
CSE250 Assignment 5 Answer Key Spring 2022

(1) Let A be a data structure composed of a size-m array arr of linked lists, each of size
r. Let B be a data structure composed of a linked-list lis of r nodes, such that each node u

holds an array u.arr of size m. Both data structures have n = mr data items that are kept
globally sorted by key.1 The three main “ISR” operations have the following algorithms and
asymptotic running times:

� A.find(item): Do binary search on arr to find i such that
arr(i).head.key <= item.key < arr(i+1).head.key. It is vital to observe
that the implementation of binary search never evaluates the variable right, so it
does not bomb if i = m-1 so that i+1 is out of range of the array—we can treat the
algorithm as though that value were +∞. The implementation does not return i = m

out of range, so the final i is always a valid list. Then do sequential search of that list,
giving time Θ(log(m) + r).

� B.find(item): Do linear search to find the last node u such that u.arr[0].key <=

item.key. Then do binary search of that array. This gives time Θ(r + log(m)), which
in this notation is the same time as for data structure A.

� A.insert(item): Call findPlace(item) to find where the item should go—the only
difference from find being that it always returns an iterator to the location to insert
before, rather than end when no item matching item.key is found. Inserting into the
linked list at that point is just O(1) extra time, so the overall time stays Θ(log(m) + r).
Same for A.remove(item).

� B.insert(item) and B.remove(item): Same Θ(r + log(m)) time to find where the
item is or should go, but inserting or removing in the middle of a size-m array takes
time Θ(m). Since Θ(m) has higher asymptotic order than Θ(logm), the time is now
Θ(r + m).

The questions are all about: when you have n data items, how do you want to choose r and
m subject to rm = n in order to minimize the time needed in the following situations. You may
suppose rm = n exactly; in practice it does not matter if the lengths of the individual linked
lists in A, or the individual arrays in B, differ by a few items. The choice of how r relates to
m, keeping their product the same, is called a tradeoff. In all cases, you are defining r = r(n)
and m = m(n) as functions of n, subject to their product being n, to minimize times like
Θ(r+log(m)) and Θ(r+m). A fact you may find helpful is that log( n

logn
) = (log n− log log n)

has the same asymptotic order as Θ(log n).

(a) Your application mainly uses just find, like the task of Assignment 6. (Note: regarding
B, the BALBOA and BALBOADLL implementations are currently configured optimally this
way, but regarding A, AIOLI and AIOLISLL are quite the opposite.)

1In A this means: each linked list is sorted in nondescending order, and if 0 ≤ i < j < arr.size then
every item in the list arr(i) has key ≤ the key of every item in the list arr(j). In B this means each array
is sorted in nondescending order, and if node u comes before node v in the linked list, then every item in the
array for node u has key ≤ the key of every item in the array for node v. Pictures of these two data structures
are at the end of the lecture notes https://cse.buffalo.edu/ regan/cse250/CSE250Week8.pdf]

https://cse.buffalo.edu/~regan/cse250/CSE250Week8.pdf


(b) Your application does a lot of insertions and removals, and you are using data structure
A. What is the optimal tradeoff?

(c) Your application does a lot of insertions and removals, and you are using data structure
B. What is the optimal tradeoff now?

Also answer the following: In terms of asymptotic order, a data structure that gives time
Θ(
√
n) for an operation is slower than one giving time Θ(log n). What if, however, the concrete

times—putting principal constants in the same units of time—are 2
√
n in the former case and

8 log2(n) in the latter. Find the maximum value of n below which the former data structure
is concretely faster. (Here log2 means log to base 2. Points are 6 + 6 + 6 + 9 = 27 pts.)

Answer: For (a), choose r = log(n) and m = n/ log(n). (It doesn’t matter to the asymp-
totic complexity whether the base of the logarithm is 2 or e or whatever; moreover, the choices
r = 1 and m = n, and any choice of r and m = n/r in-between, give the same asymptotic
answers. Then:

� log(m) = log(n/ log n) = log(n)− log log(n) = Θ(log n).

� r = log(n) = Θ(log n).

So the time order-of log(m) + r becomes order-of (log n + log n) = Θ(log n). This is the best
possible, since it comes when the contributions from log(m) and r are asynptotically equal
and so balance each other. The choices r = 1 and m = n (or etc. as above) don’t give such
a pure Θ(log n) balance but they likewise give time Θ(log n) overall. The “BALBOA” data
structure as-configured gives r = 1 and m = n, since it builds just one array of size n, but
that’s optimal for a task like Assignment 6 which involves mostly just find. The “AIOLI”
data structure currently has just one linked list with no middle access points, so it effectively
gives r = n and m = 1, which is the opposite of what we want here.

(b) When you build A with r = O(log n) and m ≈ n/ log(n), i.e., a biggish array of short
linked lists, you not only get the same time for find in (a), but it also costs you only O(1)
time to add or remove from one of the linked list (or one of the marked-off segments of the one
linked list, if the alternate implementation shown in the notes is used). So the same choices
as in (a) give you O(log n) overall time for insertion or removal.

(c) With B, however, insertion has to be into one of the size-m arrays. An insertion
near the middle always forces Θ(m) amount of work moving the succeeding elements up—or
forcing a resizing and recopying of the entire array. Likewise a removal from the middle—or
anywhere but the end, for that matter. So the time becomes order-of r + log(m) + m, which
just becomes order-of r + m. Subject to the product being n, the best balance is given by
choosing r = m =

√
n. This gives r + m = Θ(

√
n) as the optimal time. [This is worse than

(b) but still works pretty well in practice.]

(d) We want to equate 2
√
n with 8 log2(n), which simplifies to equating

√
n with 4 log2(n).

We can compare values on some even powers of 2:

n
√
n 4 log2(n)

64 8 24
256 16 32
1024 32 40
4096 64 48

.



The values in the columns have “crossed over” so the optimum n is somewhere between 1024
and 4096. Binary search—done manually with a calculator—first tries n = (1024 + 4096)/2 =
2560. That gives 4 log2(n) = 45.2877 . . . and

√
n = 50.59644 . . . . The first column is bigger,

so we try going down: n′ = (1024 + 2560)/2 = 1792. Now 4 log2(n
′) = 43.2294 . . . and√

n′ = 42.332 . . . . Now the second column is bigger, so we go up: n′′ = (1792+2560)/2 = 2176.
Continuing in this vein soon finds n = 1897 as the greatest n for which the first column is less.
For n = 1898 and above, the 8 log2(n) time becomes concretely faster than the 2

√
n time.

Footnotes: The similarity with the 1898 year of the Samuel Fallows dictionary is pure
accident—I intended n = 256 to be the answer, as you would get if it were 2

√
n versus

4 log2(n). The fact that doubling the 4 to 8 moved the “crossover point” to be much more
than double 256 is worthy of special note. Just a little worsening of the principal constant of
the theoretically optimal implementation can move its tradeoff point versus “quick-and-dirty”
code much higher. With many published algorithms, the crossover is well above billions, a
fact which Richard Lipton and I called attention to under the heading “Galactic Algorithms.”

(2) Modify the nonrecursive form of breadth-first search, given as classicBFS in my notes
https://cse.buffalo.edu/˜regan/cse250/CSE250Week9MWF.pdf, so that when the goal node
is found, the output also gives you a shortest path from start to goal. Use tuples so that
whenever a node v is visited, the first node u that v is visited from is preserved in the tuple.
Then say why the set of tuples you get efficiently gives you a path from goal back to start,
which you can then reverse to get your answer. (When goal is not found, of course, you get
no such path.)

[For some important chitchat, the text’s algorithm on page 481 accomplishes this task—
even when the edges have arbitrary weights—but is not efficient, as the text admits below
it. Put more bluntly, the algorithm is (IMPHO) bad, and if you find it hard to read, well so
do I. The same remarks extend to the maze-specific code on page 478. Your algorithm will,
however, work correctly only because all the edges have the same unit weight. The footnote
on page 481 takes the higher road, but Dijkstra’s algorithm is properly a subject for CSE331,
and in applications where you don’t have different weights, it’s overkill.]

Your answer need not be executable Scala code, but it should be “Scala-like” including
the use of sets of tuples (or alternatively, a Map) and the Queue[Node] data structure. (27
pts., broken as 18 for code and 9 for explanatory comments, giving 54 on the set.)

Answer: The basic idea is that whenever we find a new neighbor v of a node u, we store a
tuple (v, u) or a Map element (v → u). The algorithmic invariant is that the node u is always
closer to start than v is—else we would have already visited v. The neighbor v has to be
freshly new—so this causes us to move up the test for whether v has been already expanded
or visited. Here is the code, with some redundancy showing how you could use either a set of
tuples or a Map (note, this is not from actual executable code but intended as pseudocode):

def classicBFS(start: Node, goal: Node): List[Node] = { //empty list == not found

if (start == goal) { return List(start) }

//else

var visited = new Queue[Node]() //Scala Queue is mutable by default

https://rjlipton.wpcomstaging.com/2010/10/23/galactic-algorithms/
https://en.wikipedia.org/wiki/Galactic_algorithm
https://cse.buffalo.edu/~regan/cse250/CSE250Week9MWF.pdf


var backSteps = new Set[(Node,Node)] //(to, from)

var backMap = new Map[Node,Node]() //(to -> from)

var expanded = new scala.collection.mutable.Set[Node]()

visited.enqueue(start) //so queue is nonempty

while(!visited.isEmpty) {

val u = visited.pop()

expanded += u

for (v <- u.nbhrs) {

if (!(expanded.contains(v) || visited.contains(v))) { //v is freshly new

backSteps += (v,u)

backMap += (v -> u) //or: backMap(v) = u

if (v == goal) {

{ return the traced out path }

} else {

visited.enqueue(v)

}

} else {

//do nothing

}

} //end of loop over neighbors of u

} //exit of while loop means no more fresh nodes to visit/expand

return List[Node]()

}

Returning the traced-out path is easier if you’ve defined a Map, or if your organization of
set-of-tuples is more flexible than than Scala Set per-se. With the Map, the trace-out code is:

var ret = List(goal)

var y = goal

do {

y = backMap(y)

ret ::= y

} while (y != start)

return ret

Because we prepend, the List actually comes out in the desired start-to-goal order. The
number of iterations of the do-while loop is at most the length of the shortest path from
start to goal, rather than be upwards-of the total number of nodes like in the original BFS.
The loop body just has one prepend—which is stipulated to take O(1) time for a List—and
one evaluation of the Map. The time for one evaluation is theoretically no worse than O(log n)
time with a well-sorted Map, and with the hash-table implementation it counts as O(1) time
but with a little fine-print. So this is efficient.

The set of tuples (v, u) has the property that every value v appears at most once. So if
we can efficiently find it, then we can get the corresponding u and repeat just like above with
the Map. The issue is that Set[(Node,Node)] forces us to know the whole tuple in advance
in order to find it. We really want to do something like finding (v, ) but reading rather than
ignoring the second component. Well, if your tuple is a simple class like on Assignment 4, and
you define keyComp to use the first part, then “ISR” will find u for you just like in a Map.


