Using Propositional Graphs for Soft Information Fusion

Michael Prentice and Stuart C. Shapiro

Department of Computer Science and Engineering, Center for Cognitive Science, Center for Multisource Information Fusion University at Buffalo, Buffalo, NY 14260 {mjp44,shapiro}@buffalo.edu

Outline

2 Syntax

- Frame Semantics
- Propositional Graphs
- 6 Propositionalizer
- 6 Fusing Propositional Graphs
- 🕜 Conclusions, Future Work, Acknowledgments

Soft Information Fusion

Combine information from multiple natural language messages. Counterinsurgency domain.

- Message 12: 01/13/07 Cell phone call from unidentified male in Adhamiya to unidentified male in Ramadi lasted just five seconds with the words "my brother sends greetings" spoken by originator of call.
- Message 14 extract: 01/14/07 Originator of 1/13/07 cell phone call to Ramadi from Adhamiya has now been identified as Sufian Mashhadan. The recipient has been identified as Ziyad al-Obeidi.

Some problems:

- Embedded in many messages.
- Same cell phone calls?
- from vs. originator
- to vs. recipient

M. Prentice & S. C. Shapiro (UB)

Tractor

- Syntactic Processing
 - Produce dependency graph
- Propositionalizer
 - Map dependency graph to propositional graph
- Ontextual Enhancement
 - Add relevant ontological and other background information
- Fuse contextually enhanced propositional graphs

Dependency Structure of Sentences

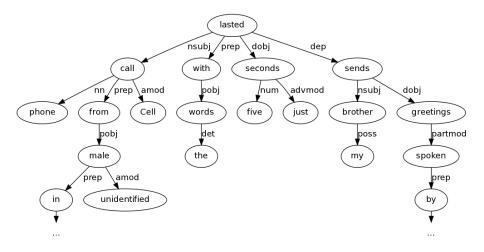
Clauses

Head: Verb

Dependents: • Adverbs

- Auverbs
 Nous shorts
- Noun phrases
- Prepositional phrases
- Prepositional Phrases

Head: Preposition Dependents: Noun phrase


Noun Phrases

Head: Noun

- Dependents: Determiner
 - Adjectives
 - Nouns
 - Prepositional phrases

Syntax

Dependency Parse for Message 12

Caseframes for Semantics

 Based on "The Case for Case" [Fillmore, 1968] and The Berkeley FrameNet Project [Baker, Fillmore, & Lowe, 1998]

Frame

- schematic representation of a situation with a set of participants and conceptual roles.
- Eliminates syntactic differences.
- E.g.
 - Sufian called Ziyad.
 - Ziyad was called by Sufian.
 - a call from Sufian to Ziyad

Structure of Frames

Frame

- set of frame elements
- semantic roles filled by entities of certain types.
- Filler can be another frame.
- Core Frame Elements:
 - "conceptually necessary component"
- Non-Core (Peripheral) Frame Elements:
 - Does not "introduce additional, independent or distinct events"

Contacting Frame

- Core Elements
 - Communicator, type: Sentient
 - Addressee, type: Sentient
 - Communication
 - ...
- Non-Core Elements
 - Medium
 - Time, type: Time
 - ...
- E.g.
 - Time: 2007-01-13
 - Medium: cell phone
 - Communicator: Sufian Mashhadan
 - Addressee: Ziyad al-Obeidi
 - Communication: "My brother sends greetings."

Frame for Message 12

Time: 2007-01-13 Communicator: Some Sentient Message: Duration: 5 seconds Entity: Medium: Cell phone Communicator: Some male in Adhamiya Addressee: Some male in Ramadi Communication: "My brother sends greetings."

Propositional Graphs

- A Knowledge Representation (KR)
 - labeled directed acyclic graph
 - with formal syntax
 - and formal semantics
- Atomic Node
 - Corresponds to individual constant
 - No outgoing arcs
 - Denotes entity in domain
- Molecular Node
 - Corresponds to functional term
 - Outgoing arcs labeled with argument position (role)
 - Compositional semantics
 - Denotes
 - Entity in domain
 - Possibly a proposition

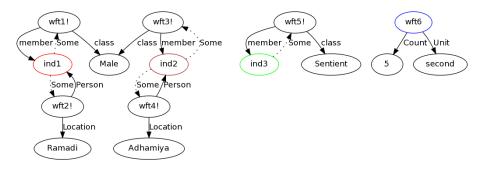
Basic Principles

Comprehensiveness

• Every entity, person, category, property, value, etc. Every proposition, belief, fact, etc. is represented by a node.

• Uniqueness Principle

- No two nodes with same ID.
- No two molecular nodes with same labeled arcs to same nodes.
- No two nodes representing the (obviously) same domain entity.
- Base case for fusing propositional graphs


SNePS KR System

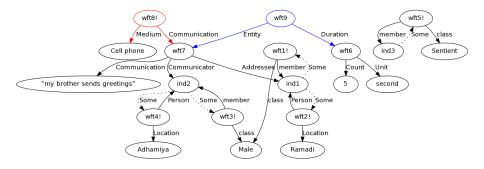
- Logic-based
- Frame-based
- Propositional graph-based
- Each view supports a different style of inference (not covered in this talk)
- Uses Arbitrary and Indefinite terms [Shapiro, 2004]
 - E.g.,

SNePS Graph::Frame::Logic

- Atomic node :: atomic symbol :: individual constant
 - Node ID = atomic symbol
- Molecular node :: frame :: functional term
 - Node ID = wfti[!]
- Arc label :: frame slot :: argument position
- Uniqueness Principle
 - No two nodes with same ID
 - No two molecular nodes with same labeled arcs to same nodes
 - Base case for fusing SNePS propositional graphs

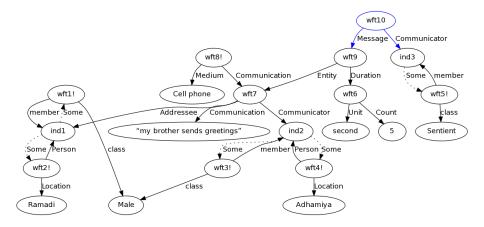
Lowest Parts of Propositional Graph for Message 12

some Male in Ramadi; some Male in Adhamiya; some Sentient; 5 seconds


Contacting in Propositional Graph for Message 12

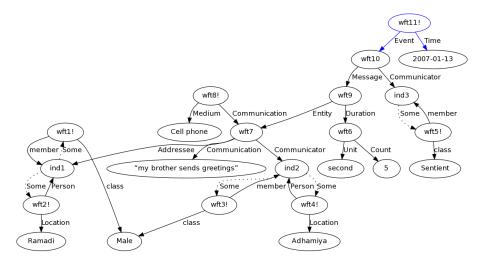
Some Male in Ramadi communicated "my brother sends greetings" to some Male in Adhamiya.

Note 3-ary relation.


Cell Phone in Propositional Graph for Message 12

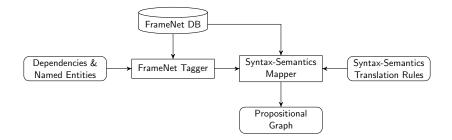
The contacting was via cell phone and lasted 5 seconds.

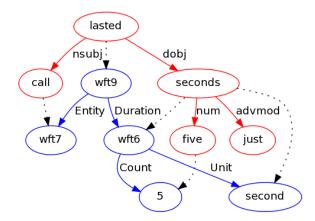
Note nesting of functional terms.


Propositional Graph for Sender of Message 12

Some Sentient said that it lasted 5 seconds.

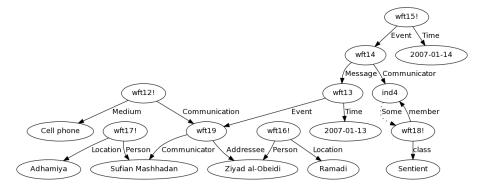
Note pedigree information.


Final Propositional Graph for Message 12

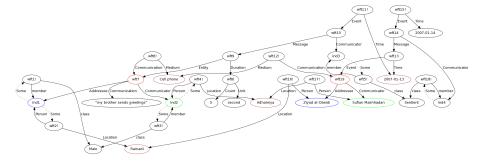

Message 12 was sent on 2007-01-13

M. Prentice & S. C. Shapiro (UB)

Propositionalizer



Example Syntax-Semantics Mappings



Sample mappings from dependency graph to propositional graph.

Propositional Graph for Message 14

Fused Propositional Graph

Given common Medium, Time, Locations,

Data Association should fuse calls, communicators, and addressees.

Conclusions

Tractor

- analyzes an English message
- builds a dependency graph
- and then a propositional graph.
- Propositional Graphs
 - Are a Knowledge Representation
 - Based on FrameNet frames
 - Can represent n-ary relations
 - Can represent meta-information
 - Can represent pedigree
 - Support Data Association by graph matching

Future Work

- Automating tagging of words with FrameNet frames
- Automating Syntax-Semantics Mapper
- Designing test and evaluation measures

Acknowledgements

- Multidisciplinary University Research Initiative (MURI)
 - Grant (Number W911NF-09-1-0392) for "Unified Research on Network-based Hard/Soft Information Fusion"
 - Issued by the US Army Research Office (ARO) under the program management of Dr. John Lavery.
- Center for Multisource Information Fusion
 - Dr. James Llinas, Executive Director
- Contact information
 - Michael Prentice (email: mjp44@buffalo.edu)
 - Dr. Stuart C. Shapiro (email: shapiro@buffalo.edu)