
128

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-5225-5622-0.ch007

ABSTRACT

Computationalism should not be the view that (human) cognition is computation; it should be the view
that cognition (simpliciter) is computable. It follows that computationalism can be true even if (human)
cognition is not the result of computations in the brain. If semiotic systems are systems that interpret
signs, then both humans and computers are semiotic systems. Finally, minds can be considered as virtual
machines implemented in certain semiotic systems, primarily the brain, but also AI computers.

INTRODUCTION

This essay treats three topics: computationalism, semiotic systems, and cognition (the mind), offering
what I feel is the proper treatment of computationalism. From this, certain views about semiotic sys-
tems and minds follow (or, at least, are consistent): First, I argue that computationalism should not be
understood as the view that (human) cognition is computation, but that it should be understood as the
view that cognition (human or otherwise) is computable. On this view, it follows that computational-
ism can be true even if (human) cognition is not the result of computations in the brain. Second, I argue
that, if semiotic systems are systems that interpret signs, then both humans and computers are semiotic
systems. Finally, I suggest that minds should be considered as virtual machines implemented in certain
semiotic systems: primarily brains, but also AI computers. In the course of presenting and arguing for
these positions, I respond to Fetzer’s (2011) arguments to the contrary.1

Syntactic Semantics and
the Proper Treatment of

Computationalism
William J. Rapaport

The State University of New York at Buffalo, USA

129

Syntactic Semantics and the Proper Treatment of Computationalism

THE PROPER TREATMENT OF COMPUTATIONALISM

Computationalism is often characterized as the thesis that cognition is computation. Its origins can be
traced back at least to Thomas Hobbes:

For REASON, in this sense [i.e., as among the faculties of the mind], is nothing but reckoning—that
is, adding and subtracting—of the consequences of general names agreed upon for the marking and
signifying of our thoughts… (Hobbes, 1651, Part I, Ch. 5, p. 46).2

It is a view whose popularity, if not its origins, has been traced back to McCulloch & Pitts (1943),
Hilary Putnam (1960 or 1961) and Jerry Fodor (1975) (see Horst, 2009, Piccinini, 2010). This is usually
interpreted to mean that the mind, or the brain—whatever it is that exhibits cognition—computes, or is
a computer. Consider these passages, more or less (but not entirely) randomly chosen:3

̭� A Plan is any hierarchical process in the organism that can control the order in which a sequence
of operations is to be performed. A Plan is, for an organism, essentially the same as a program for
a computer (Miller et al., 1960, p. 16).4

̭� [H]aving a propositional attitude is being in some computational relation to an internal represen-
tation. …Mental states are relations between organisms and internal representations, and causally
interrelated mental states succeed one another according to computational principles which apply
formally to the representations (Fodor, 1975, p. 198).

̭� [C]ognition ought to be viewed as computation. [This] rests on the fact that computation is the
only worked-out view of process that is both compatible with a materialist view of how a process
is realized and that attributes the behavior of the process to the operation of rules upon representa-
tions. In other words, what makes it possible to view computation and cognition as processes of
fundamentally the same type is the fact that both are physically realized and both are governed by
rules and representations (Pylyshyn, 1980, p. 111).

̭� [C]ognition is a type of computation (Pylyshyn, 1985, p. xiii.)
̭� The basic idea of the computer model of the mind is that the mind is the program and the brain the

hardware of a computational system (Searle, 1990, p. 21).
̭� Computationalism is the hypothesis that cognition is the computation of functions. …The job for

the computationalist is to determine…which specific functions explain specific cognitive phe-
nomena (Dietrich, 1990, p. 135, my italics).

̭� [T]he Computational Theory of Mind…is…the best theory of cognition that we’ve got…. (Fodor,
2000, p. 1).

̭� Tokens of mental processes are ‘computations;’ that is, causal chains of (typically inferential)
operations on mental representations (Fodor, 2008, pp. 5–6).

̭� The core idea of cognitive science is that our brains are a kind of computer…. Psychologists try
to find out exactly what kinds of programs our brains use, and how our brains implement those
programs (Gopnik, 2009, p. 43).

̭� [A] particular philosophical view that holds that the mind literally is a digital computer…, and
that thought literally is a kind of computation…will be called the “Computational Theory of
Mind”…. (Horst, 2009).

130

Syntactic Semantics and the Proper Treatment of Computationalism

̭� Computationalism…is the view that the functional organization of the brain (or any other function-
ally equivalent system) is computational, or that neural states are computational states (Piccinini,
2010, p. 271).

̭� These remarkable capacities of computers—to manipulate strings of digits and to store and ex-
ecute programs—suggest a bold hypothesis. Perhaps brains are computers, and perhaps minds are
nothing but the programs running on neural computers (Piccinini, 2010, p, 277–278).

̭� Advances in computing raise the prospect that the mind itself is a computational system—a posi-
tion known as the computational theory of mind (Rescorla, 2015).

That cognition is computation is an interesting claim, one well worth exploring, and it may even be
true. But it is too strong: It is not the kind of claim that is usually made when one says that a certain
behavior can be understood computationally (Rapaport, 1998). There is a related claim that, because it
is weaker, is more likely to be true and—more importantly—is equally relevant to computational theo-
ries of cognition, because it preserves the crucial insight that cognition is capable of being explained in
terms of the mathematical theory of computation.

Before stating what I think is the proper version of the thesis of computationalism, let me clarify two
terms: (1) I will use ‘cognition’5 as a synonym for such terms as ‘thinking,’ ‘intelligence’ (as in ‘AI,’ not
as in ‘IQ’), ‘mentality,’ ‘understanding,’ ‘intentionality,’ etc. Cognition is whatever cognitive scientists
study, including (in alphabetical order) believing (and, perhaps, knowing), consciousness, emotion,
language, learning, memory, (perhaps) perception, planning, problem solving, reasoning, representation
(including categories, concepts, and mental imagery), sensation, thought, etc. Knowing might not be part
of cognition, insofar as it depends on the way the world is (knowing is often taken to be justified true
belief) and thus would be independent of what goes on in the mind or brain; perception also depends on
the way the world is (see below). (2) An “algorithm” for an executor E to achieve a goal G is, informally,
a procedure (or “method”) for E to achieve G, where (a) E is the agent—human or computer—that
carries out the algorithm (or executes, or implements, or “follows” it), (b) the procedure is a set (usu-
ally, a sequence) of statements (or “steps,” usually “rules” or instructions), and (c) G is the solution of
a (particular kind of) problem, the answer to a (particular kind of) question, or the accomplishment of
some (particular kind of) task. (See the Appendix for more details.)

Various of these features can be relaxed: One can imagine a procedure that has all these features of
algorithms but that has no specific goal, e.g., “Compute 2+2; then read Moby Dick.,” or one for which
there is no executor, or one that yields output that is only approximately correct (sometimes called a
‘heuristic’), etc. For alternative informal formulations of “algorithm,” see the Appendix. Several differ-
ent mathematical, hence precise, formulations of this still vague notion have been proposed, the most
famous of which is Alan Turing’s (1936) notion of (what is now called in his honor) a ‘Turing machine.’
Because all of these precise, mathematical formulations are logically equivalent, the claim that the in-
formal notion of “algorithm” is a Turing machine is now known as “Turing’s thesis” (or as “Church’s
thesis” or the “Church-Turing thesis,” after Alonzo Church, whose “lambda calculus” was another one
of the mathematical formulations).

Importantly, for present purposes, when someone says that a mathematical function or a certain phe-
nomenon or behavior is “computable,” they mean that there is an algorithm that outputs the values of
that function when given its legal inputs6 or that produces that phenomenon or behavior—i.e., that one
could write a computer program that, when executed on a suitable computer, would enable that computer
to perform (i.e., to output) the appropriate behavior. Hence: Computationalism, properly understood,

131

Syntactic Semantics and the Proper Treatment of Computationalism

should be the thesis that cognition is computable, i.e., that there is an algorithm (more likely, a family
of algorithms) that computes cognitive functions.

I take the basic research question of computational cognitive science to ask, “How much of cognition
is computable?” And I take the working assumption (or expectation, or hope) of computational cognitive
science to be that all cognition is computable. This formulation of the basic research question allows for
the possibility that the hopes will be dashed—that some aspects of cognition might not be computable.
In that event, the interesting question will be: Which aspects are not computable, and why?7 Although
several philosophers have offered “non-existence proofs” that cognition is not computable,8 none of
these are so mathematically convincing that they have squelched all opposition. And, in any case, it is
obvious that much of cognition is computable (see Johnson-Laird, 1988, Edelman, 2008b, Forbus, 2010
for surveys). Philip N. Johnson-Laird (1988, pp. 26-27) has expressed it well:

The goal of cognitive science is to explain how the mind works. Part of the power of the discipline re-
sides in the theory of computability. …Some processes in the nervous system seem to be computations….
Others…are physical processes that can be modeled in computer programs. But there may be aspects of
mental life that cannot be modeled in this way…. There may even be aspects of the mind that lie outside
scientific explanation.

However, I suspect that so much of cognition will eventually be shown to be computable that the resi-
due, if any, will be negligible and ignorable. This leads to the following “implementational implication:”
If (or to the extent that) cognition is computable, then anything that implements cognitive computations
would be (to that extent) cognitive. Informally, such an implementation would “really think.” As Newell,
Shaw, & Simon (1958, p. 153) put it (explicating Turing’s notion of the “universal” Turing machine, or
stored-program computer), “if we put any particular program in a computer, we have in fact a machine
that behaves in the way prescribed by the program.” The “particular program” they were referring to was
one for “human problem solving,” so a computer thus programmed would indeed solve problems, i.e.,
exhibit a kind of cognition. This implication is probably a more general point, not necessarily restricted
to computationalism. Suppose, as some would have it, that cognition turns out to be fully understandable
only in terms of differential equations (Forbus, 2010 hints at this but does not endorse it) or dynamic
systems (van Gelder, 1995). Arguably, anything that implements cognitive differential equations or a
cognitive dynamic system would be cognitive.

The more common view, that cognition is computation, is a “strong” view that the mind or brain
is a computer. It claims that how the mind or brain does what it does is by computing. My view, that
cognition is computable, is a weaker view that what the mind or brain does can be described in compu-
tational terms, but that how it does it is a matter for neuroscience to determine.9 Interestingly, some of the
canonical statements of “strong” computationalism are ambiguous between the two versions. Consider
some of Fodor’s early statements in his Language of Thought (1975): “[H]aving a propositional attitude
is being in some computational relation to an internal representation (p. 198, Fodor’s emphasis).This
could be interpreted as the weaker claim that the relation is computable. The passage continues: “The
intended claim is that the sequence of events that causally determines the mental state of an organism
will be describable as a sequence of steps in a derivation…. (p. 198, my emphases). The use of ‘caus-
ally’ suggests the stronger—implementational—view, but the use of ‘describable as’ suggests the weaker
view. There’s more:

132

Syntactic Semantics and the Proper Treatment of Computationalism

More exactly: Mental states are relations between organisms and internal representations, and caus-
ally interrelated mental states succeed one another according to computational principles which apply
formally to the representations (p. 198, my boldface, Fodor’s italics).

If ‘according to’ means merely that they behave in accordance with those computational principles,
then this is consistent with my—weaker—view, but if it means that they execute those principles, then
it sounds like the stronger view. Given Fodor’s other comments and the interpretations of other scholars,
and in light of later statements such as the quote from 2008, above, I’m sure that Fodor always had the
stronger view in mind. But the potentially ambiguous readings give a hint of the delicacy of interpretation.10

That cognition is computable is a necessary—but not sufficient—condition for it to be computation.
The crucial difference between cognition as being computable rather than as being computation is that,
on the weaker view, the implementational implication holds even if humans don’t implement cognition
computationally. In other words, it allows for the possibility that human cognition is computable but is
not computed. For instance, Gualtiero Piccinini (2005, 2007) has argued that “spike trains” (sequences
of “action potential”) in groups of neurons—which, presumably, implement human cognition—are not
representable as strings of digits, hence not computational. But this does not imply that the functions11
whose outputs they produce are not computable, possibly by different mechanisms operating on differ-
ent primitive elements in a different (perhaps non-biological) medium. And Makuuchi et al. (2009, p.
8362) say:

If the processing of PSG [phrase structure grammar] is fundamental to human language, the [sic] ques-
tions about how the brain implements this faculty arise. The left pars opercularis (LPO), a posterior
part of Broca’s area, was found as a neural correlate of the processing of AnBn sequences in human
studies by an artificial grammar learning paradigm comprised of visually presented syllables…. These
2 studies therefore strongly suggest that LPO is a candidate brain area for the processor of PSG (i.e.,
hierarchical structures).

This is consistent with computability without computation. However, Makuuchi et al. (2009, p. 8365)
later say:

The present study clearly demonstrates that the syntactic computations involved in the processing of
syntactically complex sentences is neuroanatomically separate from the non-syntactic VWM [verbal
working memory], thus favoring the view that syntactic processes are independent of general VWM.

That is, brain locations where real computation is needed in language processing are anatomically
distinct from brain locations where computation is not needed. This suggests that the brain could be
computational, contra Piccinini. Similarly, David J. Lobina (2010), Lobina & García-Albea (2009) has
argued that, although certain cognitive capabilities are recursive (another term that is sometimes used
to mean “computable”), they might not be implemented in the brain in a recursive fashion. After all,
algorithms that are most efficiently expressed recursively are sometimes compiled into more-efficiently
executable, iterative (non-recursive) code.12

133

Syntactic Semantics and the Proper Treatment of Computationalism

Often when we investigate some phenomenon (e.g., cognition, life, computation, flight), we begin
by studying it as it occurs in nature, and then abstract away (or “ascend”) from what might be called
‘implementation details’ (Rapaport 1999, 2005b) to arrive at a more abstract or general version of the
phenomenon, from which we can “descend” to (re-)implement it in a different medium. When this oc-
curs, the term that referred to the original (concrete) phenomenon changes its referent to the abstract
phenomenon and then becomes applicable—perhaps metaphorically so—to the new (concrete) phenom-
enon. So, for instance, flight as it occurs in birds has been reimplemented in airplanes; ‘flying’ now
refers to the more abstract concept that is multiply realized in birds and planes (cf. Ford & Hayes, 1998;
Rapaport, 2000; Forbus, 2010, p. 2). And computation as done by humans in the late 19th through early
20th centuries13 was—after Turing’s analysis—reimplemented in machines; ‘computation’ now refers
to the more abstract concept. Indeed, Turing’s (1936) development of (what would now be called) a
computational theory of human computation seems to me to be pretty clearly the first AI program! (See
the Appendix, and below).

The same, I suggest, may (eventually) hold true for ‘cognition’ (Rapaport, 2000). (And, perhaps, for
artificial “life.”) As Turing (1950, p. 442, my emphasis) said,

The original question, ‘Can machines think?’ I believe to be too meaningless to deserve discussion. Nev-
ertheless I believe that at the end of the century the use of words and general educated opinion will have
altered so much that one will be able to speak of machines thinking without expecting to be contradicted.

“General educated opinion” changes when we abstract and generalize, and “the use of words” changes
when we shift reference from a word’s initial application to the more abstract or general phenomenon.
Similarly, Derek Jones (2010) proposed the following “metaphysical thesis:” “Underlying biological
mechanisms are irrelevant to the study of behavior/systems as such. The proper object of study is the
abstract system considered as a multiply realized high-level object.”

This issue is related to a dichotomy in cognitive science over its proper object of study: Do (or should)
cognitive scientists study human cognition in particular, or (abstract) cognition in general? Computational
psychologists lean towards the former; computational philosophers (and AI researchers) lean towards the
latter (see note 9; cf. Levesque, 2012, who identifies the former with cognitive science and the latter with
AI). We see this, for example, in the shift within computational linguistics from developing algorithms
for understanding natural language using “human language concepts” to developing them using statisti-
cal methods: Progress was made when it was realized that “you don’t have to do it like humans” (Lohr,
2010, quoting Alfred Spector on the research methodology of Frederick Jelinek; for further discussion
of this point, see Forbus, 2010).

SYNTACTIC SEMANTICS

Three principles underlie computationalism properly treated. I call them “internalism,” “syntacticism,”
and “recursive understanding.” Together, these constitute a theory of “syntactic semantics.”14 In the
present essay, because of space limitations, I will primarily summarize this theory and refer the reader
to earlier publications for detailed argumentation and defense (Rapaport 1986, 1988, 1995, 1998, 1999,
2000, 2002, 2003a, 2005b, 2006, 2011).

134

Syntactic Semantics and the Proper Treatment of Computationalism

Internalism

Internalism is the principle whereby cognitive agents have direct access only to internal representatives
of external objects. This thesis is related to theses called “methodological solipsism” (Fodor, 1980,
arguing against Putnam, 1975)15 and “individualism” (see, e.g., Segal, 1989, arguing against Burge,
1986).16 It is essentially Kant’s point embodied in his distinction between noumenal things-in-themselves
and their phenomenal appearances as filtered through our mental concepts and categories: We only
have (direct) access to “phenomena,” not noumena. Or, as expressed by a contemporary computational
cognitive scientist, “My phenomenal world…[is] a neural fiction perpetrated by the senses” (Edelman,
2008b, p. 426). It is also related to many issues discussed by the Logical Positivists (see Coffa, 1991,
p. 8, 67, 140, 176, 310ff, 364ff, & Ch. 9). Internalism is the inevitable consequence of the fact that “the
output [of sensory transducers] is…the only contact the cognitive system ever has with the environment”
(Pylyshyn 1985, p. 158).17 As Ray Jackendoff (2002) put it, a cognitive agent understands the world
by “pushing the world into the mind.” Or, as David Hume (1777, part 1, p. 152) put it, “the existences
which we consider, when we say, this house and that tree, are nothing but perceptions in the mind and
fleeting copies or representations of other existences” (cf. Rapaport, 2000).

This can be seen clearly in two cases: (1) What I see is the result of a long process that begins out-
side my head with photons reflected off the physical object that I am looking at, and that ends with a
qualitative mental image (what is sometimes called a “sense datum;” cf. Huemer, 2011) produced by
neuron firings in my brain. These are internal representatives of the external object. Moreover, there is
a time delay; what I am consciously aware of at time t is my mental representative of the external object
as it was at some earlier time t′:

Computation necessarily takes time and, because visual perception requires complex computations, …
there is an appreciable latency—on the order of 100msec—between the time of the retinal stimulus and
the time of the elicited perception (Changizi et al. 2008, p. 460).

This is in addition to the time that it takes the reflected photons to reach my eye, thus beginning the
computational process. I agree with Huemer (2011) that this implies that we do “not directly perceive
anything…outside of” us (my emphasis). (2) Although my two eyes look at a single external object, they
do so from different perspectives; consequently, they see different things. These two perceptions are
combined by the brain’s visual system into a single, three-dimensional perception, which is constructed
and internal (cf. Julesz’s 1971 notion of the “cyclopean eye”). Moreover, I can be aware of (i.e., perceive)
the two images from my eyes simultaneously; I conclude from this that what I perceive is not what is
“out there”: There is only one thing “out there,” but I perceive two things (cf. Hume 1739, Book I, part
4, §2, pp. 210-211; Ramachandran & Rogers-Ramachandran, 2009). Similarly the existence of saccades
implies that “my subjective, phenomenal experience of a static scene” is internal (“irreal,” a “simulation
of reality”) (Edelman, 2008b, pp. 410).

There is a related point from natural-language semantics: Not all words of a language have an external
referent, notably words (like ‘unicorn’) for non-existents. In Rapaport 1981, I argued that it is best to
treat all words uniformly as having only internal “referents.” Just as my meaning for ‘unicorn’ will be
some internal mental concept, so should my meaning for ‘horse.’ Consequently, both words and their
meanings (including any external objects that serve as the referents of certain words) are represented
internally in a single language of thought (LOT; see Fodor, 1975). “Methodological solipsism”—the

135

Syntactic Semantics and the Proper Treatment of Computationalism

(controversial) position that access to the external world is unnecessary (Fodor, 1980; cf. Rapaport,
2000)18—underlies representationalism:

If a system—creature, network router, robot, mind—cannot “reach out and touch” some situation in
which it is interested, another strategy, deucedly clever, is available: it can instead exploit meaningful
or representational structures in place of the situation itself, so as to allow it to behave appropriately
with respect to that distal, currently inaccessible state of affairs (B.C. Smith, 2010).

For computers, the single, internal LOT might be an artificial neural network or some kind of knowl-
edge-representation, reasoning, and acting system (such as SNePS; see Shapiro & Rapaport, 1987). For
humans, the single, internal LOT is a biological neural network.19

It is this last fact that allows us to respond to most of the objections to internalism (see, e.g., Huemer
2011 for a useful compendium of them). For example, consider the objection that an internal mental
representative (call it a “sense datum,” “quale,” whatever) of, say, one of Wilfrid Sellars’s pink ice cubes
is neither pink (because it does not reflect any light) nor cubic (because it is not a three-dimensional
physical object). Suppose that we really are looking at an external, pink ice cube. Light reflects off the
surface of the ice cube, enters my eye through the lens, and is initially processed by the rods and cones
in my retina, which transduce the information20 contained in the photons into electrical and chemical
signals that travel along a sequence of nerves, primarily the optic nerve, to my visual cortex. Eventually,
I see the ice cube (or: I have a mental image of it). Exactly how that experience of seeing (that mental
image) is produced is, of course a version of the “hard” problem of consciousness (Chalmers, 1996).
But we do know that certain neuron firings that are the end result of the ice cube’s reflection of photons
into my eyes are (or are correlated with) my visual experience of pink; others are (correlated with) my
visual experience of cubicness. But now imagine a pink ice cube; presumably, the same or similar neu-
rons are firing and are (correlated with) my mental image of pinkness and cubicness. In both cases, it
is those neuron firings (or whatever it is that might be correlated with them) that constitute my internal
representative. In neither case is there anything internal that is pink or cubic; in both cases, there is some-
thing that represents pinkness or cubicness (Shapiro, 1993, Rapaport, 2005b, Shapiro & Bona, 2010).

As I noted above, perception, like knowledge, might not be a strictly (i.e., internal) cognitive phenom-
enon, depending as it does on the external world.21 When I see the ice cube, certain neuron firings are
directly responsible for my visual experience, and I might think, “That’s a pink ice cube.” That thought
is, presumably, also due to (or identical with) some (other) neuron firings. Finally, presumably, those
two sets of neuron firings are somehow correlated or associated, either by the visual ones causing the
conceptual ones or both of them being caused by the visual stimulation; in any case, they are somehow
“bound” together.

My experience of the pink ice cube and my thought (or thoughts) that it is pink and cubic (or that
there is a pink ice cube in front of me) occur purely in my brain. They are, if you will, purely solipsistic.
(They are not merely methodologically solipsistic. Methodological solipsism is a research strategy: A
third-person observer’s theory of my cognitive processes that ignored the real ice cube and paid attention
only to my neuron firings would be methodologically solipsistic.) Yet there are causal links between the
neurological occurrences (my mental experiences) and an entity in the real world, namely, the ice cube.

What about a cognitively programmed computer or robot? Suppose that it has a vision system and
that some sort of camera lens is facing a pink ice cube. Light reflects off the surface of the ice cube,
enters the computer’s vision system through the lens, and is processed by the vision system (say, in

136

Syntactic Semantics and the Proper Treatment of Computationalism

some descendent of the way that Marr 1982 described). Eventually, let’s say, the computer constructs
a representation of the pink ice cube in some knowledge-representation language (it may be a pictorial
language). When the computer sees (or “sees”) the ice cube, it might think (or “think”), “That’s a pink
ice cube.” That thought might also be represented in the same knowledge-representation language (e.g.,
as is done in the knowledge-representation, reasoning, and acting system SNePS). Finally, those two
representations are associated (Srihari & Rapaport, 1989, 1990).

The computer’s “experience” of the pink ice cube and its thought (or “thoughts”) that it is pink and
cubic (or that there is a pink ice cube in front of it) occur purely in its knowledge base. They are purely
solipsistic. Yet there are causal links between the computational representations and the ice cube in the
real world. There is no significant difference between the computer and the human. Both can “ground”
their “thoughts” of the pink ice cube in reality yet deal with their representations of both the phrase ‘ice
cube’ and the ice cube in the same, purely syntactic, language of thought. Each can have a syntactic, yet
semantic, relation between its internal representation of the linguistic expression and its internal rep-
resentation of the object that it “means,” and each can have external semantic relations between those
internal representations and the real ice cube. However, neither can have direct perceptual access to the
real ice cube to see if it matches their representation:

Kant was rightly impressed by the thought that if we ask whether we have a correct conception of the
world, we cannot step entirely outside our actual conceptions and theories so as to compare them with
a world that is not conceptualized at all, a bare “whatever there is” (Williams, 1998, p. 40).

Of course, both the computer (if equipped with effectors) and the human can grasp the real ice
cube.22 It might be objected that internalism underestimates the role of situatedness and embodiment
of cognitive agents. Quite the contrary. First, any situated or embodied cognitive agent must internalize
the information it receives from the environment that it is situated in, and it must process and respond
to that information in the form in which it is received. Such information may be incomplete or noisy,
hence not fully representative of the actual environment, but those are the cards that that agent has been
dealt and that it must play with (cf. Shapiro & Rapaport, 1991). Second, the software- and hardware-
embodied cognitive agents developed by colleagues in my research group operate (i.e., are situated) in
real and virtual environments, yet are constructed on the “internal” principles adumbrated here, so they
constitute a demonstration that situatedness and embodiment are not inconsistent with internal process-
ing of symbols (Shapiro, 1998, 2006; Shapiro et al., 2001; Santore & Shapiro, 2003; Shapiro & Ismail,
2003; Goldfain, 2006; Anstey et al., 2009; Shapiro & Bona, 2010; and cf. Vera & Simon, 1993).

Finally, there is the issue of whether a cognitive computer (or a cognitively programmed computational
agent) must have a sensory-motor interface to the real, or a virtual, environment in which it is situated.
I am willing to limit my arguments to computers that do have such an interface to the real, external
world. If one is willing to allow such an interface to a virtual world, however, and if that virtual world
is completely independent from the computational agent, then the two situations (real vs. virtual) are
parallel. If on the other hand, the virtual environment is completely internal to the computational agent
(i.e., the agent believes falsely that it is really situated in that environment), then we have a situation
about which there might be disagreement. However, I would maintain that such a (delusional!) agent is
in a situation no different from the first kind of agent, because, in both cases, the agent must internalize
its environment.

137

Syntactic Semantics and the Proper Treatment of Computationalism

Syntacticism

It follows that words, their meanings, and semantic relations between them are all syntactic. Both ‘syntax’
and ‘semantics’ can mean different things. On one standard interpretation, ‘syntax’ is synonymous with
‘grammar,’ and ‘semantics’ is synonymous with ‘meaning’ or ‘reference’ (to the external world). But
more general and inclusive conceptions can be found in Charles Morris (1938, pp. 6–7):

One may study the relations of signs to the objects to which the signs are applicable. …the study of this
[relation]…will be called semantics. [The study of]…the formal relation of signs to one another…will
be named syntactics.

On the nature of syntax, consider this early definition from the Oxford English Dictionary: “Orderly
or systematic arrangement of parts or elements; constitution (of a body); a connected order or system
of things.”23 In a study of the history of the concept, Roland Posner (1992, p. 37) says that syntax “is
that branch of Semiotics that studies the formal aspects of signs, the relations between signs, and the
combinations of signs.” On both of those senses, ‘syntax’ goes far beyond grammar. Throughout this
essay, I use ‘syntax’ in that broader sense (except when quoting); when I intend the narrower meaning,
I will use ‘grammar’ or ‘grammatical syntax.’

On the nature of semantics, we might compare Alfred Tarski’s (1944, p. 345) characterization: “Se-
mantics is a discipline which, speaking loosely, deals with certain relations between expressions of a
language and the objects…‘referred to’ by those expressions” (original italics and original scare quotes
around ‘referred to,’ suggesting that the relation need not be one of reference to external objects). But,
surely, translation from one language to another is also an example of semantic interpretation, though
of a slightly different kind: Rather than semantics considered as relations between linguistic expressions
and objects in the world, in translation it is considered as relations between linguistic expressions in one
language and linguistic expressions in another language. (We say that the French word ‘chat’ means
“cat” in English.)

In fact, all relationships between two domains can be seen as interpretations of one of the domains in
terms of the other—as a mapping from one domain to another. A mapping process is an algorithm that
converts, or translates, one domain to another (possibly the same one). The input domain is the syntactic
domain; the output domain is the semantic domain. (I have argued elsewhere that implementation, or
realization, of an “abstraction” in some “concrete” medium is also such a mapping, hence a semantic
interpretation *Rapaport, 1999, 2005b; cf. Dresner, 2010).

Generalizing only slightly, both syntax and semantics are concerned with relationships: syntax with
relations among members of a single set (e.g., a set of signs, or marks,24 or neurons, etc.), and semantics
with relations between two sets (e.g., a set of signs, marks, neurons, etc., on the one hand, and a set of
their meanings, on the other). More generally, semantics can be viewed as the study of relations between
any two sets whatsoever, including, of course, two sets of signs (as in the case of translation) or even a
set and itself; in both of those cases, semantics becomes syntax. Note that a special case of this is found
in an ordinary, monolingual dictionary, where we have relations between linguistic expressions in, say,
English and (other) linguistic expressions also in English. That is, we have relations among linguistic
expressions in English. But this is syntax!

138

Syntactic Semantics and the Proper Treatment of Computationalism

“Pushing” meanings into the same set as symbols for them allows semantics to be done syntactically:
It turns semantic relations between two sets (a set of internal marks as discussed below and a set of, pos-
sibly external, meanings) into syntactic relations among the marks of a single (internal) LOT (Rapaport,
2000; 2003a, 2006, “Thesis 1” 2011). For example, both truth-table semantics and formal semantics are
syntactic enterprises: Truth tables relate one set of marks (strings) representing propositions to another
set of marks (e.g., letters ‘T’ and ‘F’) representing truth-values. Formal semantics relates one set of marks
(strings) representing propositions to another set of marks representing (e.g.) set-theoretical objects (cf.
B.C. Smith, 1982). The relations between sets of neuron firings representing signs and sets of neuron
firings representing external meanings are also syntactic. Consequently, symbol-manipulating comput-
ers can do semantics by doing syntax. As Shimon Edelman (2008a, pp. 188-189) put it, “the meaning
of an internal state (which may or may not be linked to an external state of affairs) for the system itself
is most naturally defined in terms of that state’s relations to its other states,” i.e., syntactically.

This is the notion of semantics that underlies the Semantic Web, where “meaning” is given to (syntactic)
information on the World Wide Web by associating such information (the “data” explicitly appearing in
Web pages, usually expressed in a natural language) with more information (“metadata” that only appears
in the HTML source code for the webpage, expressed in a knowledge-representation language such as
RDF). But it is not “more of the same” kind of information; rather, the additional information takes the
form of annotations of the first kind of information. Thus, relations are set up between information on,
say, Web pages and annotations of that information that serve as semantic interpretations of the former.
As John Hebeler has put it, “[T]he computer doesn’t know anything more than it’s a bunch of bits [i.e.
(to rephrase his informal, spoken English), the computer only knows (i.e., doesn’t know anything more
than) that the Web is a bunch of bits].25 So semantics merely adds extra information to help you with
the meaning of the information” (quoted in Ray, 2010).

This is how data are interpreted by computer programs. Consider the following description from a
standard textbook on data structures (my comments are interpolated as endnotes, not unlike the “seman-
tic” metadata of the Semantic Web!):

[T]he concept of information in computer science is similar to the concepts of point, line, and plane in
geometry—they are all undefined terms about which statements can be made but which cannot be ex-
plained in terms of more elementary concepts.26 …The basic unit of information is the bit, whose value
asserts one of two mutually exclusive possibilities.27 …[I]nformation itself has no meaning. Any mean-
ing can be assigned to a particular bit pattern as long as it is done consistently. It is the interpretation
of a bit pattern that gives it meaning.28 …A method of interpreting a bit pattern is often called a data
type. …It is by means of declarations29 [in a high-level language] that the programmer specifies how the
contents of the computer memory are to be interpreted by the program. …[W]e…view…data types as a
method of interpreting the memory contents of a computer (Tenenbaum & Augenstein, 1981: p. 1, 6, 8).30

Recursive Understanding

Understanding is recursive: We understand one kind of thing in terms of another that is already un-
derstood; the base case is to understand something in terms of itself, which is syntactic understanding.
There are two ways to understand something: One can understand something in terms of something else,

139

Syntactic Semantics and the Proper Treatment of Computationalism

or one can understand something directly (Rapaport, 1995). The first way, understanding one kind of
thing in terms of another kind of thing, underlies metaphor, analogy, maps and grids (B. Smith, 2001),
and simulation (see §8, below). It is also what underlies the relation between syntax and semantics. In
the stereotypical case of semantics, we interpret, or give meanings to, linguistic expressions. Thus, we
understand language in terms of the world. We can also interpret, or give meanings to, other kinds of
(non-linguistic) things. For example, we can try to understand the nature of certain neuron firings in our
brains: Is some particular pattern of neuron firings correlated with, say, thinking of a unicorn or thinking
that apples are red? If so, then we have interpreted, hence understood, those neuron firings. And not only
can we understand language in terms of the world, or understand parts of the world in terms of other
parts of the world, but we can also understand the world in terms of language about the world: This is
what we do when we learn something from reading about it.

Understanding of this first kind is recursive: We understand one thing by understanding another. It
is “recursive,” because we are understanding one thing in terms of another that must already be under-
stood: We understand in terms of something understood. But all recursion requires a base case in order
to avoid an infinite regress. Consequently, the second way of understanding—understanding something
directly—is to understand a domain in terms of itself, to get used to it. This is the fundamental kind—the
base case—of understanding.

In general, we understand one domain—call it a syntactic domain (‘SYN1’)—indirectly by inter-
preting it in terms of a (different) domain: a semantic domain (‘SEM1’). This kind of understanding is
“indirect,” because we understand SYN1 by looking elsewhere, namely, at SEM1. But for this process
of interpretation to result in real understanding, SEM1 must be antecedently understood. How? In the
same way: by considering it as a syntactic domain (rename it ‘SYN2’) interpreted in terms of yet another
semantic domain, which also must be antecedently understood. And so on. But, in order not to make
this sequence of interpretive processes go on ad infinitum, there must be a base case: a domain that is
understood directly, i.e., in terms of itself (i.e., not “antecedently”). Such direct understanding is syn-
tactic understanding; i.e., it is understanding in terms of the relations among the marks of the system
itself (Rapaport, 1986). Syntactic understanding may be related to what Piccinini (2008, p. 214) called
“internal semantics”—the interpretation of an instruction in terms of “what its execution accomplishes
within the computer.” And it may be related to the kind of understanding described in Eco 1988, in
which words and sentences are understood in terms of inferential (and other) relations that they have
with “contextual” “encyclopedias” of other words and sentences—i.e., syntactically and holistically (cf.
Rapaport, 2002).31 (For more on the relation of syntax to semantics, see Rapaport 2017a).

SYNTACTIC SEMANTICS VS. FETZER’S THESIS

Syntactic semantics implies that syntax suffices for semantic cognition, that (therefore) cognition is
computable, and that (therefore) computers are capable of thinking. In a series of papers, James H. Fetzer
has claimed that syntax does not suffice for semantic cognition, that cognition is not computable, and
that computers are not capable of thinking. More precisely, Fetzer’s thesis is that computers differ from
cognitive agents in three ways—statically (or symbolically), dynamically (or algorithmically), and af-
fectively (or emotionally)—and that simulation is not “the real thing.” In the rest of this essay, I will try
to show why I think that Fetzer is mistaken on all these points.

140

Syntactic Semantics and the Proper Treatment of Computationalism

FETZER’S “STATIC” DIFFERENCE

In the forward to his 2001 collection, Computers and Cognition, as well as in his presentation at the
2010 North American Conference on Computing and Philosophy, Fetzer argued that “Computers are
mark-manipulating systems, minds are not” on the following grounds of “static difference” (Fetzer 2001,
p. xiii, my boldface):

Premise 1: Computers manipulate marks on the basis of their shapes, sizes, and relative locations.

Premise 2: [a] These shapes, sizes, and relative locations exert causal influence upon computers [b]
but do not stand for anything for those systems.

Premise 3: Minds operate by utilizing signs that stand for other things in some respect or other for them
as sign-using (or “semiotic”) systems.

Conclusion 1: Computers are not semiotic (or sign-using) systems.

Conclusion 2: Computers are not the possessors of minds.

I disagree with all of the boldfaced phrases in Fetzer’s static-difference argument. Before saying why,
note that here—and in his arguments to follow—Fetzer consistently uses declaratives that appear to de-
scribe current-day computers: They do not do certain things, are not affected in certain ways, or do not
have certain properties. But he really should be using modals that specify what he believes computers
cannot do, be affected by, or have. Consider premise (2b), that the marks that computers manipulate “do
not” stand for anything for those computers. Note that Fetzer’s locution allows for the possibility that,
although the marks do not stand for anything for the computer, they could do so. Insofar as they could,
such machines might be capable of thinking. So Fetzer should have made the stronger claim that they
“could not stand for anything.” But then he’d be wrong, as I shall argue.32

Mark Manipulation

What is a “mark”? Fetzer 2011 does not define the term; he has used it many times before (e.g., Fetzer,
1994, 1998), also without definition, but occasionally with some clarification. It seems to be a term
designed to be neutral with respect to such semiotic terms as ‘sign,’ ‘symbol,’ etc., perhaps even ‘term’
itself. It seems to have the essential characteristics of being the kind of entity that syntax is concerned
with (i.e., marks are the things such that syntax is the study of their properties and relations) and of not
having an intrinsic meaning. Many logicians use the terms ‘sign’ or ‘symbol’ in this way, despite the fact
that many semioticians use ‘sign’ and ‘symbol’ in such a way that all signs and symbols are meaningful.
So ‘mark’ is intended to be used much as ‘sign’ or ‘symbol’ might be used if the sign or symbol were
stripped of any attendant meaning. Elsewhere (Rapaport, 1995), I have used ‘mark’ to mean “(perhaps)
physical inscriptions or sounds, that have only some very minimal features such as having distinguished,
relatively unchanging shapes capable of being recognized when encountered again;” they have “no intrinsic
meaning. But such [marks] get meaning the more they are used—the more roles they play in providing
meaning to other” marks. Fetzer’s Static Premise 1 is true (i.e., I agree with it!): “computers manipulate

141

Syntactic Semantics and the Proper Treatment of Computationalism

marks on the basis of their shapes, sizes, and relative locations.” But it is not the whole truth: They also
manipulate marks on the basis of other, non-spatial relations of those marks to other marks, i.e., on the
basis of the marks’ syntax in the wide sense in which I am using that term.33 Fetzer can safely add this
to his theory. I also agree that this manipulation (or processing) is not (necessarily) independent of the
meanings of these marks. But my agreement follows, not from Fetzer’s notion of meaning, but from the
principle of “syntacticism” (above): If some of the marks represent (or are) meanings of some of the
other marks, then mark manipulation on the basis of size, shape, location, and relations to other marks
includes manipulation on the basis of meaning!

However, this is independent of external reference. More precisely, it is independent of the actual,
external referents of the marks—the objects that the marks stand for, if any (see §3.1)—in this way:
Any relationship between a mark and an external meaning of that mark is represented by an internal
(hence syntactic) relation between that mark and another mark that is the internal representative of the
external referent. The latter mark is the output of a sensory transducer; in Kantian terms, it is an internal
phenomenon that represents an external noumenon. This is the upshot of internalism. In this way, such
marks can stand for something for the computer. Computers are, indeed, “string-manipulating” systems
(Fetzer 1998: 374). But they are more than “mere” string-manipulating systems, for meaning can arise
from (appropriate) combinations of (appropriate) strings.

COMPUTERS AND SEMIOTIC SYSTEMS

Fetzer’s static-difference argument claims that computers are not semiotic systems. In an earlier argu-
ment to the same conclusion, Fetzer (1998), following Peirce, says that a semiotic system consists of
something (S) being a sign of something (x) for somebody (z), where:

̭� Thing x “grounds” sign S
̭� Thing x stands in a relation of “interpretant (with respect to a context)” to sign-user z34

̭� And sign S stands in a “causation” relation with sign-user z.

This constitutes a “semiotic triangle” whose vertices are S, x, and z (Fetzer, 1998, p. 384, Fig. 1).
This cries out for clarification:

1. What is the causation relation between sign-user z and sign S? Does one cause the other? Or is it
merely that they are causally—i.e., physically—related?

2. What is the grounding relation between sign S and the thing x that S stands for (i.e., that S is a sign
of)? If sign S is grounded by what it stands for (i.e., x), then is the relation of being grounded by
the same as the relation of standing for?

3. And, if sign S stands for thing x for sign-user z, then perhaps this semiotic triangle should really be
a semiotic “quadrilateral,” with four vertices: sign S, user z, thing x, and an interpretant I, where
the four sides of the quadrilateral are:
a. User z “causes” sign S,
b. Thing x “grounds” sign S,
c. Interpretant I is “for” user z,
d. And I stands for thing x.

142

Syntactic Semantics and the Proper Treatment of Computationalism

There is also a “diagonal” in this quadrilateral: I “facilitates” or “mediates” S. (A better way to think
of it, however, is that the two sides and the diagonal that all intersect at I represent the 4-place relation
“interpretant I mediates sign S standing for object x for user z”; see Rapaport 1998, p. 410, Fig. 2). By
contrast, according to Fetzer, a similar semiotic “triangle” for “input-output” systems, such as comput-
ers, lacks a relationship between what plays the role of sign S and what plays the role of thing x. (It is
only a 2-sided “triangle”; see Fetzer, 1998, p. 384, Fig. 2. More precisely, for such input-output systems,
Fetzer says that we have an input i (instead of a sign S), a computer C (instead of a sign-user z), and an
output o (instead of a thing x, where there is still a causation relation between computer C and input i,
and an interpretant relation between C and output o, but—significantly—no grounding relation between
input i and output o.

Again, we may raise some concerns:

1. Computers are much more than mere input-output systems, because there is always an algorithm
that mediates between the computer’s input and its output.

2. The marks by means of which computers operate include more than merely the external input; there
are usually stored marks representing what might be called “background knowledge” (or “prior
knowledge”)—perhaps “(internal) context” would not be an inappropriate characterization: Where
are these in this two-sided triangle?

3. And what about the “stands for” relation? Surely, what the input marks stand for (and surely they
stand for something) is not necessarily the output.

4. Finally, what does it mean for a sign S or an input mark i to stand for something x or o) yet not be
“grounded” by x?

Fetzer’s chief complaint about computers is not merely that they causally manipulate marks (premise
1) but that such causal manipulation is all that they can do. Hence, because such merely causal manipula-
tion requires no mediation between input and output, computers are not semiotic systems. By contrast,
semiosis does require such mediation; according to Peirce, it is a ternary relation:

I define a Sign as anything which is so determined by something else, called its Object, and so determines
an effect upon a person, which effect I call its Interpretant, that the latter is thereby mediately determined
by the former. My insertion of “upon a person” is a sop to Cerberus, because I despair of making my
own broader conception understood (Peirce, 1908, pp. 80-81 [http://www.helsinki/fi/science/commens/
terms/sign.html], accessed 5 May 2011).

The fact that “upon a person” is a “sop to Cerberus” suggests that the effect need not be “upon a
person;” it could, thus, be “upon a computer.” That is, the mark-user need not be human (cf. Eco 1979,
p. 15: “It is possible to interpret Peirce’s definition in a non-anthropomorphic way…”).35

Peirce and Computation

Given Fetzer’s reliance on Peirce’s version of semiotics (which I focus on rather than, say, on Saussure’s
version of semiotics, because Peirce is whom Fetzer focuses on), it is worth noting that Peirce had some
sympathy for—and certainly an active interest in—computation, especially its syntactic aspect:

143

Syntactic Semantics and the Proper Treatment of Computationalism

The secret of all reasoning machines is after all very simple. It is that whatever relation among the
objects reasoned about is destined to be the hinge of a ratiocination, that same general relation must be
capable of being introduced between certain parts of the machine. …When we perform a reasoning in
our unaided minds we do substantially the same thing, that is to say, we construct an image in our fancy
under certain general conditions, and observe the result (Peirce, 1887, p. 168).36

There is even an anticipation of at least one of Turing’s insights (cf. Appendix):37

[T]he capacity of a machine has absolute limitations; it has been contrived to do a certain thing, and
it can do nothing else. For instance, the logical machines that have thus far been devised can deal with
but a limited number of different letters. The unaided mind is also limited in this as in other respects;
but the mind working with a pencil and plenty of paper has no such limitation. It presses on and on, and
whatever limits can be assigned to its capacity to-day, may be over-stepped to-morrow (Peirce, 1887,
p. 169, my italics).

Furthermore, Peirce had views on the relation of syntax to semantics that are, arguably, sympathetic
to mind. As Brown (2002, p. 20) observes,38

Thus Peirce, in contrast to Searle, would not…allow any separation between syntax and semantics, in the
following respect. He would claim that what Searle is terming “syntactic rules” partake of what Searle
would consider semantic characteristics, and, generally, that such rules must so partake. However, if
those rules were simple enough so that pure deduction, i.e., thinking of the first type of thirdness, was
all that was required, then a machine could indeed duplicate such “routine operations” (Peirce, 1992d,
p. 43). In this simple sense, for Peirce, a digital computer has “mind” or “understanding.”

Thus, I find Fetzer’s analysis vague and unconvincing at best. We need to bring some clarity to this.
First, consider what Peirce actually says:

A sign, or representamen, is something which stands to somebody for something in some respect or ca-
pacity. It addresses somebody, that is, creates in the mind of that person an equivalent sign, or perhaps
a more developed sign. That sign which it creates I call the interpretant of the first sign. The sign stands
for something, its object. It stands for that object, not in all respects, but in reference to a sort of idea,
which I have sometimes called the ground of the representamen. (Peirce (c. 1897), A Fragment, CP
2.228, accessed 5 May 2011 from[http://www.helsinki.fi/science/commens/terms/representamen.html].)
[B]y “semiosis” I mean…an action, or influence, which is, or involves, a cooperation of three subjects,
such as a sign, its object, and its interpretant, this tri-relative influence not being in any way resolvable
into actions between pairs (Peirce 1907, EP 2.411; CP 5.484, accessed 5 May 2011 from [http:/www.
helsinki.fi/science/commens/terms/semiosis.html]).

By ‘representamen,’ Peirce means “sign,” but I think that we may also say ‘mark.’ So, the Peircean
analysis consists of:

1. A mark (or sign, or representamen):

144

Syntactic Semantics and the Proper Treatment of Computationalism

a. A “mark” is, roughly, an uninterpreted sign—if that’s not an oxymoron: If a sign consists of a
mark (signifier) plus an interpretation (signified), then it must be marks that are interpreted;
after all, signs (presumably) wear their interpretations on their sleeves, so to speak. Although
many semioticians think that it is anathema to try to separate a sign into its two components,
that is precisely what “formality” is about in such disciplines as “formal logic,” “formal se-
mantics,” and so on: Formality is the separation of mark from meaning; it is the focus on the
form or shape of marks (cf. B.C. Smith. 2010);

2. A mark user (or interpreter):
a. A sign has an Object and an Interpretant, the latter being that which the Sign produces in the

Quasi-mind that is the Interpreter by determining the latter to a feeling, to an exertion, or to
a Sign, which determination is the Interpretant (Peirce 1906, Prolegomena to an Apology for
Pragmaticism, CP 4.536, accessed 5 May 2011 from [http://www.helsinki.fi/science/commens/
terms/interpretant.html]);

3. An object that the mark stands for (or is a sign of);
4. An interpretant in the mark-user’s mind, which is also a mark.

The interpretant is the mark-user’s idea (or concept, or mental representative)39—but an idea or
representative of what? Of the mark? Or of the object that the mark stands for? Peirce says that the in-
terpretant’s immediate cause is the mark and its mediate cause is the object.40 Moreover, the interpretant
is also a representamen, namely, a sign of the original sign.41

But there is also another item: Presumably, there is a causal process that produces the interpretant
in the mark-user’s mind. This might be an automatic or unconscious process, as when a mental image
is produced as the end product of the process of visual perception. Or it might be a conscious process,
as when the mark-user reads a word (a mark) and consciously figures out what the word might mean,
resulting in an interpretant (as in “deliberate” contextual vocabulary acquisition; cf. Rapaport & Kibby,
2007, 2010).

One standard term for this process (i.e., for this relation between mark and interpretant) is ‘interpreta-
tion.’ The word ‘interpretation,’ however, is ambiguous. In one sense, it is a functional42 relation from a
mark to a thing that the mark “stands for” or “means.” In another sense, it is the end product or output
of such a functional relation. For present purposes, since we already have Peirce’s term ‘interpretant’
for the output, let us restrict ‘interpretation’ to refer to the process. (What is the relationship between my
binary relation of interpretation and Peirce’s ternary relation of semiosis? (See the quote from Peirce
1907, above.)43 “Interpretation” in my sense is only part of “semiosis” in Peirce’s sense; it is a relation
between only two of the three parameters of Peircean semiosis, namely, the sign and its interpretant).

With this by way of background, I will now present three arguments that computers are semiotic
systems.44 Recall that Peirce’s view of semiotics does not require the mark-user to be human!

Computers Are Semiotic Systems I: Incardona’s Argument

The first argument, due to Lorenzo Incardona (personal communication), consists of three premises and
a conclusion.

1. Something is a semiotic system if and only if it carries out a process that mediates between a mark
and an interpretant of that mark: The essential characteristic of a semiotic system is its ternary na-

145

Syntactic Semantics and the Proper Treatment of Computationalism

ture; it applies (i) a mediating or interpretive process to (ii) a mark, resulting in (iii) an interpretant
of that mark (and indirectly of the mark’s object). A semiotic system interprets marks.45 However,
there must be a fourth component: After all, whose interpretant is it that belongs to a given mark?
This is just another way of asking about “the” meaning of a word. What is “the” interpretant of
‘gold’? Is it what I think gold is? What experts think it is (Putnam, 1975)? It is better to speak of
“a” meaning “for” a word than “the” meaning “of” a word (Rapaport 2005a). Surely, there are
many meanings for marks but, in semiosis, the only one that matters is that of (iv) the interpreter,
i.e., the executor of the interpretive process (i, above) that mediates the mark (ii, above) and the
(executor’s) interpretant (iii, above).

2. Algorithms describe processes that mediate between inputs and outputs. An algorithm is a static
text (or an abstract, mathematical entity) that describes a dynamic process. That process can be
thought of as the algorithm being executed. The output of an algorithm stands (by definition) in
a functional relation to its input. It describes (or can describe) a meaningful relation between the
input mark and the output mark. So, the output of an algorithm is an interpretant of its input. This
is a causal relationship, but it is not merely a causal (or stimulus-response, “behavioral”) correlation
between input and output: In the case of computable functions (i.e., of a computable interpreta-
tion process), there is a mediating process, namely, an algorithm. Consequently, the input-output
relation is grounded—or mediated—by that algorithm, i.e., the mechanism that converts the input
into the output, i.e., the interpretation.46

3. Clearly, computers are algorithm machines.47 That’s what computers do: They execute algorithms,
converting inputs into outputs, i.e., interpreting the inputs as the outputs according to an algorithm.
But a computer is (usually) not a mere input-output system. The (typical) algorithm for converting
the input to the output (i.e., for interpreting) the input as the output) is not a mere table-lookup.
First, there is internally stored data that can be used or consulted in the conversion process; this
can be thought of as a “context of interpretation.” Second, there are numerous operations that must
be performed on the input together with the stored data in order to produce the output, so it is a
dynamic process. Moreover, the stored data can be modified by the input or the operations so that
the system can “learn” and thereby change its interpretation of a given input.

4. Therefore, computers are semiotic systems.

Computers Are Semiotic Systems II: Goldfain’s
Argument From Mathematical Cognition

Does a calculator that computes greatest common divisors (GCDs) understand what it is doing? I think
that almost everyone, including both Fetzer and I, would agree that it does not. But could a computer
that computes GCDs understand what it is doing? I am certain that Fetzer would say ‘no;’ but I—along
with Albert Goldfain (2008; Shapiro, Rapaport et al., 2007)—say ‘yes’: Yes, it could, as long as it had
enough background, or contextual, or supporting information: A computer with a full-blown theory of
mathematics at, say, the level of an algebra student learning GCDs, together with the ability to explain its
reasoning when answering a question, could understand GCDs as well as the student. (Perhaps it could
understand better than the student, if the student lacks the ability to fully explain his or her reasoning.)

146

Syntactic Semantics and the Proper Treatment of Computationalism

Calculating becomes understanding if embedded in a larger framework linking the calculation to
other concepts (not unlike the semantic contributions of Semantic Web annotations, which also serve
as an embedding framework). So a computer could know, do, and understand mathematics, if suitably
programmed with all the background information required for knowing, doing, and understanding math-
ematics. A computer or a human who can calculate GCDs by executing an algorithm does not (neces-
sarily) thereby understand GCDs. But a computer or a human who has been taught (or programmed)
all the relevant mathematical definitions can understand GCDs. (For further discussion, see Rapaport
1988, 1990, 2006, 2011.)

Goldfain (personal communication) has offered the following argument that marks can stand for
something for a computer:

1. The natural numbers that a cognitive agent refers to are denoted by a sequence of marks that are
unique to the agent. These marks exemplify (or implement; Rapaport, 1999, 2005b) a finite, initial
segment of the natural-number structure (i.e., 0, 1, 2, 3, …, up to some number n).

2. Such a finite, initial segment can be generated by a computational cognitive agent (e.g., a computer,
suitably programmed) via perception and action in the world during an act of counting (e.g., using
the Lisp programming language’s “gensym” function; for details see Goldfain, 2008). Thus, there
would be a history of how these marks came to signify something for the agent (e.g., the computer).

3. These marks (e.g., b4532, b182, b9000, …) have no meaning for another cognitive agent (e.g., a
human user of the computer) who lacks access to their ordering.

4. Such private marks (called ‘numerons’ by cognitive scientists studying mathematical cognition)
are associable with publicly meaningful marks (called ‘numerlogs’).48 For example, ‘b4532’ might
denote the same number as the Hindu-Arabic numeral ‘1,’ ‘b182’ might denote the same number
as ‘2,’ etc.

5. A computational cognitive agent (e.g., a computer) can do mathematics solely on the basis of its
numerons. (See Goldfain, 2008 for a detailed demonstration of this; cf. Shapiro, Rapaport et al.
2007.)

6. Therefore, these marks stand for something for the computer (i.e., for the agent). Moreover, we can
check the mathematics, because of premise 4.

7. Thus, such a computer would be a semiotic system.

Computers Are Semiotic Systems III: Argument From Embedding in the World

Besides being able to understand mathematics in this way, computers can also understand other, con-
ventional activities. Fetzer (2008) gives the following example of something that a semiotic system can
do but that, he claims, a computer cannot:

A red light at an intersection…stands for applying the brakes and coming to a complete halt, only pro-
ceeding when the light turns green, for those who know “the rules of the road” [My emphasis].

As Fetzer conceives it, the crucial difference between a semiotic system and a computer is that the
former, but not the latter, can use a mark as something that stands for something (else) for itself (cf.

147

Syntactic Semantics and the Proper Treatment of Computationalism

Fetzer, 1998). In that case, we need to ask whether such a red light can stand for “applying the brakes,”
etc. for a computer.

It could, if it has those rules stored (memorized) in a knowledge base (its mind). But merely storing,
and even being able to access and reason about, this information is not enough: IBM’s Jeopardy-winning
Watson computer can do that, but no one would claim that such merely stored information is understood,
i.e., stands for anything for Watson itself. At least one thing more is needed for a red light to stand for
something for the computer itself: The computer must use those rules to drive a vehicle. But there are
such computers (or computerized vehicles), namely, those that have successfully participated in the
DARPA Grand Challenge autonomous vehicle competitions. (For a relevant discussion, see Parisien &
Thagard, 2008.) I conclude that (such) computers can be semiotic systems.

Some might argue that such embedding in a world is not computable. There are two reasons to think
that it is. First, all of the autonomous vehicles must internally store the external input in order to compute
with it. Thus, the syntactic-semantic principle of internalism explains how the embedding is comput-
able. Second, the vehicles’ behaviors are the output of computable (indeed, computational) processes.49

FETZER’S “DYNAMIC” DIFFERENCE

Fetzer also argues that “computers are governed by algorithms, but minds are not,” on the following
grounds (Fetzer 2001, p. xv; my boldface and italics):

Premise 1: Computers are governed by programs, which are causal models of algorithms.

Premise 2: Algorithms are effective decision procedures for arriving at definite solutions to problems
in a finite number of steps.

Premise 3: Most human thought processes, including dreams, daydreams, and ordinary thinking, are
not procedures for arriving at solutions to problems in a finite number of steps.

Conclusion 1: Most human thought processes are not governed by programs as causal models of al-
gorithms.

Conclusion 2: Minds are not computers.

Once again, I disagree with the boldfaced claims. The italicized claims are ones that are subtly
misleading; below, I will explain why. I prefer not to speak as Fetzer does. First, let me point to a “red
herring”: Fetzer (2008) said that “if thinking is computing and computing is thinking and if computing
is algorithmic, then thinking is algorithmic, but it isn’t” (my emphasis). The second conjunct is false;
fortunately (for Fetzer), it is also irrelevant: A computer executing a non-cognitive program (e.g., an
operating system) is computing but is not thinking. (Of course, this depends on whether you hold that an
operating system is a non-cognitive, computer program. Once upon a time, it was humans who operated
computers. Arguably, operating systems, insofar as they do a task once reserved for humans, are doing a
cognitive task. Alternatively, what the humans who operated computers were doing was a task requiring

148

Syntactic Semantics and the Proper Treatment of Computationalism

no “intelligence” at all.50 Cf. my remark about Turing machines as AI programs, above; on performing
intelligent tasks without intelligence, see Dennett, 2009.)

Algorithms

Premise 2 is consistent with the way I characterized ‘algorithm’ above, so I am willing to accept it. Yet
I think that algorithms, so understood, are the wrong entity for this discussion. Instead, we need to relax
some of the constraints and to embrace a more general notion of “procedure” (Shapiro, 2001):

1. In particular, procedures (as I am using the term here) are like algorithms, but they do not neces-
sarily halt of their own accord; they may continue executing until purposely (or accidentally) halted
by an outside circumstance (cf. Knuth’s 1973 notion of a (non-finite) “computational method”; see
the Appendix). For instance, an automatic teller machine or an online airline reservation system
should not halt unless turned off by an administrator (cf. Wegner, 1997).

2. Also, procedures (as I am using the term) need not yield “correct” output (goal G need not be
completely or perfectly accomplished). Consider a computer programmed for playing chess. Even
IBM’s celebrated, chess champion Deep Blue will not win or draw every game, even though chess
is a game of perfect (finite) information (like Tic Tac Toe) in which, mathematically, though not
practically, it is knowable whether any given player, if playing perfectly, will win, lose, or draw,
because the “game tree” (the tree of all possible moves and replies) can in principle be completely
written down and examined. But because of the practical limitations (the tree would take too much
space and time to actually write down; cf. Zobrist, 2000, p. 367), the computer chess program will
occasionally give the “wrong” output. But it is not behaving any differently from the algorithmic
way it would behave if it gave the correct answer. Sometimes, such programs are said to be based on
“heuristics” instead of “algorithms,” where a heuristic for problem P is an algorithm for some other
problem P′, where the solution to P′ is “near enough” to a solution to P (Rapaport, 1998; Simon’s
1956 notion of “satisficing”). Another kind of procedure that does not necessarily yield “correct”
output is a “trial and error” (or Putnam-Gold) machine that continually generates “guesses” as to
the correct output and is allowed to “change its mind,” with its “final answer” being its last output,
not its first output (Kugel, 2002).

3. Finally, procedures (as I am using the term) include “interactive” programs, which are best mod-
eled, not as Turing machines, but as Turing’s “oracle” machines (a generalization of the notion of
Turing machine; see Wegner, 1997, Soare, 2009).

In order for computational cognitive science’s working hypothesis to be correct, the computation
of cognition will have to be done by “algorithms” that are procedures in one or more of these senses.

Are Dreams Algorithms?

Fetzer (1998) argues that dreams are not algorithms and that ordinary, stream-of-consciousness think-
ing is not “algorithmic.” I am willing to agree, up to a point, with Fetzer’s Dynamic Premise 3: Some
human thought processes may indeed not be algorithms (or even procedures more generally). But that is
not the real issue. The real issue is this: Could there be algorithms (or procedures) that produce dreams,

149

Syntactic Semantics and the Proper Treatment of Computationalism

stream-of-consciousness thinking, or other mental states or procedures, including those that might not
themselves be algorithms (or procedures)?

The difference between an entity being computable and being produced by a computable process
(i.e., being the output of an algorithm) can be clarified by considering two ways in which images can be
considered computable entities. An image could be implemented by an array of pixels; this is the normal
way in which images are stored in—and processed by—computers. Such an image is a computable,
discrete data structure reducible to arrays of 0s and 1s. Alternatively, an image could be produced by a
computational process that drives something like a flatbed plotter (Phillips, 2011) or produces a painting
(as with Harold Cohen’s AARON; see McCorduck, 1990). Such an image is not a discrete entity—it is,
in fact, continuous; it is not reducible to arrays of 0s and 1s. Similarly, dreams need not themselves be
algorithms in order to be producible by algorithms. (The same could, perhaps, be said of pains and other
qualia: They might not themselves be algorithmically describable states, but they might be the outputs
of algorithmic(ally describable) processes.)

What are dreams? In fact, no one knows, though there are many rival theories. Without some scientific
agreement on what dreams are, it is difficult to see how one might say that they are—or are not—al-
gorithmic or producible algorithmically. But suppose, as at least one standard view has it, that dreams
are our interpretations of random neuron firings during sleep (perhaps occurring during the transfer
of memories from short- to long-term memory),51 interpreted as if they were due to external causes.
Suppose also that non-dream neuron firings are computable. There are many reasons to think that they
are; after all, the working assumption of computational cognitive science may have been challenged,
but has not yet been refuted (pace Piccinini, 2005, 2007—remember, I am supposing that neuron fir-
ings are computable, not necessarily computational; thus, Piccinini’s arguments that neuron firings are
not computational are irrelevant—and pace those cited in note 8). In that case, the neuron firings that
constitute dreams would also be computable.

What about stream-of-consciousness thinking? That might be computable, too, by means of spread-
ing activation in a semantic network, apparently randomly associating one thought to another. In fact,
computational cognitive scientists have proposed computational theories of both dreaming and stream-of-
consciousness thinking! (See Mueller, 1990, Edelman, 2008b, Mann, 2010.) It is not a matter of whether
these scientists are right and Fetzer is wrong, or the other way around. Rather, the burden of proof is on
Fetzer to say why he thinks that these proposed computational theories fail irreparably.

The important point is that whether a mental state or process is computable is at least an empirical
question. Anti-computationalists must be wary of committing what many AI researchers think of as the
Hubert Dreyfus fallacy: One philosopher’s idea of a non-computable task may be just another computer
scientist’s research project. Put another way, what no one has yet written a computer program for is not
thereby necessarily non-computable.

Are Minds Computers?

Fetzer’s Dynamic Conclusion 2 is another claim that must be handled carefully: Maybe minds are com-
puters; maybe they aren’t. The more common formulation is that minds are programs and that brains
are computers (cf. Searle, 1990, Piccinini, 2010). But I think that there is a better way to express the
relationship than either of these slogans: A mind is a virtual machine, computationally implemented in
some medium.

150

Syntactic Semantics and the Proper Treatment of Computationalism

Roughly, a virtual machine is a computational implementation of a real machine; the virtual machine
is executed as a process running on another (real or virtual) machine. For instance, there is (or was, at
the time of writing) an “app” for Android smartphones that implements (i.e., simulates, perhaps emu-
lates) a Nintendo Game Boy. Game Boy videogames can be downloaded and played on this “virtual”
Game Boy “machine.” (For a more complex example, of a virtual machine running on another virtual
machine, see Rapaport, 2005b.) Thus, the human mind is a virtual machine computationally implemented
in the nervous system, and a robot mind would be a virtual machine computationally implemented in a
computer. Such minds consist of states and processes produced by the behavior of the brain or computer
that implements them. (For discussion of virtual machines and this point of view, see Rapaport, 2005b,
Hofstadter, 2007, Edelman, 2008b, Pollock, 2008.)

FETZER’S “AFFECTIVE” DIFFERENCE

Fetzer also argues that “Mental thought transitions are affected by emotions, attitudes, and histories, but
computers are not,” on the following grounds (Fetzer, 2008, 2010; my boldface and italics):

Premise 1: Computers are governed by programs, which are causal models of algorithms.

Premise 2: Algorithms are effective decisions, which are not affected by emotions, attitudes, or histories.

Premise 3: Mental thought transitions are affected by values of variables that do not affect computers.

Conclusion 1: The processes controlling mental thought transitions are fundamentally different than
those that control computer procedures.

Conclusion 2: Minds are not computers.

Once again, I disagree with the boldfaced claims and find the italicized ones subtly misleading,
some for reasons already mentioned. Before proceeding, it will be useful to rehearse (and critique) the
definitions of some of Fetzer’s technical terms, especially because he uses some of them in slightly non-
standard ways. On Fetzer’s view:

̭� The intension of expression E =def the conditions that need to be satisfied for something to be an
E. (This term is not usually limited to noun phrases in the way that Fetzer seems to limit it (“to be
an E”), but this is a minor point.)

̭� The extension of expression E =def the class of all things that satisfy E’s intension. (A more stan-
dard definition would avoid defining ‘extension’ in terms of ‘intension;’ rather, the extension of
an expression would be the class of all (existing) things to which the expression E is applied by
(native) speakers of the language.)

̭� The denotation of expression E for agent A =def the subset of E’s extension that A comes into con-
tact with. (This notion may be useful, but ‘denotation’ is more often a mere synonym of ‘exten-
sion’ or ‘referent.’)

151

Syntactic Semantics and the Proper Treatment of Computationalism

̭� The connotation of expression E for agent A =def A’s attitudes and emotions in response to A’s in-
teraction with E’s denotation for A. (Again, a useful idea, but not the usual use of the term, which
is more often a way of characterizing the other concepts that are closely related to E (perhaps in
some agent A’s mind, or just the properties associated with (things called) E. Both ‘denotation’
and ‘connotation’ in their modern uses were introduced by Mill 1843, the former being synony-
mous with ‘extension’ and the latter referring to implied properties of the item denoted.)

Fetzer then identifies the “meaning” of E for A as E’s denotation and connotation for A. Contra Fetzer’s
Affective Premises 2 and 3, programs can be based on idiosyncratic emotions, attitudes, and histories:
Karen Ehrlich and I (along with other students and colleagues) have developed and implemented a
computational theory of contextual vocabulary acquisition (Ehrlich, 1995; Rapaport & Ehrlich, 2000;
Rapaport, 2003b, 2005a; Rapaport & Kibby, 2007, 2010). Our system learns (or “acquires”) a meaning
for an unfamiliar or unknown word from the word’s textual context integrated with the reader’s prior
beliefs. These prior beliefs (more usually called ‘prior knowledge’ in the reading-education literature),
in turn, can—and often do—include idiosyncratic “denotations” and “connotations” (in Fetzer’s senses),
emotions, attitudes, and histories. In fact, contrary to what some reading educators assert (cf. Ames, 1966,
Dulin, 1970), a meaning for a word cannot be determined solely from its textual context. The reader’s
prior beliefs are essential (Rapaport, 2003b, Rapaport & Kibby, 2010). And, clearly, the meaning that
one reader figures out or attributes to a word will differ from that of another reader to the extent that
their prior beliefs differ.

Furthermore, several cognitive scientists have developed computational theories of affect and emo-
tion, showing that emotions, attitudes, and histories can affect computers that model them (Simon, 1967,
Sloman & Croucher, 1981, Wright et al. 1996, Sloman, 2004, 2009, Picard, 1997, and Thagard, 2006),
among others). Once again, the burden of proof is on Fetzer.

SIMULATION

I close with a discussion of “the matter of simulation.” Fetzer argues that “Digital machines can neverthe-
less simulate thought processes and other diverse forms of human behavior,” on the following grounds
(Fetzer, 2001, p. xvii, 2008, 2010; my emphasis):

Premise 1: Computer programmers and those who design the systems that they control can increase
their performance capabilities, making them better and better simulations.

Premise 2: Their performance capabilities may be closer and closer approximations to the performance
capabilities of human beings without turning them into thinking things.

Premise 3: Indeed, the static, dynamic, and affective differences that distinguish computer performance
from human performance preclude those systems from being thinking things.

Conclusion: Although the performance capabilities of digital machines can become better and better
approximations of human behavior, they are still not thinking things.

152

Syntactic Semantics and the Proper Treatment of Computationalism

As before, I disagree with the boldfaced claims. But, again, we must clarify Fetzer’s somewhat
non-standard use of terms. Computer scientists occasionally distinguish between a “simulation” and
an “emulation,” though the terminology is not fixed. In the Encyclopedia of Computer Science, Paul
F. Roth (1983) says that x simulates y means that x is a model of some real or imagined system y, and
we experiment with x in order to understand y. (Compare our earlier discussion of understanding one
thing in terms of another) Typically, x might be a computer program, and y might be some real-world
situation. In an extreme case, x simulates y if and only if x and y have the same input-output behavior.

And in another article in that Encyclopedia, Stanley Habib (1983) says that x emulates y means
that either: (a) computer x “interprets and executes” computer y’s “instruction set” by implementing
y’s operation codes in x’s hardware—i.e., hardware y is implemented as a virtual machine on x—or (b)
software feature x “simulates”(!) “hardware feature” y, doing what y does exactly (so to speak) as y does
it. Roughly, x emulates y if and only if x and y not only have the same input-output behavior, but also
use the same algorithms and data structures. This suggests that there is a continuum or spectrum, with
“pure” simulation at one end (input-output–equivalent behavior) and “pure” emulation at the other end
(behavior that is equivalent with respect to input-output, all algorithms in full detail, and all data struc-
tures). So, perhaps there is no real distinction between simulation and emulation except for the degree
of faithfulness to what is being simulated or emulated.

In contrast, Fetzer uses a much simplified version of this for his terminology (Fetzer, 1990, 2001, 2011):

̭� System x simulates system y =def x and y have the same input-output behavior.
̭� System x replicates system y =def x simulates y by the same or similar processes.
̭� System x emulates system y =def x replicates y, and x and y “are composed of the same kind of

stuff.”

At least the latter two are non-standard definitions and raise many questions. For instance, how many
processes must be “similar,” and how “similar” must they be, before we can say that one system replicates
another? Or consider (1) a Turing machine (a single-purpose, or dedicated, computer) that computes
GCDs and (2) a universal Turing machine (a multiple-purpose, or stored-program computer) that can
be programmed to compute GCDs using exactly the same program as is encoded in the machine table
of the former Turing machine. Does the latter emulate the former? Does the former emulate the latter?
Do two copies of the former emulate each other? Nevertheless, Fetzer’s terminology makes some useful
distinctions, and, here, I will use these terms as Fetzer does.

The English word ‘simulation’ (however defined) has a sense (a “connotation”?) of “imitation” or
“unreal”: A simulation of a hurricane is not a real hurricane. A simulation of digestion is not real diges-
tion. And I agree that a computer that simulates (in Fetzer’s sense) some process P is not necessarily
“really” doing P. But what, exactly, is the difference? A computer simulation (or even a replication)
of the daily operations of a bank is not thereby the daily operations of a (real) bank. But I can do my
banking online; simulations can be used as if they were real, as long as the (syntactic) simulations have
causal impact on me (Goldfain, personal communication, 2011). And although computer simulations
of hurricanes don’t get real people wet (they are, after all, not emulations in Fetzer’s sense), they could
get simulated people simulatedly wet (Shapiro & Rapaport, 1991, Rapaport, 2005b):

[A] simulated hurricane would feel very real, and indeed can prove fatal, to a person who happens to
reside in the same simulation (Edelman, 2011, 2n.3, my italics.)

153

Syntactic Semantics and the Proper Treatment of Computationalism

The “person,” of course, would have to be a simulated person. And it well might be that the way that
the simulated hurricane would “feel” to that simulated person would differ from the way that a real hur-
ricane feels to a real person. (On the meaningfulness of that comparison, see Strawson 2010, pp. 218–219.)

Paul Harris [2000] found that even two-year-olds will tell you that if an imaginary teddy [bear] is drink-
ing imaginary tea, then if he spills it the imaginary floor will require imaginary mopping-up (Gopnik,
2009, p. 29.)

This is a matter of the “scope” of the simulation: Are people within the scope of the hurricane
simulation or not? If they are not, then the simulation won’t get them wet. If they are—i.e., if they are
simulated, too—then it will. It should also be noted that sometimes things like simulated hurricanes
can do something analogous to getting real people wet: Children “can have real emotional reactions to
entirely imaginary scenarios” (Gopnik, 2009, p. 31), as, of course, can adults, as anyone who has wept
at the movies can testify (cf. Schneider 2009).

But there are cases where a simulation is the real thing. For example:

̭� A scale model of a scale model of the Statue of Liberty is a scale model of the Statue of Liberty.
̭� A Xerox copy of a document is that document, at least for purposes of reading it and even for some

legal purposes.
̭� A PDF version of a document is that document.

More specifically, a computer that simulates an “informational process” is thereby actually doing that
informational process, because a computer simulation of information is information:

̭� A computer simulation of a picture is a picture, hence the success of digital “photography.”
̭� A computer simulation of language is language. Indeed, as William A. Woods (2010, p. 605, my

emphasis) said:

[L]anguage is fundamentally computational. Computational linguistics has a more intimate relation-
ship with computers than many other disciplines that use computers as a tool. When a computational
biologist simulates population dynamics, no animals die.52 When a meteorologist simulates the weather,
nothing gets wet.53 But computers really do parse sentences. Natural language question-answering
systems really do answer questions.54 The actions of language are in the same space as computational
activities, or alternatively, these particular computational activities are in the same space as language
and communication.

̭� A computer simulation of mathematics is mathematics. As Edelman (2008b, p. 81) put it (though
not necessarily using the terms as Fetzer does):

A simulation of a computation and the computation itself are equivalent: try to simulate the addition
of 2 and 3, and the result will be just as good as if you “actually” carried out the addition—that is the
nature of numbers.

154

Syntactic Semantics and the Proper Treatment of Computationalism

̭� A computer simulation of reasoning is reasoning. This is the foundation of automated theorem
proving.

And, in general, a computer simulation of cognition is cognition. To continue the just-cited quote
from Edelman (2008b, p. 81):

Therefore, if the mind is a computational entity, a simulation of the relevant computations would con-
stitute its fully functional replica.

CONCLUSION

I conclude that Fetzer is mistaken on all counts: Computers are semiotic systems and can possess
minds, mental processes are governed by algorithms (or, at least, “procedures”), and algorithms can be
affected by emotions, attitudes, and individual histories. Moreover, computers that implement cognitive
algorithms really do exhibit those cognitive behaviors—they really do think. And syntactic semantics
explains how this is possible.

ACKNOWLEDGMENT

This essay is based on my oral reply (“Salvaging Computationalism: How Cognition Could Be Com-
puting”) to two unpublished presentations by Fetzer: (1) “Can Computationalism Be Salvaged?,” 2009
International Association for Computing and Philosophy (Chicago), and (2) “Limits to Simulations of
Thought and Action,” session on “The Limits of Simulations of Human Actions” at the 2010 North
American Computing and Philosophy conference (Carnegie-Mellon University). I am grateful to Fetzer
for allowing me to quote from his slides and from an unpublished manuscript; to our co-presenters at
both meetings—Selmer Bringsjord and James H. Moor—for their commentaries; to our unique audiences
at those meetings; and to Randall R. Dipert, Albert Goldfain, Lorenzo Incardona, Kenneth W. Regan,
Daniel R. Schlegel, Stuart C. Shapiro, and members of the SNePS Research Group for comments or
assistance on previous drafts.

REFERENCES

Ames, W. S. (1966). The development of a classification scheme of contextual aids. Reading Research
Quarterly, 2(1), 57–82. doi:10.2307/747039

Andersen, P. B. (1992). Computer semiotics. Scandinavian Journal of Information Systems, 4(1), 1–30.

Anstey, J., Seyed, A. P., Bay-Cheng, S., Pape, D., Shapiro, S. C., Bona, J., & Hibit, S. (2009). The agent takes
the stage. International Journal of Arts and Technology, 2(4), 277–296. doi:10.1504/IJART.2009.029236

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.
PMID:11301525

155

Syntactic Semantics and the Proper Treatment of Computationalism

Brighton, H. (2002). Compositional syntax from cultural transmission. Artificial Life, 8(1), 25–54.
doi:10.1162/106454602753694756 PMID:12020420

Brown, S. R. (2002). Peirce, Searle, and the Chinese room argument. Cybernetics & Human Knowing,
9(1), 23–38.

Burge, T. (1986). Individualism and psychology. The Philosophical Review, 95(1), 3–45.
doi:10.2307/2185131

Cariani, P. (2001). Symbols and dynamics in the brain. Bio Systems, 60(1-3), 59–83. doi:10.1016/S0303-
2647(01)00108-3 PMID:11325504

Chalmers, D. J. (1996). The conscious mind: In search of a fundamental theory. New York: Oxford
University Press.

Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Math-
ematics, 58(2), 345–363. doi:10.2307/2371045

Cleland, C. E. (1993). Is the Church-Turing thesis true? Minds and Machines, 3(3), 283-312.

Coffa, J. A. (1991). The semantic tradition from Kant to Carnap: To the Vienna Station. Cambridge,
UK: Cambridge University Press. doi:10.1017/CBO9781139172240

Crane, T. (1990). The language of thought: No syntax without semantics. Mind & Language, 5(3),
187–212. doi:10.1111/j.1468-0017.1990.tb00159.x

Crossley, J. N., & Henry, A. S. (1990). Thus spake al-Khwārizmī: A translation of the text of Cambridge
University Library Ms. Ii.vi.5. Historia Mathematica, 17(2), 103–131. doi:10.1016/0315-0860(90)90048-I

Dennett, D. (2009). Darwin’s ‘Strange Inversion of Reasoning.’ Proceedings of the National Academy
of Sciences, 106(Suppl 1), 10061-10065.

Diet r ich, E. (1990) . Computat ional ism. Social Epistemology , 4 (2) , 135–154.
doi:10.1080/02691729008578566

Dipert, R. R. (1984). Peirce, Frege, the logic of telations, and Church’s Theorem. History and Philosophy
of Logic, 5(1), 49–66. doi:10.1080/01445348408837062

Dresner, E. (2010). Measurement-theoretic representation and computation-theoretic Realization. The
Journal of Philosophy, 107(6), 275–292. doi:10.5840/jphil2010107622

Dreyfus, H. L. (1965). Alchemy and artificial intelligence. Report P-3244. RAND Corp. Accessed 2
November 2011 from http://tinyurl.com/4hczr59

Dreyfus, H. L. (1972). What computers still can’t do: A critique of artificial reason. New York: Harper
& Row.

Dreyfus, H. L. (1979). What computers still can’t do: A critique of artificial reason (revised ed.). New
York: Harper & Row.

Dreyfus, H. L. (1992). What computers still can’t do: A critique of artificial reason. Cambridge, MA:
MIT Press.

156

Syntactic Semantics and the Proper Treatment of Computationalism

Dulin, K. L. (1970). Using context clues in word recognition and comprehension. The Reading Teacher,
23(5), 440–445, 469.

Eco, U. (1979). A theory of semiotics. Bloomington, IN: Indiana University Press.

Eco, U. (1988). On truth: A fiction. In U. Eco, M. Santambrogio, & P. Violi (Eds.), Meaning and mental
representations (pp. 41–59). Bloomington, IN: Indiana University Press.

Edelman, S. (2008a). On the nature of minds, or: Truth and consequences. Journal of Experimental &
Theoretical Artificial Intelligence, 20(3), 181–196. doi:10.1080/09528130802319086

Edelman, S. (2008b). Computing the Mind. New York: Oxford University Press.

Edelman, S. (2011). Regarding reality: Some consequences of two incapacities. Frontiers in Theoretical
and Philosophical Psychology, 2, 1–8. doi:10.3389/fpsyg.2011.00044

Ehrlich, K. (1995). Automatic vocabulary expansion through narrative context. Technical Report 95-09.
Buffalo, NY: SUNY Buffalo Department of Computer Science.

Fetzer, J. H. (1990). Artificial intelligence: Its scope and limits. Dordrecht, The Netherlands: Kluwer
Academic Publishers. doi:10.1007/978-94-009-1900-6

Fetzer, J. H. (1994). Mental algorithms: Are minds computational systems? Pragmatics & Cognition,
2(1), 1–29. doi:10.1075/pc.2.1.01fet

Fetzer, J. H. (1998). People are not computers, (most) thought processes are not computation-
al procedures. Journal of Experimental & Theoretical Artificial Intelligence, 10(4), 371–391.
doi:10.1080/095281398146653

Fetzer, J. H. (2001). Computers and cognition: Why minds are not machines. Dordrecht, The Netherlands:
Kluwer Academic Publishers. doi:10.1007/978-94-010-0973-7

Fetzer, J. H. (2008, July 11). Computing vs. cognition: Three dimensional differences. Unpublished.

Fetzer, J. H. (2010). Limits to simulations of thought and action. Talk given at the 2010 North American
Conference on Computing and Philosophy (NA-CAP), Carnegie-Mellon University.

Fetzer, J. H. (2011). Minds and machines: Limits to simulations of thought and action. International
Journal of Signs and Semiotic Systems, 1(1), 39–48. doi:10.4018/ijsss.2011010103

Fodor, J. A. (1975). The language of thought. New York: Crowell.

Fodor, J. A. (1980). Methodological solipsism considered as a research strategy in cognitive psychology.
Behavioral and Brain Sciences, 3(01), 63–109. doi:10.1017/S0140525X00001771

Fodor, J. A. (2000). The mind doesn’t work that way: The scope and limits of computational psychology.
Cambridge, MA: MIT Press.

Fodor, J. A. (2008). LOT 2: The language of thought revisited. Oxford, UK: Clarendon. doi:10.1093/ac
prof:oso/9780199548774.001.0001

Forbus, K. D. (2010). AI and Cognitive Science: The Past and Next 30 Years. Topics in Cognitive Sci-
ence, 2(3), 345–356. doi:10.1111/j.1756-8765.2010.01083.x PMID:25163864

157

Syntactic Semantics and the Proper Treatment of Computationalism

Ford, K., & Hayes, P. (1998). On computational wings. Scientific American Presents, 9(4), 78-83.

Franzén, T. (2005). Gödel’s theorem: An incomplete guide to its use and abuse. Wellesley, MA: A.K.
Peters. doi:10.1201/b10700

Gandy, R. (1988). The confluence of ideas in 1936. In R. Herken (Ed.), The universal Turing Machine:
A half-century survey (2nd ed.; pp. 51-102). Vienna: Springer-Verlag.

Gelman, R., & Gallistel, C. R. (1986). The child’s understanding of number. Cambridge, MA: Harvard
University Press.

Goldfain, A. (2006). Embodied enumeration: Appealing to activities for mathematical explanation. In
M. Beetz, K. Rajan, M. Thielscher, & R. Bogdan Rusu (Eds.), Cognitive robotics: Papers from the AAAI
Workshop (CogRob2006) (pp. 69-76). Technical Report WS-06-03. Menlo Park, CA: AAAI Press.

Goldfain, A. (2008). A computational theory of early mathematical cognition (PhD dissertation). Buf-
falo, NY: SUNY Buffalo Department of Computer Science & Engineering. Retrieved from http://www.
cse.buffalo.edu/sneps/Bibliography/GoldfainDissFinal.pdf

Gopnik, A. (2009). The philosophical baby: What children’s minds tell us about truth, love, and the
meaning of life. New York: Farrar, Straus and Giroux.

Habib, S. (1983). Emulation. In A. Ralston & E. D. Reilly Jr., (Eds.), Encyclopedia of Computer Science
and Engineering (2nd ed.; pp. 602–603). New York: Van Nostrand Reinhold.

Harnad, S. (1990). The symbol grounding problem. Physica D. Nonlinear Phenomena, 42(1-3), 335–346.
doi:10.1016/0167-2789(90)90087-6

Harris, P. (2000). The work of the imagination. Malden, MA: Blackwell.

Hobbes, T. (1651). Leviathan. Indianapolis, IN: Bobbs-Merrill Library of Liberal Arts.

Hofstadter, D. (2007). I am a strange loop. New York: Basic Books.

Horst, S. (2009). The computational theory of mind. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philoso-
phy. Accessed 6 May 2011 from http://plato.stanford.edu/archives/win2009/entries/computational-mind/

Huemer, M. (2011). Sense-data. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Accessed 6
May 2011 from http://plato.stanford.edu/archives/spr2011/entries/sense-data/

Hume, D. (1739). A treatise of human nature (L. A. Selby-Bigge, Ed.). London: Oxford University Press.

Hume, D. (1777). An enquiry concerning human understanding (L. A. Selby-Bigge, Ed.). London:
Oxford University Press. doi:10.1093/oseo/instance.00046350

Incardona, L. (2012). Semiotica e web semantico: Basi teoriche e metodologiche per la semiotica com-
putazionale [Semiotics and semantic web: Theoretical and methodological foundations for computational
semiotics] (PhD dissertation). University of Bologna.

Jackendoff, R. (2002). Foundations of language: Brain, meaning, grammar, evolution. Oxford, UK:
Oxford University Press. doi:10.1093/acprof:oso/9780198270126.001.0001

158

Syntactic Semantics and the Proper Treatment of Computationalism

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and
consciousness. Cambridge, MA: Harvard University Press.

Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cam-
bridge, MA: Harvard University Press.

Jones, D. (2010). Animal liberation. Paper presented at the 2010 North American Conference on Com-
puting and Philosophy (NA-CAP), Carnegie-Mellon University.

Julesz, B. (1971). Foundations of Cyclopean perception. Chicago: University of Chicago Press.

Ketner, K. L. (1988). Peirce and Turing: Comparisons and conjectures. Semiotica, 68(1/2), 33–61.

Kirby, S. (2000). Syntax without natural selection: How compositionality emerges from vocabulary in a
population of learners. In C. Knight (Ed.), The evolutionary emergence of language: Social function and
the origins of linguistic form (pp. 303–323). Cambridge, UK: Cambridge University Press. doi:10.1017/
CBO9780511606441.019

Kleene, S. C. (1952). Introduction to metamathematics. Princeton, NJ: D. Van Nostrand.

Kleene, S. C. (1967). Mathematical logic. New York: Wiley.

Knuth, D. E. (1972). Ancient Babylonian algorithms. Communications of the ACM, 15(7), 671–677.
doi:10.1145/361454.361514

Knuth, D. E. (1973). Basic concepts: Algorithms. In The Art of Computer Programming (2nd ed.; pp.
xiv-9). Reading, MA: Addison-Wesley.

Kugel, P. (2002). Computing machines can’t be intelligent (…and Turing said so). Minds and Machines,
12(4), 563–579. doi:10.1023/A:1021150928258

Levesque, H. (2012). Thinking as Computation: A First Course. Cambridge, MA: MIT Press. doi:10.7551/
mitpress/9780262016995.001.0001

Lobina, D. J. (2010). Recursion and the competence/performance distinction in AGL tasks. Language
and Cognitive Processes. Accessed 4 November 2011 from http://tinyurl.com/Lobina2010

Lobina, D. J., & García-Albea, J. E. (2009). Recursion and cognitive science: Data structures and mecha-
nisms. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st Annual Conference of the Cognitive
Science Society (pp. 1347-1352). Academic Press.

Lohr, S. (2010, September 24). Frederick Jelinek, who gave machines the key to human speech, dies at
77. New York Times, p. B10.

Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy (London, England), 36(137), 112–127.
doi:10.1017/S0031819100057983

Makuuchi, M., Bahlmann, J., Anwander, A., & Friederici, A. D. (2009). Segregating the core compu-
tational faculty of human language from working memory. Proceedings of the National Academy of
Sciences, 106(20), 8362-8367. doi:10.1073/pnas.0810928106

Mann, G. A. (2010). A machine that daydreams. IFIP Advances in Information and Communication
Technology, 333, 21–35. doi:10.1007/978-3-642-15214-6_3

159

Syntactic Semantics and the Proper Treatment of Computationalism

Markov, A. A. (1954). Theory of algorithms. Tr. Mat. Inst. Steklov, 42.

Marr, D. (1982). Vision: A computational investigation into the human representation and processing
of visual information. New York: W.H. Freeman.

McCorduck, P. (1990). Aaron’s code: Meta-Art, artificial intelligence, and the work of Harold Cohen.
New York: W.H. Freeman.

McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity.
The Bulletin of Mathematical Biophysics, 5(4), 115–133. doi:10.1007/BF02478259

McGee, K. (2011). Review of K. Tanaka-Ishii’s Semiotics of programming. Artificial Intelligence, 175,
930–931. doi:10.1016/j.artint.2010.11.023

Mill, J. S. (1843). A system of logic. Accessed 4 November 2011 from http://tinyurl.com/MillSystemLogic

Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York:
Henry Holt. doi:10.1037/10039-000

Morris, C. (1938). Foundations of the theory of signs. Chicago: University of Chicago Press.

Mueller, E. T. (1990). Daydreaming in humans and machines: A computer model of the stream of thought.
Norwood, NJ: Ablex.

Nadin, M. (2007). Semiotic machine. Public Journal of Semiotics, 1(1), 85-114. Accessed 5 May 2011
from http://www.nadin.ws/archives/760

Nadin, M. (2010). Remembering Peter Bøgh Andersen: Is the computer a semiotic machine? A discussion
never finished. Semiotix: New Series, (1). Retrieved from http://www.semioticon.com/semiotix/2010/03/

Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem solving. Psy-
chological Review, 65(3), 151–166. doi:10.1037/h0048495

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Com-
munications of the ACM, 19(3), 113–126. doi:10.1145/360018.360022

Nöth, W. (2003). Semiotic machines. S.E.E.D. Journal (Semiotics, Evolution, Energy, and Development),
3(3), 81-99. Retrieved from http://www.library.utoronto.ca/see/SEED/Vol3-3/Winfried.pdf

Parisien, C., & Thagard, P. (2008). Robosemantics: How Stanley represents the world. Minds and Ma-
chines, 18(2), 169–178. doi:10.1007/s11023-008-9098-2

Pattee, H. H. (1969). How does a molecule become a message? Developmental Biology, (Supplement
3), 1–16.

Pattee, H. H. (1982). Cell psychology: An evolutionary approach to the symbol-matter problem. Cogni-
tion and Brain Theory, 5(4), 325–341.

Peirce, C. S. (1887). Logical machines. The American Journal of Psychology, 1, 165–170.

Peirce, C. S. (1908). Semiotic and significs: The correspondence between Charles S. Peirce and Victoria
Lady Welby. Bloomington, IN: Indiana University Press.

160

Syntactic Semantics and the Proper Treatment of Computationalism

Peirce, C. S. (1992). Some consequences of four incapacities. In N. Houser & C. Kloesel (Eds.), The
essential Peirce: Selected philosophical writings (Vol. 1, pp. 186–199). Bloomington, IN: Indiana Uni-
versity Press.

Peirce, C. S. (1998). The essential Peirce: Selected philosophical writings (Vol. 2). Bloomington, IN:
Indiana University Press.

Peirce, C. S. (1931-1958). Collected papers of Charles Sanders Peirce (vols. 1-8). Cambridge, MA:
Harvard University Press.

Penrose, R. (1989). The Emperor’s new mind: Concerning computers, minds and the laws of physics.
New York: Oxford University Press.

Perlovsky, L. I. (2007). Symbols: Integrated cognition and language. In R. Gudwin & J. Queiroz (Eds.),
Semiotics and intelligent systems development (pp. 121–151). Hershey, PA: Idea Group. doi:10.4018/978-
1-59904-063-9.ch005

Phillips, A. L. (2011). The algorists. American Scientist, 99(2), 126. doi:10.1511/2011.89.126

Picard, R. (2010). Affective computing. Accessed 6 August 2010 from http://affect.media.mit.edu/

Picard, R. W. (1997). Affective computing. Cambridge, MA: MIT Press. doi:10.1037/e526112012-054

Piccinini, G. (2005). Symbols, strings, and spikes: The empirical refutation of computationalism. Re-
trieved from http://tinyurl.com/Piccinini2005

Piccinini, G. (2007). Computational explanation and mechanistic explanation of mind. In M. Marraffa,
M. De Caro, & F. Ferretti (Eds.), Cartographies of the mind: Philosophy and psychology in intersection
(pp. 23–36). Dordrecht, The Netherlands: Springer. doi:10.1007/1-4020-5444-0_2

Piccinini, G. (2008). Computation without representation. Philosophical Studies, 137(2), 205–241.
doi:10.1007/s11098-005-5385-4

Piccinini, G. (2010). The mind as neural software? Understanding functionalism, computationalism,
and computational functionalism. Philosophy and Phenomenological Research, 81(2), 269–311.
doi:10.1111/j.1933-1592.2010.00356.x

Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of
Biological Physics, 37(1), 1–38. doi:10.1007/s10867-010-9195-3 PMID:22210958

Pollock, J. L. (2008). What am I? Virtual machines and the mind/body problem. Philosophy and Phe-
nomenological Research, 76(2), 237–309. doi:10.1111/j.1933-1592.2007.00133.x

Posner, R. (1992). Origins and development of contemporary syntactics. Languages of Design, 1, 37–50.

Putnam, H. (1960). Minds and machines. In S. Hook (Ed.), Dimensions of mind: A symposium (pp.
148–179). New York: New York University Press.

Putnam, H. (1961). Brains and behavior. Presented at the American Association for the Advancement
of Science, Section L (History and Philosophy of Science).

Putnam, H. (1975). The meaning of ‘meaning.’ In K. Gunderson (Ed.), Language, mind, and knowledge
(pp. 131-193). Minneapolis, MN: University of Minnesota Press.

161

Syntactic Semantics and the Proper Treatment of Computationalism

Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press.

Pylyshyn, Z. W. (1980). Computation and cognition: Issues in the foundations of cognitive science.
Behavioral and Brain Sciences, 3(01), 111–169. doi:10.1017/S0140525X00002053

Pylyshyn, Z. W. (1985). Computation and cognition: Toward a foundation for cognitive science (2nd
ed.). Cambridge, MA: MIT Press.

Ramachandran, V., & Rogers-Ramachandran, D. (2009). Two eyes, two views. Scientific American Mind,
20(5), 22–24. doi:10.1038/scientificamericanmind0909-22

Rapaport, W. J. (1979). (1978. Meinongian theories and a Russellian paradox. Noûs 12, 153-180. Noûs
(Detroit, Mich.), 13, 125. doi:10.2307/2214805

Rapaport, W. J. (1979). An adverbial Meinongian theory. Analysis, 39(2), 75–81. doi:10.1093/analys/39.2.75

Rapaport, W. J. (1981). How to make the world fit our language: An essay in Meinongian semantics.
Grazer Philosophische Studien, 14, 1–21. doi:10.5840/gps1981141

Rapaport, W. J. (1985/1986). Non-existent objects and epistemological ontology. Grazer Philosophische
Studien, 25/26, 61-95.

Rapaport, W. J. (1986). Searle’s experiments with thought. Philosophy of Science, 53(2), 271–279.
doi:10.1086/289312

Rapaport, W. J. (1988). Syntactic semantics: Foundations of computational natural-language understand-
ing. In J. H. Fetzer (Ed.), Aspects of artificial intelligence (pp. 81-131). Dordrecht, The Netherlands:
Kluwer Academic Publishers. Retrieved from http://tinyurl.com/SynSemErrata1

Rapaport, W. J. (1990). Computer processes and virtual persons: Comments on Cole’s ‘Artificial Intel-
ligence and Personal Identity.’ Technical Report 90-13. Buffalo, NY: SUNY Buffalo Department of
Computer Science. Retrieved from http://tinyurl.com/Rapaport1990

Rapaport, W. J. (1995). Understanding understanding: Syntactic semantics and computational cognition.
In J. E. Tomberlin (Ed.), AI, connectionism, and philosophical psychology (pp. 49-88). Atascadero, CA:
Ridgeview.

Rapaport, W. J. (1998). How minds can be computational systems. Journal of Experimental & Theoreti-
cal Artificial Intelligence, 10(4), 403–419. doi:10.1080/095281398146671

Rapaport, W. J. (1999). Implementation is semantic interpretation. The Monist, 82(1), 109–130.
doi:10.5840/monist19998212

Rapaport, W. J. (2000). How to pass a Turing Test: Syntactic semantics, natural-language understanding,
and first-person cognition. Journal of Logic, Language, and Information, 9(4), 467-490.

Rapaport, W. J. (2002). Holism, conceptual-role semantics, and syntactic semantics. Minds and Machines,
12(1), 3–59. doi:10.1023/A:1013765011735

Rapaport, W. J. (2003a). What did you mean by that? Misunderstanding, negotiation, and syntactic
semantics. Minds and Machines, 13(3), 397–427. doi:10.1023/A:1024145126190

162

Syntactic Semantics and the Proper Treatment of Computationalism

Rapaport, W. J. (2003b). What is the ‘context’ for contextual vocabulary acquisition? In P. P. Slezak
(Ed.), Proceedings of the 4th International Conference on Cognitive Science/7th Australasian Society
for Cognitive Science Conference (ICCS/ASCS-2003; Sydney, Australia) (Vol. 2, pp. 547-552). Sydney:
University of New South Wales.

Rapaport, W. J. (2005a). In defense of contextual vocabulary acquisition: How to do things with words
in context. In A. Dey, B. Kokinov, D. Leake, & R. Turner (Eds.), Modeling and using context: 5th Inter-
national and Interdisciplinary Conference, CONTEXT 05, Paris, France, July 2005, Proceedings (pp.
396-409). Berlin: Springer-Verlag.

Rapaport, W. J. (2005b). Implementation is semantic interpretation: Further thoughts. Journal of Ex-
perimental & Theoretical Artificial Intelligence, 17(4), 385–417. doi:10.1080/09528130500283998

Rapaport, W. J. (2006). How Helen Keller used syntactic semantics to escape from a Chinese room.
Minds and Machines, 16(4), 381–436. doi:10.1007/s11023-007-9054-6

Rapaport, W. J. (2011). Yes, she was! Reply to Ford’s ‘Helen Keller was never in a Chinese room.’.
Minds and Machines, 21(1), 3–17. doi:10.1007/s11023-010-9213-z

Rapaport, W. J. (2015). On the relation of computing to the world. In T. M. Powers (Ed.), Philosophy
and computing: Essays in epistemology, philosophy of mind, logic, and ethics. Springer. Retrieved from
http://www.cse.buffalo.edu/~rapaport/Papers/covey.pdf

Rapaport, W. J. (2017a). Semantics as syntax. American Philosophical Association Newsletter on Phi-
losophy and Computers. Retrieved from http://www.cse.buffalo.edu/~rapaport/Papers/synsemapa.pdf

Rapaport, W. J. (2017b). Philosophy of computer science. Retrieved from https://www.cse.buffalo.
edu//~rapaport/Papers/phics.pdf

Rapaport, W. J., & Ehrlich, K. (2000). A computational theory of vocabulary acquisition. In Ł. M.
Iwańska & S. C. Shapiro (Eds.), Natural language processing and knowledge representation: Language
for knowledge and knowledge for language (pp. 347–375). Menlo Park, CA: AAAI Press/MIT Press.
Retrieved from http://tinyurl.com/RapaportEhrlichErrata

Rapaport, W. J., & Kibby, M. W. (2007). Contextual vocabulary acquisition as computational philosophy
and as philosophical computation. Journal of Experimental & Theoretical Artificial Intelligence, 19(1),
1–17. doi:10.1080/09528130601116162

Rapaport, W. J., & Kibby, M. W. (2010). Contextual vocabulary acquisition: From algorithm to cur-
riculum. Retrieved from http://tinyurl.com/RapaportKibby2010

Ray, K. (2010). Web 3.0. Accessed 1 March 2011 from http://kateray.net/film

Rescorla, M. (2017). The computational theory of mind. In The Stanford Encyclopedia of Philosophy.
Retrieved from https://plato.stanford.edu/archives/spr2017/entries/computational-mind/

Rosen, R. (1987). On the scope of syntactics in mathematics and science: The machine metaphor. In J.
L. Casti & A. Karlqvist (Eds.), Real brains, artificial minds (pp. 1–23). New York: Elsevier Science.

163

Syntactic Semantics and the Proper Treatment of Computationalism

Rosser, B. (1939). An informal exposition of proofs of Gödel’s theorem. The Journal of Symbolic Logic,
4(2), 53–60. doi:10.2307/2269059

Roth, P. F. (1983). Simulation. In A. Ralston & E. D. Reilly Jr., (Eds.), Encyclopedia of Computer Sci-
ence and Engineering (2nd ed.; pp. 1327–1341). New York: Van Nostrand Reinhold.

Santore, J. F., & Shapiro, S. C. (2003). Crystal Cassie: Use of a 3-D gaming environment for a cogni-
tive agent. In R. Sun (Ed.), Papers of the IJCAI 2003 Workshop on Cognitive Modeling of Agents and
Multi-Agent Interactions (IJCAII; Acapulco, Mexico, August 9, 2003) (pp. 84-91). Academic Press.

Schagrin, M. L., Rapaport, W. J., & Dipert, R. R. (1985). Logic: A computer approach. New York:
McGraw-Hill.

Schneider, S. (2009). The paradox of fiction. Internet Encyclopedia of Philosophy. Accessed 6 May
2011 from http://www.iep.utm.edu/fict-par/

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(03), 417–457.
doi:10.1017/S0140525X00005756

Searle, J. R. (1990). Is the brain a digital computer? Proceedings and Addresses of the American Philo-
sophical Association, 64(3), 21–37. doi:10.2307/3130074

Segal, G. (1989). Seeing what is not there. The Philosophical Review, 98(2), 189–214. doi:10.2307/2185282

Shapiro, S. C. (1992). Artificial Intelligence. In S. C. Shapiro (Ed.), Encyclopedia of Artificial Intel-
ligence (2nd ed.; pp. 54–57). New York: John Wiley & Sons.

Shapiro, S. C. (1993). Belief spaces as sets of propositions. Journal of Experimental & Theoretical
Artificial Intelligence, 5(2-3), 225–235. doi:10.1080/09528139308953771

Shapiro, S. C. (1998). Embodied Cassie. In Cognitive Robotics: Papers from the 1998 AAAI Fall Sym-
posium (pp. 136-143). Technical Report FS-98-02. Menlo Park, CA: AAAI Press.

Shapiro, S. C. (2001). Computer science: The study of procedures. Accessed 5 May 2011 from http://
www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf

Shapiro, S. C. (2006). Natural-language-competent robots. IEEE Intelligent Systems, 21(4), 76–77.

Shapiro, S. C., Amir, E., Grosskreutz, H., Randell, D., & Soutchanski, M. (2001). Commonsense and
embodied agents. A panel discussion. At Common Sense 2001: The 5th International Symposium on
Logical Formalizations of Commonsense Reasoning, Courant Institute of Mathematical Sciences,
New York University. Accessed 20 October 2011 from http://www.cse.buffalo.edu/~shapiro/Papers/
commonsense-panel.pdf

Shapiro, S. C., & Bona, J. P. (2010). The GLAIR cognitive architecture. International Journal of Machine
Consciousness, 2(02), 307–332. doi:10.1142/S1793843010000515

Shapiro, S. C., & Ismail, H. O. (2003). Anchoring in a grounded layered architecture with integrated
reasoning. Robotics and Autonomous Systems, 43(2-3), 97–108. doi:10.1016/S0921-8890(02)00352-4

164

Syntactic Semantics and the Proper Treatment of Computationalism

Shapiro, S. C., & Rapaport, W. J. (1987). SNePS Considered as a fully intensional propositional semantic
network. In N. Cercone & G. McCalla (Eds.), The knowledge frontier: Essays in the representation of
knowledge (pp. 262–315). New York: Springer-Verlag. doi:10.1007/978-1-4612-4792-0_11

Shapiro, S. C., & Rapaport, W. J. (1991). Models and minds: Knowledge representation for natural-
language competence. In R. Cummins & J. Pollock (Eds.), Philosophy and AI: Essays at the interface
(pp. 215-259). Cambridge, MA: MIT Press.

Shapiro, S. C., Rapaport, W. J., Kandefer, M., Johnson, F. L., & Goldfain, A. (2007). Metacognition in
SNePS. AI Magazine, 28(1), 17–31.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63(2),
129–138. doi:10.1037/h0042769 PMID:13310708

Simon, H. A. (1967). Motivational and emotional controls of cognition. Psychological Review, 74(1),
29–39. doi:10.1037/h0024127 PMID:5341441

Sloman, A. (2004). What are emotion theories about? Workshop on Architectures for Modeling Emo-
tion, AAAI Spring Symposium, Stanford University.

Sloman, A. (2009). The cognition and affect project. Accessed 6 May 2011 from http://www.cs.bham.
ac.uk/research/projects/cogaff/cogaff.html

Sloman, A., & Croucher, M. (1981). Why robots will have emotions. Proceedings of the International
Joint Conference on Artificial Intelligence. Retrieved from http://www.cs.bham.ac.uk/research/projects/
cogaff/81-95.html#36

Smith, B. C. (1982). Linguistic and computational semantics. In Proceedings of the 20th Annual Meeting
of the Association for Computational Linguistics (pp. 9-15). Morristown, NJ: Association for Compu-
tational Linguistics. doi:10.3115/981251.981254

Smith, B. C. (1985). Limits of correctness in computers. ACM SIGCAS Computers and Society, 14-
15(1-4), 18-26.

Smith, B. C. (2001). True grid. In D. Montello (Ed.), Spatial Information Theory: Foundations of
Geographic Information Science, Proceedings of COSIT 2001, Morro Bay, CA, September 2001 (pp.
14-27). Berlin: Springer.

Smith, B. C. (2010). Introduction. In B. C. Smith (Ed.), Age of Significance. Cambridge, MA: MIT Press.
Retrieved from http://www.ageofsignificance.org/aos/en/aos-v1c0.html

Soare, R. I. (2009). Turing oracle machines, online computing, and three displacements in computability
theory. Annals of Pure and Applied Logic, 160(3), 368–399. doi:10.1016/j.apal.2009.01.008

Srihari, R. K., & Rapaport, W. J. (1989). Extracting visual information from text: Using captions to label
human faces in newspaper photographs. In Proceedings of the 11th Annual Conference of the Cognitive
Science Society (pp. 364-371). Hillsdale, NJ: Lawrence Erlbaum Associates.

Srihari, R. K., & Rapaport, W. J. (1990). Combining linguistic and pictorial information: Using captions
to interpret newspaper photographs. In D. Kumar (Ed.), Current Trends in SNePS—Semantic Network
Processing System (pp. 85-96). Berlin: Springer-Verlag.

165

Syntactic Semantics and the Proper Treatment of Computationalism

Strawson, G. (2010). Mental reality (2nd ed.). Cambridge, MA: MIT Press.

Tarski, A. (1944). The semantic conception of truth and the foundations of semantics. Philosophy and
Phenomenological Research, 4(3), 341–376. doi:10.2307/2102968

Tenenbaum, A. M., & Augenstein, M. J. (1981). Data structures using Pascal. Englewood Cliffs, NJ:
Prentice-Hall.

Thagard, P. (2006). Hot thought: Mechanisms and applications of emotional cognition. Cambridge,
MA: MIT Press.

Toussaint, G. (1993). A new look at Euclid’s second proposition. The Mathematical Intelligencer, 15(3),
12–23. doi:10.1007/BF03024252

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, Ser. 2, 42, 230–265.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460. doi:10.1093/
mind/LIX.236.433

Van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7),
345–381. doi:10.2307/2941061

Vera, A. H., & Simon, H. A. (1993). Situated action: A symbolic interpretation. Cognitive Science, 17(1),
7–48. doi:10.1207/s15516709cog1701_2

Wegner, P. (1997). Why interaction is more powerful than algorithms. Communications of the ACM,
40(5), 80–91. doi:10.1145/253769.253801

Weizenbaum, J. (1976). Computer power and human reason: From judgment to calculation. New York:
W. H. Freeman.

Widdowson, H. G. (2004). Text, Context, Pretext. Malden, MA: Blackwell. doi:10.1002/9780470758427

Williams, B. (1998). The end of explanation? The New York Review of Books, 45(18), 40-44.

Winograd, T., & Flores, F. (1987). Understanding computers and cognition: A new foundation for design.
Reading, MA: Addison-Wesley.

Woods, W. A. (2010). The right tools: Reflections on computation and language. Computational Lin-
guistics, 36(4), 601–630. doi:10.1162/coli_a_00018

Wright, I., Sloman, A., & Beaudoin, L. (1996). Towards a design-based analysis of emotional episodes.
Philosophy, Psychiatry, & Psychology, 3(2), 101–126. doi:10.1353/ppp.1996.0022

Wu, H. H. (2011). Understanding numbers in Elementary school mathematics. Providence, RI: American
Mathematical Society. doi:10.1090/mbk/079

Zobrist, A. L. (2000). Computer games: Traditional. In A. Ralston, E. D. Reilly, & D. Hemmendinger
(Eds.), Encyclopedia of Computer Science (4th ed.; pp. 364-368). New York: Grove’s Dictionaries.

166

Syntactic Semantics and the Proper Treatment of Computationalism

ENDNOTES

1 Although I take full responsibility for this essay, I am also using it as an opportunity to publicize
two arguments for the claim that computers are semiotic systems. These arguments were originally
formulated by my former students Albert Goldfain and Lorenzo Incardona. I am grateful to both
of them for many discussions on the topics discussed here.

2 Throughout this essay, all italics in quotes are in the original, unless otherwise noted.
3 The authors quoted here include most of the principal philosophers who have written on compu-

tationalism. There are, of course, many researchers in both symbolic and connectionist AI who,
without necessarily taking explicit philosophical positions on computationalism, are computa-
tionalists of one stripe or another. These include, according to one anonymous referee, Barsalou,
Grossberg, Kosslyn, Kozma, Perlovsky, and Rocha, all of whom do computational modeling of
(human) cognition. One must be cautious, however; Perlovsky, in particular, misunderstands at
least one important logical claim: Contrary to what he consistently says in several of his writings
(e.g., Perlovsky, 2007, p. 123), Gödel never “proved inconsistency of logic.” Rather, Gödel proved,
roughly, that if a formal system consisting of first-order logic together with Peano’s axioms for the
natural numbers was consistent, then it was incomplete. Thus, such a system of “arithmetic” (which
contains, but is not the same as, “logic”) would only be inconsistent if it were complete. The usual
interpretation of Gödel is that arithmetic is (in all likelihood) consistent; hence, it is incomplete. See
note 49 for further discussion. See Franzén 2005 to be disabused of misinterpretations of Gödel.

4 See the rest of their Ch. 1, “Images and Plans” for some caveats. E.g., their endnote 12 (p. 16) says:
“comparing the sequence of operations executed by an organism and by a properly programmed
computer is quite different from comparing computers with brains, or electrical relays with syn-
apses.”

5 Except when quoting or in bibliographic references, I use single quotes to form names of expres-
sions, and I use double quotes as “scare quotes” or to mark quoted passages.

6 By ‘legal,’ I mean values in the domain of the function. So a partial function (i.e., one that is unde-
fined on some set of values) would be such that those values on which it is undefined are “illegal.”
The notion of “legal” inputs makes sense in a mathematical context, perhaps less so in a biological
one (Goldfain, personal communication, 2011). Biologically, presumably, all values are “legal,”
except that some of them are filtered out by our senses or produce unpredictable behavior.

7 Or, as Randall R. Dipert pointed out to me (personal communication, 2011), we might be able to
understand only those aspects of cognition that are computable.

8 Notably, J.R. Lucas (1961), the ever-pessimistic Hubert Dreyfus (1965, 1972, 1979, 1992), John
Searle (1980), Roger Penrose (1989), Terry Winograd & Fernando Flores (1987), to some extent
Joseph Weizenbaum (1976, esp. Chs. 7,8), and even Putnam (1988) and Fodor (2000) themselves!

9 The “strong” and “weak” views are, perhaps, close to, though a bit different from, what Stuart C.
Shapiro and I have called “computational psychology” and “computational philosophy,” respec-
tively; see Shapiro 1992, Rapaport 2003a.

10 Cf. also these passages from Newell, Shaw, & Simon 1958:
 The theory [of human problem solving] postulates…[a] number of primitive
 information processes, which operate on the information in the memories. Each
 primitive process is a perfectly definite operation for which known physical
 mechanisms exist. (The mechanisms are not necessarily known to exist in the

167

Syntactic Semantics and the Proper Treatment of Computationalism

 human brain, however—we are only concerned that the processes be described
 without ambiguity) (p. 151, their emphasis).
 The parenthetical phrase can be given the “computable” reading. But I hear the stronger, “compu-

tational” reading in the next passage:
[O] ur theory of problem solving…shows specifically and in detail how the
 processes that occur in human problem solving can be compounded out of
 elementary information processes, and hence how they can be carried out by
 mechanism (p. 152).
 I admit that the ‘can be’ weakens the “computational” reading to the “computable” reading.
11 Here, ‘function’ is to be taken in the mathematical sense explicated in note 42, below, rather than

in the sense of an activity or purpose. On the computational theory, the brain performs certain
“purposeful functions” by computing certain “mathematical functions.” Anti-computationalists say
that the brain does not perform its “purposeful functions” by computing mathematical ones, but in
some other way. Yet, I claim, those purposeful functions might be accomplished in a computational
way. A computer programmed to compute those mathematical functions would thereby perform
those purposeful functions.

12 Here, however, there might be a conflation of two senses of ‘recursive’: (a) as synonymous with
‘computable’ and (b) as synonymous with “inductive.” See Soare 2009.

13 See an ad for a (human) “computer” in The New York Times (2 May 1892) [http://tinyurl.com/
NYT-ComputerWanted].

14 An anonymous referee commented, “These views are popular, but it does not make them true.
They are wrong, (1) there is evidence that syntax can evolve as a secondary feature in language
(see Brighton [2002], Kirby [2000], others), (2) reclusiveness [sic] never was demonstrated to be
useful, it follows from hierarchy, which is much more useful, (3) semantics refers to objects and
events in the world, there can be no semantics inside a semiotic system, even if many people mis-
understood semiotics this way.” As will become clearer 2, by ‘syntacticism’ here I do not mean
grammatical syntax, as the referee seems to think I do; hence, point (1), though of independent
interest, is irrelevant. I am at a loss as to what to say about point (2), other than that I am not re-
ferring to recursiveness in language, but to a recursive feature of understanding, as will be seen.
Finally, point (3) is simply false; semantics can “refer” to mental concepts as well as worldly objects
and events. And at least one semiotician has remarked to me (personal communication) that many
semioticians “misunderstand” semiotics in exactly that way: that talk about “objects and events in
the world” is simplistic, if not blasphemous!

15 “[S]o long as we are thinking of mental processes as purely computational, the bearing of envi-
ronmental information upon such processes is exhausted by the formal character of whatever the
oracles [“analogs to the senses”] write on the tape [of a Turing machine]. In particular, it doesn’t
matter to such processes whether what the oracles write is true…. [T]he formality condition…is
tantamount to a sort of methodological solipsism.” (Fodor 1980: 65.)

16 “According to individualism about the mind, the mental natures of all a person’s or animal’s men-
tal states (and events) are such that there is no necessary or deep individuative relation between
the individual’s being in states of those kinds and the nature of the individual’s physical or social
environments” (Burge 1986: 3–4).

17 An anonymous referee commented about this quote, “again, wrong, despite many famous people
could be misinterpreted this way [sic]. Interaction between an organism and the world is a process.

168

Syntactic Semantics and the Proper Treatment of Computationalism

In this process there are (1) intuition[s] about the world, (2) predictions and (3) confirmations or
disconfirmations of these predictions. The same process is the process of science.” I agree that
organism-world interaction is a process. Pylyshyn’s point, however, is that the output of that process
is the only input to our cognitive system. Hence, intuitions, predictions, and (dis-)confirmations
are all internal.

18 Strict adherence to methodological solipsism would seem to require that LOT have syntax but no
semantics. Fodor (2008: 16) suggests that it needs a purely referential semantics. I have proposed
instead a Meinongian semantics for LOT, on the grounds that “non-existent” objects are best con-
strued as internal mental entities; see Rapaport 1978, 1979, 1981, and, especially, 1985/1986.

19 The terms (or “marks”) of this LOT (e.g., nodes of a semantic network; terms and predicates of a
language; or their biological analogues, etc.) need not all be alike, either in “shape” or function. E.g.,
natural languages use a wide variety of letters, numerals, etc.; neurons include afferent, internal,
and efferent ones (and the former do much of the internalization or “pushing”). (Albert Goldfain,
personal communication.) Moreover, some of the internal marks might well include Barsalou’s
(1999) “perceptual symbols.”

20 When I use ‘information’ (except when quoting), I am using it in a sense that is neutral among
several different meanings it can have; in particular, I do not necessarily intend the Shannon theory
of information. For further discussion, see Piccinini & Scarantino 2011.

21 Perception is input; so, if one wants to rule it out as an example of a cognitive phenomenon, then
perhaps outputs of cognitive processes (e.g., motor activity, or actions more generally) should also
be ruled out. This would be one way to respond to Cleland 1993; see n. 46.

22 One anonymous referee objected that “Despite the limitations on [human] sensation, there is an
analog aspect and nonarbitrariness about the [human] cognitive representations that is not shared
with a computer.” But a computer’s representations of visual input are surely just as non-arbitrary
(or, conversely, both are equally arbitrary; it’s just that we’re more familiar with our own) and just
as “analog” as ours are; this is one of the main points of Marr’s (1982) computational vision theory.

23 [http://www.oed.com/view/Entry/196559]
24 My use of ‘mark’ derives from Fetzer 2011 and will be clarified below.
25 For this reason, Barry Smith and Werner Ceusters (personal communication) prefer to call it the

‘Syntactic Web’!
26 I.., they are pure syntax—WJR.
27 Although this is suggestive of semantic interpretation, it is really just syntax: A bit is not something

(a sign) that is then interpreted as something else (e.g., 0 or 1). Rather, a bit is 0 or else it is 1 (or
it is high voltage or else it is low voltage; or it is magnetized or else it is not magnetized; and so
on).—WJR

28 This certainly sounds like ordinary semantics, but the very next passage clearly indicates a syntactic
approach.—WJR

29 “Declarations” are syntactic parts of a computer program.
30 For more quotes along these lines, see my Web page “Tenenbaum & Augenstein on Data, Informa-

tion, & Semantics,”
 [http://www.cse.buffalo.edu/~rapaport/563S05/data.html].
31 Shapiro (personal communication, 2011) suggests that, when we stop the recursion, we may only

think that we understand, as in the case of the sentence, “During the Renaissance, Bernini cast a
bronze of a mastiff eating truffles” (Johnson-Laird, personal communication, 2003; cf. Johnson-

169

Syntactic Semantics and the Proper Treatment of Computationalism

Laird 1983: 225, Widdowson 2004). The claim is that many people can understand this sentence
without being able to precisely define any of the principal words, as long as they have even a vague
idea that, e.g., the Renaissance was some period in history, ‘Bernini’ is someone’s name, “casting
a bronze” has something to do with sculpture, bronze is some kind of (perhaps yellowish) metal,
a mastiff is some kind of animal (maybe a dog), and truffles are something edible (maybe a kid of
mushroom, maybe a kind of chocolate candy). Still, such understanding is syntactic—it is under-
standing of one’s internal concepts.

32 A referee commented, “it seems that the author assumes that language and cognition is the same
thing.—this should be clarified. Syntax is a set of relations among signs. But how signs are related
to external objects and situations—not a word so far.” However, in these sections, I do not make
this assumption. Moreover, a large part of the entire essay concerns how semantics in the sense of
the relation of signs to external objects and situations can be handled by syntax.

33 Crane 1990 also points out that shape alone is not sufficient for syntax (as he interprets Fodor 1980
as holding). But Crane uses ‘syntax’ in the narrow sense of “grammar”; he is correct that a sentence
printed in all capital letters has a different shape from—but the same (grammatical) syntax as—the
same sentence printed normally. But, as I use the term, although shape does not suffice for syntax,
it is surely part of it.

34 The notion of “interpretant” will be clarified below.
35 I owe the observations in this paragraph to Incardona, personal communication, 2010.
36 I am indebted to Incardona for directing me to both this article by Peirce and an interpretation by

Kenneth Laine Ketner (1988, see esp. pp. 34, 46, 49). I have two problems with Ketner’s interpreta-
tion, however: (1) Ketner (p. 49) cites Peirce’s distinction between “corollarial” reasoning (reading
off a conclusion of an argument from a diagram of the premises) and “theorematic” reasoning (in
which the reasoner must creatively add something to the premises). But neither Peirce nor Ketner
offers any arguments that theorematic reasoning cannot be reduced to corollarial reasoning. If cor-
ollarial reasoning can be interpreted as referring to ordinary arguments with all premises explicitly
stated, and theorematic reasoning can be interpreted as referring to arguments (viz., enthymemes)
where a missing premise has to be supplied by the reasoner as “background knowledge,” then I
would argue that the latter can be reduced to the former (see Rapaport & Kibby 2010). However,
there are other interpretations (see Dipert 1984).

 (2) Ketner seems to misunderstand the Church-Turing Thesis (pp. 51–52). He presents it as stating
that computers can only do what they have been programmed to do (or “calculated to do,” to use
Peirce’s phrase). But what it really asserts is that the informal notion of “algorithm” can be identi-
fied with the formal notions of Church’s lambda calculus or Turing’s machines. Ketner also seems
to misunderstand the import of Turing’s proof of the existence of non-computable functions: He
thinks that this shows “that mathematical method is not universally deterministic” (p. 57). But what
it really shows is that Hilbert’s decision problem (viz., for any mathematical proposition P, is there
an algorithm that decides whether P is a theorem?) must be answered in the negative. Unfortunately,
in both cases, Ketner cites as an authority a logic text (Schagrin et al. 1985: 304–305) co-authored
by me! Granted, my co-authors and I use Church’s Thesis to justify a claim that “Computers can
perform only what algorithms describe”—which sounds like “computers can only do what they
have been programmed to do”—-but our intent was to point out that, if a computer can perform a
task, then that task can be described by an algorithm. Ketner’s sound-alike claim is usually taken
to mean that computers can’t do anything other than what they were explicitly programmed to do

170

Syntactic Semantics and the Proper Treatment of Computationalism

(e.g., they can’t show creativity or initiative). But computers that can learn can certainly do things
that they weren’t explicitly programmed to do; the Church-Turing thesis claims that anything that
they can do—including those things that they learned how to do—must be computable in the
technical sense of computable in the lambda calculus or by a Turing machine.

37 Dipert (1984: 59) suggests that Peirce might also have anticipated the Church-Turing Thesis.
38 Again, thanks to Incardona, whose dissertation explores these themes.
39 One anonymous referee commented, “[T]he mark’s user is always the same as the interpretant…

so the user is the same as the interpretant.” This is a misreading, either of me or of Peirce. I am
not using ‘interpretant’ to be synonymous with ‘mark user.’ Rather, I am following Peirce’s use,
roughly to the effect that an interpretant is a sign (or sign-like entity) in the user’s mind (see quotes
above).

40 “That determination of which the immediate cause, or determinant, is the Sign, and of which the
mediate cause is the Object may be termed the Interpretant….” (Peirce 1909, “Some Amazing
Mazes, Fourth Curiosity,” CP 6.347,

 [http://www.helsinki.fi/science/commens/terms/interpretant.html].)
41 “I call a representamen which is determined by another representamen, an interpretant of the lat-

ter.” (Peirce 1903, Harvard Lectures on Pragmatism, CP 5.138, [http://www.helsinki.fi/science/
commens/terms/interpretant.html].)

42 Mathematically a binary relation defined on the Cartesian product of two sets A and B (i.e., defined
on A X B) is a set of ordered pairs (“input-output” pairs), where the first member comes from A and
the second from B. A function is a binary relation f on A X B (“from A to B”) such that any given
member a of A is related by f to (at most) a unique b in B. I.e., if (a, b1) ∈ f and (a, b2) ∈ f (where a
∈ A and b1, b2 ∈ B), then b1 = b2. Conversely, if b1 ≠ b2, then f cannot map (or interpret) a as both
b1 and b2 simultaneously. I.e., no two outputs have the same input. If the outputs are thought of as
the meanings or “interpretations” (i.e., interpretants) of the inputs, then an interpretation function
cannot allow for ambiguity.

43 This question was raised by an anonymous referee.
44 For further discussion of the relation of computers to semiotic systems, see Andersen 1992, who

argues that “computer systems” are (merely) “sign-vehicles whose main function is to be perceived
and interpreted by some group of users”; Nöth 2003, who argues that “none of the criteria of se-
miosis is completely absent from the world of machines”; and Nadin (2007, 2010), who seems to
agree that “computers are semiotic machines.” Other sources are cited in McGee 2011.

45 In Rapaport 1999, 2005b, I argue that implementation as semantic interpretation is also a ternary
relation: Something is (1) a (concrete or abstract) implementation (i.e., a semantic “interpretant”)
of (2) an abstraction in (3) a (concrete or abstract) medium.

46 One anonymous referee said: “I disagree here: The output of a process (algorithm) need not be
caused by a certain input. It could have been caused by something else.” This is technically true:
The output of a constant function is not causally or algorithmically related to any input. But in all
other cases an algorithm’s output is a function of its input. The referee continues: “For instance, me
going to eat (output) is not necessarily an interpretant of my being hungry. It could be because I have
an appointment with a friend to go out eating. Likewise, a given input can yield different outputs.
When hungry, I may decide to eat, but also may decide to continue working.” I agree about hunger
and eating, but the relation between being hungry and going out to eat is not algorithmic; this is not
sign interpretation. The referee continues: “what I mean to say is that both input and output—and

171

Syntactic Semantics and the Proper Treatment of Computationalism

past experiences—are so tightly linked that the link/process should be part of the interpretant.”
If ‘interpretant’ means ‘mark user,’ then I agree that the “process should be part of” the user (or
the computer), but this makes no sense on the Peircean characterization of ‘interpretant.’ Finally,
the referee says, “the context (input) and process are crucial to meaning formation.” I quite agree
that all three of these are crucial, but it is important to note that context and input are two distinct
things. A context is not input to an algorithm; rather, it is the environment in which the algorithm
is executed. Elaboration of this would take us too far afield; the interested reader should consult
Smith 1985, Cleland 1993, Soare 2009 for further discussion of the relationship between context
and input.

47 Related to the notion of a semiotic system is that of a symbol system, as described by Newell &
Simon 1976:116:

 A physical symbol system consists of a set of entities, called symbols, which are physical patterns
that can occur as components of another type of entity called an expression (or symbol structure).
Thus, a symbol structure is composed of a number of instances (or tokens) of symbols related in
some physical way (such as one token being next to another). At any instant of time the system will
contain a collection of these symbol structures. Besides these structures, the system also contains
a collection of processes that operate on expressions to produce other expressions: processes of
creation, modification, reproduction and destruction. A physical symbol system is a machine that
produces through time an evolving collection of symbol structures. Such a system exists in a world
of objects wider than just these symbolic expressions themselves. …An expression designates
an object if, given the expression, the system can either affect the object itself or behave in ways
dependent on the object. …The system can interpret an expression if the expression designates a
process and if, given the expression, the system can carry out the process.

 In short, a physical symbol system is a computer.
48 “…in order to be able to refer separately to the general category of possible count tags and the

subset of such tags which constitute the traditional count words[, w]e call the former numerons; the
latter numerlogs. Numerons are any distinct and arbitrary tags that a mind (human or nonhuman)
uses in enumerating a set of objects. Numerlogs are the count words of a language.” (Gelman &
Gallistel 1986: 76–77.)

49 A referee suggested that the views of Pattee, 1969, 1982; Rosen, 1987; and Cariani, 2001 may also
be relevant, though I have my doubts. In any case, detailed discussion of their views is beyond the
scope of the present essay, so a few words will have to suffice. As I emphasized earlier, I am not
seeking to understand the (human) brain (as they are); I am seeking to understand mind, and not
only the human mind, but mind more generally and abstractly, such that both cognitive computers
and humans can be said to have minds. This requires an emphasis on symbols rather than matter,
but must be accompanied by a study of implementation (or realization)—the ways in which symbols
can be “grounded”—and its converse (as Pattee notes). For my thoughts on Harnad’s (1990) theory
of symbol grounding, in the context of syntactic semantics, see Rapaport 1995. For my thoughts
on the relation between implementation and semantics, see Rapaport 1999, 2005b. Briefly, as I
read Pattee 1969, he supports what I call syntacticism, and his 1982 notion of semantic closure
seems to describe a symbolic (i.e., syntactic) system whose semantic interpretation is the system
itself—but that would make it fully syntactic. Rosen offers two reasons why syntax is not sufficient
for semantics: The first is a variation on the Lucas-Penrose argument from Gödel’s Incompleteness
Theorem. This argument is highly debatable, but one simple response in the present context is to

172

Syntactic Semantics and the Proper Treatment of Computationalism

note that it might well be irrelevant: Gödel’s Incompleteness Theorem does not say that there are
true but unprovable statements of arithmetic (where truth is a matter of semantics and provability
is a matter of syntax; see note 3 for what is meant by ‘arithmetic’). What it says, rather, is that there
is an arithmetic statement S such that neither S nor ¬S can be proved. Semantics and truth do not
have to enter the picture. Of course, because S can be interpreted as saying that S is unprovable,
and because Gödel’s Incompleteness Theorem proves that, in fact, S is unprovable, it follows by
a trivial conception of “truth” that S is true. Rosen’s second reason is that biological systems are
“complex” and hence their “behavior…cannot be fully captured by any syntactic means” (Rosen
1987: 14). But this depends on unprovable, metaphorical analogies between syntax and physical
reductionism and between causation and implication. Moreover, Rosen (1987: 2) misunderstands
Kleene when he disapprovingly quotes Kleene as saying that, in formal, axiomatic systems, mean-
ings are “left out of account.” What Kleene means is, not to eliminate meaning altogether, but
that the goal of formal axiomatics is to capture all meaning syntactically, i.e., to remove it from
the symbols (i.e., to turn the symbols into “marks,” as I used the term above) and to move it (by
explicitly re-encoding it) to the (syntactic) axioms. Finally, although Cariani (2001, p. 71) says,
“One cannot replace semantics with syntactics,” in fact one can, if the “world states” (Cariani,
2001, p. 70) are also symbolized; this is my point about internalis. Oddly, Cariani (2001, p. 77n.13)
also says, “Contra Fodor and Putnam, meaning can and does lie in the head.” I quite agree; that’s
part of syntacticism! Fodor 1980 also agrees about the location of meaning, so I fail to understand
why Cariani places Fodor and Putnam in the same camp. As Incardona (personal communication,
2011) observed, the real issue might be that I need to explain more clearly than I try above: “how
syntacticism justifies the relationship between cognitive agents and the world. [But] internalism
does not mean that cognitive agents cannot transform the ‘outside world.’” Readers who want such
an explanation from me should read my papers on this theme.

50 These ideas were first suggested to me by Shoshana Hardt Loeb (personal communication, ca.
1983.)

51 See discussion and citations in Edelman 2011. Edelman says, “The phenomenal experience that
arises from th[e] dynamics [of the anatomy and physiology of dreaming] is that of the dream self,
situated in a dream world” (p. 3, my italics). So Fetzer could be charitably interpreted as meaning,
not that dreams (hence minds) are not computable, but that dream phenomenology is not comput-
able, i.e., that the “hard problem” of consciousness is, indeed, hard. But this raises a host of other
issues that go beyond the scope of this paper. For some relevant remarks, see Rapaport 2005b.

52 But simulated animals simulatedly die!—WJR
53 But see my comments above about simulated hurricanes!—WJR
54 Cf. IBM’s Jeopardy-winning Watson.—WJR
55 See my Web page “What Is Hypercomputation?” for a partial bibliography, [http://www.cse.buf-

falo.edu/~rapaport/584/hypercompn.html]

Syntactic Semantics and the Proper Treatment of Computationalism

173

APPENDIX

What Is an Algorithm?

Before anyone attempted to define ‘algorithm,’ many algorithms were in use both by mathematicians as
well as by ordinary people (e.g., Euclid’s procedures for construction of geometric objects by compass
and straightedge—see Toussaint, 1993; Euclid’s algorithm for computing the GCD of two integers; the
algorithms for simple arithmetic with Hindu-Arabic numerals—see Crossley & Henry, 1990, Wu, 2011;
cf. Knuth, 1972). When David Hilbert investigated the foundations of mathematics, his followers began
to try to make the notion of algorithm precise, beginning with discussions of “effectively calculable,” a
phrase first used by Jacques Herbrand in 1931 (Gandy, 1988, p. 68) and later taken up by Church (1936)
and Stephen Kleene (1952), but left largely undefined, at least in print.

J. Barkley Rosser (1939, p. 55) made an effort to clarify the contribution of the modifier “effective”
(italics and enumeration mine):

“Effective method” is here used in the rather special sense of a method each step of which is [1] precisely
predetermined and which is [2] certain to produce the answer [3] in a finite number of steps.

But what, exactly, does ‘precisely predetermined’ mean? And does ‘finite number of steps’ mean
that the written statement of the algorithm has a finite number of instructions, or that, when executing
them, only a finite number of tasks must be performed? (What gets counted: written steps or executed
instructions? One written step—“for i:= 1 to 100 do x:= x + 1”—can result in 100 executed instruc-
tions.) Much later, after Turing’s, Church’s, Gödel’s, and Post’s precise formulations and during the age
of computers and computer programming, A.A. Markov, Kleene, and Donald Knuth also gave slightly
less vague, though still informal, characterizations.

According to Markov (1954/1960, p. 1), an algorithm is a “computational process” satisfying three
(informal) properties: (1) being “determined” (“carried out according to a precise prescription…leaving
no possibility of arbitrary choice, and in the known sense generally understood”), (2) having “applicabil-
ity” (“The possibility of starting from original given objects which can vary within known limits”), and
(3) having “effectiveness” (“The tendency of the algorithm to obtain a certain result, finally obtained
for appropriate original given objects”). These are a bit obscure: Being “determined” may be akin to
Rosser’s “precisely predetermined.” But what about being “applicable”? Perhaps this simply means
that an algorithm must not be limited to converting one, specific input to an output, but must be more
general. And Markov’s notion of “effectiveness” seems restricted to only the second part of Rosser’s
notion, namely, that of “producing the answer.” There is no mention of finiteness, unless that is implied
by being computational.

In his undergraduate-level, logic textbook, Kleene (1967) elaborated on the notions of “effective’ and
“algorithm” that he had left unspecified in his earlier, classic, graduate-level treatise on metamathemat-
ics. He continues to identify “effective procedure” with “algorithm” (Kleene, 1967, p. 231), but now he
offers a characterization of an algorithm as (1) a “procedure” (i.e., a “finite” “set of rules or instructions”)
that (2) “in a finite number of steps” answers a question, where (3) each instruction can be “followed”
“mechanically, like robots; no insight or ingenuity or invention is required,” (4) each instruction “tell[s]
us what to do next,” and (5) the algorithm “enable[s] us to recognize when the steps come to an end”

Syntactic Semantics and the Proper Treatment of Computationalism

174

(Kleene, 1967, p. 223). Knuth (1973, pp. 1-9) goes into considerably more detail, albeit still informally.
He says that an algorithm is “a finite set of rules which gives a sequence of operations for solving a
specific type of problem,” with “five important features” (Knuth, 1973, p. 4):

1. “Finiteness. An algorithm must always terminate after a finite number of steps” (Knuth, 1973, p.
4).
a. Note the double finiteness: A finite number of rules in the text of the algorithm and a finite

number of steps to be carried out. Moreover, algorithms must halt. (Halting is not guaranteed
by finiteness; see point 5, below.) Interestingly, Knuth also says that an algorithm is a finite
“computational method,” where a “computational method” is a “procedure” that only has the
next four features (Knuth, 1973, p. 4).

2. “Definiteness. Each step…must be precisely defined; the actions to be carried out must be rigor-
ously and unambiguously specified…” (Knuth, 1973, p. 5).
a. This seems to be Knuth’s analogue of the “precision” that Rosser and Markov mention.

3. “Input. An algorithm has zero or more inputs” (Knuth, 1973, p. 5).
a. Curiously, only Knuth and Markov seem to mention this explicitly, with Markov’s “applica-

bility” property suggesting that there must be at least one input. Why does Knuth say zero
or more? Presumably, he wants to allow for the possibility of a program that simply outputs
some information. On the other hand, if algorithms are procedures for computing functions,
and if functions are “regular” sets of input-output pairs (regular in the sense that the same
input is always associated with the same output), then algorithms would always have to have
input. Perhaps Knuth has in mind the possibility of the input being internally stored in the
computer rather than having to be obtained from the external environment.

4. “Output. An algorithm has one or more outputs” (Knuth, 1973, p. 5).
a. That there must be at least one output echoes Rosser’s property (2) (“certain to produce the

answer”) and Markov’s notion (3) of “effectiveness” (“a certain result”). But Knuth charac-
terizes outputs as “quantities which have a specified relation to the inputs” (Knuth, 1973, p.
5); the “relation” would no doubt be the functional relation between inputs and outputs, but
if there is no input, what kind of a relation would the output be in? Very curious!

5. “Effectiveness. This means that all of the operations to be performed in the algorithm must be
sufficiently basic that they can in principle be done exactly and in a finite length of time by a man
[sic] using pencil and paper” (Knuth, 1973, p. 6).
a. Note, first, how the term ‘effective’ has many different meanings among all these characteriza-

tions of “algorithm,” ranging from it being an unexplained term, through being synonymous
with ‘algorithm,’ to naming very particular—and very different—properties of algorithms.
Second, it is not clear how Knuth’s notion of effectiveness differs from his notion of definite-
ness; both seem to have to do with the preciseness of the operations. Third, Knuth brings in
another notion of finiteness: finiteness in time. Note that an instruction to carry out an infinite
sequence of steps in a finite time could be accomplished in principle by doing each step twice
as fast as the previous step; or each step might only take a finite amount of time, but the number
of steps required might take longer than the expected life of the universe (as in computing a
perfect, non-losing strategy in chess; see §6.1, above). These may have interesting theoretical
implications (see the vast literature on hypercomputation),55 but do not seem very practical.

Syntactic Semantics and the Proper Treatment of Computationalism

175

Knuth (1973, p. 7) observes that “we want good algorithms in some loosely-defined aesthetic
sense. One criterion of goodness is the length of time taken to perform the algorithm….”
Finally, the “gold standard” of “a [hu]man using pencil and paper” seems clearly to be an
allusion to Turing’s (1936) analysis.

We can summarize these informal observations as follows: An algorithm (for executor E to accom-
plish goal G) is:

1. A procedure (or “method”)—i.e., a finite set (or sequence) of statements (or rules, or instruc-
tions)—such that each statement is:
a. Composed of a finite number of symbols (or marks) from a finite alphabet
b. And unambiguous for E—i.e.,
c. E knows how to do it
d. E can do it
e. It can be done in a finite amount of time
f. And, after doing it, E knows what to do next—

2. And the procedure takes a finite amount of time, i.e., halts,
3. And it ends with G accomplished.

But the important thing to note is that the more one tries to make precise these informal requirements
for something to be an algorithm, the more one recapitulates Turing’s motivation for the formulation
of a Turing machine! Turing (1936) describes in excruciating detail what the minimal requirements are
for a human to compute:

[T]he computation is carried out on one-dimensional paper, i.e. on a tape divided into squares. …The
behaviour of the computer [i.e., the human who computes!—WJR] at any moment is determined by the
symbols which he [sic] is observing, and his “state of mind” at that moment. …[T]here is a bound B
to the number of symbols or squares which the computer can observe at one moment. …[A]lso…the
number of states of mind which need be taken into account is finite. …[T]he operations performed by the
computer…[are] split up into “simple operations” which are so elementary that it is not easy to imagine
them further divided. Every such operation consists of some change of the physical system consisting of
the computer and his tape. We know the state of the system if we know the sequence of symbols on the
tape, which of these are observed by the computer…, and the state of mind of the computer. …[I]n a
simple operation not more than one symbol is altered. …[T]he squares whose symbols are changed are
always “observed” squares. …[T]he simple operations must include changes of distribution of observed
squares. …[E]ach of the new observed squares is within L squares of an immediately previously observed
square. …The most general single operation must therefore be taken to be one of the following: (A) A
possible change…of symbol together with a possible change of state of mind. (B) A possible change…of
observed squares, together with a possible change of mind. The operation actually performed is deter-
mined… by the state of mind of the computer and the observed symbols. In particular, they determine
the state of mind of the computer after the operation is carried out. We may now construct a machine
to do the work of this computer” (Turing, 1936, pp. 249-251).

Syntactic Semantics and the Proper Treatment of Computationalism

176

The “machine,” of course, is what is now known as a “Turing machine”; it “does the work of this”
human computer. Hence, my claim, above that the Turing machine was the first AI program. (For further
discussion of the role of the goal of an algorithm, see Rapaport 2015. For further discussion of what an
algorithm is, see Rapaport 2017b.)

You are logged in: (/gateway/infosci­ondemand­plus/)

You own this content in your personal library.

3 Articles/Chapters Remaining

Go to My Personal Library (/gateway/infosci­ondemand­plus/)

Syntactic Semantics and the Proper Treatment of Computationalism
William J. Rapaport (The State University of New York at Buffalo, USA)

Source Title: Empirical Research on Semiotics and Visual Rhetoric (/gateway/book/190535)
Copyright: © 2018
Pages: 49

ISBN13: 9781522556220ISBN10: 1522556222EISBN13: 9781522556237

DOI: 10.4018/978­1­5225­5622­0.ch007

Cite Chapter Favorite

t

� "

View Full Text HTML

(/gateway/chapter/full­text­html/197981)

đ

View Full Text PDF

(/gateway/chapter/full­text­pdf/197981)

đ

Abstract

Computationalism should not be the view that (human) cognition is computation; it should be the view that cognition (simpliciter) is
computable. It follows that computationalism can be true even if (human) cognition is not the result of computations in the brain. If
semiotic systems are systems that interpret signs, then both humans and computers are semiotic systems. Finally, minds can be
considered as virtual machines implemented in certain semiotic systems, primarily the brain, but also AI computers.

References

Follow Reference
Ames W. S. (1966). The development of a classification scheme of contextual aids.Reading Research
Quarterly, 2(1), 57–82. 10.2307/747039

Follow Reference Andersen P. B. (1992). Computer semiotics.Scandinavian Journal of Information Systems, 4(1), 1–30.

Follow Reference
Anstey J. Seyed A. P. Bay­Cheng S. Pape D. Shapiro S. C. Bona J. Hibit S. (2009). The agent takes the
stage.International Journal of Arts and Technology, 2(4), 277–296. 10.1504/IJART.2009.029236

Follow Reference
Barsalou L. W. (1999). Perceptual symbol systems.Behavioral and Brain Sciences, 22, 577–
660.11301525

Follow Reference
Brighton H. (2002). Compositional syntax from cultural transmission.Artificial Life, 8(1), 25–54.
10.1162/10645460275369475612020420

Follow Reference
Brown S. R. (2002). Peirce, Searle, and the Chinese room argument.Cybernetics & Human Knowing,
9(1), 23–38.

Follow Reference
Burge T. (1986). Individualism and psychology.The Philosophical Review, 95(1), 3–45.
10.2307/2185131

Follow Reference
Cariani P. (2001). Symbols and dynamics in the brain.Bio Systems, 60(1­3), 59–83. 10.1016/S0303­
2647(01)00108­311325504

Follow Reference
Chalmers D. J. (1996). The conscious mind: In search of a fundamental theory. New York: Oxford
University Press.

Follow Reference
Church A. (1936). An unsolvable problem of elementary number theory.American Journal of
Mathematics, 58(2), 345–363. 10.2307/2371045

Cleland, C. E. (1993). Is the Church­Turing thesis true? Minds and Machines, 3(3), 283­312.

Follow Reference
Coffa J. A. (1991). The semantic tradition from Kant to Carnap: To the Vienna Station. Cambridge,
UK: Cambridge University Press. 10.1017/CBO9781139172240

Follow Reference
Crane T. (1990). The language of thought: No syntax without semantics.Mind & Language, 5(3), 187–
212. 10.1111/j.1468­0017.1990.tb00159.x

Follow Reference
Crossley J. N. Henry A. S. (1990). Thus spake al­Khwārizmī: A translation of the text of Cambridge
University Library Ms. Ii.vi.5.Historia Mathematica, 17(2), 103–131. 10.1016/0315­0860(90)90048­I

Dennett, D. (2009). Darwin’s ‘Strange Inversion of Reasoning.’ Proceedings of the National Academy
of Sciences, 106(Suppl 1), 10061­10065.

Follow Reference
Dietrich E. (1990). Computationalism.Social Epistemology, 4(2), 135–154.
10.1080/02691729008578566

Follow Reference
Dipert R. R. (1984). Peirce, Frege, the logic of telations, and Church’s Theorem.History and
Philosophy of Logic, 5(1), 49–66. 10.1080/01445348408837062

Follow Reference
Dresner E. (2010). Measurement­theoretic representation and computation­theoretic Realization.The
Journal of Philosophy, 107(6), 275–292. 10.5840/jphil2010107622

Dreyfus, H. L. (1965). Alchemy and artificial intelligence. Report P­3244. RAND Corp. Accessed 2
November 2011 from http://tinyurl.com/4hczr59 (http://tinyurl.com/4hczr59)

Follow Reference
Dreyfus H. L. (1972). What computers still can’t do: A critique of artificial reason. New York: Harper
& Row.

Follow Reference
Dreyfus H. L. (1979). What computers still can’t do: A critique of artificial reason (revised ed.). New
York: Harper & Row.

Follow Reference
Dreyfus H. L. (1992). What computers still can’t do: A critique of artificial reason. Cambridge, MA:
MIT Press.

Follow Reference
Dulin K. L. (1970). Using context clues in word recognition and comprehension.The Reading Teacher,
23(5), 440–445, 469.

Follow Reference Eco U. (1979). A theory of semiotics. Bloomington, IN: Indiana University Press.

Follow Reference
Eco U. (1988). On truth: A fiction. In U. EcoSantambrogioM.VioliP. (Eds.), Meaning and mental
representations (pp. 41–59). Bloomington, IN: Indiana University Press.

Follow Reference
Edelman S. (2008a). On the nature of minds, or: Truth and consequences.Journal of Experimental &
Theoretical Artificial Intelligence, 20(3), 181–196. 10.1080/09528130802319086

Follow Reference Edelman S. (2008b). Computing the Mind. New York: Oxford University Press.

Follow Reference
Edelman S. (2011). Regarding reality: Some consequences of two incapacities. Frontiers in Theoretical
and Philosophical Psychology, 2, 1–8. doi:10.3389/fpsyg.2011.00044

Ehrlich, K. (1995). Automatic vocabulary expansion through narrative context. Technical Report 95­
09. Buffalo, NY: SUNY Buffalo Department of Computer Science.

Follow Reference
Fetzer J. H. (1990). Artificial intelligence: Its scope and limits. Dordrecht, The Netherlands: Kluwer
Academic Publishers. 10.1007/978­94­009­1900­6

Follow Reference
Fetzer J. H. (1994). Mental algorithms: Are minds computational systems?Pragmatics & Cognition,
2(1), 1–29. 10.1075/pc.2.1.01fet

Follow Reference

Fetzer J. H. (1998). People are not computers, (most) thought processes are not computational
procedures.Journal of Experimental & Theoretical Artificial Intelligence, 10(4), 371–391.
10.1080/095281398146653

Follow Reference
Fetzer J. H. (2001). Computers and cognition: Why minds are not machines. Dordrecht, The
Netherlands: Kluwer Academic Publishers. 10.1007/978­94­010­0973­7

Fetzer, J. H. (2008, July 11). Computing vs. cognition: Three dimensional differences. Unpublished.

Fetzer, J. H. (2010). Limits to simulations of thought and action. Talk given at the 2010 North
American Conference on Computing and Philosophy (NA­CAP), Carnegie­Mellon University.

Follow Reference
Fetzer J. H. (2011). Minds and machines: Limits to simulations of thought and action.International
Journal of Signs and Semiotic Systems, 1(1), 39–48. 10.4018/ijsss.2011010103

Follow Reference Fodor J. A. (1975). The language of thought. New York: Crowell.

Follow Reference
Fodor J. A. (1980). Methodological solipsism considered as a research strategy in cognitive
psychology.Behavioral and Brain Sciences, 3(01), 63–109. 10.1017/S0140525X00001771

Follow Reference
Fodor J. A. (2000). The mind doesn’t work that way: The scope and limits of computational
psychology. Cambridge, MA: MIT Press.

Follow Reference
Fodor J. A. (2008). LOT 2: The language of thought revisited. Oxford, UK: Clarendon.
10.1093/acprof:oso/9780199548774.001.0001

Follow Reference
Forbus K. D. (2010). AI and Cognitive Science: The Past and Next 30 Years.Topics in Cognitive
Science, 2(3), 345–356. 10.1111/j.1756­8765.2010.01083.x25163864

Ford, K., & Hayes, P. (1998). On computational wings. Scientific American Presents, 9(4), 78­83.

Follow Reference
Franzén T. (2005). Gödel’s theorem: An incomplete guide to its use and abuse. Wellesley, MA: A.K.
Peters. 10.1201/b10700

Gandy, R. (1988). The confluence of ideas in 1936. In R. Herken (Ed.), The universal Turing Machine:
A half­century survey (2nd ed.; pp. 51­102). Vienna: Springer­Verlag.

Follow Reference
Gelman R. Gallistel C. R. (1986). The child’s understanding of number. Cambridge, MA: Harvard
University Press.

Goldfain, A. (2006). Embodied enumeration: Appealing to activities for mathematical explanation. In
M. Beetz, K. Rajan, M. Thielscher, & R. Bogdan Rusu (Eds.), Cognitive robotics:Papers from the
AAAI Workshop (CogRob2006) (pp. 69­76). Technical Report WS­06­03. Menlo Park, CA: AAAI
Press.

Goldfain, A. (2008). A computational theory of early mathematical cognition (PhD dissertation).
Buffalo, NY: SUNY Buffalo Department of Computer Science & Engineering. Retrieved from
http://www.cse.buffalo.edu/sneps/Bibliography/GoldfainDissFinal.pdf
(http://www.cse.buffalo.edu/sneps/Bibliography/GoldfainDissFinal.pdf)

Follow Reference
Gopnik A. (2009). The philosophical baby: What children’s minds tell us about truth, love, and the
meaning of life. New York: Farrar, Straus and Giroux.

Follow Reference
Habib S. (1983). Emulation. In RalstonA.ReillyE. D.Jr., (Eds.), Encyclopedia of Computer Science and
Engineering (2nd ed.; pp. 602–603). New York: Van Nostrand Reinhold.

Follow Reference
Harnad S. (1990). The symbol grounding problem.Physica D. Nonlinear Phenomena, 42(1­3), 335–
346. 10.1016/0167­2789(90)90087­6

Harris, P. (2000). The work of the imagination. Malden, MA: Blackwell.

Hobbes, T. (1651). Leviathan. Indianapolis, IN: Bobbs­Merrill Library of Liberal Arts.

Follow Reference Hofstadter D. (2007). I am a strange loop. New York: Basic Books.

Horst, S. (2009). The computational theory of mind. In E. N. Zalta (Ed.), Stanford Encyclopedia of
Philosophy. Accessed 6 May 2011 from
http://plato.stanford.edu/archives/win2009/entries/computational­mind/
(http://plato.stanford.edu/archives/win2009/entries/computational­mind/)

Huemer, M. (2011). Sense­data. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Accessed 6
May 2011 from http://plato.stanford.edu/archives/spr2011/entries/sense­data/
(http://plato.stanford.edu/archives/spr2011/entries/sense­data/)

Hume, D. (1739). A treatise of human nature (L. A. Selby­Bigge, Ed.). London: Oxford University
Press.

Follow Reference
Hume, D. (1777). An enquiry concerning human understanding (L. A. Selby­Bigge, Ed.). London:
Oxford University Press. 10.1093/oseo/instance.00046350

Incardona, L. (2012). Semiotica e web semantico: Basi teoriche e metodologiche per la semiotica
computazionale [Semiotics and semantic web: Theoretical and methodological foundations for
computational semiotics] (PhD dissertation). University of Bologna.

Follow Reference
Jackendoff R. (2002). Foundations of language: Brain, meaning, grammar, evolution. Oxford, UK:
Oxford University Press. 10.1093/acprof:oso/9780198270126.001.0001

Follow Reference
Johnson­Laird P. N. (1983). Mental models: Towards a cognitive science of language, inference, and
consciousness. Cambridge, MA: Harvard University Press.

Follow Reference
Johnson­Laird P. N. (1988). The computer and the mind: An introduction to cognitive science.
Cambridge, MA: Harvard University Press.

Jones, D. (2010). Animal liberation. Paper presented at the 2010 North American Conference on
Computing and Philosophy (NA­CAP), Carnegie­Mellon University.

Follow Reference Julesz B. (1971). Foundations of Cyclopean perception. Chicago: University of Chicago Press.

Follow Reference Ketner K. L. (1988). Peirce and Turing: Comparisons and conjectures.Semiotica, 68(1/2), 33–61.

Follow Reference

Kirby S. (2000). Syntax without natural selection: How compositionality emerges from vocabulary in a
population of learners. In KnightC. (Ed.), The evolutionary emergence of language: Social function and
the origins of linguistic form (pp. 303–323). Cambridge, UK: Cambridge University Press.
10.1017/CBO9780511606441.019

Follow Reference Kleene S. C. (1952). Introduction to metamathematics. Princeton, NJ: D. Van Nostrand.

Follow Reference Kleene S. C. (1967). Mathematical logic. New York: Wiley.

Follow Reference
Knuth D. E. (1972). Ancient Babylonian algorithms.Communications of the ACM, 15(7), 671–677.
10.1145/361454.361514

Follow Reference
Knuth D. E. (1973). Basic concepts: Algorithms. In The Art of Computer Programming (2nd ed.; pp.
xiv­9). Reading, MA: Addison­Wesley.

Follow Reference
Kugel P. (2002). Computing machines can’t be intelligent (…and Turing said so).Minds and Machines,
12(4), 563–579. 10.1023/A:1021150928258

Follow Reference
Levesque H. (2012). Thinking as Computation: A First Course. Cambridge, MA: MIT Press.
10.7551/mitpress/9780262016995.001.0001

Lobina, D. J. (2010). Recursion and the competence/performance distinction in AGL tasks. Language
and Cognitive Processes. Accessed 4 November 2011 from http://tinyurl.com/Lobina2010
(http://tinyurl.com/Lobina2010)

Lobina, D. J., & García­Albea, J. E. (2009). Recursion and cognitive science: Data structures and
mechanisms. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st Annual Conference of the
Cognitive Science Society (pp. 1347­1352). Academic Press.

Lohr, S. (2010, September 24). Frederick Jelinek, who gave machines the key to human speech, dies at
77. New York Times, p. B10.

Follow Reference
Lucas J. R. (1961). Minds, machines and Gödel.Philosophy (London, England), 36(137), 112–127.
10.1017/S0031819100057983

Follow Reference

Makuuchi M. Bahlmann J. Anwander A. Friederici A. D. (2009). Segregating the core computational
faculty of human language from working memory.Proceedings of the National Academy of Sciences,
106(20), 8362­8367. 10.1073/pnas.0810928106

Follow Reference
Mann G. A. (2010). A machine that daydreams.IFIP Advances in Information and Communication
Technology, 333, 21–35. 10.1007/978­3­642­15214­6_3

Markov, A. A. (1954). Theory of algorithms. Tr. Mat. Inst. Steklov, 42.

Follow Reference
Marr D. (1982). Vision: A computational investigation into the human representation and processing of
visual information. New York: W.H. Freeman.

Follow Reference
McCorduck P. (1990). Aaron’s code: Meta­Art, artificial intelligence, and the work of Harold Cohen.
New York: W.H. Freeman.

Follow Reference
McCulloch W. S. Pitts W. H. (1943). A logical calculus of the ideas immanent in nervous activity.The
Bulletin of Mathematical Biophysics, 5(4), 115–133. 10.1007/BF02478259

Follow Reference
McGee K. (2011). Review of K. Tanaka­Ishii’s Semiotics of programming.Artificial Intelligence, 175,
930–931. 10.1016/j.artint.2010.11.023

Mill, J. S. (1843). A system of logic. Accessed 4 November 2011 from
http://tinyurl.com/MillSystemLogic (http://tinyurl.com/MillSystemLogic)

Follow Reference
Miller G. A. Galanter E. Pribram K. H. (1960). Plans and the structure of behavior. New York: Henry
Holt. 10.1037/10039­000

Follow Reference Morris C. (1938). Foundations of the theory of signs. Chicago: University of Chicago Press.

Follow Reference
Mueller E. T. (1990). Daydreaming in humans and machines: A computer model of the stream of
thought. Norwood, NJ: Ablex.

Nadin, M. (2007). Semiotic machine. Public Journal of Semiotics, 1(1), 85­114. Accessed 5 May 2011
from http://www.nadin.ws/archives/760 (http://www.nadin.ws/archives/760)

Nadin, M. (2010). Remembering Peter Bøgh Andersen: Is the computer a semiotic machine? A
discussion never finished. Semiotix: New Series, (1). Retrieved from
http://www.semioticon.com/semiotix/2010/03/ (http://www.semioticon.com/semiotix/2010/03/)

Follow Reference
Newell A. Shaw J. C. Simon H. A. (1958). Elements of a theory of human problem
solving.Psychological Review, 65(3), 151–166. 10.1037/h0048495

Follow Reference
Newell A. Simon H. A. (1976). Computer science as empirical inquiry: Symbols and
search.Communications of the ACM, 19(3), 113–126. 10.1145/360018.360022

Nöth, W. (2003). Semiotic machines. S.E.E.D. Journal (Semiotics, Evolution, Energy, and
Development), 3(3), 81­99. Retrieved from http://www.library.utoronto.ca/see/SEED/Vol3­
3/Winfried.pdf (http://www.library.utoronto.ca/see/SEED/Vol3­3/Winfried.pdf)

Follow Reference
Parisien C. Thagard P. (2008). Robosemantics: How Stanley represents the world.Minds and Machines,
18(2), 169–178. 10.1007/s11023­008­9098­2

Follow Reference
Pattee H. H. (1969). How does a molecule become a message?Developmental Biology, (Supplement 3),
1–16.

Follow Reference
Pattee H. H. (1982). Cell psychology: An evolutionary approach to the symbol­matter
problem.Cognition and Brain Theory, 5(4), 325–341.

Follow Reference Peirce C. S. (1887). Logical machines.The American Journal of Psychology, 1, 165–170.

Peirce, C. S. (1908). Semiotic and significs: The correspondence between Charles S. Peirce and
Victoria Lady Welby. Bloomington, IN: Indiana University Press.

Follow Reference

Peirce C. S. (1992). Some consequences of four incapacities. In HouserN.KloeselC. (Eds.), The
essential Peirce: Selected philosophical writings (Vol. 1, pp. 186–199). Bloomington, IN: Indiana
University Press.

Peirce, C. S. (1998). The essential Peirce: Selected philosophical writings (Vol. 2). Bloomington, IN:
Indiana University Press.

Peirce, C. S. (1931­1958). Collected papers of Charles Sanders Peirce (vols. 1­8). Cambridge, MA:
Harvard University Press.

Follow Reference
Penrose R. (1989). The Emperor’s new mind: Concerning computers, minds and the laws of physics.
New York: Oxford University Press.

Follow Reference

Perlovsky L. I. (2007). Symbols: Integrated cognition and language. In GudwinR.QueirozJ. (Eds.),
Semiotics and intelligent systems development (pp. 121–151). Hershey, PA: Idea Group. 10.4018/978­
1­59904­063­9.ch005

Follow Reference Phillips A. L. (2011). The algorists.American Scientist, 99(2), 126. 10.1511/2011.89.126

Picard, R. (2010). Affective computing. Accessed 6 August 2010 from http://affect.media.mit.edu/
(http://affect.media.mit.edu/)

Follow Reference Picard R. W. (1997). Affective computing. Cambridge, MA: MIT Press. 10.1037/e526112012­054

Piccinini, G. (2005). Symbols, strings, and spikes: The empirical refutation of computationalism.
Retrieved from http://tinyurl.com/Piccinini2005 (http://tinyurl.com/Piccinini2005)

Follow Reference

Piccinini G. (2007). Computational explanation and mechanistic explanation of mind. In MarraffaM.De
CaroM.FerrettiF. (Eds.), Cartographies of the mind: Philosophy and psychology in intersection (pp. 23–
36). Dordrecht, The Netherlands: Springer. 10.1007/1­4020­5444­0_2

Follow Reference
Piccinini G. (2008). Computation without representation.Philosophical Studies, 137(2), 205–241.
10.1007/s11098­005­5385­4

Follow Reference

Piccinini G. (2010). The mind as neural software? Understanding functionalism, computationalism, and
computational functionalism.Philosophy and Phenomenological Research, 81(2), 269–311.
10.1111/j.1933­1592.2010.00356.x

Follow Reference
Piccinini G. Scarantino A. (2011). Information processing, computation, and cognition.Journal of
Biological Physics, 37(1), 1–38. 10.1007/s10867­010­9195­322210958

Follow Reference
Pollock J. L. (2008). What am I? Virtual machines and the mind/body problem.Philosophy and
Phenomenological Research, 76(2), 237–309. 10.1111/j.1933­1592.2007.00133.x

Follow Reference Posner R. (1992). Origins and development of contemporary syntactics.Languages of Design, 1, 37–50.

Follow Reference
Putnam H. (1960). Minds and machines. In HookS. (Ed.), Dimensions of mind: A symposium (pp.
148–179). New York: New York University Press.

Putnam, H. (1961). Brains and behavior. Presented at the American Association for the Advancement
of Science, Section L (History and Philosophy of Science).

Putnam, H. (1975). The meaning of ‘meaning.’ In K. Gunderson (Ed.), Language, mind, and
knowledge (pp. 131­193). Minneapolis, MN: University of Minnesota Press.

Follow Reference Putnam H. (1988). Representation and reality. Cambridge, MA: MIT Press.

Follow Reference
Pylyshyn Z. W. (1980). Computation and cognition: Issues in the foundations of cognitive
science.Behavioral and Brain Sciences, 3(01), 111–169. 10.1017/S0140525X00002053

Follow Reference
Pylyshyn Z. W. (1985). Computation and cognition: Toward a foundation for cognitive science (2nd
ed.). Cambridge, MA: MIT Press.

Follow Reference
Ramachandran V. Rogers­Ramachandran D. (2009). Two eyes, two views.Scientific American Mind,
20(5), 22–24. 10.1038/scientificamericanmind0909­22

Follow Reference
Rapaport W. J. (1979). (1978. Meinongian theories and a Russellian paradox. Noûs 12, 153­180.Noûs
(Detroit, Mich.), 13, 125. 10.2307/2214805

Follow Reference
Rapaport W. J. (1979). An adverbial Meinongian theory.Analysis, 39(2), 75–81.
10.1093/analys/39.2.75

Follow Reference
Rapaport W. J. (1981). How to make the world fit our language: An essay in Meinongian
semantics.Grazer Philosophische Studien, 14, 1–21. 10.5840/gps1981141

Rapaport, W. J. (1985/1986). Non­existent objects and epistemological ontology. Grazer
Philosophische Studien, 25/26, 61­95.

Follow Reference
Rapaport W. J. (1986). Searle’s experiments with thought.Philosophy of Science, 53(2), 271–279.
10.1086/289312

Rapaport, W. J. (1988). Syntactic semantics: Foundations of computational natural­language
understanding. In J. H. Fetzer (Ed.), Aspects of artificial intelligence (pp. 81­131). Dordrecht, The
Netherlands: Kluwer Academic Publishers. Retrieved from http://tinyurl.com/SynSemErrata1
(http://tinyurl.com/SynSemErrata1)

Rapaport, W. J. (1990). Computer processes and virtual persons: Comments on Cole’s ‘Artificial
Intelligence and Personal Identity.’ Technical Report 90­13. Buffalo, NY: SUNY Buffalo Department
of Computer Science. Retrieved from http://tinyurl.com/Rapaport1990
(http://tinyurl.com/Rapaport1990)

Rapaport, W. J. (1995). Understanding understanding: Syntactic semantics and computational
cognition. In J. E. Tomberlin (Ed.), AI, connectionism, and philosophical psychology (pp. 49­88).
Atascadero, CA: Ridgeview.

Follow Reference
Rapaport W. J. (1998). How minds can be computational systems.Journal of Experimental &
Theoretical Artificial Intelligence, 10(4), 403–419. 10.1080/095281398146671

Follow Reference
Rapaport W. J. (1999). Implementation is semantic interpretation.The Monist, 82(1), 109–130.
10.5840/monist19998212

Rapaport, W. J. (2000). How to pass a Turing Test: Syntactic semantics, natural­language
understanding, and first­person cognition. Journal of Logic, Language, and Information, 9(4), 467­490.

Follow Reference
Rapaport W. J. (2002). Holism, conceptual­role semantics, and syntactic semantics.Minds and
Machines, 12(1), 3–59. 10.1023/A:1013765011735

Follow Reference
Rapaport W. J. (2003a). What did you mean by that? Misunderstanding, negotiation, and syntactic
semantics.Minds and Machines, 13(3), 397–427. 10.1023/A:1024145126190

Rapaport W. J. (2003b). What is the ‘context’ for contextual vocabulary acquisition? In SlezakP. P.
(Ed.), Proceedings of the 4th International Conference on Cognitive Science/7th Australasian Society
for Cognitive Science Conference (ICCS/ASCS­2003; Sydney, Australia) (Vol. 2, pp. 547­552).
Sydney: University of New South Wales.

Rapaport, W. J. (2005a). In defense of contextual vocabulary acquisition: How to do things with words
in context. In A. Dey, B. Kokinov, D. Leake, & R. Turner (Eds.), Modeling and using context: 5th
International and Interdisciplinary Conference, CONTEXT 05, Paris, France, July 2005, Proceedings

(pp. 396­409). Berlin: Springer­Verlag.

Follow Reference
Rapaport W. J. (2005b). Implementation is semantic interpretation: Further thoughts.Journal of
Experimental & Theoretical Artificial Intelligence, 17(4), 385–417. 10.1080/09528130500283998

Follow Reference
Rapaport W. J. (2006). How Helen Keller used syntactic semantics to escape from a Chinese
room.Minds and Machines, 16(4), 381–436. 10.1007/s11023­007­9054­6

Follow Reference
Rapaport W. J. (2011). Yes, she was! Reply to Ford’s ‘Helen Keller was never in a Chinese room.’.
Minds and Machines, 21(1), 3–17. 10.1007/s11023­010­9213­z

Rapaport, W. J. (2015). On the relation of computing to the world. In T. M. Powers (Ed.), Philosophy
and computing: Essays in epistemology, philosophy of mind, logic, and ethics. Springer. Retrieved from
http://www.cse.buffalo.edu/~rapaport/Papers/covey.pdf
(http://www.cse.buffalo.edu/~rapaport/Papers/covey.pdf)

Rapaport, W. J. (2017a). Semantics as syntax. American Philosophical Association Newsletter on
Philosophy and Computers. Retrieved from
http://www.cse.buffalo.edu/~rapaport/Papers/synsemapa.pdf
(http://www.cse.buffalo.edu/~rapaport/Papers/synsemapa.pdf)

Rapaport, W. J. (2017b). Philosophy of computer science. Retrieved from
https://www.cse.buffalo.edu//~rapaport/Papers/phics.pdf
(https://www.cse.buffalo.edu//~rapaport/Papers/phics.pdf)

Follow Reference

Rapaport W. J. Ehrlich K. (2000). A computational theory of vocabulary acquisition. In IwańskaŁ.
M.ShapiroS. C. (Eds.), Natural language processing and knowledge representation: Language for
knowledge and knowledge for language (pp. 347–375). Menlo Park, CA: AAAI Press/MIT Press.
Retrieved from http://tinyurl.com/RapaportEhrlichErrata (http://tinyurl.com/RapaportEhrlichErrata)

Follow Reference

Rapaport W. J. Kibby M. W. (2007). Contextual vocabulary acquisition as computational philosophy
and as philosophical computation.Journal of Experimental & Theoretical Artificial Intelligence, 19(1),
1–17. 10.1080/09528130601116162

Rapaport, W. J., & Kibby, M. W. (2010). Contextual vocabulary acquisition: From algorithm to
curriculum. Retrieved from http://tinyurl.com/RapaportKibby2010
(http://tinyurl.com/RapaportKibby2010)

Ray, K. (2010). Web 3.0. Accessed 1 March 2011 from http://kateray.net/film (http://kateray.net/film)

Rescorla, M. (2017). The computational theory of mind. In The Stanford Encyclopedia of Philosophy.
Retrieved from https://plato.stanford.edu/archives/spr2017/entries/computational­mind/
(https://plato.stanford.edu/archives/spr2017/entries/computational­mind/)

Follow Reference
Rosen R. (1987). On the scope of syntactics in mathematics and science: The machine metaphor. In
CastiJ. L.KarlqvistA. (Eds.), Real brains, artificial minds (pp. 1–23). New York: Elsevier Science.

Follow Reference
Rosser B. (1939). An informal exposition of proofs of Gödel’s theorem.The Journal of Symbolic Logic,
4(2), 53–60. 10.2307/2269059

Follow Reference
Roth P. F. (1983). Simulation. In RalstonA.ReillyE. D.Jr., (Eds.), Encyclopedia of Computer Science
and Engineering (2nd ed.; pp. 1327–1341). New York: Van Nostrand Reinhold.

Santore, J. F., & Shapiro, S. C. (2003). Crystal Cassie: Use of a 3­D gaming environment for a
cognitive agent. In R. Sun (Ed.), Papers of the IJCAI 2003 Workshop on Cognitive Modeling of Agents
and Multi­Agent Interactions (IJCAII; Acapulco, Mexico, August 9, 2003) (pp. 84­91). Academic Press.

Follow Reference
Schagrin M. L. Rapaport W. J. Dipert R. R. (1985). Logic: A computer approach. New York: McGraw­
Hill.

Schneider, S. (2009). The paradox of fiction. Internet Encyclopedia of Philosophy. Accessed 6 May
2011 from http://www.iep.utm.edu/fict­par/ (http://www.iep.utm.edu/fict­par/)

Follow Reference
Searle J. R. (1980). Minds, brains, and programs.Behavioral and Brain Sciences, 3(03), 417–457.
10.1017/S0140525X00005756

Follow Reference
Searle J. R. (1990). Is the brain a digital computer?Proceedings and Addresses of the American
Philosophical Association, 64(3), 21–37. 10.2307/3130074

Follow Reference Segal G. (1989). Seeing what is not there.The Philosophical Review, 98(2), 189–214. 10.2307/2185282

Follow Reference
Shapiro S. C. (1992). Artificial Intelligence. In S. C. Shapiro (Ed.), Encyclopedia of Artificial
Intelligence (2nd ed.; pp. 54–57). New York: John Wiley & Sons.

Follow Reference
Shapiro S. C. (1993). Belief spaces as sets of propositions.Journal of Experimental & Theoretical
Artificial Intelligence, 5(2­3), 225–235. 10.1080/09528139308953771

Shapiro, S. C. (1998). Embodied Cassie. In Cognitive Robotics: Papers from the 1998 AAAI Fall
Symposium (pp. 136­143). Technical Report FS­98­02. Menlo Park, CA: AAAI Press.

Shapiro, S. C. (2001). Computer science: The study of procedures. Accessed 5 May 2011 from
http://www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf
(http://www.cse.buffalo.edu/~shapiro/Papers/whatiscs.pdf)

Follow Reference Shapiro S. C. (2006). Natural­language­competent robots.IEEE Intelligent Systems, 21(4), 76–77.

Shapiro, S. C., Amir, E., Grosskreutz, H., Randell, D., & Soutchanski, M. (2001). Commonsense and
embodied agents. A panel discussion. At Common Sense 2001: The 5th International Symposium on
Logical Formalizations of Commonsense Reasoning, Courant Institute of Mathematical Sciences, New
York University. Accessed 20 October 2011 from
http://www.cse.buffalo.edu/~shapiro/Papers/commonsense­panel.pdf
(http://www.cse.buffalo.edu/~shapiro/Papers/commonsense­panel.pdf)

Follow Reference
Shapiro S. C. Bona J. P. (2010). The GLAIR cognitive architecture.International Journal of Machine
Consciousness, 2(02), 307–332. 10.1142/S1793843010000515

Follow Reference
Shapiro S. C. Ismail H. O. (2003). Anchoring in a grounded layered architecture with integrated
reasoning.Robotics and Autonomous Systems, 43(2­3), 97–108. 10.1016/S0921­8890(02)00352­4

Follow Reference

Shapiro S. C. Rapaport W. J. (1987). SNePS Considered as a fully intensional propositional semantic
network. In CerconeN.McCallaG. (Eds.), The knowledge frontier: Essays in the representation of
knowledge (pp. 262–315). New York: Springer­Verlag. 10.1007/978­1­4612­4792­0_11

Shapiro, S. C., & Rapaport, W. J. (1991). Models and minds: Knowledge representation for natural­
language competence. In R. Cummins & J. Pollock (Eds.), Philosophy and AI: Essays at the interface
(pp. 215­259). Cambridge, MA: MIT Press.

Follow Reference
Shapiro S. C. Rapaport W. J. Kandefer M. Johnson F. L. Goldfain A. (2007). Metacognition in
SNePS.AI Magazine, 28(1), 17–31.

Follow Reference
Simon H. A. (1956). Rational choice and the structure of the environment.Psychological Review, 63(2),
129–138. 10.1037/h004276913310708

Follow Reference
Simon H. A. (1967). Motivational and emotional controls of cognition.Psychological Review, 74(1),
29–39. 10.1037/h00241275341441

Sloman, A. (2004). What are emotion theories about? Workshop on Architectures for Modeling
Emotion, AAAI Spring Symposium, Stanford University.

Sloman, A. (2009). The cognition and affect project. Accessed 6 May 2011 from
http://www.cs.bham.ac.uk/research/projects/cogaff/cogaff.html
(http://www.cs.bham.ac.uk/research/projects/cogaff/cogaff.html)

Sloman, A., & Croucher, M. (1981). Why robots will have emotions. Proceedings of the International
Joint Conference on Artificial Intelligence. Retrieved from
http://www.cs.bham.ac.uk/research/projects/cogaff/81­95.html#36
(http://www.cs.bham.ac.uk/research/projects/cogaff/81­95.html#36)

Follow Reference

Smith B. C. (1982). Linguistic and computational semantics. In Proceedings of the 20th Annual
Meeting of the Association for Computational Linguistics (pp. 9­15). Morristown, NJ: Association for
Computational Linguistics. 10.3115/981251.981254

Smith, B. C. (1985). Limits of correctness in computers. ACM SIGCAS Computers and Society, 14­
15(1­4), 18­26.

Smith, B. C. (2001). True grid. In D. Montello (Ed.), Spatial Information Theory: Foundations of
Geographic Information Science,Proceedings of COSIT 2001, Morro Bay, CA, September 2001 (pp.
14­27). Berlin: Springer.

Follow Reference

Smith B. C. (2010). Introduction. In B. C. Smith (Ed.), Age of Significance. Cambridge, MA: MIT
Press. Retrieved from http://www.ageofsignificance.org/aos/en/aos­v1c0.html
(http://www.ageofsignificance.org/aos/en/aos­v1c0.html)

Follow Reference
Soare R. I. (2009). Turing oracle machines, online computing, and three displacements in computability
theory.Annals of Pure and Applied Logic, 160(3), 368–399. 10.1016/j.apal.2009.01.008

Srihari R. K. Rapaport W. J. (1989). Extracting visual information from text: Using captions to label
human faces in newspaper photographs. In Proceedings of the 11th Annual Conference of the
Cognitive Science Society (pp. 364­371). Hillsdale, NJ: Lawrence Erlbaum Associates.

Srihari, R. K., & Rapaport, W. J. (1990). Combining linguistic and pictorial information: Using
captions to interpret newspaper photographs. In D. Kumar (Ed.), Current Trends in SNePS—Semantic
Network Processing System (pp. 85­96). Berlin: Springer­Verlag.

Follow Reference Strawson G. (2010). Mental reality (2nd ed.). Cambridge, MA: MIT Press.

Follow Reference
Tarski A. (1944). The semantic conception of truth and the foundations of semantics.Philosophy and
Phenomenological Research, 4(3), 341–376. 10.2307/2102968

Follow Reference
Tenenbaum A. M. Augenstein M. J. (1981). Data structures using Pascal. Englewood Cliffs, NJ:
Prentice­Hall.

Follow Reference
Thagard P. (2006). Hot thought: Mechanisms and applications of emotional cognition. Cambridge, MA:
MIT Press.

Follow Reference
Toussaint G. (1993). A new look at Euclid’s second proposition.The Mathematical Intelligencer, 15(3),
12–23. 10.1007/BF03024252

Follow Reference
Turing A. M. (1936). On computable numbers, with an application to the
Entscheidungsproblem.Proceedings of the London Mathematical Society, Ser. 2, 42, 230–265.

Follow Reference
Turing A. M. (1950). Computing machinery and intelligence.Mind, 59(236), 433–460.
10.1093/mind/LIX.236.433

Follow Reference
Van Gelder T. (1995). What might cognition be, if not computation?The Journal of Philosophy, 92(7),
345–381. 10.2307/2941061

Follow Reference
Vera A. H. Simon H. A. (1993). Situated action: A symbolic interpretation.Cognitive Science, 17(1), 7–
48. 10.1207/s15516709cog1701_2

Follow Reference
Wegner P. (1997). Why interaction is more powerful than algorithms.Communications of the ACM,
40(5), 80–91. 10.1145/253769.253801

Follow Reference
Weizenbaum J. (1976). Computer power and human reason: From judgment to calculation. New York:
W. H. Freeman.

Follow Reference Widdowson H. G. (2004). Text, Context, Pretext. Malden, MA: Blackwell. 10.1002/9780470758427

Williams, B. (1998). The end of explanation? The New York Review of Books, 45(18), 40­44.

Follow Reference
Winograd T. Flores F. (1987). Understanding computers and cognition: A new foundation for design.
Reading, MA: Addison­Wesley.

Follow Reference
Woods W. A. (2010). The right tools: Reflections on computation and language.Computational
Linguistics, 36(4), 601–630. 10.1162/coli_a_00018

Follow Reference
Wright I. Sloman A. Beaudoin L. (1996). Towards a design­based analysis of emotional
episodes.Philosophy, Psychiatry, & Psychology, 3(2), 101–126. 10.1353/ppp.1996.0022

Follow Reference
Wu H. H. (2011). Understanding numbers in Elementary school mathematics. Providence, RI:
American Mathematical Society. 10.1090/mbk/079

Zobrist, A. L. (2000). Computer games: Traditional. In A. Ralston, E. D. Reilly, & D. Hemmendinger
(Eds.), Encyclopedia of Computer Science (4th ed.; pp. 364­368). New York: Grove’s Dictionaries.

Research Tools
Database Search (/gateway/) | Help (/gateway/help/) | User Guide (/gateway/user­guide/) | Advisory Board (/gateway/advisory­
board/)

User Resources
Librarians (/gateway/librarians/) | Researchers (/gateway/researchers/) | Authors (/gateway/authors/)

Librarian Tools
COUNTER Reports (/gateway/librarian­tools/counter­reports/) | Persistent URLs (/gateway/librarian­tools/persistent­urls/) | MARC
Records (/gateway/librarian­tools/marc­records/) | Institution Holdings (/gateway/librarian­tools/institution­holdings/) | Institution
Settings (/gateway/librarian­tools/institution­settings/)

Librarian Resources
Training (/gateway/librarian­corner/training/) | Title Lists (/gateway/librarian­corner/title­lists/) | Licensing and Consortium Information
(/gateway/librarian­corner/licensing­and­consortium­information/) | Promotions (/gateway/librarian­corner/promotions/) | Online
Symposium Series (/gateway/librarian­corner/online­symposium­series/) | Database Icons (/gateway/librarian­corner/database­icons/)
| LibGuides (/gateway/librarian­corner/libguides/)

Policies
Terms and Conditions (/gateway/terms­and­conditions/)

(http://www.aera19.net/)

 (http://www.facebook.com/pages/IGI­Global/138206739534176?ref=sgm) (http://twitter.com/igiglobal)

(http://www.world­forgotten­children.org)

Copyright © 1988­2019, IGI Global ­ All Rights Reserved

