
An Interactive Desk CalculatorProject P2 ofCommon Lisp: An Interactive ApproachStuart C. ShapiroDepartment of Computer ScienceState University of New York at Bu�aloJanuary 25, 1996The goal of this project is to implement an interactive desk calculator. Themoral of the project is that if you don't like the syntax of Common Lisp, youcan change it. This lesson can be appreciated by seeing how we could evaluatethe arithmetic expression 1052 � 34 � 5� 6� 25at the end of each of several chapters:4: > (- (- (/ (* (expt 10 (expt 5 2)) 3) 4) (* 5 6)) 25)749999999999999999999994519: > (compute '(10 ^ 5 ^ 2 * 3 / 4 - 5 * 6 - 25))749999999999999999999994520: > (compute 10 '^ 5 '^ 2 '* 3 '/ 4 '- 5 '* 6 '- 25)749999999999999999999994523: > (compute 10 ^ 5 ^ 2 * 3 / 4 - 5 * 6 - 25)749999999999999999999994529: > 10 ^ 5 ^ 2 * 3 / 4 - 5 * 6 - 2 =7499999999999999999999968Each version translates an expression using some initial syntax into an ex-pression in Cambridge Pre�x notation, and then evaluates the latter expression.The versions di�er in having the initial syntax closer and closer to the standardsyntax of arithmetic expressions. This syntax is:expression ::= term | expression {+|-} termterm ::= factor | term {*|/} factorfactor ::= operand | operand ^ factorThis grammar ignores several complications such as unary + and -, embeddedexpressions enclosed in parentheses, and embedded calls to Common Lisp func-tions. These complications are gradually introduced as the exercises progress.1

The key function that does the translation is(defun prefix (expression)"Returns the arithmetic EXPRESSIONtranslated into Cambridge Prefix notation."...)The design of prefix is based on the idea of a recursive descent parser(Notice how this directly follows the above grammar.):To get an expression:1. Get the �rst term.2. If there's no more to the expression, return the �rst term.3. Else, the �rst element of the remaining expression will be + or -; callthat the operator, remove it, and get the �rst term of the remainder,calling it the second term.4. Combine the �rst term, the operator, and the second term into Cam-bridge Pre�x notation, and put it back on the front of the expression.5. Get an expression, and return it.To get a term:1. Get the �rst factor.2. If there's no more to the expression, return the �rst factor.3. Else, if the �rst element of the remaining expression is + or -, returnthe �rst factor.4. Else, the �rst element of the remaining expression will be * or /; callthat the operator, remove it, and get the �rst factor of the remainder,calling it the second factor.5. Combine the �rst factor, the operator, and the second factor intoCambridge Pre�x notation, and put it back on the front of the ex-pression.6. Get a term, and return it.To get a factor:1. Get the �rst operand.2. If there's no more to the expression, return the �rst operand.3. Else, if the �rst element of the remaining expression is not ^, returnthe �rst operand.4. Else, the �rst element of the remaining expression will be ^; call thatthe operator, remove it, and get the �rst factor of the remainder,calling it the second argument.2

5. Combine the �rst operand, the operator, and the second argumentinto Cambridge Pre�x notation, and return it.The procedures to get an expression, a term, and a factor should return twothings:1. an expression, term, or factor;2. the rest of the expression.Common Lisp has a way for functions to return multiple values, but that is anadvanced topic, so until that topic is reached, the technique we will use is tocons the expression, term, or factor onto the front of the rest of the expression,where it will look like an initial argument. Thus the major functions we willwrite will have the following speci�cations:(defun prefix (expr)"Returns the expression in Cambridge Prefix."...)(defun enclose-expression (expr)"EXPR is a cons representing an expression in infix.Its first term is prefixed and enclosed as its first member.Returns EXPR entirely prefixed and enclosed in a list."...)(defun enclose-term (expr)"EXPR is a cons representing an expression in infix.Its first factor is prefixed and enclosed as its first member.Returns EXPRwith its first term prefixed and enclosed in a list."...)(defun enclose-factor (expr)"EXPR is a cons representing an expression in infix.Returns EXPRwith the first factor prefixed and enclosed in a list."...)(defun combine-expr (op x e)"OP is an operator. X is its first operand.E is a list that starts with OP's second operand, Y.Returns E with (OP X Y) replacing Y."...) 3

Here is a schematic trace of the entire procedure:Translate to pre�x (10 ^ 5 ^ 2 * 3 / 4 - 5 * 6 - 25)1. Enclose a factor of (10 ^ 5 ^ 2 * 3 / 4 - 5 * 6 - 25)1.1. The �rst operand is 101.2. The operator is ^1.3. Enclose a factor of (5 ^ 2 * 3 / 4 - 5 * 6 - 25)1.3.1. The �rst operand is 51.3.2. The operator is ^1.3.3. Enclose a factor of (2 * 3 / 4 - 5 * 6 - 25)1.3.3.1. The �rst operand is 21.3.3.2. Return (2 * 3 / 4 - 5 * 6 - 25)1.3.4. The second argument is 21.3.5. Return ((^ 5 2) * 3 / 4 - 5 * 6 - 25)1.4. The second argument is (^ 5 2)1.5. Return ((^ 10 (^ 5 2)) * 3 / 4 - 5 * 6 - 25)2. Enclose a term of ((^ 10 (^ 5 2)) * 3 / 4 - 5 * 6 - 25)2.1. The �rst factor is (^ 10 (^ 5 2))2.2. The operator is *2.3. Enclose a factor of (3 / 4 - 5 * 6 - 25)2.3.1. The �rst operand is 3.2.3.2. Return (3 / 4 - 5 * 6 - 25)2.4. The second factor is 32.5. Enclose a term of ((* (^ 10 (^ 5 2)) 3) / 4 - 5 * 6 - 25)2.5.1. The �rst factor is (* (^ 10 (^ 5 2)) 3)2.5.2. The operator is /2.5.3. Enclose a factor of (4 - 5 * 6 - 25)2.5.3.1. The �rst operand is 42.5.3.2. Return (4 - 5 * 6 - 25)2.5.4. The second factor is 42.5.5. Enclose a term of ((/ (* (^ 10 (^ 5 2)) 3) 4) - 5 * 6 - 25)2.5.5.1. The �rst factor is (/ (* (^ 10 (^ 5 2)) 3) 4)2.5.5.2. Return ((/ (* (^ 10 (^ 5 2)) 3) 4) - 5 * 6 - 25)2.5.6. Return ((/ (* (^ 10 (^ 5 2)) 3) 4) - 5 * 6 - 25)2.6. Return ((/ (* (^ 10 (^ 5 2)) 3) 4) - 5 * 6 - 25)
4

3. Enclose an expression of ((/ (* (^ 10 (^ 5 2)) 3) 4) - 5 * 6 - 25)3.1. The �rst term is (/ (* (^ 10 (^ 5 2)) 3) 4)3.2. The operator is -3.3. Enclose a factor of (5 * 6 - 25)3.3.1. The �rst operand is 53.3.2. Return (5 * 6 - 25)3.4. Enclose a term of (5 * 6 - 25)3.4.1. The �rst factor is 53.4.2. The operator is *3.4.3. Enclose a factor of (6 - 25)3.4.3.1. The �rst operand is 63.4.3.2. Return (6 - 25)3.4.4. The second factor is 63.4.5. Enclose a term of ((* 5 6) - 25)3.4.5.1. The �rst factor is (* 5 6)3.4.5.2. Return ((* 5 6) - 25)3.4.6. Return ((* 5 6) - 25)3.5. The second term is (* 5 6)3.6. Enclose an expression of ((- (/ (* (^ 10 (^ 5 2)) 3) 4) (* 5 6)) - 25)3.6.1. The �rst term is (- (/ (* (^ 10 (^ 5 2)) 3) 4) (* 5 6))3.6.2. The operator is -3.6.3. Enclose a factor of (25)3.6.3.1. The �rst operand is (25)3.6.3.2. Return (25)3.6.4. Enclose a term of(25)3.6.4.1. The �rst factor is (25)3.6.4.1. Return (25)3.6.5. Enclose an expression of ((- (- (/ (* (^ 10 (^ 5 2)) 3) 4) (* 5 6)) 25))3.6.5.1. The �rst term is (- (- (/ (* (^ 10 (^ 5 2)) 3) 4) (* 5 6)) 25)3.6.5.2. Return ((- (- (/ (* (^ 10 (^ 5 2)) 3) 4) (* 5 6)) 25))3.6.6. Return ((- (- (/ (* (^ 10 (^ 5 2)) 3) 4) (* 5 6)) 25))3.7. Return ((- (- (/ (* (^ 10 (^ 5 2)) 3) 4) (* 5 6)) 25))4. Return (- (- (/ (* (^ 10 (^ 5 2)) 3) 4) (* 5 6)) 25)To simplify and to save space this has ignored the fact that the CambridgePre�x version of ^ is EXPT.
5

Revised Sequence of P2 ExercisesYou should do the p2 exercises in the order shown below, even if the numberingis now out of order.12.5{6 Do as speci�ed on p. 81.12.3 Compile your calculator �le by evaluating(compile-file "calculator").12.4 Load your calculator �le using the load function. Can you tell thatyou've loaded the compiled �le instead of the source �le?Test combine-expr again.17.33 Do as speci�ed on p. 121.17.36 Do as speci�ed on p. 122.17.35 Do as speci�ed on pp. 121{122, but allow the exponentiation operator, ^,to be in the expression also.17.34 Write enclose-expression to meet the speci�cations shown above, as-suming that the only operators are binary + and -, along with *, /, and^, and assuming that the input expression is a list whose only sublist maybe the initial term.18.28{29 De�ne prefix to take an expression that may have binary + and -,*, /, and ^, and return the expression in Cambridge Pre�x Notation.19.10{13 Do as speci�ed on p. 147.19.14 Do as speci�ed on p. 147, but note that, although + and - are names ofCommon Lisp functions, unary + or - may be the �rst element of a list,and that list should be modi�ed.19.15{16 Do as speci�ed on p. 147.20.3{5 Do as speci�ed on p. 152.21.9{10 Do as speci�ed on p. 158.23.6{8 Do as speci�ed on p. 171.24.8 Do as speci�ed on p. 180.29.33 Do as speci�ed on p. 228. 6

