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WHAT 1S COMPUTER SCIENCE ABOUT?

1. Introduction

What is computer-science (CS) about? CS is obviously the science of
computers. But what exactly are computers? We know that there are
physical computers, and, perhaps, also abstract computers.! Let us limit
the discussion here to physical entities and ask: What are physical
computers? What does it mean for a physical entity to be a computer? The
answer, it seems, is that physical computers are physical dynamical
systems that implement formal entities such as Turing-machines. I do not
think that this answer is false. But it invites another, and troubling,
question: What distinguishes computers from other physical dynamical
systems? The difficulty is that, on the one hand, every physical system im-
plements abstract formal entities such as sets of differential equations,
while on the other hand we certainly do not want to count every dynamical
system as a computer. After all, if CS is somehow distinctive, then there
must be a difference between computers and other systems such as solar
systems, stomachs, and carburetors. But what is the difference?

There are two familiar answers to the latter question. One is that
computers are systems that execute algorithms, meaning that they implement
formal specifications of algorithms.2 The other is that computers are
systems whose processes are sensitive to the syntactic or formal proper-
ties of the representations over which they are defined, meaning that the
semantic properties have no role in the computational identity of the
system.3 My thesis, however, is that both answers are at fault. In Sections
2 and 3 I argue that being algorithmic is not necessary for being compu-
tational. In Section 4, I argue that content does affect the computational
identity of a system. In Section 5, I outline a semantic conception of com-
putation. In Section 6, I get back to answer, more informatively, what CS
is about.

“What is Computer Science About?” by Oron Shagrir,
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2: Nonrecursive computation

Let f), f,, . . . be a list of all the total recursive functions whese
domain is the natural numbers and whose range is {0, 1}.4 Let T; be the
code of a Turing-machine that computes f,.5 Imagine now a universal
machine S that possesses an infinite list T,, T, . . . Given a natural number
n, the machine “goes to” the n-place in the list, extracts its content, and
simulates the operation of T, on the argument n. The final operation of S
is to switch the end result of T (n). If T,(n) = 1, S will produce 0 as its
output, and if T (n) = 0, S will produce 1 as its output. In short, we have
no trouble seeing S as computing the anti-diagonal function:

1iff,(n)=0
h(n) =
0if f,(n) =1

But h is not a recursive function. If it were, it should have been listed as
f,, for some k. But this cannot be. For: h(k) = fi(k) = 1 if f (k) = 0, and
h(k) = fi(k) = 0 if f (k) = 1.

The fact that h is nonrecursive may seem surprising since the opera-
tions T,(n), + 1, and -1 are recursive operations. The nonrecursivity, then,
results from the fact that f,, f,, . . . are not effectively enumerable, i.e.,
there is no Turing-machine that, for any n, can compute the code T,. But
unlike any Turing-machine, S need not compute the codes. Whereas a
Turing-machine can access, at each moment, only finite lists, S has the
access to an infinite list, fixed in advance by an oracle or the like. With the
aid of this super-source, 8 computes h.

The claim that S computes h does not falsify the Church-Turing
thesis. The Church-Turing thesis asserts that a function is effectively com-
putable if and only if it is partially recursive (Turing-computable),
whereas “effectively computable” refers to the class of functions that can
be computed via an algorithm, i.e., a finite list of instructions that access
finite information. This means that the defined values of these functions
can be reached in a finite number of steps by following the algorithm. But
these constraints need not be put on any computing machine. There is no
reason why we cannot have computing machines, such as S, with privi-
leges that no “effective computation” or Turing-machine has, e.g., an
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access to an infinite given list. Thus, the claim that S computes h is
perfectly consistent with the Church-Turing thesis (In fact, the claim that
S computes a function that is not “effectively computable” assumes the
Church-Turing thesis—for it was really shown that h is not recursive).
The Church-Turing thesis is the claim that certain classes of computing
machines, e.g., Turing-machines, compute effectively computable functions.
It is not the claim that all computing machines compute solely effectively
computable functions.

The claim that S computes h also does not falsify the “Physical
Church-Turing thesis” (that all mathematical equations describing physical
systems are recursive).” S is not an actual physical system, nor is it im-
plemented by a physical system. My claim is conceptual: we have no
difficulty in imagining a system that computes functions that cannot be
computed just by following an algorithm. This demonstrates that algo-
rithmic computations do not occupy the whole space of computations. It
shows that being algorithmic is not necessary for being computation.

One may suggest that S follows an algorithm after all. Though S
includes an infinite list, the rule it follows is finite. The suggestion, in other
words, is to stretch the notion of algorithm with the notion of computa-
tion. We apply the notion of algorithm to processes that operate according
to finite rules, no matter whether their memory is finite or infinite. On this
suggestion, then, I have not shown that we could have nonalgorithmic
computation, but that there are algorithmic computations of nonrecursive
functions. I think that this is reasonable. Still, it reaffirms my claim that
the current notion of algorithmic computation has been too restrictive. Put
differently, this suggestion confirms my claim that the notion of algorith-
mic computation, as it is customarily understood in CS, does not exhaust
all kinds of computations. The difference is just that this suggestion keeps
algorithms and computations together. I now turn to show that algorithms
and computations should be kept apart if we want to retain the idea that
some physical dynamics are not computations.

3. Analog computation

Analog computers have been around for many decades. They are
nowadays more noticeable because of their close connection to the rapidly
developing field known as “neural computation.”8 Today, we can build, in
principle, an analog-VLSI computer consisting of n X n units that imple-
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ments an abstract attractor neural net for the n-queens problem.% And, yet,
it seemns that the existence of analog computers completely undercuts the
role of algorithms in drawing the line between computers and other
physical dynamics. If analog processes are not algorithmic, then, it seems,
we have instances of computations (e.g., “neural computations”) that are
not algorithmic. And if analog processes are algorithmic, it is hard to see
what physical dynamics are not algorithmic. After all, attractor neural nets
and the stochastic magnetic (spin-glasses) systems are, from a formal
point of view, close cousins.!® So if the attractor nets compute, it is hard
to explain, in algorithmic terms, why dynamical systems such as magnetic
systems do not compute. In short, anyone who assumes that being algo-
rithmic is essential for being computational .must choose between the
exclusion of analog computations, including “neural computations,” from
the computational domain, and the inclusion of practically every physical
system in the computational domain.

Let me explicate the nature and scope of this dilemma with the aid of
Pitowsky’s (1990) simple but forceful example. Consider the following
machine for averaging three numbers (Figure 1). We take an insulated
container divided into three equal parts by insulated removable barriers.
We put a thermometer in each section, and we set the temperature in each
section to a degree equal to the corresponding three numbers, k, m, n. We
now remove the barriers simultaneously and wait until the temperatures
equalize. This process is a thermodynamic one and is usually described by
a set of differential equations. Still, its output is (k + m + n)/3.

Figure 1. A Thermal machine for averaging numbers
(from Pitowsky, 1990).
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Consider now another scenario. We repeat the process with k, m, n. But
now we (or some other mechanism) remove only one barrier, and wait for
the temperature to equalize ((k + m)/2). Only then do we remove the
second barrier. The output is evidently the same as in the first process.
This time, however, the device executes a two-step algorithm. The device
averages k, m, n, by going through two different basic steps:

Basic step 1: average k and m:

[(k, m) > (k + m)/2];

Basic step 2: operate on the output of step 1 and n:
[(output, (k, m), n) — 2/3 - output, (k, m) + n/3].

In short, in the first scenario the device averages k, m, and n via a single-
step process, whereas in the second scenario it averages k, m, and n via a
two-step algorithmic process.

But is the process, under the first scenario, algorithmic? let us assume
that the answer is NO—with the result that the averaging, “analog,”
process is no computation. Cummins, for example, defends this view.!! He
defines an algorithmic process as a step-satisfaction process; that is, a
system satisfies but does not compute its basic steps. Thus, in the two-step
averaging process, each step, as an “analog” process, is satisfaction, but
not computation. Only the two-step process as a whole is computation.
But this view has the absurd consequence that computing depends on
moving the barriers of the thermal machine twice instead of once. Indeed,
it is very odd to describe the one-step averaging process as no computa-
tion, and the two-step process as computation. It is much more reasonable
to think that if the two-step process is computation, so is the one-step
process.!2 But, then, if we also hold the view that computational processes
must be algorithmic, we must admit that the averaging process, under the
first scenario, is algorithmic.

Let us, then, consider the YES answer—that the averaging, one-step
process, is algorithmic. The trouble here is that if the thermodynamical
process is algorithmic, then we surely must accept other thermal processes,
such as tomado storms and boiling water, which also implement the ther-
modynamic equations, as algorithmic. Indeed, under these conditions, it is
hard to see what physical dynamics are not algorithmic. But if all these
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processes are algorithmic, then the notion of algorithm plays no effective
role in distinguishing computers from other physical dynamics.

So let me recapitulate: I have attempted to challenge the view that the
notion of algorithm lies at the heart of the notion of computation. I have
first shown, in Section 2, that we can easily accept computations that
cannot be achieved, given the Church-Turing thesis, in algorithmic ways—
at least if we associate algorithms, as we customarily do, with access to
finite resources of information. I have then proceeded to show, in Section
3, that there are instances of processes, €.g., analog corputations, that are
even more challenging to the algorithmic view. If these analog processes
are algorithmic, then the notion of algorithm loses its role as a boundary
between computation and non-computation. And if these analog processes
are not algorithmic, then we must conclude, again, that being algorithmic
is not necessary for being computation.

4. The semantic character of computational taxonomies

Let us now turn to refute the other myth: that computers are “non-
semantic” systems, in the sense that their identity solely depends on syntactic
or formal properties. Before I turn to challenge this myth, it will be useful
to review, very briefly, the essentials of the standard view of computa-
tional individuation.

Consider, then, a physical system P that implements the (abstract)
automaton S (Figure 2). This physical system P is an electronic device,
consisting of a pair of gates that receive and emit currents that range from
0 to 10 volts. One gate in P emits 5-10 volts if it receives a voltage larger
than S from both input channels, and 0-5 volts otherwise. The other gate
emits 5-10 volts if it receives a voltage larger than 5 from exactly one
input channel, and 0-5 volts otherwise. When assigned ‘0’ to emitting 05
volts and ‘1’ to emitting 5-10 volts the first gate is seen as an and-gate and
the second as a xor-gate. Under this assignment, in other words, P is seen
as executing an algorithm for the syntactic function f:

‘0,0 > 0,0
‘0, ‘1> 0, ‘I’
‘1,0 - 0,1T
1,1 -1, 0.
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Figure 2: The abstract automaton S (from Block, 1990).

Another way to describe what the system does is semantic. It is
routine to interpret the ‘0’ and ‘1’ as representing numbers. For example,
under a standard binary interpretation P computes addition (for the
domain {0, 1}). That is, the input-output syntactic relations can be inter-
preted as representing the following relations between numbers:

0+0=0
0+1=1
1+40=1
1+1=2

We thus have at least three different ways to describe what P does:
The physical level(s) that describes P in terms of voltages and the like, the
syntactic level that describes P as implementing S, and the semantic level
that describes P in terms of an interpretation of the symbols. But which of
these descriptions corresponds to the computational description of P?
According to the standard view, it is the syntactic description.!3 The com-
putational identity of P derives from P’s implementing S. By implementing
S, the states of P fall into computational types by virtue of their mapping
relations to S. And, in particular, the computational identity of P’s input-
output behavior is precisely the syntactic function f. The semantic
interpretation does not correspond to the computational description of P
because, from a computational point of view, it does not matter if we
choose to interpret ‘1’ and ‘0’ as numbers or as colored hats. The compu-
tational identity of P would have been the same had we interpreted the ‘0’
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and ‘1’ as representing colored hats. And the physical description does not
correspond to the computational description because P is computational-
ly equivalent to other physical systems whose physical descriptions are
very different from P. These different physical systems are computation-
ally alike because they all share the same syntactic characterization S.

Now, I accept the central elements of this picture of individuation. I
agree that the computational individuation of P is given by S, and I agree
that f is a computational description of what P does. Nonetheless, I think
that semantic properties plays a role in computational individuation. My
argument is roughly this: S may not be the only syntactic structure P im-
plements. Yet, the computational identity of the system, in a given
context, is not defined by all the implemented syntactic structures. Thus
content determines which structure defines the computational identity of
the system in a given context. Here is the argument in details:

STEP 1:
A PHYSICAL SYSTEM MAY
IMPLEMENT MORE THAN ONE SYNTACTIC STRUCTURE.

Suppose that it turns out that gates of P are actually tri-stable.
Imagine, for example, that the implemented and-gate in P emits 5-10
volts if it receives voltages larger than 5 from both input channels; 0-2.5
volts if it receives voltages less than 2.5 from both input channels; and
2.5-5 volts otherwise. Similarly, let us assume that the implemented xor-
gate emits 5-10 volts if it receives more than 5 volts in one input channel
and less than 5 in the other; 0-2.5 volts if it receives less than 2.5 volts
from both input channels; and 2.5-5 volts otherwise. We could now assign
the symbol ‘O’ to emitting less than 2.5 volts and ‘1’ to emitting 2.5-10
volts. Under this assignment, both the “and-gate” and the “xor-gate” are
seen as or-gates! Consequently, P is seen as implementing an abstract
machine S’ (Figure 3) whose input-output behavior is characterized by the
syntactic function f”:

50” 50$ - 407 , ‘09
tov’ ‘1’_) ‘1’,‘1’
‘1’, to’_) 41,,¢1$

51’,51’_);1’, tly
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Figure 3: The abstract automaton S’

It follows, then, that the very same physical system P implements not
only the abstract system S, but also an abstract syntactic system S’. Ac-
cordingly, by implementing S’, P’s behavior can be described, from a
syntactic viewpoint, not only by the syntactic function f, but also by the
syntactic function f”. The structures S and S’ and the functions fand £/, in
other words, are two different syntactic descriptions of what P does.!4

Note that my claim is more modest than the “universal realizability”
claims advanced by Putnam (1988) and by Searle (1992). Putnam proves
that “every ordinary open system is a realization of every abstract finite
automaton” (p. 121), and Searle argues that *“for any program and for any
sufficiently complex object, there is some description of the object under
which it is implementing my program. Thus for example the wall behind
my back is right now implementing the Wordstar program, because there
is some pattern of molecule movements that is isomorphic with the formal
structure of Wordstar” (pp. 208-09). Unlike Putnam and Searle, however,
I do not claim that every physical system implements any abstract auto-
maton. My claim, rather, is only that some physical systems implement,
at the very same physical states, different abstract automata.!s

One may still object that P really implements one syntactic structure.
Since P’s gates are tri-stable, the objector objects, P’s “deep” syntactic
conditions are captured by the syntactic function f”, from which we can
derive both f and f”. The function f” can be described as:

nov, ‘01_)¢09’ 50’; 509, ‘l,—)‘l,, ‘1’; ‘1’, ‘0’—)‘1’,‘1‘

(19, c1$_)51v’«19; cov’ 629_>l1', 529; ‘21, 501_)A11, A27
|21, ‘19_)‘11, ‘21; ‘11’ ‘29__)119, 527; 62” (2-_>‘2a’4]"
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The function f is then derived from f” by the transformation:
{0, 1’} > 0; 2 >"1",
whereas f”is derived from f” by the transformation:
‘0 - 0% {'1’, 2} > 1.

Whether the implementations of S and 8" are “deep” or “sha]lo?v”
does not really affect the rest of my argument. But we could also rpodlfy
the example. Suppose that P’s gates are bi-stable (so P “really” imple-
ments S and computes f). Suppose, however, that it turns out that we can
also implement S’ in some other physical property of the very same
(spatio-temporal) events of P. If, for example, the inputs and outputs of
the gates are positive and negative charges, the temperature of the gate
may depend on the absolute values of the currents. Thus we can
implement one syntactic structure in the currents ‘+’ and ‘-’ and anothelr
in the temperatures.!6 It is now obvious that P implements both S and S ,
though there may be no “deeper” syntactic structure S” and syntactic
function f”implemented. It is thus clear that S and §’ are “deep” syntactic
descriptions of what P does. -

The underdetermination is most apparent in the context of cognitive
systems. Imagine that a physical system N is a component of the visual
system which computes a representation of depth of the visual scene from
information about binocular disparity. But, as it turns out, a system whose
microphysical structure is the same as that of N is a component of tpe
auditory system of some remote creatures. Had we removed N from its
visual environment and plugged it into the auditory slot in the remote
creatures, it would have computed some sonar representations. As it also
turns out, however, N implements S while performing the visual task, but
implements S’ while performing the auditory task. This could be thg case
if, for example, a certain neuron in N exercises one visual task when it fires
0-5 millivolts and another visual task when it fires 5-10 millivolts, but the

same neuron, in an auditory environment, exercises one auditory task
when it fires 0-2.5 millivolts and another auditory task when it fires
2.5-10 millivolts. In this case, we surely would say that N’s input-output
behavior is described by f when exercising the visual task, but by f* when
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exercising the auditory task. In this case, we would surely affirm that N is

characterized by different syntactic descriptions in the different environ-
ments.!7

STEP 2:
THE COMPUTATIONAL IDENTITY
OF A SYSTEM MAY VARY ACROSS CONTEXTS.

The conclusion of Step 1 was that the same physical system may
implement more than one syntactic structure. But we also take it that the
computational level of description goes hand-in-hand with the syntactic
structure the system implements, meaning that two systems that
implement different syntactic structures fall under different computation-
al types. The question, then, is what computational taxonomies count as
“different syntactic implementations”: Whether a computational taxonomy
of a system counts all the syntactic structures the system implements, or
Just the syntactic structures the system implements while performing a
given task. I think it is clear that the second option is the correct one.

Suppose it turns out that one gate in my desktop machine, but none
in yours, is tri-stable (the machines are otherwise identical). We will def-
initely agree that our machines may be computationally different in other
contexts. But we would surely not deny that the machines are currently
computationally equivalent. Similarly, when we use P to do f by imple-
menting S, we would count P as computationally equivalent to any other
system that is used to do f by implementing S, no matter whether or not
the other system could also implement §’. Or take again the cognitive
system N. Assume that N implements S when performing the visual task,
but implements 8’ when performing the auditory task. I think it is clear
that the computational identity of N is given by S in the visual context, but
by 8’ in the auditory context. For it is clear that computational theories of
vision care only about the syntactic structure the system implements while
doing vision, and are oblivious to other structures the system may or may
not implement.

It was shown, then, that the same physical system P can be seen as
implementing different abstract automata S and §’, whereas, on each im-
plementation, states of P fall under different computational types. In other
words, identifying P as computing fis not always invariant across contexts.
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The computational identity of a system is context-dependent. It depends
on the syntactic structure the system implements while performing a given
task.

Note that to claim that computational identity is task-relative is not
to say that the task is relative to the viewpoint of a foreign observer. Foreign
observers who attempt to describe what the system does, are free to
describe the system by any of the syntactic structures the system imple-
ments. But their choice does not define the computational identity of the
system. If the observers wish to provide a computational description of
my desktop machine, they must choose the syntactic structure the system
implements while it performs its usual tasks. And if the observers wish to
provide a computational description of the- visual system, they must
choose the syntactic structure the system impléments while it does vision.
The freedom to choose other syntactic structures only indicates that the
system could have other computational identities. It indicates that the
system would have new computational identity, had the task of the system
changed (say, from visual to auditory), and had the chosen structure been
the one the system implemented while performing the new task.

STEP 3:
THE CONTENTS THE SYSTEM CARRIES
AFFECT ITS COMPUTATIONAL IDENTITY.

If the same physical process can be seen as implementing different
syntactic structures—if it can be seen as executing different algorithms—
what does determine the computational identity of a system? What are the
relations between the computational identity of the system and the context
in which it is embedded? If the same physical system P, on all its internal
physical properties, can fall under different computational types, then, it
seems the computational identity of this system must be determined, at
least partly, by features external to this system. Likewise if the states of N
fall under different computational types in the visual and auditory envi-
ronment, the computational identity of N is also dependent on features
external to N. But what could these features be? Well, it seems that the
only factor left that could make the computational difference must be the
content assigned to the states of the system. The reason that states of P fall
under one computational type, say S, and not under another type, say S’,
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must have something to do with the fact that we use the system as an
adder, and that we take its states to represent numbers and not hats.
Likewise, the reason the same neural states of N fall under one set of com-
putational types in the visual environment, and under a different set of
computational types in the auditory environment, must have something to
do with the fact that in one case N’s states carry visual content, and in the
other case N’s states carry auditory content. So content affects, after all,
computational individuation.

The argument is now complete: The computational identity of the
system is determined by the syntactic structure the system implements
while performing a given task, but the task of the system in any given
context is defined, at least partly, in semantic terms; i.e., in terms of the
contents the system carries. Thus, the computational identity of P is given
by S because P is used to compute addition, and it implements S in per-
forming this task, and the computational identity of N is given by S
because N is used to compute depth of the visual scene, and it implements
S in performing this task.!8

It has been hard to appreciate the role of content in computational in-
dividuation mainly for two reasons. The first is that we think we can
extract, in principle, the pertinent syntactic structure from the physical
system. We think the syntactic structure is an abstraction from the
physical properties of the system, and that this extraction has nothing to
do with semantic properties. I do not challenge this thought. My argument,
rather, is that since we may also be able to extract other syntactic struc-
tures, we must have an external constraint to determine which of these
structures define the computational identity of the system, and that this
constraint must have something to do with the contents the states of the
system carry. I do not claim, then, that we cannot extract the syntax from
the physics of the system. My claim is that the extraction is not sufficient
to determine computational identity.

Another reason the role of content has been overlooked is that we
inferred from the cases where difference in content does not entail a com-
putational difference that content plays no role in computational
taxonomies. Indeed, there are cases in which P falls under the same com-
putational types, although we interpret its states as representing, at one
time, clothes, at another time, people, and at some other time, numbers.
Likewise, states of N may also fall under the same computational types in
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different environments. N will have the same computational identity if it
implements the same syntactic structure while performing the visual and
the auditory tasks. These cases, however, do not show that content plays
no role in computational taxonomies. They imply, rather, that we need a
condition for computational identity that is sensitive to some differences
in content but not to others. But what could such a condition be?

One possible suggestion is this: Two computing systems are compu-
tationally equivalent only if their physical states “pick” the same formal
features in the embedding environments. “Formal features” mean set-
theoretic or other high-order mathematical relations (among represented
objects). The criterion thus suggests that computational taxonomies do not
take into account specific (non-formal) features of content, such as the
identity of individuals, but only formal features such as relations among
sets of individuals. Following Gila Sher (1996), I will refer to the latter
features of content as “formal contents.”

A rigorous formulation of this criterion has yet to be offered, but an
example will suffice for our purposes. Consider again our system P. If P
implements S when its states carry information about clothes, and imple-
ments S” when its states carry information about people, then, according
to the criterion, their electronic states pick different formal structures. This
might be the case if, for example, a detector of P indicates, in the context
of clothes, that the distal object is a hat, whenever it emits 05 voits, and
a shirt whenever its activation value is 5-10 volts. Whereas this very same
detector indicates, in the context of people, that the distal object is a man
whenever its activation value is 0-2.5 volts and a woman whenever its ac-
tivation value is 2.5-10 volts. Importantly, what here makes the
computational difference is not the difference in specific contents (i.e..,
clothes vs. people), but the difference in formal (i.e., set-theoretic)
structure: that the detector emitting 0-5S volts is correlated with one class
of tokens in the context of clothes but with two distinct classes of tokens
in the context of people.’ Had the pertinent formal relations in the
contexts been the same, the computational individuation of states of P
would have also been the same. In other words, P could implement § in
different contexts, even though its states’ specific contents (e.g., clothes
vs. people) are different. This, indeed, would be the case, if, for example,
whenever an electronic property (e.g., our detector emitting 0-5 volts) is
correlated with one feature in the context of clothes (e.g., being a hat),

v
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then this electronic property is correlated with a single feature in the
context of people (e.g., being a man), and vice versa.

5. What is computation?

Let us return to the original question: What is a physical computer?
What does it mean for a physical system to be a computer? The discussion
so far suggests a surprising answer: computations are mechanisms that are
type-individuated by certain contents—i.e., formal contents—of the rep-
resentations over which these mechanisms are defined. Desktop machines,
but not stomachs, are computers because certain features of content
(formal contents) enter into the type-individuation of desktop machines (as
desktop machines) but not into the type-individuation of stomachs (as
stomachs). It is true that the mechanisms of desktop machines and the
mechanisms of stomachs can both be described in formal terms. In these
cases, both descriptions pick certain formal (e.g., set-theoretic) relations
of these inner mechanisms. But the big difference is that in the case of
desktop machines, but not in the case of stomachs, the described systems
are, by themselves, formal systems. Desktop machines are formal systems
because we individuate their states, as computational states, by the formal
(e.g., set-theoretic) properties/relations of the features that these states
represent.

In the case of stomachs, the observers first type-individuate the

-stomach’s states by their biochemical properties. After that, if the

observers wish, they provide more general, formal, description of the set-
theoretic relations among these types, which results in some mathematical
or formal equation. In the case of desktop computers, however, the
observers first type-individuate the states of the system by formal content.
If the distal domain is a world of clothes, then the relevant features that
determine the type-individuation are set-theoretic properties of clothes (or
better: those set-theoretic properties detected by the desktop machines). If
the distal domain is the visual field then the relevant individuative relations
are formal relations in the visual field. And if the distal domain is the
abstract, then the relevant individuative relations are the formal relations
among abstract objects. After that, if the observers wish, they can provide
a formal description of the (set-theoretic) relations among the individuat-
ed types. This formal description is sometimes called the “computational
theory” of the system, sometimes conceived as an abstract automaton im-
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plemented by the desktop machine, and sometimes viewed as the
syntactic structure of the desktop machine. I do not object to any of these
viewpoints, as long as we remember that syntactic considerations are
driven by semantic considerations.

On my account, then, the difference between computers and non-
computers is grounded neither in the physics of the systems, nor in the
formal structure they implement. What really makes the difference is the way
the states of the system are classified to types. Desktop machines and cog-
nitive systems are computers precisely because their states are type-individ-
uated by the contents they carry. Stomachs could also become computers
had their states carried contents, and had their states been type-individuat-
ed by these contents. But the identity conditions of stomachs, as stomachs,
have nothing to do with content. So stomachs are not computers.

6. What computer science is about

I have challenged two major myths about computation: that compu-
tational processes must be algorithmic, and that computational processes
are type-individuated by non-semantic properties. But where does this
claim leave CS? What is CS all about? The answer, I think, is that CS is,
indeed, the science of computers, but the notion that lies at the heart of
computation is content: computers are systems whose dynamics are indi-
viduated by the content of the representations over which these dynamics
are defined. CS is concerned with formal structures primarily because the
relevant features of content that enter into computational taxonomies are
formal features. Indeed, CS aims to build machines whose processes
mirror formal relations and properties in their embedding environments.
And CS is mostly dedicated to the digital electronic computers, and to the
study of their algorithmic processes, simply because these are the systems
whose theory is well-developed, and whose technological implementation
is well-known and very, very fruitful. When other subsets of computers
prove to be potentially interesting, from either a theoretical or a techno-
logical point of view, computer scientists will study them too, as indeed is
the case with analog machines that implement neural nets.

Oron Shagrir
The Hebrew University

Jerusalem
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NOTES

1. For different views on whether or not there are abstract computers see Copeland
(1996) and Hayes (1997).

2. This answer is assumed by many practitioners, and it also lies at the center of recent
distinguished philosophical works on computation, e.g., Cummins (1989), Chalmers
(1996) and Copeland (1996). Copeland writes; “To compute is to execute an algorithm.
More precisely, to say that a device or organ computes is to say that there exists a modeling
relationship . . . between it and a formal specification of an algorithm” (p. 335).

3. Fodor (1980, p. 64) famously writes; “I take it that computational processes are both
symbolic and formal. . . . they are formal because they apply to representations in virtue of
(roughly) the syntax of the representations. . . . What makes syntactic operations a species
of formal operations is that being syntactic is a way of not being semantic.”

4. Versions of this machine appear in Copeland (1997) and in Shagrir (1997).

5. As remembered, a function is recursive if and only if it is computed by a Turing-
machine.

6. Turing, Church and other logicians were urged, in the mid-1930’s, to provide a
rigorous characterization of the class of effectively computable functions because certain
developments in logic called for such a characterization (i.e., Godel’s incompleteness
theorems—published in 1931), and the unsolvability of the “decision problem” (proved in-
dependently by Church and Turing in 1936). For extensive discussion of these issues, see
Gandy (1988) and Sieg (1994). In 1939, Turing himself introduced the idea of computing
with an oracle. My example simply presents the oracle as part of the machine.

7. See Wolfarm (1985, p. 735 plus n. 3).

8. For the view that the brain may be an analog computer see Churchland and
Sejnowski (1992).

9. The n-queens problem is the problem of locating n queens on an X n chess-board
such that there is at most one queen in any row, column, and diagonal line. A neural net
solution to the problem is offered in Shagrir (1992).

10. See Amit (1989) for an extensive review of the relations between attractor neural
nets and magnetic systems.

11. Cummins writes: “To compute a function g is to execute a program. . . . Program
execution reduces to step satisfaction” (pp. 91-92). Cummins and Schwarz (1991) follow
the logical consequences of the definition, claiming that connectionist machines also do
not compute.

12. Further support for the ciaim that some systems may compute their basic steps are:
(a) The one-step/many-step distinction does not have a similar role in computability
theory. Each of the six functions defining recursivity is surely recursive. Moreover, the
functions satisfied by the basic instructions of a Turing-machine are surely Turing-com-
putable!; and (b) A formal proof that consists of one step (e.g., an axiom) is considered as
a proof, even if only a trivial one.

13. See, for example, Block (1990) and Egan (1995).

14. Note that S/f and S’/f’ provide descriptions of the same particular events, states,
objects, and causal relations in P. In fact, they even abstract from the same physical prop-
erties (i.e., voltage currents). Moreover, the claim that a physical object may fall under two
different syntactic types (of the same syntactic structure) at different times is no novelty.
It is well-known that a flip detector may implement *1° at one time and *0’ in another time.
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It now turns out that we can also construct examples where a physical event can be seen
as implementing different syntactic types.

15. I emphasize this point because of the criticism launched against “universal realiz-
ability” by Chalmers (1996) and by Copeland (1996)—see also Shagrir (1998). But, of
course, the falsity of the universal realizability thesis does not entail the falsity of the more
modest thesis. Indeed, there is no doubt that any theory of implementation must accom-
modate the fact that P implements both S and S’

16. If, for example, the inputs and outputs of the gates are positive and negative
charges, the temperature of the gate may depend on the absolute values of the currents.
Thus we can implement one syntactic structure in the current values (as ‘+” and ‘—’) and
another in the temperatures.

17. This story is a twisted version of the thought experiment introduced by Davies
(1991) and elaborated by Egan (1995). It is twisted because both Egan and Davies take it
for granted that N always implements the same abstract automaton, whereas my version
precisely challenges this assumption. .

18. Note that whereas the task of a computing system is defined by content, different
computing systems may have different kinds of content. The content of the states of desktop
machines is assigned by the users, whereas the content of the states of a cognitive system
is perhaps “natural” (e.g., causal). Thus the task of the system, when formulated in
semantic terms, is sometimes characterized via “natural” contents (e.g., in the case of the
visual system), but sometimes via “derived” content (e.g., in the case of an adder).

19. I am here (over)simplifying somewhat: the difference in the voltage-sets relations
in the two contexts explains the different computational descriptions of P, assuming that
there is such a compwtational difference. It is still possible that the voltage-sets relations
are different, but that the electronic properties are still correlated with the same formal
properties. In this case, the computational identity of P will turn out to be the same.
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