DRAFT
Final Report for the
Intelligent Multi-Media Interfaces
' Project

Contract Period: October 27, 1987 to October 26, 1989

J.G. Neal, S.C. Shapiro, C.Y. Thielman, S.A. Glanowski,
J.M. Lammens, D.J. Funke, J.S. Byoun, Z. Dobes,
M.S. Summers, J.R. Gucwa, R. Paul

November 30, 1989

Contents

1 INTRODUCTION
LY MOTIVATION G oi v o v v oL dimnwmbos s ms s 8 5 8% + 8% €5 7o o
1.2 FUNCTIONALITY OVERVIEW
1.3 IMPLEMENTATION AND STATUS i ...
1.4 ORGANIZATION OF THE REPORTo,

2 OVERVIEW OF SYSTEM DESIGN

3 KNOWLEDGE SOURCES

3.1 TASK DOMAIN KNOWLEDGE BASE
3.2 DISCOURSE MODEL sttt
S20 . Nain Bewns LISk = s =’ : 5 05 5 8 @ 5 5.4 pom o niim.m ol e s
3.2.2 Display Model
3.2.3 Presentation Object Data Structure
3.2.3.1 Presentation Objects

3.2.3.2 Functionality Types

3.2.3.3 Data Structure Format

3.2.34 PODS Accessor Functions

3.24 Form Model

4 MULTI-MODAL LANGUAGE UNDERSTANDING
4.1 MULTI-MEDIA INPUT COORDINATION R
AAT Speech @ ;s ah s s w5 o v wrn e b m e e m amm dms soww m s s
41,2 - Written DafiBUASE '« o + « w5 5 1+ & 5.9 5 5 5 5 2w mom oo e ow o w e
4.1.3 Gestures e e e e e

ey

O N e

11
1l
12
12
12
13
14
14
15
18
19
20

4.1.4 Coordination 23
4.2 MULTI-MODAL LANGUAGE PARSING AND INTERPRETATION 24

d.2.1- PABIAE '+ o &% 55 60 % o wh o o wrm e s m o m e B s e 25
4.2.1.1 TheGrammar. co v v ittt e i e 25

4212 ThelLexicon. 25

2272 "Interpretafion ; . u v s s 5 555 B L 2w om o m s s s ks 26
4.2.2.1 Verb Case Frames. 5 B 8 F e m o omte iy w B 26

4.2.2.2 Mouse Gestures. 27

4.2.2.3 Noun Phrases and Prepositional Phrases.. 27

4.2.2.4 Referent Determination for Multi-Modal Phrases. 28

4.3 FLIGHT PATH DEFINITION 30
5 EXECUTOR 32
9.1 TYPES OF ACTIONS s, 32
Identity query. 32

YO5D0 QUOET: ¢ ¢ o 9 ¢ 6.6 8 2 0 o b w'e Ve m s s m v s a0 5 s o 32

Location query. 33

Property GUEIT. = v o ¢ 5 2% <" am v atw m o e m oot o b s s 33

Component query. 33
Characteristic and part queries. 33
Specification of property values. 33

Assigning values to variables., 34

Starting a new mission. 34

Naming objects. 34

Changing the current task. 34

Planming & thehtl patli: « 27w s 5 6% 55 5 5.5 5 %0n 0 wid n'e wmp gee 35

Listing class members. . .

Saving the current package.

........................

Entering information on the mission form.

6 MULTI-MODAL OUTPUT PLANNER

6.1 MODALITY SELECTION

6.1.1 Direct Window and Modality Manipulation

6.1.2 Map Modality Selection Criteria

6.1.3 Map Pointing Modality Selection Criteria

6.1.4 Table Modality Selection Criteria

6.1.5 Table Entry Pointing Modality Selection Criteria

6.1.6 Form Modality Selection Criteria

6.1.7 Form Pane Pointing Modality Selection Criteria

6.1.8 Selection Criteria for the Text Window Modality

6.1.9 Natural Language Prose Modality Selection Criteria

6.2 OUTPUT COMPOSITION . ..

........................

6.3 MULTI-MEDIA AND MULTI-MODAL OUTPUT EXAMPLES

7 INTELLIGENT WINDOW MANAGER

7.1 WINDOW TYPES
7.2 WINDOW LAYOUT

........................

........................

7.3 INTELLIGENT WINDOW PLACMENT

7.4 SIZING MAP WINDOWS
7.4.1 The Map Sizing Algorithm

8 DEICTIC GESTURES

9 TABLE MODALITY

35

36
37
38
39
40
41
42
42
42
42
43
43
44

50
50
53
56
56
58

62

63

10 FORM MODALITY

11 MAP MODALITY

11.1

11.2

GEOGRAPHIG MEAPS ; & o 5’ w5 0. 8 & « o m o omm o o ha im miad a s
11.1.1 Map Composition oo e
11.1.1.1 Determining the Map Transformation
11.1.1.2 Determining the Relevant Objects
11.1.1.3 Determining the Region to Display
11104 Sealimg i REGION. « ¢ 5 5 5.5 v @ 5.5 % 4 o woe s m = s o o
11.1.1.5 Displaying the Map
B2 -Niap Operations b 5 : ¢ mom o s @ 8 5 00 8 5 5 6 8 8 s oom o mhg -
PART-WHOLE DECOMPOSITION MAPS

12 MULTI-MODAL LANGUAGE GENERATION

12.1

12.2

12.3

AVAILABLE OUTPUT MODALITIES
12.1.1 Speech L e
1212 Wrikten LaliBuase : « o 5 ¢ 5 & 5.9, 76 8 55 4.4 8 5% « % o' w wi o o w w om
12.1.3 Deictic Gestures e e e e e e
12.1.4 Graphic Expressions
COORDINATION OF OUTPUT MODALITIES
12.2.1 Use of Written Natural Language
12.2.2 Use of Spoken Natural Language, Deictic Gestures and Graphic Ex-

PIESSIONS . o o v o o e e
THE GENERATOR i i et e s e it e e i o
12.8.1 Topul for GeREralion. « « .o m.s 1’6 59 & 668 & 5 58 6 8 Gb @ 6w ee o
12.3.2 The Grammar. i ittt e e e

63

64
64
64
65
65
66
66
66
67
69

75

12.3.3 The LexXicon. . . . v v v v v v i e e e e e e e e e s
13 COLOR GRAPHICS MODULE

14 KNOWLEDGE BASE BUILDER TOOL

14.1 SYSTEM CONCEPTS o e e e e e e e e e e
.11 The link . .. & . 2lc v 55 o n v w i nie s m v o afe s o m ah s o d @ s
14.1.2 The Case Frame and Case Frame Type concepts

14.2 KB BUILDER HUMAN COMPUTER INTERFACES
14.3 SUPPORTED ACTIVITIES i
14.3.1 Data Base Browsing Using the Data Base Viewer
14.3.2 The Generation of Links Between AMPS and SNePS
14.3.3 KB Generation R R I
14.3.3.1 Knowledge Base Instance Generation

14.3.3.2 Case Frame Generation

14.3.4 WYSIWYG Editing Capabilities
14.3.4.1 KB Displays o

14.3.4.2 Editing Capabilities 0L

15 EVALUATION
15.1 OVERVIEW OF APPROACH
15.2 PROCEDURES

15.2.1 Stage 1. Interface Engineering Evaluation

15.2.2 Stage 2. Air Force User Evaluation

...................

15.3 Results

.......................................

15.3.1 Summary

.............................

15.3.2 Evaluation with Respect to SOW Goals
15.3.3 Interface Engineering Evaluation
15.3.3.1 Overview Interface Engineering Ratings

15.3.3.2 Completed Interface Engineering Evaluation Questionnaire .

..........................

80

81
82
84
86
93
93
96
97
99
102
102
102
103
106

108
108
110
110
113
113
113
116
127
127
133

15.4 Conclusions and Recommendations 139

16 FUTURE DIRECTION 141
17 SUMMARY 142
18 REFERENCES 143

A EXAMPLE CUBRICON DIALOGUE
B CUBRICON GRAMMAR AND LEXICON

C GRAPHIC REPRESENTATION OF THE TASK DOMAIN KNOWLEDGE
BASE

D SOFTWARE DOCUMENTATION FOR PRIMARY FUNCTIONS
E EVALUATION TRAINING MATERIAL AND DATA

F WORKING PAPER ON HUMAN FACTORS ISSUES RELATED TO THE
USE OF COMPUTER SPEECH GENERATION

G WORKING PAPER DESCRIBING LOCATIVE REFERENCING FOR
MAP-BASED SYSTEMS

H REFERENCES TO PUBLISHED TECHNICAL PAPERS DESCRIBING
CUBRICON

1 INTRODUCTION

1.1 MOTIVATION

The introduction of improved and advanced processing capabilities into Air Force Command
and Control (C2) systems is proceeding at an ever-increasing rate. This has placed great
pressure on the human-computer interface of these systems. Large amounts of information
must be communicated between the human users and these computer-based systems. Fur-
ther, this human-computer communication must be accomplished quickly and without error
to support time-critical decision-making tasks within the command and control environment.

It is essential that the human-machine interfaces to these information intensive systems
not become limiting factors which degrade the larger command and control functions. Too
often in the past, the human-machine interface was either overlooked or handled much like
a retrofit after the fact. In today’s information explosive environment it is critical that
human-computer interface technology be developed and applied to meet the demands of
modern sophisticated computer-based systems. Martin [Martin73] expressed it well:

“For man, this is a hostile environment. His mind could no more cope with this
deluge of data, than his body could cope with outer space. He needs protection.
The computer — in part the cause of the problem - is also the solution to the
problem. The computer will insulate man from the raging torrents of information
that are descending upon him.”

The research conducted during this effort was motivated by the need for more capable and
powerful human-computer interface technology. It has attempted to apply artificial intelli-
gence, interactive graphics, speech recognition, and speech generation to build powerful and
efficient human-computer interfaces more capable of meeting the demands of modern infor-
mation intensive systems. The goal has been to integrate and combine various graphic and
voice human-computer interface technologies in 2 manner that enhances human-computer
communication. By dynamically selecting output media based on the features and capabil-
ities of that media vis-a-vis human sensing and understanding mechanisms, while also con-
sidering the context of the communication and combining multiple output media to achieve
increased bandwidth and linguistic redundancy, it was expected that the human-computer
interface efficiency could be enhanced. Additionally, by accepting user inputs via combina-
tions of multiple media selected by the user, the resulting human-computer interface was
expected to be both natural to use and highly effective.

The development of new user interface technology is driven by both interface requirements

1

and by computer hardware and software capabilities. Not only does computer technology
drive human-computer interface requirements as noted above, but it also determines the
approaches available to the human-computer interface. Before parallel processing and high
resolution integrated displays technology, human-computer interfaces employing integrated
windowing environments were not possible. Today these are commonplace. A plethora of
human factors research projects have explored, or been undertaken to explore, how to best
apply these technologies. This project has applied the emerging technologies of artificial
intelligence and voice recognition and synthesis to the human-computer interface. This
effort was a first step toward the goal of adding these technologies to the growing war-chest
of human-computer interface solutions.

Human-computer interface technology is developed in an empirical fashion. It is necessary
to build upon our existing understanding of interface design techniques and our knowledge
of past, current, and emerging human-computer interface requirements, to design, evaluate,
and build better human-computer interfaces. As new technology provides opportunity for
better human-computer interfaces, testbeds for applying these technologies and exploring
alternative implementation approaches are needed. CUBRICON was developed as one such
testbed, and this project has started the process of determining how best to apply these
technologies to achieve the goals of an enhanced human-computer interface.

1.2 FUNCTIONALITY OVERVIEW

The CUBRICON system design is based upon a unified view of language. Language is a
means of communication, whether verbal, visual, tactile, or gestural. Human beings com-
municate with each other via written and spoken natural language, frequently supplemented
by pictures, diagrams, pointing to objects, and other gestures. It is a unified language, in
that these various modalities are integrated and combined to represent and describe a single

underlying reality.

The CUBRICON system design provides for the use of a unified multi-media language,
defined by an integrated grammar, consisting of textual, graphic, and combined text/graphic
symbols. Inputs to, and outputs from CUBRICON, are treated as compound information
streams with components corresponding to different media. This approach is intended to
take advantage of humans’ ability to simultaneously accept information from different sensory
channels (such as eyes and ears), and to simultaneously generate communications in different
media (such as voice, pointing motions, and drawings).

The CUBRICON system includes: (a) language parsing and generation capabilities to sup-
port the understanding and creation of multi-media information streams, (b) knowledge

representation and inferencing capabilities to provide for reasoning about the meanings of
all communications vis-a-vis the underlying application, (c) knowledge bases and models to
provide a basis for decision-making with regard to taking action in response to communica-
tions, and (d) automated knowledge-based reasoning models to provide for media selection
and the formulation of responses that takes advantage of human sensing and understanding
capabilities.

Functionally, CUBRICON is distinct from other human-computer interface systems because
it provides intelligent integration of multi-media input and output. This allows CUBRICON
to have a unified view of multi-media language, thus providing a powerful potential for
accomplishing human-computer interactions. The following unique CUBRICON features
are important parts of this capability:

e CUBRICON integrates multiple input and output modalities. Input modalities include
voice, pointing via mouse, form-based input, and typed text. Output modalities include
voice, pointing/highlighting, forms, tables, and typed text. CUBRICON’s unified view
of language will allow efficient addition of other input and output modalities if needed.

e CUBRICON accepts inputs from human users in way that is natural and desirable to
the user. Specifically CUBRICON can:

— Coordinate input from different devices and modalities.

— Accept varying numbers of point gestures within phrases, and allow a variety of
object types to be the targets of point gestures.

|

Accept varying numbers of multi-modal phrases within sentences.

Use natural language inputs to disambiguate corresponding point gestures (and
eventually point gestures will also be able to disambiguate natural language).

— Handle certain types of ill-formed multi-modal inputs.

e CUBRICON provides for intelligent and automatic management of windows. This
includes:

— A method for determining window importance (used for deciding which windows
to remove when display space is needed for other windows).

— A procedure for automatically managing windows in a dual monitor environment.
This procedure considers window importance and type.

e CUBRICON generates multi-media outputs in a manner that enhances understand-
ability. Specific features are:

— Modality selection is based on the characteristics of the information to be ex-
pressed vis-a-vis human sensing and understanding capabilities, as well as task
and dialog context.

— Multiple modalities are combined to: 1) take best advantage of the relative
strengths of each; 2) add emphasis or orientation to accompanying modalities;
and 3) provide redundancy to ensure understanding and notice of important in-
formation.

— All multi-media outputs are temporally synchronized (e.g., highlighting of graph-
ics is temporally coordinated with related speech).

— Spoken and written natural language outputs are designed for short-term and
long-term reference, respectively. For example, written outputs include specific
object referencing rather than using pronouns. This allows correct interpretation
of the output over a longer period of time.

— System outputs maintain format consistency within and across displays, and
also provide for contextual orientation across all displays throughout the user-
computer dialogue.

¢ CUBRICON is a knowledge-based system. Input understanding and output composi-
tion considers dialog context (i.e., what is currently being displayed and has recently
been expressed), task context (i.e., the importance of information relative to the ongo-
ing task), and information context (i.e., the nature of the information vis-a-vis human
sensing and understanding capabilities).

1.3 IMPLEMENTATION AND STATUS

The CUBRICON system is implemented on a Symbolics Lisp Machine with a mouse point-
ing device, a color-graphics monitor, and a monochrome monitor. Speech recognition is
handled by a Dragon Systems VoiceScribe 1000. Speech output is produced by a DECtalk
speech production system. CUBRICON software is implemented using the SNePS semantic
network processing system [Shapiro79a; Shapiro81; Shapiro86], an ATN parser/generator
[Shapiro82a], and Common Lisp. SNePS is a fully intentional propositional semantic net-
work and has been used for a variety of purposes and applications [Maida85; Shapiro86;
Neal86, Neal87]. SNePS provides: (a) a flexible knowledge representation facility in the
semantic network formalism; (b) representation of rules in the network in a declarative form
so they can be reasoned about like any other data; (c) a bi-directional inference subsystem
[Shapiro82b] which focuses attention towards the active processes and cuts down the fan-out
of pure forward or backward chaining; (d) a simulated multi-processing control structure

4

P

[McKay80]; (e) special non-standard connectives [Shapiro79b] to model human reasoning
processes; and (f) existential, universal, and numerical quantifiers [Shapiro79c].

CUBRICON is a proof-of-concept system. It integrates multiple-media input and output,
and provides knowledge-based understanding and generation of human-computer communi-
cation including natural language, pointing/highlighting, and form-based interface technolo-
gies. As a proof-of-concept system, it performs the functions of multi-media human-computer
communication (see Section 1.2), but not at the level of sophistication that would be ex-
pected of a final system. For example, speech input uses a discrete voice recognition system
rather than a more expensive continuous voice recognition system. The CUBRICON gram-
mar and lexicon have been developed to support the present proof-of-concept application.
It does not provide for the processing of all possible English language structures and terms.
Finally, CUBRICON has been developed in the lab. It does not use a hardware and software
design that would permit extremely fast and efficient processing of inputs and outputs (i.e.,
CUBRICON dialogue is slower than human to human dialogue). Rather, it was designed
for efficient development and evaluation of the technology itself. Improvements in speed and
naturalness could be made in future CUBRICON implementations.

Finally, The focus of the CUBRICON implementation has been to develop a proof-of-concept
intelligent integration of multiple-media input and output modalities, which can be im-
plemented efficiently as a front-end to a variety of application systems. State-of-the-art
technologies have been applied, and in some cases developed, to achieve this end. The em-
phasis has been on the application of artificial intelligence based technologies to the human-
computer interface problem. Only peripheral efforts have been expended in the application
of more routine or standard human-computer interface techniques. For example, signifi-
cant effort has been applied to achieve understanding of simultaneous voice and pointing
inputs, while little effort has been made to provide menu-based alternatives. While a final
application of CUBRICON will offer both voice/pointing and menu-based approaches to
human-computer communication, it currently offers very little in the way of menus. This
can be added later.

1.4 ORGANIZATION OF THE REPORT

This report describes the research efforts conducted during this project and presents the
results of the evaluation which attempted to measure how well the above goals (see Section
1.1) were achieved. A brief overview of the organization of this report is given below:

Report Section: Summary of Contents:

3-6

7-13

14

15

16

17

18

Appendixes

A

Introduction. Provides an introduction to and functional
overview of the Intelligent Integrated Interface Project,

and of the CUBRICON system.

Overview of System Design. Contains an overview description
of the CUBRICON design including a brief description of

each major system component.

These sections describe the design of all major CUBRICON

processing and knowledge base components.

These sections describe major CUBRICON output technologies
and modalities.

KB Builder Tool. Describes the CUBRICON Knowledge Base
Builder Tool which is used for implementing CUBRICON as the

human-computer interface for a new application system.

Evaluation. Describes the CUBRICON evaluation that was
conducted during this effort and summarizes the results
(evaluation data is contained in Appendix C).

Future Directions. Recommends future directions for the
CUBRICON system and related research.

Summary. Provides a summary of CUBRICON and the research
that was accomplished during this effort.

References. Contains a complete list of all references made
within this document and its appendices (excepting Appendix

H).

Example CUBRICON Dialogue. Contains examples of user-
CUBRICON dialogue which illustrate important CUBRICON
features. These sample dialogues are illustrated with

pictures of actual CUBRICON displays.

—

Grammar and Lexicon. Contains a complete description of

the grammar and lexicon used by CUBRICON.

Graphic Representation of the Task Domain Knowledge Base.
Contains diagrams which depict the structure of the Task
Domain Knowledge Base.

Software Documentation for Primary Functions. Contains
descriptions of the software used to accomplish primary

functions within CUBRICON.

Evaluation Training Material and Data. Contains: a complete
set of material used to train subjects for the CUBRICON
evaluation; all work aids used during the evaluation; and

data generated during the evaluation.

Working Paper on Computer Speech Generation. Contains a
working which presents the results of a literature review on
human factors issues relating 4o the use of computer
generated speech. This paper was delivered to DARPA and
RADC earlier in the program and is included here for
completeness.

Working Paper Describing Locative Referencing for Map-Based
Systems. Contains a working paper describing research

conducted in in association with CUBRICON. This research
resulted in the implementation of a definitive referencing
capability within CUBRICON, but was funded by another agency.

References to Published Technical Papers Describing
CUBRICON and the Research Conducted Under the Intelligent

Integrated Interfaces Program.

2 OVERVIEW OF SYSTEM DESIGN

The CUBRICON team has designed and implemented an integrated user interface system
with the functionality described briefly in Section 1.2. Figure 1 provides an overview of the
‘software system and hardware I/O devices currently supported by CUBRICON.

SYSTEM OVERVIEW

MOUSE COLOR- SPLFCH
’suv‘ijCH KEYBOARD POINTING GRAPIICS MONOCHROME ourruT
DEVICE DEVICE DEVICE DISPLAY DISPLAY DEVICE
i o ot o o, A R [T S e A B o s
———t =] —]—

KNOWLEDGE SOURCES

' v

COORDINATED
INPUT LEXICON outPUT
COORDINATOR GENERATOR

GRAMMAR ?

-
DISCOURSE
MODLL ¢ I P MULTI-MEDIA
MULTI-MEDIA ouUTPUT
€

PARSER usra -4 PLANNER
L MODEL
<
PLANNING

STAATIGIES

KR Of GINERAL
KNOWLEDGE
bl ——

K1} OF

b

DOMAIN-SPTCIFIC
KNOWLEDGE

[: EXECUTOR AND <}

COMMUNICATOR

i 10O
TARGEY SYSTEM

| l
[|
i |
{ l
l |
' l
f il
: @ ouTPUT : @ l
| |
| |
| l
| |
| |
| l
l l

INTELLIGENT MULTIMEDIA
INTERFACE

~

MISSION l
PLANNING DAMS
| SYSTLM |

Figure 1: System Overview

CUBRICON accepts input from three input devices: a speech recognition system, a key-
board, and a mouse. CUBRICON produces output via three output devices: a high-
resolution color-graphics display, a monochrome display, and a speech output device.

The primary data processing flow through CUBRICON is indicated by the numbered mod-
ules in Figure 1. These are: (1) Input Coordinator, (2) Multi-media Parser Interpreter,
(3) Executor/Communicator to Target System, (4) Multi-media Output Planner, and (5)

8

the Coordinated Output Generator. Each of these are briefly described in the following
paragraphs.

Inputs to CUBRICON are handled by the Input Coordinator and the Multi-Media Parser
Interpreter. The Input Coordinator module accepts input from the three input devices and
fuses the input streams into a single compound stream, maintaining the temporal order of
tokens in the original input stream. The Multi-media Parser/Interpreter is an augmented
transition network (ATN) that has been extended to: 1) accept the compound stream pro-
duced by the Input Coordinator and 2) produce an interpretation of this compound stream.

Once inputs are received and understood by CUBRICON appropriate action is then taken
by the Executor module. This action may be a command or database query to the under-
lying application (e.g., a mission planning system, a database), or an action that entails
participation of the interface system only.

An expression of the results of CUBRICON action (completed by the Executer) are planned
by the Multi-Media Output Planner for communication to the user. The Multi-Media Out-
put Planner is a generalized ATN that produces a multi-media output stream represen-
tation, with components targeted for different devices (e.g., color-graphics display, speech
output device, monochrome display). This output stream representation is translated into
visual/auditory output by the Coordinated Output Generator module. This module is re-
sponsible for producing the multi-media output in a coordinated manner in real time. For
example, the Multi-Media Output Planner module may specify that a certain icon on the
color-graphics display must be highlighted when the entity represented by the icon is men-
tioned in the simultaneous natural language voice output. The Coordinated Output Gener-
ator implements this coordinated output.

The CUBRICON system incorporates several knowledge sources that are used during pro-
cessing. The knowledge sources currently include: (1) a lexicon, (2) a grammar defining the
language used by the system for multi-media input and output, (3) a discourse model, (4)
a user model, (5) a knowledge base of output planning strategies to govern the composition
of multi-media responses to the user, (6) a knowledge base of information about generally
shared world knowledge, and (7) a knowledge base of information about the specific task
domain of tactical air control. These knowledge sources are used for both understanding
input to the system and planning/generating output from the system. They are discussed
in more detail in the next section.

In its entirety, the CUBRICON system provides an integrated multi-media human-computer
interface system which can be implemented as a front-end to a target application system.
Inputs are accepted via a combination of input modalities. Outputs are accepted via a
combination of output modalities. CUBRICON is designed in a way that allows it to be

applied to a variety of application systems with only minimal programming efforts. It also is
configured to accept the incorporation of additional input and output modalities to support

future interface needs.

10

3 KNOWLEDGE SOURCES

The CUBRICON system includes several knowledge sources for use in multi-media language
understanding and production. These knowledge sources are: a lexicon; grammar; discourse
model; user model; a knowledge base of output planning strategies to govern the composition
of multi-media responses to the user; and a knowledge base of information about the task
domain of tactical air control.

This section contains: a description of the knowledge base relating to the task domain of
tactical air control and related display information; the discourse model; and the user model.
Descriptions of the other knowledge bases are contained within other sections of this report.
Specifically, the lexicon and grammar are described in Sections 4 and 12, and in Appendix
A. The knowledge base of output planning strategies is discussed in Section 6.

3.1 TASK DOMAIN KNOWLEDGE BASE

The Task Domain Knowledge Base contains domain-specific information relating to the
particular task domain of the application system to which CUBRICON is serving as the
human interface. It includes knowledge of the entities and concepts known to the underlying
system, as well as information concerning the presentation or expression of those entities or
concepts. For example, this knowledge base typically will include information about how
an entity should be expressed via a unified verbal/graphic output. This includes words
and symbols that can be used to express the entity or concept, along with conditions that
determine the definition of specific expressions containing them (e.g., when and how to
abbreviate, color codes to apply, symbology definition). This knowledge base is defined
within a semantic network which encodes its structure and the meanings of the objects it
contains.

The current CUBRICON implementation contains a knowledge base relating to the general
task domain of tactical air control. It relates specifically to an early version of the AMPS
data base developed by The MITRE Corporation for RADC. The AMPS data base was
designed to support the planning Air Force Air Tasking Orders. A graphical representation
of this knowledge base is contained in Appendix C.

(more detailed description forthcoming)

L3

3.2 DISCOURSE MODEL

Continuity and relevance are key factors in discourse. Without these factors, people find
discourse disconcerting and unnatural. The attentional discourse focus space representation
[Grosz78, Grosz86; Sidner83; Grosz85] is a key knowledge structure that supports continuity
and relevance in dialogue. It is used for determining the interpretation of anaphoric references
[Sidner83] and definitive references [Grosz81] expressed by the user in natural language.
CUBRICON tracks the attentional discourse focus space of the dialogue carried out in multi-
media language. This is accomplished with four structures: (1) the Main Focus List; (2) the
Display Model; (3) the Presentation Object Data Structure; and (4) the Form Model. Each
of these Discourse Model components are discussed in this section.

- 00N a0 U N

i {/ / 5 40\ YAAN 7S { |
~Y 1 A A P i AV AS 7

3.2.1 Main Focus List \:«@’Lf%
The Main Focus List is CUBRICON’s primary means of tracking the attentional discourse
focus space. It consists of a continually updated list of those entities and propositions
that have been explicitly expressed (by the user or by CUBRICON) via natural language,
pointing, highlighting, or blinking. The Main Focus List maintains a temporal record of
when references were made, and is used by CUBRICON in determining pronoun or definite
referents, and objects or locations to be used within locative references.

3.2.2 Display Model

The display model represents all the objects that are “in focus” because they are visible
on one of the monitors. Graphics are an integral part of CUBRICON’s language along
with natural language and other forms of text and pointing. The CUBRICON system
treats objects presented on the graphics displays as having been intentionally “expressed” or
“mentioned”. All objects on the graphics display are therefore “in focus” and CUBRICON
maintains a representation of all these objects in the form of a display model. The display
model is defined at two levels: (1) a list of all displayed windows on each monitor and, (2)
for each window, a list of all the objects that are visible within it.

The Display Model is used by CUBRICON in the determination of how to express new
outputs to the user. All display updates are generated based on the pre-existing display
context, represented by the Display Model. Display updates are designed to build upon
the pre-existing display context in a way that minimizes display (and dialogue) disruption
and maximizes display (and dialogue) continuity. For example, expressions involving entities
already displayed are accomplished through diectic dual-media expressions rather than the

12

generation of new displays (i.e., windows). The diectic dual-media expression consists of a
phrase such as “this airbase” with simultaneous blinking/highlighting of the airbase icon as
its means of pointing to it. If the entity is the most salient of its gender according to the
main focus list, CUBRICON may use a pronoun as the verbal part of the expression. The
Display Model plays a central role in this process, since it is the source of minute-to-minute
knowledge of what is currently being displayed.

The Display Model is also used in a manner that is analogous to the use of the Main Focus
List. That is, it supports the identification of pronoun, definite, or locative references. In
the case of locative references, the role of the Display Model is somewhat obvious. Entities
to be used for a locative reference must already be on the display. In the case of determining
pronoun or definite references, the Display Model is consulted when the referent is not found
in the Main Focus List. For example, when a person expresses a definite reference such
as “the airbase” with just one such object in view (as on a graphics display), and when
none have been previously discussed, CUBRICON assumes that this airbase is the one that
was meant, even though several others may be contained in the knowledge base. If many
airbases are currently displayed in this situation, CUBRICON might select the airbase most
relevant to the user’s task (e.g., only friendly airbases would be selected as an origin for a
strike mission), or if no disambiguating information at all were available, it might respond
with the question, which airbase do you mean? In any event, the Display Model is consulted
to ascertain what is currently being displayed, and this information is used in determining
appropriate outputs.

3.2.3 Presentation Object Data Structure

CUBRICON records the current presentation objects in a tree structure referred to as the
presentation object data structure or PODS. A presentation object represents an output
mode of expression, such as a highlighted icon or a dynamic window. The PODS serves two
functions. First, it is used to determine which presentation objects to regenerate when a
map is redisplayed by zooming in or zooming out. Secondly, it is used to determine when
and how to remove a presentation objects from a display.

The PODS organizes the presentation objects by the function they serve within the CUBRI-
CON system. This is necessary since the same presentation object is treated differently
within CUBRICON depending on why it was created.

13

_a—

3.2.3.1 Presentation Objects

CUBRICON does not record every output mode of expression in the PODS. Presentation
objects which are dynamic in nature, appearing and disappearing based on recency of cre-
ation, are recorded. Table entries, for example, are static in nature. They are never removed
once they are included in a table. Therefore, these presentation objects are not included in
the PODS. The following is a list of the presentation objects included in the PODS: icons
which trace the location of mouse points, string labels, highlighted windows, highlighted
table entries, highlighted icons, pointing text windows, dynamic windows, flight paths, icons
created during a flight path presentation, and context boxes which show the relationship
between the previous and currently displayed map area.

3.2.3.2 Functionality Types

The PODS is organized primarily by the function of the presentation object within the
system. Presentation objects serving different functions within the system are handled dif-
ferently by CUBRICON. For example, the same type of label, which is placed on a map, is
used to identify the order in which point gestures occurred as well as to identify the property
and value of an entity. These presentations are treated differently, labels associated with
a pointing gestures are removed prior to output generation, whereas labels identifying the
property and value of an entity are removed after fifteen requests.

The functions a presentation object serves can be one of the following:

e Mouse Gesture Pointing

The presentation objects which trace input pointing gestures via a mouse. This includes
a map icon indicating the location of the mouse point, a pointing arrow indicating the
icon referred to if the mouse point was ambiguous, and a label indicating the order in
which the mouse points occurred.

e Map Icon Pointing
The diectic gestures which point to a map. This includes icon highlighting, table entry
highlighting, mission planning form highlighting, and a pointing text box which points
to the map icon.

¢ Window Pointing

The diectic gesture which point to a window. This includes highlighting the window
frame of the window being pointed to.

14

e Map Context Box
The presentation object which shows the context between the previous and current
map. This includes an orange rectangle outlining a region on a map.

e Property Labels

The label which display a property and value of an entity, currently a map icon.

e Mission Presentation

The presentation objects which were created during a mission presentation. This in-
cludes map icons, highlighted map icons, highlighted table entries, highlighted form
entries, dynamic windows, and flight paths.

3.2.3.3 Data Structure Format

The PODS is a tree structure including the following information:

e Functionality

The functionality of the presentation object as described in Section 3.2.3.2.

e Recency
Time the presentation object was created. This item is used along with the function-
ality of the presentation object to determine when to remove the presentation.

o Key

Key used to differentiate presentation objects with the same functionality. For example,
presentation objects created during different mission presentations.

e Window Identifier

The identifier of the window instance containing the presentation object.

e PO Type

The type of presentation object, used to determine the function call and arguments
needed to remove or generate the presentation object. Section3.2.3.1 identifies these
presentation objects.

e Node List

List of SNeP$S node(s) for which the presentation was performed. This field is needed
to remove and generate presentation objects which refer to a map icon, map icon
highlighting for example.

15

((<functionality> <recency> <key>
((<window identifier>
((<P0O type> <node list> <optional argument>)*)
)*)
)*)

Figure 2: PODS Structure Diagram

e Optional Arguments

Any additional arguments needed to generate the presentation object. For example,
the contents of a string label is stored as an optional argument.

The structure of the PODS is shown in Figure 2. The PODS includes three association
lists with keys of functionality, window identifier, and PO type respectively. These lists will
be referred to as the functionality list, the window identifier list and the PO type list. A
sample PODS is shown in Figure 3. The first list, which contains the functionality keyword
:PROPERTY-LABEL, was added to the PODS as a result of a request for the mobility of
three sam systems. One of the presentation objects generated is a label associated with an
icon represented by the SNeP$S node identifier B25. This label contains the string “Mobility
High”. Two additional labels were generated during this request. These labels are associated
with the icons represented by the SNePS node identifiers B15 and B1§, containing the string
“Mobility Low”.

The second list in the PODS, which contains the functionality keyword :MISSION, was
added to the PODS as a result of a request to generate the OCA345 mission plan. There are
numerous presentation objects generated when presenting a mission plan. First, the origin
airbase is pointed to by highlighting and labeling, resulting in the addition of the first two
PODS lists with keywords :HIGHLIGHTED-ICON and :STRING-LABEL. The origin air-
base is represented in the knowledge base by the the SNePS node identifier B40. The flight
path generated during a mission plan consists of waypoints connected by arrows, indicating
the direction of the aircraft, and labels, indicating the time of arrival at each waypoint. The
presentation objects comprising a flight path are represented in the lists containing the key-
words :FLIGHT-PATH and :STRING-LABEL. The explosion of the target airbase added the
list containing the keyword :HIGHLIGHTED-ICON to the PODS. An orbit occurring during
the mission presentation added an icon to the map window and consequently added a list
containing the keyword :ICON to the PODS. In addition, a flight path presentation generates
a dynamic window containing text describing the mission plan (:DYNAMIC-WINDOW), the

16

((:PROPERTY-LABEL 3 NIL
((#<GUIDE-WINDOW Guide Window 5 11010157 exposed>
((:STRING-LABEL (B25) ("mobility: high'"))
(:STRING-LABEL (B15 B18) ("mobility: low"))))
(#<GUIDE-WINDOW Guide Window 6 11010665 exposed>
((:STRING—LABEL (B25) ("mobility: high"))
(:STRING-LABEL (B15 B18) ("mobility: low"))))))
(:MISSION 5 "0CA345" '
((#<GUIDE-WINDOW Guide Window 5 11010157 exposed>
((:HIGHLIGHTED-ICON (B40) :CIRCLE)
(:STRING-LABEL (B40 B171) ("Origin Air Base."))
:FLIGHT-PATH (B40 B172) NIL)
:STRING-LABEL (B172) ("5:55"))
:STRING-LABEL (B173) ("6:15"))
:STRING-LABEL (B174) ("6:30"))
:STRING-LABEL (B175) ("6:45"))
:STRING-LABEL (B176) ("6:50"))
:FLIGHT-PATH (B176 B177) NIL)
:FLIGHT-PATH (B177 B178) NIL)

:FLIGHT-PATH (B172 B173) NIL)
:FLIGHT-PATH (B173 B174) NIL)
:FLIGHT-PATH (B174 B175) NIL)
:FLIGHT-PATH (B175 B176) NIL)
:HIGHLIGHTED-ICON (B50) :EXPLODE)
:STRING-LABEL (B177) ("7:00"))
:STRING-LABEL (B178) ("7:05"))
:FLIGHT-PATH (B178 B179) NIL) :STRING-LABEL (B179) ("7:15"))
:FLIGHT-PATH (B179 B180) NIL) :STRING-LABEL (B18Q) ("7:25"))
:ICON (B227) NIL) (:FLIGHT-PATH (B4i80 B1i&1i) NWIL)
:STRING-LABEL (B181) ("7:40")) (:FLIGHT-PATH {Bi181 B182) NIL)
:STRING-LABEL (B182) ("8:00")) (:FLIGHT-PATH (B182 B183) NIL)
:STRING-LABEL (B183) ("8:10")) (:FLIGHT-PATH (B183 B40) NIL)
:STRING-LABEL (B40 B184) ("Mission completed.'))))
(#<MISSION-WINDOW Form Window 11000744 deexposed>
((:HIGHLIGHTED-FORM (M1571!') NIL) (:HIGHLIGHTED-FORM (M1542!') NIL)
(:HIGHLIGHTED-FORM (M1573!) NIL) (:HIGHLIGHTED-FORM (M1721!) NIL)
(:HIGHLIGHTED-FORM (M1660! M1661!) NIL) (:HIGHLIGHTED-FORM (M1723!) NIL)
(:HIGHLIGHTED-FORM (M1660! M1661!) NIL)
(:HIGHLIGHTED-FORM (M1660! M1i661!) NIL)))
(#<TEXT TEXT WINDOW 11011373 deactivated> ((:DYNAMIC-WINDOW B221 NIL)))
(#<TEXT-PRESENTATION-WINDOW Text Presentation Window 8 11010431 deactivated>
((:HIGHLIGHTED-TABLE-ENTRY (B40) NIL)))))
(:POINT-AT 6 NIL
((#<TEXT-PRESENTATION-WINDOW Text Presentation Window 8 11010431 deactivated>
((:HIGHLIGHTED-TABLE-ENTRY (B47) NIL)))
(#<GUIDE-WINDOW Guide Window 5 11010157 exposed>
((:TEXT-WINDOW (B47) ("dresden ait7base"))
(:HIGHLIGHTED-ICON (B47) :CIRCLE))))))

NN NN NN SN NN NN AN AN
W PN NG PR PN Y T TN, Y

i

Figure 3: Sample PODS

highlighting of relevant information on a mission planning form (:HIGHLIGHTED-FORM),
the highlighting of relevant information on tables (:HIGHLIGHTED-TABLE-ENTRY), and
a label indicating the mission presentation is complete (:STRING-LABEL).

The last list in the PODS was added as a result of the request for the location of the Dresden
airbase. The result was the the highlighting of the table entry identifying the properties of
the Dresden airbase (:HIGHLIGHTED-TABLE-ENTRY), a text-box containing the string
“dresden air base” pointing to the icon representing the Dresden airbase (:TEXT-WINDOW)
and the highlighting of the icon representing the Dresden airbase (:HIGHLIGHTED-ICON).
The Dresden airbase is represented in the knowledge base by the SNePS node identifier B47.

3.2.3.4 PODS Accessor Functions x\’fu O

L

N Lgv v
/Two functions exist to construct the PODS. One function, add-to-pods-arg-list, constructs
‘the PO typelist. This list contains all of the information needed to remove or generate a
presentation object. The fields included in this list are; PO type, node list, and optional
argument. The second function, add-to-pods, constructs the PODS given the functionality,
recency, key, and the PO type list, which is returned from the add-to-pods-arg-list function
call. A description of the input arguments to add-to-pods and add-to-pods-arg-list is in
Section 3.2.3.3, Data Structure Format. The calling arguments for the functions follow: 4
(add-to-pods functionality key PO-type-list) and (add-to-pods-arg-list PO-type-list PO- f
type node-list window-identifier optional-argument-list). ot

Lists are removed from the PODS whenever presentation objects are removed from a display) M ;
or whenever the user deletes a window containing presentation objects represented in the)
PODS. Presentation objects are removed from a display based on the functionality and
recency of the presentation object. Deleted windows are windows which are completely
removed from the display and are not replaced by an icon. The deletion of a window is

performed solely upon user request.

When a presentation object is removed from a display the PO-type list containing PO-type,
node-list, and optional-argument is removed from the PODS. If all sub-lists contained in the
window identifier list are removed, then the window identifier list is also removed. Similarly,
if all sub-lists contained in the functionality list are removed, then the functionality list
is removed. The removal of lists from the PODS when a presentation object is deleted is
function are (selyewcjt—:}ﬁédal’itieS'-fOr-removal z-y time-of-removal key). The first argument,
x-y, is optional. It is used to delete mouse point gestures at a particular x/y location. The
argument time-of-removal is used to indicate under what conditions a presentation object

A 18

is removed from the PODS. There are three values for time-of-removal indicating the three
possible times or conditions under which a presentation object can be removed. The first
case indicates a request to remove mouse point gestures. This occurs after the input has
been parsed, but before any output generation. The second case is a request to remove all
presentation objects generated during a mission presentation. The third case is a request to
remove all remaining presentation objects. These presentation objects are removed based on
the functionality and recency of the presentation object.

When a window is deleted by the user the function remove-from-pods removes all lists
containing the identifier of the window being deleted from the PODS. If all of the window
identifier lists contained in the functionality list are removed, then the functionality list is
removed. The calling argument for this function is (remove-from-pods window-identifier).
A description of window identifier is in Section 3.2.3.3.

3.2.4 Form Model

The Form Model consists of data and knowledge bases which enable CUBRICON to accept
inputs to, and display outputs via the form display (see Section 10). It keeps track of infor-
mation contained in the form, and coordinates the information on the form with the larger
CUBRICON Knowledge Bases. The Form Model includes the following data structures:
(1) the Mission Template; (2) the Form Display Model; and (3) The Informational Data
Structure. Each of these is discussed below.

The Mission Template is a semantic network containing information about slots in a mission
plan. The information required for defining a mission of a given type, and the relation-
ships among those entities (e.g., a refueling orbit location and a refueling waypoint must
be colocated), are defined in the Mission Template. The Form Model contains one Mission
Template for each type of mission that might be planned.

The Form Display Model contains a representation of the forms themselves. It defines how
forms are displayed. All form slot sizes and locations are specified. This enables CUBRICON
to accept inputs to the form via diectic gestures, and allows outputs to be displayed in their
proper location. Representations for many forms may be included within the Form Display
Model, however in the current CUBRICON implementation, only one form is represented.
Slots in the form are related to corresponding slots in the larger Mission Template.

The Informational Data Structure (IDS) keeps track of the information entered or displayed
via the form, and relates that information to the CUBRICON Domain Knowledge Base and
the form itself, in accordance with the structures of the Mission Template. When information
is entered on a form, for example, data structures are created within the IDS defining the

19

specific missions. These are created in accordance with the data relationships defined in the
Mission Template and using domain knowledge contained in the Domain Knowledge Base.

(more detailed description forthcoming)

3.3 USER MODEL

Many aspects of a user are highly relevant to interface technology. These aspects include
level of expertise in the current task, perspective based on his role, his value system, degree
and nature of impairedness due to fatigue or illness, and preferences concerning mode of
communication. Carberry [Carberry87] provides a brief summary of recent research on user
modeling. To address all of these aspects of user modeling is, of course, beyond the scope
of this project. The aspects of the user that are most relevant in the CUBRICON system
are (1) the importance rating that the user attaches to the different entity types that are
relevant to each given task, which we call the user’s entity rating system; and (2) the task
on which the user is currently engaged.

CUBRICON includes a representation of the user’s entity rating system as a function of
the task being addressed by the user. For a given task in the process being carried out
by the user, the entity rating system representation includes a numerical importance rating
(on a scale from zero to one) assigned to each of the entity types used in the application
task domain. The numerical rating assigned to a given entity type represents the degree of
importance of the entity to the user.

Associated with the entity rating system is a critical threshold value: Those entities with
a rating above the critical threshold are critical to the current task and those with ratings
below the threshold are not. This critical threshold is used by CUBRICON for determining
which entities to display in response to user requests. This is accomplished as follows: (1)
it is used in determining what information is relevant in answering questions or responding
to commands from the user. (2) it is used in selecting ancillary information to enhance
or embellish the main concept being expressed and to prevent the user from making false
inferences that he might otherwise make. (3) it is used in organizing the form in which
information is presented.

As an example of (1) above, if the user instructs the system to “Display the Fulda Gap
Region”, CUBRICON uses the entity rating system representation to determine what objects
within the Region should be displayed. If the user is a military mission planner, then
displaying all the country cottages in the region, for example, is irrelevant. The objects
to display are those that are relevant to the job of the mission planner. Thus the objects

20

that the system selects from its data base for display are airbases, missile sites, targets,
etc. Section 8 discusses examples of the use of this entity rating system representation in
interactive dialogue between a user and the CUBRICON system.

The CUBRICON design provides for the entity rating system representation to change auto-
matically under program control in the following manner: (1) when the user’s task changes
the system replaces the current entity rating list with the standard initial rating list for the
new task; and (2) when the user mentions an entity whose rating is lower than the critical
threshold, then its rating is reset to be equal to the critical threshold to reflect the user’s
interest in the entity and its seeming relevance to the current task from the perspective of
the user. In the current implementation, CUBRICON performs the only second function
listed above. The implementation of the first function is not complete.

CUBRICON does, however, include a simple representation of the current task in which the
user is engaged. CUBRICON’s mode of response to the user is affected by whether or not
the user’s task has just changed. The CUBRICON team is developing a task hierarchy: a
decomposition of the user’s main tasks into subtasks. This a priori task knowledge can be
used by CUBRICON to help track the discourse focus, manage the displays, and anticipate
the needs of the user.

21

4 MULTI-MODAL LANGUAGE UNDERSTANDING

CUBRICON allows users to express themselves in a multi-modal way, using a variety of
input media, much like persons talking to each other use every means at their disposal to get
the message across. Multi-modal language understanding refers to the system’s ability to
accept input from all available input devices and interpret it in a consistent and coordinated
way. The underlying viewpoint is that the different input devices should not be seen as
separate sources of information but as parts of a single multi-modal input stream. Users
are therefore free to mix different modalities and substitute expressions in one modality for
equivalent expressions in another. This section explains how the different input modalities
are read and interpreted in accordance with these principles.

4.1 MULTI-MEDIA INPUT COORDINATION

The system has to deal with three different input sources: spoken natural language as
provided by a separate discrete speech recognition system, written natural language as pro-
vided by keyboard input, and pointing gestures as provided by mouse input. The three
input sources are integrated into a single multi-modal input stream before any parsing and
interpretation takes place. This process of integrating the input sources into a single stream
is referred to as input coordination. We first discuss the input sources separately and then
take a look at the integration process.

4.1.1 Speech

Speech input is provided by a separate Dragon Systems discrete speech recognition system
running on a PC with additional hardware. It has a context free grammar in BNF-like nota-
tion that describes acceptable input sentences. Since this grammar is separate from the one
used in the system’s multi-modal language parsing and interpretation (see Section 4.2) there
may be slight variations in the type of spoken versus written sentences that are accepted.
This could, for example, include shorter spoken forms of long words. The main limitations
of the speech recognition system are its discrete and speaker dependent nature.

Words recognized by the speech recognition system are read from a serial input stream and
put into the input buffer of the natural language interaction window (see Section 4.1.4).

22

4.1.2 Written Language

The user can type in sentences in natural language using a keyboard. The standard Symbolics
input editing facilities are available. The end of a sentence is detected when a period, question
mark or exclamation mark is read, making the use of the return key unnecessary. Typed
input is also sent to the input buffer of the natural language interaction window.

4.1.3 Gestures

Gestures are made using a standard three-button mouse, but the system never distinguishes
between the buttons. The user can point to any object visible on either the monochrome
or the color-graphics screen and click any mouse button to indicate the object being talked
about. There are many different types of windows on the displays at any given time, for
example tables, maps and forms, each containing several objects of different types. Point-
ing gestures may therefore be ambiguous with regard to the intended referent, and special
routines are required to interpret them (see Section 4.2.2.4).

Apart from being used as a simple pointing device, the mouse can also be used to input
graphical data. The only implemented instance of this is the entering of a flight path by
the user. In this case the mouse is used to input a closed, directed polygonal path (see
Section 4.3). The user indicates the vertices of the polygon on a map window on the color
graphics screen (see Section 11), and the path is traced with directed line segments as each
vertex is entered.

Just like speech and written language input, all mouse input is redirected to the input buffer
of the natural language interaction window.

4.1.4 Coordination

The three available input sources are combined in a single input buffer associated with the
natural language interaction window. This window echoes all input in a suitable printed
representation (Figure 4). It also serves as a user feedback window where other parts of the
system can display messages in natural language (see Sections 6 and 12). Words entered
through the keyboard or speech recognition device are represented in their usual printed
form, and mouse clicks are represented symbolically. The symbolic representation consists
of a down arrow followed by a number (the ordinal number of the mouse click for the sentence
'being entered), and a list with X and Y coordinates, window name and window identification

1 number. The printed representations of mouse clicks are provided for user feedback and to

\

\ 1 ool i]
\ /4 K/'\\U\ - ,gp, &’\, ¢ ‘/ *',,"“: . 7
O\ l'i‘ j ! y 7}
) 2 Was o4 VAl

VALY B O
\ o Wt
/

OF>S Display the forms window.

i [The form is now on the monochrome screen. ‘ .

Nl=>> What is the mobility of this +1(620 200 "Guide Window 14 .190§§?7:)?
oint (1): The icon you pointed at does not have the property "mobility"; but a
earby referent has been found.

bility of the SA-2 is low. \
I?)e Er?:'t)erl ;h)i/s 11(656 185 "Guide Window 14" 1908677) here 12(520 268 "STK~AIMPOINT-2" 72651818).

The aimpoint of STK445 is the SA-2.
=>>

Figure 4: The natural language interaction window echoes all input in a suitable printed
representation. It also displays natural language output produced by the system.

allow clicks to be edited out in case of mistakes.

Conceptually, the input sources may be seen as parallel and independent data streams before
they are integrated. The combination of these streams proceeds in a linear way, inserting
whatever is available from any source at the current point in the input buffer. The input
buffer therefore reflects the order in which multi-modal tokens (spoken or written words or
mouse clicks) were entered. The delays in processing input speech are insignificant in this
respect, given a fast enough PC.

The integrated multi-modal input stream is processed by the parsing and interpretation
component (see Section 4.2) on a per sentence basis. Before a sentence becomes available
for further processing however, all words are checked for presence in the lexicon (see Sec-
tion 4.2.1.2). The user is informed about any unknown words, is presented with a list of
completions for incomplete multi-word expressions in the input, and asked to re-enter the
sentence if necessary.

4.2 MULTI-MODAL LANGUAGE PARSING AND INTERPRETATION

After a Multi-Modal sentence has been assembled from the available input sources it is passed
to the parsing and interpretation component. This component’s task is to analyze the syntac-
tic structure of the sentence (parsing) and assign a meaning to it (interpretation). Although

24

A

we discuss parsing and interpretation separately they are really interweaved in time. The
guiding principle is that syntactic representations serve only as intermediate structures until
an interpretation (semantic structure) can be determined. As soon as possible, the syntactic
representation will be abandoned in favor of a semantic one.

4.2.1 Parsing

The parser checks that the input represents a valid Multi-Modal sentence. This includes
checking for valid English syntax that the system can understand, and checking that the
mouse clicks occur in appropriate places in the sentence. Mouse clicks may occur anywhere
within a noun phrase or a locative adverbial phrase, or can alternatively replace an NP
completely. The parser builds parse trees for phrases and complete sentences, and it calls the
appropriate interpretation functions that build the semantic representation of those phrases
and sentences.

CUBRICON is using the parser that comes standard with the SNePS knowledge representa-
tion system, as described in [Shapiro89], with a few minor adaptations to handle Multi-Modal
sentences.

4.2.1.1 The Grammar.

The grammar used by the parser is written in the form of a Generalized Augmented Tran-
sition Network, [Shapiro82]. For a general introduction to ATN grammars, [Bates78]. The
same type of GATN grammar is also used in the system’s natural language generation com-
ponent (see Section 12). A description of the input grammar appears in Appendix B.

4.2.1.2 The Lexicon.

The lexicon is a dictionary of words that the system understands. Each word is associated
with one or more lists of syntactic, morphological and semantic features. Multiple lists
are associated with lexically ambiguous words (e.g. like “start” which can be a noun or a
verb). The syntactic and morphological features are used by the parser to determine sentence
structure [Shapiro89]. They include things like syntactic category, multi-word lexeme status,
number and root form. Semantic features specify meaning-related attributes of words, for
example, the key or function to be used in accessing the knowledge base for information about
the concept the word represents (see Section 3.1), case frames associated with verbs (see
Section 4.2.2.1) or special media-related attributes of the corresponding concept. Examples

25

of the latter are words like “monitor” or “map” that are classified in the lexicon as special
kinds of “display objects”, or form slot names (see Section 10) that are listed with a feature
indicating how to retrieve information from the corresponding slot.

4.2.2 Interpretation

The interpretation routines take the parse trees produced by the syntactic parser and fill in
the semantic slots in those trees. There are interpretation routines that operate on parts
of the sentence (single nouns, mouse clicks or phrases), and separate ones that attempt
an interpretation of the entire sentence, given a successful interpretation of the parts. An
interpretation of a phrase is attempted as soon as it has been parsed, although that is not
always possible. Interpretations for phrases are added as a separate “interpretation slot” to
their parse trees. Sometimes interpretation of, for instance, a noun phrase or a mouse click,
must be delayed until more contextual information is available from the rest of the sentence.
We now discuss some more specific interpretation issues.

4.2.2.1 Verb Case Frames.

A case frame is associated with each verb in the lexicon. It serves as a skeleton for the
semantic structure that eventually results from parsing and interpreting a sentence. A case
frame has slots that are associated with a specific semantic role. Possible slots are agent,
object, action, value, recipient, location and contezt. The representation of the case frames
in the lexicon includes either a value for the slots (e.g. the value display for the action slot
associated with the verb “display”) or a directive for the interpretation routines to come up
with a value (e.g. match direct-object for the object slot associated with the verb “display”,
meaning that the syntactic direct object of the sentence corresponds to the semantic case
frame object).

The agent slot refers to the agent of an action, and is usually interpreted as system, i.e.,
CUBRICON is to perform the specified action. The object slot refers to the object that the
action is being performed on, i.e., some domain knowledge base object or a more interface-
related object like a window. The action slot refers to the kind of action to be performed,
for example display, enter, present (see Section 5). The value slot may be used to refer to a
value being assigned to some object, e.g the value “current mission” to a mission plan (see
Section 5). The recipient slot refers to the recipient of an object, for example a mission plan
for which a flight path is to be planned. The location slot refers to a location in a broad
sense, for example a table on which an object is to be highlighted. The contezt slot, finally,
may refer to some kinds of contextual information such as the mission plan associated with

26

another object mentioned in an input sentence.

The final interpretation of an input sentence is always an instantiated case frame; i.e. a case
frame with some or all of its slots filled in. This case frame is passed to the executor (see
Section 5) as the meaning of the sentence.

4.2.2.2 Mouse Gestures.

Special interpretation functions take care of the mouse clicks that appear in noun phrases
or prepositional phrases. They use various kinds of information stored in the parse tree or
partial parse trees that have been produced by the parser, to determine a referent for the
point. Section 4.2.2.4 discusses multi-modal referent determination in more detail.

A referent for a mouse click in a noun phrase is always a knowledge base object, representing
an air base for example. Contextual information can be used to determine a referent, such
as when the user asks about a property of an object, like mobility. If the user clicks on
an icon representing an object that doesn’t have the property in question, the system will
try to find a nearby visible object that does, using an incremental bounded search. The

same happens when the mouse click did not hit any icon at all, or multiple overlapping :

icons. When this incremental bounded search finds a visible object of the right kind within

a maximum distance of the clicked location, it will be returned as the referent for the click.

The user will be informed about the “near miss” on the mouse point and the object found
p

through the natural language window. If no referent can be found, an error message is sent

to the same window.

Mouse clicks that appear in locative adverbial phrases are not interpreted as referring to an |
object but as referring to a location. In this case no further interpretation is needed than to
return the coordinates of the point and the window it occurred in. Examples of this kind can

be found in interactions with the form window (see Section 10), in sentences like Enter this

< click> here <click>. The first click refers to an object on one of the displays, the second

to a location on the form. Note that the first click may also be entered on the form, in which
case it will be taken to refer to the object mentioned in that particular form location.

4.2.2.3 Noun Phrases and Prepositional Phrases.

Noun phrases are interpreted as referring to knowledge base objects. We discussed the case
of mouse clicks within phrases already. To determine the interpretation of a single noun,
its semantic type is looked up in the lexicon. This semantic feature indicates the type of
word being dealt with, and is used to direct the interpretation functions in their search for a

27

suitable knowledge base object. The most important type values we use and their meaning
are summarized in Table 2. One word can have multiple semantic types, and other words
besides nouns have semantic types too.

The semantic type values associated with prepositions are used to direct the interpretation
of prepositional phrases. A preposition like around, for instance, is interpreted as having a
particular spatial meaning. Therefore prepositional phrases like around the Dresden air base
are interpreted in a two step process: first the referent for the noun phrase the Dresden air
base is determined, resulting in a specific knowledge base object, and then the knowledge base
is searched for objects that are physically close to this object, as determined by computing
the real-world distance between them from their geographical coordinates. The type of
objects being considered depends on context. In a noun phrase like the threats around the
Dresden air base, only objects that are considered to be threats are taken into account, like
other air bases and SAM systems.

4.2.2.4 Referent Determination for Multi-Modal Phrases.

As mentioned before, the mouse point reference determination functions can handle typical
problems like ambiguous pointing gestures that touch two or more icons or gestures that miss
the intended icons completely. The dereferencing process depends on a number of factors
such as the types of objects being referenced, the properties of those objects, the sentential
context and the constraints on the fillers of the semantic case frame slots for the main verb
of the sentence.

We mentioned a few cases of referent determination for multi-modal phrases. Mouse clicks
can be substituted for single nouns or for entire noun phrases, so a noun phrase like this
air base is equivalent with the multi-modal noun phrase this <click on an air base tcon>
or even the minimal form <click on an air base icon>. A noun phrase can also contain
or consist of multiple mouse clicks, referring to multiple objects. But apart from these
rather straightforward cases, the system is also able to interpret more difficult ones. In some
cases the multi-modality of the phrases is used explicitly to determine a referent when that
would not be possible for an equivalent single-modal phrase. We consider this cross-modal
dereferencing capability a unique feature of our multi-modal system architecture, which
shows that the multi-modal total is bigger than the sum of its parts.

In some cases the natural language content of a phrase is used to disambiguate an otherwise
ambiguous pointing gesture. Consider for instance a phrase like this air base <click>, where
the pointing gesture touches an object of a different kind, say a factory. The immediate
interpretation of the gesture is the factory corresponding to the touched icon, but since the

28

[SEMANTIC TYPE | MEANING | EXAMPLE

agent refers to an agent I
attribute refers to an attribute of an | disposition
: object

class-property-value refers to the value of a prop- | mobile
erty of a class of objects

component refers to a component of an | aircraft unit (component
object of an air base)

field refers to a form slot AC pool

find-or-create refers to an object that may | PKG0026 (a set of re-

be created if it doesn’t exist | lated mission plans)
yet

instance-property-value | refers to the value of a prop- | friendly (value of the dis-
erty of an instance of a class | position property of a
of objects SAM system)

literal passed on to the executor | current package
(see Section 5) without be-
ing interpreted

location a preposition flagging aloca- | in
tive phrase
name a proper name Allstedt
object refers to an object air base
part refers to a part of an object | radar (part of an air
base)
property refers to a property of an ob- | damaged
ject
screen-object refers to a screen object forms window (see Sec-
tion 10)

Table 2: Values of the semantic type feature associated with words in the lexicon, with
their meanings and some examples. See Section 3.1 for more information on the semantic
structure of the domain knowledge.

29

natural language part of the phrase indicates an air base, this interpretation is rejected. In
stead an incremental bounded search is performed to find an air base close to the indicated
location. Another example is a pointing gesture that touches two overlapping icons, for
instance representing a city and an air base. Without further information the system will
not be able to infer which is meant and will return both as intended referents. However, if the
accompanying natural language mentions either a city or an air base, only the corresponding
referent is returned. Circumstances like these can easily occur in a graphics window that
contains a lot of icons representing different objects. As a final example, consider the phrase
the mobility of these <click 1> ...<click n>. If any of the mouse points do not touch an
object with the specified attribute mobility, or do not touch any objects at all, an incremental
bounded search will search for possible referents having that attribute, in the neighborhood
of the indicated points.

As an example of disambiguation in the other direction, viz. graphical gestures disambiguat-
ing natural language, we may consider the previously discussed sentence Enter this <click>
here <click>. Without the graphical gestures this sentence is obviously not interpretable,
since both this and here can refer to many different objects and locations, respectively. But
given an interpretation for the graphical gestures, an object visible as an icon and a form slot,
the sentence is perfectly interpretable and unambiguous. In fact the disambiguation process
is bidirectional in this case. The adverb here signifies a locative phrase, thereby directing
the interpretation functions to search for something corresponding to a location in the given
context (the kind of window that the point is entered on), viz. a form slot. In contrast
with the second point, the first one is interpreted to refer to a domain object and not to a
location on the form (an interface object) because of the syntactic context and the pronoun
this. The syntactic context alone will suffice in this case, so even if the pronoun is omitted
the sentence will still be interpreted correctly. In fact if both mouse points are entered on
the same form slot, and if that slot already contains a (description of) a domain object, the
net result is that the content of the slot will be overwritten with what was already there
before, since the first point is taken to refer to the content and the second to the slot itself.
Although not very useful, this example is a good indication of the dereferencing capabilities
of the system.

4.3 FLIGHT PATH DEFINITION

The interactive definition of a flight path by the user is a special case of multi-modal language
understanding. It is not driven by the input parsing and interpretation routines, but called
as a separate function by the executor (see Section 5) in response to a user request like Plan
a flight path for OCA111. As such, it is more part of the domain-specific component of

30

CUBRICON, although it uses the same kind of graphical gestures and interactive techniques
as other forms of input. The system will aid the user in entering the path by highlighting
the appropriate information on the map window and through a combination of the available
modalities, and deciding when the path is complete based on its domain knowledge.

When locations on a color graphics map window are being clicked by the user as part of the
flight path definition, they are interpreted as referring either to objects visible as icons (air
bases and the like) or to geographical locations. Each point is treated as a vertex in a closed
polygonal path defining the flight path.

A number of constraints must be satisfied for a flight path to be accepted as valid: it must
include the origin air base and target of the mission, for instance. Additional information
such as the time passed since take-off is computed as the path is being entered.

31

5 EXECUTOR

After a unique interpretation has been determined for a multi-modal input sentence, that
interpretation is handed to the executor. It is the responsibility of this component to take
the appropriate action. The type of action is partly dependent on the target application, and
in our case can consist of a command to the mission planning system, a database query, or an
interface manipulation request. The results of these actions are handed to the multi-modal
output planner (see Section 6) which controls communication of the results to the user.

5.1 TYPES OF ACTIONS

A number of actions are concerned with manipulations of the interface itself. Although the
user rarely manipulates the interface directly, many user requests will result in this type
of action, for instance when the system is being asked to display some object. Some of
these actions are display, present, highlight, zoom in and blink. They are discussed more
fully in Section 6. It is the executor’s task to extract the appropriate information from
the interpretation of the input sentence, and hand it to the output planner along with the
specific request.

Other types of actions are more concerned with the application domain itself. For these
actions, either a knowledge base search or some other domain-specific action is executed,
and the results are handed off to the multi-modal output planner to be presented to the
user. Actions that belong in this category are summarized below.

Identity query.
This type of action results from a user question about the identity of an object, typically

with sentences like What us this <click>*?. The knowledge base description is passed to the
output planner to be presented.

Yes-no query.
This action results from a user’s yes-no question (truth question), for example Is this <click>

a SAM?. The knowledge base is queried for the class of the object, and the result is passed
to the output planner.

32

Location query.

A sentence like Where is the Nuernberg air base? results in a knowledge base search for the
location property of the object referred to. The node representing this information is passed
to the output planner.

Property query.

This action is taken when the system is queried about a property of an object, typically
with questions like What is the mobility of this <click>?. The knowledge base is searched
for the value of the requested property of the indicated object, and the result is passed to
the output planner.

Component query.

A component query is executed in response to questions like What units are at the Dresden
air base?, where the requested objects (units) are in a component-of relation to the specified
object (Dresden air base). The knowledge base is searched for all components of the object,
and a list of them is passed to the output planner.

Characteristic and part queries.

These actions result from questions like What is the STN mission plan for SVC1002?2 and
What radars are at the Dresden air base?, respectively. They search for objects that are
in a characteristic-of and part-of relation to the object referred to, and pass them as a
list to the output planner. The characteristic-of relation is subdivided into a number of
named characteristics. They are comparable to properties of objects, but are defined only
for non-tangible objects such as mission plans.

Specification of property values.
B

This action is taken in response tc;\df:clamtiyews‘gm;eﬂeés like The target of this mission is
Dresden 'runway%}The knowledge base is updated to reflect that the object referred to (the
mission) has the specified value (Dresden runway) for the specified property (target).

33

——

Assigning values to variables.

Some application-domain variables are maintained by the system and can be assigned values
through this type of action. There are a few different cases to be distinguished, which
we will do by giving some examples. One type of assignment occurs in response to input
sentences like Make PKG0026 the current package, where PKG0026 refers to a knowledge
base object (which may be pointed to on a table or referred to in some other multi-modal
way, as always) and the current package is returned as an uninterpreted string from the
interpretation functions. The latter is used to identify the particular variable to be assigned
a value. Another type of assignment action is taken in response to sentences like Assign
SVC001 to OCA123, where the former is assigned as a sub-mission to the latter, and both
are existing knowledge base objects. The third type of assignment action is used to assign
a value to a newly created property of an object, for example with a sentence like Assign
SVC001 a duration of 20 minutes. The result is that a new property “duration” is created
for the object referred to by SVC001, and it is assigned the value “20 minutes”. This is
not a variable assignment is the traditional sense, but rather a creation of a new piece of
knowledge base structure.

Starting a new mission.

A new mission of the appropriate class is started in response to sentences like I am starting
an OCA massion plan. This means that the appropriate knowledge base object is created as
a member of the specified class.

Naming objects.

This action is taken to give a name to a knowledge base object. It is typically executed in
response to a sentence like Call it OCA555, which will usually be preceded by one like [am
starting an OCA mussion plan. The result is that the (anaphorically) referred to knowledge
base object is given the specified name.

Changing the current task.

The system maintains a notion of the current task (see Section 3.2.1), which can be changed
in response to sentences like I am working on the OCA123 mussion plan. This results in a
system variable for the current task being given a new value. The current task is changed
implicitly when a new package is selected, as described above.

34

Planning a flight path.
The flight planning action is taken for input sentences like Plan a flight path for OCA123.

The executor invokes the flight path definition function (see Section 4.3) which accepts user
input and builds the structures corresponding to the flight path into the knowledge base.

Listing class members.

Sentences like List the packages or List the SA-3s results in a knowledge base search for all
members of the specified class. The found objects are passed to the output planner as a list.

Saving the current package.

An input sentence like Save the package as PKG2222 will cause the current package to be
saved to disk under the given name. Retrieving it is done with a sentence like Make PK(G2222
the current package, as indicated before.

Entering information on the mission form.

This action enters a piece of information in the knowledge base structures corresponding to
the mission form, which is a graphical representation of the information associated with the
current mission plan package. It is taken in response to sentences like Enter this <mouse
click> here <click> or Enter the Nuernberg air base as the origin of OCA111.

35

6 MULTI-MODAL OUTPUT PLANNER

The Multi-Media Output Planner composes the response that is to be produced to the user
by the Output Generator in coordinated multi-modalities. The Output Planner determines
the media and modalities for expressing the response information to the user, but then
must determine whether the resources are available in order to do so. If they are not, then
the Planner must take appropriate action to modify the state of the resources, modify the
information to be expressed, and/or select different modalities for expressing the information
before the composition of the output can be accomplished.

The top level output planning process is summarized below. This planning process presup-
poses that the primary relevant information has been obtained to respond to the user.

1. Assess the availability of the monochrome and color graphics devices. If none of the
window positions on the monochrome device are available and there are window po-
sitions available on the color graphics device, then the color graphics device is the
preferred device. This would supersede the monochrome device as the preferred media
for the table modality.

2. For each information item or cluster, determine the modality in which it should ideally
be expressed. Graphic/pictorial presentation is always desirable. Natural language can
always be used, as a last resort if no other modality is available.

3. Determine whether the resources are available to express the information as desired.
Resources: (1) Color graphics display: Are the items to be expressed graphically al-
ready on the color display (e.g., objects of interest in a geographical domain may
already be displayed on a map)? If so, no additions are necessary. If not, is there room
to add them in their “natural” position? (e.g., can the desired objects be inserted
in the area already on the graphics display without changing the area shown or does
the displayed area need to be extended or changed totally?) (2) Monochrome display:
Similar to the color graphics display. (3) Speech output device: Always available.

4. If the desired resources are not available, modify the state of the resources. The desired
resources would be “not available” if the device (e.g., a display) already contains critical
information that cannot be disrupted nor covered by a window. For the graphics
displays, if not all the items to be expressed graphically are on the graphics display, then
the system must compose a new display. Borrowing terminology from the geographical
situation, the possible cases are:

36

e Zoom out with intelligent addition of relevant ancillary objects to fill in the new
area to maintain consistency throughout the display.

e Zoom in with intelligent addition of relevant objects to create an intelligible dis-
play. '

e Pan to a different area maintaining consistency in the types of objects displayed.

e Combination of the above.

e Display a different disjoint area. (i) Completely replace display with new “area”
or (ii) Open a window on the monitor to show new information.

A detailed explanation of the methodology used to dynamically compose geographic
maps is in Section 11.1.

5. If the desired resources are still not available to accommodate the information to be
expressed, try modifying the information to be expressed: trim the amount of informa-
tion by filtering on the basis of relevance with regard to user model and/or discourse

model.

6. If the information can still not be expressed in the given modality due to insufficient
resources for the selected modality, then select another modality and go back to step

3.
7. Compose the output, having resolved resource constraints.

8. Repeat the modality selection and generation process until all modalities have been

evaluated.

6.1 MODALITY SELECTION

Selection of the most appropriate modalities for expressing information in the CUBRICON
system is based on the nature and characteristics of the information. Our system design is
based on the premise that graphic/pictorial presentation is always desirable. The following
is a brief summary of the selection criteria.

1. Map: Selected whenever CUBRICON knows how to represent the information pictori-
ally.

9. Table: Selected when the values of common attribute(s) of several entities must be
expressed.

37

o,

A,

3. Form: A predefined form is selected when the task engaged in by the user requires the
form.

4. Pointing Gesture: Pointing gestures are selected whenever an object or the property
of an object is requested, so that the attention of the user will be drawn to the object.
Three types of pointing gesture modalities exist; map, table and form.

5. Text Window: Text windows are selected whenever textual information is desired.

6. Natural Language Prose: Selected for the expression of a proposition, relation, event, or
combination thereof, when the knowledge structures being expressed are heterogeneous.
Natural language can be presented in either spoken or written form.

The selection of the media and modalities in which to express the response information to the
user is based primarily on SNePS nodes and/or a command which results from the parsing
and interpretation of the user’s request. In addition, the selection of some modalities depends
on the modalities previously generated. The selection of modalities is done sequentially,
evaluating modalities in order of importance. The following sections describe the types of
modalities, described in order of preference.

6.1.1 Direct Window and Modality Manipulation

Although CUBRICON attempts to manipulate widows and modalities without direct user
intervention, it does allow the user to directly manipulation in a limited sense. The selection
of these modalities is based solely on the command input to the Output Planner. —

11
\

The window manipulation modality, expose window, is chosen whenever the input command.

argument is set to :expose. This modality is selected based on the user r input “Expose this
window <point>.”. The result of this modality is that the window pointed to is brought to
the foreground, overlaymg any overlapping windows.

Another window manipulation modality, remove window, is chosen whenever the input com- |
mand argument is set to :remove. This modality is selected based on the user’s request 7

“Remove this window <p01nt> ” “The result of this request is that the window pointed to
is removed and transformed into a map icon.

CUBRICON allows the user to request that the modalities presented during a flight path
presentation be removed. The modality remove flight path is selected whenever the input
command to the Output Planner is :remove-all-mission which is generated as a result of the
request “Remove the flight paths.”. \

The user may save information entered into a mission planning form with the request “Save

the form.”

. The input command to the Output Planner for this request is :save which is the

criteria for the save form modality.

6.1.2 Map Modality Selection Criteria

The map modality is selected whenever CUBRICON can express the information pictorially.

Two types of map modalities exist; the presentation of a ggographlc area containing one T
or more map icons and the presentation of a geographic region. The criteria for selecting ﬁ .
these modalities based on the SNePS node(s) and command input to the modality selection

function as follows:

e Zoom In ; Vo A

The zoom in modality is selected whenever the command :zoom-in is input to the

modality selector. This command represents a user request to-zoom in on a geographic

area by stating “Zoomin on this point <point>.”.

e Map Icon

— The input nodes represent the assertion that the objects are a part of an airbase,

and there does not exist a map which contains all of the objects represented in the
input nodelist. A user request which would generate a call the modality selection
function with these nodes is “What are the aimpoints within the Merseberg air-
base?”. The output generated as a result of selecting this modality is a part-whole
decomposition map containing the icons representing the objects which are parts
of the Merseberg airbase.

The input node(s) represent an object or class instance whose superclass can be
represented as a map icon and at least one of the objects being requested are not on
an active map. One user request which generates this case is “Blink the heliports.”
which inputs a node representing the class of heliports to the Modality Selector.
The result of this request is to add all map icons which represent heliports and
are located within the boundary of an active geographic map to the map.

The input nodes represent the assertion that an object is located at a particular
latitude and longitude and at least one of the objects whose location was requested
are not on an active map. One user request generating this case is “What is the
location of the Merseberg airbase?”. The resulting output generated by the map
icon modality is a map containing an icon representing the Merseberg airbase.

39

e Region

The region modality is selected whenever the input node represents the instance of a
region and there does not exist a map which contains the area defined by the region. A
region node has a latitudinal and longitudinal boundary defined for it. A user request
which results in the selection of the region modality is ”Display the Fulda Gap region.”
which generates a map containing the area included in Fulda Gap region boundary.

6.1.3 Map Pointing Modality Selection Criteria

The pointing gesture modalities are selected whenever an object or the property of an object
is requested, so that the attention of the user will be drawn to the object. Several types
of objects can be referenced by the Output Planning system; windows, icons, table rows
and form panes. The modalities representing gestures which point to geographic objects,
windows and icons, are selected and generated following the Map Modality. The remaining
pointing gesture modalities are selected following other modalities. A detailed explanation
of the pointing modality is presented in Section 8, Deictic Gestures.

¢ Window Pointing

Window pointing occurs whenever a geographic map is requested and it is contained
in an active map. One case which generates the window pointing modality is whenever
the input node represents the instance of a region and a map exists which contains
the regional boundary. In this case the input node is identical to the node input in
the region modality described above. The second case which generates the window
pointing modality is whenever the input nodes represent the assertion that the objects
are a part of an airbase, and a map exists containing all of these objects. Once again,
these input nodes are identical to the nodes input in one of the map icon modality
cases described above.

e Map Icon Pointing

Map icon pointing occurs whenever the Cubricon system can express information
graphically, without modifying the display, and a subset of the icons on a map are
being pointed to. The input nodes which meet the map icon pointing criteria are iden-
tical to the nodes input in two of the map icon modality cases described above. The
input node represents either an object whose superclass can be represented as a map
icon, or the assertion that an object is located at a particular latitude and longitude.

o Highlight

40

The highlight modality highlights map icon(s) and/or table entries based on user re-
quest. The highlight modality is selected whenever a highlight command is input to the
output planner. The object to be highlighted is represented by the input node(s). The
highlighting occurs on every window containing the object, unless a specific window
has been requested by the user. In this case the window to be highlighted is passed
to the output-planner in the destination-window parameter. A user request which
generates the highlight modality is “Highlight this <point at the Nuernberg airbase>
on the table.”. The output planning system is passed a command highlight, a node
representing the Nuernberg airbase, and a destination window which represents the
table which is related to the map on which the input point gesture occurred. Based on
this information the highlight modality is chosen and the table entry containing the
Nuernberg airbase is highlighted on the destination window.

6.1.4 Table Modality Selection Criteria

Generally, the table modality is selected when the values of common attribute(s) of several
entities must be expressed. There are two conditions which determine whether the table
modality is appropriate. The first condition is whenever a map was created during this
response, to display the important attributes of the entities displayed on the map. The table
modality is selected since all of the icons on the map have common attribute values and it is
not necessary to evaluate each attribute being displayed. The second condition is whenever~
the 1nput command has a value of list, present or nil, the SNePS nodes input have at least
one common attribute and there are more than four nodes whose attribute values are to be
expressed. When determining if common attributes exist not all properties are considered,
the applicable properties are those defined in the user model for each node.

AAAA !

A P

Two types of table modalities exist monochrome table and color-graphics table. The monochrome

table modality generates tables which are placed on the monochrome device, whereas the
color-graphics table modality generates tables which are placed on the color-graphics device.
Within the hierarchy of modalities monochrome tables are the preferred, unless the Modal-
ity Selection system has determined that the color-graphics display has window positions
available and the monochrome display does not. It is possible for the Window Management
system to reject a request to create a monochrome table, due to the monochrome device
being unavailable. If the Modality Selection system attempts to create a monochrome table
and the Window Management system rejects this request, then the Modality Selector will
choose the color-graphics table as an alternate modality. The same table, however, would not
be presented in multiple modalities. A detailed explanation of the table window placement
algorithm is in Section 7.3.

41

6.1.5 Table Entry Pointing Modality Selection Criteria

As previously mentioned one of the types of pointing gesture modalities is table entry point-
ing. Pointing to a table entry occurs whenever the information to be expressed is on an
active table. The objects represented in the input node list are compared with the content
list of each active table. If the object is contained in the table, then the corresponding entry
is pointed to. The type of nodes which meet the table entry pointing criteria are identical
to the nodes which generate the map icon pointing modality, which is described above.

6.1.6 Form Modality Selection Criteria

A predefined mission planning form is selected when a form is requested by the user, the
SNePS node input to the modality selection function is the node representing the instance
of a window and the command :display. This node is then used as a key value to get the
window identifier from the monochrome window list data structure. If the type slot in this
window is set to form, then the mission planning form associated with the current task is
displayed. Section 10 provides a detailed description of the form modality.

6.1.7 Form Pane Pointing Modality Selection Criteria

An additional type of point gesture modality is form pane pointing. Form pointing occurs
whenever the information to be expressed is on an active mission planning form. If the
object or property being expressed is contained in the form, then the corresponding entry
is pointed to. The node input represents the assertion that the property of a mission is
assigned a value. One user request generating the form pain pointing modality is “Enter
the Nuernberg airbase as the origin.”. A network diagram showing the assertion that the
Nuernberg airbase is the origin of the OCA0999 mission plan is Sample OCA Mission Plan.

6.1.8 Selection Criteria for the Text Window Modality

The text window modality is selected whenever textual information is desired. Text windows
are utilized as part of integrated multi-media/multi-modal modalities when composing the
point at modality and when generating a mission presentation. The text window modality,
however, is selected in only one case, whenever the input nodes represent the assertion that
an object has a property which is assigned a value, and there are less than four nodes input.
An example network diagram showing the structure of the input node is SA-2 Class. The
property name and value associated with the input node are placed on a map next to the icon

42

£/
e

representing the object. The threshold of five input nodes is used to minimize map clutter.
If more than four nodes are input a table modality is chosen. An example user request which
selects the text window modality is “What is the mobility of these <pointl> <point2>7?”.
The response generated by the text window modality is a text window containing a string
such as “mobility: low” placed next to the icon whose property was requested, where low
represents the concept that the value of the property mobility is low.

6.1.9 Natural Language Prose Modality Selection Criteria

Natural language prose is selected for the expression of a proposition, relation, event, or com-
bination thereof, when the knowledge structures being expressed are heterogeneous. Natural
language can be presented in either spoken or written form. The following summarizes the
selection criteria for spoken versus written language

e Spoken Natural Language

— Dialogue descriptions to assist the user in comprehending the presented informa-
tion. These include explanations of graphic displays or display changes and verbal
highlighting of objects on the displays (e.g., “The enemy airbases are highlighted
in red”).

— Informing the user about the system’s activity (e.g., “I'm still working” when the
user must wait for output from the system).

— Short expressions of relatively non-technical information that can be remembered
when presented serially (e.g., a “yes”/“no” answer to a user’s question).

o Written Natural Language Selected for longer technical responses that would strain
the user’s short term memory if speech were used (see [Miller56]).

6.2 OUTPUT COMPOSITION

Most frequently, multiple modalities are desirable to express a body of information to the
user. For example, to inform the user about the movements of a certain tank battalion,
a desirable presentation might be an explanation delivered in combined spoken speech and
coordinated drawing on a graphic map display showing movements of the battalion, as well
as a printed textual summary with ancillary information on the monochrome display. The
multiple modalities should be selected to complement and enhance one another. Andriole
[Andriole86] has used “graphic equivalence” effectively using dual displays or split screens

43

to present the same material in different forms to aid user comprehension and problem
solving performance. We are not restricting the system to presenting the same material in
different forms, but, instead, our system presents related material or different aspects of a
given event or concept in different forms/modalities (as appropriate based on the nature and
characteristics of the information).

The CUBRICON system rarely restricts output to one modality typically multiple media
and modalities are selected. Written and Spoken Natural Language, for example, are utilized
in nearly every output presentation. In general, if CUBRICON represents and object graph-
ically (eg. the location of an airbase is requested) output generation combines Map Icon
and Icon Pointing modalities on the color graphics display, the Table and Table Pointing
modalities on either the monochrome or color graphics display, Written Natural Language
on the monochrome display, and Spoken Natural Language via the speech output system. In
this example, the tabular presentation was selected because there are important attributes
associated with the entities displayed on the map display. Specific examples illustrating the
composition of multiple media and modalities are presented in the next section, Multi-Media
and Multi-Modal Output Examples.

6.3 MULTI-MEDIA AND MULTI-MODAL OUTPUT EXAMPLES

In order to further illustrate CUBRICON’s modality selection and output composition pro-
cess, consider the next user input. The user queries the system about the location of the
Nuernberg airbase in a manner that provides no instruction to the system as to how to
present the information (e.g., map, natural language only, etc).

USER: “Where is the Nuernberg airbase?”
DEVICE CONFIGURATION:

The color graphics display contains a map displaying the Fulda Gap region and a
table showing the important attributes of the objects is displayed on the map. The
monochrome display contains a mission planning form.

CUBRICON: (Refer to Figure 5.)

Speech output:

e Statements to direct the user’s attention to the appropriate monitor when a
major window is presented. As the map is expanded on the color monitor:
“The map on the color graphics screen is being expanded to include the
Nuernberg airbase.”

44

Color Graphics Display:

Map of the Fulda Gap Region with added area that includes the Nuernberg
airbase.

Main roads, major cities, waterways, and national boundaries (as before but
across the whole map, old and new areas).

Icons representing entities within the new map area displayed that are above
the critical threshold on the entity rating system for the user’s task.

An airbase icon representing the Nuernberg Airbase.

Speech Output with coordinated Color Graphics:

After the map is expanded, statement to direct the user’s attention to the
Nuernberg airbase on the map: “Its location is here <point> 50 miles south-
east of the East-West Germany border.” The word “here” is accompanied
by a visual point gesture in the form of blinking the airbase icon and the
addition of a pointing text box.

Written Natural Language:

A written an more detailed version of the previously spoken response is “Its
location is 50 miles southeast of the East-West Germany border.”.

Speech Output:

As the table is presented on the monochrome monitor: “The correspond-
ing table is being generated” and “The corresponding table is now on color
graphics screen.”

Monochrome Graphics Display:

e Table of relevant entity attributes. Same table as before, but expanded to

include the new entities added to the map covering the extended area.

The table entry containing the attributes for the Nuernberg airbase is high-

lighted.

DISCUSSION:

As previously discussed, whenever possible the CUBRICON system prefers to present in-
formation to the user graphically with ancillary information presented simultaneously in an
another modality. Since CUBRICON knows how to display an airbase graphically (it has
an icon associated with the class in the knowledge base), and since each particular airbase
in the knowledge base has an associated geographical location the Map Icon modality is
selected. Then the system will display the airbase on the color-graphics map with additional

45

information displayed in another modality. If the Nuernberg airbase is already displayed on
the color map display, then the system would choose to blink the particular airbase icon as
its way of pointing to the object and accompany this pointing action with a spoken response.
If the Nuernberg airbase could be added to the current map, it would do so and direct the
user’s attention to the airbase icon as mentioned above. However, the Nuernberg airbase is
outside of the region shown in the map display currently on the color CRT. Therefore the
resources needed to present the Nuernberg airbase graphically are unavailable. The system

must now decide how to modify the state of the resources to show the airbase. What map
should be displayed? -

In composing a new map on which to display the Nuernberg airbase, the system has some
choices. These choices include: open a window on the color graphics display showing the
area around the Nuernberg airbase, replace the old map on the CRT with a new area around
the Nuernberg airbase, or compose a new map including both the old map and the region
around the Nuernberg airbase.

An important guideline to which the CUBRICON system tries to adhere is to maintain the
context of the user-computer dialogue. With regard to the graphic displays, this means that
the system tries to retain the most recently discussed or mentioned objects on the displays
so as to maintain continuity in the dialogue. The discourse focus space representations,
discussed in Section 3.2.1 are the key knowledge sources in this process. The system composes
a new map containing the objects that are on the old map as well as the Nuernberg airbase.
The algorithm that the system uses to determine the boundary for a new map of this type
is to determine the smallest rectangle that encloses the old objects on the current map as
well as the new objects to be displayed and then add a small “border” area around all sides.
This essentially extends the area shown to include both the old and new objects.

Another important guideline to which the CUBRICON system adheres is to maintain con-
sistency throughout a display so as to prevent the user from making false inferences about
what is or is not located within the region. In the case of our map display, this means that
there should be consistency in the types of objects shown across the entire map. If SAMs
are displayed in the old region, then they should be displayed in the newly added map area.
Similarly for other types of objects. If this is not done, then the user would probably infer
that there were no SAMs in the new area since he sees none on the display in the new area,
when in reality there are SAMs in the new area. Figure 5 shows the new map display com-
posed by CUBRICON in response to the user’s input “Where is the Nuernberg airbase?”
 The rectangular outline within the map is used to indicate the previously displayed area.
This provides graphic context: the new entities in the context of the previously displayed
area.

46

Entities in the Expanded Region

Item Dispesition Latitude Lengitude Name Mebility
&ir base friendly 50.300N 8.3908 Khein Main -
ar base triendly 50.050N $.9300 Lindsey
ar dase anemy $1.400N 11.460F Allstedt
ar base enany $0.970N 10.960F Erfurt
ar buse anemy $1.330N 11.960K Merseberg -
ar Base enexy 50.980N 12.810F Altenberg --
@ bue frndly REEED T1.130F Nuernberg o |
AL encmy T6533N T0.933F = Tow
sA-2 eneny $1.016N 11.116F -- low
SA-2 aneny 30.883N 11,0838 -- low
Sa-2 anemy $1.283N 12.466F -- low
Sa-3 enemy $1.33N 11816 - high
sa-3 enemy $1.335N 11.366F - hagh
Sa-4 eneny $1.266K 11921 - low
SA-4 eneny $14160 11.8385 - low
Sa-4 enemy $1.450N 119218 - low
plant friendly $1421N 9.344F Hans Steed -
factory friendly 49.991N 10,1828 Franz Munitions -

":I’» Where is the Nuernberg airbase?

N i‘(he corresponding table is being generated.

=5
L

ne corresponding table is now on the monochrome screen.

ts focation Is 30 miles southwest of the East-West Germany border

he map on the color graphics screen is being expanded to inciude the Nuernberg air base.
its location is 50 miles southeast of the East-West Germany border .
S

Figure 5: Map and Table Maintaining Context and Consistency

47

Based on the information provided by the user/task model, CUBRICON knows the impor-
tant attributes of each object. The table modality is selected to present this information.
Guided by the consistency principle, the system also modifies the tabular presentation that
is on the monochrome display to include the additional objects and their relevant attributes.
The map and table displays are shown in Figure 5.

In this example, the CUBRICON system distinguishes between spoken and written (to a
CRT display) NL. CUBRICON used graphic and deictic gestures with spoken NL only (not
with written NL), since a pointing or graphic gesture needs to be temporally synchronized
with the corresponding verbal phrase, allowing for multiple graphic gestures within any
individual sentence. The coordination between a graphic gesture and its co-referring verbal
phrase is lost if printed text is used instead of speech. Written NL was used however, when
deictic/graphic expressions are not used, but, instead, definite descriptions are generated as
noun phrased with sufficient specificity to hopefully avoid ambiguous references.

The user now asks the system a question phrased exactly like the previous question for
purposes of comparison.

USER: “Where is the Stargard airbase?”

DEVICE CONFIGURATION:

The color graphics display contains a map displaying the Fulda Gap region and a
table showing the important attributes of the objects is displayed on the map. The
monochrome display contains a mission planning form.

CUBRICON:

Monochrome Display:
e No change
Speech Output with coordinated Color Graphics:

o The sentence “Its location is 120 miles east of the Fulda Gap region.” is
accompanied by the visual point gesture which blinks the window containing
the Fulda Gap region.

This example illustrates the flexibility CUBRICON has in selecting from alternative presen-
tation modalities and its ability to measure the relevance. Although this question is phrased
exactly the same as the previous question, the CUBRICON response is totally different.
The Stargard Airbase is well outside of the user’s area of responsibility as represented in

the CUBRICON knowledge base (ie. the task model). Therefore, CUBRICON judges that

48

the Stargard airbase is less relevant than the current display and does not modify the color
graphics display to present the information graphically. Instead, the Natural Language Prose
modality is chosen and the system responds verbally without changing the current display.

49

7 INTELLIGENT WINDOW MANAGER

The Intelligent Window Manager automatically performs all window placement and ma-
nipulation functions within the CUBRICON system. The decision to automate window
management functions was based on the premise that this would reduce the user efforts
required for window management, and thus free user mental and temporal resources for task
domain activities. The goal was to automatically perform window management functions
well enough so that the user would not need to manipulate the windows directly. The win-
dow management functions performed by the CUBRICON window manager include window:
creation; placement; sizing; moving; and removal.

The fact that the time spent manipulating windows in a windowing system consumes a
significant portion of overall problem solving time has been demonstrated experimentally
[Davies85; Bly86], at least for certain types of tasks. Davies et al. found that for tasks
requiring supplemental information relative to a primary task, the windowing environment
allowed more error-free performance but took significantly longer. Their study indicates
that the additional time spent, was due to window management operations (e.g., displaying
and positioning windows, scrolling to desired locations within windows). Their data also
indicates that the reduction in errors was not simply the result of having spent more time
on the task. The time differential was evident even when all errors had to be corrected.
Apparently, the overhead of window management adds a significant time burden.

Bly and Rosenberg [Bly86] studied the relative tradeoffs between overlapping and tiled win-
dowing systems (see Section 7.2). They found that overlapping systems are good at optimally
sizing windows (to contain the desired information), but are more difficult to manage. The
CUBRICON window management methodology is a hybrid of tiled and overlapping ap-
proaches. The default configuration is tiled, but windows can overlap when necessary to
avoid overly cluttered windows. Four pre-defined tiled window positions are available on
each display. These overlap adjacent windows when necessary. If more than four windows
are requested, the least important window is iconized and removed (i.e., removed and dis-
played displayed as an icon). Although redisplay of iconized windows is not implemented at
this time, this feature will eventually allow the recall of windows that were recently removed.

7.1 WINDOW TYPES

The types of windows managed by the intelligent window management system are map,
table, mission planning form, text and dynamic text windows. Figure 6 shows a color
graphics display containing map, table, text and dynamic text window types.

50

Figure 6: Types of Windows

51

Map windows show geographic information. All of the window manager functions: creation;
placement; sizing; removal and moving can be performed on map windows. Map windows are
placed only on the color graphics display. There are two types of maps; geographic maps and
part-whole decomposition maps. Geographic maps are composed of background maps with
relevant application domain information overlaid. The background maps include objects
such as national borders, roads, rivers and cities which are displayed using a map system
called the MAP Display System[Hilton87]. CUBRICON uses these maps as background,
displaying domain application icons on them. The part-whole decomposition map window
displays objects which are parts of an entity in the knowledge base. For example, several
radars, SAM systems and runways are defined as parts of an airbase. The map displaying
the parts of the Dresden airbase is shown in Figure 6. This map contains the boundary of the
airbase and an icon representing each object which is a part of the airbase. The part-whole
decomposition map does not utilize a background map.

Tables are used to display voluminous homogeneous information. The functions performed
on table windows are creation, placement, sizing and removal. Tables can be temporary or
permanent. Generally, if the information to be presented is on an existing table, the ap-
propriate table entries are highlighted. However, if numerous table entries (more than four)
are highlighted at various positions in the table, the user may find it difficult to compare
information particularly if the information is not visible on one screen. Therefore, a tempo-
rary table is created which contains the information requested by the user, making it easy
to view contiguously only the requested information. This table is referred to as temporary
since it is visible for one user interaction. Permanent windows remain on the display until
they are removed, due to space constraints. Permanent table windows can be placed either
on the monochrome display or the color graphics display whereas temporary table windows
are placed only on the monochrome display. In addition, permanent tables can be related
to another display, such as a map. A table which is related to a map identifies the impor-
tant attributes of the objects contained in the map. The window placement and importance
algorithms are different for related and unrelated table windows as described in Section 7.3.

Text windows contain information pertaining to one or more icons on a map. Currently, the
information contained in the window is text identifying the name or type of the icon(s). If
the text window is not placed next to the icon, then a pointing arrow is used to correlate
the appropriate icon(s) with the text window. Figure 6 shows a text window identifying the
Nuernberg airbase as the origin of an OCA mission plan.

A dynamic text window is used to display natural language text on the color graphics
display. It is dynamic in that text can be added to it. The window height is determined by
the amount of text being presented. Figure 6 shows two dynamic text windows containing
natural language text describing the highlights of an OCA mission plan presentation.

52

TILED OVERLAPPED

ABILITY TO

OPTIMALLY SIZE WINDOWS FAIR 51\? GOOD
NUMBER OF WINDOWS

ON SCREEN LOW HIGH
WINDOW MANIPULATION

REQUIRED OF THE USER 7/'\3 Low HIGH
DISPLAY ORGANIZED DISORGANIZED
APPEARANCE UNCLUTTERED CLUTTERED
SUPPORTS MULTI-TASKING

ON THE PART OF THE USER ¢ HIGH LoOwW
CAN STANDARDIZE <% vEs TO A LIMITED
WINDOW LOCATIONS EXTENT

Table 3: The pros and cons of the tiled and overlapping window layouts.

7.2 WINDOW LAYOUT

The window manager places a window in one of four pre-defined window positions on the
display. Figure 7 shows window placement layout. Positions 1-4 are for the tiled windows.
Positions 5-9 are for iconized windows. Iconized windows are windows that have been re-
moved from the main part of display and redisplayed (symbolically) in the form of a small
icon in the lower right hand corner.

The configuration of the widows is a hybrid window layout combining tiled and overlapping
approaches. Table 3 shows the pros and cons of tiled and overlapping window layouts. This
table lists various characteristics of window layouts and identifies the type of window layout
which is superior in each category with a star. The strengths of a tiled window layout
is that it requires little window manipulation by the user [Bly 86], displays windows in an
organized and uncluttered manner, supports multi-tasking on the part of the user and allows

53

CUBRICON TITLE WINDOW

Figure 7: The Basic Tiled Window Layout.

o4

CUBRICON TITLE WINDOW

II

6

Figure 8: The Overlapping Window Layout. The window in position 2 is overlapping the
windows in positions 1 and 3 because its contents could not fit otherwise.

standardized window locations. The strength of an overlapping window configuration is the
ability of windows to conform to their contents, maximizing the visibility of these contents
[Bly 86]. CUBRICON uses a tiled windowing approach as a default, but allows the “tiled”
windows to overlap adjacent windows when necessary based on window contents. This allows
CUBRICON to realize the advantages of both types of windowing systems. An overlapping
window configuration is shown in Figure 8.

One type of window in CUBRICON often requiring an overlapping configuration is the map
window. The size of a map window is determined by an algorithm described in Section 7.4.
This algorithm computes the proper size of a map window based on a clutter factor which
considers the density of icons and labels. Using this algorithm the size of a window may
exceed the size of the pre-defined window position, requiring it to overlap adjacent windows.
Another type of window often requiring an overlapping configuration is the table window.

L)

If the columns of a table exceed the default width of the pre-defined window position, then
the table overlaps horizontally.

7.3 INTELLIGENT WINDOW PLACEMANT

The two window types currently placed in one of the four pre-defined window positions are
maps and tables. Maps are placed only on the color graphics display, while permanent table
windows are placed either on the color graphics or monochrome display. The monochrome
display is preferred for permanent table placement. However, if there is not an available
window position on the monochrome display the table is placed on the color graphics display.

As previously stated, the placement of windows in one of the four pre-defined window po-
sitions is based primarily on the window positions available and the relative importance of
the window being placed compared with the windows currently on the display. If there is
a window position vacant, then the window will be placed in an available window position.
Generally, window positions are filled in the following order; top, lower left, lower middle,
then lower right. If a window would normally be put on the monochrome display, but all of
the pre-defined window positions are filled and there is space for the window on the color
graphics display, then the window manager places the window on the color graphics display.
If a window is to be placed on the color graphics display, but all of the pre-defined window
positions are filled, then the window manager removes the least important window to make
space for the new window.

(more detailed description forthcoming)

7.4 SIZING MAP WINDOWS

One of the functions of the Window Manager is to decide the minimum acceptable size
for a map window. The minimal size of a map is based on the density of display entities
(e.g., icons, labels). This is important because when display entities are packed too closely
together the map becomes difficult to read (i.e., the ease of extracting information from the
map is reduced). For example, it becomes difficult to tell which labels go with which icons
and some icons may overlap making them difficult to recognize. This reduction in readability
can be measured as increased time or decreased accuracy for tasks using the map. These
measures of reduced usability are said to indicate clutter [Potash77].

CUBRICON defines too much clutter as occuring when:

e A small number of display entities (e.g., three icons with labels) are crowded in a very

56

Figure 9: Two Critical Unit Areas. Only the larger area indicates a cluttered map.

small area.

¢ A medium number of display entities (e.g., five icons with labels) are crowded in a
moderately sized area.

e A large number of display entities (e.g., seven or more icons with labels) are crowded
in a large area.

The CUBRICON clutter (i.e., window sizing) algorithm defines “critical unit areas” based
on these three conditions (see Figure 9). A criteria for saying that an area is too cluttered
has been set for each of these three critical unit areas. The critical unit areas, and the clutter
criteria for each, were empirically derived using the judgement of the human factors engineers
assigned to the project. These values can be adjusted if this appears to be warranted based
on experience in using CUBRICON, or as a result of research designed for this purpose. The
evaluation conducted during this effort (see Section 15} indicates that the present values,

and the algorlthm is currently performing pretty well. R

CUBRICON decides which critical unit areas to apply to a map display on a quadrant-by-
quadrant basis. This is done based on “screen density” which is based on the number of
display entities present in the quadrant. If there are only a few display entities in a map
quadrant, for example, there is no need to apply the criteria (i.e., the critical unit areas)
that relate to large numbers of display entities. If many display entities are present, then
all critical unit areas must be applied. This is the approach CUBRICON uses to determine
which critical unit areas to apply within each quadrant.

57

As noted above, this algorithm is applied on a quadrant-by-quadrant basis. This decision
was based on the judgement of the human factors engineers on the project. It is intended to
minimize the number of unnecessary calculations performed without sacrificing functionality.
It reconizes the fact that icon density is not likely to be evenly distributed across an entire
map display.

Once the critical unit areas to be applied for each quadrant are determined, they are applied
on an icon-by-icon basis. That is, the degree of clutter in the immediate area (i.e., the
critical unit area) around each icon is assessed. When the most crowded (i.e., cluttered)
icon is found for each critical unit area, it is compared to the predetermined criteria. If the
criteria are not exceeded for these worse-case icons, then the map is not too cluttered. If the
criteria are exceeded, the map size (i.e., the window size) is increased to a size that reduces
clutter factor for the worse-case icon to within the acceptable range. Since this resizing
is based on worse-case icons, it ensures that all other icons will also be brought within the
acceptable range. The amount of resizing needed is calculated directly from the clutter factor
calculation.

7.4.1 The Map Sizing Algorithm

The first step in determining map size requirements is to determine whether the planned
map is too cluttered. As described in the preceding section, this determination is made

[

analysis is selected for each quadrant based on the number of display entities contained . v f

ALt

by analyzing clutter within each map quadrant. An appropriate criteria to be used in the

within the quadrant. One or more “critical unit areas” may be applied. If a quadrant is
found to be too cluttered, the entire map size is increased to a level where clutter is within |
acceptable levels. The following algorithm accomplishes this:

Calculate four equal quadrants for the map
FOR each quadrant
Calculate the screen density for this quadrant
Table-Lookup the critical unit areas, if any, to use based on screen density
FOR each critical unit area
Initialize the maximum clutter factor to the acceptable clutter factor
FOR each icon in the quadrant
Calculate the clutter factor around this icon
IF the clutter factor is the greatest thus far THEN
Assign the maximum clutter factor for this critical unit area to this
clutter factor

58

END IF (greatest clutter factor)
END FOR (each icon) :
END FOR (each critical unit area)
END FOR (each quadrant)
Initialize the maximum percent increase to 1
FOR each critical unit area
Calculate the percentage to increase the map area by
IF the percentage is greater than the maximum percentage THEN
Assign the maximum percentage to this percentage '
END IF (greatest percentage)
END FOR (each critical unit area)
Calculate the new map length and width

The map boundary to be used for clutter analysis is the boundary of window in which the
new map will be placed. If a zoom out operation is being performed, then the new map
replaces an existing map and the boundary of the window containing the existing map is
used for clutter analysis. If a new map is being created, a new window is created and a
default window boundary will be used for clutter analysis. The default window boundary is
dependent on the position in which the map will be placed. Section 7.2, Window Layout,
describes the available window positions in detail.

The screen density value approximates the overall clutter of a window. This value is used
solely to determine the number of critical unit areas to be analyzed for clutter. Screen
density is calculated as follows:

ScreenDensity = NumberO flcons + .5 NumberO f Labels

The variables NumberOflcons and NumberOfLabels represents the total number of icons
and the total number of labels on the map. In this calculation labels have less weight than
icons. This is due to the difference in icon and label placement methodologies. CUBRICON
utilizes an intelligent label placement algorithm which labels an icon only if space is available.
Therefore, a label will not overlap an icon or another label. An icon, however, is placed at
a particular location and may overlap another icon. Therefore, it is assumed that labels
contribute to clutter half as much as icons contribute to clutter. Table 4 relates screen
density values to their corresponding critical unit areas.

The clutter algorithm determines the actual clutter of the critical unit area. The formula
for clutter follows:

59

Range for the Screen Density Value | Use the Following Critical Area Sizes
0tod Not required

5.5 to 10 .251n.

10.5 to 15 .25in., .75in.

15.5 and higher 2Dl < (D1 12500

Table 4: The selection of the critical unit area sizes for a quadrant is based on the screen
density in that quadrant.

Critical Area Size | Acceptable Clutter
0.25 4.00
0.75 10.00
1.25 16.00

Table 5: The three critical unit area sizes and their respective acceptable clutter factor
values.

Clutter = IconsInC A + 1.5LabelsInC A

The variable IconsInCA represents the number of icons in the critical unit area whose center
is the location of a particular icon. Similarly the variable LabelsInCA represents the number
of labels in the critical unit area relative to the same icon. An icon is considered within a
critical unit area if the critical unit area square and the smallest rectangle enclosing an icon
intersect. A label is considered within a critical unit area if the critical unit area square and
any point on the label intersect. In this algorithm labels are weighted more than icons, since
the size of a label is approximately 1.5 times the size of an icon.

The optimal map size is based on the maximum clutter value and the acceptable clutter value
for each critical unit area. These values are used in calculating the percentage of increase
to the pre-defined map area. The acceptable clutter values are defined in Table 5. This
percentage is calculated as follows:

AMazClutier — AcceptableCluiter
AcceptableClutter

PercentIncrease =1 +

60

The maximum value of PercentIncrease is used to calculate the final boundary values. The
length and width of the map are increased as follows.

Length = Lengthy/PercentIncrease
- Width = Widthy/PercentIncrease

61

8 DEICTIC GESTURES

(section forthcoming)

62

9 TABLE MODALITY

(section forthcoming)

63

10 FORM MODALITY

(section forthcoming)

64

11 MAP MODALITY

The map modality is the modality preferred by CUBRICON and is selected whenever the
information to be represented includes spacial relationships. This is accomplished by looking
for regional, coordinate, or component references and the existence of iconic symbols asso-
ciated with information to be presented. A detailed explanation of the criteria for selecting
the map modality is in Section6.1.2, Map Modality Selection.

The map modality results in the creation or transformation of one of two types of maps;
geographic maps or part-whole decomposition maps. A geographic map displays regional
and coordinate information, whereas a part-whole decomposition map is a schematic diagram
depicting the components of an object. These map types are described in detain in Section
7.1. Several operations are performed on geographic maps; map creation, zoom out, zoom in,
and pan. However, part-whole decomposition maps are created and not modified afterwards.

11.1 GEOGRAPHIC MAPS

An important aspect of CUBRICON'’s processing capability is its decision-making logic for
deciding when and how to create and transform geographic map displays. CUBRICON
dynamically composes geographic map displays including the determination of the boundary
of the region to be displayed and selection of the relevant entities to display in the region.

11.1.1 Map Composition

After selecting a map modality CUBRICON must decide when and how to compose map
displays. The steps involved in composing a map display are:

1. Determine what type of map transformation to perform.

2. Determine the objects to display on a map.

3. Determine the boundary of the region to be displayed.

4. Extend the boundary of the region vertically or horizontally so that one vertical kilo-
meter is displayed as the same distance as one horizontal kilometer.

5. Display the map in the appropriate window with the appropriate icons, colors, and

labels.

65

Relevancy is a critical factor for an HCI to consider when determining what information
to present and how to present it to the user. In CUBRICON’s map manipulation process,
relevancy plays an important role determining both what type of map transformation to
perform and what objects to display on a map.

11.1.1.1 Determining the Map Transformation

One aspect of relevancy in the CUBRICON system pertains to the user’s task. CUBRICON
keeps track of the task that the user is working on and registers the user’s transition from one
task to another. CUBRICON’s process for deciding on an appropriate map transformation
takes into consideration whether or not the user’s task has just changed. If the user’s
task has just changed then CUBRICON will move the map from the main window to a
secondary window and “repaint” the main window with a new appropriate map area. If the
user’s task has not changed, however, then CUBRICON assumes that the current main map
configuration is still relevant and tries to keep it in an existing window, subject to some
expansion or contraction. When an existing map is being expanded to include additional
objects requested by the user CUBRICON must decide which of these maps to modify to
display the area of interest. The criteria used to determine which of the existing maps to
transform are listed below in ranked order.

1. Expand the window containing the greatest number of objects requested by the user.

2. Expand the map which is closet to the smallest rectangle enclosing the objects re-
quested by the user.

3. Expand the map with the greatest geographic area.

11.1.1.2 Determining the Relevant Objects

Relevancy is also important in selecting the objects to display in a map region. Frequently,
sophisticated application systems include one or more massive databases and, indeed, the
databases may be shared by more than one application system. When a system such as
CUBRICON selects objects from the database for display on a map, it should be discrimi-
nating in its selection. Not all the available objects should be selected from the database for
display, since this could result in an unnecessarily cluttered and confusing map. Instead, only
the relevant objects should be displayed. Relevant objects are objects which are (1) specifi-
cally requested by the user, (2) relevant to the dialogue and support dialogue continuity and
(3) relevant to the user’s task.

66

Continuity and relevance are key factors in discourse. Without these factors, people find dis-
course disconcerting and unnatural. The attentional discourse space representation [Grosz78;
Grosz86; Sidner83; Grosz85] is the key knowledge structure used in determining which ob-
jects to display in order to maintain dialogue continuity and relevance. The representation

of the discourse focus space is in two structures (1) a main focus list and (2) a display model
(discussed in Sections 3.2.1 and 3.2).

The technique used in the CUBRICON system to determine the objects relevant to the
user’s task relies on the use of the entity rating system of the user model (discussed in
Section 3.3). When composing maps, CUBRICON displays only those objects above the
critical importance threshold for the user’s current task. Thus, for an Offensive Counter Air
(OCA) planning task, CUBRICON would display all airbases, SAM sites, critical factories
and plants, but not objects such as schools or minor industry.

11.1.1.3 Determining the Region to Display

After determining the appropriate map transformation and objects to display in a map

region, based on relevancy, CUBRICON must delimit the boundary of the region to be dis-
played. The coordinates of the boundary are determined by the smallest rectangle enclosing
both the objects to be displayed and the existing map to be expanded, if expansion of an

existing map is relevant. This boundary is then enlarged to include a small border area.
e)

11.1.1.4 Scaling the Region

One of the human factors guidelines incorporated into CUBRICON is to maintain consistency
across displays [Smith 86]. An object presented on more than one display should have the
same shape. To accomplish this a geographic map must display one vertical kilometer as
the same distance as one horizontal kilometer. Therefore, the the boundary of the region is
extended vertically or horizontally (if necessary), so that when the region is displayed in the
window provided by the Intelligent Window Management system, a vertical kilometer and a
horizontal kilometer are the same distance.

11.1.1.5 Displaying the Map
Having determined the type of map transformation, the objects to display on the map,

the appropriate map boundary and properly scaled the map, the map is displayed in the
appropriate window with the appropriate icons, colors, labels, etc. The composition and

67

presentation of the map in the appropriate window is performed by the Color Graphics
system.

11.1.2 Map Operations

The operations on geographic maps are listed below. In general, CUBRICON’s decision-
making process has been designed with the goal of maintaining context for the user and
helping the user understand the transition from one map to another. For each of the map
transformations, CUBRICON presents the new map in the context of the previously dis-
played map. In communicating the map transitions, CUBRICON uses a “region boundary
box” to outline or highlight a region that is a sub-region of another. Objects to be displayed
on each new map are selected according to their importance to the user’s task, as discussed
above.

e Map Creation

A new map is created and displayed in a window on the color-graphics screen.

e Zoom Out

The area shown in a map window is extended to include appropriate additional area
of interest to the user. The criteria used to determine which map to extended was
described in the previous section. A “region boundary box” is superimposed on the new
map to show the boundary of the map that was previously displayed. This helps the
user understand the transformation from previous map to new map display. Figure 10
shows the CUBRICON color-graphics screen after a zoom out operation has been
performed.

¢ Major Zoom In

A sub-region (specified by either the user or the system) of the current main map
is enlarged. The map transition is performed as follows: CUBRICON first moves the
map currently displayed in the main window to a secondary window and adds a “region
boundary box” to this secondary window showing the sub-region that is to be enlarged.
The enlarged version of the sub-region is then displayed in the main window. Figure 11
shows the CUBRICON color-graphics screen after a major zoom in operation has been
performed.

e Minor Zoom In

A sub-region (specified by either the user or the system) of the current main map
is enlarged. The map transition is performed as follows: CUBRICON superimposes

68

Figure 10: Color-Graphics Screen After Zoom Out Operation

a “region boundary box” on the main map showing the outline of the region to be
enlarged. An enlarged version of the designated region is then displayed in a secondary
window of appropriate size. Figure 12 shows the CUBRICON color-graphics screen
after a minor zoom in operation has been performed.

Pan

Pan to a new region. The map transition is performed as follows: in one of the
secondary windows, CUBRICON displays a map region whose boundary is the smallest
rectangle enclosing the old map in the main window and the new region to be displayed;
CUBRICON then shows region boundary boxes designating (1) the old region that was
in the main window and (2) the new region to be displayed. The new region is displayed
in the main map window. Figure 13 shows the CUBRICON color-graphics screen after
a pan operation has been performed.

69

Figure 11: Color-Graphics Screen After Major Zoom In Operation

31.2 PART-WHOLE DECOGMPOSITION MAPS

The map modlaity is the preferred modality used to represent the parts of an object, such as
an airbase. An airbase’s parts might be objects such as runways, radars and sams. The type
of map generated is a part-whole decomposition map (see Section 7.1) which is a schematic
diagram depicting the parts of the object and their relative locations.

In selecting the objects to display on a part-whole decomposition map, all parts of an object
are relevant in the current CUBRICON system. When representing parts of an object
the existing knowledge base contains only those objects which highly relevant to the OCA
planning tasks defined. Therefore, the determination of the type of map transformation
and objects to display in the map do not apply to part-whole decomposition maps. As one
or more large databases are accessed by CUBRICON there will be a need to discriminate
among the parts, displaying the objects which are most relevant. The descision-making logic
used to select the relevant information to display on geographic maps, described above, will
be used to select relevant information to display on part-whole decomposition maps.

70

e 884
S . 5
3G WG R

ke

Figure 12: Color-Graphics Screen After Minor Zoom In Operation

71

Figure 13: Color-Graphics Screen After Pan Operation

72

12 MULTI-MODAL LANGUAGE GENERATION

Just as the CUBRICON system allows users to express themselves in a multi-modal way, it
will use a similar language in its responses. The system has essentially the same modalities
at its disposal as the user has: spoken and written language, and pointing and other gestures.
Multi-modal language generation refers to the system’s ability to generate output using all
available modalities in a consistent and coordinated way. The different modalities are not
seen as separate, but as part of a single multi-modal output stream. This section discusses
the use of the available output devices from the multi-modal point of view. We first take a
look at the output modalities separately and then discuss their integrated use.

12.1 AVAILABLE OUTPUT MODALITIES

There are four different output modalities available for multi-modal language generation:
spoken natural language as generated by a separate speech synthesis device, written natural
language appearing on the monochrome and/or the color screen, and deictic gestures and
graphic expressions appearing on the monochrome and/or the color screen.

12.1.1 Speech

Speech output is produced by a stand-alone DECtalk speech synthesis device, controlled
through a serial port on the lisp machine. Since the DECtalk system includes a full grapheme-
to-phoneme conversion system for English it accepts normal orthography almost without
modifications. The only exceptlons are a number of domam specn‘ic Words _abbreviations
AT h.ss‘.fk-'-r;-z;‘] g;fv /'/\

and acronyms and some othef” \ml&pronﬁnma ions (hke ‘the Texicl irdes in “subMISsion”

in stead of “SUBmission”) that need a special phonemic dictionary entry. The exception
dictionary is stored in the synthesis device itself and is uploaded at system initialization

time. We use DECtalk’s standard male voice for all speech output.

12.1.2 Written Language
Written natural language output is typed mainly to the Natural Language Interaction Win-

dow on the monochrome screen. This is the same window that is used to echo the user’s
multi-modal input to the system. In addition, it can appear on some color windows.

73

12.1.3 Deictic Gestures

There are a number of deictic gestures available to the system (Section 8), dependent on
the type of object being pointed to and the modality the object is represented in. On a
map window, the system can highlight individual icons by drawing a circle around them or
flashing them. They may also be provided with a descriptive label. An icons can be pointed
to by drawing a textbox and an arrow pointing to it. Regions of a displayed area can be
pointed to by drawing a box around them or flashing the window border containing them.
Pointing to items on a table is done by drawing a box around the line(s) containing them.
Pointing to items on the form is accomplished by flashing the box around the appropriate
field and putting its content in boldface type. More information on deictic gestures employed
by the system can be found in Section 8).

12.1.4 Graphic Expressions

The system can also produce graphic expressions that appear on the color graphics display.
There are two implemented instances: locative information (see Appendix G) and path
traversal information.

Locative information can be expressed as a visual representation of the spatial relation
between two objects visible as icons on a map window. One object is considered the figure,
the other the ground [Herskovits85]. An arrow is drawn from the ground icon to the figure
icon, and labels are added to state the real-world distance between them and their identity,
if appropriate (Section 12.2).

Path traversal information can be expressed in a graphical way by drawing consecutive
segments of a path, represented as directed line segments on a map window, in the order
of traversal. This presentation is accompanied by labels indicating the type or name of
objects encountered along the way, and ancillary information such as an estimate of the time
since departure, special icons representing actions to be taken, etc. There are provisions for
presenting multiple paths in a synchronized way.

12.2 COORDINATION OF OUTPUT MODALITIES

The output modalities discussed above are controlled by a single multi-modal language gen-
erator which integrates and synchronizes them in real time. Just as multi-modality of the
input stream allows for cross-modal disambiguation of otherwise ambiguous sentences (Sec-
tion 4.2.2.4), so can typically terse spoken phrases like “this SAM” be disambiguated by a

74

simultaneous deictic gesture to the intended referent (e.g. an icon on a map window or an
element of a table).

12.2.1 Use of Written Natural Language

When written natural language is generated, deictic gestures are not used. This form of
output is considered to be more permanent in nature than the transient spoken variety,
and must therefore be more self-contained. Since the Natural Language Interaction window
has a history mechanism, previous written natural language output can always be retrieved
for reference purposes, and in this context there are no disambiguating deictic gestures
available. Written natural language thus uses definite descriptions for noun phrases and
locative phrases, so the intended referent can be determined from the language alone. In
stead of saying “this SAM” and pointing to it, the system will write e.g. “the SA-2”, which
is the most specific description of the object it can come up with.

12.2.2 Use of Spoken Natural Language, Deictic Gestures and Graphic Expres-
' sions

Deictic gestures are combined with appropriate natural language during output to guide the
user’s visual focus of attention. During language generation, in order to compose a reference
for an object,

1. if the object is represented by an icon on the display, then the system generates a
natural language expression for the object and a simultaneous coordinated graphic
gesture that points to the icon.

If the object has an individual name or identifier, then the system uses its name or
identifier (e.g., “the Merseberg airbase”) as the natural language expression

else the system generates an expression consisting of a demonstrative pronoun followed
by the name of an appropriate class to which the object belongs (e.g., “this SAM”,
“these SAMs”) as the natural language expression.

2. if the object (call it X) is not represented by an icon on the display, but is a component
of such a visible object (call it Y), then the system generates a phrase that expresses
object X as a component of object Y and uses a combined deictic-verbal expression
for object Y as described in the above case. For example, if the system is generating
a reference for the runway of an air base called Merseberg and an icon for the air base
is visible on the map (the air base as a whole is represented visibly, but not its parts),

75

then the system generates the phrase “the runway of the Merseberg Airbase” with a
simultaneous point gesture that is directed at the Merseberg air base icon on the map.

It is frequently the case that an object to which the system wants to point has a visible
representation in more than one window on the CRTs. Therefore the system must select
the visual representation(s) of the object (e.g., an icon, table entry, form slot entry) that
it will use in its point gesture(s) from among the several candidates. The current system
methodology is to point out all the object’s visible representations, but to use a strong
pointing gesture (e.g., blink the icon to attract the user’s attention and add a pointing text-
box) for the most significant or relevant representations and weak non-distracting gestures
(e.g., just highlight the visible representation) for the less significant ones. In order to select
the most relevant visible representations from among all the candidates, the system:

1. selects all the windows which contain a visible representation of the object.
2. filters out any windows which are not active or not exposed.

3. if there are exposed windows containing a visible representation of the object, then the
system uses all of these representations as objects of weak deictic gestures and selects
the visible representation in the most important or salient window (Section 3.2) as the
target of a strong deictic gesture.

4. if there are no exposed windows displaying the object’s visible representation, then
the system determines the most important active de-exposed window (Section 3.2)
displaying the object. The system exposes this window and uses the representation of
the object in this window in a strong deictic gesture.

The system combines graphic ezpressions with natural language output when the information
to be expressed is, at least partially, amenable to graphic presentation.

When generating locative information about some object (the figure object [Herskovits85}),
the system selects an appropriate landmark as the ground object [Herskovits85], determines
a spatial relationship between the figure and ground object, and generates a multi-modal
expression for the locative information including the spatial relationship. When selecting
the ground object, the system selects a landmark such as a city, border, or region, that is
within the current map display (i.e., does not require a map transformation). If possible, the
system uses a landmark that is in focus by virtue of its having been already used recently as
a ground object. The system’s discourse model (Section 3.2) includes a representation of the
attentional focus space of the dialogue, including a main focus list of entities and propositions

76

that have been expressed by the system or by the user via multi-modal language. If a new
landmark must be used as a ground object, then the system selects the landmark that is
nearest the figure object. The system derives a spatial relation between the ground object
and figure object that it represents in its knowledge base. This relation includes (1) the
direction from the ground object to the figure object and (2) the distance, if the distance is
greater than 0.04 times the window width. If the distance is less than 0.04 times the window
width, then the figure object appears to be right next to the ground object. This criterion
for deciding whether to include distance as part of the relation reflects the tendency for
people to omit a distance measure when the distance is small relative to the geographic area
under discussion and to say something like “just northeast of” instead of stating a distance
explicitly.

As an illustrative example, the user may ask about the location of a particular object, such
as the Fritz Steel plant. The system then uses the steel plant as the figure object, selects
a ground object, and derives a spatial relation between ground object and figure object as
discussed above. The multi-modal response is given below.

USER: “Where is the Fritz Steel plant?”

CUBRICON: “The Fritz Steel plant is located here <point>, 45 miles southwest of Dresden
<graphic-expression>.”

The <point> consists of a gesture that points out the Fritz Steel plant icon to the user
via a gesture that uses a combination of blinking, highlighting, circling the icon and the
attachment of a pointing label-box that identifies the icon. The <graphic-expression> is a
visual representation of the spatial relation between the figure object (Fritz steel plant) and
the ground object (Dresden city), consisting of an arrow drawn from the Dresden city icon
to the steel plant icon, a label stating the distance, and a label identifying the city (the steel
plant should already be labeled).

The second implemented type of graphic expression is used to present path traversal infor-
mation, more specifically for the presentation of a mission flight path (see Section 4.3 about
defining flight paths). This type of presentation is fairly lengthy and consists of multiple
multi-modal sentences, summarized below.

1. as an introduction to the mission presentation, the OCA (Offensive Counter Air) mis-
sion number, its package number (a package is a set of related missions), the origin
(departure) air base, and the OCA’s submissions (strike and refueling missions) are
summarized in speech and written language (on the Natural Language Interaction
Window), accompanied by pointing gestures to the corresponding items on the mis-
sion form, which is on the monochrome display. A mission information window is

77

initialized on the color graphics display, next to the relevant map window. It will be
used to summarize important information in a written form.

2. the origin air base is highlighted on the map window, accompanied by a label reading
“origin airbase” and speech saying the same.

3. one by one, the segments making up the (polygonal) flight path are displayed on the
map window as directed line segments, with a label indicating the time computed for
each vertex.

4. when the target air base of the mission is reached, the corresponding icon is high-
lighted on the map window. Simultaneoulsy, pointing gestures are generated to the
aimpoint within the target air base (e.g. the runway). These pointing gestures go
to the form, aimpoints window (if any) and any table that shows the aimpoint. The
target information is summarized in the mission information window and in speech.

5. the presentation continues with flight path segments as before.

6. when the refueling location is reached on the map window, information about the
refueling mission is pointed to on the form, and summarized in the mission information
window and in speech.

7. the presentation continues with flight path segments as before.

8. when the origin air base is reached again, which closes the polygonal path, the com-
pletion of the presentation is announced in speech.

The data that is written to the mission information window 1s also echoed in the Natural

Language information window (figure 6). Two missions can be presented simultaneously. ’

In that case the presentations are synchron\izgva"gy the time determined for the vertices of
the paths; the presentation reflects the real time relation between flight path segments and
events for both.

12.3 THE GENERATOR

The generator used to produce these multi-modal expressions is the one that comes standard
with the SNePS knowledge representation system, as described in [Shapiro89], with a few
minor adaptations to handle Multi-Modal sentences.

78

\
X

_—

PACKAGE WORKSHEET

| PKG# 8826 Preparer's Name |
OFFENSIVE OUNTER AIR MISSIONS

Priority

Prepared

22041 PRE-TARGET REFUELING

Mission OCA#¥ | Origin TOD #AC | AC Type | SCL AC Pool F{ sVC# | STN# | Start Dur. Disbur.
1 345 Rhein Main Rir Base B85:45 439t fu~F -1}
2 445 Nuernberg Air Base 86:00 45t fu~Ef 3
3 g
4 §

R

TARGET STRIKE MISSXON

: f1 POST-TARGET REFUELING
Mission Aim Point) : TOT by svCe [STN# | start Dur. Disbur.
1 6-24~-Herseberg Runuay 86:56 [F§ 345 244 87:25 88:20 | 21968 1bs
2 3-21-Dresden Runway 87:82 g 445 244 87:45 80:26 | 28942 1bs
3 §
q &

REFUELING M!SSION

RFL# | 345 [z TOD | o7:00 | Ke-135 { Load | Origin | Lindsey Rir Base
Station STN# | Start Time Orbit Location

1 244 B7:20 5p.348 N Latitude, 11.692 E Longitude

2

AIRESCORT MISSIONS

Mission AEM# | Origin TOD #AC | ACT | SCL Remarks
1

_ 2

SAM SUPPRESSION MISSIONS

Mission SSM# | Origin TOD #AC | ACT | SCL Target TOT
1
2

JLook at the color graphics screen. The mission plan is being presented.
ca345 is a submission of the PKG0O023.

it is & submission of PKGOO26 .

49tfw departs Rhein Main air facility at 5:45.

iIStk345, And Svc345 are submissions of it.

149tfw strikes 6-24-Merseberg runway at 6:50.

iIThe start of SVC345 is 7:25 and its duration is 0:20.

§tts disbursement is 21960 Ibs.

“I=>>

Figure 14: The data written to the mission information window on the color screen is echoed
in the Natural Language Interaction Window on the monochrome screen. Also notice that
the origin air base and target of the relevant mission are boldfaced on the form.

12.3.1 Input for Generation
The input to the generator consists of a knowledge base node or a list of such nodes, repre-

senting the (propositional, see [Shapiro87]) information that has to be described. Optionally,
a specific start state and some register value initializations can be specified (see [Shapiro89]).

12.3.2 The Grammar.

The generation grammar is written as a GATN, see [Shapiro89] and [Shapiro82] for more
details. A description of the grammar is provided in Appendix B.

12.3.3 The Lexicon.

The lexicon used in natural language output generation is the same one as used in natural
language input parsing and interpretation, see Section 4.2.1.2.

79

13 COLOR GRAPHICS MODULE

(section forthcoming)

80

14 KNOWLEDGE BASE BUILDER TOOL

Relational Database Management Systems (RDBMS) have become widespread in recent
years, and many large relational data base (RDB) systems have been built. These systems,
however, usually do not provide advanced intelligent interfaces and their use requires training
in a data base (DB) language. The interfaces usually provided with such RDB systems
generally consist of computer forms with simple record search and updating capabilities.
Recent advances in human computer interface (HCI) technology provide the potential to
overcome such limitations and make RDBs more readily accessible to personnel without
special training. However such advanced HCI systems are often built to work with KBs and

not RDBMSs.

This section discusses a tool, the Knowledge Base Builder, that was constructed to support
the integration of the RDB underlying the AMPS Mission Planning system, and the KB
underlying an intelligent multi-media interface (IMMI) system, CUBRICON. It is a hybrid
tool in the sense that it operates on a knowledge base and a database system.

The KB used by the CUBRICON system is implemented in a Semantic Network Processing
System (SNePS). The construction of KB’s using this system involves the use of an editor
(ZMACS in our case) to write files which contain semantic network building statements
written in the SNePS user language (SNePSUL). This is a labor intensive process and does
not easily support changes to the KB.

Without the aid of a tool such as the KB Builder here the process of building a KB in SNeP§
that corresponds to the data in AMPS would be a large effort in itself. It involves working
from listings of the AMPS tables. For each piece of data in the listings the person doing
the translation would type the corresponding SNePSUL statements. This transformation of
the AMPS data into SNePSUL statements is not straight forward and requires thought on
the part of the translator. The translation process does not condense the amount of text
required but increases it. This means that is the AMPS DB were to be manually translated
in this way the resulting text file of SNePSUL statements would be much larger than the
original listings of the tables of the AMPS DB.

The KB Builder supports the integration of the KB and the RDB by providing the ability
to construct KBs which are linked with the AMPS RDB. The tool does this by providing
four main capabilities, a RDB browsing capabilities, a link construction capability, semi-
automatic KB generation capabilities, and an interactive KB editing capability.

These capabilities are provided by the tool through a direct manipulation interface (windows,
icons, menus, and pointing). This type of interface was chosen because of its easy of use and
its ease of construction. Ultimately tools of this sort may have IMMI interfaces such as the

81

CUBRICON system. However, while the development of such an interface would be a worth
while research project, it would not be an appropriate part of the CUBRICON project.

The link construction capability enables the definition of links between CUBRICON concepts
(implemented in SNeP§S) and data in the AMPS RDBMS. Once these links are defined they
can be used to build concepts in the KB from RDB data. This is the KB generation capability.
In addition to the linkage and KB generation capabilities an interactive KB editing capability
and a RDB browsing capability have also been provided to support the generation of skeletal
class structures and the specification of KB structures for which no data exists in the KB.

The process by which the capabilities of the KB Builder are used to develop a KB and link
it to a RDB is as follows:

1. Build a skeletal class structure in the SNePS KB using the interactive editing capabil-
ities of the tool.

2. Build KB structures called links and place them in the skeletal class structure. Using
the tool this is done in a interactive semi-automatic manner or by using the KB editing
capabilities.

3. Identify instances of the skeleton classes from data in the RDB and build KB nodes
representing them.

4. Build KB structures associating RDB information with each instance node.

5. Build additional KB structures manually using the KB editing capabilities.

An understanding of the capabilities provided by the tool requires an understanding of the
concepts used in RDBM’s and the SNePS system. Additionally a specialized concept of a
RDB-SNePS link must also be discussed. This concept forms the basis for understanding
the linkage definition and KB generation capabilities of the KB Builder.

14.1 SYSTEM CONCEPTS

The concepts that are involved in the use of the KB Builder are presented in Figure 15.
The SNePS based concepts are discussed in detail in Section 3.1 and the RDB concepts are
described in the literature. In this section we will examine two concepts which are essential
to an understanding of the KB Builder’s capabilities, the link concept, and the case frame
“type concept. Later sections discussing the tools capabilities and displays will rely on an
understanding of these concepts.

82

g1 218y

€8

sydaouoy) 1ap[ing aseq a3pajmouy jo Ayorerayg

Knowledge Base Builder

Depth Dumper Edit Syn Table Find From Name Find Node Loader Orientation Recache Names

7 B

7%

D A AL 07202,

Knouledge Base Builder Concepts

iR

Knowledge Base Concepts Relational Data Base Concepts

TR

Node SiHePS relation Table RPB Attribute Tuple REIB Value RDPB Column
AN
§.
N\
Base MNode NHolecular Node Key Rttribute Sought Attribtue Key Value
aned Node Lexene Case Frame Lexed Node

aner Case Frame Classifier Case Frane Typer Case Frame Finder Case Frane Attribuvte Case Frane

Mouse=R: Menu.

To see other commands, press Shift, Control, Meta-Shift, or Super. : o
[Wed 20 Sep 12:086:51] steveg CL SNEPS: (no window) NFILE serving SENDR

22272777 |

22,

N
N\

N
N
\
N
\
N
§
\
N
N
N
N
N
§:
N
\
N

R

(ZZz

14.1.1 The Link

The link associates information from a RDB table with nodes in a semantic network that
represent instances of a given class. The relationship between the instance and the node con-
taining the linked information is accomplished through a case frame consisting of molecular
node and a set of arcs (cf. 3.1). Figure 16 illustrates an example of such a linkage.

Please note that the figures of this section show abbreviated versions of the semantic net-
works. Nodes such as the Dresden node of Figure 16 do not really have the name “Dresden”
but rather a node containing the name “Dresden” is related to the node representing dresden
through a special case frame called the namer case frame. Such KB structures are provided
so that the KB can distinguish between the concept of the dresden air base itself and the
concept that the air base’s name is Dresden. Section 3.1 provides many examples of the
complete form of such networks. However, there is not enough room in our figures for all
of the nodes and arcs that would result if all these naming structures were included. Such
naming structures will be understood when a name in a node found in a figure is underlined.

The link itself is stored in the semantic network as a case frame (cf. Figure 17) which relates

four pieces of information together.

o the name of a RDB table from which to extract information,
e the name of a RDB table attribute which is to be used as a key,
e the name of another attribute which is to be used to extract values from the table, and

e an identification of the manner in which the key values are to be generated.

The link is related to a class node in the network through another case frame such as in
Figure 18. In this figure the relating case frame is represented by molecular node M2 which
has three arcs descending from it, object, property, and value. The form of the case frame
that links the class node to the node representing the link has a special purpose. The same
case frame is used to relate the information found in the RDB to instances of the given class.
This is illustrated in Figure 18 by the case frame represented by M3 which is of the same
form as the case frame represented by node M2.

The use of links to generate KB structures from the contents of the RDB proceeds as follows.

e the RDB table is identified using information stored in the link.

e the name of a key attribute (stored in the link) is used with the name of the instance
(Dresden in Figure 18) to identify the relevant tuples from the table.

84

Relational Data Base Table

Table name ir for

Attributes ir Nam i naiti rational
Alconbury | 28.9 | 49.3 | False

Tuples '{ Dresden | 304 | 50.3 | True

Linked
Example Nodes from
h NeP manti work

Object Value

Property
r

Figure 16: An Example Linkage

85

3

Information

Use Instance

:

Key Value
@Method
/ Sought
RDB Table Attribute

‘ Attribute
Information ir m

Figure 17: An Example Link

e the name of the sought attribute (Operational in the figure) is used to extract a set of
values from the table.

o Case frames (such as the one represented by M3) are created which relate the extracted
information to the node representing the instance. This case frame is patterned after
the relationship between the class node and the link node.

14.1.2 The Case Frame and Case Frame Type concepts

The case frame concept as used by the CUBRICON and KB Builder system refers to a stan-
dard pattern of molecular nodes and arcs which relate a set of nodes together. Examples
of such case frames are seen in Figures 19, and 20. For reasons of flexibility and SW de-
velopment economy the tool’s ability to manipulate case frames has been organized around
the concept of abstract case frame types. This concept and the associated concepts such as
related-nodes and the namer case frame are discussed in this subsection.

There are two basic requirements that lead to this approach. The first is a requirement to
be able to dynamically specify new case frames and to modify existing ones without having
to modify or extend the tool. The need for this became apparent during the course of the

86

A%E uoijeuiiojuj

FEGIRLE
¢——— S$31Y SdONS

AN glwdﬂ

BT 05 1 ¥t 1 USPEII

958 ¥ ATAQUGS

Kiiedoid

oe_no
_ > enjBA
ao:mE._mw:_
3

*

ainquny
1ybnosg $$810
[LTIETN] @\

SWBN anjep A3y Ayiadoud

1038[q0
anjeA

Figure 18: The Full Context of a Link

87

impl ase Frame:

Arc 1 I Arc 3
®/ Arc 2 \ An Ordered list
é @ of SNePS arcs.

‘(arc-1 arc-2 arc-3)

Defined by:

mplex Fram
Defined by:
@ An Ordered list
/ of path specifications.
long lat

‘((compose long direction)
(compose long value)
(compose lat direction)
(compose lat value))
direction Value

3

Figure 19: Simple and Complex Case Frames

88

S

uojjoadip

P o9

anjep

:o:ow._:.u
dweij osSe) uoljedso

m:o_

3::.2;

enjea é\«oo lqo

\

dweiq o9se) AdO

TowielJ asey punodwio)

Figure 20: Compound Case Frames

89

development of the KB Builder tool as requirements to manipulate new case frames were
incrementally added in conjunction with the evolution of the CUBRICON system. In the
context of these requirements an examination of the functions that are required to manipulate
the case frames was performed which revealed commonality that could be exploited. This led
to the definition of a case frame type concept within the system which enabled the case frame
manipulating functions to exploit the commonality. Structuring the tool to manipulate case
frames of declaratively defined types has the following advantages:

o The KB-builder tool software becomes independent of the choice of case frame repre-
sentations that were chosen for the KB.

o The ability to examine and manipulate new case frames can be quickly added to the
system.

¢ The organization of the software around abstract case frame type definitions is very
compact. In previously investigated approaches each case frame type required its own
file containing definitions of the case frame and functions to access, parse, display, edit,
and create the case frame.

The approach chosen involved the development of presentation types and accessor/manipulator
functions for the SNeP§S based concepts of a node, a base node, a molecular node, case frames
in general, “a kind of”(AKO) nodes, and named nodes. It was not necessary to develop spe-
cial code for each type of case frame used by the system (e.g. the location case frame, the

OPV case frame, the PART case frame, ...).

The requirements for a “WYSIWYG” editing capability led to a requirement to be able to
easily “rewire” the arcs of the KB. This capability is supported by the rewire function and
the related-nodes concept which identifies two nodes and an arc that relates them. This
is exactly the information that is needed to replace a node in a case frame. The first node
of a related-nodes instance is often a “non leaf” case frame node, and the second node is
often a “leaf node” of the same case frame. When a case frame leaf node is presented on the
screen (most of the information in the knowledge base is viewed in this way) a mouse action
which can edit this part of the case frame must be able to refer to a related-nodes instance
and not just the part itself. If this is not done then the information that the rewire-nodes
function needs to replace the part is not available.

The two Symbolics flavors that have been defined to support the definition of case frame
types and related nodes are presented in Figure 21.

The case-frame-type flavor collects all of the information the system needs to:

90

Flavors

Case Frame Type

Related Nodes:

SNePs Arc

Related Nodes

® —>

Case Frame Type:

Name of case frame

Ordered arc or Path list

Information on how to

input and present

case frames

of the given type

Pattern which indicates if
lex arcs are expected on

certain of the case frames arcs

Figure 21: Flavors Based Concepts

g1

¢ define the arc structure and order for the case frame type, and

e scl:i:accept and scl::present such case frames,

Note that while the arcs in SNePS case frames are unordered we have chosen to add an order
to them for display purposes.

For each type of case frame known to the system an instance of the flavor case-frame-type
is built and stored on the list *case-frame-list*. The code which manipulates case frames
utilizes these definitions. In this way the case frame related information is declarative and
not procedural. Several of the case frames thus declared are given special designations. The
special case frames include:

e the namer case frame,
e the super-class/sub-class case frame,
e the class-member case frames, and

e the link case frames.

The namer case frame is used to indicate the name associated with a base node. Such a base
node is called a named node. By convention the first arc or path of the namer case frame
type definition refers to the named node the second path refers to the node name and the
third path refers to the name itself.

The super-class/sub-class case frame, and the class-member case frames, are used to define
inheritance paths for finders and case frames. They also are used to display the AKO tree
found in the left pane of the KB Builder screen. This ability to draw a tree of nodes related
by case frames can easily be generalized. Currently the trees are only derived from the super-
class/sub-class case frame, and the class-member case frame. In the generalized version the
user would choose what case frames are to be used in the generation of the tree. This would
allow the graphing of “a part of” trees, chain of authority trees, etc.

The Link case frame is used by the system to define the mappings between the RDBMS and
the SNePS KB (cf. Section 15.1.1). Since the link is represented by a case frame embedded in
another case frame no special purpose code is required to manipulate or edit these structures.
A link is just another type of case frame on the *case-frame-list® list.

The system often has to manipulate “compound case frames” such as the case frame of
Figure 17 or Figure 20. Such compound case frames may be nested several layers deep. The
display software will handle this by recursively displaying the parts of the case frame.

92

For very deeply nested compound case frames the displays may be more extensive than
desired. (This has not been the case in our use of the tool). If such deeply nested case
frames are to be represented in the system a limit to the nesting level of such displays can
be included. The remaining levels can be displayed in a pop up window via a mouse gesture
upon user request.

14.2 KB BUILDER HUMAN COMPUTER INTERFACES

The four main capabilities of the tool are provided through two main interactive direct
manipulation displays. One display, the Data Base Viewer, is oriented primarily toward the
support of AMPS RDB browsing. The other display is orientated toward, the generation
of linkages, the generation of KB structures from the RDB, and editing the KB. Figures 22
and 23 show the appearance of these displays.

Both displays have a menu of commands at the top and support keyboard accelerators for
those same commands. The keyboard accelerators provide the means to invoke a command
by entering the first letter of each command. This capability is in addition to pointing to
the command in the command menu with the mouse.

In addition to the commands presented on the top of the display every object presented
in the display can be referred to with the mouse to invoke additional operations specific
to that object. Nearly all of the supported activities are performed through such “point
and click” references using the mouse. In all cases the operations that are available on the
mouse gestures are show in the mouse documentation line at the bottom of the display.
Since different commands are available when the mouse is on different types of objects or
commands the mouse documentation line changes dynamically as the mouse moves from
object to object.

In a few cases pop up menus appear which request the user to type in names or numbers.
Whenever possible user typing is supported by computer completion of the typed input and
computer enumeration of the remaining input possibilities.

14.3 SUPPORTED ACTIVITIES

The two main displays support a variety of activities, data base browsing, link generation,
KB generation, and WYSIWYG editing. The details of how the tool supports these activities

are discussed below.

93

Figure 22: The Data Base Viewer Display

94

G6

£g 2Im3Lg

.

Aedsiq 1op(ing g YL,

Knowledge Base Builder

Depth Dumper Edit Syn Table Find From Name Find Node Loader Orientation Recache Names
[JCase frames related to the node - DRESDEN:
Tistedt
hein Nain NThe follouwing is a table PART type case frames.
itenberg case frame node super-part part-nane part : o s
N M874 DRESDEN SA-6 B3S
randis M873 DRESDEN SA-6 B34
M872 DRESDEN SA-6 B33
indsey M871 DRESDEN SA-6 832
M870 DRESDEN SA-6 831
agliated MB64 DRESDEN RADAR control radar
essau MB863 DRESDEN RADAR control radar
MB62 - DRESDEN RADAR control radar
rfurt MB61 DRESDEN RADAR control radar
Drasden MB608 DRESDEN RADAR control radar
MBS3 DRESDEN RUNWAY 6-24-DRESDEN
insternald M852 DRESDEN RUNWAY 3-21-DRESDEN
MB49 DRESDEN fuel tank storage DRESDEN-POL
Grossenhain
yThe follouing is a table COMP type case frames.
erseberg
targard Ncasze frane node _super-conp COnRp-Nane. cong. description
M2452 DRESDEN POL-FACILITY-NAME DRESDEN-POL petroleum-oil-lubricants facility
uernberg

he following is a table OPV type case frames.

MMM M T h ©

M287 air base

S T

The following is a table DRAN type case frames.

BASE

OThe fAllauina ie a +tahle PNMP tune race Frame«

Inherited case frames related to the node - air base:

case frane node ohlect properts value
M456 DRESDEN DISPOSITION ENEMY
M440 DRESDEN NATIDONALITY GDR
M400 DRESDEN LOCARTION a locatfon : -> S1.1 N 13.7 E
M341 DRESDEN COLOR RED
M321 DRESDEN NAME DRESDEN
M2457 DRESDEN AFFILIATION-OF-AIR-FACILITY GOR
M2455 DRESDEN TYPE airbase
M2454 DRESDEN OPERATIONAL sTRUE
M24506 DRESDEN LONGITUDE 13.78
M2448 DRESDEN LATITUDE 51.1

the nation or c
airfield, airba
xtrue if air-fa
longitude of ai
latitude of air

P . §

14.3.1 Data Base Browsing Using the Data Base Viewer

The Data Base Viewer is intended to help the KB builder examine and become familar with
the the AMPS database. It is easy to use and can display the entire contents of the AMPS
RDB.

The data is displayed by table, the central concept in a RDBMS. The user can display the
list of all tables by clicking on the show tables command in the command menu at the
top of the display. This results in the display of all of the table names in the window pane
underneath the command menu. Each table name is sensitive to mouse gestures and can be
used to generate displays relating to that table. Normally the display of the table names is
done just once and the table names are referred to through out the session. If new AMPS
tables were created during a session then it would be necessary to redisplay the table names.

When the user points at a table name the mouse documentation line shows that, the table
can be described, have its attributes listed, or be displayed.

Choosing the description pops up a window with a small bit of english text describing
the table.

Choosing the attribute display causes the list of attributes for that table to be displayed
in the lower window. (Descriptions of the attributes can be popped up via a mouse
gesture where ever they appear.)

Choosing the full display causes the entire contents of that table to be formatted and
presented in the lower window of the display. The table is formatted in a tabular
format with the table name preceeding the display and with the attribute list in the
headings.

The lower box of the display contains both vertical and horizontal scroll bars. These are
necessary since many of the tables take up more space than is available on the screen. The
use of these scroll bar is interactively documented in the mouse documentation line. Every
presentation made in the lower box is recorded and kept until the user invokes the clear
command. Previous displays can be reviewed by simply scrolling the display forward or
back to where the information was displayed. The mouse sensitivity of the screen display is
continually preserved during scrolling operations.

96

14.3.2 The Generation of Links Between AMPS and SNePS

One of the primary uses of the KB Builder tool is to develop a mapping between the
AMPS DB and CUBRICON’s SNePS KB which is based on the definition of links (cf. Sec-
tion 15.1.1). The KB Builder supports the interactive semi-automatic generation of these
links based on information in the RDB. The tool performs a heuristic search of the RDB
to identify information that might be used to build links. During the search the tool will
interactively request information from the user to help it limit its search. When the link
information has been collected the tool displays a list of candidate links for the user to select
from. Selected links are then automatically added to the KB.

The semi-automatic definition of the links is done in the context of a given class node. The
search proceeds in several stages,

e A list of RDB tables is found that may have information in them pertaining to members
of the given class.

e These tables together with associated candidate key attributes are displayed and the
user selects table/key-attribute combinations to be considered .

e For each table/key-attribute considered, candidate sought attributes are displayed and
selected from.

e the user then selects the case frame type to be used to relate the link node with the
class node.

e For each collection of link information identified a link is built and placed in the KB.

The tool uses the class node’s name as the starting point for its heuristic search. This name
is used to identify tables that may contain information relating to members of the given
class node. This is done by searching the list of all tables in the RDB for those tables which
have attributes whose name is “like” the name of the given class. This process identifies
candidate table/attribute pairs. The attribute identified is a candidate for the key attribute
to be used in the link.

An alternative approach would be to look for RDB tables with names that are “like” the
given class name. This approach was tried and found to be inferior for two reasons. It
does not identify key attributes which are required and it overlooked tables with pertinent

information.

Figure 24 illustrates the selected approach. The given class node in this case is air base. An
examination of the Figure reveals that the runway-char table contains an attribute called

97

Air-Facility-Char

Air-Facility-Name Affiliation POL Facility

Dresden Germany Dresden POL

Alconbury UK Alconbury POL

Runway-Char

Air-Facility Bearing Length

Dresden 30 500

Alconbury 20 400
M-Mission-Char

Mission-Number _Start Time Origin

Dresden 13:00 Dresden

Aiconbury 04:00 Alconbury

Figure 24: Attribute Based Table Selection

98

air-facility and the air-facility-char table contains the attribute air-facility-name. The tool
would select these two tables because the names air-facility and air-facility-name are “like”
the name air-base. The table SSM-mission-char is not selected since none of its attributes
are “like” the name air-base. Note that the table runway-char would not have been selected
if the alternative approach were used. The tables and key attributes that are selected by
the tool are then displayed in a window (cf. Figure 25) so that the user can make a further
selection from them.

In order for the tool to work it must be able to identify when one name is “like” another. This
process is based on a synonym table which the user can interactively edit. This table might
express the notion that base and facility are synonymous, or air-base could be associated with
air-facility directly. In the process of finding like words the words are de-hyphenated into
a list of component words. These component words are augmented by synonyms from the
synonym table and all the resulting combinations are compared to see if they are contained
in the attribute names of the tables.

Once the table/key-attribute pairs have been selected, the selected tables are used to generate
a list of candidate sought attributes. These candidate sought attributes are presented in a
display (cf. Figure 26) along with the associated table and key attribute. The user selects
from this display the collections of table, key attribute, and sought attribute that are to be
used to build a link. The type of case frame that will be used to relate the class node and
the link is also selected through this display.

For each selected combination of table, key attribute, sought attribute, case frame type, a
link is built and related to the given class node. It is assumed that instance names will be
used as a key values.

14.3.3 KB Generation

The system enables the selective construction, in a controlled fashion, of large KB’s based
on information from the AMPS DB. This is an important capability since attempts to map
the whole AMPS DB into SNePS resulted in KB’s whose size taxed the capabilities of the

computer systems used.

The system provides two basic KB generation capabilities, 1) the generation of instance
nodes representing members of a given class, and 2) the generation of KB structures (i.e.
case frames) which relate information to the class nodes.

99

Candidate AMPS RDB Tables, wuhich may contain attribute information for air facility

Consider it, Iano

e it,

POL-FRCILITY-CHAR petrosoilslub facility; source-krs

AC-CAPS capabilities for each aircraft

RC-ROLE role for each aircraft

RC-TYPE types of aircraft, used primarily for refinement

AC-SCL what scls are carried by various aircraft, source = krs

ARIRCRAFT-CHAR aircraft information, most from krs

RC-POCOL-CHAR ac-pool info, source = krs

UNIT-RC aircraft at unit information

INTEL-AIM-POINTS Recommendations from INTEL for which targets and aim-points are worthuhile
RC-RESOURCE-UTILIZATION-CHAR resources to be used by missions

MISSION-CHAR mission info, eg. asc & home-base info; one entry per mission-name; THIS IS NOT
MRINTENANCE-CHAR Maintenance-specific information, see also STANDARD-MISSION-TASKS-CHAR, RAMPS-RES
UNIT-CHAR wunit information. See AC-POOL-CHAR to find availability and AC type information
SAM-SITE-CHAR sam-site info, source=zkrs

RUNWRY-CHAR runway information, eneny in degree heading

RADAR-FACILITY-CHAR radar-facility information, source=zkrs

MUNITION-DUMP-CHARR how many of each munitior are at each dump

RIR-FACILITY-CHRR info specific to air-facilities

oo

O0000000000o0on

O0000000000000000

Do It O Rbort [J
EoR

Figure 25: Table and Key Attribute Selection

100

CANDIDATE ATTRIBUTES FOR air facility

yes OPY CHAR COMP PART

RUNKAY -NRME name of runuay

AFFILIARTION-OF-RUNKRY a higher command

LENGTH the length of the runway

WIDTH the width of the runuay

SURFRCE-CONDITION the reported condition of the runuway

CONSTRUCTION composition of runway surface,e.g. concrete, dirt, sand, grass..

DISPOSITION friend, enemy, neutral, etc

TYPE kind of facility

DEGREES heading in degrees

AIR-FACILITY-NAME name of air-facility (a facility that supports a‘c)
LATITUDE latitude of air-facility

LONGITUDE longitude of air-facility

POL-FACILITY-NAME petroleum-oil-lubricants facility

OPERATIONAL *true if air-facility is operational

DISPOSITION friend, enemy, neutral, etc

TYPE airfield, airbase, etc

AFFILIARTION-OF-RIR-FACILITY the nation or comnand that controls the air-facility

ESTABLISHED date first operational

COMMO-FREG frequency for communications

COMMO-CALL-SIGN call-sign identifying the air-facility in communications
More below

)]

HRRRRERRRROO00000000R
O00RRRRORKRKOOOO0000000
HRROOO000000000000000
0oO00000000000a0000000

0000000RO0OO0O00000

Do It 3
s s

Abort [J
o

Figure 26: Final Selection of Link Related Information

101

14.3.3.1 Knowledge Base Instance Generation

The user of the KB Builder tool first uses the tool’s KB editing capabilities to build a
skeletal class structure in the KB. Ultimately this skeletal structure must be populated with
instances of the classes. For example, the node representing the class air base must be
related to an instance node representing Dresden air base. The KB builder tool supports the
semi-automatic generation of nodes representing such instances from the RDB information.

For a given class node the tool identifies the names of instances of that class using techniques
like those used to identify link information. The tool first uses the name of the given class
to find tables with attribute names “like” the name of the given class node. The table and
attribute pairs are displayed and the user of the tool selects one such pair.

The attribute of the table/attribute pair selected by the user references a column of the
selected table. This column contains the names that are to be used as instances for the
given class. For example the air-facility-char table may have an attribute called air-facility
name. In the column under this attribute are all of the names of airbases contained in the
RDB. This set of names are used as the names of the instances of the air base class and are
used by the tool to build instance nodes.

14.3.3.2 Case Frame Generation

Once the links and instance nodes have been created for a given class node, the links are
used to build case frames that relate RDB information to the instances. The procedure for
using a link to relate RDB information to an instance node was discussed in Section 2.1.

We note that if an instance has super classes in addition to its class then it may inherit links
from the super classes as well as from the class. These links work in the same way as those
associated with the class.

14.3.4 WYSIWYG Editing Capabilities

The Knowledge Base Builder provides “what you see is what you get” (WYSIWYG) editing
capabilities through the use of the Knowledge Base Builder window shown in Figure 23. This
display has two windows, the one on the left is the AKO tree display and the one on the
right is the case frame information display. This later display presents information related
to a given class or instance node through molecular nodes of known case frame types.

102

14.3.4.1 KB Displays

These displays hide many of the SNePS representation details from the viewer so that the
information which is pertinent to the user’s task is emphasized. As an example consider
molecular node M400 in the display in the right window of Figure 23. This node is found in
the table of OPV type case frames and gives Dresden’s location. Figure 27 shows a diagram
which includes the SnePS network corresponding to this line. The design of the SNePS
representations used by the case frame types is a separate concern and would be handled by
a different display.

When the KB Builder displays a node it attempts to present that node by printing,

e it’s name if the node is a named base node.
e the name of the nodes lexeme if it is a lexed node.

¢ a standard case frame presentation if the node is a case frame of a known type.

Base nodes are given names in the KB through the use of the namer case frame. If a base
node is connected to such a case frame then is is said to be a named node and the named
is used as the printed representation of the node. If a base node is not named then the
internal name of the node itself is used. An example of this is the node B35 in Figure 23. It
represents an unnamed SA-6 which is part of Dresden.

Case frames very rarely refer to a name directly. Instead they often point to a molecular
node which represents the concept of the name and that node uses a lex arc to point to a
base node which contains the name. Such molecular nodes are referred to as lexed nodes
and the corresponding base node as the lexeme. When such nodes are encountered the name
contained in the lexeme is used as the printed representation of the node.

When compound case frames are encountered, such as is the case with node M400 of Fig-
ure 23, a standard representation is used for the subordinate case frame (the location case
frame in this example). A printer function which is stored in the definition of the case frame
type is used to print a representation of the subordinate case frame. This function may in
turn recursively call other case frame printer functions to display an case frames that are
subordinate to it.

The left window (cf. Figure 23) displays the skeletal class structure of the KB which is
also called it’s “A Kind Of” (AKO) hierarchy. This display also includes presentations of
the instance node as they relate to their classes. In the figure the air base class node and
its instances are shown. This display hides the details of how the relationship between the

103

£

object
propeny
@ value\\
object @
property Ie‘x Lati
()
value direction value direction

35
>

5 &

©

@*@‘
@*6’

Figure 27: SNePS Structures Corresponding to KB Builder Display Items

104

instances and classes and the relationship between the classes and their super classes are
implemented.

The user can controls the extent of the graph in this display by,

o selecting which class or instance node is to be the root of the display tree,
e the depth of the display tree,
e the orientation of the displa& tree (horizontal or vertical), and

e the size of the window that the AKO trees are displayed in.

For example the user can select a new display root by pointing to the “Find From Name”
command at the top of the display. This results in a popup window to which the user can
type node names supported by completion and enumeration of acceptable input. When a
new node is selected a redisplay is performed with the superclass of the air base node (e.g.
the facility node) as the new root of the display.

There are several ways that a new AKO tree root can be specified. The “Find From Name”,
and “Find Node”, commands can be used from the command menu. Also the user can
point to any base node on the display including the right hand display and request that that
node or one of it’s superior nodes be the root of the AKO tree display. This combination of
capabilities enables the user to browse the KB and to examine its AKO structure.

The system is currently limited in its ability to find and refer to unnamed nodes since most
of the information in the RDB is referred to by named entities. The “Find Node” command
provides a limited means to identify such unnamed nodes. If the node is found in the context
of some other named node then it can be easily examined (e.g. node B35).

To display tables of case frame information for a base node the user points to the desired node
in either the left or right window invokes a function which redraws the right hand display
for the selected node. The right hand display of Figure 23 was produced by pointing to the
Dresden node in the AKO tree display and selecting it to form the basis of the case frame
display. Similarly any other base node could be selected to form a new display. For example
in Figure 23 information relating to the unnamed SA-6, B35, can be displayed simply by
pointing to it and selecting it.

The case frame display in the right window provides a list of all of the case frames that relate
to the given node or to classes and super classes of the given node. The related case frames
are grouped by case frame type and by the node they relate to. In the case frame display
of Figure 23 three tables of case frame information are fully visible. For the node Dresden

105

there are two tables, a table of PART case frames, and a table of OPV case frames. For
Dresden’s class node, air base, a table of DRAW case frames is visible.

Each case frame table is preceeded by a comment identifying the type of case frame contained
in the table. The tables themselves contain a header line which is underlined. The rows under
the header present information regarding the case frames.

The first item in the header is always “case frame node” and the entries in the column
under this node identify the exact molecular node used in the case frame. These nodes are
presented in the table so that the user has a displayed object that refers to the case frame as
a whole. This object is referred to when the user wishes to invoke commands that operate
on on the case frame as a whole. An example would be the cut and paste operations which
enable the user to move case frames from one base node to another.

The rest of the items in the header display the names of the arcs used in case frames of the
type that the table represents. In Figure 23 we see that the PART case frame utilizes the
arcs super-part, part-name, part and description. From the same figure the OPV case frame
can be seen to involve the object, property, and value arcs.

The items in the rows beneath the arc names are representations of the nodes found at the
end of that arc for the given case frame. For example the OPV case frame for M400 has a
value arc which points to a location case frame. The printed representation of location case
frames appears in the table.

14.3.4.2 Editing Capabilities

The editing capabilities of the display are all provided in the context of pointing references
to items in the display. Each type of display item has a different set of operations that are
available for it. These operations are invoked by pushing various combinations of keys and
buttons on the pointing device. Such combinations are referred to as “mouse gestures”. The
operations that are available on various mouse gestures are dynamically documented in a
one line display at the bottom of the screen called the mouse documentation line. Pushing
the middle mouse button for any type of display item will popup a menu of operations for
that item.

The editing capabilities include the ability to,

o Change the value of any item on the screen.

e Edit the displays of case frame objects.

106

e Cut and past nodes related to molecular nodes.
¢ Add new case frames, and base nodes.
e Detach case frames and base nodes from related nodes.

e Reorganize the AKO tree.

We note that nodes which become detached and isolated during the editing process are

deleted.

When editing case frame displays the system utilizes information stored in the definition of
that case frames type to control the editing process. For example when editing a location
case frame the user is prompted for the four pieces of information required, the numerical
value of the latitude, either N or S, the numerical value of the longitude, and either W or E.
When the user enters such values the tool will only accepts values in the correct range and
will display the acceptable possibilities if the help button is pressed.

107

15 EVALUATION

15.1 OVERVIEW OF APPROACH

A thorough evaluation of CUBRICON was conducted on 3 October through 6 October,
1989. The purpose of the evaluation was to assess CUBRICON with respect to measures
of human-computer interface effectiveness and efficiency. Feedback about the performance
of CUBRICON from these perspectives is contained in this section. Recommendations for
further research are also provided.

The evaluation was performed in two parts. The first part of the evaluation focussed on hu-
man engineering issues relevant to CUBRICON. Ms. Mary Lloyd, a human factors specialist
from Calspan Corporation, conducted this part of the evaluation. Ms. Lloyd has many years
of experience in human factors engineering, including experience in the conduct of human
engineering evaluations of prototype systems. She was unfamiliar with the CUBRICON
Project and was therefore able to provide an independent and unbiased evaluation.

The second part of the evaluation was conducted to evaluate CUBRICON from an Air
Force applications point of view. This part of the evaluation assessed the applicability of
CUBRICON interface concepts to typical and emerging Air Force applications. Mr. Albert
Frantz, an engineer from the Rome Air Development Center (RADC/COAD), was employed
during this part of the evaluation. Mr. Frantz has experience in the development and
management of Air Force C2 system development efforts, and therefore was able to represent
the perspective of Air Force users within the present evaluation. He had no prior involvement
with the CUBRICON Project, and therefore was also able to provide an independent and
unbiased review.

The evaluation addressed the general goals of an intelligent human-computer interface which
were outlined in the Statement of Work (SOW). Human factors issues that bear on these
goals, as well as other human factors issues that relate to the CUBRICON design and future
directions, were evaluated. Results of the human engineering evaluation are discussed with
respect to these goals in Section 15.3.2.

There are a number of issues which constrained the approaches available for the evaluation
of CUBRICON. First, CUBRICON is a prototype system. Tasks to be tested had to be
confined within current CUBRICON capabilities. For example, the evaluation had to be
limited to the vocabulary and grammar supported by CUBRICON, and it had to employ
discrete speech input. The range of output modalities was limited to color and monochrome
graphics (including a map presentation system), natural language text, synthesized voice,

and tables. Also, CUBRICON is implemented on a Symbolics Lisp Machine which provided

108

a very slow response time. This detracted from the “conversational feeling” that one gets
from an interface of this nature. Subjects were aware of these limitations and tried to judge
the merits of the underlying concepts in spite of implementation limitations.

Second, CUBRICON represents an exploration of new technology. It is a “one of a kind”
system. It was not built as an improvement to a pre-existing system. It therefore was not
possible to compare performance using CUBRICON to that using traditional technology.

Third, it was not possible to employ “real users” as test subjects. The ultimate CUBRICON
applications are yet to be determined and military personnel serving in roles related to the
hypothetical problems employed in the CUBRICON evaluation are not available. We did, as
noted above, employ an Air Force systems development engineer who was very knowledgeable
in tactical military planning tasks and with computer-based systems being developed for
these tasks. We feel that the user perspective was well served by the Air Force Evaluator.

Finally, since this is a basic research effort, budgets were limited. We were only able to
employ two subjects in the evaluations. While valuable insights have been drawn, there are
certainly strengths and weaknesses that were not identified, and we have little information
relating to how the range of individual differences will affect the effectiveness of CUBRICON
design concepts.

Each of the two participants were able to use the CUBRICON voice recognition system di-
rectly, rather than working through an intermediary. While this was not originally planned,
our experience in preparing for the evaluation led us to believe that working through an inter-
mediary would have seriously hindered the evaluation process. Only with direct interaction
could subjects fully experience CUBRICON and provide meaningful evaluation.

Also based on the test preparations, a script-based evaluation was added to the Air Force
applications oriented part of the evaluation. This was in addition to the already planned
problem solving task. By using the script which was developed for the human engineering
part of the evaluation, we were able to ensure that the Air Force Evaluator would: (1)
exercise and evaluate all important features of the CUBRICON system; and (2) Experience
and evaluate a relatively error-free conversation with CUBRICON.

Other than these deviations, the CUBRICON evaluation was conducted according to the
Test Plan delivered to DARPA and RADC in March, 1989 (“Test Plan/Procedures; Intelli-
gent Multi-Media Interface Project”, CLIN 002, ELIN A002). The evaluation attempted to
identify those aspects of CUBRICON that worked well as well as those that did not work
well, and to recommend enhancements and directions to guide future efforts. These evalua-
tions were meant to be constructive. Any criticisms are not in any way intended to minimize
the hard work and dedication that went into the CUBRICON development efforts. Much

109

has been accomplished during this effort, and much remains to be done.

15.2 PROCEDURES

As stated above, the CUBRICON evaluation proceeded in two stages. The first stage em-
ployed a human factors psychologist and focussed on interface engineering issues. The second
stage employed an Air Force engineer who was knowledgeable in computer-based tactical
planning systems. This part of the evaluation focussed on the apphcablhty of CUBRICON
to military planning problems.

Each Evaluator received about five hours of training, including voice training and hands-on
interactive practice. Each Evaluator was proficient with the procedures and techniques for
using CUBRICON, before conducting their formal evaluations. The evaluations themselves
were structured to the perspective of each particular Evaluator. Figures 28 and 29 show the
schedule of the training and evaluations conducted.

15.2.1 Stage 1. Interface Engineering Evaluation

This stage of the CUBRICON evaluation proceeded in two steps. First, the human factors
specialist interacted with CUBRICON by following a prepared script (included in Appendix
E). This script was developed to exercise all important features of CUBRICON, especially
as they relate to the evaluation criteria.

The second step in this stage of the evaluation involved free-form exploration of CUBRI-
CON’s capabilities. The Human Factors Evaluator was instructed to interact with CUBRI-
CON in an open-ended fashion to: 1) more fully evaluate CUBRICON’s performance vis-a-vis
the evaluation criteria; and 2) Stress the system to find out where weaknesses exist. This
part of the evaluation allowed the human factors specialist to tailor the interactions with
CUBRICON to tease out data specifically addressing the evaluation criteria.

The Human Factors Evaluator conducted these evaluations with the aid of the engineering
evaluation checklist. This checklist guided the evaluations. The evaluator was required to
provide judgements about each evaluation item by checking the appropriate selection and
noting the reasons behind the selection. The completed checklist is contained in Appendix
E. The summary portions of the checklist are provided in Section 15.3.3.1 At the conclusion
of the evaluation session, the Human Factors Evaluator answered open ended questions that
allowed more general impressions to be expressed. These questions included solicitation
of suggestions for improving the CUBRICON user interface. This questionnaire with the
evaluator’s answers is presented in Section 15.3.3.2.

110

TRAINING:
INTRODUCTION

THE CUBRICON
APPLICATION

INTERACTIVE
FEATURES

NATURAL LANGUAGE
TRAINING

LUNCH

INTERACTIVE
PRACTICE

SUMMARY/QUESTION
AND ANSWER

EVALUATION:

SCRIP-BASED
LVALUATION

DOCUMENTATION
PERIOD (AS NEEDED)

FREE-FORM
EVALUATION

DOCUMENTATION

LUNCH

FREE-FORM
FOLLOW-UP

DEBRIEF

3 OCTOBER 1888 (TUESDAY)

10 11 12 13 14 15 16 17
!] | 1 l ! !

Hands-On Training

Hands-On Evaluation

4 OCTOBER 1989 (WEDNESDAY)
10 11 12 13 14 15 16 17
! | | ! I | | !
—

Figure 28: CUBRICON Interface Engineering Evaluation Schedule

111

TRAINING:
INTRODUCTION AND
CUBRICON
APPLICATION

INTERFACE
FEATURES

NATURAL LANGUAGE
TRAINING

LUNCH

INTERACTIVE
PRACTICE

SUMMARY/QUESTION
AND ANSWER

EVALUATION:

SCRIP-BASED
EVALUATION

MISSION PLANNING
EVALUATION

DEBRIEF

§ OCTOBER 1989 (THURSDAY)

11 12 13 14 15 16 17
! | | | | 1 1

Hands-On Training

Hands-On Evaluation

Figure 29: CUBRICON Air Force User Evaluation Schedule

112

15.2.2 Stage 2. Air Force User Evaluation

This part of the evaluation also proceeded in two steps. First the Air Force Evaluator
used the script described above to guide the evaluation. This was not originally planned
but was added to allow the Evaluator to experience all important features of CUBRICON
in a relatively error-free manner and hopefully gain a better sense of conversational flow.
This part of the evaluation was followed by a problem-solving task in which the evaluator
was asked to use CUBRICON to solve typical military planning tasks. During this part
of the evaluation the Evaluator was free to pursue the problem in any manner he thought
appropriate. This part of the evaluation afforded more applied problem-solving experience.

The evaluations were accomplished through observation and subsequent debriefing of the
Evaluator. These sessions were observed by the Test Conductor who recorded any difficul-
ties experienced in using CUBRICON. The sessions were video taped and the Evaluator
was debriefed with a questionnaire following the session. The completed questionnaire is
contained in Section 15.3.4.

Finally, the data from this stage of the evaluation was analyzed together with the results of
the first stage of the evaluations. Conclusions about the overall system design and functional-
ity were drawn. These are summarized in Section 15.3.1. Conclusions and recommendations
drawn are presented in Section 15.4.

15.3 Results

15.3.1 Summary

The results of this evaluation provide insights into the strengths, weaknesses, and effective-
ness of integrated multi-media, human-computer interfaces. Specific recommendations for
the improvement of CUBRICON itself were also obtained. A discussion of these results is
contained in this section.

The concept of an integrated multi-media human-computer interface in which users are able
to interact with a computer system via a combination of speech input/output and direct
graphic interactions was supported during this evaluation. Both evaluators found that the
ability to perform map- and form-based mission planning activities by pointing at objects and
describing desired actions verbally, was superior to more traditional typing-based approaches.
Further, the ability to interact directly on numerous windows simultaneously was found to
be advantageous when information of interest was displayed on more than one window.

The concept of a unified system in which various displays and presentations reflected a single

113

integrated underlying reality was also supported. For example, the ability to manipulate
objects on one display and view the effects of that manipulation on other displays, was
judged to be an important goal of integrated multi-media interfaces. In fact, the Air Force
Evaluator suggested that the CUBRICON system didn’t carry this concept far enough. He
suggested that CUBRICON should provide tools for real-time sensitivity analyses in which
parameters defining a mission plan could be manipulated in one window and the results
simultaneously presented in another window.

The Air Force Evaluator found the concept of automatic window management to have merit.
The automatic removal of old windows was specifically noted by both Evaluators as having
potential. The Human Factors Evaluator stated that windows were usually organized for
efficient use. However, she did express a desire for more user control over windowing in
general. Both Evaluators liked the concept of iconizing used windows to allow subsequent
recall if desired. This window iconization and recall feature is only partially implemented in
CUBRICON at this time. Both Evaluators recommended full implementation. The results
of the evaluation certainly support further research into automatic window management but
indicate a need for making available user control over windows as well.

Several criticisms of the CUBRICON interface were also obtained during the evaluation.
These tended to deal with specific interface design issues rather than more general conceptual
issues. Several recommendations for the implementation of intelligent integrated multi-media
interfaces can be gleaned from these specific criticisms.

The CUBRICON implementation of speech input was criticized by both Evaluators for lack
of robustness. The limited vocabulary and grammar available for speech input made the
formulation of inputs difficult and unnatural. Difficulties arising from the limited vocabulary
and grammar, were compounded by limitations of the inexpensive speech recognition system
employed which sometimes had difficulties in recognizing speech inputs. Additionally, the
CUBRICON vocabulary was defined very narrowly. Available terms were understood in a
restrictive way; for example, it was possible to display a map but it was necessary to present
a flight path. These two terms could not be interchanged even though it would have been
natural to do so. A more robust speech and natural language input capability is needed to
achieve a truly natural interface.

Another limitation of the CUBRICON design noted by both Evaluators was that there
was an over-reliance on speech without the availability of non-speech-based shortcuts. For
example, the process of selecting an object displayed on a map, for input on the mission
planning form, required natural language, either typed or spoken. It was necessary to speak
in complete sentences, such as, “put this (mouseclick) SAM, here (mouseclick).” A more
efficient approach (i.e., quicker and less prone to mistakes) would be to simply grab the

114

object with a mouseclick and put it where desired with a second mouseclick (perhaps with
accompanying words grab and put). The ability to point and talk is a major strength of
CUBRICON. A next step is to add flexibility and allow for operational shortcuts to improve
interface efficiency.

A criticism made by the Human Factors Evaluator was that CUBRICON did not provide
sufficient user assistance in the way of menus, prompts, or similar types of guidance. Even
the mission planning form, which by its nature provides prompts as to the information to
enter on the form, did not distinguish between required and supplemental entries. It is
difficult for novice users to know what the system is capable of doing, and how to undertake
relatively complex tasks, without guidance. This was especially troublesome for tasks that
required well defined and rather rigid procedures. More explicit user guidance should be
available on CUBRICON-type interfaces to application systems. Of course, these features
are very application dependant and were not the focus of this research. These features would
be incorporated in a final implementation.

Error management is another area in which CUBRICON received criticism from the Human
Factors Evaluator. Too often an error in entering information or requests led to the message,
“sorry, do not understand request, please try again.” The user, in this situation, is given no
information that would help in reformulating the input. The specific aspect of the request
that was not understood should be identified for the user, and provisions for correcting the
misunderstood part of the input should be available, rather than requiring the user to repeat
the entire input’.

The evaluation also identified a need for more user control. This was reflected by comments
from both Evaluators, but was primarily a concern of the Human Factors Evaluator. While
CUBRICON attempted (with some sucess) to provide outputs that clearly provided the
information desired and needed by the user, there were situations in which CUBRICON
displays deviated from that which was actually desired by the user. This is inevitable. In
these situations, there was little the user could do in directly affecting changes to the display
format or content. For example, it is possible to zoom-in on any point on any map, but it
was not possible to tell the system how much area should be included in the zoomed-in area
and how much resolution to provide.

Sometimes CUBRICON provided too much information. This was noted by both Evaluators
and is particularly evident in the generation of a table to supplement each map window
displayed. When the monochrome display contains the mission planning form, all map

'An update to CUBRICON since the interface evaluation has incorporated provision for more specific
feedback when inputs are not understood. This improved part of CUBRICON was not subjected to human
factors evaluation, but is expected to make the process of error correction much easier.

115

windows and corresponding tables are placed on the color graphics display. Since only four
windows will fit on the color graphics display, the creation of a table for each and every
map quickly exceeds the display capability. Deletion of old windows and overlapping among
displayed windows, was frequently necessary. There was often no obvious way to tell which
table corresponded to which map. Suggestions were made by the Air Force Evaluator about
how to present information in support of maps without requiring numerous tables (see Section

15.3.4).

15.3.2 Evaluation with Respect to SOW Goals

The Human Engineering Evaluation was developed to provide assessment of CUBRICON
performance with respect to human-computer interface efficiency; and especially with respect
to the human-interface goals specified in the Statement of Work (SOW). This section relates
the results of the Interface Engineering Evaluation directly to these goals. As stated in the
Evaluation Plan, these goals are:

1. “... minimize the requirement for translation and reformulation of information on the
part of the the human. The computer should accept information from the human in a
form that is natural for the human” (SOW, p. 4).

2. “Formats should be flexible to conform to individual styles yet need to be unambiguous
and usable by more than one human user” (SOW, p.4).

3. “The system should assist the user in accessing an appropriate amount of information
that is relevant to his needs” (SOW, p. 4 and p. 7).

4., “Machine outputs should be organized in a way that the human can easily assimilate
the information within the context of the task(s) being performed” (SOW, p.4).

5. “The context of all communication must be kept clear” (SOW, p.4).

6. Speech, natural language, and graphics must be integrated for both computer input
and output (SOW, p. 2).

7. “...dynamically define how information will be presented and how human/computer
dialogue can be adapted based on the context of the dialogue or the decisions being

made” (SOW, p.4).

” and determine “the ap-

8. “...track the focus space of the human/computer discourse ...
propriate referent of definite references, particularly those definite references involving

multi-media expressions” (SOW, p. 7).

116

Each of these goals is restated below with summarized excerpts from the completed Interface
Engineering Evaluation Checklist. These excerpts are kept as near to the original statements
made by the Evaluators as possible to avoid the possibility of misrepresenting the evaluator’s
intent. The Evaluator’s comments are shown in italics. A reference to the actual checklist
item is provided in parenthesis at the end of each excerpt. The complete checklist is provided
in Appendix E.

1. “... minimize the requirement for translation and reformulation of information on the
part of the the human. The computer should accept information from the human in a
form that is natural for the human” (SOW, p. 4).

e Convienience of Input Media Selection: Inputs to CUBRICON could usually
be made using the most convenient and desired media/modalities and in a manner
that seemed natural and efficient. Some limitations to this included: 1) It was
not possible to point at the form for output; 2) The allocation of the mouse from
screen to screen was cumbersome; 3) specification of location for zoom-in could
only be accomplished by mouse click (i.e., could not accomplish with voice); and
4) It was inconvienient when speech input is misinterpreted and required re-entry

(1.1-1).

e Inputs Understand the First Time: Issuance of commands to CUBRICON
was sometimes efficient and easy (3.1-11). However, inputs to CUBRICON were
rarely understood correctly the first time without the need for clarification or
reformating (1.1-2). The speech system was difficult to use due to the frequency
of recognition errors (3.1-11).

e Desired Terminology: Sometimes verbal reference to objects within the CUBRI-
CON data base could be made using desired and natural terminology. The
structure of command sentences was somewhat rigid (e.g., “zoom-in on this -
mouseclick- point” was acceptable, “zoom-in on this -mouseclick- location” and
“200m-in on this -mouseclick- ” were not). The system would tolerate ommissions
of “the”, however. Also, command verbs tied to specific actions were difficult to
remember (1.1-3). The CUBRICON vocabulary and grammar usually was suf-
ficient for expressing desired concepts and data. The vocabulary and grammar
seemed appropriate for the application (1.3-8).

e Input of Spacial and Goegraphic Information: CUBRICON usually pro-
vided for efficient specification and input of spatial/geographic information when
this was done. However, this type of operation was restricted to the specification
of flight paths. The main difficulty with this operation was that the feedback for

117

first location specification was not provided until the second location was speci-
fied. (Test Conductor Comment: It was also not possible to make any changes to
waypoints once they were made) (1.1-4).

Data Entry on Forms: The use of data entry forms was usually straightforward
and not prone to errors (e.g., areas for data entry were clearly delineated and
movement between them was natural and efficient). However, It was not clear
which areas were required to be completed or whether there was a hierarchical

order necessary for completing them. Format, and movement between areas was
straightforward (1.1-5)

Multiple Media Inputs: The ability to point and speak at the same time was
always helpful in making inputs. This made CUBRICON easy to use (1.2-1).

Inputs Using Multiple Windows: It was usually possible to make inputs
efficiently using multiple windows (e.g., pointing at objects in different windows
when defining a target list). However, it was not possible to point at the form to
get inputs for another window or another part of the form (i.e., it was possible
to point at the form for input, but it was not possible to point at the form to get
something from the form). Also, the process of allocating the mouse from screen
to screen was cumbersome (1.2-4, 1.2-5).

Inputs Relative to Context and Ongoing Dialogue: Sometimes the for-
mulation of inputs to CUBRICON flowed naturally from the context of the dis-
plays and dialogue and did not require translation in order to achieve acceptable
structure and formats. Formulation of data input to the form was automatically
structured by the system (e.g., “arrival time is siz” formatted as 6:00) making
1t convientent to use. However, the structure of commands in general requires
memorization (1.3.1). Inputs to CUBRICON could usually be made within the
ongoing dialogue without invoking special procedures or calling special displays.
Most input is done on one screen containing the form, the command scroll area,
and the system (i.e., the monochrome display) (1.3-2).

Recall of System Outputs: It was not possible to have (verbal) messages
repeated when needed. However, speech messages were represented in the text
window for subsequent review which provided for this function (2.5-5).

Control of Map Displays: It was sometimes possible to clearly and easily spec-
ify desires for control and transformation of maps. However, zoom-out and recall
of stored (i.e., iconized) maps/tables weren’t enabled. Also, it was not possible to
designate the desired area for zoom-in (3.1-1).

Correcting Errors During Input: The process of making corrections and
“on-the-fly” changes during input was rarely straightforward and efficient. In

118

fact, it was extremely difficult or impossible to change or undo something, such as
adjusting points on the flight path. Also, incorrect text due to speech recognition
errors was liresome to correct (3.2-1). A requirement for an explicit ENTER
action prior to CUBRICON processing of user inputs usually was imposed when
necessary to permit user review or reconsideration. Text input did not require
“enter”, however. Punctuation served this function. This is not a typical method.
Most users will probably be accustomed to the use of the ENTER key (3.2-2).

2. “ Formats should be flexible to conform to individual styles yet need to be unambiguous
and usable by more than one human user” (SOW, p.4).

Ease of Graphic Interactions: Pointing at desired objects usually could be
accomplished equally well on the various types of windows displayed (e.g., tables,
maps) and on the monochrome display as well as the color display. However,
pointing on the form was only enabled for input to the form (not for output from
the form). Also when numerous icons were displayed in close prozimity, more
than one icon was picked-up by a point and the system crashed (1.1-6).

Standardization Across Displays: Standard displays usually used standard
formats that were readily identifiable and usable (e.g., standard information was
contained and consistently organized in display headings). However, windows
were not uniquely identified with labels (Test Conductors Note: The lack of labels
on windows made it difficult to determine which maps were associated with which

table) (2.4-7).

Availability of Prompts: CUBRICON never or rarely provided prompts to
help in making standard or required inputs (e.g., guides for accomplishing com-
plicated procedures) or as a reminder when omissions were inadvertantly made.
For example, there were no prompts available for filling out the form that helped
identify what areas were required to plan a flight path. Also, error feedback was
not informative or diagnostic (2.4-8, 1.3-4).

Display Customization: It was never possible to customize displays to meet

personal preferences (e.g., reorganize table columns, redefine area displayed on a
map, redefine window layout) (3.1-2).

Window/Display Management: The automatic management of windows (e.g.,
positioning, sizing, and removal) sometimes was accomplished in a way that fa-
cilitated their use. Support for user intervention to achieve alternative window
organizations when desired was limited (3.1-3).

System Operations: System operations usually reflected user inputs and desires
in a logical fashion (3.1-10).

119

3. “ The system should assist the user in accessing an appropriate amount of information
that is relevant to his needs” (SOW, p. 4 and p. 7).

e Map Displays: Map displays sometimes contained an appropriate amount of
area at an appropriate scale (without resizing) for task accomplishment (e.g.,
zoomed-in or out to correct amount of detail and area coverage). User control of
zoomed area size would enhance system, along with addition of zoom-out feature
(2.3-1). Map and other graphic displays, and symbols used within them, usually
were large enough to provide the resolution needed to resolve objects and deter-
mine necessary relationships among objects. In one wnstance a cluster of icons
couldn’t be deciphered. Otherwise, maps and symbology were easy to read and ac-
cess. A Remouvable grid would be useful for distance relationships. Also, tables on
the graphic display were difficult to read due to text size (2.3-2).

e Level of Detail in Displays: CUBRICON responses to requests for information
usually provided the information in a level of detail consistent with the request
and the context of the request (e.g., only necessary information was displayed,
yet sufficient detail was provided for the task) (2.3-3).

e Managing Displays and Access to Large Volumes of Information: It
seemed that the information being displayed was usually well controlled (e.g., not
overwhelming). Automatic declutter (i.e., removal of old or unimportant windows)
prevented information from becoming overwhelming (2.3-6). When a request for
information resulted in a large volume of information, CUBRICON sometimes
provided a means for dealing with the information in an organized and efficient
manner, and/or helped the user rescope the request. Many of the techniques
that could help accomplish this goal such as scroll bars (not yet implemented),
presentation of the amount of information to come, and the use of information
summaries, are not available on CUBRICON. Further, in some situations it wasn’t
clear that information on tables could be scrolled at all (2.3-4).

e Highlighting of Critical Information: Sometimes an appropriate means for
highlighting critical information was used (considering the nature of the critical
information, the task context, and other coding schemes in use) Required infor-
mation on the form (for planning a flight path) wasn’t indicated. Highlighting
on the map was effective. Flashing of items in some instances was ezcesswe and
inappropriate (2.3-5).

4. “ Machine outputs should be organized in a way that the human can easily assimilate
the information within the context of the task(s) being performed” (SOW, p.4).

120

Display Clarity: CUBRICON outputs were sometimes clear and understand-
able without requests for clarification. Voice was difficult to interpret on many
occasions, however, this problem could disappear with increased training and us-
age (2.1-1). Information needed for interpreting displays sometimes was readily
available. Maps and tables were rarely uniquely identified. A key wasn’t available
for decoding map symbols, but I’'m not sure it is necessary (2.1-2).

Labelling: CUBRICON displays sometimes employed labels that were clear,
consistent, and helpful, Labels were available within displays, but labels for the
displays themselves (maps and tables) were not available. Labels within the form
would probably be more meaningful to the mission planner (2.1-3).

Window Layout: The general organization and layout of windows was usually
efficient for the tasks at hand. Window size secemed appropriate. The location
of windows was sufficient for task completion except when automatic deletion
removed a map still in use (Test Conductor’s Note: this occurred following a
permanent zoom-in when the context map map was removed) (2.1-8).

Speech Outputs: CUBRICON speech outputs were usually constructed in a way
that maximized overall communication efficiency and understandability. Termi-
nology and phraseology was standardized and consistent across the entire interface
and vocabulary/terminology for speech input was similar to that for speech output

(2.5-2).

Information Coding: CUBRICON displays sometimes employed coding schemes
that were clear, consistent, and adequately captured the important distinctions
among display elements. However, the maps and tables themselves need to be
labelled. Map icons were easy to distinguish from each other. Bowzing of high-
lighted items on tables were difficult to distinguish. Bold face type would be easier
to see. Also, the red arrow pointer was difficult to see in enemy territory. Use
of a distinct color would make it easier to distinguish (Test Conductors Note:
when multiple flight paths intersect at a common waypoint it is not possible to
tell which flight path goes with which mission) (2.1-4). Auditory and voice cod-
ing was rarely employed to effectively communicate important distinctions among
auditory displays (2.2-9).

Media/Modality Selection: Outputs were usually presented using media or
modalities that were appropriate for the content and context of the communica-
tion. The ability to obtain a hard copy would enhance the system (2.2-2). Infor-
mation that was presented for comparative purposes, usually was displayed in a
manner suited for such comparisons (e.g., side by side in a table, highlighted on a
map using clear distinguishable codes, etc.). Comparison of maps could be made

121

easter by allowing the user to pull a map up from storage (t.e., recall of iconized
windows which are not yet implemented). Also, two different forms cannot be
displayed side-by-side for comparison, but this may be necessary (2.2-3).

Map Displays: Maps were sometimes presented in a way that facilitated their
readibility and use. Occasionally areas of the maps were overly cluttered with
icons that couldn’t be differentiated. Also, because windows themselves are not
labelled, there was no way to quickly see which tables were asociated with which
maps. Map scales were. also ambiguous (2.2-5).

Multi-Media Output Coordination: It was sometimes possible to relate items
in tables or on forms to their graphic representations (e.g., on a map). Maps
and tables need to be uniquely identified and the association between them more
definitively demonstrated (e.g., a line connecting them or coded in some way)

(2.2-7).

Voice Outputs: Voice outputs were sometimes constructed in a manner that
facilitated accurate perception and understanding. Important words were usually
placed near the end of messages so that surrounding sentence structure would
provide context and facilitate intelligibility. However, when wvoice output was
gwen regarding misston Duration the message, “the duration s this” was given,
thus failing to provide critical information. Multi-syllable words were used when
appropriate to provide linguistic redundancy and reduce phonemic uncertainty
within any given word (Test Conductor’s Comment: when CUBRICON said “the
duration is this” it also blinked the appropriate icon) (2.5-3).

Display Dynamics: Display changes usually did not disrupt the ongoing dia-
logue (e.g., did not remove needed windows, display changes were consistent with
expectations). However, it was not possible to input data while display changes
were 1n progress. Also, the E-W Germany context map (following a permanent
zoom-in) would occastonally be removed when it still served a useful reference
function (3.1-4). Output formats were usually consistent with expectations based
on the preceding dialogue and the context of pre-existing displays (2.4-6).

Response Time: The response time for voice, text, and graphics inputs was
rarely sufficiently fast to ensure efficient, continuous dialogues. System response
ttme was too slow (3.1-13).

Presentation of System Status: Sometimes CUBRICON clearly communi-
cated its activities when processes were not immediate. The Symbolics status line
provided for this function by saying “run” or “user input” but specific CUBRI-
CON activities weren’t communicated (Test Conductor’s Comment: there was a

122

prompt on the text window that indicated when CUBRICON was ready to accept
inputs) (2.1-6).

e Consideration of the Temporal Context: Information that was needed tem-
porarily was usually made available on a temporary basis (rather than perma-
nently cluttering displays with such information). The use of window overlays
served this purpose. The ability to display and remove windows as desired, would
enhance this aspect of the system (2.2-11).

e Tables: Tables usually presented information in a manner that facilitated effi-
cient use. However, ordering of column information may need to be rearranged.
Feedback from mailitary type would be helpful (e.g., the “name of item” column was
imbedded between other columns and was the 5th of 6 columns) (2.2-4).

5. “The context of all communication must be kept clear” (SOW, p.4).

¢ Understanding Inputs Based on Dialogue Context: Inputs that were illog-
ical based on the task and data context, were rarely noted by CUBRICON and
communicated. There was very little error trapping. The system would proceed
with nert command without recognition that required information was omitted.
Error feedback messages were not informative (Test Conductor’s Note: CUBRI-
CON would state that it didn’t understand a request, but would not state the
source of the misunderstanding or help the user reformulate the input) (1.3-3).

e Highlighting of Contextually Important Items: When items were selected
(by the user or the system) this was usually conveyed clearly to the user. However,
the first waypoint defined when drawing a flightpath wsn’t indicated until second
point 1s selected. Also selected items on tables were bozed. This was hard to
decifer, especially on the color graphics display. Bold face would stand out better
(2.1-5).

e Spatial/Geographic Context: Spatial relationships among graphic elements
(e.g., elements on a map) were rarely presented clearly. [t was not possible to
querry for ezact distances. An option to impose a grid on the map would be helpful.
Also part of the scale on the map was obscured at the origin (Test Conductor’s
Note: The scale presented on the border of the map was the UTM scale, while
voice references used latitude and longitude. This was noted during the program
but was not corrected because it would have taken engineering resources away
from more critical activities. Updates to CUBRICON should correct this problem)
(2.1-7).

e Display of Context Needed for Information Interpretation: When dis-
played information was relevant only in a certain context, this usually was clearly

123

communicated. However, not all pertinent time stamps were given on the map
during flight path presentation (e.g., target strike time was not presented) (2.4-
1). Adequate contextual information was usually available to assist in the proper
interpretation and use of displayed information (2.4-2). When information was
best interpreted relative to some significant level or critical value, this comparison
was usually clear from the display. However, some critical times (departure time,
strike time) were not presented during the flight path presentation (2.4-3).

e Distinguishing Active from Inactive Displays: When not all items were ac-
tive, CUBRICON clearly indicated which were active (Test Conductor’s Note: all
windows were active except those that were iconized). Recall of inactive windows
(i.e., those that were iconized) was not enabled (Test Conductor’s Note: This fea-
ture was planned but not implemented within the scope of the present program)
(3.1-7).

e Display of Information Structure and Relationships CUBRICON some-
times communicated information in a manner in which the structure of and rela-
tionships among the data data being entered or displayed were clear. However,
hierarchical relationships among data on the form wasn’t clear (Test Conductor’s
Note: The form employed by CUBRICON was built based on existing Air Force
planning forms. There was no attempt to improve upon the form design during
the program other than to make modifications necessary to make it fit on the
CRT) (2.4-4).

e Maintaining Context During Display Dynamics: When displays were changed
(e.g., removing windows or information, zoom-in or out, panning, scrolling), ad-
equate cues were sometimes provided for maintaining orientation to the larger
context. When performing a zoom-in, CUBRICON noted the area to be zoomed-
wn with a box drawn on the original map. However, there were no cues provided for
scrolling context on scrollable windows (2.4-5). Windows were usually managed
in a way that minimized disruption to display context (2.4-9).

e Feedback of CUBRICON’s Understanding of Inputs: Feedback about
CUBRICON’s acceptance and understanding of inputs usually was sufficiently
quick and clear. However, system response was slow and acceptance of the first
point on flight path wasn’t clear (3.1-5).

e Ability to Tell System to Ignore Verbal Inputs: There was always a simple
means for indicating to CUBRICON when verbal inputs were meant for CUBRI-
CON and when they were not (e.g., ignore and continue) (3.1-6).

6. “Speech, natural language, and graphics must be integrated for both computer input
and output (SOW, p. 2).”

124

e Coordination of Multi-Media Input: Mouse points usually were correctly
related to the intended objects described via natural language (1.2-2). It was
possible to point at multiple objects as part of an input, and these usually were

correctly integrated and understood within the dialogue by CUBRICON (1.2-3).

e Design of Multi-Media Output: Speech, graphic, and textual outputs were
usually used appropriately and in the right proportion to clearly, concisely, and
efficiently accomplish the necessary communications. However, on some occa-
stons the presentation of both voice and text messages seemed overly redundant.
The requirement of having to processing both voice and tezt seemed to increase
workload. Graphic output was clear and easy to use. An ezception to this was the

flashing of data in the text window after a flight path was presented (2.2-1).

e Clarity of Cross Media/Modality References: CUBRICON usually made
unambiguously clear, which graphically displayed objects were referred to via
an associated media/modality. (e.g., verbal outputs were related to associated
displayed items in a clear and unambiguous fashion) (2.2-6).

e Effectiveness of Cross Media/Modality Orientation: CUBRICON speech
output sometimes was helpful in providing orientation to other system outputs
(e.g., created or modified maps, tables, etc.). Voice output may have been more
useful if system response times were faster or under greater workload conditions

(2.2-8).

¢ Display Integration: When relations among information components are im-
portant, integrated displays (individual or multi-media) that show those relations
were sometimes provided. The relationship between map and entity tables wasn’t
demonstrated (Test Conductor’s Note: It was difficult to determine which table
was associated with which map) (2.2-10).

¢ Temporal Coordination of Multi-Media Outputs: CUBRICON speech out-
puts were sometimes coordinated with ongoing tasks and outputs using alternate
modalities. However, this was a problem because of slow system response time

(2.5-4).

7. “...dynamically define how information will be presented and how human/computer
dialogue can be adapted based on the context of the dialogue or the decisions being

made” (SOW, p.4).

e When to Use Speech: The following items relate to the appropriateness of
CUBRICON’s decisions about when to use speech output (2.5-1):

125

— CUBRICON speech output did not interrupt user inputs, because most of the
time, speech output occured when processing was taking place and input data
could not be made. However, it was not possible for the human to interrupt
(i.e., override) the speech output. A future enhancement could a method for
stopping voice output when user input occurs.

— It was difficult to evaluate whether speech output was used when there was
a requirement for rapid two-way ezchanges of information, since system re-
sponse time very slow (Test Conductor’s Comment: Good human factors
design would employ speech when there is a repuirement for rapid two-way
exchanges of information).

— Speech was used to inform the user about display events that were about to
happen, and to present information about displayed items (Test Conductor’s
Comment: this is consistent the human factors guideline that speech be used
when the information to be presented deals with a future time requiring some
preparation, and especially when it is intended for immediate use).

— Speech was used to draw attention to the appropriate display (Test Conduc-
tor’s Comment: This is consistent with the human factors guideline that
speech be used when it is important to elicit attention from other tasks or
activities).

— Speech presentation allows user to fizate on map display activity while receiv-
ing information about the display via voice output (Test Conductor’s Com-
ment: This is consistent with the human factors guideline that speech be
used when information must be presented independant of head or eye move-
ment). However, at other times the voice output seemed extraneous and overly
redundant.

e Control Over System Processes: It was always possible to cancel partially
completed inputs (including voice inputs) and ongoing CUBRICON processes by
invoking an explicit cancel command (Test Conductor’s Note: It is not possible
to stop ongoing CUBRICON processes once they are initiated) (3.1-8).

e Control of Displays: Control of the CUBRICON interface was sometimes han-
dled effectively. Updating of displays was efficient and did not require excessive
effort. However, very little control of windowing operations was available to the

user if desired (3.1-9).

e Control of Dynamic Presentations: It was rarely possible to maintain control
over dynamic displays (e.g., PAUSE and CONTINUE commands). Specifically,
there was no user control over flight path presentation once initiated (3.1-12).

126

¢ Error Protection: There was never ample protection against actions that re-
sult in the deletion or significant altering of information (e.g., warnings, undo
capability, feedback about results of change prior to action, etc.) (3.3-1).

8. “...track the focus space of the human/computer discourse ...” and determine “the ap-
propriate referent of definite references, particularly those definite references involving
multimedia expressions” (SOW, p. 7).

¢ Pronoun Referents: CUBRICON was usually able to correctly relate pronouns
and indefinate references to their proper referent (based on the preceding dia-
logue). Voice output used pronouns correctly. However,pronouns were not ac-
cepted as input (1.3-5).

¢ Correct Interpretation of Inputs: CUBRICON was usually able to correctly
interpret inputs based on the context of the dialogue (e.g., requests for information
produced outputs relevant to the dialogue; requests that made no sense based on
the context were questioned) (1.3-6).

* Resolution of Ambiguous Mouse Points: Ambiguous mouse points were
usually resolved correctly by CUBRICON based on the context of the dialogue
(i-e., inaccurate points were correctly resolved; Incorrect points that made no
sense were corrected or questioned). CUBRICON did have a problem when a
selected i1con was in close prorimity to other icons and there was no information
to allow disambiguation (1.3-7).

15.3.3 Interface Engineering Evaluation

This section contains the results of the interface engineering evaluation, conducted by the
human factors psychologist. It is broken into two subsections. The first subsection contains
the results of the Interface Engineering Evaluation Checklist. These are provided at the top-
level only. The complete checklist, including supporting data, is provided in Appendix E. The
second subsection includes the completed Interface Engineering Evaluation Questionnaire.

15.3.3.1 Overview Interface Engineering Ratings
This section contains the summary portions of the Human Engineering Evaluation. Re-

sponses of the Human Factors Evaluator are presented in italics. The entire checklist con-
taining all Evaluator responses is contained in Appendix E.

127

The following instructions appeared at the top of the Interface Engineering Evaluation

Checklist:

Rate CUBRICON’s performance with respect to the evaluation categories. The
numbered items (-1, -2, etc.) within each category will help in making your
assessments. These numbered items are not intended to serve as the sole basis
upon which to make your assessments. All observations you believe are relevant
should be considered. State the rationale on which you base your ratings.

Refer to Smith and Mosier [Smith86] to guide your evaluation. Many of the
numbered items include references to Smith and Mosier. These references are
listed within parentheses at the end of the items. Bear in mind that CUBRICON
is built using new technology. Its approach to user-interface design is new and
innovative. The guidelines in Smith and Mosier were developed for conventional
interfaces. If CUBRICON violates any of the Smith and Mosier guidelines, ask
yourself whether the violations could represent an improvement over conventional
user-interface approaches, or whether they are the result of poor design.

Finally, be critical! Don’t be afraid to tell us what you think (good and bad).
Stress the system. Find out where its weak points are and tell us how we can
make it better. If you need more time, take it. The results of this evaluation will
guide future design efforts.

Note: The numbered items within the evaluation categories are also cross-referenced
to the top-level CUBRICON goals that were stated in the SOW. These are noted
using the *number* format. These references are not meant to be used dur-
ing the hands-on portion of the CUBRICON evaluation but will be used during
subsequent analysis and reporting.

Answers provided by the human factors psychologist to the top-level questions on the check-
list are provided below. As noted above, the complete checklist is provided in Appendix
E.

-1- The Efficiency and Effectiveness of Making INPUTS to CUBRICON.

1.1 Rate the general ease, naturalness, and effectiveness of making inputs to CUBI-

CON:

Rating Comments

128

Excellent

Very Good
Adequate

Poor

Extremely Poor

Frequent misinterpretations of speech input
was wnefficient. However, a better speech
recognition system and increased training
and practice could alleviate this problem.
Allocation of mouse to screen (color
graphics or monochrome) via the keyboard
was cumbersome. This could be improved by
using the right and left buttons on the

mouse to select the desired screen. The

use of specific command verbs to initiate
specific actions was difficult to remember,
particularly when the verbs have simalar
meanings (e.g., display and present). A
more generalized use of verb commands would
lessen memory load.

The option of input media (speech, text,
pownting) or combinations of media made the
system enjoyable to use. It accommodates
differences wn task demands and user
preferences.

1.2 Rate the ability of CUBRICON to accept, integrate, and understand inputs that
were made using multiple media/modalities:

Rating

Excellent

Very Good
Adequate

Poor

Extremely Poor

.....

Comments

Being able to point at several objects as
part of an input, the combined use of
speech and pointing for an input, and the
use of multiple windows for an input are
all excellent features that made the system
easy to use.

1.3 Rate the ability of CUBRICON to understand inputs based on the dialogue con-

text:

Rating

Excellent

Very Good
Adequate

Poor

Extremely Poor

Comments

Formatting of speech input was somewhat

‘rigid. The system was not very tolerant

of deviation from this structure. Allowing
verb commands with similar meanings (e.g.,
display and present) to be used inter-
changeably would be helpful.

-2- The Efficiency and Effectiveness of CUBRICON OUTPUTS.

2.1 Rate the general understandability, effectiveness, and smoothness of CUBRICON

outputs:

Rating

Excellent

Very Good
Adequate

Poor

Extremely Poor

Comments

Voice output was sometimes difficult to
interpret. Additional labelling of maps and
tables would be helpful. Outputs were
generally clean and easy to understand.

2.2 Rate the appropriateness and effectiveness of CUBRICON media/modality selec-
tion and integration:

Rating

Excellent

Very Good
Adequate

Poor

Extremely Poor

130

Comments

I think the integration of media was
effective. Its effectiveness would

probably be more apparent with a faster
system response time and heavier workload
conditions. Voice messages about map
display changes were convenient since

it allows the user to remain fizated on

the display while changes are described.

2.3 Rate CUBRICON’s effectiveness at selecting and controlling output quantity, level

of detail, and resolution:

Rating

Excellent

Very Good
Adequate

Poor

Extremely Poor

‘Comments

Need to indicate scrolling option on

tables. On the whole, maps were easy to
read and use. Text in tables on graphics
display was difficult to read (too small).

2.4 Rate how well CUBRICON maintained context clarity:

Rating

Excellent

Very Good
Adequate

Poor

Extremely Poor

Comments

Marking of original zoomed-in area
boundary on original map was helpful.
The relationship between maps and
tables needs to be made explicit.
Labels on maps and tables to uniquely
wdentify contents are needed.

2.5 Rate the appropriateness and effectiveness of voice output as used within CUBRI-

CON integrated outputs:

Rating

Excellent

Very Good
Adequate

Poor

Extremely Poor

131

Comments

Evaluating the use of voice output s
problematic because system response time
was slow and this magnified the feeling

that voice output was extrinsic to the

task. A frequent user of the system would
not require as much voice feedback as is
currently provided and a means of adjusting
the level/amount of voice feedback should
be addressed in future enhancements of the

system.

-3- Sequence and System Control Issues

3.1 Rate the efficiency and effectiveness with which the CUBRICON user-interface
was controlled:

Rating ‘ Comments

Excellent ... User control of windowing was limited,
Very Good ... although some features that would
Adequate sl vmprove user control (e.g., zoom-out)
Paor. =~ o e were not enabled yet.

Extremely Poor

3.2 Rate the efliciency and effectiveness of error management and control within

the CUBRICON user-interface:

Rating Comments

Excellent ... Making corrections to text input may

Very Goodl .. - s be easter if user has knowledge of
Adequate ... EMACS. Without this knowledge, re-typing
Poor X of whole lines s required as text can’t

Extremely Poor

function of current changes being made
to the system.

3.3 Rate how well CUBRICON performs the functions of data protection:

Rating Comments

Excellent ...
Very Good ...
Adequate ...
Poor ...
Extremely Poor ..X..

132

15.3.3.2 Completed Interface Engineering Evaluation Questionnaire

This section contains the questionnaire completed by the Human Factors Evaluator.

Evaluator responses are presented in italics.

The following instructions were provided at the top of the Interface Engineering Eval-

uation Questionnaire.

This questionnaire is intended to provide general information about how well
you believe CUBRICON performed with respect to human factors consid-
erations, and to solicit suggestions for improvement. Answer the following
questions and be prepared to discuss your answers.”

The questionnaire along with the answers provided by the Human Factors Evaluator,
are contained in their entirety below:

1.

How would you rate the overall “user-friendliness” of the CUBRICON user inter-
face? Why?

Low. Error messages were not informatiwe; No help provided for structuring com-
mands properly (system just says “.. can’t understand...”); Very little control
over processes; No indication on form of required information; feedback about in-
puts and system status was redundant. There was also sometimes a mismatch
between voice 1/0 and text displayed in the text boz (e.g., in response to a ques-
tion about mobility while pointing at an airbase, the voice response was “complete
miss on mousepoint one”, while the text bozx sard that the airbase was not mobile).

What aspects of CUBRICON did you find to be especially efficient and helpful in

accomplishing desired actions? Explain.

Liked using the mouse for specifying location and entering information on the
form by pointing. Also liked the ability to speak and point at the same time in
forming inputs. Nice to not have to type.

In what ways do you think the CUBRICON interface approach or philosophy pro-
vides advantages over more conventional human-computer interfaces? How can

133

these advantages be more effectively realized?

Lets you select the mode of input (e.g., voice vs. typing vs. pointing), but need a
better speech recognition system. The CUBRICON interface can better accommo-
date indwvidual differences/preferences and a broader variety of task demands.

. Are there any aspects of the CUBRICON interface approach or philosophy that

are inferior to conventional approaches to human-computer interface design? What
are they? Why are they inferior?

User has very little control. Cannot determine what to declutter (e.g., can’t choose
which windows to remove to make room for other windows to be displayed - this
decision is made automatically by the system. Also when a window is removed,
it s not possible to get it back (implementation of iconized window recall feature
will overcome this limitation). Finally, the form, when displayed, covers up pre-
ezisting windows (primarily tables) on the monochrome display.

. Did you encounter any problems in using CUBRICON? What were they? How

could they be avoided?

— Extremely difficult to correct errors.

- Can’t zoom-out.

- Can’t specify parameters for zoom-in (e.g., what area to cover).
- System response time 1s too slow.

. Would menus or some other dialogue style be a better method in certain circum-

stances? What are the circumstances? What other dialogue methods would be
better? Why?

Yes. Although the integrated environment, with everything on one screem, pro-
vides freedom to combine multi-media inputs as desired, you don’t know what to
do: what are the options?, what are the procedures? what are the limitations
(e.g., what verbs can be used?)? When a particular procedure must be employed,
or when only a limited number of ways of doing things or entering information
are available, a menu of choices or procedural aids should be used. This may not
be as much of a problem for experienced users and simple applications (like the
current CUBRICON application). However, for novice users it is an important

134

—

10.

consideration.

. Are there any risks that must be kept in mind when applying the CUBRICON

interface to specific applications? What are they and how can they be avoided or
reduced?

May not be applicable to all applications. For example, applications that do
not employ maps or graphically oriented interfaces may not be well suited to a

CUBRICON-type interface.

. Do you think this line of research should be continued, or should it be redirected

in some way or discontinued entirely? Explain.

Continued. Multi-media has potential for many tasks. May even want to consider
adding additional media such as head or eye movement for computer input (e.g.,
situations where hands are unavailable such as aircraft pilot tasks).

. In what ways do you believe CUBRICON could be improved?

— Provide option to turn off (or limit) voice output. Could become too much, es-
pectally for experienced user.

— Vocabulary (particularly command verbs) should be understood in all relevant
contexts and uses (e.g., should be able to display a flight path, and not just present
it).

— Interplay between voice output and other CUBRICON outputs is difficult.

— Prouvide more robust voice recognition system. Can’t always remember how a
word was trained (e.g., the, pronounced tha, and the, pronounced thee).

Are there any other comments you care to make that will help us continue this

research or improve CUBRICON.

I think that many of the criticisms noted above may be due largely to the fact that
the system is a prototype system, still undergoing modifications. It may not really
have been ready for final human factors testing. For ezample, the lack of infor-
mative error feedback or the inability to zoom-out may mean that these features
were not wn place yet.

135

To make the system more user-friendly, however, the user needs guidance as to
what operations can be performed, the procedures required, and the power to con-
trol operations.

I enjoyed using the system and liked being able to select the input media that
seemed appropriate to the task being performed. The media were integrated well
and output was more informative with multi-media.

15.3.4 Air Force User Evaluation

This section contains the questionnaire completed by the Air Force User Evaluator.
Evaluator responses are presented in italics.

The following instructions were provided at the top of the User Evaluation Question-

naire.

This questionnaire is intended to provide general information about usabil-
ity and applicability of CUBRICON within military mission planning appli-
cations, and to solicit suggestions for improvement. Answer the following
questions and be prepared to discuss your answers.

The questionnaire along with the answers provided by the Air Force Representative,
are contained in their entirety in this section.

1. Do you think an interface like CUBRICON would provide an effective tool for
working with computer-resident data bases and related military mission planning
tasks? Why?

Yes. If the speech capability would support continuous speech, it could be faster
and more efficient than typing. In general, any of the capabilities that would allow
the planner to work faster could be helpful.

2. What aspects of CUBRICON did you find to be especially efficient and helpful in
accomplishing desired actions? Explain.

I thought that the speech understanding and parsing had the most interesting po-
tential. Another area that has potential is the automatic removal and handling of
windows for the user. The idea that a pop-up window would not cover up a portion

136

of the map that was recently referenced was a good idea. Some of the other con-
cepts, I take for granted because of my work with the Symbolics and TEMPLAR,
but these represent a significant improvement over ezisting command and control
capabilities. One area I really liked was the language learning. For terms that
I thought were to long like fourty-fifth-tfw-ef-111, I abbreviated it as fourty-fifth
and it then ezpanded it to the required term for the command line interface. I
also think that the tdea of expanding out the targets to show the airmpoints is an
excellent idea and helps to declutter the map from all the targets.

. What aspects of CUBRICON did you find to be especially difficult to use or in-
efficient? Why?

In general I didn’t like the interface to the forms and tables. Often the easiest way
to use a form would be to mouse on a slot and type or speak to enter a value. The
user should have to do a minimal number of entry modes, during ezecution of a
specific process.

If I am talking and moving the mouse to point to things I don’t ke the idea that
I have to switch modes to keyboard to enter a function-X to mouse on something
on the map or a table. The tables should pop up on the monochrome display so
they can be moused with just a click. It would be nice to be able to display only
the part of the form you were working on ie. a single mission in a window and
be able to iconize it when you are done. Then when you want to look at the pack-
age show them in an integrated way. The system queries after they were parsed
seemed much to slow and might make CUBRICON difficult to demonstrate unless
it speeds up significantly on a larger Symbolics. Since this s a 6.1 effort designed
to show something else it is not really an issue but does detract from CUBRICONs

use.

. How would you compare CUBRICON’s approach to working with computers to
other more conventional computer in