiesigned.

i ‘:}‘1 i
103 CYC)

CYC [Lenat and Guha, 1990 is a very large knowledge base project aimed at capturing
human commonsense knowledge. Recall that in Section 5.1, our first attempt to prove
that Marcus was not loyal to Caesar failed because we were missing the simple fact that
all men are people. The goal of CYC is to encode the large body of knowledge that is so
obvious that it is easy to forget to state it explicitly. Such a knowledge base could then
be combined with specialized knowledge bases to produce systems that are less brittle
than most of the ones available today.

Like CD, CYC represents a specific theory of how to describe lhc world, and like CD,
it can be used for Al tasks such as natural language understanding. CYC, however, is
more comprehensive; while CD provided a specific theory of representation for events,
CYC contains representations of events, objects, attitudes, and so forth. In addition,
CYC is particularly concerned with issues of scale, that is, what happens when we build
knowledge bases that contain millions of objects.

10.3.1 Motivations

Why should we want to build large knowledge bases at all? There are many reasons,
among them: -

e e

o Brittleness—Specialized knowledge-based systems are brittle. They cannot cope
with novel situations, and their performance degradation is not graceful. Programs
built on top of deep, commonsense knowledge about the world should rest on |
firmer foundations.

b

103. cYC 289

¢ Form and Content—The techniques we have seen so far for representing and using
knowledge may or may not be sufficient for the purposes of Al. One good way
to find out is to start coding large amounts of commonsense knowledge and see
where the difficulties crop up. In other words, one strategy is to focus temporarily
on the content of knowl ¢ bases rather than on their form.

e Shared Knowlcdge—Sma knowledge-based systems must make simplifying
assumptions about how to represent things like space, time, motion, and structure.
If these things can be represented once at a very high level, then domain- -specific
systems can gain leverage cheaply. Also, systems that share the same primitives
can communicate easily with one another.

Building an immense knowledge base is a staggering task, however. We should ask
whether there are any methods for acquiring this knowledge automatically. Here are
two possibilities:

1. Machine Leaming—In pter 17, we discuss some techniques for automated
learning. However, currefit techniques permit only modest extensions of a pro-
gram’s knowledge. In order for a system to learn a great deal, it must already
know a great deal. In particular, systems with a lot of knowledge will be able to
employ powerful analogiqal reasoning.

I

2. Natural Language Understanding—Humans extend their own knowledge by read-
ing books and talking with other humans. Since we now have on-line versions of
encyclopedias and dictionaries, why not feed these texts into an Al program and

. have it assimilate all the information automatically? Although there are many
techniques for building language understanding systems (see Chapter 15), these
methods are themselves very knowledge-intensive. For example, when we hear
the sentence

John went to the bank and withdrew $50.

we easily decide that “bank™ means a financial institution, and not a river bank.
To do this, we apply fairly deep knowledge about what a financial institution is,
what it means to withdraw money, etc. Unfortunately, for a program to assimilate
the knowledge contained in an encyclopedia, that program must already know
quite a bit about the world.

The approach taken by CYC is to hand-code (what its designers consider to be) the
ten million or so facts that maké up commonsense knowledge. It may then be possible
to bootstrap into more automatic methods. :

10.3.2 CYCL

CYC’s knowledge is encoded in a representation language called CYCL. CYCL is a
frame-based system that incorporates most of the techniques described in Chapter 9 (mul-
tiple inheritance, slots as full-fledged objects, transfers-through, mutually-disjoint-with,
etc). CYCL generalizes the notion of inheritance so that propertics can be inherited along
any link, not just isa and instunce. Consider the two statements:

'

