
CSE250, Spr’13 Final Exam May 6, 2013

Open book, open notes, closed neighbors, 170 minutes. Do All Six questions in the exam
books provided. Please show all your work—this may help for partial credit. The exam
totals 200 pts., subdivided (48,36,30,18,36,32) and further as shown.

(1) (9+9+9+9+12 = 48 pts.)
Let h be the hash function on strings that adds up number values of letters a = 1, b = 2,

c = 3 etc., and let binary search trees compare strings in alphabetical order with the earlier
(lesser) string on the left. (Unlike as on homeworks, all letters are used for this h.)

Show the process of inserting the strings add, be, fad, bag, ace, ach, ah in that
order into the following data structures. Show the hash tables after ace, and then after
ah—if you can! One picture of the BST is enough, while the red-black tree should be shown
after each step, with colors on the nodes.

(a) A size-8 hash table with chaining, with new elements going at end-of-buckets.

(b) A size-8 open-address hash table, using linear probing: h(k) + i for the i-th try.

(c) A size-8 open-address hash table, using the quadratic probe function h(k) + i2.

(d) A simple binary search tree.

(e) A red-black tree—again you must show every step, and in some cases you can vary
from the text’s algorithm if you make clear that your “moves” are legal.

(2) (6 × 6 = 36 pts.)
Short answer questions : two sentences or formulas at most.

(a) Suppose a red-black tree has a node u that has only one child, call it v. What colors
are u and v allowed to have, and how many children is v allowed to have?

(b) Suppose a heap has a u that has only one child, call it v. How many children is v
allowed to have?

(c) Show using L’Hôpital’s Rule that a running time of n log n is asymptotically faster
than (i.e., little-oh of) a running time of n2/ log n.

(d) For what value of n and higher will a program with running time n log n actually start
to out-perform a program with running time n2/ log n? Here logs are to base 2.

(e) Can one guarantee the creation of a simple binary search tree in O(n log n) time by
first making the n elements into a heap, and then popping them one by one to insert
into the tree in that order? Explain why or why not.

(f) Why is it impossible for an implementation of a stack using a vector to guarantee
that every individual push operation will run in O(1) time?

1



(3) (10 × 3 = 30 pts.)
Let ac(n) and wc(n) respectively stand for the average-case time and the worst-case

time of an algorithm running on instances of size n. (The former has the same meaning as
“usual time” on Prelim II; the separate concept of amortized time for a repeatable operation
is not involved here.) For each of the following algorithms, say whether it

(A) should only be run when n is small;

(B) runs well for “most” cases, but has poor performance in some cases—in particular has
ac(n) = o(wc(n)); or

(C) runs well for all cases—formally, has wc(n) = Θ(ac(n)), and wc(n) is “within an
O(log n) factor of the best you could possibly hope for .”

Standard implementations of the algorithms and data structures they act on, such as we
have seen or used in this course, are assumed. The five sorting algorithms all work on arrays
of size n. The five cases of insert work one element at a time—i.e., they don’t see all n
elements “in advance.” The algorithms are:

1. MergeSort.

2. InsertionSort.

3. HeapSort.

4. QuickSort, implemented by choosing the leftmost element in a sub-array as the “pivot”
in every recursive step.

5. “ValliSort,” implemented by calling valli.insert(item) on each of the n items.

6. insert n elements into an unsorted (singly) linked list that is behaving like a set.

7. insert n elements into an unsorted (singly) linked list that is behaving like a “bag”
(a.k.a. multiset).

8. insert n elements into a hash table with open addressing and quadratic probing.

9. insert n elements into a “simple” binary search tree.

10. insert n elements into a red-black tree.

(4) (18 pts. total)
We would love to have a data structure that:

(a) guarantees that any sequence of n elements can be inserted one-at-a-time in O(n log n)
steps,

(b) enables any element to be searched for in O(log n) time, and

(c) allows iteration through all its elements in sorted order in O(n) time with a very small
principal constant.

2



Here “guarantees” means “. . . in the worst case.” The size of the (unspecified) principal
constant in (a) and (b) is considered not of primary importance, not as important as the
constant in (c). The constant in (c) should be close to the time taken to follow one pointer
link or advance one place in an array (say, within a factor of 2, but not 3).

Consider Valli, a Hash Table with chaining, and Red-Black Trees. It is OK to state
features for the first two even if you didn’t code them—e.g. for Valli: refresh with r = log2 n
every time the input size doubles. For each one, say which of (a), (b), and (c) it satisfies, and
which it doesn’t. You must justify all your negative answers with a reason or an example
of a case where it fails. (Brief justifications for positive answers aren’t required but are a
good idea anyway. Note that some answers repeat problem (3), and are included here just
for completeness.)

(5) (12 + 12 + 12 = 36 pts.)
Suppose you are interfacing clients to a generic container class Container that uses the

Standard Template Library interface, in particular with a find method that returns a valid
iterator if a stored item with the same key is found, and otherwise returns the end() iterator.

(a) First suppose the client programs want to use a non-member function

template <class I, class Container>

void retrieve(const Container& cont, I& blankItem)

with the idea that the given blankItem can be mostly blank except for the key (similar
to what was done when processing Stock transactions by the ticker symbol). If a stored
item with the same key is found, (the rest of) its information is copied to blankItem,
else blankItem is left as it is.

Write a body for retrieve, using only find and other features of the STL interface.
What do you need to require (“REQ”) about the template item type I?

(b) Now suppose instead that the clients want to use item pointers, and wish to return a
pointer to the stored item itself. Code

template <class I, class Container>

I* retrieve(const Container& cont, const I& blankItem)

instead. Do you still need the same requirement(s) on I?

(c) Name two general advantages of doing (b) compared to (a), in terms of (i) the items
themselves possibly being large, and (ii) what do you do now in the not-found case?
Finally (iii) talk about the use of getting a pointer to the stored item, but also a
possible problem given how the method in (b) is coded.

The last problem is overleaf.

3



(6) (6 + 12 + 6 + 8 = 32 pts.)
Suppose you have two heaps h1 and h2, each with n elements heaped according to the

same comparison function, with the maximum element on top. Given any number k ≤ 2n,
you want to generate a list of the top-k elements between the two heaps.

(a) What is the asymptotic running time if you pop off n elements from one heap, insert
them one-by-one into the other heap, and pop k elements from the latter?

(b) Find a smarter way, one that works in o(n) time. State your method and give its
running time, proving that the time is o(n). You may use any other data structures
that you wish.

(c) If you have a vector with 2m elements in any order, and you want to find the top m
elements, does it matter to the asymptotic running time if you make a heap and pop
m times, versus sorting the entire vector?

(d) In (c), what if the vector instead comes with the first m elements initially sorted
among themselves, and the second m elements ditto? Harking back to (b), does an
O(m) runtime here matter to the entire asymptotic running time of the task in (b)?

End of Exam

4


