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- Abstract i:

The ideas beh1nd 1nference. as used in Artificx 1 ’nw%n.

are sinllar to those of certain

L

Intclliéence (AI) oystenu,

control structures used in cther areas of computation.

This paper discusses those ideas and specifieaily

backward and bi—directional inference; and

lazy evaluation and bi directional e

studies forward.

the data flou concept.

search. A model of conputatlon caled the Supplier- Producer—

/
Consumer (SPC) lodel, is introduced as a vehicle for making

contrasts betwten pairs of inference and control strategies

Contrasts along another dlnension are made in the model by;

discussing static and eager evaluation schenes.

Multiprocessing is an idea whzch has been 1np1enented

differently in different arees of computer science. This

paper discusses the benefits of software simulations of

multiprocessing on uni-processing systems for these control

and inference methods.

Finally, bi-directionzl methods (computation. inference
and search) are discussed. The conbination of forward and
putation methods allpus each to assist the other.

hackward com

and suggests new ways for a progran to interact with a user. -
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One idea may be used in a number of ways. 1In the area

'of computation, that is shown by the existence of forwvard

inference and the data flow concept. Both of theSe
techniques, one an inférenca techinique and the other a
control scheme, are based on the same idea: - the immediéte
and full use of all input data. lleither -one requires that
computations proceed in & predeternined order —- any
operation whose inputs are present may begin. Along with

these data-entry actions, there is the data-request class

consisting qf lazy evaluation and backward inference. These
act when a request is made for incompletely specif;cd
information or incomplete evaluations. <<% - =5

Bi-dircctional computation includes bi-cdirectional

inference and bi-directional search. These schemes provide

for evaluations to proceed from opposite ends of the network

which represents the problem being solved. Ve also discuss

eager and static evaluation schemes, whigh allow another

dimension of comparisons to be made. These two control

techniques differ in the amount of parallelism involved and

in the amount of unnecessary work that they allow. _;5
A model of computation, called the Supplier-Consumer-

Production (5PC) Hodel, is introduccd as a vehicle for

making the contrasts betucen the inference and control

methods. , ' Tf
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llany of these techniques benefit from nultiprocessing,

which allows more than one operation to be executed in
parallcl. - The discussion of software-simulated
multiprocessing shows how it improves the operation pf the
1nferehce and control methods and especially the

bi-directional computations.

1.1;,“Organizat}bnﬂbf!the Paper

Section 2 gives some background information on the

topics to be discussed -- inference, control, and

multiprocessing. Demons are also introduced.

Section 3 explains the SPC model. All of the inference
and control technigues are introduced and contrasted. The
relationship between the model and computation is shown in

the discussion of combinations of production and acquisition $

S

methods.

Section 4 discusses the result of combining forwarc and
backward computation schemes. This combination gives
bi-direcctional computation, inference, ;nd search, which are
discussed and contrasted.

Section 5 contains the summary.
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2. IHFERENCE.;QC%TROL AND NULTIPROCESSIRG

This"SCéﬁiOn"introduccs the topics discussec in the
remsinder of\the paper and gives general background

information on each topic. L

i

Simulating/intelligencé and intelligent behavior is a
oal of AI. ?or instance, many current research projects
involve hatufal language understanding. “Inference is an ‘¥
imyortaﬁt techniquc for this worﬁ; becauSc‘ﬁuch’éf wha:iism
done in understanding language involves making inferenéés éf
"applying previously gained knowlcdge to é’iext dr%
utterance" [Charniak 76al. Inference can be usecd to answer.
questions or to glean all possible information from & new
input.

~. This paper makes some assumptions about inferencé:;
# Rules are used to describe the action of a2
particular inference. The pattern, or pre-condition;

of the rule is called an antccedent. A rule nay have

multiple antecedents, all of which need to be satisfied
in order for the rule to fire. The result of an
infercnce is the assertion of an instance cof the

consequent, which is stored in the data hase &s if it

were an input.

Figure 2.1 shows two rules which will be used
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throughout this papcr to denonstrate the sctions of

cach of the inferens e and control schemes.

kules to be uscd in &2ll discussions of inference and
control types: . ’

T Ny z = x *y +w (algebraic version)
or (x & y) or w => z (boolean version)

or IF (x & y) OR w THEN z

n
~r

A}l étuaents zttend school
Vx (Student(x) => AttendSchcol(x))

In the first rule (z11 versiou&);'d. X, ¥y, and z nuy
be any propositions of arbitrary”conplexity. '

i

Figure 2.1
Two Simple Infercnce Rules

* Tﬁersanc rules arc used for forward infereuce as
for backward inference. The ceduction component of
SKeFS has this‘proporty [Hartins 81; Shap;ro 7¢, C1b].”
Cther systems (c.g., FLALNER [hewitt €, T11) do not,
but instead spccify Lhat a particular rule (or ”
"theorenm") be uscd for cither forward or backward
deduction. Scction & cxplains the inportance of this

to Li-directionsl infercnce.

2.2. Conirol Techniques ST

Contrel, in the sersce used in this pveper, relutes Lo

the method wnd extent Lo uwiieh & rograr cvaluates
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statements. The techniques studied rangé from immediatefy

evaluating ail expressions to evaluating nothing until
required to db’So.-and from using highly concurrent

evaluation to purely sequential methods. ~‘liote that the

difference betuween what is "control" and what is "inference"

is not absolute.

k4
~é
¥

Demons ~ -

A rule-based system can be implementgd in a number of

ways. One characterization is how the rules are checked &nd

fired, i.e., whether they are passive or active{'z s
In a production system, rules are looked 32 £nd'cheéked

by an interpreter until =@ match is found with some part of”

¥

the data base [Davis 75]. The role of the rules in this

type of system is a passive one. ) o

Rules represented by demons are active participants.

Using Davis and King's tcrminolog&. each demon has its own
interpreter which tells it when to fire. A denon is

a portion of a progran which is not invoked explicitly,
but which lays dormant waiting for some condition(s) to D
occur... For example, a knowledge manipulation progran i
might implement inference rules as demons. \henever a
new piece of knowledge was added, various denons would
activate and would create additional pieces of
knowledge by applying their respective inference rules
to tlie original picce. These new pieces could in turn
activate more demons as the inferences filtered down
through chains of Jogic. lleanwhile the main progran
could continue with thatever its primary task was.
{Jargon T9].

Denons arc uscful lLecause "a lot of connon sense

knowledge consists in knowing all sorts of tiny little facts _

| ‘/’ : L

A

/ L e
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‘base updatcd when new information enters the system.

A[Charniak 72]. Section 4, on bi-directional computaticen,

R

INFEKENCE, CONTRUL AKED BULTIPRCCESSIHG Pape ©

that pop up whcn one is thinking about related ObJectS"

[Steels 79). These procc#ses can work wltlout 1nterrupt;nL

the main task if they are implemented as demons.
Charniak, in [Charniak~76b]. states that all inferences

should be made as scon as enough information to rnake thenm

enters a system. Toward that end. he introduced demons to

"look forwafd." liis demons are implenented with base

routines, bookkeeplng. and fact finders. Base routines arc

used to act1vate demons, and nay be responsible for nore

than one demon each.‘ bookeeplng is used to xeep Lhe data ’
Factfindcra are used to deal with facts which are not
important enough to be asserted in the data base, but which

must be dealt with. LT A
: .Some degree of nultiprocessing is required for demons
to keep a watech on the proceedings. Each demon may be éivcn
a processor (real or simulated, see the discussion of |
multiprocessing below) when it begins executing. Charniak

makes the point that one must set the demons up before

running the progran, ahd that they are not '"learned"

describes situations wherc dertons are created dynamically.

Denons represent genercl rules. A demon would not

say "If it is raining and John is outside, John will get o
wet." 1t would instead say "If it is raining and ACTORa 1is

outside, ACTCRa will get wet." VWhile certain dcrons might
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only relate to certain situations, thecy can be used in all

irstances of those situations.

2.3. lultiprocessing

Hultiprocessing is a technique used for speeding up

execution in a computer system. e

v

A multiprocessor may be defined &s an integreted
computer system containing two or iore central
processing units. The qualification ‘integrated'
implies that the CFUs cooperate in the execution of
prograns. [Layes 7¢, p 448] :

By‘increasing the number of processes available to work

on a program, thé execution shouid requfre iess real tine to
complete. There wili not be an n-fold inéréase in | |
performance with an n-fold increcase in the ﬁumber of
proccssofs..howcvcr, Lechuse of the need to share limited
rcsources in the systen. o

Some further restrictions mentioned Ly layes are that

the CPUs must be able to execute different processes of the

sane program, or that tﬂcy must shérc rnemory and
input/output systems and be controlled by the .same operating
system.

llayes also nakes s dictinction between standalone, and
indirectly and dircctly couplcd multiprocessing systems.
This distinctiorn depends on the degrece of communication
betveen the CPUs irvolved. llote that in the discussion of
software simulation of nultiprocessing, these distinctions

are not relevant.
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sharing of infornation between nodes. They nay not be

Léﬁéiaé;gﬁdltorkill [Lessing £1]) describe tuo types cof
multiprocegsinu systens: The first type is callcd Ch/kaA
(Complectely dccuratc. llearly Autonornous) systums.'in vwhich
each nodgrhas 211 of the inforumation that it necds, and cun
corplete @ ¢omput§tion on its own. FA/C (Functionally

Accurate, Coopcrative) systems, on the othcr hand need

able to perforn conplete .computations due to s
lack of data. and/or inconuplete knowledge of =zn elgorithm,.

The nodes in an multiproccessing system‘céﬁhééop;r&tc
in two ways [Snith €1]: Lask-éharinu. in théh‘they'éplifv
the work involved in the problen; and result-sharinc; in -
which the experts report partial results to cnch\otUek as
they work. In the former case, the problem is such that
it can be divided into sub-tasks to bé solvcd by oné or
more cxperts uvorking togetier. The other metliod is usédviﬁ
cuses wherce the results of onc sub-task are necessary for

the completicn of unothcr sub-task and so comrunication

between the experts is nreesary.,

In an article on Al progprumming lanpuages, bobrow and
kaplhael give a less strict definition of prultiprocecssing:

The basic control innovation that is now beinyg, nadc
- avoilable is the sbility to save a nodule und its
contcxt in & stale ¢f suspended animution. ees The
control structurc induced by this rodel is & trece of
modules, with contrel passing among zny of tle
suspended nrodules in the structure. If only cne
process is active it & tirme, we coall it & coroutiace
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regime. If processing can be thought of as goinz on.
simultaneously in sc¢reral nodules, wWe call it a
multiprocessing repgire. tiultiprocessing 1is usually
done by scheduling tl.rough tinme-quantun interrupts &t
‘the system level, or tine allocation in the langusge
interpreter [Gucues =re also used, scc belovw.] {Lobrow

74, p 1573.

By simulating multiprccessing, one gets a more dynanic f«

flow of control than in s strictly sequential systen as well

as the ability to (secnm to) do more than one thing at &

time. The systeﬁ'is still a uni-processor, but over time it S

appears to be doing pultiprocessing. This is helpful in
using demons, for exangle, or for inference techniques‘which;’
can then run, while memory structures are being built fOrgigu
story being read. Unless specified otheruise, ;
"rultiprocessing® in this paper should be taken to mean
sinulated multiprocessing.
A process relinquskcs computing power to another
process when it 1is deactiveted, whether by the
nultiprocessing operzting system, or by itself. Reasons for
deactivation include successfully conpleting an assignmeﬁt.’ f_
no longer becing needed beczuse of the results of anottler |
process(es), or a process using up its complément of
resources such as time c¢r the number of inferences nace. ak

The latter reason is called resource-limited rocessing.
nE

The ncxt process te receive control can be the current
process's parent, & pProcuss it has create¢, or onc which was
deactivated carlicr and ic now in a state of suspended

animation. There is no recuirement to return control to the

A
et

previous process, &5 in © rurely sequential system., AiS
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Lobrow and Réphael npte. control can pass aﬁong ihe
processcévaccording to the tree-structured hierarchy or nct,
as required by the execution.

One implementstion for simulating this type of
nmultiprocessing onka’strictly sequential ;ystem is the use ‘ . -

of queues. As processes are deened cexecutable, they are put

. on a queue (or onme of nany, dépenaing on the system design).

An evaluator takes processes from the gueue one after

another to re-azctivate then. Processes nay be allowed to
create and sghedulc new processecs as they execute, so the

flow of control may be very dynamic.

Stallman and Sussman [Stailman 77) use a number of
queues, each with differént priorities, to inplement_the;r;
EL progran. In MULTI [licKay &C], th?re is arﬁprocess |
queue," which contains processes to be evaluated, and any of
these processes nay have its own queue of processes. Steéls
deseribes a similar organization for his Constraint Hachihe
[(Stcels §0), uwherec experts (constraints).wait on the

"top-process-queue" for cvaluation and each may have its own

queuc of activities to perform. Reiger and Small [Reiger - ,;,
81) use a RUN-IE queuc to hold the list of words to be
parsed in their distributed word-expert natural language

parser. As parsing of vords is completed or suspended,

they are taken off of the queué.
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3. THE SPC NODEL’

The Supplier-Producer-Consumer (3PC) llodel is an
analogy betvween a hypothetical manufacturing situation &nd

the inference and control structures discussed in this

paper.fﬂIhe system consists of three parts: a prbducer.
suppliers, and consumers aSH;hqwn iq”figure 3.1. The

producer nanufactures only one type of product, using a

nunber of supplies. Each supply is prpduced\byqpne or more -

supplier. The consuners

!

supplier-—1r

. . "'
. - " producer _

supplier-m‘ S consumer-n

Fipure 3.1 A
S Diagram of the SPC analogy

Each member of the model blays each role at diffefent
times. In order to supply its producer, the supplier nust
consume the product of &n earlier producer, and so on. The
supply and consunption rates nay therefore be as varied as
the production réte. . : ' N

The SPC syster perforns differently depending on the |

control flow schemes imjosed on it. Data flow und lazy -
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evaluation can be looked at as being mcans of production,

while cager and static evaluation arc methods of acquisition
of supplies.

Each of the production techniques and its corresponding
inference methods will be Aescribed. Its effect on the SPC
model will also be discussed. The same treatment will be
applied touﬁg; aqquisitibn techniqug;. Four combinations of
production and,aéquisition will be analyzed. considering
production both as conbroh and as inference. \

i
3.1, Production lethods

This model includes two types pf production, dats-entry
(forward) and data-request (backward). Each type will be._
discussed as an inferencc or control method in the SPC

model;

3.1.1. Data-entry Production

The two data-entry production methods, data flow and
forward inference, share the idea that fuli and immediate

use of all input data should be made. As soon as new

information enters such a system, all actors or rules which

can use it may do so cpncurrently.

Forward Inference

When new'knowledge is added to a system capable of
forward inference, inference rules may be used to derive

/

'
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nmore information from it. Accordihg to Charniak, the
purpose of forward inference is to find connections between
new information and that which already exists in memory
[Charniak 76bl.

In érder for a-rule to fire in a.forward inference
mode, input assertions are matched against the antecedents , .
of the rul:s in the system. As matches a;e found and rules
have all of their. antecedent condifions satisfied, forward
“inferenn=s are made. In a multiprocessing environmént.
processes can be set up for inferences corresponding to each e
mateh found, and they can allnbe aciive simu;taneously.

i

In full forward inference, the resulting assertions may

also trigger new inferences. This infer-assert-infer loop
will continue until all of the possible hew inferences have

been made. In restricted forward inference, only inferences

directly resulting from the input are performed.

Charniak refers to forward inference as "read-time

N

“inference," because he deals with story understanding. A
more general term is "knowledge—acquisition—time
inference."

Wilks mentions a dispute over the amount of forward
inference £hat should be made in a program in [Wilks 76].
Instead of allowing full forward inference, he sugpests a

laziness hypothesis to restrict the number of inferences

made.

This hypothesis states that one should not introduce
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into a knovledpe base "more infornmation at any point than

necessary ... unless the problem cannot be solvecd at a more

superficial leycl“ [Yilks T51]. The sane paper describes bLiv

preference semantics system, which illustrates this point.
The first part of Figure 3.2-shows the algebraic

equation expressed in ternms of boolean opgrators. The rule

only fires when the antecedent expression is satisfied, as

when either (x &fy) or w is asserted as true.

In the seéond part of the figure, a siuple rule, "All
students a;tgnd school", which might be used for rcading a
'story is shown. This rule may seem a little redundant to a:
human. ¥e "know" that students go to schbdl;’SUE a progran:
needs this information explicitly stored, either as an‘
assertion or in a rule. Instead of wasting space in the
data base with information about every possible student,
only those SO jdentified in the input ‘would have this
asssertion made about them. LA simple rule like this can act: .4
és » demon in a multiprocessing system which does full ¢
forward inference -- it can sit in waiting, looking for
information iﬁat someone is a student and then add whatever
it knows about students, such as the fact that he or she
goes to school.

This rule would, of course, only be useful in a
si£uation Jhere being a student and attendinpg school were
important. In other situations, the inforwation about
someone's being a studert could be added in & manner which
would: not trigger forward infecrence. h user could theﬁ

-/

/ e
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query the system at 2 later time about whether a person
attends school, and trigger backward inference. See the

discussion of backward infercnce, in section 3.1.2.

Rule: (x & y) or w => 2

Assertion: x
Result: nothing, x is not encugh to satisfy the
antecedent conditions of the rule.
Assertion: w ]
Result: z is asserted in the data base, because w
;alone is enough. If this were & full
forward inference system, z could be used:’
to trigger any other existing rules.
; - ,

Rule: ¥ x (Student(x) => Attendochool(x))

Assertion: Student(lary) . '
Result: The rule fires, as its one antecedent
is present. The fact that liary attends
school is recorded in ‘the data base: :
AttendSchool (ilary). ;
For the significance of this type of
rule, see the text.

Final result: Student(iiary), and AttendSchool(liary),
x, w, and z are all asserted in the
data base. The processes Which were
used in all of the deductions still
remain in the system, so that if
Student(liary) were asserted again, .
a new deduction would not. liave to he -7
made.

Figure 3.2
Forward Inference Examples

Datas Flow . : -

A data flow system is one which eschews the traditional
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concept of evaluatirng operations or instructions cne 3t a
time, in an order prescribed at the time of wuriting the
code. hAn operation is performed when its data inputs s&re

rcady. Data flow systems use this data dependency as their

cnly contrcl stratcgy.
As described in [Venp 75], "the 'data flow' concept is
besed on the ohscrvation»t?aﬁ an operatiqn_(or an
instructicn) shouid be cxcpbied as soon as;the required
inyut operands ére made azvailable by.the COmpletibn of

operations supplying the inputs." Because a data f{low

systen waits Bnly for required"déia inbﬁts and does not
process instructions sequéntial;y, a number of operations
may be resdy for cxecution simultaneously and "thus, highly
concurrent conputation iz & natural conscquence of the data

flow concecpt" [Dennis 80].

,

Data flowu prograns ire gencrally reprcsentec as program

flouw rraphs with actors, arcc anc¢ Ltokens. Figure 2.2 shows

the gruph for the expression "Gz=3%2."  An-actor is specified
by # function nare inside a circle (e.g., "®", ">",
"merge"), and is used to specify an operation 6E”an actualk
value used in a constant expression. All actors "generate
some value =5 their result" [HeGraw 79]}. Tokens represen£
the values carriecd in and out of the actors on input and
»output wrcr, respcectively. In Fipure 3.2, the actor is "¥¢
for pultiplication ancé the tokens representing the input and
output vulues zre uwritten on the arcs.

L data flow system is data-driven, and computations sare

/
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triggerécAhy:the.inﬁuﬁ 6( data in£o the‘syétﬁm;~fEi§§tinu
datu flow lanpuages 40 net specify inppt/butput rfdécdurqs.
because of the difficuit& of incorporéting them into the
applicztive natufe of the data flow concept. (See [Aryind
76, Dennis 79bi for descripﬁi&hﬁzbf two data flow
languages). An éctor can fiﬁe as soon as‘all of its input
arcs havg one ﬁo&en'each..however they enter the Systeﬁ; and
its output arecs ére clear.

Firing rules show uowWw an actor processes its inputs.

An exampie of a rule for the multiplication operator ("#vw)
is shown in éigure 3.4, The,"beforé“'pétfern@shows tﬂaf ;he“
input arcs have tokens,.but'the oﬁtput arég“&ﬁk“éicéF;'”rhén
"after" pattern cemonstrates how the obera{6f ﬁr3Ecsses the
input -~ the iﬁﬁdi arcs arc clear znd a token representing
the result is on the outut arc. (The figures for program

flow graphs are nmodecled “fter [Dennis 79%a, Weng 75, Leung

751).

Ny

(W1

Fipure 3.3
Example of z Data Flow llultiplication fctor

The multiplicaticn actor is clways shoun with tvo input
arcs and one output crec, even if the arcs have no values on

them. Actors arc connected in a network to reprccent =

{s* /“




-l

“THE ‘SPC MODEL

program as gg’?iiﬁ?é 3;3;“thcﬁfrépresents fhewalgcbraic
cxpression of Fiugrc 2.1. !oticé that data flow systeme. do
not use variables. snd instcad have "immutable" values
{licGraw T7Y9). The values are heid on the arcs as long &s

they are in use. Ce R e

Figure 3.4 i
Firing Kule For Hultiplication

Effect on the SPC liodel

The producer has the highest throughput rate wvhen it
operates in the data flow mode. wofk is begun on 2 product
as soon &s all of the necessary parts are available, which
might ﬁe becausc of orders (see the discussion of

acquisition in section 3.2¥, or because carlier producers

completed products whiech this producer uses as input.
liornally, only the whole product will be built at any one
tirme, but if the procduct is :decomposible into subparts, .
tliose parts nmay cach be built uhgnever their input parts are

precsent.
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Equation: z = (x ¥ y) + w
Program flow sraph:

. X

Tem

W ) T ‘xh R T N

Input: x
Result: no action, because x is not enough
, to trigger any actor.
Input: y o .

Result: the multiplication actor fires,
sending the value (x*y) to the
addition actor.

Input: wu

Kesult: the zddition actor fires, and the

: result is placed on its output arec
for use by any other actor.

Final result: this part of the system is in the
same state as before the example.
A1l input arcs are clear and the
gactors are prepared to fire.

Figure 3.5
Data Flow Example

ks soon as the wholc product is complete, it is sent
along for use by tne consumers. It is expected that one of
ther will bLe uble to use the product but if not, it is
wasted., HNo crderc are accepted or waited for by the
producer; i parts are present, broducts are built. Excess
product is not stockpilecd.

Yasted output is hLopefully made up for by the ' ﬂ%

] /

/
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c¢limination of - bookkeeping (e.g., recording orders fron
consumcrs) ahd by the c¢fficient use of tine in productiocn.

In zddition, uhen the GPC system is organized, it is

expected that the suppliers and consumers will bLe chosen in

a bLalanced manner to ninimize waste. .-

Contrast

There arc¢ some differences between data flow and

forward‘inferénce as presented here. - They are not - : -Q
necessarily #ifferenccs in the techniques themselves, but ini
the implementations.

An infcrénce system asserts its conclusion by building
new structures or by asscrting cxisting structurcs. In &
data flow system, no permanent record of a calculation is
left behind. The assertion is merely a token on &an output
arcnwhich disappears if not used. This is & charccteristic
of data flow systerms -- they are side-effect-free and | : ) ”’ﬂfﬁ

nothing is chanpged but ti.e values which pass along the arcs.

3.1.2. Data-rcquest Prcduction

llot doing any work until it is requested is thg concept
involved in the data-request production techtniques, lazy
cvalua;ion aud backward infcrenge. Evaluations and
inferences arc held cff until explicitly requested Ly the

user or another part of the systen.
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Backward Infercuce

\

An inferencing systen uses backward infercnce to answer

fﬁdéétions. The questlons may be explicit, as from the user

of a computer program. or they may be goals which necd to be

and vere created in some other part of the eysten.

proven,

Backward inférence is de scrlbed in [Black 68] as an

slternative to forward inference for question answering.

nce for backward inferenggmﬁgﬂléf

Suhstituting forward infere

require naking all'p0051b1e inferences at read-time, usihﬁ‘ﬁé

large number of rules. Doing this would slow the input part‘

tremendously and hopelessly clutter up the knowledge base

with infornation which might necver be used.
Backward inference solves this problem with backwgig
chaining. T7he goal, the question bel ing asked, is matcled

azainst the consequents of rules which the systen knous

about. Those rules are used to try to derive the answer.

Fof each rule found, the system can use the rule if it can
shouw that the antecedent of the rule holds in the current
environment. This requires matching the pattern in the

rule's antecedent against the asserted knowledge in the data

-~

base. If & rule is found which matches the goal, but is
ijtself in consequent position of another rulc, then the

superior rule must be shown to hold in the same cnvironment.

Examples of backward inference are given in Figure 3.(C,"

using the same rulcs as in the forward inference case. liote

that backwar?/inference is triggered by cueries (cuestions:

!.

; ——
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about consequents), while forward infererce is triggered

assertions of anteccdents.

Rule: (x & y) or w => z

(uecry: x? ) :
Result: nothing, x is not in consequent position
of a rule.
Guery: z?
Result: (sssume that w has been asserted previously)
The system notes that this rule has z in the
consequent position, and triecs to prove that
its sntecedents hold. It finds the existence
of w, and can thus conclude that z? is true.

Fule: V x (Student(x) => AttendSchool(x)) el

Query: httendSchool(John)

Result: (sssume that the system has already been
told that John is a student). A match is
found between the query and the consequent
of tre rule. OStudent(John) is found to -
exist in the system, and the user is told
that John is indeed a student.

Final result: w and Student(John) are still asserted.
The results of the deductions are also
ept, and they may be used again without
having to make the actual deductions.

Figure 3.6
Backward Inference Exanmple

Lazy Evaluation

In [Fricdman T7C¢3, the authors suggest that certain function

in wpplicative (side-cffcct-free) languagzes should be

irterpreted in & lazy fachion and should not evaluate their
4

argunents, but instead should "promise to cvaluate ther at &

later tinmes"

s




-

—

-

Pare <

i It is our thesis that the fields of a newly allocated
record can be filled with a structure represcnting the
suspended evaluation of the respecective argument,
instead of the value of that argument, ¢s is done un
systenms with strict implementation of. cons. 1f all
other clementary functions are able to detect these

Lt suspensions and to force evaluation only at the tine

that the value is genuinely critical to the course of
the computztion (necessary to the value of the main
function), then the results are the same as thosec of a
strict evaluation scheme whenever both converge.

By using a lazy evaluator, one need not spend time
; .
evaluating functions whose complete results are not

necessary. The environments of the evaluatiqns must be kept

in the suspension of‘thé‘evaluationfﬂb%ifﬁbgitiﬁ%?Sa9e§ 1s:m
expected to hékévub’fbr the exth:asﬁdréﬂé
Lazy evaluation is output-driven computatioh,;ﬁhd*éd?
actuﬁl evaluations are triggered by cal;s ﬁb PRIHT .
functions. (Contrast this with data flow, which is
data-driven). If the arpuments to the PRINLT are not zctual.
values, such as constants or literal vﬁlues. then the
evaluator baék—chains until it finds values for z11 of the
variables involved. This process nay cpptihuc unﬁil the
evuluator has backed up ns_far as it can without resolving
all of the variable bindings. In that case, one solution is
to ask the user for further inforumation, sce section 4.3,
Without czlls to PEINT functions, a purely lazy
cvaluator night ignofe ail of the calculatiuns. Sincc no

values need to be output, tlere is no nced to perforn the

calculations.
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LY

L (Cois L B).
N - /7 \\

V- Standard // . \\ Suspcnded
Evaluation // \\ Evaluation
. , \N/ E AN\
( (Value A) . (Value B) ) \\

( (Susp A env) . (Susp B env) ) )

PR . - S N, -

. .. ... . Where (Susp x e) means that
/ a suspension of x in the Lo

o environment e is stored . R
vl until it -is needed. 5

Figure 3.7
standard vs. lazy evaluation
1

«

The standard, or strict; Lisp CONS‘funct1on tzkes two
arguments, and returns a two-part data structure, with each

part pointing to the value of the respective argument. For

1

example.vFigure 3.7 shows how a Lisp COIS would be evalﬁated
witb fhe standard evaluator, and with one which returns
suspénsions instead of actual values. \hen & strict
function accesses the suspension, it can Eoerce the
evaluation.

Suspensions are useful when working with data
structures which nust be sequentially accessgd, like lists
in Lisp. The standard (strict) Lisp cvaluator evaluates all
of the arguments of a function before evaluating the

a

function. In sonme situatlions, this is not desirable because

of the unneccscary work which will be done. . ' A

The following Lisp form shows how using suspensions
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saves execution time:
(PRIKT (CADR (COHL (A)

(CoMS ‘B
. (COKS (C) 'DY)) )

The CADR‘function returns the second item in a2 list, in this
case the atom D; rthe PRIIT functiop prints out the value of
its argument. A and C are unspecified functions.

A strict evaluation of the expression would cause all

of these functions, including A and C, to be evaluated., If

A and C perform complex cslculations, then much time will be

wasted because their values are not necessary to PRINTing

S .

the CADR of the 1list resulting from the COHS. . o

If this expression were evaluated bj 5 lazy
interpreter, then suspensions would be séi ﬁﬁ for
evaluations of functions & and C. DSome work has to be done
to CCNStruct a list of the suspensions, but this is less
than evaluating all of the functions. .Once this list of

suébensions is crecated, the CADR of the list can be located.

and its value returned, in this case just-the atom E.

i

Effect on the &PC liodel

A lazy SPC system climinates the waste found in a data
flou system. lothing is bLuilt Qntil a consuner makes a
request for the product. At that time, requests are senti.
out to tlie supplicrs for the needed parts. As a full
complement of sppplies comes in, the product is built and

sent to the consumer who requested it.
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Lazyfbroduccrs arc interested in using their workers's

time wisely. A producerrwho has & near ronogoly on &. .

market, or one whose products are of high quality wnight bect
use this technique. . ‘ en e i

et

o
#e
I

3.2. Acquisition of Supplies

The control structures discussed as acquisition rethods
in this model of computation diffe in their use of

parallelism and in the anount ot unnecessary uork that they

zllow to be done,

Eager Evaluation

According to Laker and lewitt {Baker 771, &n "eager
beaver evaluator" is one vyhich starts evaluating every
subexprcscion as soon as possible, and in parallel.” vFigure

.

3.8 shous a representation of how an eager evaluator vould

iyt

)% . o~

e : RS

handle the sanple rule.
Processes called futures are created and assignecd to
each of thé propbsitions which are then all evaluated
simultazneously. This is not strictly a parallel operation,
liowever, because asS soon as cnough of the opcrands réiufn
the value TRUE (satisfying the arntecedent conditions), all
of the remaining evaluations are located 2ud terminated.
The wuthors liken futurces to iLGGL-60 thunks, uhich arc

"siuple paranctcrlc"" subprograms [used] for simulatinr

Lransmission by nume" [Pratt 751].

-/
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Programming languapes generally do not use eager

cvaluation. In 4 Fortran statement (or one in most other

V

conmpiled languages), all subexpressions would commoniy be

evaluated, regardless of their results. A Lisp interpreter

evaluates a Boolean expression in strict left-right order,
. but stops as soon as the value of the expression can be
determined. leither Lisp nor Fortran involve any

concurrency or saving of results.

e Eégér evaluation of (x & y) or w => z

(Future x) (Future y) (Future w) .-
\ : / S B :
\ / )
\ / H
\ / ' S
ANDmececcccc e e m—e==0R wait for FIRST

one to finish

N mw - -

Figure 3.8
Example of Eager Evaluation

Results 6f completed eviluations are saved by the
future, so the value of thazt particular process need not bde
recomputed. For parallels to this, sce [KHeKay £€0)] for . .e

description of the data-collector processes in MNULTI, or

[Kaplan 73], where charts arc used to save the results of
subgrammar evaluations in natural language processing.

Eager evsluation rcsults in savings of execution time
>

/

/ ; R T
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but it may also create many irrelevant processes.

Irrclevant processes arc those which have begun executing in
parallel yith others, but bccome extranecus when one of the
others finishe;. In the exanﬁle in Figure 3.8, a larpe
savings_in overall execution time nay be found in the case

where x and y return FALSE after a series of long and

compléx calculations but w quicklyrevaluates to TRUE. 4all

threc of therbroc€sses begin evaluating at the same tine,

but as soon &s the future for w finishes, the others becone

3

irrelevant. DBaker and Hewitt note that without some mneans
of determiﬁgnéAirrelevancy; these?bf;éeSSes éan waste a
large amounf‘of prdcessinﬁ'£iﬁe;:hfxéy-iﬁ£f§dhce a f>¥ 
garbage—collection-scheﬁe to.fecycle irrelevant proéésse;;.x

The nodes in tlhe FA/C system 6f [Lessinn £1] (page 10) .
are eager producers which can share information among.
themsclves to fill in the gaps in their respective data
base;. enabling themAtg compute nmore conmplete resuits.
Lessing and Corkill state that nodes in an FA/C system nay
be "self-directed". in that they can eéch deternine the

dircction of their work, and the extent of their message-

passing based on the stzte of the rest of the network.

Effect on the LPC lodel

Eager SPC producers are concerned with speed of
production. Lequests arc scnt out to all of the suppliers.

Thhe first part of each type received will be used because

.

/ . . m——
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'getting the product out to the consumer is more important—ff
than waiting for the best part. There will always be
outstanding part orders unless some of each part is present.

Partial productions are begun by conpleting a certain amount

of the work involved, and waiting for an actual order beforc

its completion.

The suppliers are not queried in any special order, nor.
are there any prcferences as to which supplier provides
which part. There mnay be a minimum-quality threshold for

acceptance of parts supplied, but even in this case, all

replies will not be waited for once a part arrives which is

*

of high enough quality. i

Stafic Evaluation

In static evaluaticn, evaluation of proéesses is in a
_p;eécribed (static) order, usually the order in which
statements are written down in a program. For example, in
Figure 3.9, x is evaluated before y, whicﬁ is evaluated i

before w. Unlike some of the other methods described, a

purcly statiq evaluator will evaluate all of its arguments.

Static evaluation is standard in sequential systems.
Its main advantage is that it requires no parallelism at
all. Its drawback is thut complex evaluations delay simpler

ones which might resolve problems much faster.

Effcet on the SPC liodel

-/ e

i e
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..-..9PC systens which operate in a static evcluation node

“are interested in gquality of product rather Lhan rate cf

production. When parts are needed, requests cre sent to
each supplier, but no action is taken until &ll of the
results are in. Time wnay be.wnsted waiting tor the slowvest
supplier, but the philosophy of -the static producer is that

quulity.is worth waiting for.  ;;»~ﬂ

‘

3.3 Combinations

E

The tdo‘édbbi§'methods and the tuo production methods:

c2n be combined to yield four combinations. Some of these: *

will nodel real-world systems in computer science or,:'

business. o : E

Static evaluation of (x & y) or w => 2z
-~ evaluate x to TRUE or FALSE

- evaluate y to TRUE or FALSE, even if
x is FALSE, :

-~ evaluate w to TRUE or FALSE, even if
(x & y) is TRUE.

- assign z its value from the ztove

evaluations.

Figure 3.¢
Static Evaeluation Exanmple

If the procuction mictlhiods are looked &t &zs the

2z flow

cr

analogous inference typer (forward inference for da

and backuard inference -fer lazy cvaluztion), then ue have

v

o
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analogues to inp]cncntutinns.for inferenen systems, Poth
types of combinations arce discussed.

LAZY/EAGER: tliothinz is done until & consumer orders
a product. When a éroduct is ordered, preoduction
proceeds as fast as possible. lecessary parts are
requested fron suppliers, and the first parts of each type

tliat come in are used. lihen a new part is delivered, any

outstanding orcders for that item are stopped.

Baker and llewitt suggest some degree of lazy evaluation

in their scheme to take czre of the problem of an eager
!

evaluator getting stuck on an open—-cnded computation (for
instance, computing a list of.the squares of all of.thc
integers). . This would be used to hLalt 2 computation after
some specified point, not to be‘contiﬁued until requireﬁ.

LAZY/STATIC: I lazy/static system may be looked at as
a made-to-order manufacturer for very demanding customers.

Lothing ic done until an order is reccived from a

consuner. At that time, orders are sent to the suppliers,

and only the bLest suppliecs are used. In this manner, only

the best and the "freshect® products are rade.

Eoth of the combinations involving laiy evaluation may
be viewed as involving backward iﬁfcrcnce. The difference
ic similar to that betwccen performing -inference in a
nultiprocessing systeh and in 2 sequentizl cne. Using an

capger acquisition method #llows more than one inference

‘process to bepin at the same time and/on thke ssme inference

R H
-
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muy be run simultancousiy on different sets ¢f assertions.
Using static cevaluation woulc restrict the system to one
inference and one assertion at & time.

DATA FLOW/STATIC: This is not the nornal data flow
operation because'thé'data flow aspect of the cperation is
constrained by the need tc wait for all of ﬁhe suppliers of

B

any part. oy

Wthen all oflthe requacted parts have arrived, the

producer rust spend time deciding which of cach type is the

best. As soon as all of the pé}ts have been decided on,

production begins. It terminates vhen the one product is

finished. The check on the quality of the supplles holds'u;

production.

Combining data flow and static evaluation scens t; be‘a
contradiction éf sorts. The data flow p;rt-tries to produce
as much and as fast as possible, while the static half puts
a bréke on the throughput by requiring an cvaluétion of all
of the inputs. The data flow concept says that as soon as
all data are present fof any actor, it can fire. Static
evaluation. houever, reqguires that expressions be evsluated
in s predetermined order. The result is the acquisition of
supplies in a static order (cne at a time), with production
net begun until ull) are precent.

DATH FLOW/EAGER: 7lLis is the standard dota flow
proccedure. (Sce [Gennis 70b] for & description of the dats

flou lanpusge VAL). The I3PC systen is alvays prepared Lo

produce. All nvailable parts are used and orders for
/ ‘; ' i . . ‘ ! .

’ . e L . SR
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replacenents are sent as soon as the supply is used up.

Only the first of each type of product will ever be.

‘accepted..

There may Se excess product which is never used. That
does not conccrn'tbe'system. because the goal here is to
produce.

The distinétion-betwcen the data flow pzairs when
forward inference 45 substituted for datz flow is similar

to the distinction between the lazy evaluation pairs with

backward inference substituted in. It is the difference

ek

between forward inference in nultiprocessing and
/

sequential enviromments.
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PI-DIRECTICIIAL CCONPUTATIOI

4, BI-DIRECTIGHAL CONPUTATICH

All of the computation schemes discussed thus far have
been uni-directional. In terns of the SPC model this means
that production of a specific product might lLiave been
triggered by an order (representing cemand-driven
computation) or by the presence'of.péyﬁs (data-driven). llo

/ . e

éombinations of foruard &nd backward production were’ ‘
discusseq. g Rl - =7

A combination of forward and backward schemes can be

culled bi—dircEtibnal. This class of compyfations includes
combinations of inference, search and comphtétibn nethods.

Bencfits of these combinations include savings of space and
of the actual nunber of cbmputations perforiied because.each

component can direct the other.

Dynamic demons will be introduced as a description of

suspended procecsses. These are different than the static

demons described in [Charniak 72) and above.

4.1. Bi-directional Search

Problems wvhich are solved by incrementzl steps may be

thought of as occupying = space of states, a3 shown in

A

Figure 8.1, A state rcpresents one of the incremental
steps, ond one state mey have a number of successor states.
The stcte-space is the collection of all of those states. &

solution to the problem is rupresented by a path through the
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space, connccting the states betﬁecn an initial,and”; roal
state. Scarch is the proccess of finding‘that,path. There
nmay be many possible solutions to a problem, but only one
path is required to solve it. There are nmany ways of-
attacking search. [(lNilsson (0] is a good source of soric of

them. SRR - o

Figure 4.1
The State Space hepresentation of a Problem

Two standard search techniques are forvward and backwvard

search. In forward search, the procedure begins at sonc

.

initial state, for exanple 3ti (in Figure U.1) and searches
for a path to the goal state, 3tg. A bockward searcih wWwould
bepgin with the goal and work tovard the initial state.
Which direction is selectod fepends on the application.

WYith both situations, Lhe trick lies in having an algorithn
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(or heuristic) for rnelecting < next state to look at.

Ei-cdircctional searen is a corbination ot forward and

backuard scarch teebhniqgues. The scarch: terncinates wh¢n thc‘
two search treecs intersect, indicating = complete path fron
the initial state to the goal state. i:s Pohl says,
Rather than two independent searches, it can be e
advantagcous to combine the two scarches into &
ni-direcetional sezrcii with ecach contrituting pert cf
the solution. ‘The notivation is that search trees grow
exponentially znd two shorter search diameters generatc
fewer states than a single longer diarcter tree. {Pchl
71, p 1281
Pohl gives a Ei-direccticnal Shortest Path Algorithm
(CSPA) and a ili-directional lLeuristic Path Algorithm (CHPALY,
while DeChampeusux cand Sint [leChanpezux 771 give an improved
heuristic for the BHPA. The problem of selecting the next
stante is somewhat more complex in that ‘there is a search
tree growing from the initial state and one from the goal
state. A number of solutions to this problem exist,

including alternation of dircctions [Nicholson 66]. Ftohl

rejects that in favor of thc cardinality comparison

principle [Poll 691, which compares the sizes of the sets of
not-yet visited nodes reachable by oﬁe cdge from the forward
conponent and from the btuckvard conponernt. The direction
providing the fcwest candidates is chosen as the most
promising. Gnee o dircction is selected, the node uhich
satisfies the particular lest being used lor closcriess is
seleeted..

Li-dircctional search, Tilke the other technigues

presented here, benefite fren & rnultiprecessing environment.

Ay
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Purullel ;rocesses can be used to choose directions ancd to

selcct nodes.
4.2. Bi-directional Inference

When forward and backward inference techniques arc

combined, Martins et al. «call the result bi-directional
inference [llartins 81]. By 2llowing inference to proqeed in
either direction, one can "focus the system's attention
towards the interests of the user and can cut down the fan
out of full forward or full backward chaining."

Specific modes for iorwvard or backward inference are
not necessary, because ezch input is used where it applies.
Backwafd_inference is initiated when a user asks a questicn.
Forward inference may be initiated when the user adds new
information. The forward inference conponent need not
operate us full férward infercnce, but only c¢nough Lo assist
the backward part. This fits in with wilksf *laziness
hypothesis" [Wilks 75), &nd the idea of lazy evaluation.
Forvard inferences may be made only if they are dirccted at
a kKnown goal, not sinply because a usable rule exists. If
no goal cxists, any rule 1may be used,. This is not the sane
as restricted forWardvinfcrencc beéausc the system is not
necessary prevented from using a newly asserted proposition
to trigger a new forwarc inference. |

Forwvard infercnce denons 1may be crecuted by bachvward

inferences which cannot prove & sufficient number of

’/
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sntecedents. As soon as the nmissing propositions are
zsserted, the demons act. Alternatively, some of the
cxpected queries can he made beforc any data has been
entered. In the SHePS system, this is knoun as
"prc—compiiing". and is used to set up the inference
processes at the start. it works because tlie processes are
saved, unless explicitly clearcd by the user, and because
all rules can ve used for cither foruard or backward

inference. Another cause of forward demons is an infercnce

procedurc exhalisting its allocation of resources.- Until it

is assigncd mor¢.~and reactivated, the inference remains as
a denon.

Some deductions mzy not be zble to completc." Causes of
this are the use of resource-limited processing, or that
some of the required prcpositions arc nﬂt available. In

thesc cases, three options ecxist:

# Quit.. If an inference cannot complete, tlie
processes involved can be located &nd destroyed. When

the neceded propositions are found, the inference can he

started azain, withk a new set of processes. Particl
results and suspended processes are not saved or kept
track of. The problem is that the sane rule night be
triggered at a later time, and partially execute to the
sume depree nany tines, never completing.

®# Suspend. The process(es) involved in the

-~
i

inference can be lccated and Suspendcc. he evaluation

itself_is,&hcn in & state of suspended Znimation &nd
!
/
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has becomne a tpeciazl Lype of suspension cullecd & deron.
Ls described in lcction 2.2, the decmon watches for its
particular trigger pattern (the missing proposifions)
to be présent in the data base and then &cts. In this
casc, the demon has been dynamically created, as
opposcd tu the demons discussed in [Charniak 72]. Thcr
demon can résume where it left off without having to
re-do vwork which ;5 already been conpleted. A ccta
flow actor which is rissing some of its required
actors, bqt which has olhers present, is in =z sinilarA
situation. When its missing inputs arc present, it -
will fire, until thern it is in a "suspended state.

*® Ask. The progran can ask the user for the

needcd propositions. Ly doing so, the interacticn, &as

well as the computation, becomes bi-directionzl. All

missing items need not trigger extended question-znsuer
sessions. Certain rules can be identified as having
higher priorities than others and Le able to stop the
progran's executior to query the user if they cannot
completec. Alternatively, point-values can be &zssigned
for cach propositicn involved in a dcduction rule.
Vhen the cunulative total of missing items passes a
specified threshold¢, a question can be asked.
Frocesses which carnot continue, but do not tripger
questions remain as dewnons.

When the backward rrpect is stopped due to having

/
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exhausted its conplement of resources, the processes
iuvolved are suspenced as demon;. ready to continue wvhen
nore resources arc allocated. Another way to hold backward
computation bapk is for the uscr to refuse to answver &
rcquest nacde by the program. The involved processes are
ajain suspended. an exanplce of the latter situation'is

Shapiro's COCCI program, which is & use of his SlePS system

Rules: 1. Student(a) => AttendSchool(a) i
2. (x & y) or w =z> z, where z represents.
' "~ Student(a), and x, y and w
R o are some conditions which
s establish that one is a
student. ’
Input: AasttendSchool(John)? [backward aspect])

-~ Result: HKule 1 is scen to have the goal in its )
consequent position and is selectecd for P
backwvard inference. To use this rule, '
Student(John) nust be proved, but the
systenmn has no vslues for x, y or w. The
inference is suspended as s dernon.

Input: «x [foruard aspect]

Result: If y can be shoun to hold, (possibly by )
perforning a backward infercence), then rule 2
can be used to assert Student(John), which
can be used by the suspended rule 1 to conclude
AttendS3chool(John), and the system can
rcport this to the user. -
The system initiates a request for & value for
Y. If none is available, the inference is
suspended.

Figure 1.2 .
Bi-directional Infercence Exanple

as an expert in the domuin of miecrobiology [Shapiro 1908213,

i user of COCCI has the optfcn of replying "Not applicable

or unknown" to any requcest rrade by the program. As stated

’

‘

h—
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above, these demons work beczuse of the assuuptionsAnadc in
scetion 2.1 Inference rules can be used in cither
direction; and brocesses and partial evaluations are
retained.

A simple example of bi-directional infercnce is shown
in Figure 4.2, using both rules from Figure 2.1.
Suﬁstitutions afe made in the first rule to allow it to be
used with the second ru;c. A case Wherc the inference-is
suspendéd is shown, and a case where_the system has enough

information to ask the user for & value is also shown.

t -
. el

b

L.3. Bi-dircctional Computation

Conbining data flow and lazy evaluation yieclds a

bi-directional computation scheme analogous to
bi-directional inference. Again. there iS no ncecd for the
system to have an algorithm to decide which component to use
at any time, because the dircetion taken depends on what
prompted the action -- a READ function, or a PRINT function.

As described above, lazy evaluation, the backward
component, is output-driven. Li-directional computations
nay therefore be initiated by the need to evaluate arpunents
of PRINT functions.

The forward componcnt.vdata flow, is data-driven. If &
progjras containg cells Lo READ functions, forward
computation is initiated. As = value entérs the systerm, it
is used vhere it is appropriate, as long @y a particulqr use

/

i
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is directed toward some previously "sct roél. Il there are
no cxisting soals, then Lhe value can be usc! by any aclor
that needs it.

Uhat happens if all tokens but one are present for a
given actor operating in cither a forward or backward node? :q
Why do computations exist as suspension; if the system has a
data flow-componentél These questions are answered by -
looking ot possib}c actions in bi-directional comp&tation.
which are similar‘to the options presénted for
bi-directional inference in'Section .,2. A process which
finds a missing input has three choices as to how to
continué:

% Guit. The processes involved in an inference

which dic¢ not complcﬁe arc destroyed. H&ne of the
partial results are saved. VWhen the rule is triggered
agcin, new processes are set up for the inference, but
the same work may bc done repeatedly.

% Suspend. The processes involved in the
inference are suspended, and become demons. These
dynarnic demons are different from those of [Charnick

72]) bLccause they arc created and destrecyed as the

program cxecutes. Yhen the missing propositions'nrc
found, the demon acts, and the deduction resumes uvhere
it left off.

* Ask. The progranm can ask the user for the

missing information. In this czse, the interacticn, as

. ./ o |

T 2. =



BI-DIRECTIORAL COHPUTATIOHL : ' . Page 46 .

well as the infércncc. beconmes bi-direntional. As
discussed ié section 4#.2., not all of the miscing
values need trigger questions of the user, only the
more important ones. This interaction steps out of the
normal bounds of datas-driven programs.'in that the
program is actively acquiring information, not ... ..
passively accepting it. -

A node in an FA/C system [Lessing €1] which is
nissing information that it needs to complete &

conputation has choices similar to those presented in

section 4.2: it can request the informstion (in this

case from another node), it can suspenc itself if no

information is forthcoming, or it-can begin & new
computation.

An cxample of bi-directional computation is shown in
Figure 4.3. Three possibilities were prescnted above for ; ﬂaf%
thhe situation where a cazlculation could not complete: Quit,
Suspend, or Ask. In the figure, the latter two choices are
shown. The conputation is suspended when its result is
rcquested and no inputs zre present. A request of the user
for more input values is made when two of thke tliree inputs
are prescnt.

Each component is hkept from taking complete control by

including resource-linited processing (see secticn 2.2),

which allows short computations to finish, but csuses longer
oncs to be cxccuted in bursts, Vhen a computaticn exhasusts
the resources aIﬁocaLed to it (for instance, time or nunaber

N A
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of calculaticens), it it deactivated. Yhen more resources

ctquation: 2z = (x ® y) + wu

Input: request for value of z. Request nay
user or another part of the systen.
the backward congonent.

be from
This is

kesult: lot enoygzh duta is present to ask the

user fcr information to conplete

the

computation. It is suspended, making it

a demon.

Input: values for x, y. Again, this can be

from the -

user or the program. It represcnts the

forward component.

Result: There is alrost enough data present to

complete the calculation, so the

program

can reqguest a value for w fron the user, and

conmplete the evaluation. If the

user cannot

supply & value, the computation renains

suspended.

Figure 4.3

Bi-directional Computation Exa:aple

ere provicded for it, it may continuc cxecuting from the

point it left off. Its environment will have

thiec suspendecd processes.

h,4, Contrasts

Any of the bi-directional sctions can bhe

a .ctvorh of nodes, whiiclh is referred to as a

been saved in

regpresented by

grezghe. (Figurce &.4, for cxanple, shouws an aMD-CR graph

rerrcsenting a bi-directional inference exanple used ir
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{tiartins £1)). lHodes represent propositions and rules if

the pgraph is for bi-dircctional inference. The nodes in @

network for bi-direcctional secrch or computation represent

intermediate steps. ‘i

ilodes labeled "I'x" represent precposition-x,
those labeled "Ex" represcnt rule-x. o

' Figure 4.4
An ALD=OR Graph for iartins's Li-directional Search

Because nazch of the bi-dircctional strategices can bLe
thought of as scceking & ppath through a network, they all.ean
be thought of as scarch,.

Bi-c¢irectional searcl is the most restricted of the
thrce techniques. The initicl apd coal states must te
cxplieitly knouwn when the scarch bepins [beChampeaux 77,
Pohl 71)]. 7The search iz successful when the two search
paths intersect.

nultiplé start and {0zl states arc¢ possible in =
bi-direétional in;cfence. representing nodgs asserved or

/
/
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quericd by forward or baciward inference, respectively.

They do not represcent scparaste searches through the netuorl:.

Rather, they are dynamic setsn of initiajl and goal nodes used

instead of the sinzle states used in c13451ca1

bi—directiqnal séarch. Ls [Lartinu G1] reports. "The sesrch

is successful Uhenever the frontier growing from any start

state meets the frontier croving from & goal state." ey

inferences can then be rizde reflecting the situationaqpeqﬁgd‘

by the previous one. R

i

Hultiple initizil anﬂ foal staLes‘nay also exist in

bi-directional comrutation. Cecause bachkward computation is

output-driven, any call Lo =z PRINT funcgion initiates
backward Search-and beco!ies one of the goal nodes.
Similarly, czlls to funections whieh take input represent
initial states.

The searchrthrough the state of nodes representing 2
bi-directional computation is not satisfied when the sesreh
tree of one goal meets tiie search trece of one initigl node,
as it is in the inference case. Because each goal state
represents an output to be printed, the Scarch pathk from
cach must be conpleted so that the value can bLe printec.

The scarch tree of an initial state meeting & goa?
indicates thaot the data input represented by that state i.as
found a use. The data flou n&ture of forvard conputation
inplies tLhat it is not ne eessary. for all dats or results to

Liave further use, This SULGrSves thiat forward Scarch trees

PN
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need not connec£ vith backward scarch trocs.m Howevcecr, the
sssumption that the foruard comjoncent hg restricted to focus
on goals set by the backward component (if goals have licen
set) requires that a forward searclh not be undertaken unless
it is directed 2t the tree of a backward search. If no

goals ecxist, all possible forward searches are allowved.

Effect on the SPC ladel

As discussed thus far, production in'th;‘SPC model is
uni-drcctional.lthat is, it can be trigpered either by the
presence of data or by a request from & consuner for a
product. Dy allowing the producer to act in a. » |
multiprocessing mnode, it can incorporate the ideas of
bi-directional computaticon. (Remenber thgt all of the
comnponents of the system act as producers at some poiut).

Look at the activitics of z bi-directional producer.
An inactive SPC system can Ye started ujp by an order from a
consumer. This request represents backward computation.
The order tripprers requests to the supplicers for the
appropriate parts. Those parts night Le delivered

immediately, or the suppliers might have to go through this

[#]

atse process. The requests for supplies will back-chein
until & supplier which has the parts cﬁ hand is rcached.

A producer who reccives somc supplies tocausce those
suppliers gre acting in Lhé forward dircection might then
explicitly request the rest of the parts it needs. Its

. /’ v ’ > ..
other cuppliers would theu b2 demend driven.
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The systen's activities can also be initiatec by input
of supplies to an "original" producer, that is, onec which
has no suppliers inside the system. These supplies can be
applied to any and all productions in the absence of
requests for parts. If goals have been set; then the
forvard production is directec toward then.

‘Suspcnded production processes are crecated by lihiting
the resources allowed each producer, or by required parts
which cannot be obtained. These suspensions, or demons, can
be reaétivatcd/at 2 later tinme.

The original producer can initiate production processes
for any of the sub-products whose parts have arrived.‘and
for any number of requests for products. All of these
processes can be active sirmultancously, qsing H)
rescurce-limited processing scheme based on time, number of
workers, amount of supplies, etc.

Bi-directional production, like bi-directional
computation, allows 2 system to be more sensitive to &
user's needs. DBy using multiprocessing, a producer can deal
with more than one consunmer und more than one supplier at a
" tine, and requests for supplies can be focussed toward the

product requests which have been nade.




5. SUIMNARY

Pairs of contrel antd inference strateglecs, represcenting
forward, baékuard and_bi-directional techiniques were
discusscd. The inferencec and control schemes in each pair
are munifestations of the same idea.

Forwvard iafercnce and data flow male 6p the forwvard
computation, or data-entry gfoup, which acts to use all
new datsz immediately and to the greatest extent possitle.
The backward computation, or data-request group is
rcpresented by ﬁackward inference and lzzy evaluation.
These techniques wait for a recquest before performing
-cvaluations._Ui—directional actions include bi-dirccticnal
scareh, and bi-dircctionil inference, all of which combine
forward and backward operations to reduce}the nunber of

calculations required.

Two other control strategies, static apd eager
evaluation, were introcuced to add another dirmension tc the
comparisons. These differ in two ways: earer evaluation
involves parallelism anc avoids unnecessary computztions,
while statie evaluation involvcs.no parallelism at &1l and
will perform sone unnccensary work.

In ¢rier to study tisse techiniques, the
Supplier-Producer=legnouraer (UPC) nmodel of computation was
introduced. The model Loes preduction to repreoesent

date-cntry and deta-reguest computations, &end ucquisiticen to
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reixresent cager and static evaluation.
Each technique ang its affect on the model wvas
discussed. Conbinztions of production and acquisition vere

1,

described to show 0¥ the overusll operation of a producer
representing a computation is affected. The résult of
combining the recspective control and inference techniques
wWcs discussed using tﬂe cbmbinations in the SPC modcl.
Bi-directional computatioﬂ.was introduced to show how

forward and backward computation sclieimes could be combined

to ¢nable them %o'work together and cut down the size of the

searchk space of a computation. Among the devices suggested L

for use in bi-directional computation were nultiprocessing
and rcesource-linited processing, to allow a breacth-first
Sscarch through the search Space; demons, to handile
eviluations which could not complete; and having the

prorram query the user for nissing information.
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