
J. LOGIC PROGRAMMING 1994:19, 20:1–679 1

SET CONSTRUCTORS, FINITE SETS, AND
LOGICAL SEMANTICS

BHARAT JAYARAMAN AND DEVASHIS JANA

. The use of sets in declarative programming has been advocated by several
authors in the literature. A representation often chosen for finite sets is
that of scons, parallel to the list constructor cons. The logical theory for
such constructors is usually tacitly assumed to be some formal system of
classical set theory. However, classical set theory is formulated for a general
setting, dealing with both finite and infinite sets, and not making any as-
sumptions about particular set constructors. In giving logical-consequence
semantics for programs with finite sets, it is important to know exactly
what connection exists between sets and set constructors. The main con-
tribution of this paper lies in establishing these connections rigorously. We
give a formal system, called SetAx, designed around the scons construc-
tor. We distinguish between two kinds of set constructors, scons(x, y) and
dscons(x, y), where both represent {x} ∪ y, but x ∈ y is possible in the
former, while x 6∈ y holds in the latter. Both constructors find natural
uses in specifying sets in logic programs. The design of SetAx is guided by
our choice of scons as a primitive symbol of our theory rather than as a
defined one, and by the need to deduce nonmembership relations between
terms, to enable the use of dscons. After giving the axioms SetAx, we
justify it as a suitable theory for finite sets in logic programming by (i)
showing that the set constructors indeed behave like finite sets; (ii) provid-
ing a framework for establishing the correctness of set unification; and (iii)
defining a Herbrand structure and providing a basis for discussing logical
consequence semantics for logic programs with finite sets. Together, these
results provide a rigorous foundation for the set constructors in the context
of logical semantics.

KEYWORDS: set constructors, finite sets, Zermelo-Fraenkel set theory,
logical-consequence semantics, freeness axioms, set unification, Herbrand
structure

/

Address correspondence to Bharat Jayaraman, Department of Computer Science, State Uni-
versity of New York at Buffalo, 226 Bell Hall, Buffalo, NY 14260, E-Mail: bharat@cs.buffalo.edu
THE JOURNAL OF LOGIC PROGRAMMING

c© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

2

1. INTRODUCTION

The use of sets has been advocated by several authors in the literature on logic
programming [5, 6, 8, 14, 17, 20] and deductive databases [1, 2, 26]. In studying
the inclusion of sets in logic programs, it is natural to study finite sets at first.
A representation often chosen for finite sets is that of scons, parallel to the list
constructor cons. The use of this constructor for declarative programming was first
introduced in [16] and has been advocated by other authors in the literature as
well. The logical theory for such constructors is usually tacitly assumed to be some
formal system of classical set theory, such as Zermelo-Fraenkel (ZF) set theory
[7, 29]. However, classical set theory is formulated for a general setting, dealing
with both finite and infinite sets, and not making any assumptions about particular
set constructors. In giving logical-consequence semantics for logic programs with
finite sets, it is important to know exactly what connection exists between sets
and set constructors. The main contribution of this paper lies in establishing these
connections rigorously, thereby filling an important gap in the literature.

We give a formal system, called SetAx, whose purpose is to facilitate giving
logical semantics for logic programs involving finite sets and set constructors. We
can distinguish two kinds of set constructors: scons(x, y) and dscons(x, y). In
both cases, the set represented is {x}∪y. However, in the former, x ∈ y is possible,
whereas in the latter, x 6∈ y is required to hold. The dscons is called the disjoint set
constructor (from {x} ∩ y = ∅). Both constructors find natural uses in specifying
sets in logic programs. The scons is used for specifying sets in terms of parts that
may well overlap with each other. The dscons is used for specifying sets in terms
of an element and remainder. The scons constructor in [15, 16, 17] has been used
in both senses—on the left-hand sides of rules it was used to mean dscons, while
on the right-hand sides of rules it was used to mean scons.

Two factors complicate the design of SetAx: First, scons is a primitive symbol in
our theory, rather than a defined one. This is natural in logic programming where
data constructors are primitive symbols and form the basis of a Herbrand domain.
As a result, possible simplifications in the classical axioms have to be investigated,
because appropriate sets are guaranteed to exist by virtue of being nameable by
scons terms, i.e., terms formed from scons. The other factor is that, because of the
dscons constructor, we need to be able to deduce nonmembership relations, and
as a consequence, certain inequalities between objects. As a result, an appropriate
set of freeness axioms have to be investigated. The freeness axioms should be such
that terms that are not provably equal from the other axioms can be proved to be
unequal using the freeness axioms.

A natural question that arises at the outset is whether we could have adapted
some well-known axiom system instead of SetAx. An obvious candidate is ZF
without the axiom of infinity (ZF−), together with a definition for scons, such as
set(y)→ scons(x, y) = {x}∪y, and an axiom like set(x)→ finite(x) that makes all
sets finite. Another candidate might be the von-Neumann-Bernays-Goedel (vNBG)
axiomatization of set theory, especially the clauses given by Boyer et al [3]. The
choice of scons as a primitive symbol, however, allows simplifications in the ax-
ioms; the axiom system SetAx was developed by exploring the precise nature of

3

these simplications. For example, in the above definition of scons, the axiom in
ZF expressing the closure of union is required to justify the definition. With scons
as a primitive, such an axiom becomes unnecessary due to the presence of certain
scons terms. We find that the axioms SetAx do have a simpler form than ZF− or
vNBG—almost all of them are in definite clausal form—with intuitive ‘permuta-
tion’ and ‘absorption’ properties of scons forming the basis of its equational theory,
instead of extensionality of ZF or vNBG. We first described this axiom system in
[12], and a different axiomatization of this set constructor was formulated in [4, 5]
for the {log} programming language. We provide a detailed comparison between
these two systems in section 8.

After giving the axioms SetAx, we justify it as a suitable theory for finite sets
in logic programming. A primary concern with SetAx is its consistency, especially
given the presence of inequality assertions in its freeness axioms. We therefore first
build a model for SetAx through an inductive construction. We then show that
the set constructors indeed behave like finite sets in classical set theory. That is,
we show that SetAx−, i.e., SetAx without the freeness axioms, is equivalent to ZF
restricted to finite sets. We use ZF for this purpose, rather than vNBG, since
ZF is generally better known. To justify the freeness axioms, basically we need to
show that if SetAx− 6|= (t1 = t2) then SetAx |= ¬(t1 = t2). That is, terms that
are not provably equal from the rest of the axioms can be proved unequal with
the aid of the freeness axioms. We also show that either SetAx |= (t1 = t2) or
SetAx |= (t1 = t2), thereby showing that SetAx is complete for all equality atoms
of the above form.

In order to justify the freeness axioms, we appeal to unification, as the two are
closely related. The unification procedure for set constructors is far more involved
than first-order unification since the set constructors have a nontrivial equality
theory. As a consequence, the unification of two set terms could result in multiple
maximally general unifiers. For example, unifying {x, y} = {1, 2} results in two
solutions: (i) {x 7→ 1, y 7→ 2}, and (ii) {x 7→ 2, y 7→ 1}. A very brief sketch of such
a unification procedure was first given in [17] and subsequently improved upon in
[4]. Our set unification procedure is based upon that in [5], but our presentation
follows the conventions and definitions laid out in [18], i.e., the unification procedure
is presented using rewrite rules, and explicit existential quantification is used for
the new variables introduced during unification. Such an approach is necessitated
since we have an untyped system, unlike the axiom system in [5]; it also facilitates
a simpler statement of the theorems pertaining to the justification of freeness.

The unification of terms built up from scons is a very special case of ACI-
unification [19]. Examples of ACI-unification include the unification of set terms
built up the ∪ (union) constructor and unification in boolean rings [24]. The in-
terested reader may consult the reference [27] for a catalog of several different
types of unification problems, including their complexity. Note that scons is not
associative, commutative, or idempotent, but enjoys closely related properties,
namely, scons(x, scons(y, s)) = scons(y, scons(x, s)) and scons(x, scons(x, s)) =
scons(x, s). These properties are more correctly referred to as permutation and
absorption, respectively. The dscons operator bears the same relation with +
(disjoint-union) as scons bears with ∪. Unlike ∪ and +, the first argument of scons
and dscons does not have to be a set. We consider scons and dscons (rather than
∪ or +) because they have proven to be of more practical interest in set-oriented
declarative programming languages [16, 2, 4, 5, 17, 28].

4

Finally, we establish the standard or Herbrand structure, and justify that the
permutation and absorption properties of scons are indeed adequate for deriving
the structure, as sometimes assumed in the literature. We also show that the
Herbrand interpretations model SetAx, which is not immediate since SetAx is not
all in definite clausal form. Together, these results provide a rigorous foundation
for the set constructors in the context of logical semantics.

The rest of this paper is organized as follows. In section 2 we give the set
constructors in a first-order logical framework. We give a transform for dscons so
that it can be understood in terms of scons. In section 3, we present the set axioms
SetAx, in section 4 we prove their consistency, and in section 5 we show their
equivalence with finite set theory. In section 6, we use set unification to justify the
adequacy of the freeness axioms in SetAx. In section 7, we establish the Herbrand
structure and show that Herbrand interpretations model SetAx. Finally, in section
8, we present our conclusions and further comparisons with related work.

Our usage of standard definitions of logic programming follows that in [22]. We
also make use of a few results from [7] and [29] in relating our set constructors to
finite sets.

2. SET CONSTRUCTORS

We consider the set constructors in a logical framework, i.e., a first-order language
L with equality, having an alphabet Σ possessing a set of variables ΣV , a finite
set of constructor symbols ΣC , a finite set of predicate symbols ΣP , and auxiliary
symbols. Constructor symbols are used to build data objects, i.e., terms. Typical
symbols are: u, v, w, x, y, z, u0, v

′, . . . for variables, a, b, c, d, a0, b
′, . . . for constructor

symbols, s, t, s0, t
′, . . . for terms, and p, q, r, p0, q

′, . . . for predicate symbols.
We require that ΣC contain the symbols {scons, ∅} to represent sets, and ΣP

contain the symbols {=, set,∈} to represent set predicates (we include equality
among the set predicates). As a result, we will need the usual axioms of equality,
viz., reflexivity and substitutivity, which we call EqAx (and which we lay out
in section 3). Let ΣC denote ΣC\{scons, ∅} to refer to the non-set constructor
symbols. We intend the constant ∅ to denote the empty set and the term scons(s, t)
to denote {s}∪t if t denotes a set. We do not take dscons as a primitive constructor,
but will introduce it as a conditionally defined symbol since it is very close in
meaning to scons. Terms of the form scons(s, t) and dscons(s, t) are called scons
terms and dscons terms respectively. All terms that are not sets will be considered
as individuals. More suggestive notation for scons(x, y) and dscons(x, y) are {x/y}
and {x\y} respectively. We take dscons to be conditionally defined as follows. (All
our logical definitions are labelled by Dn.)

(D1): x 6∈ y → {x\y} = {x/y}
When x ∈ y, we regard it as a don’t care situation. So we intend {x\t} to denote
{x} ∪ t if t denotes a set and x /∈ t. Thus {1, 2} can be represented by {1/{2/∅}},
{2/{1/{2/∅}}}, {1\{2\∅}}, etc., but not by {2\{1\{2\∅}}}.

We will follow the convention that

{t1, t2, . . . , tn/tn+1}
denotes {t1/{t2/ · · · /{tn/tn+1} · · ·}} for n ≥ 0. When we know that a scons or
dscons term is an individual, e.g., scons(1, 2), we will usually use scons or dscons

5

instead of the brace notation. The set of variables occurring in a syntactic object
X will be denoted by V ar(X). An arrow over a symbol will denote a tuple of
objects, i.e., ~t = (t1, . . . , tm), for some m ≥ 0. Similarly, ~x = ~y will be used as an
abbreviation for x1 = y1 ∧ · · · ∧xn = yn for some n ≥ 0. Finally, ≡ will be used for
syntactic identity.

The possible syntactic forms a term may have are, as usual, x or c(t1, . . . , tn),
for some n ≥ 0. An alternative useful set of syntactic forms for terms is as fol-
lows. Every term has one of the forms {t1, t2, . . . , tm/x}, {t1, t2, . . . , tm/∅}, or

{t1, t2, . . . , tm/c(~t′)} with c ∈ ΣC and m ≥ 0. When m = 0 we take the terms to

be, respectively, x, ∅, and c(~t′). Thus, any term t has the form {t1, . . . , tm/s}, for
some m ≥ 0 and some s whose outermost symbol is not scons, and this form is
unique. It is useful to define a function last(t) such that last(t) = s.

The following programs P1 and P2 provide illustrations of the use of the set
constructors. In program P1, the intended mode of use of list set is to convert a
list into a set, while in program P2, the intended mode of use of permute set is to
convert a set of elements into a list of some permutation of the elements, with no
duplications.

P1:

list set([], ∅)
list set([x|y], {x/z}) ← list set(y,z)

P2:

permute set(∅, [])

permute set({x\y}, [x|z]) ← permute set(y,z)

Thus, the query list set([1,1], x) leads to the answer x = {1/{1/∅}} = {1}
and the query permute set({1/{1/∅}}, x) leads to the answer x = [1].

In the SuRE programming language (Subsets, Relations and Equations) [13],
we can express such mode information more declaratively by defining these same
operations using equational and subset assertions, as shown below (note that SuRE
functions can be invoked only with ground arguments):

P3:

list set([]) = ∅
list set([x|y]) = {x/list set(y)}

P4:

permute set(∅) ⊇ {[]}
permute set({x\y}) ⊇ {[x|z]} ← permute set(y) ⊇ {z}

We assume that programs in the first-order language L are in clausal form.
Clauses that contain dscons terms have to undergo a transformation, called the
disjointness transformation, because of the way we view the dscons constructor.
The transformation adds appropriate nonmembership atoms to the bodies of these
clauses. For example, if {x\{y\z}} is used in a clause C, then it is changed to
{x/{y/z}}, and y 6∈ z ∧ x 6∈ {y/z} is added to the body of C. For example, the
transform, applied to P2 above, would yield

permute set({x/y}, [x|z]) ← permute set(y,z), x/∈y

6

Without such a transform, since clauses are universally quantified, an instance of
the clause C could well have y ∈ z or x ∈ {y/z}. The meaning of the clause
would then depend upon some arbitrary don’t care case of the definition of dscons,
something that is not desirable.

Formally, the transformation is given by means of the operations t̃ and disjoint(t)
where t may contain dscons subterms. The operation disjoint(t) explicates all the
relevant nonmembership conditions arising from t, and the operation t̃ converts all

the dscons in t to scons. Recall that ~t = (t1, . . . , tm). Let ~̃t = (t̃1, . . . , ˜tm), and let

nonmem(~t) = nonmem(t1) ∧ · · · ∧ nonmem(tm).

Then disjoint(t) is given by:

disjoint(x) = true, x ∈ ΣV

disjoint(c(~t)) = disjoint(~t), for c ∈ ΣC

disjoint({t1\t2}) = disjoint(t1) ∧ disjoint(t2) ∧ t̃1 6∈ t̃2
Thus, for a term t possibly containing dscons symbols, if disjoint(t) holds then the
dscons symbols in t can be understood in the intended sense. More precisely, we
have

EqAx |= disjoint(t)→ t = t̃,

where EqAx is given in section 3.
Let ϕ(~s) be a quantifier-free formula with ~s being the tuple of terms occuring in

ϕ, and possibly containing dscons subterms. Then, (∀nonmem(~s))ϕ(~̃s) expresses
that ϕ is universally closed relative to the intended usage of dscons. Similarly,
(∃nonmem(~s))ϕ(~̃s) expresses that ϕ is existentially closed relative to the intended
usage of dscons. In particular, when ϕ is a clause A(~s)← B(~t), where ~s and ~t are
the tuples of terms appearing in the head and body, then the disjoint transform of
the clause is given by:

A(~̃s)← B(̃~t), disjoint(~s), disjoint(~t).

3. THE SET AXIOMS

We now axiomatise the intended interpretations of the set-theoretic predicates and
constructors in a theory SetAx. To do so, we will also need definitions to express the
logical statements more meaningfully. Since some of the definitions will need some
of the axioms or their consequences for their justification, and since some of the
axioms are better stated using some of the definitions, we will give the definitions,
axioms and theorems in an interleaved manner. We repeat here the definition D1,
for the sake of completeness.

(D1): x 6∈ y → {x\y} = {x/y}
(D2): (y ⊆ z ↔ ∀x(x ∈ y → x ∈ z))← set(y) ∧ set(z)
(D3): indiv(x)↔ ¬set(x)

Defined symbols augment the set of terms and formulae. We adopt the following
convention. Unless otherwise stated, a term will ordinarily contain only primitive
symbols, while a formula may contain defined predicate symbols as well.

Let SetAx be the following axioms and axiom schemas:

7

Finite Sets (FinSetAx):
(FS1): set(∅)
(FS2): set({x/y})← set(y)
(FS3): indiv(c(~z)) for all c ∈ ΣC
(FS4): indiv({x/y})← indiv(y)
(FS5): induction(z, ~u, ψ)← set(z) where induction(z, ~u, ψ) ≡

[ψ(∅, ~u)∧ [∀x∀y(set(y)∧x ∈ z∧y ⊆ z∧ψ(y, ~u))→ ψ({x/y}, ~u)]] → ψ(z, ~u)
and ψ involves only set predicates and definitions,
and ~u are its extra free variables.

Membership (MemAx):
(M1): x 6∈ ∅
(M2): x 6∈ y ← indiv(y)
(M3): (x ∈ {y/z} ↔ x = y ∨ x ∈ z)← set(z)
(M4): set(z) ∧ z 6= ∅ → ∃x(x ∈ z ∧ ∀y(y ∈ x→ y 6∈ z))

Permutation and Absorption (PAAx):
(PA1): {x/{y/z}} = {y/{x/z}} ← set(z)
(PA2): {x/{x/z}} = {x/z} ← set(z)

Equality (EqAx):
(I1): x = x
(I2): ~x = ~y ← x1 = y1 ∧ . . . ∧ xn = yn
(I3): c(~x) = c(~y)← ~x = ~y for all c ∈ ΣC

(I4): (p(~x)↔ p(~y)) ← ~x = ~y for all p ∈ ΣP

Freeness (FreeAx):
(F1): c(~x) 6= d(~y) for all c, d ∈ ΣC such that c 6≡ d
(F2): c(~x) 6= c(~y)← ¬(~x = ~y) for all c ∈ ΣC
(F3):

(
scons(x1, x2) 6= scons(y1, y2)← ¬(x1 = y1 ∧ x2 = y2)

)
← indiv(x2) ∧ indiv(y2)

(F4): t[x] 6= x← indiv(t[x])
(F5): {s[x]/y} 6= x

We briefly motivate the above axioms. Axioms FS1–4 state which terms denote
sets and which denote individuals. The induction axiom FS5 is needed to capture
the notion of finiteness of sets, as is well known in set theory. While at first it
may not appear natural, the need for it becomes apparent in proving even simple
properties such as Proposition 2 below. The membership axioms M1–3 state when
two terms are in the member relation and when they are not. The axiom M4 is just
the axiom of regularity of ZF and is included here since it is not deducible from
the other axioms of SetAx. Axioms PA1–2 express that finite sets do not differ on
account of order or repetition of their elements in their enumerations. The equality
axioms EqAx are the usual rules of reflexivity and substitutivity of the equality
predicate.

The freeness axioms FreeAx are needed to assert certain nonmembership re-
lations, for use with the dscons constructor. Statements about (non)membership
can be reduced to statements about (in)equalities, and vice-versa. For example,

8

the dscons term {1\{2/∅}} is well-defined as a set if 1 6∈ {2/∅}, i.e., if 1 6= 2.
More generally, we want FreeAx to be such that terms that are not provably equal
from the rest of the axioms can be proved unequal with the aid of FreeAx. As
such, the axioms F1–5 are motivated by unification, i.e., the non-unifiable cases
of terms, corresponding to failure of logical consequence from SetAx, motivate the
inequality axioms. Axiom F1 expresses that different constructor symbols lead to
distinct terms. Axioms F2–3 express injectivity, while axioms F4–5 are like the
occurs check axiom (and were described in [17]). The notation t[x] refers to a term
t with x occurring somewhere in it. The axiom F5 imitates axiom M4 to a certain
extent. For example x /∈ x can be deduced from either.

Let SetAx− = SetAx\FreeAx. Then SetAx− is the appropriate theory when
the scons constructor alone is considered, while SetAx is the appropriate theory
when both scons and dscons are considered. Also SetAx is the appropriate theory
when scons alone together with nonmembership relations are considered. We now
list some properties of SetAx. They find use in subsequent proofs.

Proposition 3.1. SetAx |= ϕ, where ϕ is any of:
(i) x ∈ y → set(y)
(ii) set(z)→ x ∈ {x/z}
(iii) x ∈ z → x ∈ {y/z}
(iv) set(z)↔ set({x1/{x2/ · · · {xn/z} · · ·}}) for any n ≥ 1
(v) set(z)→ (x ∈ {x1/{x2/ · · · {xn/z} · · ·}} ↔ x = x1 ∨ · · · ∨ x = xn ∨ x ∈ z)

for any n ≥ 1

Proposition 3.2. SetAx |= ϕ, where ϕ is any of:
(i) x ∈ y → ∃z(y = {x/z} ∧ set(z) ∧ x 6∈ z)
(ii) set(z)→ z = ∅ ∨ ∃x(x ∈ z)
(iii) x ∈ y → {x/y} = y
(iv) set(x)→ s 6∈ x for any term s containing x.

Proof. (i): Use induction axiom FS5 with ψ(y, x) ≡ x ∈ y → ∃z(y = {x/z} ∧
set(z) ∧ x 6∈ z).
(ii): Use induction axiom FS5 with ψ(z) ≡ z = ∅ ∨ ∃x(x ∈ z).
(iii)–(iv): These are immediate from (i) and other axioms. 2

In models of ZF , non-well-founded sets, such as an infinite sequence · · · sk+1 ∈
sk ∈ · · · ∈ s2 ∈ s1, do not exist. Such sequences appear possible in models of
SetAx and SetAx−—for e.g., consider the sequence si = {si+1/{i/∅}} for all i ≥ 1.
(In ZF , infinite sets are used to show that such sequences cannot exist.) However,
infinite sequences in which the sets repeat, i.e., si = sj for some i 6= j, do not exist,
as shown by the next proposition.

Proposition 3.3. For any n ≥ 1, there is no sequence of sets x1, . . ., xn such that xn
∈ xn−1 ∈ . . . x1 ∈ xn. That is, SetAx |= ¬∃x1, . . . , xn(set(x1) ∧ · · · ∧ set(xn)∧
xn ∈ xn−1 ∈ . . . x1 ∈ xn).

Proof. Suppose there were such a sequence. Then we can use Prop. 2(i) and F5
to show a contradiction. 2

9

4. CONSISTENCY OF SETAX

We build a structure F = 〈U,ΣP ,ΣC〉 from classical set theory as follows. We
inductively construct the universe U as the union of a collection I of individuals
and a collection S of finite sets. Below, Pfin stands for the finite-powerset operator,
i.e., it gives the collection of all finite subsets of a set. We represent all finite sets
in the universe by enumerating their elements within braces. Thus {} stands for
the empty set.

I0 = ∅, S0 = ∅, U0 = I0 ∪ S0

and for i ≥ 1

Ii = {c(~x) | c ∈ ΣC , c n-ary, n ≥ 0, ~x ∈ Un
i−1}

∪ {scons(x1, x2) | x1 ∈ Ui−1, x2 ∈ Ii−1}
Si = Pfin(Ui−1)
Ui = Ii ∪ Si

Finally, we define

I =
⋃

i<ω Ii, S =
⋃

i<ω Si, U =
⋃

i<ω Ui

In the above construction, note that when i = 1, Ii and Si simplify to I1 = {c |
c a constant in ΣC , c 6≡ ∅}, and S1 =

{
{}
}

. Also, the objects in Ii, i ≥ 1, are not
sets. If x, y ∈ S, then x = y iff they have the same members. If x, y ∈ I and
x ≡ a(~u), y ≡ b(~v) for some a, b ∈ ΣC ∪ {scons} and some ~u,~v of the appropriate
kind, then x = y iff a ≡ b and ~u = ~v.

Some properties based on the above construction are: (i) Ii, Si, and Ui are
monotonic in i, i.e., for 0 ≤ i ≤ j, Ii ⊆ Ij , Si ⊆ Sj , and Ui ⊆ Uj , (ii) I ∩ S = ∅,
and (iii) I ∪ S = U . From these, it follows that, for every object e, there is a least
level in the universe at which it occurs; and any other object mentioning e occurs
at a level that is at least one higher than e. Note that saying x ∈ I and x occurs
at a least level i > 0 is the same as saying it is the unique i such that x ∈ Ii\Ii−1.
Similarly for x ∈ S and x ∈ U .

The constructor interpretations in F are given by:

(i) cF (~x) = c(~x) for c ∈ ΣC and ~x ∈ Un,
(ii) ∅F = {}, and
(iii) sconsF (x, y) = scons(x, y), if x ∈ U, y ∈ I

sconsF (x, y) = {x} ∪ y, if x ∈ U, y ∈ S.

Here, cF (~x) ∈ I for c ∈ ΣC , ∅F ∈ S, and sconsF (x, y) ∈ S iff y ∈ S. From the
constructor interpretations, it follows from a simple inductive proof that for a term
t with free variables x, ~y, if x is assigned an object in U whose least level is i ≥ 1,
then for any assignment ~y ∈ Un, n ≥ 0, we have tF ∈ Uj\Uj−1 for some j ≥ i.
Here, if t ≡ {s1, . . . , sm/x}, m ≥ 0 and x does not occur in s1, . . . , sm, then j = i
is possible. In all other cases of t, we have j > i.

For predicate interpretations in F , we need only specify interpretations for the
set predicate symbols, and can leave the others arbitrary. Let x, y ∈ U . Then the
set predicate interpretations are:

(i) setF (x)⇔ x ∈ S
(ii) x∈Fy ⇔ y ∈ S and x ∈ y
(iii) x =F y ⇔ x = y

10

Here, x ∈ y and x = y have their usual meanings, viz., membership and identity,
respectively.

Theorem 4.1. F |= SetAx

Proof. By considering each set axiom in turn and using the above construction
and its properties. We illustrate for the cases of axioms FS5, M4, PA1 and F5
below; the remaining cases are treated in [11].

(FS5): Let z ∈ U , and ~u ∈ Un, for some n ≥ 0. Assume setF (z), i.e., z ∈ S.
Assume ψ(∅, ~u) and ∀x∀y(set(y) ∧ x ∈ z ∧ y ⊆ z ∧ ψ(y, ~u) → ψ({x/y}, ~u)) are

satisfied in F . To show (ψ(z, ~u))
F

.

Case (1): z = {}. So (ψ(z, ~u))
F

, from the assumption.
Case (2): z 6= {}. Let z = {x1, . . . , xk}, k ≥ 1. Consider the sets vi ∈ U , defined

by: vi = {x1, . . . , xi}, for 0 ≤ i ≤ k. Claim: For all i ≥ 0, if i ≤ k, then (ψ(vi, ~u))
F

holds. Proof of the claim is by induction on i, and is trivial. Applying the claim to
i = k, we get vk = z and (ψ(z, ~u))

F
.

(M4): Assume z ∈ S and z 6= {}. So z = {x1, . . . , xm} for some m ≥ 1. If any
xj ∈ I or xj = {}, for 1 ≤ j ≤ m, then xj is a witness to the consequent. When
every xj ∈ S and xj 6= {}, for 1 ≤ j ≤ m, then let ij be the least level of occurrence
of xj . Choose i = min(i1, . . . , im) and let xl ∈ Si. We have xl = {y1, . . . , yn} for
some n ≥ 1, and yk ∈ Ui−1, for 1 ≤ k ≤ n. So, the least level of occurrence of any
yk is below i, whereas every element of z occurs at a least level equal to or greater
than i. Therefore, no element of xl is in z and xl is a witness to the consequent.

(PA1): Let x, y, z ∈ U . Assume setF (z), i.e., z ∈ S. We have ({x/{y/z}})F =

{x} ∪ {y} ∪ z = {y} ∪ {x} ∪ z = ({y/{x/z}})F .

(F5): Let x, ~z be the free variables of s. So x, y, ~z are the free variables of scons(s, y)
with possibly x ≡ y. Let x, y ∈ U, ~z ∈ Un be an assignment of these variables. Let
x ∈ Ui\Ui−1.

Case (1): y ∈ I. Then (indiv(scons(s, y)))
F

holds with scons(s, y) containing x

and different from x. So (scons(s, y) 6= x)
F

by F4.
Case (2): y ∈ S. Let sF ∈ Uj\Uj−1. Then j ≥ i. Suppose y = {}. Then

(scons(s, y))
F

= {sF} ∈ Sj+1\Sj . So j + 1 > i and (scons(s, y) 6= x)
F

. Suppose
y 6= {}, i.e., y = {x1, . . . , xm},m ≥ 1, and x1, . . . , xm are all present in Uk and
k is the least such level at which they are all present. Let l = max(j, k). So

(scons(s, y))
F

= {sF , x1, . . . , xm} ∈ Sl+1\Sl. Hence l + 1 > i, and thus it follows

that (scons(s, y) 6= x)
F

. 2

5. RELATING SETAX TO ZF

In this section we justify SetAx− to be an adequate theory of finite sets for logic
programming. We do so by relating SetAx− and ZF restricted to finite sets, as
follows: The language of ZF has the primitive symbols ∅, ∈, and =, while other
constructor and predicate symbols are neither assumed nor excluded. The symbol
set is a defined one in ZF but equivalently may be taken as a primitive and its def-
inition taken as an axiom. We begin with ZF without the axiom of infinity (ZF−),
together with set(x) → finite(x), which we take as an adequate mathematical

11

theory of finite sets (see [7] Chapter 2, Section 3.6). To this we add a definition of
scons, viz., set(y)→ {x/y} = {x}∪ y. From the motivations underlying SetAx we
see the need to make explicit assumptions about constructor symbols. We take FS3
and FS4 to be those assumptions (FS4 is an assumption about scons not covered
by its definition). Now let FinZF refer to the entire collection of these axioms. We
then show that SetAx− is equivalent to FinZF . The forward direction essentially
uses induction while the reverse direction uses well-known properties of ZF .

We list ZF− below (except for the standard properties of reflexivity and substi-
tutivity of the equality relation).

Definition (SetDef):
set(y)↔ ∃x(x ∈ y) ∨ y = ∅

Axiom of Extensionality (ExtAx):
set(y) ∧ set(z)→ (∀x(x ∈ y ↔ x ∈ z)→ y = z)

Sum Axiom (SumAx):
set(y)→ ∃z(set(z) ∧ ∀x(x ∈ z ↔ ∃u(set(u) ∧ x ∈ u ∧ u ∈ y)))

Powerset Axiom (PowerAx):
set(y)→ ∃z(set(z) ∧ ∀x(set(x)→ (x ∈ z ↔ x ⊆ y)))

Axiom Schema of Replacement (ReplAx):
set(u)→

(
∀x∀y∀z(x ∈ u ∧ ϕ(x, y, ~w) ∧ ϕ(x, z, ~w)→ y = z)

→ ∃v(set(v) ∧ ∀y(y ∈ v ↔ ∃x(x ∈ u ∧ ϕ(x, y, ~w))))
)

Axiom of Regularity (RegAx):
set(z) ∧ z 6= ∅ → ∃x(x ∈ z ∧ ∀y(y ∈ x→ y 6∈ z))

Axiom of Choice (ChoiceAx):
For any set y there is a function f such that
for any non-empty subset z of y, f(z) ∈ z

Theorem 5.1. SetAx |= ϕ, where ϕ is any of: (i) SetDef , (ii) ExtAx, (iii)
SumAx, (iv) PowerAx, (v) RegAx, and (vi) ReplAx.

Proof. (i) SetDef : Straightforward. The remaining are proved using the induc-
tion axiom. We just give the ψ in each case.
(ii) ExtAx: ψ(y) ≡ ∀z(set(z) ∧ ∀x(x ∈ y ↔ x ∈ z)→ y = z).
(iii) SumAx: ψ(y) ≡ ∃z(set(z) ∧ ∀x(x ∈ z ↔ ∃u(set(u) ∧ x ∈ u ∧ u ∈ y))).
(iv) PowerAx: ψ(y) ≡ ∃z(set(z) ∧ ∀x(set(x)→ (x ∈ z ↔ x ⊆ y))).
(v) ReplAx: ψ(u, ~w) ≡ ∀x∀y∀z(x ∈ u ∧ ϕ(x, y, ~w) ∧ ϕ(x, z, ~w)→ y = z)

→ ∃v(set(v) ∧ ∀y(y ∈ v ↔ ∃x(x ∈ u ∧ ϕ(x, y, ~w)))).
At the induction step in (iii) and (iv), an auxiliary induction is required to show
that a certain set, which cannot be expressed purely as a scons term, exists. For
example, the overall proof for SumAx is as follows.

Assume set(y).

Basis: It is easy to show ψ(∅). Take ∅ as witness for z.

Induction Step: To show ∀x′, y′(set(y′) ∧ x′ ∈ y ∧ y′ ⊆ y ∧ ψ(y′) → ψ({x′/y′})).
Assume set(y′), x′ ∈ y, y′ ⊆ y and ψ(y′).
Case(1): indiv(x′). Since x′ has no elements, a witness for z in ψ(y′) is a witness
for z in ψ({x′/y′}). It is easy to show that ψ({x′/y′})↔ ψ(y′).
Case(2): set(x′). The intuition is as follows. Let z1 be a witness for z in ψ(y′), i.e.,
z1 =

⋃
y′. Then, we want

⋃
{x′/y′} = x′ ∪ (

⋃
y′) = x′ ∪ z1 to be a witness for z in

12

ψ({x′/y′}). But, we cannot express x′ ∪ z1 as a scons term since actual elements of
x′ are not known. So, we do an auxiliary induction on x′ as follows.

We show that induction(x′, y′, ρ) holds, where ρ(x′, y′) ≡ ψ({x′/y′}), and

induction(x′, y′, ρ) ≡
ρ(∅, y′) ∧
∀x′′, y′′[set(y′′)∧x′′ ∈ x′∧y′′ ⊆ x′∧ρ(y′′, y′)→ ρ({x′′/y′′}, y′)] → ρ(x′, y′)

The auxiliary basis step ρ(∅, y′) ≡ ψ({∅/y′}) is established in the same way as for
case (1) since ∅ has no elements. The auxiliary induction step is established by
using {x′′/z2} as a witness for z in ρ({x′′/y′′}, y′), where z2 is a witness for z in
ρ(y′′, y′). Thus we have ρ(x′/y′), i.e., ψ({x′/y′}). Hence ψ(y). 2

We need to develop the theory further before deducing the remaining axiom
ChoiceAx of ZF− from SetAx−. But we can now directly borrow in SetAx− all
the properties of the axioms of ZF− deduced in above theorem.

In SetAx and SetAx−, we adopt all the defined symbols of ZF associated with
ZF−, except set, which is taken as primitive in SetAx. These adopted symbols are
given the same definitions in SetAx as in ZF . That the definitions are well-defined
in SetAx follows from their well-definedness in ZF− and from Theorem 5. We list
some of these definitions below.

(D4):
(
{x | ϕ(x, ~u)} = y ↔ set(y) ∧ ∀x(x ∈ y ↔ ϕ(x, ~u))

)
← ∃y

(
set(y) ∧ ∀x(x ∈ y ↔ ϕ(x, ~u))

)
Here, ~u are the other free variables in ϕ. The antecedent expresses the condition
of interest, viz., that the intuitively appropriate collection specified by the set ab-
straction does form a (finite) set. Some of the definitions below are specified using
set abstraction. In each case, the intuitively appropriate collection does exist as a
set, because it is known to do so in ZF−.

(D5): (y ∩ z = {x | x ∈ y ∧ x ∈ z})← set(y) ∧ set(z)
(D6): (y ∪ z = {x | x ∈ y ∨ x ∈ z})← set(y) ∧ set(z)
(D7): (P(y) = {x | set(x) ∧ x ⊆ y})← set(y)
(D8):

⋃
y = {x | ∃z(x ∈ z ∧ z ∈ y)} ← set(y)

(D9): {y, z} = w ↔ set(w) ∧ ∀x(x ∈ w ↔ x = y ∨ x = z)
(D10): {x} = {x, x},

{x, y, z} = {x, y} ∪ {z},
{x, y, z, w} = {x, y} ∪ {z, w}, and so on.

Similarly, other definitions needed are of set difference y\z, union of sets ∪ni=1xi,
ordered pair 〈x, y〉, a set being a relation relation(u), a set being a function
function(f), and the value of a function at an argument f(x) = y. Their defi-
nitions are as in [29] Ch. 2,3. Using these definitions a formal statement of the
Axiom of Choice can be given, and it can be deduced using induction, as is well-
known in set theory ([7] p. 62).

Axiom of Choice (ChoiceAx):
set(z)→ ∃f(set(f) ∧ function(f) ∧ ∀x(set(x) ∧ x ⊆ z ∧ x 6= ∅ → f(x) ∈ x)).

Now we can show that SetAx− |= ChoiceAx as follows. Assume set(z) and use
induction axiom with

ψ(z) ≡ ∃f(set(f) ∧ function(f) ∧ ∀x(set(x) ∧ x ⊆ z ∧ x 6= ∅ → f(x) ∈ x)).

13

The following definition of minimality is used to give the definition of finiteness in
sets. It states that a set x is minimal amongst a collection of sets y if it is minimal
with respect to the order relation ⊆. For example, if y = {{1, 2}, {1}, {3}}, then x =
{1} is a minimal element in y, as is {3}, i.e., minimal({1}, y) and minimal({3}, y)
hold. We follow Tarski’s definition of finiteness which states that a set z is finite
exactly when every non-empty family of subsets of z has a minimal element. The
more usual definition of finiteness of a set, viz., being equinumerous to a natural
number is known to be equivalent to Tarski’s definition ([29] section 4.2, section
5.2).

(D11): [minimal(x, y)↔ [x ∈ y ∧ set(x) ∧ ∀z[set(z) ∧ z ∈ y ∧ z ⊆ x→ z = x]]]
← set(y)

(D12):
[
finite(z)↔ ∀y[set(y) ∧ y 6= ∅ ∧ y ⊆ P(z)→ ∃xminimal(x, y)]] ← set(z)

Some properties based on the above definitions are given next. They establish
that scons does indeed have its intended meaning, and that set in SetAx− does
refer to finite sets.

Theorem 5.2. SetAx− |= ϕ, where ϕ is any of:
(i) set(y)→ {x/y} = {x} ∪ y
(ii) {x1/{x2/ · · · {xn/∅} · · ·}} = {x1, x2, . . . , xn} for any n ≥ 1
(iii) set(z)→ finite(z)

Proof. (i): Assume set(y). So set({x/y}) by FS2. Also set({x} ∪ y) by D9, D10,
D7 & D4. Now we show ∀z(z ∈ {x/y} ↔ z ∈ {x}∪ y), and apply ExtAx. We have
z ∈ {x/y} ↔ z = x ∨ z ∈ y ↔ z ∈ {x} ∨ z ∈ y ↔ z ∈ {x} ∪ y, by M3 and from
properties of ZF−, viz., Theorems 43 & 20, Chapter 2 [29].

(ii): By induction on n and from D9 & D10.

(iii): Assume set(z) and use induction axiom with
ψ(z) ≡ finite(z) ≡ ∀y[set(y) ∧ y 6= ∅ ∧ y ⊆ P(z)→ ∃xminimal(x, y)] 2

We have not gone into the issue of the independence of each of the axioms of
SetAx as it is inessential to this work. We note that axiom FS3 can be deduced
from the remaining axioms (from F1 and Prop. 1(i)).

Finally, we have the reverse implication.

Theorem 5.3. FinZF |= SetAx−

Proof. Straightforward, using the properties of ZF−, such as in Chapters 2 and
4 of [29]. We give a few cases below; the full proof considering all cases is given in
Jana’s dissertation [11].

FinSetAx: (FS5): We have set(z) ∧ finite(z) → induction(z, ~w, ψ), by Theorem
32, Chapter 4 [29]. Hence set(z) → induction(z, ~w, ψ) since set(z) → finite(z) is
in FinZF .

MemAx: (M3): Assume set(z). Now x = y ∨ x ∈ z ↔ x ∈ {y} ∨ x ∈ z ↔ x ∈
{y} ∪ z ↔ x ∈ {y/z}, by Theorems 43 & 20, Chapter 2 [29], and by definition of
scons.

PAAx: (PA1): Assume set(z). So set({y} ∪ z) and set({x} ∪ z), i.e., set({y/z})
and set({x/z}). From definition of scons, and from Theorems 22 & 21, Chapter

14

2 [29], we get, {x/{y/z}} = {x} ∪ {y/z} = {x} ∪ {y} ∪ z = {y} ∪ {x} ∪ z =
{y}∪ {x/z} = {y/{x/z}}. (PA2): Assume set(z). So set({x}∪ z), i.e., set({x/z}).
From definition of scons, and from Theorems 22 & 23, Chapter 2 [29], we get,
{x/{x/z}} = {x} ∪ {x/z} = {x} ∪ {x} ∪ z = {x} ∪ z = {x/z}. 2

6. UNIFICATION AND FREENESS IN SETAX

As noted in the introduction, our main motivation for discussing unification is
to justify that the freeness axioms of SetAx are an adequate system to enforce
inequalities among objects that are not provably equal in SetAx−.

We note at the outset that certain inequalities can be deduced in SetAx− itself,
such as x 6= y ← set(x) ∧ indiv(y), and (y 6= z ← ¬∀x(x ∈ y ↔ x ∈ z)) ←
set(y) ∧ set(z). (The latter is just the contrapositive of the converse of ExtAx.)
Also, M4 helps to deduce inequalities like x 6= {x} and y 6= {{y}}.

Our presentation of the unification procedure is based on the following proposi-
tion.

Proposition 6.1. SetAx− |= ϕ, where ϕ is any of:
(i) set(w)→

(
{x1, . . . , xm/w} = {y1, . . . , yn/w} ↔(∨n

j=1((x1 = yj ∧ {x2, . . . , xm/w} = {y1, . . . , yj−1, yj+1, . . . , yn/w})
∨(x1 = yj ∧ {x1, . . . , xm/w} = {y1, . . . , yj−1, yj+1, . . . , yn/w})
∨(x1 = yj ∧ {x2, . . . , xm/w} = {y1, . . . , yn/w}))
∨∃z(set(z) ∧ w = {x1/z} ∧ {x2, . . . , xm/z} = {y1, . . . , yn/z})

))
(ii) set(x) ∧ set(y)→

(
{x1/x} = {y1/y} ↔(

(x1 = y1 ∧ x = y) ∨ ∃z(set(z) ∧ x = {y1/z} ∧ y = {x1/z})∨
(x1 = y1 ∧ y = {x1/x}) ∨ (x1 = y1 ∧ x = {y1/y})

))
Proof. (i): Assume set(w). (←): Straightforward. (→): Take cases of x1 ∈
{y1, . . . , yn} and x1 6∈ {y1, . . . , yn}.

Case(1) : x1 ∈ {y1, . . . , yn}. Let 1 ≤ j ≤ n. We have a number of subcases, one
for each j. Hence, we index the subcases by j. Subcase (1.j): x1 = yj . Take
combinations of cases of x1 being in and not being in {x2, . . . , xm/w}, with cases of
yj being in and not being in {y1, . . . , yj−1, yj+1, . . . , yn/w}. We show two of these
combinations.
Subsubcase (1.j.1): x1 6∈ {x2, . . . , xm/w}, yj 6∈ {y1, . . . , yj−1, yj+1, . . . , yn/w}. So,
{x2, . . . , xm/w} = {y1, . . . , yj−1, yj+1, . . . , yn/w}.
Subsubcase (1.j.2): x1 6∈ {x2, . . . , xm/w}, yj ∈ {y1, . . . , yj−1, yj+1, . . . , yn/w}. So,
{x1, . . . , xm/w} = {y1, . . . , yj−1, yj+1, . . . , yn/w}.
The subsubcase (1.j.4) of x1 ∈ {x2, . . . , xm/w}, yj ∈ {y1, . . . , yj−1, yj+1, . . . , yn/w}
gives the same conclusion as subsubcase (1.j.1).

Case(2) : x1 6∈ {y1, . . . , yn}. So, x1 ∈ w, i.e., ∃z(set(z) ∧ w = {x1/z} ∧ x1 6∈ z).
Then, set(z) ∧ w = {x1/z} ∧ x1 6∈ z. Subcase (2.1): x1 6∈ {x2, . . . , xm}. So,
{x2, . . . , xm/z} = {y1, . . . , yn/z} by removing x1 from {x1, . . . , xm/w} and from
{y1, . . . , yn/w}. Hence ∃z(set(z)∧w = {x1/z}∧{x2, . . . , xm/z} = {y1, . . . , yn/z}).
Subcase (2.2): x1 ∈ {x2, . . . , xm}. It is easy to see that ∃z1(set(z1)∧w = {x1/z1}∧
{x2, . . . , xm/z1} = {y1, . . . , yn/z1} by using {x1/z} as witness for z1.

15

(ii): Assume set(x), set(y). (←): Straightforward. (→): Take combinations of
cases of x1 6∈ x, x1 ∈ x, with cases of y1 6∈ y, and y1 ∈ y. We show three of these
cases.

Case(1) : x1 6∈ x, y1 6∈ y. Subcase (1.1): x1 = y1. Then x = y. So, x1 = y1 ∧ x = y.
Subcase (1.2): x1 6= y1. Then, x1 ∈ y, i.e., ∃z(set(z) ∧ y = {x1/z} ∧ x1 6∈ z). So,
{x1/x} = {y1/{x1/z}} = {x1/{y1/z}}. Then, x1 6∈ {y1/z}. So, x = {y1/z}. Thus,
∃z(set(z) ∧ x = {y1/z} ∧ y = {x1/z}).
Case(2) : x1 /∈ x, y1 ∈ y. So, y = {x1/x}, and y1 ∈ {x1/x}, i.e., y1 = x1 or
y1 ∈ x. Subcase (2.1): y1 = x1. So, x1 = y1 ∧ y = {x1/x}. Subcase (2.2):
y1 ∈ x. So, ∃z(set(z)∧ x = {y1/z}), i.e., set(z)∧ x = {y1/z}. It is easy to see that
y = {x1/{y1/z}} = {x1/{x1/z}} = {x1/z}. Thus, ∃z(set(z) ∧ x = {y1/z} ∧ y =
{x1/z}).
Case(4) : x1 ∈ x, y1 ∈ y. So, x = y, and ∃z(set(z) ∧ x = {x1/z}), i.e., x = {x1/z}.
Therefore, y1 ∈ {x1/z}. Subcase (4.1): y1 = x1. So, x = {y1/z} ∧ y = {x1/z}, i.e.,
∃z(set(z)∧ x = {y1/z} ∧ y = {x1/z}). Subcase (4.2): y1 ∈ z. So, ∃z1(set(z1)∧ z =
{y1/z1}), i.e., set(z1) ∧ z = {y1/z1}. It is easy to see that x = {y1/{x1, y1/z1}}
and y = {x1/{x1, y1/z1}}. Thus, ∃z(set(z) ∧ x = {y1/z} ∧ y = {x1/z}) (take
{x1, y1/z1} as witness). 2

In our context, unification involves not just solving equality constraints, but is
generalized to solving a conjunction of atoms involving the set predicates set, =,
and ∈. We use the term constraint not in the specific sense in which it is meant in
CLP languages [10], but rather in the general sense of an atom whose head is either
a set-predicate, an equality-predicate, or a membership-predicate. The unification
process repeatedly transforms a given unification problem using rewrite rules until
it ultimately ends in simplified forms called solved forms. Solved forms have the
desirable property that all solutions can be easily read off from them.

The rewrite rules are formed from equivalences such as those in the above propo-
sition. Thus, an atom of the form appearing on the lhs of the equivalence is rewritten
by any of the disjuncts appearing on the rhs of the equivalence. This rewriting is
a nondeterministic process because, in general, there could be multiple maximally
general unifiers. We would like to note that our use of a nondeterministic rewriting
process should not be surprising. In this respect, set unification is similar to other
unification problems where an equality theory is involved, e.g., the unification of
typed lambda terms [9, 25]. The unification procedure in these papers is also given
in terms of a nondeterminstic rewriting process.

From the above proposition, we see that in solving a set equation, other objects
such as existential variables or the set predicate can appear in a disjunct on the rhs
of the equivalence. Hence, our definitions below reflect these additional forms. A
constraint χ is a conjunction of the form ∃~z(A1 ∧ · · · ∧ An), where n ≥ 0 and each
Ai is of the form set(s), s = t, or s ∈ t. The ~z are the bound variables of χ. The
free variables of χ are denoted by V ar(χ) and we seek values of these variables for
which there are values of the existential variables that make the constraint hold in
SetAx . It is convenient to abbreviate a constraint as a multiset K = ∃~z{Ai}ni=1

and let V ar(K) be its free variables.
A solved form ζ is a constraint of the form ∃~z{set(y1), · · · , set(ym), x1 = t1, · · · , xn =

tn} where m,n ≥ 0, and the xi’s are distinct free variables that occur exactly
once in ζ. Also, each existential variable occurs at least once in the multiset, and

16

if any yj is an existential variable, then it occurs among the ti. For example,
ζ1 ≡ ∃z1{x = {1/z1}, set(z1), z = f(u, 1), y = ∅} is a solved form, and all its solu-
tions can be read off by giving all possible set values for z1 and all possible values
for u, and thereby obtaining the values of x, z, and y. After this, the existential
variable z1 can be omitted or forgotten, leaving only the values of the free variables.

Below are the rewrite rules that can be applied to a constraint. In each rule, a
selected atom (set, equality, or membership) is rewritten to the form on the rhs of
the rule. One can think of this as a form of outermost rewriting (at the multiset
level). We use the convention that w, x, y, and z are variables at the term-level
(not variables at the meta-level). Thus, for example, rules S1 and S2 below do not
overlap because S1 is applicable when the argument of set is ∅ but S2 is applicable
only when this argument is a variable. We also remind the reader that constructors c
and d in the rewrite rules E8, E9, and M3 stand for uninterpreted function symbols.

Here, F denotes failure in solving the constraint, and {x 7→ t} represents a
substitution which we take as applied on the left. By applying a substitution to
a constraint K we mean that it is applied to the multiset of K. Also, we use the
phrase ‘x occurs in K’ iff x occurs in the multiset of K.

(S1) K ∪ {set(∅)} ⇒ K
(S2) K ∪ {set(x)} ⇒ K

if set(x) occurs in K.
(S3) ∃zK ∪ {set(z)} ⇒ K

if set(z) does not occur in K
(S4) K ∪ {set(c(~t))} ⇒ F

if c ∈ ΣC
(S5) K ∪ {set({s1/s2})} ⇒ K ∪ {set(s2)}

(E1) ∃zK ⇒ K
if z does not occur in K

(E2) ∃zK ∪ {z = t} ⇒ K
if z /∈ V ar(t) and z does not occur in K

(E3) K ∪ {x = x} ⇒ K
(E4) K ∪ {x = t} ⇒ {x 7→ t}K ∪ {x = t}

if x /∈ V ar(t) and x occurs in K
(E5) K ∪ {x = t} ⇒ ∃zK ∪ {set(z), x = t′}

if x ∈ V ar(t), x 6≡ t,
t ≡ {t1, . . . , tn/x} with n ≥ 1, and x 6∈ V ar(t1, . . . , tn)
Here t′ ≡ {t1, . . . , tn/z}, z a new variable

(E6) K ∪ {x = t} ⇒ F
if x ∈ V ar(t), x 6≡ t,
¬ (t ≡ {t1, . . . , tn/x} with n ≥ 1 and x /∈ V ar(t1, . . . , tn))

(E7) K ∪ {t = x} ⇒ K ∪ {x = t}
if t is not a variable

(E8) K ∪ {c(~s) = d(~t)} ⇒ F
if c 6≡ d

(E9) K ∪ {c(s1, . . . , sm) = c(t1, . . . , tm)} ⇒ K ∪ {s1 = t1, . . . , sm = tm}
if m ≥ 0

(E10) K ∪ {{s1, . . . , sm/w} = {t1, . . . , tn/w}} ⇒ K ∪ {set(w), s1 = tj ,
{s2, . . . , sm/w} = {t1, . . . , tj−1, tj+1, . . . , tn/w}}, for 1 ≤ j ≤ n

17

(E11) K ∪ {{s1, . . . , sm/w} = {t1, . . . , tn/w}} ⇒ K ∪ {set(w), s1 = tj ,
{s1, . . . , sm/w} = {t1, . . . , tj−1, tj+1, . . . , tn/w}}, for 1 ≤ j ≤ n

(E12) K ∪ {{s1, . . . , sm/w} = {t1, . . . , tn/w}} ⇒ K ∪ {set(w), s1 = tj ,
{s2, . . . , sm/w} = {t1, . . . , tn/w}}, for 1 ≤ j ≤ n

(E13) K ∪ {{s1, . . . , sm/w} = {t1, . . . , tn/w}} ⇒ ∃zK ∪ {set(z), w = {s1/z},
{s2, . . . , sm/z} = {t1, . . . , tn/z}}
Here z is a new variable

(E14) K ∪ {{s1/s2} = {t1/t2}} ⇒ ∃zK ∪ {{s1/z} = t2, s2 = {t1/z}, set(z)}
if ¬(last(s2) ≡ last(t2) ≡ a variable)
Here z is a new variable.

(E15) K ∪ {{s1/s2} = {t1/t2}} ⇒ K ∪ {s1 = t1, s2 = {t1/t2}, set(t2)}
if ¬(last(s2) ≡ last(t2) ≡ a variable)

(E16) K ∪ {{s1/s2} = {t1/t2}} ⇒ K ∪ {s1 = t1, {s1/s2} = t2, set(s2)}
if ¬(last(s2) ≡ last(t2) ≡ a variable)

(M1) K ∪ {s ∈ ∅} ⇒ F
(M2) K ∪ {s ∈ x} ⇒ ∃zK ∪ {set(z), x = {s/z}}

Here, z is a new variable
(M3) K ∪ {s ∈ c(~t)} ⇒ F

if c ∈ ΣC
(M4) K ∪ {s ∈ {t1/t2}} ⇒ K ∪ {set(last(t2)), s = t1}
(M5) K ∪ {s ∈ {t1/t2}} ⇒ K ∪ {s ∈ t2}

By successively applying rules to a constraint we obtain a derivation. For exam-
ple, the following sequence constitutes a derivation where the atom being rewritten
is underlined.
{{1/x} = {u/y}, {v/x} = {2/y}}
⇓ E14
∃z1{set(z1), x = {u/z1}, y = {1/z1}, {v/x} = {2/y}}
⇓ E4
∃z1{set(z1), x = {u/z1}, y = {1/z1}, {v/{u/z1}} = {2/y}}
⇓ E4
∃z1{set(z1), x = {u/z1}, y = {1/z1}, {v/{u/z1}} = {2/{1/z1}}}
⇓ E9
∃z1{set(z1), x = {u/z1}, y = {1/z1}, v = 2, {u/z1} = {1/z1}}
⇓ E9
∃z1{set(z1), x = {u/z1}, y = {1/z1}, v = 2, u = 1, z1 = z1}
⇓ E4
∃z1{set(z1), x = {1/z1}, y = {1/z1}, v = 2, u = 1, z1 = z1}
⇓ E3
∃z1{set(z1), x = {1/z1}, y = {1/z1}, v = 2, u = 1}
At times, more than one rule can apply to a selected atom, such as rules E8 and

E13 to E15 at the first rewriting step above. Then all possible rewritings can be
recorded as multiple branches arising from that constraint. This leads to a tree of
derivations.

Starting from a constraint K and using the rewrite rules above repeatedly until
none is applicable results in a finite tree of derivations, each leaf of which is either
F or a solved form. We use the correctness and termination proof in [5] to assert

18

this. The termination proof is obtained by first showing that rules S1-5 easily
terminate from the reduction in size of terms. We invoke the proof in [5] for the
termination of rules E1-16 which are solely in terms of set and =. Finally, rules
M1-5 easily terminate by strict reduction in size of terms and because we know set
and = already terminate. The termination proof requires that at any step of the
derivation the leftmost atom that can be rewritten be selected for rewriting.

Proposition 6.2. Let Ω = {ζ1, . . . , ζk} for some k ≥ 0 be the set of all solved forms
obtained from the rewriting procedure for a constraint χ. Then,

(i) SetAx− |= ∀(ζi → χ)
(ii) SetAx |= ∀(χ→ ζ1 ∨ · · · ∨ ζk)

Proof. (i): Consider each rewrite rule ‘lhs⇒ rhs’ in turn and show that SetAx− |=
∀(rhs→ lhs). By transitivity and by finiteness of the rewriting tree for χ it follows
that SetAx− |= ∀(ζi → χ).

(ii): Consider all possible forms of an atom for rewriting. For each atom, suppose
there are n ≥ 1 applicable rewrite rules ‘lhs ⇒ rhsi’, for 1 ≤ i ≤ n. Show that
SetAx |= ∀(lhs→ rhs1∨ · · ·∨ rhsn). Then, by induction on the depth of the rewrite
tree, it is easy to show that SetAx |= ∀(χ→ ζ1 ∨ · · · ∨ ζk). 2

The following properties about SetAx and SetAx− can now be deduced.

Theorem 6.1. Let Ω = {ζ1, . . . , ζk} for some k ≥ 0 be the set of all solved forms
obtained from the rewriting procedure for a constraint χ. Then,

(i) SetAx |= ∀(χ↔ ζ1 ∨ · · · ∨ ζk)
(ii) SetAx− |= ∃χ ⇔ Ω 6= ∅
(iii) SetAx |= ∃χ ⇔ SetAx− |= ∃χ
(iv) SetAx |= ∃χ or SetAx |= ¬∃χ
(v) SetAx− 6|= ∃χ ⇒ SetAx |= ¬∃χ

Proof. (i): Follows from the previous proposition and by quantifier and clausal
logic.

(ii): (⇒) Follows from (i) above and consistency of SetAx. (⇐) Let ζ ∈ Ω witness
Ω 6= ∅. Starting from SetAx− |= ∀(ζ → χ), we show SetAx− |= ∃χ. Let ζ ≡
∃~z(set(y1) ∧ · · · ∧ set(ym) ∧ x1 = t1 ∧ · · · ∧ xn = tn) where m,n ≥ 0 and let
~u = V ar(χ) be the free variables of χ. In none of the rewrite rules are any new
free variables introduced, so that we have V ar(ζ) ⊆ V ar(χ). Hence, SetAx− |=
∀~u, ~z(set(y1) ∧ · · · ∧ set(ym) ∧ x1 = t1 ∧ · · · ∧ xn = tn → χ).

We next substitute instances for ~u and ~z such that the antecedent holds. Let
substitutions θ, σ be θ = {y1 7→ ∅, . . . , ym 7→ ∅} and σ = {x1 7→ θt1, . . . , xn 7→ θtn}.
Clearly σθ(set(y1)∧ · · ·∧ set(ym)∧x1 = t1∧ · · ·∧xn = tn) holds in SetAx−. Hence
SetAx− |= ∀σθχ. This gives SetAx− |= ∃χ.

(iii): Show SetAx− 6|= ∃χ ⇒ SetAx 6|= ∃χ, which follows from (ii) and (i) above,
and from consistency of SetAx.

(iv): Follows from (iii), (ii), and (i) above.

(v): Follows from (ii) and (i) above. 2

The property (v) above justifies the adequacy of FreeAx (by taking χ ≡ s = t
or χ ≡ s ∈ t). The property (iv) above shows that SetAx is a complete theory over

19

formulae ϕ of the form ∃χ or ¬∃χ. We note that SetAx is not complete over all
closed formulae. For example, SetAx 6|= ∃x indiv(x) and SetAx 6|= ¬∃x indiv(x),
when ΣC = ∅. These can be shown, respectively, by using a model of SetAx of pure
sets and a model of SetAx containing at least one individual. These models can be
constructed from the structure F in section 4.

7. HERBRAND STRUCTURE

As is usual in logic programming, we seek to focus on just one kind of interpretation,
the Herbrand-like interpretations. Such interpretations have a fixed domain and
fixed functional assignment for the constructor symbols. The domain is based on a
quotient structure formed from the set of ground terms modulo a relation that is
equality between ground terms. To denote that it is a quotient structure, we use
the notation ∼=, as in Herbrand ∼=-structure. In the context of programming, the
domain contains the data objects built from the (primitive and not defined) data
constructor symbols. The predicate interpretations are allowed to vary, leading
thereby to different interpretations.

We now define the standard or Herbrand ∼=-structure H = 〈U∼=,ΣP ,ΣC〉 below.
Let s, t be ground terms. The relation ∼= is given by: s ∼= t iff SetAx |= s = t. Here,
extensionality can cause syntactically different ground terms to be related — for
example, {1/{2/∅}} ∼= {2/{1/∅}}. By virtue of EqAx, ∼= is an equivalence relation.
Let [t] denote the equivalence class containing ground term t. A somewhat simpler
characterization of the ∼=-relation is usually stated in the literature ([17, 26]), viz.,
using just PAAx and EqAx to define the relation. Since set appears in PAAx we
also need some axioms from FinSetAx. Let SetPAAx be FS1 ∪ FS2 ∪ PAAx ∪
EqAx. The next proposition justifies this more intuitive characterisation of ∼=.

Proposition 7.1. Let s, t be ground terms. Then SetAx |= s = t ⇔ SetPAAx |=
s = t.

Proof. (⇐) Immediate. (⇒) By induction on s, t. We show just the following
case: s ≡ {s1, . . . , sm/∅}, t ≡ {t1, . . . , tn/∅},m, n ≥ 1.

Let SetAx |= s1 = si1 , . . . , SetAx |= s1 = sik , and SetAx 6|= s1 = sik+1
, . . . ,

SetAx 6|= s1 = sim , where i1, . . . , im is a permutation of 1, . . . ,m. We have, k ≥ 1
since SetAx |= s1 = s1.

Let SetAx |= s1 = tj1 , . . . , SetAx |= t1 = tjl , and SetAx 6|= s1 = tjl+1
,

. . . , SetAx 6|= s1 = tjn , where j1, . . . , jn is a permutation of 1, . . . , n. We have,
l ≥ 1 since SetAx |= s1 ∈ t, i.e., SetAx |= s1 = t1 ∨ · · · ∨ s1 = tn, i.e.,
SetAx |= s1 = t1 or . . . or SetAx |= s1 = tn, by completeness of SetAx. We
also have SetAx |= s1 6∈ {sik+1

, . . . , sim/∅}, and SetAx |= s1 6∈ {tjl+1
, . . . , tjn/∅}.

So, SetAx |= {sik+1
, . . . , sim/∅} = {tjl+1

, . . . , tjn/∅}.
By induction hypothesis, we have
SetPAAx |= s1 = si1 , . . . , SetPAAx |= s1 = sik , and
SetPAAx |= s1 = tj1 , . . . , SetPAAx |= t1 = tjl , and
SetPAAx |= {sik+1

, . . . , sim/∅} = {tjl+1
, . . . , tjn/∅}.

Thus, SetPAAx |= {s1, . . . , sm/∅}
PA1
= {si1 , . . . , sik , sik+1

, . . . , sim/∅}
PA2
= {s1, sik+1

, . . . , sim/∅}

20

PA2
= {s1, tjl+1

, . . . , tjn/∅}
PA2
= {tj1 , tjl+1

, . . . , tjn/∅}
PA2
= {tj1 , . . . , tjl , tjl+1

, . . . , tjn/∅}
PA1
= {t1, . . . , tn/∅}. 2

The domain U∼= ofH, called the Herbrand ∼=-Universe, is: U∼= = {[t] | t a ground term}.
The constructor interpretations in H are, for all c ∈ ΣC : cH([t1], . . . , [tn]) =
[c(t1, . . . , tn)]. It is easily verified that cH is well-defined. Let p be set, ∈, or =, and
t1, . . . , tn be ground terms. Then, pH([t1], . . . , [tn]) iff SetAx |= p(t1, . . . , tn). It is
easily verified that pH([t1], . . . , [tn]) is well-defined. The definition is motivated by
our seeking the least relations that might model SetAx.

For example, the quotient universe construction and the above definition gives
identity as the interpretation of equality, i.e., [s] = [t] iff [s] =H [t], for ground terms
s, t. Additional justification for the above set-predicate interpretations is provided
by the following proposition.

Proposition 7.2. Based on the above U∼= and constructor interpretations, the set
predicate interpretations that model SetAx are unique.

Proof. This follows from the completeness of SetAx over the ground set predi-
cate atoms. Let H1, H2 be two structures with the above domain U∼= and above
constructor interpretations, but with different set-predicate interpretations; and let
H1, H2 both model SetAx. Let p be set, ∈, or =, and t1, . . . , tn be ground terms.
Now if SetAx |= p(t1, . . . , tn) then pH1([t1], . . . , [tn]) and pH2([t1], . . . , [tn]) must
both hold. So for H1 and H2 to differ in their set-predicate interpretations, there
must be a p and t1, . . . , tn such that SetAx 6|= p(t1, . . . , tn) but pH1([t1], . . . , [tn])
and not pH2([t1], . . . , [tn]) hold. However, then SetAx |= ¬p(t1, . . . , tn), i.e., not
pH1([t1], . . . , [tn]). Contradiction. 2

We will subsequently show that H models SetAx. The above proposition shows
that the set-predicate interpretations given in H are the only possible ones that
can lead to a model of SetAx (based on the fixed universe and constructor inter-
pretations). It is convenient to abbreviate pH([t1], . . . , [tn]) as [p(t1, . . . , tn)], for a
predicate symbol p. The next two propositions use the consistency of SetAx and
the completeness of SetAx on the ground set predicate atoms. To compress the
statements in the propositions, several cases which are better stated separately have
been combined together.

Proposition 7.3. The interpretation of set in H is:
(i) not [set(scons(s1, . . . , scons(sm, c(~s′)) · · ·))], m ≥ 0, c ∈ ΣC
(ii) [set({s1, . . . , sm/∅})], m ≥ 0

Proposition 7.4. The interpretations of ∈ and = in H are given (mutually recur-
sively) below. (Symmetric cases are omitted.)

(∈.1) not [s ∈ scons(t1, . . . scons(tm, c(~t′)) · · ·)], m ≥ 0, c ∈ ΣC
(∈.2) [s ∈ {t1, . . . , tm/∅}] ⇔ [s = t1] or · · · or [s = tm],m ≥ 0

(=.1) not [c(~s′) = d(~t′)], c 6≡ d, c, d ∈ ΣC
(=.2) [c(s1, . . . , sn) = c(t1, . . . , tn)] ⇔ [s1 = t1] and · · · and [sn = tn], c ∈ ΣC

(=.3) not [scons(s1, . . . scons(sm, c(~s′)) · · ·) = scons(t1, . . . scons(tn, d(~t′)) · · ·)]
m,n ≥ 0,m 6= n, c, d ∈ ΣC

21

(=.4) [scons(s1, . . . scons(sm, c(~s′)) · · ·) = scons(t1, . . . scons(tm, d(~t′)) · · ·)] ⇔
[s1 = t1] and · · · and [sm = tm] and [c(~s′) = d(~t′)], m ≥ 1, c, d ∈ ΣC

(=.5) not [scons(s1, . . . scons(sm, c(~s′)) · · ·) = {t1, . . . , tn/∅}], m,n ≥ 0, c ∈ ΣC
(=.6) [{s1, . . . , sm/∅} = {t1, . . . , tn/∅}] ⇔

[s1 ∈ {t1, . . . , tn/∅}] and · · · and
[sm ∈ {t1, . . . , tn/∅}] and
[t1 ∈ {s1, . . . , sm/∅}] and · · · and [tn ∈ {s1, . . . , sm/∅}], m,n ≥ 0

In H, while the set predicate interpretations are fixed, the non-set predicate
interpretations are allowed to vary, since we want them to depend on the logic
program at hand. This leads to different interpretations, and the following defini-
tion gives a suitable way to specify them. The Herbrand ∼=-Base, B∼=, is: B∼= =
{[A] | A a ground atom with initial symbol not a set predicate}, and a Herbrand
∼=-interpretation is a subset of B∼=. We do not include set predicate atoms in B∼=,
because their interpretations in H are fixed and therefore can be factored out from
consideration.

For logic programs P , one is interested in Herbrand ∼=-models of P ∪ SetAx .
Hence it is useful to show that Herbrand ∼=-interpretations model SetAx. It is not
immediate that Herbrand ∼=-interpretations model SetAx, since SetAx is not all in
definite clause form. Examples are axioms FS5 and M3.

We now show that H models SetAx. We have the following correspondence
between H and F , viz., that H is isomorphic to F , where F is the model of SetAx
constructed previously. Let the correspondence be given by (•)◦:U∼= → U , where

[∅]◦ = {}
[c(t1, . . . , tn)]◦ = c([t1]◦, . . . , [tn]◦), for c ∈ ΣC

[scons(t1, . . . , scons(tm, c(~t′)) · · ·)]◦ = scons([t1]◦, . . . , scons([tm]◦, [c(~t′)]◦) · · ·),
for c ∈ ΣC and m ≥ 1

[{t1, . . . , tm/∅}]◦ = {[t1]◦, . . . , [tm]◦}, for m ≥ 1

Clearly, by induction on t, we have [t]◦ ∈ U . Also, [s] = [t] ⇔ [s]◦ = [t]◦ holds,
by induction on s, t, and by the previous proposition. From these, it follows that
(•)◦ is well-defined.

Theorem 7.1. H is isomorphic to F , excluding the non-set predicate interpretations.

Proof. It is straightforward to show that (•)◦ is bijective, that the constructor
interpretations correspond, i.e., (cH([t1], . . . , [tn]))◦ = cF ([t1]◦, . . . , [tn]◦), and that
the set-predicate interpretations correspond, i.e., pH([t1], . . . , [tn])⇔ pF ([t1]◦, . . . , [tn]◦).

2

Theorem 7.2. Every Herbrand ∼=-interpretation models SetAx.

Since we have used the consistency of SetAx in proving properties that the above
theorem depends on, we cannot substitute it for Theorem 4 for establishing that
SetAx is consistent. However, we have not checked alternate ways of leading to the
above theorem without using consistency.

The above theorem justifies the following definitions. A Herbrand ∼=-model of a
sentence ϕ is a Herbrand ∼=-interpretation that models ϕ. Let ϕ and ψ be sentences.
Then ψ is a Herbrand ∼=-logical consequence of ϕ, denoted by ϕ |=H ψ, if ψ is true
in all Herbrand ∼=-models of ϕ.

22

8. CONCLUSIONS AND RELATED WORK

Sets are an important data object in both mathematics and computing. Mathe-
maticians have paid considerable attention to sets through axiomatic approaches.
Logical semantics also demands similar precision in discussing sets. Our treatment
in this paper takes such a step by giving a rigorous support for the use of set con-
structors and finite sets in logic programming: We gave a set of axioms, collectively
called SetAx, designed around the scons constructor. We distinguished between
two kinds of set constructors, scons(x, y) and dscons(x, y), both of which have
founded use in logic programs with sets. Our design of SetAx was influenced by
the choice of scons as a primitive symbol of our theory rather than as a defined
one, and by the need to deduce nonmembership relations between terms, to enable
the use of dscons. The main results of this paper are: (i) we have shown that the
set constructors indeed behave like finite sets; (ii) we have provided a framework
for establishing the correctness of set unification; and (iii) we defined a Herbrand
structure and provided a basis for discussing logical consequence semantics for logic
programs with finite sets. This system was used to give a declarative semantics for
the language SuRE [11], and can be used for other languages based upon these set
constructors.

The axiom system SetAx− has essentially been described in [23], but only section
3 and the deduction of extensionality from SetAx of our paper overlaps with that
work. A different axiomatic treatment of the set constructors is given in [5] for the
{log} programming language. In that paper the constructor scons is referred to as
with. Among the main differences are (i) we have an untyped system and make use
of the predicates set(x) and indiv(x) to test for sets and individuals respectively;
(ii) we make crucial use of the induction axiom in our development; (iii) we consider
permutation and absorption to be axioms, but not extensionality; and (iv) we do
not have the notion of the kernel of a term, which is used in [5]. On a technical
level, the most important difference is the typed vs. the untyped approach. We
do not use types because they are not needed to establish connections either with
set theory or logic programming. As a result, scons(s, t) denotes a set {s} ∪ t only
if t denotes a set; otherwise, scons(s, t) denotes an individual, not a set. In this
sense, the set constructor scons is similar to the list constructor cons of untyped
functional languages such as Lisp. On a methodological level, the axioms for the
with constructor are to be taken on an intuitive basis; whether they capture all the
properties of finite sets, i.e., whether their axioms are sufficient in addition to being
plausible, has not been discussed. The main contribution of this paper is that we
provide a rigorous justification that our axioms are both plausible and sufficient to
capture the notion of finite sets.

Finally, we note that our work differs fundamentally in objectives from those
of [1, 2, 20] in that we are interested in establishing logical foundations that will
facilitate giving logical-consequence semantics, whereas the above works are pri-
marily interested in model-theoretic semantics. Another approach which also dif-
fers fundamentally from our work is the embedding of sets within a constraint logic
programming (CLP) framework (e.g., [6, 8, 21]). Here, the emphasis is on op-
erational semantics (solving set constraints or developing consistency techniques),
whereas the focus of our paper is more on logical, or declarative, foundations for
set constructors.

23

ACKNOWLEDGMENTS

This research was supported by grant CCR 9613703 from the National Science
Foundation.

REFERENCES

1. Abiteboul, S. and Grumbach, S.: A Rule-Based Language with Functions and Sets,
ACM Trans. on Database Systems, vol. 16, no. 1, pp. 1–30, 1991.

2. Beeri, C., Naqvi, S., Shmueli, O., and Tsur, S.: Set Constructors in a Logic
Database Language, Jnl. Logic Programming, vol. 10, pp. 181–232, 1991.

3. Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., and Wos, L.: Set The-
ory in First-Order Logic: Clauses for Goedel’s Axioms, Jnl. Automated Reasoning,
vol. 2, no. 3, pp. 287–327, 1986.

4. Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G.: {log}: A Logic Program-
ming Language with Finite Sets, Proc. Eight Int. Conf. on Logic Programming,
Paris, Jun. 1991, pp. 111–124.

5. Dovier, A., Omodeo, E. G., Pontelli, E., and Rossi, G.: {log}: A Language for
Programming in Logic with Finite Sets, Jnl. of Logic Programming, vol. 28, no. 1,
pp. 1–44, 1996.

6. Dovier, A., Rossi, G.: Embedding Extensional Finite Sets in CLP, Proc. Intl. Symp.
on Logic Programming, Vancouver, BC, Oct. 1993, pp. 540–554.

7. Fraenkel, A. A., Bar-Hillel, Y., Levy, A. and van Dalen, D.: Foundations of Set
Theory, North-Holland, 1973.

8. Gervet, C.: Conjunto: Constraint Logic Programming with Finite Set Domains.
Proc. Intl. Symp. on Logic Programming, Ithaca, NY, Oct. 1994, pp. 339–358.

9. Huet, G. P.: A Unification Algorithm for Typed λ-Calculus, Theoretical Computer
Science, vol. 1. no. 1, pp. 27–57, 1975.

10. Jaffar, J. and Lassez, J-L.: Constraint Logic Programming, in: Proc. 14th ACM
Symp. on Principles of Programming Languages, pp. 111–119, 1987.

11. Jana, D.: Semantics of Subset-Logic Languages, Ph.D. dissertation, Department
of Computer Science, SUNY-Buffalo, August 1994.

12. Jana, D., and Jayaraman, B.: Set Constructors, Finite Sets, and Logical Seman-
tics, Unpublished manuscript 1992, subsequently made available as TR 94-030,
Department of Computer Science, SUNY-Buffalo, August 1994.

13. Jayaraman, B.: The SuRE Programming Framework, TR 91–11, SUNY at Buffalo,
New York, Aug. 1991.

14. Jayaraman, B.: Implementaton of Subset-Equational Programming, Jnl. of Logic
Programming, vol. 12, no. 4, pp. 299–324.

15. Jayaraman, B. and Nair A.: “Subset-Logic Programming: Application and Imple-
mentation,” Proc. JICSLP, pp. 841-858, Seattle, 1988.

16. Jayaraman, B. and Plaisted, D. A.: “Functional Programming with Sets,” Proc.
Third FPCA, Portland, 1987, pp. 194-210, Springer-Verlag.

17. Jayaraman, B. and Plaisted, D. A.: Programming with Equations, Subsets, and
Relations, Proc. North American Conf. Logic Programming, Cleveland, Oct. 1989,
pp. 1051–1068.

24

18. Jouannaud, J.-P. and Kirchner, C.: Solving Equations in Abstract Algebras: A
Rule-Based Survey of Unification, in: Computational Logic: Essays in Honor of
Alan Robinson, MIT Press, 1991, pp. 257–321.

19. Kapur, D., and Narendran, P: A Unification Algorithm for ACI Theories (Prelim-
inary Report), SUNY Albany Technical Report, April 1993.

20. Kuper, G. M.: Logic Programming with Sets, Jnl. of Computer and System Sci-
ences, vol. 41, no. 1, pp. 44–64, 1990.

21. Legeard, B. and Legros, E.: Short Overview of the CLPS System, Proc. Prog.
Language Implementation and Logic Programming (PLILP), pp. 431–433, 1991.

22. Lloyd, J. W.: Foundations of Logic Programming, Springer-Verlag, 1987.

23. Manna, Z. and Waldinger, R.: The Logical Basis for Computer Programming: vol.
1: Deductive Reasoning, Addison-Wesley, 1985.

24. Martin, U., and Nipkow, T.: Unification in Boolean Rings, Proc. 8th Conf. on
Automated Deduction, pp. 506–513, Springer LNCS 230, 1986.

25. Nadathur, G. and Miller, D.: Higher-Order Horn Clauses, JACM, vol. 31, pp.
777-814, 1989.

26. Naqvi, S. and Tsur, S.: A Logical Language for Data and Knowledge Bases, Com-
puter Science Press, New York, 1989.

27. Siekmann, J.: Unification Theory, Journal of Symbolic Computation, vol. 7, no. 1,
pp. 207–274, 1989.

28. Stolzenburg, F.: An Algorithm for General Set Unification and its Complexity,
Journal of Automated Reasoning, 1995.

29. Suppes, P.: Axiomatic Set Theory, 1960, Dover edn., New York, 1972.

