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Abstract 

In UBGCCS-88, we presented propositional network representations for plans and acts to be 
used in the design of cognitive agent that can discuss, understand, and use its representations. 
The current version of the SNePS acting system can understand natural language utterances 
about a blocksworld. In this paper we present the architecture of this system. It includes the 
natural language understanding and generation components, the SNePS representations, the 
acting executive, the SNePS inference package, and the SNePS Belief Revision system. Several 
results obtained from the design and use of each of these components will be presented. Also, 
we will discuss specific research issues exposed by this study that we are currently working on. 

1 Introduction 
In. [2, 4] we presented propositional network representations for plans and acts to be used in the design 
of cognitive agent that can discuss, understand, and use its representations. The current version of 
the SNePS acting system can understand natural language utterances about a blocksworld. In this 
paper, we present the architecture of this system. We present our representations of plans and acts, 
the design of the acting executive, how we make use of a belief revision system, and the design of the 
natural language component. This is followed by a brief look at how the system is able to discuss, 
use, and recognize plans in a blocksworld domain. Lastly, we present several future research issues 
related to this work that we are currently working on. 

2 Architecture of the system 
The architecture of the SNePS actor is as shown in Figure l. The SNePS actor operates in a 
world inhabited by itself (i.e., a single-agent world). The agent has beliefs that are stored as SNePS 
propositions in the agent's belief space ( called a SNeBR context, see [7]). SNeBR (the SNePS system 
for Belief Revision), an assumption-based truth maintenance system [6, 5, 7], ensures that the agent's 
belief space is always consistent1. All interaction with the agent is done using the natural language 
component. Sentences are parsed by a grammar (written in ATN) and translated into SNePSUL 
(the SNePS User Language) commands and form beliefs in the agent's belief space. World model 
rules for reasoning in the agent's belief space are also translated and represented as agent's beliefs. 
An inference rule in SNePS is a structured proposition node of the form2 

1 During the course of acting, beliefs are removed and added. This is done using SNeBR operations. For example, 
one of the things SNeBR takes care of is when a belief is removed as a consequence of performing an action, all 
propositions derived using that belief are also removed. 

2This linear representation of SNePS rules is designed to facilitate our current discussion. In SNePS rules one can 
have universal, existential, and numerical quantifiers over variables. The connectives available are and-entailment, 
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AntCq(<ant-beliets>, <cq-belie!s>) 

Roughly, the above rule is a specification of antecedent and consequent beliefs using appropriate 
quantifiers and connectives. SNIP can do forward, backward, or bidirectional inference using the 
same set of rules. 

2.1 Representations for plans and acts 

We treat acts/plans as mental objects. This enables the agent to discuss, formulate, use, recognize, 
and reason about acts/plans. This treatment is a significant advance over operator-based descrip­ 
tions of plans. Operator-based formulations of actions tend to alienate the discussion of operators 
themselves since operators are usually specified in a different language from that used for represent­ 
ing beliefs about states. Moreover, plans (or procedural networks) constructed from these operators 
can only be accessed by specialized programs (critics, executors) and, like operators, are represented 
in still another formalism. Our representations for acts, goals, and plans build upon and add to 
the intensional propositional representations of SNePS. This framework enables us to tackle various 
tasks mentioned above in a uniform and coherent fashion. 

We classify actions as being external-that affect the outside world, control-that affect the 
acting executive, and mental-that affect the set of beliefs. Plans (or complex acts) are represented 
as structured nodes comprising a set of external and control actions. Decompositions of plans/goals 
are specified using the following predicates3 

PlanGoal( <some-plan>, <some-goal>) 
PlanAct( <some-plan>, <complex-act>) 

Effects of acts are represented using the 

ActEffect( <some-act-i>, <effects-of-act-i>) 

predicate. This predicate specifies mental actions of believing to be performed so as to update the 
set of beliefs after performing an act. Acts can also have preconditions that are specified using the 

PreconditionAct( <preconditions-of-act-i>, <some-act-i>) 

predicate. 

2.2 The acting executive 

Requests to perform an action are serviced by the acting executive (see Figure 1). The request (which 
is represented as an act node) gets scheduled on an acting queue maintained by the executive. This 
represents the agent's intentions. Plans are structured using control actions that when interpret.eel 
affect the queue of intentions. Our repertoire of control actions includes sequencing (snsequence), 
conditional (snif), iteration (sniterate), and a few others (see [2]). External actions affect the 
external world via their respective associated procedures. The acting executive uses SNIP to derive 
plans, plan decompositions, and the effects and preconditions of actions. It schedules mental actions 
to believe effects of actions. It also schedules acts to achieve preconditions of actions in case they 
are not satisfied. 

or-entailment, numerical entailment, and-or, thresh, and non-derivable. The predicate used here represents only t.he 
typical antecedent-consequent type of rules. However, the discussion applies to all SNePS rules in general. See [10] 
for details on the SNePS representation of rules. 

3 As in the case of rules, this representation is being used to facilitate discussion at a general level. Each predicate 
mentioned here is represented as a structured proposition node. The exact syntax and semantics of these representa­ 
tions can be found in (2, 11]. 
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2.3 Using belief revision 
We are using SNeBR as a Truth Maintenance system underlying the knowledge-base. Beliefs cur­ 
rently held by the system are maintained in a belief context. The ATMS ensures consistency of 
beliefs at all times. Effects of acts lead to adding or deleting of new beliefs. We use the SNeBR 
operations add-to-context and remove-from-context to add or remove new beliefs as a consequence 
of performing some act. The calls to these operations are used to model the two mental actions of 
believing and disbelieving. 

add-to-context adds a belief to the hypothesis set of the context. Similarly, remove-from-context 
removes a belief from the hypothesis set of the context. SNeBR ensures that all derived beliefs that 
used the removed hypothesis as an assumption in their derivation are also automatically removed. 
This is especially usefulin the implementation of conditional plans. 

- 
2.3.1 Conditional plans 

A conditional plan, such as 

"If a block is on a support then a plan to achieve that the support is clear is to pick 
up the block and then put the block on the table." 

is represented in SNePS as a rule approximately like the Predicate Calculus rule 

'v'x, y[Block(x) I\ Support(y) I\ On(x, y) => 
PlanGoal(Sequence(Pickup(x), Put(x, Table)), Clear(y))]. 

In a situation in which block A is on block B, and the system must clear B, it will derive and store 
the plan, 

PlanGoal(Sequence(Pickup(A), Put(A, Table)), Clear(B))], 

which says that a plan to clear B is to pick up A and put it on the table. 
Since this plan is stored, it would seem that it would be retrieved as a plan for clearing B in 

some later situation when C, for example, is on B, and this would be wrong. However, the plan 
is derived based on the assumptions Block(A), Support(B), and On(A, B). As soon as A is picked 
up, the assumption On(A, B) is removed from the current context, and the plan is unavailable until 
A is put back on top of B. Thus, the representation of conditional plans is correct in systems that 
include an appropriate belief revision mechanism. 

- 
r- 

- 
2.4 The natural language component 
The natural language understanding component is implemented in a Generalized ATN grammar and 
is used for analyzing sentences and for generating English responses. The system begins with an 
empty knowledge-base. In the role of informant, we interact with it using English sentences about 
the domain, instructing it about the various actions that it can do, and how to solve problems in 
that domain. The input sentences are analyzed using a domain-specific grammar, the results of 
which are new beliefs in the knowledge-base. A natural language generation grammar takes the new 
beliefs and expresses them back in English to show the system's understanding to the informant.. 
Requests to do some action are sent to an acting executive that may then generate and execute 
a plan to fulfill the request. The informant may also ask questions about plans and the way the 
system would solve various problems. 

During the work described here, it became clear that natural language sentences about planning 
could be classified into groups, with associated syntactic natural language markers. In the current 
domain, Blocksworld, we classify the sentences as follows: 

1. Domain description These types of sentences are simple declarative statements about the state 
of the domain, e.g., "A is a block", "A is on the table". 

- 

- 
- 
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- 

2. Constraint description These types of sentences are statements about the constraints on ob­ 
jects in the domain, ( e.g., "If a block is on a support then the block is not on another support") 
independent of a the agents capabilities. 

3. Act/Plan description These types of sentences define the types of actions the modeled agent 
is capable of performing, their associated preconditions and effects as well as how they are 
composed to build complex plans. 

4. Performative requests These types of sentences are simple imperative requests to perform an 
action, e.g., "Pick up A". 

Type (1) sentences generaly are simple copular clauses, or 'There-is' introductory sentences ( e.q., 
"There is a table"). Noun phrases are generally definite, with proper name reference being the rule, 
rather than the exception. Type ( 4) sentences are simple imperative requests whose object noun 
phrases may be definite or indefinite, (e.g., "Pile A on Bon C", "Put A on a block"). 

Sentences of type (2) and (3) are rule-like (similar to FOPL rules), in their structure and use of 
variables. In our domain, constraint description sentences map directly to FOPL rules; e.g., "If a 
block is on a support then the block is not on another support" becomes4 

'vx, y, z[(Block(x) I\ Block(y) I\ Block(z) I\ On(x, y)) =} -iOn(x, z)]. 

Act/Plan description sentences have less direct mapping, but in both the treatment of definite/indef­ 
inite noun phrases is the same. In the context of a sentence of these types, an indefinite noun phrase 
introduces a new variable of the type associated with the common noun of the noun phrase. Definite 
noun phrases refer back to explicitly introduced (via an indefinite noun phrase) variables in the same 
sentence. The syntax of these types of sentences is well marked (by words like "before", "after", 
"then") and is highly decomposable into simpler clauses of types (1) and (4). For instance, a plan 
to pile three blocks consists of three repeated type (4) sentences (e.g., "put the first block on the 
table", "put the second block on the first block", etc.) expressed in the appropriate order with 
explicit sequence separators ( " ... and then ... "). Similarly, preconditions and effects have antecedent 
and consequent clauses of type (1). In both type (2) and (3) sentences, the noun phrase positions 
associated with component clauses are generally variables, although definite reference to objects in 
the domain ( "the table") also occur. 

In this domain, sentences about plans display a useful compositionality, in that more complex 
types of sentences (describing more complex types of knowledge) can be built from the simple clauses 
associated with describing a domain and performing acts; where they differed was in the treatment 
of definite/indefinite noun phrases as referring to and introducing variables, respectively. 

3 Discussing, using, and recognizing plans 
The system is capable of discussing its beliefs. For example, consider the the queries 

Is A on B? 
Yes, A is on B. 

Is A on C? 
I really don't know if A is on C. 

The answer to the second query above is inconclusive because there is no way for the system to con­ 
firm or deny the queried fact. To be able to do so, we can instruct the system about domain-specific 
rules in English. For example, to answer the above query conclusively, it needs the following rule: 

4The conjunct x -:p y is not needed in the antecedent of this rule because SNIP uses the Unique Variable Binding 
Rule (UVBR) (9] which prevents x and y from binding to the same term. 
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If a block is on a support then the block is not on another support. 
I understand that if a block is on a support 
then the block is not on another support. 

Is A on C'? 
No, A is not on C. 

3.1 Discussing plans 

Similarly, we can ask the system to answer questions involving plans. SNIP, the plan decision 
procedure, is used to derive an appropriate plan and respond to the query. For example, 

How would you pile A on C on B '? 
I understand that a plan for performing pile on A and C and Bis 
by performing put on Band a table and then performing put on C and B 
and then performing put on A and C. 

Notice that in this case, a plan is derived but not executed. So far we have demonstrated that the 
system is able to interact with the user about its beliefs, and it can use the domain rules to answer 
queries about the domain. The system can also understand natural language domain descriptions 
of domain-specific rules and plans and acts as contained in the following paragraphs 

There is a table. The table is a support. Blocks are supports. Picking up is a primitive 
action. Before picking up a block the block must be clear. After picking up a block the 
block is not clear and the block is held. If a block is on a support then after picking up 
the block the block is not on the support and the support is clear. Putting is a primitive 
action. Before putting a block on a support the block must be held and the support must 
be clear. After putting a block on a support the block is not held and the block is clear 
and the block is on the support. After putting a block on another block the latter block is 
not clear. 

A plan to achieve that a block is held is to pick up the block. A plan to achieve that 
a block is on a support is to put the block on the support. If a block is on a support then 
a plan to achieve that the support is clear is to pick up the block and then put the block 
on the table. A plan to pile a block on another block on a third block is to put the third 
block on the table and then put the second block on the third block and then put the first 
block on the second block. 

- 

- 

3.2 Using plans 
Given the above description of a domain, and a situation like 

A is a block. B is a block. C is a block. C is on A. C is clear. B is clear and on the table. 

the system can use the domain description from above to plan and act in the situation. Thus, it will 
be able to derive plans and perform actions required to fulfill a request like 

Pile A on B on C. 

u 

3.3 Recognizing plans 
Our representations for plans and acts also facilitate plan recognition. We have implemented a system 
which allows the deduction of a set of plans some agent might be performing from information about 
the acts that agent has been performing. This plan recognition system has mainly been applied to a 
simple version of the Blocksworld, but was also used for a tutoring domain in order to demonstrate - 
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how domain knowledge can be used to narrow the number of possible plans some student might be 
engaged in (see [12]). 

In order to explore the advantages and disadvantages of using node-based inference and path­ 
based inference, corresponding rules were implemented and tested in the Blocksworld. The plan 
recognition system which uses node-based inference was able to deal with complex acts and subplans, 
i.e., it could identify a plan even if the reported acts are only implicitly represented in complex acts 
for which there are separate plan-act rules which contain the reported acts explicitly. The problem 
with node-based inference for plan recognition is that it generates a lot of nodes in order to make the 
component relations explicit, and it cannot deal with uninstantiated plan-rules due to the current 
implementation of quantified variables. 

Using nested entailments, a left-recursive representation for plans, and a special representation 
for the result of a plan recognition process, it was possible to use mainly path-based inference, which 
increases efficiency and avoids some of the problems related to the quantification of variables in 
plan-rules. The plan recognition rules were tested successfully for instantiated and uninstantiated 
plan-rules and for plan-rules with complex acts and corresponding subplans. 

Assuming the plan recognition system described in this paper is part of the modeled agent's 
mind, the plan recognition process can be described as follows: the modeled agent is told that a third 
agent is performing certain acts. Using its knowledge base of plan-act and plan-goal propositions, 
the modeled agent identifies those plans which contain the reported acts in the correct temporal 
order and concludes that the agent might perform the corresponding acts or might try to achieve 
the corresponding goals. 

4 Future research issues 

- 

Our goal is to model a rational cognitive agent whose behavior is driven by its beliefs, desires, and 
intentions. We want our agent to understand natural language, reason about beliefs, act rationally 
based on its beliefs, recognize plans, and do plan-based text generation. Doing all these tasks 
in a single coherent framework poses several constraints. We are discovering that SNePS and its 
underlying theories contribute effectively towards our goal. We have designed and implemented 
intensional propositional representations for plans. This is a major advance over operator-based 
descriptions of plans. Operator-based formulations of actions tend to alienate the discussion of 
operators themselves. Operators are usually specified in a different language than that used for 
representing beliefs about states. Moreover, plans ( or procedural networks) constructed from these 
operators can only be accessed by specialized programs (critics, executors) and, like operators, are 
represented in still another formalism. Our representations for acts, actions, goals, and plans build 
upon and add to the intensional propositional representations of SNePS. This framework enables us 
to tackle various tasks mentioned above in a uniform and coherent fashion. 

Our current system is being advanced in several directions. In the context of planning, there are 
issues associated with conjunctive goals [14), non-linear plans [8, 13, 1], and dealing with the effects 
of actions. 

Language used in planning contexts is slightly more constrained than that in arbitrary discourse. 
Sentences describing plans tend to be declarative, with a syntactically decomposable structure in­ 
volving goal, effect, and plan definition. Handling reference is simplified by the assumption that 
common noun phrases correspond to typed variables. Indefinite noun phrases introduce new vari­ 
ables, definite noun phrases refer to previously introduced variables. Natural language generation 
of plans and rules involves careful selection of relevant attributes of these variables. 

- 
4.1 Sensory acts and external events 
So far, we have concentrated on the problem of designing representations suitable for discussing, 
using, and recognizing plans. We have demonstrated their use in a single-agent world. We are 
now ready to explore issues involved in using our representations to model rational cognitive agents 
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that are capable of acting in the real world. The real world is constantly undergoing change in the 
presence of several agents (including the modeled one) as well as by natural phenomena. In order to 
behave as rational agents in a real world, they should be endowed with appropriate sensors as well 
as effectors. Thus, we are ready to explore issues concerning sensory acts, external events, and how 
an agent's beliefs, desires, intentions, and actions are affected by them. 

4.2 Integrating inference and acting 

In our current model (and in other state-of-the-art systems), reasoning is preformed by some inference 
engine and acting is done under the control of an acting executive. In order to achieve our goals, we 
have come to the conclusion that inference and acting need to be more tightly coupled. A survey 
of most systems will reveal that it is somewhat awkward to do acting in reasoning (or logic-based) 
systems (but it is convenient to talk about representational and reasoning issues using them), and it 
is awkward to study reasoning and representational issues in systems designed for acting/planning. 
We are beginning to take the viewpoint that logical reasoning rules implicitly specify the act of 
believing, and the process of reasoning can be treated as specialized (more efficient) acting. This 
will enable us to integrate the acting and inference engines that can be driven by regular reasoning 
rules as well as connectives that will transduce a belief status to an intention-to-act status. We 
are currently designing such connectives. Thus, our future research will attempt to clarify the 
relationship between inference and acting. This integrated approach used in conjunction with the 
principles underlying propositional semantic networks will preserve the power of acting, as well as 
reasoning systems, and provide a richer framework within which one can experiment with various 
modeling issues in AI. Some preliminary results can be found in [3]. 

- 

._ 

4.3 Structured variables 

Another direction for our future research involves a reexamination of the representation of variables 
in SNePS. Consider again the conditional plan, - 

'ix, y[Block(x) t.. Support(y) t.. On(x, y) => 
PlanGoal(Sequence(Pickup(x ), Put(x, Table)), Clear(y) )]. 

As in the FOPC representation of this rule, the SNePS representation contains the subexpression 
Pickup(x). Although in SNePS, the variable xis connected in the network to its restriction, Block(x), 
the variable x is still an "atomic" node, and the term Pickup( x) does not contain the restriction on 
x as a subterm of it. The significance of this is that the act "pick up a block" is not represented by 
a single term in the plan expression. Compare this representation to something like: 

- 
PlanGoal(Sequence( Pickup(x:Block s.t. On(x, y:Support)), 

Put(x:Block s.t. On(x, y:Support), Table)), 
Clear(y:Support)). 

Here, each sub-expression is conceptually complete. For example, Pickup(x:Block s. t. On(x, y:Support)) 
clearly represents the act of picking up a block that is on a support. (It should be noted that the 
SNePS representation, using a network syntax, would not be as redundant as the linear representa­ 
tion.) We plan to investigate these representational issues further. 

4.4 Applications to simulate agents 

A more application-oriented direction we may pursue is to apply our techniques of representing and 
reasoning about plans to simulate some human agent, and to try to predict what that human agent 
would do in certain hypothetical circumstances. 

- 
- 
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4.5 Increased plan recognition 
In order to recognize conditional or iterative plans, the relevant conditions which are true at the 
time the reported acts were performed must also be reported in addition to the reported acts. The 
deduction rules for plan recognition would have to be extended to include the control actions snif 
and sniterate. 

Since the acting executive automatically schedules acts to achieve preconditions of other sched­ 
uled acts, presumably other agents do the same thing. A plan recognizer should use the precondition 
rules to account for those acts which are not explicit in the plan-act or plan-goal rules. 

The belief revision system SNeBR can be used to implement incremental plan recognition. The 
belief revision system can be used to discriminate between potential plans or goals by establishing a 
separate context for each plan ( or combination of plans) and keeping track of the consistency of each 
context as more and more acts about the agent are reported. The number of assumptions supporting 
a conclusion that the agent is performing a particular plan or pursuing a particular goal indicates 
the probability of that conclusion and thus can also be used to discriminate among competing plans 
or goals. 

5 Summary 
In this paper, we have given an overview of the architecture of the SNePS acting system. The 
current version of the SNePS acting system can understand natural language utterances about a 
blocksworld. We reviewed our representations of plans and acts, the design of the acting executive, 
how we make use of a belief revision system, and the design of the natural language component. 
We took a brief look at how the system is able to discuss, use, and recognize plans in a Blocksworld 
domain. Lastly, we presented several future research issues related to this work that we are currently 
working on. 
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