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1. Introduction

There have been several descriptions of logically adequate
formalisms for representing quantified deduction rules in semantic
networks [6,9,10,11,12,14,15,16,17,18,19,20,23]. Most of these
have involved fairly straight-forward translations of the standard
syntax of predicate calculus, especially with regard to the use of
the common connectives, conjunction, disjunction, negation, and
implication. We have been pursuing a program of investigating
non-standard connectives, quantifiers and logics for use in the
inference component of semantic network based understanding and
guestion answering systems {1,2,19,20,21,22].

In this paper, we describe the set of connectives and quantifiers
we are currently using, review the motivations for them and show how
they are represented in a semantic network. First, in Section 2, we
review our basic semantic network terminology and notation. Section
3 motivates and introduces the connectives and quantifiers. Section
4 presents the representation and gives some examples. Section §

is a status report on the implementation of these ideas.
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2. Semantic Network Terminology and Notation

A semantic network is a labelled directed graph in which nodes

represent concepts and arcs represent non-conceptual binary relations

(called structural relations, system relations or arc relations)

between concepts. Each concept is represented by a unique node.
Whenever an arc representing a relation R goes from node n to
node m, there is an arc representing the converse relation of R, RC,
going from m to n. Each arc relation has a unique symbol which is
used to label all arcs representing the relation. There are no
cycles consisting entirely of arcs with the same labels, neither
are there parallel arcs (connecting the same two nodes) with the
same label.

In SNePS semantic networks [11), we distinguish three kinds of

arcs: descending, ascending and auxiliary. For each relation

represented by descending arcs, there is a converse relation repre-
sented by ascending arcs and vice versa. Together, descending and
ascending arcs are the regular semantic network arcs referred to
above. Auxiliary arcs are used for hanging non-nodal information

on nodes and for typing the nodes as discussed below. If a descend-

ing arc goes from node n to node m, we say that n immediately dominates

m. If there is a path of descending arcs from node n to node m, we
say that n dominates m. There are no cycles consisting entirely of
descend%ng or cf ascending arcs, so no node dominates itself. If

R is an arc label and n is a node, we will use the notation

R{n) for the set of nodes into which arcs labeled R go from n. 1In

what follows, we will often use the phrase "the relation R" when we

mean "an arc labeled R".



There are three kinds of nodes: constant, non-constant, and

auxiliary. Auxiliary nodes are connected to each other and to

other nodes only by auxiliary arcs. Constant nodes represent

unique semantic concepts. Nodes which dominate no other node are
called atomic nodes. Atomic constants are called base nodes and
atomic non-constants are called variable nodes or variables.
Variables are distinguished by being in the auxiliary relation

:VAR to the auxiliary node T. Non-atomic nodes are called molecular
nodes. There is a set of descending relations called binding rela-
tions. A molecular node that immediately dominates one or more
variables and that dominates no other variable may have at most

one binding relation to an arbitrary number of its dominated vari-
ables, which are referred to as bound by that molecular node. The
remaining dominated variables are referred to as free in the molecular

node, which has an auxiliary arc labeled :SVAR to each of them, If a

node m immediately dominates a set of variable nodes {u1, cens Vl}
and a set of molecular nodes (n1, ey nk} and
vV = {Vl’ ooy VL} u $SVAR(n,) v ... v :SVAR(n,) is non-empty, m may

have at most one binding relation, say Q, to one or more variables
in V. These variables are referred to as bound by m. The remainder,
V - Q(m), are freg in m and have the arc :SVAR to each of them from
m. A node n such that :SVAR(n) is non-empty is a non-constant molecu-
lar node and is called a pattern node. A molecular node n for which
:SVAR(n) is empty is a molecular constant or assertion node.

Temporary molecular and variable nodes can be created. Temporary

molecular nodes have no ascending arcs coming into them from the
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nodes they dominate. Temporary nodes are not placed on any permanent
system list and are garbage-collected when no longer referenced.
They are invisibie to all the semantic network retrieval operations.
We will refer to non-temporary nodes as permanent nodes.

In diagrams, a base node is drawn as an oval inside of which is
an identifier meant to be suggestive of the concept it represents.
A permanent assertion node is drawn as a circle inside of which is
an arbitrary identifier of the form Mi. A permanent variable node
is drawn as a circle inside of which is an arbitrary identifief of
the form Vn. A permanent pattern node is drawn as a circle inside
of which is an arbitrary identifier of the form Pn. A temporary
variable node is shown as an identifier of the form Qn, and a
temporary molecular node is an identifier of the form Tn. An
auxiliary node is shown as a mnemonically suggestive identifier.
Figure 1 shows a network with various kinds of nodes and arcs, 1In
future figures, we will omit the :VAR and :SVAR arcs since they

can be reconstructed from the information shown.

3. Non-Standard Connectives and Quantifiers

3.1. Motivations

In designing representations of reasoning rules one is faced
with the decision of how atomic propositions or actions will be
related to each other. Using connectives and quantifiers that
have been studied as part of formal logical systems has the advan-

tage that the inferential properties of these operators are clear,

well known, and consistent.



This choice of logic based operators, however, need not restrict
one to the standard set of connectives and quantifiers familiar to
the introductory logic student. It is well known that various sets
of propositional connectives are adequate in the sense that given
only connectives from the set and n propositional variables, it is
possible to construct well formed formulas for each of the Zzn truth
functions, for any n. Some adequate sets are: negation (~) plus any
one of conjunction (¢§), disjunction (v) or implication (+); either of
nor (+) or nand (|). The actual set of connectives chosen for use in
some logical system depends on factors such as ease of proving con-
sistency and completeness, ease of proving equivalence to some other
system, and ease of use for proving theorems within the system. Along
with the choice of connectives come a choice of logical axioms and
rules of inference. 1In general, if the number of connectives, axioms
and rules of inference are minimized, it is easier to prove theorems
about the logical system, but harder to construct proofs within the
system than when a larger set is chosen.

The interests which have motivated our choice of connectives and
quantifiers are in understanding natural language, representation of
knowledge (specifically using semantic networks), and carrying out
deductions within, rather than about, the representation formalisﬁ;
Therefore, our concerns were with closeness to modes of human reason-
ing, structural simplicity, and expressibility rather than minimality.

The standard connectives (except for negation) are binary, but
the use of binary connectives in a knowledge representation intro-

duces needless structural complexity. Having to choose between

(AvB) vC and Av(BvC) is unnecessary and unfairly distinguishes one



of the disjuncts. In a semantic network, we would have one node
representing each disjunct, one node representing the disjunction,
and an arc between the disjunction node and each disjunct node.
Since the role played by each disjunct in the disjunction is the
same, the same arc relation (we will use ARG) should be used from
the disjunction node to each disjunct. Since ARG(n), for any node
n, is a set (unordered, with no duplicates), this representation
is logically possible only because disjunction is associative,
commutative and idempotent (AVA = A). Since conjunction is also
associative, commutative, and idempotent, it can be represented
similarly.

Nor (+), nand (l), exclusive or (® ) and equivalence (z), also
being commutative binary connectives, would also seem to be candidates
for being represented similary to disjunction and conjunction. More-
over, they should be represented directly because sentences which
use them are not conceptually more difficult than sentences using
conjunction or disjunction. 1In fact & has more right than v to
be represented directly since "or" in English almost always means
.+ rather than v (note the existence of the locution "and/or").

However, +, |, &® and

"

cannot be extended to taking arbitrarily
large sets of arguments as v and & can, because + and | are not
associative ((true+false)+falseztrue, but true#(false+false)5false;

(true|false) |false= true, but true|(false|false)3false), and none of the

four are idempotent (A+A = ~A; A|A = ~A; AGA = false; (AZA) = true).

Also, though (® and = are associative and commutative, when applied



to more than two arguments, they are not true, as we would want,
when exactly one argument is true and when all arguments are
equivalent, respéctively, but when an odd number of arquments are
true and when an odd number of arguments are false.

Connectives that take sets of propositions as arguments and
that mean "none are true", "not all are true", "exactly one is
true”, "all are equivalent" would be useful, but, as we have seen,
the standard connectives are not appropriate, so we must define new

connectives for the purpose.

3.2 Non-Standard Connectives

A principle of good programming is to prefer a general solution
over a collection of special purpose solutions, especially when the
general solution is not much more complicated than any one of the
special purpose solutions. Following this principle, we use a single,
parameterized connective which generalizes ¢, v, @ , + and |
properly‘to the set oriented connectives we desire. We call the
connective AND-OR and symbolize it as ul£ . This takes as arguments
a set of n propositions, the formula nﬂ{(A1,...,An) being true just
in case at least 7 and at most j of the arguments are true. That

AND-OR is the generalization we claim may be noted by the following

equivalences:
2 -
2H2 (A,B) = A¢B
!2 (A,B) = AVB
271 -
2!:(A,B) : A@B



0 -
2!o(A,B) = A+B
. !1()\ B) = A|B
270 -
0 " ”"
n!o(A1,...,An) means "none of A1""'Au are true
-1 " "
n'g (A1""'An) means "not all of A1""’An are true
1 n . "
n'1(A1""'An) means "exactly one of Al""'An is true
Moreover:
v ) = a
171 -
0 -
1¥p(A) =~A

From the above equivalences, it is clear that AND-OR is adequate
in the sense mentioned above. However, using nl{ to express = and
+ requires nesting, and we prefer structural simplicity to minimality,
so we use additional connectives. The connective we call THRESH
(symbolized nei) generalizes = to a set of arquments. The formula
neL(A1""'Ah) is true if either fewer than { of the arguments are
true or they all are. Note that 261(A,B) is equivalent to AzB, and
that.nel(A1,...,An) means that the arguments are either all true or
all false.

Since + 1is not symmetric, we cannot generalize it to a connec-
tive that takes a single set of arguments, but we can generalize it

to one that takes two sets, a set of antecedents and a set of



-10-

consequenEs. We have used two versions, or-entailment (v+) and

and-entailment (&+). The formula (A1,...,An)v+(c1,...,ca) means
that A£+cj, 1<s4sn, 1s4sm, or the disjunction of the antecedents

implies the conjunction of the consequents. The formula

(A1,...Am)$*(C1,...,C.) means that the conjunction of the antecedents

implies the conjunction of the consequents., These two entailments

may be combined into one, The formula (Al""'An) 5 (C1,...,Cm) means

that if any < of the antecedents are true, so are all of the con-

sequents, Thus, neL(A1"”’An) is equivalent to (A1"‘°'An) e
(A1'0001An)0

The above non-standard connectives are all truth functions, and
a set of axioms and rules of inference may be devised for them to
yield a logic equivalent to any standard propositional calculus.
There is another useful connective that is not truth functional and
whose introduction brings us to a logic with a strange property. It
is the non-derivable operator # [8,13) (the THNOT of PLANNER). The
formula + A means that A is not derivable in the current data base.
The strange property — introduces is that of non-extensionality.
The extension principle is that if a formula A is derivable from a
set of formulae ¢, it is also derivable from any superset of ¢,
However, A is derivable from { (~-B)+A}, but not from {+B)+A, B},
Rules such as (+B)~+A would never be used in a standard logical
system or theorem prover, but they are often useful in common sense
reasoning programs. Since B might be asserted after (4B)+A is used,
pPlans have to be made to recognize and recover from such contra-
dictions. Doyle's “truth maintenance" mechanism (4,5] is one

possible approach.
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One common use of + 1is in default reasoning: +~A)-+A, "assume

A is true unless it is provably false." Because of the frequency

-

of such rules in common sense reasoning, we use a default operator,
A, the schema AA being an abbreviation of {(~A)+A, but having a

structural simplicity commensurate with its common use,

4

ﬂi_, nO

-,(:' v

The non-standard connectives we have discussed,
4L

¢+, -, +, and A have the properties that they represent with

’

n

minimal complexity operators used in common sense reasoning, or
are straight-forward generalizations of such operators, that their
semantics and inferential properties are clear, and that they are
adequate for representing any propositional formula from any

standard propositional calculus.

3.3 Quantifiers

As with connectives, we want a set of quantifiers that are
adequate, that capture or generalize modes of common sense reasoning
without undue representational complexity, and that have clear
semantics. For adequacy, we use the universal (V) and existential
(d) quantifiers. These are generalized to bind sets of variables
instead of single variables, e.g. ¥(x,y)P(x,y) and g(x,y)P(x,y)
instead of YWxvyP(x,y) and ax3yP(x,y). This is proper since the
order of successive quantifiers of the same type is logically
irrelevant (WxWyP(x,y)zV¥y¥xP (x,y) and Ix3yP (x,y) =dydxP (x,y)) .

Simple numerical quantifiers are very useful in common sense
reasoning, e.g. "Every elephant has exactly one trunk," "Every
animal has exactly two parents." We have generalized this to the

general numerical quantifier schema
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3f§(P1(§),...,Ph(I):Q(E)), where x is a sequence of variables, (21}.
n 4
The meaning of this is that there are n sequences of constants each

of which when substituted for X will make P1(;)S...&Pk(§) true, and

that at least ¢ and at most j of these will also satisfy Q(X). Just

as WP (x) is equivalent to P(al)&P(az)i..., for all constants a, in

the universe, and similarly axP(x) is equivalent to P(a1)vP(a2)V.

s s g

so is ng{(x)?(x) equivalent to' n!{(P(ai),...,P(an)). Also, nai
generalizes Y and ¥ just as n‘i Generalizes £ and v, la: being

equivalent to y and 3: being equivalent to 2

n The numerical

quantifier, however, is used differently than the universal and

existential quantifiers. The universal quantifier is used for storing

propositions which are true for all constants in some domain. The
existential quantifier is used to justify discussing individuals who

have not been explicitly introduced ("Fverw»ne has a mother" justifies
discussing John's mother). Numerical quantifiers are used for
reasoning by exclusion--if everyone has exactly one mother, then Mary
can't be John's mother if it is already known that Jane is John's
mother. Because of the different uses, we retain v and 3 even after

introducing “31 .

4. Representation of Connectives and Quantifiers

4.1 Representation of Connectives

Since in semantic networks, nodes are used to represerit all infor-
mation that can be discussed, nodes are used to represent both atomic
and non-atomic propositions. (from now on we will refer to nodes

which represent non-atomic propositions as rule nodes). The issue
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of representing connectives consists of two questions: how should
rule nodes be connected to atomic proposition nodes: how should
the different connectives be represented.

We answer the first question by extension of the technique of
using case relations in the representation of atomic propositions
(3]. A case relation is a binary system relation between a node
representing a proposition, event, or act and a node representing
an individual, which indicates the semantic role of the latter in
the former. A single case relation may be used in different kinds
of propositions and events, but always indicates approximately the
same kind of role. (The role may also depend on the event, especially
in the case of the "object" case.) 1In accordance with the set
orientation of our connectives, when several propositions play the
same role in a rule, their proposition nodes will be connected to
the rule node by the same system relation. Below, we list the

labels of arcs going from a rule node r to a proposition node »n and

indicate the role played by n in »r:

CcQ If r is true, it may be used to prove n true (n

plays a consequent role in r).

DCQ n is a default consequent of r. It can be asserted
using r only if it is not already provably false,

ANT If r is true, the truth of = helps determine the
truth of the consequents of r (n plays an antecedent
role in r).

EANT n plays an antecedent role in r but only in conjunc-

tion with other antecedents of »r.
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ARG n plays both an antecedent and a consequent role
in r depending on how r is being used and/or on

whether n is derivable indepeﬁdently of r.

One way of representing the different connectives is to have an
operator arc from the rule node to a node representing the connective.
This is the technique we used in [17,18], but we no longer see the
need for storing additional information about the connectives, nor
for retrieving all rule nodes that use a particular connective, so
we have eliminated connective nodes and their accompanying ascending
arcs. Two alternatives remain. First, the connective may be deter-
mined by the set of arcs emanating from the rule node. We use this
for v+, which is the connective assumed whenever a rule node has ANT

and CQ arcs. The second alternative is to use auxiliary arcs to type

the rule node with its main connective. This is especially useful
. 4

for n!! ©., and + which have numerical parameters. The represent-
4 n 4

ation of each of our connectives is shown in Figures 2-8,

It would actually be very rare that a rule of the form AA would
be stored, for at the time AA is asserted, either ~A is provable or
it is not. If ~A is provable, AA would never accomplish anything.
If v+ ~A, then A could simply be asserted. In fact, one might view
AA as the standard form of an assertion to a system that checks all
input for consistency. Such a system either complains that it
already knows that ~A, or it stores A. Also, AA would seldom appear

in an antecedent role. Because the most common use of AA is as a

<
consequent, we allow v+, &, and + rule nodes to have CQ arcs, DCQ
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arcs or both. This saves an extra level of nesting in rules of the

£
form (Al""'A ) + (AC).
n -

4.2 Representation of Quantifiers

As with connectives, we no longer represent quantifiers as
separate nodes, as we earlier did [17,18), but as arc relations
between rule nodes and variable nodes. One may view a variable node
as a pattern that stands for (matches) other nodes, and similarly
for pattern nodes (molecular nodes with free variables). A quantifier
may be considered as specifying the role a variable plays in the
formula which comprises the scope of the quantifier.

A formula of the form W¥xA(x), where X is a sequence of variables,
is represented by connecting arcs labelled AVB from the rule node
representing A(X) to each variable of X. Similarly, a formula of
the form 3xA(x) is represented by connecting arcs labelled EVB from
the rule node for A(X) to each variable in X. There is no need for
putting formulas into prenex form first, they may be stored in the
network as they are naturally expressed. An extra level is required
in the representation of ¥xA(x) if A(X) is an atomic proposition
or is of the form 3dyB(y), or in the representation of axA(X) if
A(x) is an atomic proposition or of the form vyA(Y). In either
case, A(x) is represented as if it were {}v-{A(X)}.

A rule of the form na{f(PI(E),...,Ph(E):Q(i)) is represented
by a rule node with an arc labelled PEVB to each variable in x, an

EANT arc to the node representing Pi(Z)' 1s{isk, a CQ arc to the node

for Q(X) and auxiliary arcs labelled ETOT, EMIN and EMAX to n, %

P ]

and j respectively.
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This discussion of the representation of connectives and
quantifiers is summarized by Figures 9-13 in which several rules

are exhibited.

S. Implementation

All the connectives and quantifiers discussed in this paper are
implemented in the inference sub-system of SNePS, which is implemented
in LISP on a CYBER-173 and runs in either interactive or batch mode.
The system does backward inferencing and a restricted form of for-
ward inferencing (see [20; p.195ff)). Top level rules and forms in
consequent position are not restricted. However, the inference
system is currently only capable of deriving atomic propositions,
or formulae with n'£ or + as main connectives, so currently these
are the only allowable forms of questions and of antecedents. This
is adequate for most question answering applications, but a more

complete implementation is in progress.

6. Summary

In designing representations of common sense reasoning rules,
logic-based connectives and quantifiers have the advantage that
their semantics and inferential properties are clear and consistent.
However, one need not be restricted to the standard, well-known
connectives and Quantifiers. We want such operators that enable
us to express common modes of human reasoning simply, that take
arbitrarily large sets of arguments, and that are no less adequate
than the standard syntax of predicate calculus. The connectives
we currently use are AND-OR (n!{), THRESH (nei), gr—entailment

4

(v+), and-entailment (&~), numerical-entailment (+), non-derivable

(+), and default (A). Our quantifiers are universal (%), existen-
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Figure 9: "Mary thinks John doesn't love Jane, but he does."
Rule nodes are labelled Rn.

Figure 10: "Every man loves some woman."
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Figure 11: "All philosophers read all books, "

d AV

Figure 12: "Birds (in general) fly."
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tial (¥), and numerical (“a{). These connectives and quantifiers

have been implemented in an operational semantic network based

inference system.
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