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Abstract

Although Secure Multiparty Computation (SMC) has seen considerable development in recent years, its

use is challenging, resulting in complex code which obscures whether the security properties or correctness

guarantees hold in practice. For this reason, several works have investigated the use of formal methods

to provide guarantees for SMC systems. However, these approaches have been applied mostly to domain

specific languages (DSL), neglecting general-purpose approaches and the relation of the DSL to the underlying

cryptographic implementation. In this paper, we consider a formal model for an SMC system for annotated C

programs. We choose C due to its popularity in the cryptographic community and being the only general-

purpose language for which SMC compilers exist. Our formalization supports all key features of C – including

private-conditioned branching statements, mutable arrays (including out of bound array access), pointers to

private data, etc. We use this formalization to characterize correctness and security properties of annotated

C, with the latter being a form of non-interference on execution traces. We realize our formalism as an

implementation in the PICCO SMC compiler, providing evaluation results on SMC programs written in C

and extending PICCO with a DSL to allow further optimizations to improve performance.
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1 Introduction

Secure Multiparty Computation (SMC) allows multiple parties to jointly compute over private data, revealing

only the outcomes of the computation to designated recipients. Secure computation is needed in many

domains, particularly the medical, military, and financial sectors. SMC is commonly implemented using

low-level techniques like secret sharing [1], garbled circuits [2], or homomorphic encryption [3, 4]. These

low-level techniques are designed to enable computations among parties which are secure and efficient. While

these low-level techniques provide efficiency, their use makes programming SMC applications challenging

and error prone. To address this concern, several works have proposed high-level languages, DSLs, or

language extensions providing abstractions, which can then be compiled down to low-level SMC primitives,

to support programmers in writing SMC applications. As a result, there now exists a plethora of languages

providing different expressivity, offering different features and performance trade-offs, using different threat

models, and suitable for different domains. Similarly, there exist a number of SMC DSLs. Although DSLs

can make it easier to write SMC programs, there remains a disconnect between the DSL and its integration

with the language of the underlying implementation of the compiled protocol.

In the effort to unify our knowledge in this space, a recent work [5] compared several compilers and

tools in terms of their expressivity and usability. We highlight two items among the lessons learned and

recommendations to the community. First, there were numerous correctness issues and undocumented

limitations present in the works surveyed. This finding is also echoed in [6], which found correctness issues

in several two-party compilers. Second, the authors of [5] recommend that the community take a more

principled approach to language design and verification, e.g., by defining and implementing type rules. This

would help with ensuring correctness as well as reduce security-related corner cases overlooked by the

compiler designers.

To help achieves these goals, we present a formalism of a general-purpose SMC system designed for

C. We choose C because it provides the low level language framework targeted by most DSLs and there

exist numerous direct language extensions for which multiple SMC compilers have been developed. This

allows programmers to write secure multiparty programs in C, which the compiler will translate into secure
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computation protocols, avoiding managing the interactions between different languages. Given the maturity

of SMC compilers today, modern implementations provide support for all C features, allowing private-

conditioned branches (i.e., if-else statements whose conditional expressions use private data), use of

private arrays, private indexing into arrays, and working with pointers to private data; all while ensuring that

no private data is leaked over the execution of any given program. However, formally modeling semantics

and translation of these features as done by SMC compilers presents non-trivial challenges not attempted in

any prior work. Furthermore, what is interesting about C (and not present in the available well-typed DSLs)

is that features such as pointer manipulation allow one to write programs that erroneously access unintended

regions in memory. However, even in those circumstances, it is possible to show that the compiled protocol

will not reveal any unintended information about private data that it handles.

Our contributions in this thesis are:

1. Basic SMC2, a basic formal model for a general-purpose secure multiparty computation compiler,

formalizing state of the art SMC techniques in C. Our formal model supports distributed multi-party

computation in the presence of private-conditioned branches, pointers to private data, pointer arithmetic

and select pointer operations in private-conditioned branches.

2. Location-tracking SMC2, an extended formal model enabling the above as well as support for full

pointer operations inside private-conditioned branches.

3. Multiparty SMC2, an optimized, multiparty formal model that explicitly shows how SMC protocols

will connect with the formal model while enabling all C functionality for general-purpose programming

in an efficient manner.

4. formal proofs based on each model, illustrating that common SMC approaches guarantee correctness

and a strong form of non-interference over execution traces consisting of multiple computing parties.

This shows that pointer operations can be safely managed with no restrictions on the program.

5. an implementation of our formal model, Multiparty SMC2, in the PICCO SMC compiler and evaluation

over micro-benchmarks and SMC programs.

6. a formalization of a domain specific language (DSL) extension to our formal model, including an

optimization for obtaining and utilizing optimal variable sizing to increase program efficiency.
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7. an implementation of the DSL and optimization on top of our implementation of Multiparty SMC2 in

the PICCO SMC compiler, with an evaluation over micro-benchmarks.

In this, we have found there are still some aspects (e.g. indirectly modifying data inside branches based on

private data) that are valid C code, but not accepted by PICCO currently. With our implementation, we aim to

ensure the compatibility of PICCO with the entire C language.
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2 Background and Literature Review

SMC compilers To encourage more widespread use of SMC systems, we must make such systems easy

and desirable to use. In order to achieve this, we need to ensure several things. First and foremost, we need to

assure the user that the SMC system can be trusted; to accomplish this, we need to prove that the system

will maintain the security of their private data and execute the program properly (i.e., by providing a formal

model that is proven to be secure and correct). Another important component is allowing users to write

general-purpose programs, which can be enabled by including a comprehensive set of language features

and adding syntax to facilitate common functionalities (e.g., built in functions for input and output of data,

enabling operations over arrays, etc.). We will explore several SMC systems and how well they accomplish

these goals next.

Work on SMC compilers was initiated in 2004 and a significant body of work has been developed.

Notable examples include two-party computation compilers and tools Fairplay [7], TASTY [8], ABY [9],

PCF [10], TinyGarble [11], Frigate [6], SCVM [12], and ObliVM [13]; three-party Sharemind [14]; and

multi-party FairplayMP [15], VIFF [16], and more recently SCALE-MAMBA, which evolved from [17–19].

These compilers use custom DSLs to represent user programs, and notable exceptions are CBMC-GC [20]

(intended to support general-purpose ANSI-C programs in the two-party setting, but not all features were

realized at the time) and PICCO [21,22] (takes programs written in an extension of C, supports all C features,

and produces multi-party protocols). The above compilers did not come with a formalism of their type

system 1, while this was later developed for Sharemind [23]. There are also SMC DSLs with formal models,

such as Wysteria [24] with a formal model based on an operational semantics and Wys* [25] which provides

support for SMC by means of an embedded DSL hosted in F*, a dependently typed language supporting

full verification. A different approach is given in [26] with an automated technique to prove SMC protocols

secure.

We provide a summary of significant features supported in recent compilers in Table 2.1 (Wys* [25]

inherits its expressivity from Wysteria and is omitted). They are supporting loops, private-conditioned
1The ObliVM publication [13] suggests that there is a type system behind the ObliVM language, but no further information could

be found.
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Compiler
Supported features

loops
private mixed floating dynamic semantic

conditional mode point memory formalism
Fairplay [7] è ○ + + + +

Sharemind [14, 27] ○ è ○ ○ + ○

CBMC-GC [20] è ○ + è + +

PICCO [21, 22] ○ ○ ○ ○ ○ +

SCALE-MAMBA ○ ○ ○ ○ + +

Wysteria [24] ○ ○ ○ + + ○

Frigate [6] ○ ○ + + + +

ABY [9] è è ○ ○ + +

ObliVM [13] ○ ○ ○ ○ ○ +

SCVM [12] ○ ○ ○ + + ○

Table 2.1: Language features supported in SMC compilers.

branches, supporting both private and public values (mixed mode), floating point arithmetic on private

values, dynamically allocated memory, and having semantic formalism. Note that compilers that translate

computation into Boolean circuits such as CBMC-GC need to unroll loops and thus can only support a

bounded number of loop iterations, denoted as è in the table. ABY also appears to have this limitation and for

that reason expects input sizes at compile time. Recent compilers that work with a circuit representation (e.g.,

Wysteria, ObliVM) store compiled programs using intermediate representation and perform loop unrolling

and circuit generation at runtime. To the best of our knowledge, Sharemind permits updating only a single

variable in a private-conditioned branch (i.e., if (cond) a = b; else a = c;). Similarly, in ABY the

programmer has to encode all logic associated with conditional statements using multiplexers. CBMC-GC

did not support floating point arithmetic based on open-source software at the time of publication.

Dynamic memory management is often not discussed in prior work. CBMC-GC is said to support

dynamic memory allocation, as long as this can be encoded as a bounded program, but the use of dynamic

arrays and memory deallocation is not mentioned. PICCO explicitly supports C-style memory allocation and

deallocation as well as dynamic arrays. ObliVM does not explicitly discuss dynamically allocated arrays, but

we believe they are supported. Similarly, out-of-bounds array access in user programs is also not typically

discussed in the SMC literature. Therefore, it is difficult to tell what the behavior might be, i.e., whether

the compiler checks for this and, if not, whether the behavior of the corresponding compiled program is

undefined. Wysteria and PICCO are two notable exceptions: Wysteria has a strongly typed language and

will prevent such programs from compiling (recall that it supports only static sizes). PICCO will compile

programs with out-of-bounds memory accesses. While the behavior of such programs is undefined in C (and

no correctness guarantees can be provided), its analysis demonstrates that no privacy violations take place.

5



We formalize this behavior in this work.

Non-interference Non-interference is a standard information flow security property guaranteeing that

information about private data does not directly affect publicly observable data. We will show non-interference

over executions of programs using the formal model and its extension developed in this paper to prove security

when SMC techniques and C language primitives are composed. Non-interference and its several variants

have been extensively studied by means of language-based techniques, including type systems [28, 29],

runtime monitor [30, 31], and multi-execution [32], to cite a few. One of the challenges in guaranteeing non-

interference when attackers can inspect the state of the computation is to guarantee that private information is

not implicitly leaked by means of the control flow path, i.e., that the computation is data-oblivious. Several

language-based methods have been designed to guarantee that systems are secure against leakage from

branching statements, including timing analysis [33] and multi-path execution [34–36]. In particular, [35]

considered an approach similar to the one we use here. However, these approaches do not prevent private

data leakage from explicit memory management. Building on these early works, several recent works [37,38]

have shown that in the context of secure compilation the natural notion that one needs to consider is a form

of non-interference extended to traces. Inspired by this work, this is the notion we use in this paper when

reasoning about non-interference.

Motivation We next motivate the need for formalization and discuss the challenges formalizing main

language features presents. Let us consider an example SMC program that demonstrates how computation

with private values can be specified and carried out. Figure 2.1 presents an SMC program that securely

computes the average salary of employees in a particular field by gender. This is representative of a real-world

SMC deployment in the City of Boston gender pay gap study [39], which evaluated pay inequalities by

gender and race. While we list a simple program, the computation can be extended to securely compute

comprehensive statistical information by gender, race, and other relevant attributes.

In this example, there are 100 organizations (line 1), each contributing a number of records about their

employees, specified in the form of salary-gender pairs (lines 3–4). All records are private and must be

protected from all participants. The computation proceeds by checking the gender field in a record and using

the corresponding salary in the computation of either female or male average salary. Once the average salaries

are computed privately, they are combined with publicly available historical averages using weighted average
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1 public int numParticipants=100, maxInput=100, inputSize[numParticipants];
2 public int historicFemaleSalAvg, historicMaleSalAvg, i, j;
3 private int salary[numParticipants][maxInput], maleCount=0;
4 private int gender[numParticipants][maxInput], femaleCount=0;
5 private int avgMaleSalary=0, avgFemaleSalary=0;
6
7 smcinput(historicFemaleSalAvg,1); smcinput(historicMaleSalAvg,1);
8 for (i=0; i < numParticipants; i++){
9 smcinput(inputSize[i], i+1);

10 smcinput(gender[i], inputSize[i], i+1);
11 smcinput(salary[i], inputSize[i], i+1);}
12
13 for (i=0; i < numParticipants; i++){
14 for (j=0; j < inputSize[i]; j++){
15 if (gender[i][j] == 0) {
16 avgFemaleSalary += salary[i][j];
17 femaleCount++;}
18 else {
19 avgMaleSalary += salary[i][j];
20 maleCount++;}}}
21
22 avgFemaleSalary=(avgFemaleSalary/femaleCount)/2 + historicFemaleSalAvg/2;
23 avgMaleSalary=(avgMaleSalary/maleCount)/2 + historicMaleSalAvg/2;
24
25 for (i=1; i < numParticipants+1; i++){
26 smcoutput(avgFemaleSalary, i); smcoutput(avgMaleSalary, i);}

Figure 2.1: Securely calculating the gender pay gap for 100 organizations.

computation (lines 22-23).

When we talk about secure computation, we need to distinguish between the values which must be

protected throughout the computation (and are not revealed to the participants) and the values requiring no

protection which are therefore observable during the computation. In our specification, the former are marked

as private (e.g., salary-gender pairs and information derived from them) and the latter are marked as public

(e.g., the number of records that each organization contributes and historical average salaries). The ability to

combine computation with private and public values is called mixed-mode execution.

In our example, all inputs (public or private) are entered into the computation using the

smcinput interface that expects the variable name, its dimension(s) (for array variables) and the index of the

party supplying the input. When a private input enters the computation, it uses a different, cryptographically

protected representation in accordance with the underlying secure multi-party computation techniques. That

representation is maintained throughout the execution, which means that all operations on private data are

carried out using the corresponding secure multi-party protocols and their true values are not observable. All
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public values are handled in the same way as in conventional computation, i.e., an SMC compiler does not

modify the computation and the values are observable by any participant running the computation. Upon

computation completion, any output is communicated to the intended recipient via the smcoutput interface.

If smcoutput is used with a private variable, its true value can be recovered from its cryptographically

protected representation by the output recipient only (and remains unknown to all other parties). Because

output recovery happens after the computation completes, the disclosed output is the intended outcome of

secure computation and is not subject to the security guarantees maintained during the computation (such as

non-interference).

The above interface distinguishes between different types of participants: those who supply inputs, those

who learn outputs, and the parties carrying out the computation. The computational parties can be different

from input owners and output recipients and their selection may be based on the properties of the underlying

secure multi-party computation techniques. For example, there are often constraints with respect to what

fraction of computational parties can collude, i.e., combine their individual views during the computation, in

order to maintain security of private values. This means that in our example, the participants can select a

subset of them to run the computation or employ other parties such as cloud computing providers.

The main property this design guarantees is that a computational party that is not an output recipient

should learn nothing about the private values it handles during the computation. To formalize this property

about SMC programs we will show non-interference between private and public computations in mixed-mode

programs. Non-interference ensures that private data does not directly affect publicly observable data and is

crucial for mixed-mode execution. For the example given in Figure 2.1, non-interference ensures that the

private data (e.g., salary[i][j]) does not affect any public data (e.g., historicFemaleSalaryAvg).

This is a distributed, mixed-mode computation, computed between multiple participants. Each individual

salary should be kept private and none of the participants should be able to deduce the salary (up to some

number of colluding computational parties – this is dependent on the cryptographic protocols used). The

computation is mixed-mode as it includes portions which are protected – computations over private data

(e.g., finding the sum of all the salaries and counting the total number of males and females), and portions

which are unprotected – local computations over public data (e.g., dividing the historic salaries by 2 in line

22 and 23). Secure computations by definition are distributed and governed by cryptographic protocols (e.g.,

conditional addition sumFemaleSalary += salary[i][j]; on line 11). This occurs because to do the

increment operation to compute the total sum, each participant must interact during the operation.
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Given a program such as the one in our example, an SMC compiler will perform certain transformations

such as substituting an operation on private values with the corresponding SMC protocol for performing that

operation securely. We detail these in the following subsection through a series of motivating examples. In

addition, the SMC compiler also has to perform structural transformations to programs to ensure that there

is no information flow from private to public variables based on the instructions that a computational party

executes. This is called data-oblivious (or data-independent) execution. This, for example, means that for

private-conditioned branches, the execution must not reveal which branch gets executed. Our formal model

must also ensure data-oblivious execution. We formalize this by showing that non-interference holds not only

when considering the input-output functional behavior of a program, but also when considering the traces of

execution of programs.
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3 Basic SMC2

In this Chapter, we present Basic SMC2, a formalization of a general purpose SMC compiler. This for-

malization follows common conventions in SMC as discussed in the previous chapter for handling private-

conditioned branches and array accesses at private indices, as well as providing support for pointers following

PICCO’s pointer implementation. It is created to address the need for an SMC compiler with a formal model

that embodies the entire system, from the higher-level source program to the lower-level SMC libraries used

by the compiler. To do this, we have created a formal model for the semantics of general purpose SMC

programs written in C that allows for easy substitution of lower-level SMC libraries, and proceeded to proofs

of correctness and noninterference.

We will first present the formal semantic model, starting with the memory model, then the corresponding

standard C semantics, the Basic SMC2 semantics, and the algorithms used within the semantics. Afterwards,

we will present the metatheory, showing correctness of Basic SMC2 with respect to standard C semantics and

non-interference to guarantee that no leakage of private data occurs in Basic SMC2.

3.1 Formal Semantics

In this Section, we introduce our semantic and memory model. We therefore introduce two models, one for

standard C (referred to as Vanilla C) as well as the semantics for the SMC compiler (referred to as Basic

SMC2). We do not abstract away memory, instead we introduce a byte-level memory model, inspired by the

memory model used by CompCert [40], a formally verified C compiler. Specifically, we build from their

approach of byte-level representation of data and permissions. First, we present the grammar and memory

model; second, the Vanilla C semantics corresponding to our Basic SMC2 model; third, the formal semantic

model for Basic SMC2; and finally, the algorithms used in these model.

3.1.1 SMC2 Grammar

Figure 3.1 gives the combined Vanilla C and SMC2 grammar, which is a subset of the ANSI C grammar. This

grammar remains consistent throughout our improvements to the SMC2 model presented later in Chapter 4
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ty ∈ Type ::= a bty | a bty∗ | bty | bty∗ | ty → ty
bty ∈ BasicType ::= int | float | void
a ∈ PrivacyLabel ::= private | public

s ∈ Statement ::= var = e | ∗x = e | s1; s2 | decl | {s} | if (e) s1 else s2 | while (e) s | e
e ∈ Expression ::= e bop e | uop x | var | x(e) | prim | (ty) e | (e) | v
decl ∈ Declaration ::= ty var | ty x(p) | ty var = e | ty x(p){s}
var ∈ Variable ::= x | x[e]
v ∈ Value ::= n | v | NULL | (l, µ) | ptr | skip

ptr ∈ PointerData ::= [α, l, j, i]

l ∈ LocationList ::= [ ] | (l, µ) :: l

prim ∈ PrimitiveFunction ::= sizeof(ty) | malloc(e) | pmalloc(e, ty) | free(e) | pfree(e)
| smcinput(x, e) | smcoutput(x, e) | mcinput(x, e) | mcoutput(x, e)

bop ∈ BinaryOperation ::= − | + | · | ÷ | == | ! = | <
uop ∈ UnaryOperation ::= & | ∗ | ++
e ∈ ExpressionList ::= e, e | e | void
p ∈ ParameterList ::= p, ty var | ty var | void

Figure 3.1: Combined Vanilla C/SMC2 Grammar. The color red denotes terms specific to programs written
in SMC2, and the color blue denotes elements synthesized by the semantics.

and Chapter 5. We include one dimensional arrays, branches, loops, dynamic memory allocation, and pointers.

Arrays are zero-indexed, and it is possible to overshoot their bounds, as in C. We chose not to include structs

or multi-dimensional arrays, as they are an extension of this core subset. We currently assume there are no

arrays of pointers, as this is a trivial extension of arrays and pointers separately and is not fully supported by

the model due to the number of elements in an array and the number of locations for a pointer using the same

meta-data within each memory block. If one wishes to extend the model to support arrays of pointers, they

simply need to add another piece of meta-data to each memory block so as to have the number of elements of

an array and number of locations stored by pointers as separate elements.

Binary operations follow the standard order of operations. We use the bar notation to indicate a list of

elements (e.g., x as a list of variables), with the exception of location lists l being a list of the pair of the

memory block identifier and offset (l, µ), as this constitutes a specific location within our memory model

(this concept is described further in the following subsection). We use the color red to denote terms in

the SMC2 grammar that are not present in Vanilla C, including annotated types (a bty , a bty∗), privacy

labels (public, private), and primitive functions (pmalloc, pfree) for allocation and deallocation of memory

for private pointers. Additionally, we have primitive functions for facilitating input and output in SMC2

(smcinput(x, e), smcoutput(x, e)) and Vanilla C (mcinput(x, e), mcoutput(x, e)). We use the color blue

to denote terms that are synthesized by the semantics. These include the function type ty → ty ; locations

(l, µ), pointer data structures ptr , and the terminal skip.
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We denote types as ty , basic types as bty (bty∗ as a pointer type), privacy annotations as a, and function

types as ty → ty (where ty is a type list). Values v include numbers n, lists of values, NULL, locations (l,

µ) consisting of a memory block identifier l and an offset µ, and skip (to show a statement being reduced to

completion). Declarations include variable and function declarations, where p is the function parameter list.

For unary operations, we include: &, to obtain the address of a variable; ∗, to allow dereferencing pointers;

and ++, to allow pre-incrementing and to model a basic pointer arithmetic.

3.1.2 SMC2 Memory Model

C ∈ Configuration ::= ε | (γ, σ, acc, s)

γ ∈ Environment ::= f : x→ (l, ty)

σ ∈ Memory ::= f : l→ (ω, ty , α, perm)
perm ∈ Permission ::= Freeable | None
perm ∈ PermissionList ::= [ ] | (n, a, perm) :: perm

n,m, i, α ∈ Numbers ∈ N
l ∈ MemoryBlockIdentifier ∈ N
µ ∈ LocationOffset ∈ N
j ∈ TagBit ::= 0 | 1
ω ∈ ByteRepresentation ::= {0 | 1}+
d ∈ EvaluationCode ::= {a...z | 0...9}+

Figure 3.2: Basic SMC2 configuration: environment γ, memory σ, accumulator acc, and statement s.

Our memory model encodes each memory as a contiguous region of blocks, which are sequences of bytes

and metadata. We introduce an execution environment γ and memory σ, shown in Figure 3.2. Each block is

assigned an identifier l (to be discussed more later in this section). Blocks are never recycled nor cleared

when they are freed. We chose this view of memory to preserve all allocated data, which, in conjunction

with data-oblivious execution, represents the worst case for maintaining privacy. Direct memory access

through pointers or manipulation of array indices allows programs to access any block for which the memory

address is computable (e.g., as an offset or direct pointer access). To obtain the byte representations of

data we leverage functions similar to CompCert, using EncodeVal for values, EncodePtr for pointers, and

EncodeFun for functions. Likewise, to obtain the human-readable data back, we use respective decode

functions such as DecodeVal. We use a specialized version (DecodeArr) for obtaining a specific index

within an array data block. We introduce the particulars in the following subsections.
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Environment

In our semantics, we implement standard C scoping through our use of the environment γ, which maintains a

mapping of each live variable x to its memory block identifier (where the data x is stored) and its type. At the

start of a program, the environment is empty, i.e., γ = [ ]. Variables that are no longer live are removed from

the environment, based on standard scoping within the semantic rules. We use the environment to facilitate

the lookup of variables (i.e., for reads, writes, function calls) in memory σ.

Memory Blocks and Identifiers

The memory, σ, is a mapping of each identifier l to its memory block, which contains the byte representation

ω of data stored there and metadata about the block. Metadata consists of a type ty associated with

the block, the number of elements n of that type stored in ω, and a list of byte-wise permissions tuples

[(0, a0, perm0), ..., (m, am, permm)], where m = τ(ty) · n − 1 and function τ provides the size of the

given type in bytes. A new memory block identifier is obtained from function φ. These identifiers are

monotonically increasing with each allocation. Every block is added to memory σ on allocation, and is

never cleared of data nor removed from σ upon deallocation. Metadata cannot be accessed or modified

directly by the program (the semantic rules control modification). A memory block can be of an arbitrary

size, which is constant and determined at allocation (with the exception of private pointers, to be discussed

later in subsection 3.1.4). We represent a memory location as a two-tuple of a memory block identifier and an

offset. This allows us to use pointers to refer to any arbitrary memory location, as in C.

Permissions

A permission perm can either be Freeable (i.e., can be written to, read from, etc.) or None (i.e., already

freed). These byte-wise permissions are modeled after a subset of those used by CompCert, and we extend

their permission model by including a privacy label. Each memory block has a list of permission tuples,

one for each byte of data stored in that block. A permission tuple consists of the position of the byte that it

corresponds to, and the privacy label a and permission perm for that byte of data. These permissions are

important in reading and writing data to memory, especially when it comes to overshooting arrays and other

out-of-bound memory accesses possible through the use of pointers. In particular, permissions allow us to

keep track of deallocated memory (e.g. a block freed - note that the memory stored in the block itself is not
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overwritten or cleared and the block can still be accessed indirectly through direct memory manipulations).

All permission tuples corresponding to a memory block of a function type will have public privacy labels,

as the instructions for a function are accessible from the program itself. Those for a normal variable or an

array will have privacy labels corresponding to their type (i.e., public for public types, private for private

types); those for pointers are more complex and will be discussed later in Subsection 3.1.2. For simplicity, in

the semantics we use Algorithm 36 (PermL) to highlight the main information (permission, type, privacy

label, and number of elements) about the byte-wise permissions for each memory block. Based on these

arguments, this algorithm returns the full list of permission tuples for every byte of data stored in the memory

block.

Malloc and Free

Allocation of dynamic memory in C is provided by malloc, which takes a number of bytes as its argument.

When malloc is called, a new memory block with identifier l is obtained, initialized as a void type of the

given size, and returned. This block then needs to be cast to the desired type. However, when dealing with

private data, the programmer is unlikely to know the internal representation and the size of the private data

types. For that reason, when allocating memory for private data, we adopt PICCO’s pmalloc functionality

which takes two arguments: the type and the number of elements of that type to be allocated. The semantics

then handle sizing the new memory block for the given private type. When free or pfree is called, if the

argument is a variable of a pointer type, the permissions for all bytes of the location the pointer refers to will

be set to None, but the data stored there will not be erased, and the location will not be released back into

the pool of available locations accessed by φ within the semantics. When pfree is called with a pointer

with a single location, it behaves identically to free. The use of pfree with multiple locations is a bit

more involved, to be discussed later in Subsection 3.1.4. It is important to note that memory allocation and

deallocation are public side effects, and therefore are not allowed within private-conditioned branches.

Public vs. Private Blocks

To distinguish between public and private blocks, we assume that private blocks will be encrypted and we

will use basic private primitives implementing specific operations to manage them. For modeling purposes,

these primitives can decrypt the required blocks, perform the operations they are meant to implement, and

encrypt the result. In our model, a program can also access private blocks by means of standard non-private
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operations or through of pointers. In this case, the operation will just interpret the encrypted value as a public

value. This approach gives us a conceptual distinction between a concrete memory and its corresponding

logical content, i.e. public values and values of the private data prior to encryption. Our model as described

in the next section will work on concrete memories, but in Section 3.3, for the proof of noninterference, it

will be convenient to refer to the logical content of a memory. We will use the notation σ` to denote the

logical content of σ.

Pointer Data Structure and Permissions

In order to maintain data-oblivious execution, we need to allow storing multiple locations for pointers when

they are modified within a private-conditioned branching statement. To achieve this, the structure of the

data stored by pointers (i.e., [α, l, j, i]) is as follows: the number α of locations being pointed to; a list l of

α locations being pointed to; a list j of α tags; and the level of indirection i of the pointer. The number α

of locations being pointed to will always be one for public pointers, and will only ever increase for private

pointers through if else statements branching on private data (or being assigned the data from such a

private pointer).

The privacy labels of the byte-wise permissions corresponding to the number α of locations to which the

pointer refers will always be public, as it is visible to an observer of memory how many locations are touched

by a pointer. The list of the locations being pointed to by the pointer will always only contain one location for

public pointers, and for private pointers will correspond to the number α given above. The privacy labels of

the permissions corresponding to these bytes will always be public (it is visible to the an observer of memory

the locations touched by a pointer). Likewise, the permissions corresponding to the list of locations will will

always be public, as it is visible to the an observer of memory the locations touched by a pointer. The list of

tags for a public pointer will contain only the public integer 1. For a private pointer, the list will consist of α

private integers; of these α integers, only one contains the encrypted representation of the value 1 to indicate

the true location; all others will contain the encrypted representation of the value 0. The privacy labels of the

permissions corresponding to the tags of public pointers will always be public; for private pointers, they will

be private, as these protect an observer of memory from being able to tell which location is the true location.

Lastly, the level of indirection of the pointer will be greater than or equal to one. This is defined at the time

the pointer is declared (i.e., int∗ → 1, int ∗ ∗ → 2, etc.). The privacy labels of the permissions corresponding

to the level of indirection will always be public, as this is visible in the source program.
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Accessing an element in bounds

Accessing an element of a memory block of a different type (same size)

Accessing an element of a memory block of the same type

Accessing an element of a block of a different type (smaller size, overflows)

Accessing an element of a block of a different type (larger size, not aligned)

x[1] 

x[0]

x[2]

x[3]

x[4]

Figure 3.3: Types of overshooting array accesses.

Overshooting Memory Bounds

It is possible to overshoot memory bounds in both Vanilla C and SMC2. When overshooting occurs, we read

the bytes of data as the type we expected it to be (i.e., bytes containing private data accessed by a public

variable would be decoded as though they are public - no encryption or decryption occurs, but computations

using the variable beyond that point will be garbage). This ensures that no information about private data can

be leaked when overshooting. We will explain the different possibilities for overshooting using the example

of an array, although each case we discuss below is also possible through the use of pointers as well.

Figure 3.3 shows an example of an array read that overshoots the bounds of the array x (for simplicity, x

is of size 1). The first access shown is an in-bounds access – this is the default behavior of a correct program.

The second access is an out-of-bounds access of a memory block of a different type, but the same size. This

data would be read as if it was the type of the array, and may not be meaningful. This corresponds to an

access where implicit conversions between types is possible, but not always correct. The third out-of-bounds

access corresponds to reading out of a memory block of the same type. This data would be meaningful from

a type perspective, but the specific value read may not be semantically meaningful to the program. The fourth

out-of-bounds access is of a memory block of a different type of a smaller size. This read would grab the data

from the smaller memory block, then grab data from the next memory block(s) to obtain the correct amount

for the expected type. In this situation a value, which may not be meaningful, is constructed from two, or

more, values in memory. The last out-of-bounds access is of a larger memory block, not aligned. This read

would obtain a portion of the data of the larger memory block, and read it as the type of the array, thereby

reading a partial value from memory.
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With SMC2, when dealing with array overshooting, we have the added complexity of private data, which

has a different representation and is of a larger size than the corresponding C representation of the type.

Additionally, we need to ensure that no leakage can occur, so we must consider all possible combinations of

bytes from public and private data with either public or private variables. Consider reading a value from an

overshot array and storing it into a variable. If both the data read and variable are private or both are public,

no leakage can occur as these are the default cases. Next, consider reading public data and storing into a

private variable. The public data will be grabbed at the byte-level, and interpreted as though it is private

(no encryption will occur), so no leakage occurs. Third, we consider reading private data and storing in a

public variable. The private data will be grabbed at the byte-level, and interpreted as though it is public. No

decryption will occur, so no leakage can occur. This is similar in nature to reading a partial value in Figure 3.3.

Fourth, consider if the data read is a mix of public and private data and stored in a public variable. Given that

the private data will not be decrypted, this read will not result in any leakage, but a value is constructed from a

mix of private (encrypted) data and public data. Lastly, consider reading a mix of public and private data and

storing into a private variable. Like before, the byte-level data will be merged and read as the expected type.

Writes that occur out-of-bounds of an array have situations similar to out-of-bound read accesses (and

can be illustrated as with the reads shown in Figure 3.3). Writing private data out-of-bounds to a private

location results in the data still residing in a private memory block, so no leakage will occur. Writing public

data out-of-bounds to a public location is safe, as the data is already public. When writing private data

out-of-bounds to a public location, the data will be written as-is – no decryption will occur when the data

is written to or later read back from that location – therefore, there is no leakage. Writing public data

out-of-bounds to a private location or a mix of public and private locations is safe, as the data was already

public; no encryption will occur. Lastly, writing private data out-of-bounds to a mix of locations will result in

the data being written to the locations as-is. No decryption will occur when the data is written to any location

or later read back, therefore, there is no leakage.

In SMC2, we ensure this behavior, using algorithms ReadOOB and WriteOOB. In particular, ReadOOB

ensures that no matter what mix of byte-wise data we grab from memory, we will decode it as a value of the

type of data in the array, ignoring it’s true type. Similarly, WriteOOB ensures that we will write to memory

the byte-wise encoding of the given value as the type for the array, without taking into consideration the type

of the memory block(s) and without modifying any of the metadata within the memory block(s) we write to.
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Figure 3.4: Examples of alignment between SMC2 and Vanilla C in overshooting accesses by incrementing
pointer p three times.

Overshooting Alignment

In proving the correctness of SMC2 with relation to Vanilla C, the various possible alignments for reading and

writing out-of-bounds pose complications due to the different sizes of private and public data (an example of

this is shown in Figure 3.4). Therefore, we can only prove correctness over well-aligned accesses (i.e., those

that iterate only over aligned elements of the same type, as with one array spilling into a subsequent array),

as these would still produce readable data that is not garbage. For the correctness proof, we provide a formal

definition of a well-aligned overshooting memory access in Definition 3.2.2. We discuss this in more detail

in the following section. When proving noninterference, we must prove that these cases (particularly those

involving private data) cannot leak any information about the private data that is affected.

3.1.3 Vanilla C

In order to facilitate the correspondence between the Vanilla C and SMC2 semantics, we model our semantics

using big-step evaluation judgements and define our C semantics with respect to multiple non interacting

parties that evaluate the same program. In Vanilla C, we use ̂ to distinguish elements in this semantics from

those we use in the next section for SMC2 semantics, which may differ due to privacy labels and private

data being encrypted. The semantic judgements in Vanilla C are defined over a four-tuple configuration

Ĉ = (γ̂, σ̂,�, ŝ), where each rule is a reduction from one configuration to a subsequent. We denote the

environment as γ̂; memory as σ̂; a placeholder as �; and a big-step evaluation of a statement ŝ to a value v̂

using ⇓′. We use � in Vanilla C as a placeholder for the level of nesting of private-conditioned branches acc

to maintain the same shape of configurations as that of Basic SMC2 used in the next section. We annotate

each evaluation with evaluation codes (i.e., ⇓′
d̂
) to facilitate reasoning over evaluation trees, and we annotate
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evaluations that are not well-aligned with a star (i.e., ⇓′∗
d̂

) to identify the rules that we cannot prove correctness

over, as they produce unpredictable behavior in implementation. We show the semantic rules that are not

well-aligned in this chapter to illustrate how they are defined and handled, but we omit showing them in later

chapters as they are nearly identical to their corresponding rules and the proof of noninterference over these

rules are handled similarly to the cases of the corresponding rules. The assertions in each semantic rule can

be read in sequential order, from left to right and top to bottom.

In this section, we will present the Vanilla C semantics with respect to the grammar (Figure 3.1). These

semantic rules follow standard C; however, we will describe the Vanilla C rules to familiarize the reader with

our notation. It is worthwhile to note here that all permissions in Vanilla C will be set to public, and all types

will be implicitly public, as there is no notion of privacy labels in standard C. We will store pointer data

within the pointer data structure to facilitate reasoning about pointers between Vanilla C and SMC2, but the

Vanilla C pointers can only have a single location and will always have the single tag in the tag list set to 1, as

that is the only possible location for the pointer to refer to.

Figure 3.5 gives the semantic rules for declarations, reading, writing, and pre-incrementing of regular

(non-pointer, non-array) variables, loops, sequencing, finding the size of a type, retrieving the address of a

variable, and binary operations. Figure 3.6 provides the semantics for functions, casting, memory allocation

and deallocation, and inputting and outputting data from files. Figure 3.7 gives the semantics for branches as

well as pointer declarations, reading and writing, and pre-incrementing. Figure 3.8 provides the semantics for

pointer dereferences and pointer dereference writes. Figure 3.9 gives the semantics for array declarations,

writing and reading, including reading and writing out of bounds. Figure 3.10 gives the semantics for array

declaration assignment and reading from and writing to an entire array. These model regular C semantics and

are obtained from the SMC2 semantics using the Erase function (discussed further in Section 3.2.1). The

behavior of these rules is mostly standard or mirrors the description of the rules presented in the paper itself.

In semantic rule Declaration, we need to obtain a new memory block and create new mappings in the

environment and in memory for the variable being declared. We have the starting configuration (γ̂, σ̂, �,

b̂ty x̂) with our starting statement being the declaration b̂ty x̂. To evaluate this statement, we first obtain

a new memory block identifier l̂ from the pool of unassigned memory blocks using φ. We then create a

mapping from x̂ to its new memory block and its given type and add the mapping to environment γ̂ to obtain

the resulting environment, γ̂1. We create initial NULL byte-data ω̂ for the memory block using Algorithm 7

(EncodeVal). Then, we create a mapping from the memory block identifier l̂ to the four-tuple of the byte-data

19



Declaration Declaration Assignment
l̂ = φ() γ̂1 = γ̂[x̂ → (l̂, b̂ty)] ω̂ = EncodeVal(b̂ty ,NULL)

σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1, PermL(Freeable, b̂ty , public, 1))]

(γ̂, σ̂, �, b̂ty x̂) ⇓′
d̂

(γ̂1, σ̂1, �, skip)

(γ̂, σ̂, �, t̂y x) ⇓′ŝ (γ̂1, σ̂1, �, skip)
(γ̂1, σ̂1, �, x = ê) ⇓′ŝ (γ̂1, σ̂2, �, skip)

(γ̂, σ̂, �, t̂y x = ê) ⇓′
d̂s

(γ̂1, σ̂2, �, skip)

Read While Continue
γ̂(x̂) = (l̂, b̂ty)

σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty , public, 1))

DecodeVal(b̂ty , 1, ω̂) = v̂

(γ̂, σ̂, �, x̂) ⇓′r̂ (γ̂, σ̂, �, v̂)

(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, n̂) n̂ 6= 0
(γ̂, σ̂1, �, ŝ) ⇓′ŝ (γ̂1, σ̂2, �, skip)
(γ̂, σ̂2,�,while (ê) ŝ) ⇓′ŝ (γ̂2, σ̂3,�, skip)

(γ̂, σ̂,�,while (ê) ŝ) ⇓′
ŵlc

(γ̂, σ̂3,�, skip)

Write While End
(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, v̂) v̂ 6= skip

γ̂(x) = (l̂, b̂ty) UpdateVal(σ̂1, l̂, v̂, b̂ty) = σ̂2

(γ̂, σ̂, �, x = ê) ⇓′ŵ (γ̂, σ̂2, �, skip)

(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, n̂) n̂ = 0

(γ̂, σ̂, �, while (ê) ŝ) ⇓′
ŵle

(γ̂, σ̂1, �, skip)

Parentheses Statement Block Size Of Type
(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, v̂)

(γ̂, σ̂, �, (ê)) ⇓′êp (γ̂, σ̂1,�, v̂)

(γ̂, σ̂,�, ŝ) ⇓′ŝ (γ̂1, σ̂1,�, skip)

(γ̂, σ̂,�, {ŝ}) ⇓ŝb (γ̂, σ̂1,�, skip)

n̂ = τ(t̂y)

(γ̂, σ̂,�, sizeof(t̂y)) ⇓′t̂y (γ̂, σ̂,�, n̂)

Subtraction Statement Sequencing Address Of
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 − n̂2 = n̂3

(γ̂, σ̂,�, ê1 − ê2) ⇓′
b̂s

(γ̂, σ̂2,�, n̂3)

(γ̂, σ̂, �, ŝ1) ⇓′ŝ (γ̂1, σ̂1, �, skip)
(γ̂1, σ̂1, �, ŝ2) ⇓′ŝ (γ̂2, σ̂2, �, v̂)

(γ̂, σ̂, �, ŝ1; ŝ2) ⇓′ŝs (γ̂2, σ̂2, �, v̂)

γ̂(x) = (l̂, t̂y)

(γ̂, σ̂, �, &x) ⇓′
l̂oc

(γ̂, σ̂, �, (l̂, 0))

Addition Less Than True Less Than False
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 + n̂2 = n̂3

(γ̂, σ̂, �, ê1 + ê2) ⇓′
b̂p

(γ̂, σ̂2, �, n̂3)

(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 < n̂2

(γ̂, σ̂, �, ê1 < ê2) ⇓′
l̂tt

(γ̂, σ̂2, �, 1)

(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 >= n̂2

(γ̂, σ̂,�, ê1 < ê2) ⇓′
l̂tf

(γ̂, σ̂2,�, 0)

Multiplication Equal To True Equal To False
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 · n̂2 = n̂3

(γ̂, σ̂, �, ê1 · ê2) ⇓′
b̂m

(γ̂, σ̂2, �, n̂3)

(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 = n̂2

(γ̂, σ̂,�, ê1 == ê2) ⇓′êqt (γ̂, σ̂2,�, 1)

(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 6= n̂2

(γ̂, σ̂,�, ê1 == ê2) ⇓′
êqf

(γ̂, σ̂2,�, 0)

Division Not Equal To True Not Equal To False
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 ÷ n̂2 = n̂3

(γ̂, σ̂, �, ê1 ÷ ê2) ⇓′
b̂d

(γ̂, σ̂2, �, n̂3)

(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 6= n̂2

(γ̂, σ̂,�, ê1! = ê2) ⇓′n̂et (γ̂, σ̂2,�, 1)

(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, n̂1)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂2)

n̂1 = n̂2

(γ̂, σ̂,�, ê1! = ê2) ⇓′
n̂ef

(γ̂, σ̂2,�, 0)

Pre-increment Variable
γ̂(x̂) = (l̂, b̂ty) σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty , public, 1))

DecodeVal(b̂ty , 1, ω̂) = v̂ v̂1 = v̂ + 1 UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1

(γ̂, σ̂, �, ++ x̂) ⇓′
p̂in

(γ̂, σ̂1, �, v̂1)

Figure 3.5: Vanilla C semantic rules for basic variable declarations, reading, and writing; loops; sequencing;
binary operations; and incrementing.
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ω̂, the type of data stored in this block b̂ty , the number of elements stored in this block (which is 1, as this is

not an array declaration), and the byte-wise permissions for the memory block, which is obtained through

Algorithm 1 (PermL). The permissions for each byte of data for the one element of type b̂ty in this memory

block are set to Freeable and public. This mapping is added to the memory σ̂ to obtain the resulting memory

σ̂1. As there is nothing further to evaluate in this rule and no value to be returned, we have the terminating

value skip, as this statement has no possible further steps or uses. This gives us the ending configuration of

(γ̂1, σ̂1, �, skip).

In semantic rule Read, we need to return the value stored for the variable x̂. To evaluate this, we must

first look up variable x̂ in the current environment γ̂, finding that x̂ is associated with the memory block

identifier l̂ and type b̂ty . We then look up l̂ in memory σ̂ to find the data stored for this variable as well as the

number of elements stored within this memory block for this variable. Then we use Algorithm 8 with the

type, number of elements, and byte representation ω̂ to obtain the value v̂ that is stored for this variable. We

then return configuration (γ̂, σ̂, �, b̂ty v̂).

In semantic rule Write, we need to store the value resulting from the evaluation of expression ê in the

memory block associated with the variable x̂. We first take the initial environment, memory, and expression

and evaluate the expression to the ending state with potentially updated memory σ̂1 and value v̂. We assert

that v̂ is not skip, as that is not a valid value to store in memory. We perform the look-up of x̂ in the

environment, then use the Algorithm 13 with memory σ̂1, memory block identifier l̂, value v̂, and type of x̂

ω̂ to obtain the final updated memory σ̂2 where the given value v̂ is now stored for x̂. We then return the

updated memory and terminating value skip.

In semantic rule Declaration Assignment, we facilitate the evaluation of the declaration of a new variable

and the evaluation of the assignment of a value to this variable. The evaluation of the declaration will update

both the environment and memory, and the evaluation of the assignment will update the memory again, giving

us the resulting configuration with γ̂1 and σ̂2.

In semantic rule While Continue, we facilitate the continuation of loop evaluation. We first evaluate the

condition e to some number n̂, then we assert that n̂ cannot be 0 (as 0 that would signal that the loop should

end). Next, we evaluate the body of the loop, ŝ. We then discard any updates to the environment, as they are

out of scope, and proceed to evaluate the entire while statement again. The semantics will recursively enter

this rule until it has reached the point where the condition becomes equal to 0, in which case the semantic

rule While End will be evaluated to facilitate the end state of loop evaluation. Once While End has been
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executed, we will return through all iterations of While Continue, dropping any changes to the environment

that are now out of scope, but keeping all changes made to memory.

In semantic rule Parentheses, we evaluate the expression inside the parentheses and return the value

and any changes to memory that we obtained. In semantic rule Statement Block, we evaluate the statement

inside the braces. We discard any additions to the environment (as they are now out of scope) and pass along

any modifications made to memory. In semantic rule Statement Sequencing, we facilitate the evaluation of

sequences of statements, evaluating the first statement, then proceeding to evaluate the second statement

and returning the resulting value. Here, we keep all changes made to the environment and memory that are

returned to this rule from the evaluation of either statement, because this rule does not change scope.

In semantic rule Size Of Type, we are finding the size of the given type. Here, we use Algorithm 4 (τ ),

which will return the size corresponding to the type it is given. This size n̂ is then returned. In semantic rule

Address Of, we are finding the address of the given variable. We perform a lookup in environment γ̂, and

return the memory block identifier l with offset 0 as the location, as all variables start at offset 0 within their

assigned memory block.

In semantic rule Addition, we perform the binary operation addition. First, we evaluate the expression ê1

to obtain n̂1 and memory σ̂1, then ê2 using memory σ̂1 to obtain n̂2 and memory σ̂2, and then add n̂1 + n̂2 to

get the sum n̂3. We then return memory σ̂2 and the resulting value n̂3. The semantic rules for Subtraction,

Multiplication, and Division are similar to Addition, simply substituting the appropriate operation in place of

addition. Likewise, in semantic rule Less Than True we evaluate the two expressions sequentially to find

their resulting values, then assert that n̂1 < n̂2 holds true. We then return the updated memory σ̂2 and the

value 1, indicating that the less than comparison was true. Semantic rules Equal To True and Not Equal To

True are similar to Less Than True, simply substituting the appropriate comparison operation assertion in

place of less than. In semantic rule Less Than False, we show that n̂1 < n̂2 is false by asserting that the

opposite (n̂1 >= n̂2) is true, and return 0. The semantic rules Equal To False and Not Equal To False are

similar to Less Than False, substituting in the appropriate comparison assertion that covers the false case for

each comparison operation.

In semantic rule Pre-increment Variable, we first look up the variable x̂ in the environment, then in

memory, and decode the byte representation to get the value for x̂, we then increment the value by 1 to get

the resulting value v̂1, which we store in memory using Algorithm 13 (UpdateVal). The updated memory

σ̂1 and value v̂1 are then returned.
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Function Call
γ̂(x̂) = (l̂, t̂y → t̂y) σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)) DecodeFun(ω̂) = (ŝ, �, p̂)
GetFunParamAssign(p̂, ê) = ŝ1 (γ̂, σ̂, �, ŝ1) ⇓′ŝ (γ̂1, σ̂1, �, skip) (γ̂1, σ̂1, �, ŝ) ⇓′ŝ (γ̂2, σ̂2, �, skip)

(γ̂, σ̂, �, x̂(ê)) ⇓′
f̂c

(γ̂, σ̂2, �, NULL)

Pre-declared Function Definition Function Definition
x̂ ∈ γ̂ γ̂(x̂) = (l̂, t̂y → t̂y)

EncodeFun(ŝ,�, p̂) = ω̂

σ̂ = σ̂1[l̂→ (NULL, t̂y → t̂y , 1,PermL_Fun(public))]

σ̂2 = σ̂1[l̂→ (ω̂, t̂y → t̂y , 1,PermL_Fun(public))]

(γ̂, σ̂, �, t̂y x̂(p̂){ŝ}) ⇓′
f̂pd

(γ̂, σ̂2, �, skip)

x̂ /∈ γ̂ GetFunTypeList(p̂) = t̂y

l̂ = φ() γ̂1 = γ̂[x→ (l̂, t̂y → t̂y)]

EncodeFun(ŝ,�, p̂) = ω̂

σ̂1 = σ̂[l̂→ (ω̂, t̂y → t̂y , 1,PermL_Fun(public))]

(γ̂, σ̂, �, t̂y x̂(p̂){ŝ}) ⇓′
f̂d

(γ̂1, σ̂1, �, skip)

Function Declaration Cast Value
l̂ = φ() GetFunTypeList(p̂) = t̂y γ̂1 = γ̂[x̂→ (l̂, t̂y → t̂y)]

σ̂1 = σ̂[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))]

(γ̂, σ̂, �, t̂y x̂(p̂)) ⇓′
d̂f

(γ̂1, σ̂1, �, skip)

(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, n̂)

n̂1 = Cast(public, t̂y , n̂)

(γ̂, σ̂, �, (t̂y) ê) ⇓′ĉv (γ̂, σ̂1, �, n̂1)

Cast Location
(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, (l̂, 0)) σ̂1 = σ̂2

[
l̂→

(
ω̂, void, n̂, PermL(Freeable, void, public, n̂)

)]
(t̂y = b̂ty∗) σ̂3 = σ̂2

[
l̂→

(
ω̂, t̂y ,

n̂

τ(t̂y)
, PermL

(
Freeable, t̂y , public,

n̂

τ(t̂y)

))]
(γ̂, σ̂, �, (t̂y) ê) ⇓′

ĉl
(γ̂, σ̂3, �, (l̂, 0))

Malloc Free
(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, n̂) l̂ = φ()

σ̂2 = σ̂1

[
l̂→

(
NULL, void∗, n̂, PermL(Freeable, void∗,public, n̂)

)]
(γ̂, σ̂, �, malloc(ê)) ⇓′

m̂al
(γ̂, σ̂2, �, (l̂, 0))

(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, x̂)

γ̂(x̂) = (l̂, b̂ty∗) Free(γ̂, l̂, σ̂1) = σ̂2

(γ̂, σ̂, �, free(ê)) ⇓′
f̂re

(γ̂, σ̂2, �, skip)

Input Value Output Value

(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, x̂)
(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂)

γ̂(x̂) = (l̂, b̂ty) InputValue(x̂, n̂) = n̂1

(γ̂, σ̂2, �, x̂ = n̂1) ⇓′ŝ (γ̂, σ̂3, �, skip)

(γ̂, σ̂, �, mcinput(ê1, ê2)) ⇓′
înp

(γ̂, σ̂3, �, skip)

(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, x̂)

(γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂) γ̂(x̂) = (l̂, b̂ty)

σ̂2(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty , public, 1))

DecodeVal(b̂ty , 1, ω̂) = v̂ OutputValue(x̂, n̂, v̂)

(γ̂, σ̂, �, mcoutput(ê1, ê2)) ⇓′ôut (γ̂, σ̂2, �, skip)

Input Array
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, x̂) (γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂) (γ̂, σ̂2, �, ê3) ⇓′ê (γ̂, σ̂3, �, n̂1)

γ̂(x̂) = (l̂, const b̂ty∗) InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1 ] (γ̂, σ̂3,�, x̂ = [m̂0, ..., m̂n̂1 ]) ⇓′ŝ (γ̂, σ̂4,�, skip)

(γ̂, σ̂, �, mcinput(ê1, ê2, ê3)) ⇓′
înp1

(γ̂, σ̂4, �, skip)

Output Array
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, x̂) (γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, n̂) (γ̂, σ̂2, �, ê3) ⇓′ê (γ̂, σ̂3, �, n̂1)

γ̂(x̂) = (l̂, const b̂ty∗) σ̂3(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] σ̂3(l̂1) = (ω̂1, b̂ty , n̂2, PermL(Freeable, b̂ty , public, n̂1))

DecodeVal(b̂ty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1 ] OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1 ])

(γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) ⇓′ôut1 (γ̂, σ̂3, �, skip)

Figure 3.6: Vanilla C semantic rules for functions, casting, memory management, and input / output.
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In semantic rule Function Declaration, we need are adding the function to the environment, but leaving it

to be fully defined until a later point in the program. We first obtain a new memory block identifier from

φ and use the Algorithm 22 (GetFunTypeList) to create the type list t̂y from the given parameters. The

function type is then the parameter type list to the return type, or t̂y → t̂y . We then add mappings to the

environment and memory for the function, initializing the function data as NULL. We return the updated

environment and memory.

In semantic rule Function Definition, we need to add a new function name and definition into our

environment and memory. We first assert that this function was not previously declared, or that function

name x̂ is not in environment γ̂. We then proceed to get a new memory block identifier, find the parameter

type list, and add a new mapping for this function into the environment, as in rule Function Declaration. Here,

however, we have the function body ŝ, and use Algorithm 11 (EncodeFun) to encode the function body and

parameter list into the corresponding byte representation ω̂, and then add a new mapping for this function

into memory. The updated memory and environment are returned.

In semantic rule Pre-declared Function Definition, we need to add the definition of a pre-declared function

into memory. We first assert that the function was predeclared by showing that function name x̂ is in the

environment. Next, we use Algorithm 11 to get the byte representation ω̂ of the function data. As we need to

discard the mapping with the NULL value for the function that was stored in memory during the function

declaration, we remove that mapping to obtain memory σ̂1, then add the new mapping with the function data

to σ̂1 to obtain the final memory σ̂2. We return σ̂2.

In semantic rule Function Call, we perform the function call. We look up the function name in the

environment, then look up the function data in memory, and use Algorithm 12 (DecodeFun) to obtain the

function body ŝ and parameter list for the function. We then use Algorithm 23 (GetFunParamAssign) to

create the statement ŝ1 to add the parameter variables to the environment and evaluate the expressions and

assign their values to the corresponding parameters. Once we have evaluated these assignment statements,

we continue on to evaluate the body of the function, and finally, return the updated memory and NULL, as

our subset of C semantics does not currently include a return statement. It is possible to use pointers to store

return values and thus including return statements is a trivial extension. We do not return any modifications

to the environment, as they are out of scope beyond the evaluation of the function.

In semantic rule Cast Value, we are type-casting a number n̂ from one type to another (e.g., casting from

float to int). We first evaluate the expression to obtain a number n̂, then use Algorithm 5 (Cast) to obtain the

24



corresponding number n̂1 for the new type. We return the updated memory from the expression evaluation

and value n̂1. In semantic rule Cast Location, we are type-casting location, such as one obtained through the

use of malloc. We make the assertion that the given type is a pointer type, and evaluate the expression to

be a location (l̂, 0). Here, we only allow locations with offset 0, as we are type-casting the memory block

associated with this location and thus must not be at a random point inside a memory block. We then extract

the mapping for the location we are updating from memory σ̂1 to obtain σ̂2, asserting that the type of the

memory block was void. Finally, we create a new mapping for this location with the given type and updated

size (as previously the size was stored as the number of bytes that the memory block contained and we now

want to store the number of elements of that given type that can fit within the memory block). We add this

mapping to σ̂2 to obtain σ̂3, and return σ̂3 and the location.

In semantic rule Malloc, we allocate a new memory block based on the given size. First, we evaluate

the expression to the size n̂, and obtain a new memory block from φ. Then we create a new mapping for

this memory block, giving the size as n̂ bytes and type as void, and add it to memory σ̂1 to obtain σ̂2. We

return σ̂2 and the new location, (l̂, 0). In semantic rule Free, we are deallocating a memory block previously

allocated by malloc. We first evaluate the expression to be a variable x̂. We look up x̂ in the environment,

finding the location where x̂ is stored and asserting that x̂must be of a pointer type. We then use Algorithm 26

to check that the location that the pointer refers to is indeed freeable (i.e., was allocated by malloc), and if

so, change the permissions associated that memory block to be None. As discussed in Subsection Malloc and

Free, we do not clear the data stored in the location, nor do we return the location to the pool of available

locations accessed by φ.

In semantic rule Input Value, we are reading in the value for a specific variable from a file and storing it

in memory for that variable. First, we evaluate the first expression to be variable x̂ and the second expression

to be the party n̂ which is contributing the input data. We look up the variable x̂ in the environment and assert

that it is a regular (non-array, non-pointer) variable (i.e., type b̂ty), since this function is reading in a single

value. We then use Algorithm 28 (InputValue) to obtain the value for that variable from the file containing

that input party’s input data. Finally, we evaluate the assignment to store the value we read from the file and

we return the updated memory σ̂3.

In semantic rule Input Array, we are reading in the values for an entire array from a file and storing it in

memory for the given array variable. First, we evaluate the first expression to be variable x̂ and the second

expression to be the party n̂ which is contributing the input data. Next, we evaluate the third expression to be
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the length of the array, n̂1. We look up the variable x̂ in the environment and assert that it is an array variable

(i.e., type const b̂ty∗), since this function is reading in n̂1 values. We then use Algorithm 29 (InputArray)

to obtain the n̂1 values for that variable from the file containing that input party’s input data. Finally, we

evaluate the assignment to store the values we read from the file and we return the updated memory σ̂4.

In semantic rule Output Value, we are writing the value of a variable to a file as output. First, we evaluate

the first expression to be variable x̂ and the second expression to be the party n̂ which is receiving the output

data. We look up the variable x̂ in the environment and assert that it is a regular (non-array, non-pointer)

variable (i.e., type b̂ty), since this function is giving a single value as output. Next, we look up the data

for x̂ in memory and obtain the value v̂ stored using Algorithm 8 (DecodeVal). We then use Algorithm 30

(OutputValue) to output v̂ to output party n̂.

In semantic rule Output Array, we are writing the values of an entire array to a file as output. First, we

evaluate the first expression to be variable x̂ and the second expression to be the party n̂ which is receiving

the output data. Next, we evaluate the third expression to be the length of the array, n̂1. We look up the

variable x̂ in the environment and assert that it is an array variable (i.e., type const b̂ty∗), since this function

is giving n̂1 values as output. Next, we look up the data for x̂ in memory and obtain the list of values stored

using Algorithm 8 (DecodeVal). We then use Algorithm 31 (OutputArray) to output the list of values to

output party n̂.

In semantic rule If Else True, we need to evaluate the then branch, as the condition was true. We first

evaluate the condition to be some number n̂. Then, we assert that n̂ cannot be 0, as this is the true case. We

proceed to evaluate the then statement ŝ1, and return updated memory σ̂2. Modifications to the environment

are discarded as they are out of scope beyond the evaluation of this rule. In semantic rule If Else False, we

need to evaluate the else branch, as the condition was false. We first evaluate the condition to be some

number n̂. Then, we assert that n̂ must be 0, as this is the false case. We proceed to evaluate the else

statement ŝ2, and return updated memory σ̂2. Modifications to the environment are discarded as they are out

of scope beyond the evaluation of this rule.

In semantic rule Pointer Declaration, we need to add mappings for the pointer to the environment and

to memory. We first assert that the given type in a pointer type (i.e., b̂ty∗). We then obtain the level of

indirection î using Algorithm 6 (GetIndirection), which will count the number of ∗ used in the type to

obtain the level of indirection of this pointer. A new memory block identifier is obtained from the pool of

available locations φ. Next, we add a mapping for this variable to the environment. We will store the a default
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If Else True If Else False
(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, n̂) n̂ 6= 0
(γ̂, σ̂1, �, ŝ1) ⇓′ŝ (γ̂1, σ̂2, �, skip)

(γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′
îet

(γ̂, σ̂2, �, skip)

(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, n̂) n̂ = 0
(γ̂, σ̂1, �, ŝ2) ⇓′ŝ (γ̂1, σ̂2, �, skip)

(γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′
îef

(γ̂, σ̂2, �, skip)

Pointer Declaration
(t̂y = b̂ty∗) GetIndirection(∗) = î l̂ = φ() γ̂1 = γ̂[x̂ → (l̂, t̂y)]

ω̂ = EncodePtr(t̂y∗, [1, [(l̂default , 0)], [1], î]) σ̂1 = σ̂[l̂ → (ω̂, t̂y , 0, PermL(Freeable, t̂y , public, 0))]

(γ̂, σ̂, �, t̂y x̂) ⇓′
d̂p

(γ̂1, σ̂1, �, skip)

Pointer Read Location
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î]

(γ̂, σ̂, �, x̂) ⇓′r̂p (γ̂, σ̂, �, (l̂1, µ̂1))

Pointer Assign Location
(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, (l̂e, µ̂e)) γ̂(x̂) = (l̂, b̂ty∗) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] UpdatePtr(σ̂1, (l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1)

(γ̂, σ̂, �, x̂ = ê) ⇓′ŵp (γ̂, σ̂2, �, skip)

Pre-increment Pointer
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂)

UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) = (σ̂1, 1)

(γ̂, σ̂, �, ++ x̂) ⇓′
p̂in2

(γ̂, σ̂1, �, (l̂2, µ̂2))

Pre-increment Pointer (Not Aligned)
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] ((l̂2, µ̂2), 0) = GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂)

UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) = (σ̂1, 1)

(γ̂, σ̂, �, ++ x̂) ⇓′∗
p̂in2

(γ̂, σ̂1, �, (l̂2, µ̂2))

Pre-increment Pointer Higher Level Indirection
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗,public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] î > 1

((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty∗), σ̂) UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], i], b̂ty∗) = (σ̂1, 1)

(γ̂, σ̂, �, ++ x̂) ⇓′
p̂in3

(γ̂, σ̂1, �, (l̂2, µ̂2))

Pre-increment Pointer Higher Level Indirection (Not Aligned)
γ̂(x) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗,public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], i] i > 1

((l̂2, µ̂2), 0) = GetLocation((l̂1, µ̂1), τ(b̂ty∗), σ̂) UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], i], b̂ty∗) = (σ̂1, 1)

(γ̂, σ̂, �, ++ x̂) ⇓′∗
p̂in3

(γ̂, σ̂1, �, (l̂2, µ̂2))

Figure 3.7: Vanilla C semantic rules for branches and pointer declarations, reading, writing, and incrementing.
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pointer data structure (i.e., our representation of a NULL or uninitialized pointer) as [1, [(l̂default , 0)], [1], î],

indicating that is refers to a single location, which is the default location (l̂default , 0), the tag indicating that it

is the true location, and the pointer has the level of indirection î. We create the byte representation for the

pointer with the default data structure for the pointer using Algorithm 9, and then add the mapping for the

pointer data into memory. We return the updated environment and memory. Further details about the pointer

data structure can be found in Subsection 3.1.2).

In semantic rule Pointer Read Location, we are reading which location that the pointer refers to. Here,

we first look up the pointer in the environment, then in memory. We use Algorithm 10 (DecodePtr) to

obtain the pointer data structure from the byte representation, and then return the location referred to by the

pointer. In semantic rule Pointer Assign Location, we are assigning a new location for the pointer to refer

to. We first evaluate the expression to obtain the location that we will be assigning to the pointer, then we

look up the pointer variable in the environment and its corresponding memory block in memory. We use

Algorithm 10 (DecodePtr) to obtain the pointer data structure from the byte representation in order to obtain

the level of indirection of the pointer. Finally, we use Algorithm 14 (UpdatePtr) to create the new mapping

for the pointer in memory and swap it in place of the old mapping, returning the updated memory with the

new mapping and the tag 1. This tag indicates that the location updated in memory was well-aligned, as is

expected because we are updating the pointer’s own memory block with the expected value. This algorithm is

called with the memory obtained from the evaluation of the expression, the location of the pointer in memory,

the updated pointer data structure, and the type of the pointer. We return the final updated memory σ̂2 from

this rule.

In semantic rule Pre-increment Pointer, we are incrementing the location that the pointer refers to. We

first look up the pointer in the environment, then in memory, and then obtain the pointer data structure from

the byte representation using Algorithm 10 (DecodePtr). We use Algorithm 21 (GetLocation) to obtain the

next location beyond the current location that the pointer refers to. We pass this algorithm the current referred

to location, then the size of the type of data it refers to (i.e., a non-pointer type, as the level of indirection is

1), and the current memory; we assert that it returned to us the next location, and the tag 1, indicating that

that location was well-aligned (i.e., it is of the same type and immediately after the previous location). We

then use Algorithm 14 (UpdatePtr) to store this new location as the location being referred to by the pointer,

as discussed above for rule Pointer Assign Location. This rule then returns the updated memory and the new

location that is being referred to by this pointer. Semantic rule Pre-increment Pointer (Not Aligned) is nearly
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identical to to rule Pre-increment Pointer – the only difference is that the location returned by Algorithm 21

(GetLocation) is not well-aligned, as discussed in Subsection 3.1.2.

In semantic rule Pre-increment Pointer Higher Level Indirection, we are incrementing the location that the

pointer refers to, just for a pointer with a higher level of indirection. The difference between this rule and Pre-

increment Pointer is that the size we use when obtaining the new location from Algorithm 21 (GetLocation)

is determined by the size of a pointer τ(b̂ty∗) rather than the size of a regular variable τ(b̂ty). To enforce

this as being a pointer of a higher level of indirection, we add in the assertion that the level of indirection î

must be greater than one. Semantic rule Pre-increment Pointer Higher Level Indirection (Not Aligned) is

nearly identical to to rule Pre-increment Pointer Higher Level Indirection – the only difference is that the

location returned by Algorithm 21 (GetLocation) is not well-aligned, as discussed in Subsection 3.1.2.

In semantic rule Pointer Dereference Write Value, we are dereferencing the pointer and writing a value

to the location that the pointer refers to. We first evaluate the expression to a value, and make the assertion

that this value is not the terminal skip, as that is not a valid value to store in memory. Then we look up the

variable in the environment, making the assertion that it is a pointer variable, and proceed to look up the data

in memory and obtain the pointer data structure with Algorithm 10 (DecodePtr), asserting that this pointer

has level of indirection 1. We use Algorithm 15 (UpdateOffset) to write the given value to the location

in memory referred to by the pointer. This algorithm returns tag 1, indicating that the value was written

into a location that it was well-aligned with. We then return the updated memory. In semantic rule Pointer

Dereference Write Value (Not Aligned) is nearly identical to rule Pointer Dereference Write Value, the only

exception being Algorithm 15 (UpdateOffset) returning 0 to indicate that the value written into memory

was not well-aligned with the location it was written to (e.g., we have overwritten chunks of two different

memory blocks and introduced garbage into the memory).

In semantic rule Pointer Dereference Write Value Higher Level Indirection, we are dereferencing the

pointer and writing a new location to the location that the pointer refers to. First, we evaluate the expression

to be a location. Then we look up the variable x̂ in the environment and in memory, asserting that it is a

pointer type. We obtain the pointer data structure with Algorithm 10 (DecodePtr), and assert that the level

of indirection of this pointer is greater than 1, or that this is a pointer to a pointer. We then use Algorithm 14

(UpdatePtr) to update the location that the lower level referred to pointer is now referring to. This algorithm

returns the updated memory and the tag 1, indicating that our update to memory was well-aligned. In semantic

rule Pointer Dereference Write Value Higher Level Indirection (Not Aligned) is nearly identical to rule
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Pointer Dereference Write Value
(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, v̂) γ̂(x) = (l̂, b̂ty∗) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1))

v̂ 6= skip DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] UpdateOffset(σ̂1, (l̂1, µ̂1), v̂, b̂ty) = (σ̂2, 1)

(γ̂, σ̂, �, ∗ x = ê) ⇓′
ŵdp

(γ̂, σ̂2, �, skip)

Pointer Dereference Write Value (Not Aligned)
(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, v̂) γ̂(x) = (l̂, b̂ty∗) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1))

v̂ 6= skip DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] UpdateOffset(σ̂1, (l̂1, µ̂1), v̂, b̂ty) = (σ̂2, 0)

(γ̂, σ̂, �, ∗ x = ê) ⇓′∗
ŵdp

(γ̂, σ̂2, �, skip)

Pointer Dereference Write Value Higher Level Indirection
(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, (l̂e, µ̂e)) γ̂(x̂) = (l̂, b̂ty∗)
σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î]

î > 1 UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1)

(γ̂, σ̂, �, ∗ x̂ = ê) ⇓′
ŵdp1

(γ̂, σ̂2, �, skip)

Pointer Dereference Write Value Higher Level Indirection (Not Aligned)
(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, (l̂e, µ̂e)) γ̂(x̂) = (l̂, b̂ty∗)
σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î]

î > 1 UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 0)

(γ̂, σ̂, �, ∗ x̂ = ê) ⇓′∗
ŵdp1

(γ̂, σ̂2, �, skip)

Pointer Dereference
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1)

(γ̂, σ̂, �, ∗ x̂) ⇓′
r̂dp

(γ̂, σ̂, �, v̂)

Pointer Dereference (Not Aligned)
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 0)

(γ̂, σ̂, �, ∗ x̂) ⇓′∗
r̂dp

(γ̂, σ̂, �, v̂)

Pointer Dereference Higher Level Indirection
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) î > 1

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 1)

(γ̂, σ̂, �, ∗ x̂) ⇓′
r̂dp1

(γ̂, σ̂, �, (l̂2, µ̂2))

Pointer Dereference Higher Level Indirection (Not Aligned)
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) î > 1

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 0)

(γ̂, σ̂, �, ∗ x̂) ⇓′∗
r̂dp1

(γ̂, σ̂, �, (l̂2, µ̂2))

Figure 3.8: Vanilla C semantic rules for pointer dereference write and dereference read.
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Pointer Dereference Write Value Higher Level Indirection, with the difference being that the location we are

storing into memory was stored into a location that was not well-aligned.

In semantic rule Pointer Dereference, we are dereferencing the pointer to read the value stored at the

location the pointer refers to. First, we look up the variable in memory and the environment, asserting that it

is a pointer type. We obtain the pointer data structure with Algorithm 10 (DecodePtr) and assert that have

level of indirection 1. Finally, we use Algorithm 16 (DerefPtr) to read a value of type bty from memory

at the referred to location (l̂1, µ̂1). We assert that this algorithm also returns the tag 1, indicating that the

location that we read from in memory was well-aligned and therefore of the expected type. We then return

the value we read from memory. In semantic rule Pointer Dereference (Not Aligned) is nearly identical to

rule Pointer Dereference, with the difference being that the value read by Algorithm 16 (DerefPtr) was not

from a well-aligned location (i.e., we have potentially just read a garbage value).

In semantic rule Pointer Dereference Higher Level Indirection, we are dereferencing the pointer to read

the value stored at the location the pointer refers to. The main difference between this rule and rule Pointer

Dereference is that the value we will read is going to be a location instead of a number n̂. First, we look up

the variable in memory and the environment, asserting that it is a pointer type. We obtain the pointer data

structure with Algorithm 10 (DecodePtr) and assert that have level of indirection greater than 1. We then

use Algorithm 17 (DerefPtrHLI) to read the pointer data structure from memory at the referred to location

(l̂1, µ̂1). We assert that this algorithm also returns the tag 1, indicating that the location that we read from

in memory was well-aligned and therefore of the expected type. We then return the location we read from

memory. In semantic rule Pointer Dereference Higher Level Indirection (Not Aligned) is nearly identical to

rule Pointer Dereference Higher Level Indirection, with the difference being that the pointer data structure

read by Algorithm 17 (DerefPtrHLI) was not from a well-aligned location (i.e., we have potentially just

read a garbage value).

In semantic rule Array Declaration, we are adding the new array to the environment and memory. We first

evaluate the expression to obtain the size of the array, n̂. Next, we obtain two new memory block identifiers

from φ, as arrays in C are stored as a constant pointer to the array data. We will use l̂ for the array pointer and

l̂1 for the array data. We create the byte representation ω̂ of the pointer data structure for the array pointer

using Algorithm 9 (EncodePtr), storing the location for the array data. We add the mapping for the array

variable to memory with the location for the array pointer, then add the array pointer location to memory

with its corresponding data. Then we create initial NULL data to store for the array using Algorithm 7
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Array Declaration
(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, n̂) l̂ = φ() l̂1 = φ() ω̂ = EncodePtr(const b̂ty∗, [1, [(l̂1, 0)], [1], 1])

γ̂1 = γ̂[x → (l̂, const b̂ty∗)] σ̂2 = σ̂1[l̂ → (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗,public, 1))]

EncodeVal(b̂ty ,NULL) = ω̂1 n̂ > 0 σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂))]

(γ̂, σ̂, �, b̂ty x[ê]) ⇓′
d̂a

(γ̂1, σ̂3, �, skip)

Array Write
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, î) (γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, v̂) v̂ 6= skip

γ̂(x̂) = (l̂, const b̂ty∗) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂)) DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1]

0 ≤ î ≤ n̂− 1 [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

( v̂
v̂î

)
UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3

(γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip)

Array Read
(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, î) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,public, 1))

γ̂(x) = (l̂, const b̂ty∗) 0 ≤ î ≤ n̂− 1 DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty ,public, n̂)) DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1]

(γ̂, σ̂, �, x̂[ê]) ⇓′r̂a (γ̂, σ̂1, �, v̂î)

Array Read Out-of-bounds
(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, î)

γ̂(x̂) = (l̂, const b̂ty∗) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂))

(̂i < 0) ∨ (̂i ≥ n̂) ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1)

(γ̂, σ̂, �, x̂[ê]) ⇓′r̂ao (γ̂, σ̂1, �, v̂)

Array Read Out-of-bounds (Not Aligned)
(γ̂, σ̂, �, ê) ⇓′ê (γ̂, σ̂1, �, î)

γ̂(x̂) = (l̂, const b̂ty∗) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂))

(̂i < 0) ∨ (̂i ≥ n̂) ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 0)

(γ̂, σ̂, �, x̂[ê]) ⇓′∗r̂ao (γ̂, σ̂1, �, v̂)

Array Write Out-of-bounds
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, î) (γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, v̂) v̂ 6= skip

γ̂(x) = (l̂, const b̂ty∗) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty ,public, n̂))

(̂i < 0) ∨ (̂i ≥ n̂) WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1)

(γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵao (γ̂, σ̂3, �, skip)

Array Write Out-of-bounds (Not Aligned)
(γ̂, σ̂, �, ê1) ⇓′ê (γ̂, σ̂1, �, î) (γ̂, σ̂1, �, ê2) ⇓′ê (γ̂, σ̂2, �, v̂) v̂ 6= skip

γ̂(x) = (l̂, const b̂ty∗) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂))

(̂i < 0) ∨ (̂i ≥ n̂) WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 0)

(γ̂, σ̂, �, x[ê1] = ê2) ⇓′∗ŵao (γ̂, σ̂3, �, skip)

Figure 3.9: Vanilla C semantic rules for one-dimensional array declarations, reading, and writing.
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(EncodeVal), and assert that n̂ is greater than 0, as the array must have at least one element. Finally, we add

the mapping for the array data to memory and return the updated environment and memory.

In semantic rule Array Write, we are writing a value to an index of the array. First, we evaluate the first

expression to find the index î that we are writing to, then the second expression to find the value v̂ that we will

be writing to that index. We assert that this value is not the terminal value skip, as it is not a valid value to

write into memory. We then look up the variable in the environment, asserting that it is an array variable (i.e.,

const b̂ty∗). We look up the array pointer data in memory, use Algorithm 10 (DecodePtr) to get the pointer

data structure, then look up the array data in memory. We use Algorithm 8 (DecodeVal) to obtain the array

values from the byte representation. We assert that the index is within bounds (i.e., that it is between 0 and

n̂− 1, as arrays are 0-indexed). We then swap the value at index î for the new value v̂ that we are assigning

to that index, obtaining the updated array data (i.e., [v̂′0, ..., v̂
′
n̂−1]). We the use Algorithm 13 (UpdateVal) to

place the updated array data into memory for array x̂ and return the updated memory.

In semantic rule Array Read, we are reading a value from an index of the array. First, we evaluate the

expression to find the index î that we are reading from. We then look up the variable in the environment,

asserting that it is an array variable (i.e., const b̂ty∗). We look up the array pointer data in memory, use

Algorithm 10 (DecodePtr) to get the pointer data structure, then look up the array data in memory. Finally,

we use Algorithm 8 (DecodeVal) to obtain the array values from the byte representation, and return the value

at index î and the updated memory returned from the evaluation of the expression.

In semantic rule Array Read Out-of-bounds, we are reading a value from an index that is beyond the

bounds of the array. This rule differs from rule Array Read after looking up the array data in memory. We

then assert that the index î was either less than 0 or greater than or equal to the length of the array (i.e.,

that this index is beyond the bounds of the array, which ranges from index 0 to index n̂− 1). We then use

Algorithm 24 (ReadOOB) to read a value from the place in memory where the index is anticipated to be

(i.e., before the array if negative, otherwise after the array). This algorithm returns the byte data at that

position interpreted as a value of the same type as the array and a tag, which we assert to be 1. This tag

indicates that the location we read the value from (as well as any spaces between) is of the same type as the

array, and therefore is likely a valid value. We return this value and the updated memory returned from the

evaluation of the expression. Semantic rule Array Read Out-of-bounds (Not Aligned) differs from rule Array

Read Out-of-bounds in that the value being read is from a location that is not well-aligned with the array, as

discussed in Subsection 3.1.2.
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Array Declaration Assignment
(γ̂, σ̂,�, t̂y x̂[ê]) ⇓′ŝ (γ̂1, σ̂1,�, skip) (γ̂1, σ̂1,�, x̂ = ê) ⇓′ŝ (γ̂1, σ̂2,�, skip)

(γ̂, σ̂,�, t̂y x̂[ê] = ê) ⇓′
d̂as

(γ̂1, σ̂2,�, skip)

Array Read Entire Array
γ̂(x̂) = (l̂, const b̂ty∗) σ̂(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1]

(γ̂, σ̂,�, x̂) ⇓′r̂a4 (γ̂, σ̂,�, [v̂0, ..., v̂n−1])

Array Write Entire Array
(γ̂, σ̂,�, ê) ⇓′ê (γ̂, σ̂1,�, [v̂0, ..., v̂n̂e−1]) ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip

γ̂(x̂) = (l̂, const b̂ty∗) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂))

n̂e = n̂ UpdateVal(σ̂1, l̂1, [v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2

(γ̂, σ̂,�, x̂ = ê) ⇓′ŵa5 (γ̂, σ̂2,�, skip)

Figure 3.10: Vanilla C semantic rules for managing an entire array.

In semantic rule Array Write Out-of-bounds, we are writing a value to an index that is beyond the bounds

of the array. This rule differs from rule Array Write after looking up the array data in memory. We then assert

that the index î was either less than 0 or greater than or equal to the length of the array (i.e., that this index

is beyond the bounds of the array, which ranges from index 0 to index n̂− 1). We then use Algorithm 25

(WriteOOB) to write a value from the place in memory where the index is anticipated to be (i.e., before the

array if negative, otherwise after the array). This algorithm returns the updated memory and a tag, which

we assert to be 1. This tag indicates that the location we wrote the value to (as well as any spaces between)

is of the same type as the array, and therefore is we did not introduce garbage into memory. We return the

updated memory. Semantic rule Array Write Out-of-bounds (Not Aligned) differs from rule Array Write

Out-of-bounds in that the value being written to memory is at a location that is not well-aligned with the

array, as discussed in Subsection 3.1.2.

In semantic rule Array Declaration Assignment, we are facilitating the declaration and initialization of a

new array variable with a value. We first evaluate the declaration, then the assignment of the initial values for

the entire array, returning the additions and updates to the environment and memory. In semantic rule Array

Read Entire Array, we are reading every value from an array. We first look up the variable in the environment,

asserting that it is an array variable (i.e., const b̂ty∗). We look up the array pointer data in memory, use

Algorithm 10 (DecodePtr) to get the pointer data structure, then look up the array data in memory. We then

use Algorithm 8 (DecodeVal) to obtain the array values from the byte representation, which we return.

In semantic rule Array Write Entire Array, we are overwriting every value for an array. We first evaluate
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the expression to be a list of values, and assert that none of these values is the terminal value skip, as that

is not a valid value to add into memory. We then look up the variable in the environment, asserting that

it is an array variable (i.e., const b̂ty∗). We look up the array pointer data in memory, use Algorithm 10

(DecodePtr) to get the pointer data structure, then look up the array data in memory. We assert that the

length of the array from the expression n̂e is equivalent to the length of the array we are assigning it to, and

use Algorithm 13 (UpdateVal) to write the values from the expression into memory for this array. Finally,

we return the updated memory.

3.1.4 Basic SMC2

In this section, we show the Basic SMC2 semantics with respect to the grammar (Figure 3.1). The semantic

judgements in Basic SMC2 are defined over a four-tuple configuration C = (γ, σ, acc, s), where each rule

is a reduction from one configuration to a subsequent. We denote the environment as γ; memory as σ; the

level of nesting of private-conditioned branches as acc; and a big-step evaluation of a statement s to a value v

using ⇓. We annotate each evaluation with evaluation codes (i.e., ⇓d) to facilitate reasoning over evaluation

trees, and we annotate evaluations that are not well-aligned with a star (i.e., ⇓∗d) to identify the rules that we

cannot prove correctness over, as they produce unpredictable behavior. The assertions in each semantic rule

can be read in sequential order, from left to right and top to bottom.

Figure 3.11 gives the Basic SMC2 semantics for basic declarations, reading, and writing, sequencing,

loops, finding the size of a type, and finding the address of a variable. Figure 3.12 gives the Basic SMC2

semantics for addition, subtraction, multiplication, and division. Figures 3.13 and 3.14 give the semantics

for not equal to and equal to comparison operations and for less than comparison operations, respectively.

Figure 3.15 gives the semantics for Basic SMC2 public and private if else operations. Figures 3.16 and

3.17 give the semantics for pre-increment operator (++x). Figure 3.18 gives the semantics for functions and

casting. Figure 3.19 gives the semantics for the input and output of data from files. Figure 3.20 gives the

semantics for memory allocation and deallocation. Figure 3.21 gives the semantics for pointer declarations,

reads, and writes. Figures 3.22 and 3.23 give the semantics for pointer dereference writes, and Figure 3.24

gives those for pointer dereference reads. Figure 3.25 gives the semantics for array declarations and writing

an entire array. Figures 3.26 and 3.27 give the semantics for reading from an array and writing to an index of

an array, respectively. Figures 3.28 and 3.29 give the semantics for reading and writing out of the bounds of

an array, respectively.
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Public Declaration
(ty = public bty) acc = 0 l = φ() γ1 = γ[x → (l, ty)]
ω = EncodeVal(ty ,NULL) σ1 = σ[l → (ω, ty , 1,PermL(Freeable, ty , public, 1))]

(γ, σ, acc, ty x) ⇓d (γ1, σ1, acc, skip)

Private Declaration
((ty = bty) ∨ (ty = private bty)) ∧ ((bty = int) ∨ (bty = float)) l = φ() γ1 = γ[x → (l,private bty)]
ω = EncodeVal(ty ,NULL) σ1 = σ[l → (ω,private bty , 1,PermL(Freeable, private bty ,private, 1))]

(γ, σ, acc, ty x) ⇓d1 (γ1, σ1, acc, skip)

Read Public Variable Statement Sequencing
γ(x) = (l,public bty)
σ(l) = (ω,public bty , 1,PermL(Freeable, public bty ,public, 1))
DecodeVal(public bty , 1, ω) = v

(γ, σ, acc, x) ⇓r (γ, σ, acc, v)

(γ, σ, acc, s1) ⇓s (γ1, σ1, acc, skip)
(γ1, σ1, acc, s2) ⇓s (γ2, σ2, acc, v)

(γ, σ, acc, s1; s2) ⇓ss (γ2, σ2, acc, v)

Read Private Variable Declaration Assignment
γ(x) = (l,private bty)
σ(l) = (ω,private bty , 1,PermL(Freeable, private bty ,private, 1))
DecodeVal(private bty , 1, ω) = v

(γ, σ, acc, x) ⇓r1 (γ, σ, acc, v)

(γ, σ, acc, ty x) ⇓s (γ1, σ1, acc, skip)
(γ1, σ1, acc, x = e) ⇓s (γ1, σ2, acc, skip)

(γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip)

Write Public Variable Address Of
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, v) v 6= skip
acc = 0 γ(x) = (l,public bty) UpdateVal(σ1, l, v, public bty) = σ2

(γ, σ, acc, x = e) ⇓w (γ, σ2, acc, skip)

γ(x) = (l, ty)

(γ, σ, acc, &x) ⇓loc (γ, σ, acc, (l, 0))

Write Private Variable While End
Label(e, γ) = private (γ, σ, acc, e) ⇓e (γ, σ1, acc, v) v 6= skip
γ(x) = (l,private bty) UpdateVal(σ1, l, v, private bty) = σ2

(γ, σ, acc, x = e) ⇓w2 (γ, σ2, acc, skip)

Label(e, γ) = public
(γ, σ, acc, e) ⇓e (γ, σ1, acc, n) n = 0

(γ, σ, acc,while (e) s) ⇓wle (γ, σ1, acc, skip)

Write Private Variable Public Value While Continue
Label(e, γ) = public γ(x) = (l,private bty)
(γ, σ, acc, e) ⇓e (γ, σ1, acc, n)
UpdateVal(σ1, l, encrypt(n),private bty) = σ2

(γ, σ, acc, x = e) ⇓w1 (γ, σ2, acc, skip)

Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, n)
n 6= 0 (γ, σ1, acc, s) ⇓s (γ1, σ2, acc, skip)

(γ, σ2, acc,while (e) s) ⇓s (γ2, σ3, acc, skip)

(γ, σ, acc,while (e) s) ⇓wlc (γ, σ2, acc,while (e) s)

Parentheses Statement Block Size of type
(γ, σ, acc, e) ⇓e (γ, σ1, acc, v)

(γ, σ, acc, (e)) ⇓ep (γ, σ1, acc, v)

(γ, σ, acc, s) ⇓s (γ1, σ1, acc, skip)

(γ, σ, acc, {s}) ⇓sb (γ, σ1, acc, skip)

n = τ(ty)

(γ, σ, acc, sizeof(ty)) ⇓ty (γ, σ, acc, n)

Figure 3.11: Basic SMC2 semantics for basic declarations, reading, writing, sequencing, loops, finding the
size of a type, and finding the address of a variable.
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The rules for Public Declaration and Private Declaration are similar - the main differences are in ensuring

that the appropriate privacy label is assigned to the byte-wise permissions, and disallowing public declarations

within branches on private data (i.e., the condition acc = 0 defines that we are not within the scope of a

private branch). We do not allow public declarations within an if else statement branching on private data

(i.e., a private-conditioned branch) because we do not allow modifications to public variables within such

branches, as such modifications are public side effects that would be viewable in memory and would lead to

the leakage of information about the private data we used to evaluate the branch.

Rules Read Private Variable and Read Public Variable are both standard C reading rules, handling either

private or public data. Rules Write Private Variable and Write Public Variable are standard C writing rules

for storing a value for a variable, where both the variable and the value have the same privacy label. In rule

Write Public Variable, there is the assertion that acc = 0, meaning this rule cannot be evaluated when inside

a private-conditioned branch. Rule Write Private Variable Public Value handles writing a public value to a

private variable. Note, there is no rule for writing a private value to a public variable, as this is not a valid

operation in our semantics (i.e., a program with such an operation would result in a compile time or runtime

error depending on the specific implementation) because it would reveal (or ‘open’) the private value. We

currently do not model the behavior for ‘opening’ private values within our semantics.

Rule Declaration Assignment is used to allow declaring a variable and providing and initial value for the

variable (assignment) in one statement. The rules for Statement Sequencing, Statement Block, Parentheses,

Address Of, and Size of Type are the same as those defined for our C semantics.

For while loops (and loops in general), we must perform a check to ensure that the expression we are

looping on is public, as we can not hide the number of times the loop is executed. Rule While Continue uses

the⇒ evaluation as it will be evaluated an arbitrary number of times until the condition becomes false and

rule While End is evaluated. These rule mirrors what is present in our definition of the C semantics, modified

only to do the appropriate runtime assertion that conditional expressions are public.

For completeness, the semantics of binary operations within the scope of the grammar (Figure 3.1) are

shown in Figures 3.12, 3.13, and 3.14. The rule Public Addition operates over two public expressions,

performing regular addition. For Private Addition, we have two expressions with private data, and we

use +private to abstract the precise implementation of secure addition over two private values. In rules

Public-Private Addition and Private-Public Addition, we encrypt the public expression and then perform

secure addition over the private value and the newly encrypted value. All cases of rules for Subtraction,
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Public Addition Private - Public Addition
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 +public n2 = n3

(γ, σ, acc, e1 + e2) ⇓bp (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 +private encrypt(n2) = n3

(γ, σ, acc, e1 + e2) ⇓bp3 (γ, σ2, acc, n3)

Private Addition Public - Private Addition
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 +private n2 = n3

(γ, σ, acc, e1 + e2) ⇓bp1 (γ, σ2, acc, n3)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n1) +private n2 = n3

(γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3)

Public Subtraction Private - Public Subtraction
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 −public n2 = n3

(γ, σ, acc, e1 − e2) ⇓bs (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 −private encrypt(n2) = n3

(γ, σ, acc, e1 − e2) ⇓bs3 (γ, σ2, acc, n3)

Private Subtraction Public - Private Subtraction
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 −private n2 = n3

(γ, σ, acc, e1 − e2) ⇓bs1 (γ, σ2, acc, n3)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n1)−private n2 = n3

(γ, σ, acc, e1 − e2) ⇓bs2 (γ, σ2, acc, n3)

Public Multiplication Private - Public Multiplication
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 ·public n2 = n3

(γ, σ, acc, e1 · e2) ⇓bm (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 ·private encrypt(n2) = n3

(γ, σ, acc, e1 · e2) ⇓bm3 (γ, σ2, acc, n3)

Private Multiplication Public - Private Multiplication
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 ·private n2 = n3

(γ, σ, acc, e1 · e2) ⇓bm1 (γ, σ2, acc, n3)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n1) ·private n2 = n3

(γ, σ, acc, e1 · e2) ⇓bm2 (γ, σ2, acc, n3)

Public Division Private - Public Division
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 ÷public n2 = n3

(γ, σ, acc, e1 ÷ e2) ⇓bd (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 ÷private encrypt(n2) = n3

(γ, σ, acc, e1 ÷ e2) ⇓bd3 (γ, σ2, acc, n3)

Private Division Public - Private Division
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 ÷private n2 = n3

(γ, σ, acc, e1 ÷ e2) ⇓bd1 (γ, σ2, acc, n3)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n1)÷private n2 = n3

(γ, σ, acc, e1 ÷ e2) ⇓bd2 (γ, σ2, acc, n3)

Figure 3.12: Basic SMC2 semantics for addition, subtraction, multiplication, and division.

38



Multiplication, and Division are similar to their corresponding Addition cases.

Figures 3.13 and 3.14 give the semantics for binary comparison operations. For all comparison semantic

rules, we have true versions, returning 1, and false versions, returning 0. Given that C does not have Booleans,

1 represents true and 0 represents false here. When the comparison involves private data, the result must be

private as well, and we return the encryption of the result of the comparison operation. Similarly to the rules

for other binary operations, there are four rules each for the true versions and false versions of the comparison

operations to properly handle public and private data.

Figure 3.15 gives the semantics for public and private if else branches. The public if else rules, shown

in subfigures 3.15d and 3.15e are the same as those defined for regular C, with the additional check that

the expression we are branching on is public (Label(e, γ) = public). The Private If Else rule, shown

in Figure 3.15c, is more interesting. Our strategy for dealing with private-conditioned branches involves

executing both branches as a sequence of statements (with some additional helper algorithms to aid in storing

changes, restoration between branches, and resolution of true values). We chose to use big-step semantics

to facilitate the comparison of the Basic SMC2 semantics with the Vanilla C semantics, and for its proof of

correctness that we will discuss in Section 3.2. We give also an example of SMC2 code in Figure 3.15a, and

of its execution in Figure 3.15b. We use coloring throughout Figure 3.15 to highlight the corresponding code

and rule execution. The starting and ending states of the SMC2 Private If Else rule are essentially the same as

the starting and ending states of the corresponding Vanilla C If Else rule; however, there are several additional

assertions that guarantee that both of the private-conditioned branches are executed. We will proceed to

describe now the different assertions.

We first evaluate expression e over environment γ, memory σ and accumulator acc to obtain some number

n; the same environment, and a potentially updated memory (e.g. in the case e = x+ +). We proceed to

store n as the value of a temporary variable resacc+1, using acc + 1 to denote the current level of nesting in

the upcoming then and else statements. The variable resacc+1 is used in the resolution phase, to select

the result according to the branching condition. We then extract the non-local variables that are assigned

some value within either branch. This is achieved using Algorithm 32 (ExtractVariables), which iterates

through both statement s1 and s2 and stores the variable names in array listacc+1. Next we call Algorithm 33

(InitializeVariables) with arguments listacc+1, γ1, σ2 and acc. This iterates through the list of variables

in listacc+1, declaring two temporary versions of each variable, named x_then[acc] and x_else[acc] and

initialized with the value that x has in the memory σ2, and returns the updated environment γ2 and memory
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Private Not Equal To True Public - Private Not Equal To True
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(1) = n3 n1 6=private n2

(γ, σ, acc, e1! = e2) ⇓net1 (γ, σ2, acc, n3)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(1) = n3 encrypt(n1) 6=private n2

(γ, σ, acc, e1! = e2) ⇓net2 (γ, σ2, acc, n3)

Public Not Equal To True Private - Public Not Equal To True
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 6=public n2

(γ, σ, acc, e1! = e2) ⇓net (γ, σ2, acc, 1)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(1) = n3 n1 6=private encrypt(n2)

(γ, σ, acc, e1! = e2) ⇓net3 (γ, σ2, acc, n3)

Public Not Equal To False Public - Private Not Equal To False
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 =public n2

(γ, σ, acc, e1! = e2) ⇓nef (γ, σ2, acc, 0)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(0) = n3 encrypt(n1) =private n2

(γ, σ, acc, e1! = e2) ⇓nef2 (γ, σ2, acc, n3)

Private Not Equal To False Private - Public Not Equal To False
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(0) = n3 n1 =private n2

(γ, σ, acc, e1! = e2) ⇓nef1 (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(0) = n3 n1 =private encrypt(n2)

(γ, σ, acc, e1! = e2) ⇓nef3 (γ, σ2, acc, n3)

Public Equal To True Public - Private Equal To True
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 =public n2

(γ, σ, acc, e1 == e2) ⇓eqt (γ, σ2, acc, 1)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n1) =private n2 encrypt(1) = n3

(γ, σ, acc, e1 == e2) ⇓eqt2 (γ, σ2, acc, n3)

Private Equal To True Private - Public Equal To True
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 =private n2 encrypt(1) = n3

(γ, σ, acc, e1 == e2) ⇓eqt1 (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 =private encrypt(n2) encrypt(1) = n3

(γ, σ, acc, e1 == e2) ⇓eqt3 (γ, σ2, acc, n3)

Public Equal To False Public - Private Equal To False
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 6=public n2

(γ, σ, acc, e1 == e2) ⇓eqf (γ, σ2, acc, 0)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n1) 6=private n2 encrypt(0) = n3

(γ, σ, acc, e1 == e2) ⇓eqf2 (γ, σ2, acc, n3)

Private Equal To False Private - Public Equal To False
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 6=private n2 encrypt(0) = n3

(γ, σ, acc, e1 == e2) ⇓eqf1 (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 6=private encrypt(n2) encrypt(0) = n3

(γ, σ, acc, e1 == e2) ⇓eqf3 (γ, σ2, acc, n3)

Figure 3.13: Basic SMC2 semantics for not equal to and equal to comparison operations.
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Public Less Than True Public - Private Less Than True
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 <public n2

(γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n1) <private n2 encrypt(1) = n3

(γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3)

Private Less Than True Private - Public Less Than True
Label(e1, γ) == Label(e2, γ) == private

(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 <private n2 encrypt(1) = n3

(γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n2) = n′2 n1 <private n

′
2 encrypt(1) = n3

(γ, σ, acc, e1 < e2) ⇓ltt3 (γ, σ2, acc, n3)

Public Less Than False Public - Private Less Than False
Label(e1, γ) = Label(e2, γ) = public
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 >=public n2

(γ, σ, acc, e1 < e2) ⇓ltf (γ, σ2, acc, 0)

(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
encrypt(n1) >=private n2 encrypt(0) = n3

(γ, σ, acc, e1 < e2) ⇓ltf2 (γ, σ2, acc, n3)

Private Less Than False Private - Public Less Than False
Label(e1, γ) = Label(e2, γ) = private
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 >=private n2 encrypt(0) = n3

(γ, σ, acc, e1 < e2) ⇓ltf1 (γ, σ2, acc, n3)

(Label(e1, γ) = private) ∧ (Label(e2, γ) = public)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, n1)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n2)
n1 >=private encrypt(n2) encrypt(0) = n3

(γ, σ, acc, e1 < e2) ⇓ltf3 (γ, σ2, acc, n3)

Figure 3.14: Basic SMC2 semantics for less than comparison operations.

1 private int a=3, b=7, c=0;
2 if (a < b) {c = a; }
3 else {c = b; }

(a) SMC2 code

1 private int a=3, b=7, c=0;
2 private int res1 = a < b;
3 private int c_t = c, c_e = c;
4 c = a;
5 c_t = c; c = c_e;
6 c = b;
7 c = (res1 ∧ c_t) ∨ (¬res1 ∧ c);

(b) Basic SMC2 code execution

Label(e, γ) = private (γ, σ, acc, e) ⇓e (γ, σ1, acc, n)
(γ, σ1, acc, private int resacc+1 = n) ⇓s (γ1, σ2, acc, skip)

Extract_variables(s1, s2) = xlist

InitializeVariables(xlist , γ1, σ2, acc + 1) = (γ2, σ3)
(γ2, σ3, acc + 1, s1) ⇓s (γ3, σ4, acc + 1, skip)
RestoreVariables(xlist , γ3, σ4, acc + 1) = σ5

(γ3, σ5, acc + 1, s2) ⇓s (γ4, σ6, acc + 1, skip)
ResolveVariables(xlist , γ4, σ6, acc + 1, resacc+1) = σ7

(γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ7, acc, skip)

(c) Basic SMC2 rule Private If Else

Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, n)
n 6= 0 (γ, σ1, acc, s1) ⇓s (γ1, σ2, acc, skip)

(γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip)

(d) Basic SMC2 Public If Else True

Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, n)
n = 0 (γ, σ1, acc, s2) ⇓s (γ1, σ2, acc, skip)

(γ, σ, acc, if (e) s1 else s2) ⇓ief (γ, σ2, acc, skip)

(e) Basic SMC2 Public If Else False

Figure 3.15: if else branching on private data example (3.15a, 3.15b) matching to the public Basic SMC2

(3.15d, 3.15e) and private Basic SMC2 (3.15c) if else rules. Coloring in the rules highlight the corresponding
code and rule execution.
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σ3. This is followed by the evaluation of the then statement. Next, we must restore the original memory. To

do this, we call Algorithm 34 (RestoreVariables) to iterate through each of the variables x contained within

listacc+1, saving their current value in σ1 into their then temporary (i.e., x_thenacc+1 = x) and restoring

their original value from their else temporary (i.e., x = x_elseacc+1). Now the evaluation of the else

statement can occur.

Finally, we need to perform the resolution of all changes made to variables in either branch. To do

this, we call Algorithm 35 (ResolveVariables), again iterating through each of the variables x contained

within listacc+1 and resolving their values accordingly for the private condition (whose value we stored in

resacc+1). For variables that are not array or pointer variables (e.g., those in the example to the left), we

perform a series of logical operations over the byte values of the private variables, shown at the bottom left as

c = (res ∧ c_t)∨(¬res ∧ c_e). The process is similar for arrays, with some addition bookkeeping

due to their structure as a const pointer referring to the location with the array data. For pointers, we must

handle the different locations referred to from each branch, merging the two location lists and finding what

the true location is. Notice that, in the conclusion, we revert to the original environment γ. In this way, all the

temporary variables we used become out of scope and are discarded - in particular, this prevents reusing the

same temporary variable name if we have multiple (not nested) private if else statements. It is worthwhile

to stress again the role of the accumulator here with respect to other statements. We increment it when we

evaluate the then and else statements, so that if we attempt to evaluate a (sub)statement with public side

effects or restricted operations, we have an (oblivious) runtime failure.

Figure 3.16 shows the semantic rules for the pre-increment operator on regular (non-array, non-pointer)

variables and pointers with a single location at the first level of indirection. Figure 3.17 shows the remaining

semantic rules for the pre-increment operator on private pointers with multiple locations and public and

private pointers with a higher level of indirection. All of these rules have the condition that we are not within

an if else statement branching on private data, as Basic SMC2 semantics and tracking only supports direct

variable assignments, not indirect variable modifications such as this. This operator behaves as expected for

C, incrementing the data of regular variables by 1 or moving the location that the pointer refers to forward in

memory by the number of bytes of the expected type of data referred to by the pointer. For private pointers

with multiple locations, the behavior follows the same concept (i.e., all locations are moved forward by the

expected amount).

Figure 3.18 shows the rules for functions and casting. We restrict function declarations and definitions
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Pre-Increment Public Variable
acc = 0 γ(x) = (l,public bty) σ(l) = (ω,public bty , 1,PermL(Freeable, public bty ,public, 1))
DecodeVal(public bty , 1, ω) = v v1 =public v +public 1 UpdateVal(σ, l, v1, public bty) = σ1

(γ, σ, acc,++ x) ⇓pin (γ, σ1, acc, v1)

Pre-Increment Private Variable
γ(x) = (l,private bty) σ(l) = (ω,private bty , 1,PermL(Freeable, private bty ,private, 1))
acc = 0 (bty = int) ∨ (bty = float) DecodeVal(private bty , 1, ω) = v
v1 =private v +private encrypt(1) UpdateVal(σ, l, v1, private bty) = σ1

(γ, σ, acc,++ x) ⇓pin1 (γ, σ1, acc, v1)

Pre-Increment Public Pointer Single Location
acc = 0 γ(x) = (l,public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable,public bty∗,public, 1))
DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ)
UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], public bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2))

Pre-Increment Public Pointer Single Location (Not Aligned)
acc = 0 γ(x) = (l,public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable,public bty∗,public, 1))
DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] ((l2, µ2), 0) = GetLocation((l1, µ1), τ(public bty), σ)
UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], public bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓∗pin2 (γ, σ1, acc, (l2, µ2))

Pre-Increment Private Pointer Single Location
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, 1,PermL(Freeable,private bty∗,private, 1)) acc = 0
DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] ((l2, µ2), 1) = GetLocation((l1, µ1), τ(private bty), σ)
UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], private bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓pin6 (γ, σ1, acc, (l2, µ2))

Pre-Increment Private Pointer Single Location (Not Aligned)
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, 1,PermL(Freeable,private bty∗,private, 1)) acc = 0
DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] ((l2, µ2), 0) = GetLocation((l1, µ1), τ(private bty), σ)
UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], private bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓∗pin6 (γ, σ1, acc, (l2, µ2))

Figure 3.16: Basic SMC2 semantics for the pre-increment operator (++x).

to be outside of an if else statement branching on private data, as these declarations cause public side

effects in memory. When a function is defined, we evaluate whether or not the function will cause public side

effects, adding a tag to the data stored for the function to indicate this (i.e., 0 for no public side effects, 1 for

public side effects). When we execute a function call, we look up the function, then store the argument values

for the function as their corresponding names within the function, and execute the function. As expected

with scoping in C, we discard the variables local to the function from the environment, but we keep all new

memory locations created within the function. When executing a function call that has public side effects, we

ensure we are not inside an if else branching on private data. In our subset of semantics, we chose not

to model functions with return statements as we feel they do not provide additional complexity beyond the

ability to pass arguments by reference.
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Pre-Increment Public Pointer Higher Level Indirection Single Location
acc = 0 γ(x) = (l,public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable,public bty∗,public, 1))
DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty∗), σ)
i > 1 UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], i], public bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓pin3 (γ, σ1, acc, (l2, µ2))

Pre-Increment Public Pointer Higher Level Indirection Single Location (Not Aligned)
acc = 0 γ(x) = (l,public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable,public bty∗,public, 1))
DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] ((l2, µ2), 0) = GetLocation((l1, µ1), τ(public bty∗), σ)
i > 1 UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], i], public bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓∗pin3 (γ, σ1, acc, (l2, µ2))

Pre-Increment Private Pointer Higher Level Indirection Single Location
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1)) acc = 0
DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] ((l2, µ2), 1) = GetLocation((l1, µ1), τ(private bty∗), σ)
i > 1 UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], i], private bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓pin7 (γ, σ1, acc, (l2, 0))

Pre-Increment Private Pointer Higher Level Indirection Single Location (Not Aligned)
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1)) acc = 0
DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] ((l2, µ2), 0) = GetLocation((l1, µ1), τ(private bty∗), σ)
i > 1 UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], i], private bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓∗pin7 (γ, σ1, acc, (l2, µ2))

Pre-Increment Private Pointer Multiple Locations
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

acc = 0 DecodePtr(private bty∗, α, ω) = [α, l, j, 1]

IncrementList(l, τ(private bty), σ) = (l
′
, 1) UpdatePtr(σ, (l, 0), [α, l

′
, j, 1],private bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓pin4 (γ, σ1, acc, [α, l
′
, j, 1])

Pre-Increment Private Pointer Multiple Locations (Not Aligned)
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

acc = 0 DecodePtr(private bty∗, α, ω) = [α, l, j, 1]

IncrementList(l, τ(private bty), σ) = (l
′
, 0) UpdatePtr(σ, (l, 0), [α, l

′
, j, 1],private bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓∗pin4 (γ, σ1, acc, [α, l
′
, j, 1])

Pre-Increment Pointer Higher Level Indirection Multiple Locations
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

acc = 0 DecodePtr(private bty∗, α, ω) = [α, l, j, i] i > 1

IncrementList(l, τ(private bty∗), σ) = (l
′
, 1) UpdatePtr(σ, (l, 0), [α, l

′
, j, i], private bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓pin5 (γ, σ1, acc, [α, l
′
, j, i])

Pre-Increment Pointer Higher Level Indirection Multiple Locations (Not Aligned)
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

acc = 0 DecodePtr(private bty∗, α, ω) = [α, l, j, i] i > 1

IncrementList(l, τ(private bty∗), σ) = (l
′
, 0) UpdatePtr(σ, (l, 0), [α, l

′
, j, i], private bty∗) = (σ1, 1)

(γ, σ, acc,++ x) ⇓∗pin5 (γ, σ1, acc, [α, l
′
, j, i])

Figure 3.17: Additional Basic SMC2 semantics for the pre-increment operator (++x) on private pointers.
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Function Declaration
acc = 0 GetFunTypeList(p) = ty l = φ() γ1 = γ[x→ (l, ty → ty)]
σ1 = σ[l→ (NULL, ty → ty , 1,PermL_Fun(public))]

(γ, σ, acc, ty x(p)) ⇓df (γ1, σ1, acc, skip)

Pre-Declared Function Definition
acc = 0 x ∈ γ γ(x) = (l, ty → ty) CheckPublicEffects(s, x, γ, σ) = n EncodeFun(s, n, p) = ω
σ = σ1[l→ (NULL, ty → ty , 1,PermL_Fun(public))] σ2 = σ1[l→ (ω, ty → ty , 1,PermL_Fun(public))]

(γ, σ, acc, ty x(p){s}) ⇓fpd (γ, σ2, acc, skip)

Function Definition
l = φ() GetFunTypeList(p) = ty γ1 = γ[x→ (l, ty → ty)] CheckPublicEffects(s, x, γ, σ) = n
x /∈ γ acc = 0 EncodeFun(s, n, p) = ω σ1 = σ[l→ (ω, ty → ty , 1,PermL_Fun(public))]

(γ, σ, acc, ty x(p){s}) ⇓fd (γ1, σ1, acc, skip)

Function Call With Public Side Effects
γ(x) = (l, ty → ty) σ(l) = (ω, ty → ty , 1,PermL_Fun(public)) DecodeFun(ω) = (s, 1, p) acc = 0
GetFunParamAssign(p, e) = s1 (γ, σ, acc, s1) ⇓s (γ1, σ1, acc, skip) (γ1, σ1, acc, s) ⇓s (γ2, σ2, acc, skip)

(γ, σ, acc, x(e)) ⇓fc (γ, σ2, acc, v)

Function Call Without Public Side Effects
γ(x) = (l, ty → ty) σ(l) = (ω, ty → ty , 1,PermL_Fun(public)) DecodeFun(ω) = (s, 0, p)
GetFunParamAssign(p, e) = s1 (γ, σ, acc, s1) ⇓s (γ1, σ1, acc, skip) (γ1, σ1, acc, s) ⇓s (γ2, σ2, acc, skip)

(γ, σ, acc, x(e)) ⇓fc1 (γ, σ2, acc,NULL)

Cast Private Location
(γ, σ, acc, e) ⇓e (γ, σ1, acc, (l, 0)) (ty = private int∗) ∨ (ty = private float∗) ∨ (ty = int∗) ∨ (ty = float∗)
σ1 = σ2[l→ (ω, void, n,PermL(Freeable, ty , private, n))]

σ3 = σ2

[
l→

(
ω, ty ,

n

τ(ty)
,PermL

(
Freeable, ty , private,

n

τ(ty)

))]
(γ, σ, acc, (ty) e) ⇓cl1 (γ, σ3, acc, (l, 0))

Cast Public Location
(γ, σ, acc, e) ⇓e (γ, σ1, acc, (l, 0)) σ1 = σ2[l→ (ω, void, n,PermL(Freeable, void, public, n))]

(ty = public bty∗) ∨ (ty = char∗) σ3 = σ2

[
l→

(
ω, ty ,

n

τ(ty)
,PermL(Freeable, ty ,public,

n

τ(ty)

))]
(γ, σ, acc, (ty) e) ⇓cl (γ, σ3, acc, (l, 0))

Cast Public Value
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, n) n1 = Cast(public, ty , n)
(ty = public int) ∨ (ty = public float)

(γ, σ, acc, (ty) e) ⇓cv (γ, σ1, acc, n1)

Cast Private Value
Label(e, γ) = private (γ, σ, acc, e) ⇓e (γ, σ1, acc, n) n1 = Cast(private, ty , n)
(ty = private int) ∨ (ty = private float) ∨ (ty = int) ∨ (ty = float)

(γ, σ, acc, (ty) e) ⇓cv1 (γ, σ1, acc, n1)

Figure 3.18: Basic SMC2 semantics for functions and casting.
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Rules Cast Private Location and Cast Public Location are the same as those for our C semantics rules for

handling the casting of untyped locations (i.e., casting after allocation with malloc), one of each privacy

label to ensure only appropriate casting occurs. When casting a location, the byte-wise permissions and

privacy labels cannot be modified. The rules Cast Public Value and Cast Private Value handle interpreting

an expression as the given type. We have two separate rules, one for each privacy label, as we do not allow

casting a public expression to be private or a private expression to be public. This restriction is to prevent

unintended declassification of private data.

The semantics rules for multiparty input and output helper functions are shown in Figure 3.19. For regular

variables, the input and output functions have two parameters, one for the variable name and one for the id of

the party supplying the input or receiving the output, respectively. For arrays, these functions have a third

parameter for the length of the array. For the input functions, we look up the type of the variable, then we

read in data from the given party and assign it to that variable. For the output functions, we obtain the data

from memory, then output the data to the appropriate party. We do not encrypt or decrypt data within these

functions, as private input data is expected to be already encrypted, and output data will be decrypted by the

corresponding output party, not the computational party that is running the program.

Figure 3.20 shows additional semantics for allocation and deallocation. Rules Public Malloc and Public

Free work as expected in C, with the additional assertion that we are not inside an if else statement

branching on private data. These functions both cause public side effects in memory, and so we do not allow

them inside that type of statement to prevent potential leakage of information about the private data.

In rule Private Malloc, we assert that the given type is either private int or private float, as this function

only handles those types, and that the accumulator acc is 0 (i.e., we are not inside an if else statement

branching on private data, as this function causes public side effects). Then we evaluate e to n and obtain the

next open memory location l from φ. We add to σ1 the new mapping from location l to the tuple of a NULL

set of bytes; the type ty ; the size n; and a list of private, Freeable permissions. As with public malloc, we

return (l, 0).

In rule Private Free, we evaluate e to x, assert that x is a private pointer of type int or float and acc is 0

(as this rule causes public side effects). We then use Algorithm 75 (PFree), which performs identically to the

function called from public free when there is only one location being pointed to. However, when there are

multiple locations, we must free one location based on publicly available information, regardless of the true

location of the pointer. For that reason, and without loss of generality, we free the first location, l0. Since l0
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SMC Input Private Value
Label(e2, γ) = private (γ, σ, acc, e1) ⇓e (γ, σ1, acc, x) (γ σ1, acc, e2) ⇓e (γ, σ2, acc, n)
γ(x) = (l,private bty) InputValue(x, n) = n1 (γ, σ2, acc, x = n1) ⇓s (γ, σ3, acc, skip)

(γ, σ, acc, smcinput(e1, e2)) ⇓inp3 (γ, σ3, acc, skip)

SMC Input Public Value
Label(e2, γ) = public (γ, σ, acc, e1) ⇓e (γ, σ1, acc, x) acc = 0 (γ σ1, acc, e2) ⇓e (γ, σ2, acc, n)
γ(x) = (l,public bty) InputValue(x, n) = n1 (γ, σ2, acc, x = n1) ⇓s (γ, σ3, acc, skip)

(γ, σ, acc, smcinput(e1, e2)) ⇓inp (γ, σ3, acc, skip)

SMC Output Public Value
Label(e2, γ) = public (γ, σ, acc, e1) ⇓e (γ, σ1, acc, x) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n)
γ(x) = (l,public bty) σ2(l) = (ω,public bty , 1,PermL(Freeable,public bty , public, 1))
DecodeVal(public bty , 1, ω) = n1 OutputValue(x, n, n1)

(γ, σ, acc, smcoutput(e1, e2)) ⇓out (γ, σ2, acc, skip)

SMC Output Private Value
Label(e2, γ) = public (γ, σ, acc, e1) ⇓e (γ, σ1, acc, x) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n)
γ(x) = (l,private bty) σ2(l) = (ω,private bty , 1,PermL(Freeable,private bty , private, 1))
DecodeVal(private bty , 1, ω) = n1 OutputValue(x, n, n1)

(γ, σ, acc, smcoutput(e1, e2)) ⇓out3 (γ, σ2, acc, skip)

SMC Input Public Array
Label(e2, γ) = Label(e3, γ) = public acc = 0 (γ, σ, acc, e1) ⇓e (γ, σ1, acc, x)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n) (γ, σ2, acc, e3) ⇓e (γ, σ3, acc, n1) γ(x) = (l,public const bty∗)
InputArray(x, n, n1) = [m0, ...,mn1 ] (γ, σ3, acc, x = [m0, ...,mn1 ]) ⇓s (γ, σ4, acc, skip)

(γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ4, acc, skip)

SMC Output Public Array
Label(e2, γ) = Label(e3, γ) = public (γ, σ, acc, e1) ⇓e (γ, σ1, acc, x)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n) (γ, σ2, acc, e3) ⇓e (γ, σ3, acc, n1) γ(x) = (l,public const bty∗)
σ3(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ3(l1) = (ω1,public bty , n1,PermL(Freeable, public bty ,public, n1))
DecodeVal(public bty , n1, ω1) = [m0, ...,mn1 ] OutputArray(x, n, [m0, ...,mn1 ])

(γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip)

SMC Input Private Array
Label(e2, γ) = Label(e3, γ) = public (γ, σ, acc, e1) ⇓e (γ, σ1, acc, x)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n) (γ, σ2, acc, e3) ⇓e (γ, σ3, acc, n1) γ(x) = (l,private const bty∗)
InputArray(x, n, n1) = [m0, ...,mn1 ] (γ, σ3, acc, x = [m0, ...,mn1 ]) ⇓s (γ, σ4, acc, skip)

(γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp4 (γ, σ4, acc, skip)

SMC Output Private Array
Label(e2, γ) = Label(e3, γ) = public (γ, σ, acc, e1) ⇓e (γ, σ1, acc, x)
(γ, σ1, acc, e2) ⇓e (γ, σ2, acc, n) (γ, σ2, acc, e3) ⇓e (γ, σ3, acc, n1) γ(x) = (l,private const bty∗)
σ3(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ3(l1) = (ω1,private bty , n1,PermL(Freeable, private bty ,private, n1))
DecodeVal(private bty , n1, ω1) = [m0, ...,mn1 ] OutputArray(x, n, [m0, ...,mn1 ])

(γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out4 (γ, σ3, acc, skip)

Figure 3.19: Basic SMC2 semantics for input / output
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Public Malloc
acc = 0 Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, n)
l = φ() σ2 = σ1

[
l→

(
NULL, void∗, n,PermL(Freeable, void∗, public, n)

)]
(γ, σ, acc,malloc(e)) ⇓mal (γ, σ2, acc, (l, 0))

Private Malloc
(ty = private int) ∨ (ty = private float) acc = 0 (γ, σ, acc, e) ⇓e (γ, σ1, acc, n) l = φ()
Label(e, γ) = public σ2 = σ1

[
l→

(
NULL, void∗, n · τ(ty),PermL(Freeable, ty ,private, n · τ(ty))

)]
(γ, σ, acc, pmalloc(e, ty)) ⇓malp (γ, σ2, acc, (l, 0))

Public Free Private Free
acc = 0 (γ, σ, acc, e) ⇓e (γ, σ1, acc, x)
γ(x) = (l,public bty∗)
Free(σ1, l, γ) = σ2

(γ, σ, acc, free(e)) ⇓fre (γ, σ2, acc, skip)

(bty = int) ∨ (bty = float) acc = 0
(γ, σ, acc, e) ⇓e (γ, σ1, acc, x)

γ(x) = (l,private bty∗) PFree(γ, σ1, l) = (σ2, l, j)

(γ, σ, acc, pfree(e)) ⇓frep (γ, σ2, acc, skip)

Figure 3.20: Basic SMC2 memory management.

may not be the true location and may be in use by other pointers, we need to do additional computation to

maintain correctness without dislosing whether or not this was the true location. In particular, if l0 is not

the true location, we preserve the content of l0 by obliviously copying it to the pointer’s true location prior

to freeing. The remaining step is to update other pointers that stored l0 on their lists to point to the updated

location instead of l0. This behavior is defined in Algorithm 75, and follows the strategy suggested in [22].

Figure 3.21 shows pointer declarations, reading a location from, and writing a location to a pointer. The

rules for pointer declarations work as expected in C, with additional check on types to ensure the proper

labeling of the byte-wise permissions. The rules for writing to public pointers behave as expected in standard

C, but also have the assertion that we cannot be inside an if else statement branching on private data, as

this is a public side effect that would leak information about the private data in the conditional expression.

When writing a single location to a private pointer, as in rule Private Pointer Write Single Location, the

behavior is as expected in standard C. There is an additional rule (Private Pointer Write Multiple Locations)

for writing to private pointers so as to handle the case where the private pointer is being assigned multiple

locations; however, the functionality remains similar. When reading from a public pointer or a private pointer

that stores a single location, these rules behave as expected in C, returning the location that is stored. When

reading from a private pointer with multiple locations, as in rule Private Pointer Read Multiple Locations, the

entire pointer data structure is returned to ensure that the true location being referred to is not leaked.

The semantics for pointer dereference writes at the first level of indirection are shown in Figure 3.22

and at higher levels of indirection in Figure 3.23. The rules for pointer dereference write have the assertion

that we must be outside an if else branching on private data (i.e., acc = 0) in order to prevent leakage
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Public Pointer Declaration
(ty = public bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))) GetIndirection(∗) = i

l = φ() γ1 = γ[x → (l, ty)] ω = EncodePtr(ty , [1, [(ldefault , 0)], [1], i])
acc = 0 σ1 = σ[l → (ω, ty , 1,PermL(Freeable, public bty∗, public, 1))]

(γ, σ, acc, ty x) ⇓dp (γ1, σ1, acc, skip)

Private Pointer Declaration
((ty = bty∗) ∨ (ty = private bty∗)) ∧ ((bty = int) ∨ (bty = float)) GetIndirection(∗) = i l = φ()

γ1 = γ[x → (l, private bty∗)] ω = EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i])
σ1 = σ[l → (ω, private bty∗, 1, PermL(Freeable,private bty∗,private, 1))]

(γ, σ, acc, ty x) ⇓dp1 (γ1, σ1, acc, skip)

Public Pointer Write Single Location
acc = 0 Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, (le, µe))

γ(x) = (l,public bty∗) σ1(l) = (ω,public bty∗, 1,PermL(Freeable,public bty∗, public, 1))
DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i],public bty∗) = (σ2, 1)

(γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip)

Private Pointer Write Single Location
γ(x) = (l, private bty∗) σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

Label(e, γ) = public (bty = int) ∨ (bty = float) DecodePtr(private bty∗, α, ω) = [α, l, j, i]
(γ, σ, acc, e) ⇓e (γ, σ1, acc, (le, µe)) UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], private bty∗) = (σ2, 1)

(γ, σ, acc, x = e) ⇓wp1 (γ, σ2, acc, skip)

Private Pointer Write Multiple Locations
(γ, σ, acc, e) ⇓e (γ, σ1, acc, [α, l, j, i]) γ(x) = (l,private bty∗) (bty = int) ∨ (bty = float)

UpdatePtr(σ1, (l, 0), [α, l, j, i],private bty∗) = (σ2, 1)

(γ, σ, acc, x = e) ⇓wp2 (γ, σ2, acc, skip)

Private Pointer Read Single Location
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1))

DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

(γ, σ, acc, x) ⇓rp2 (γ, σ, acc, (l1, µ1))

Private Pointer Read Multiple Locations
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable,private bty∗,private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i] (bty = int) ∨ (bty = float)

(γ, σ, acc, x) ⇓rp1 (γ, σ, acc, [α, l, j, i])

Public Pointer Read Single Location
γ(x) = (l, public bty∗) σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

(γ, σ, acc, x) ⇓rp (γ, σ, acc, (l1, µ1))

Figure 3.21: Basic SMC2 pointer declaration, read, and write rules.
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Public Pointer Dereference Write Public Value
(γ, σ, acc, e) ⇓e (γ, σ1, acc, v) γ(x) = (l,public bty∗) Label(e, γ) = public v 6= skip

σ1(l) = (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1)) acc = 0
DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] UpdateOffset(σ1, (l1, µ1), v, public bty) = (σ2, 1)

(γ, σ, acc, ∗x = e) ⇓wdp (γ, σ2, acc, skip)

Public Pointer Dereference Write Public Value (Not Aligned)
γ(x) = (l,public bty∗) σ1(l) = (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1))

(γ, σ, acc, e) ⇓e (γ, σ1, acc, v) v 6= skip DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1]
UpdateOffset(σ1, (l1, µ1), v, public bty) = (σ2, 0) Label(e, γ) = public acc = 0

(γ, σ, acc, ∗x = e) ⇓∗wdp (γ, σ2, acc, skip)

Private Pointer Dereference Write Private Value
(γ, σ, acc, e) ⇓e (γ, σ1, acc, v) γ(x) = (l,private bty∗) acc = 0 Label(e, γ) = private

(bty = int) ∨ (bty = float) σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1] v 6= skip UpdatePriv(σ1, α, l, j, private bty , v) = (σ2, 1)

(γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ2, acc, skip)

Private Pointer Dereference Write Private Value (Not Aligned)
(γ, σ, acc, e) ⇓e (γ, σ1, acc, v) v 6= skip γ(x) = (l,private bty∗) Label(e, γ) = private

(bty = int) ∨ (bty = float) σ1(l) = (ω,private bty∗, α,PermL(Freeable,private bty∗,private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1] acc = 0 UpdatePriv(σ1, α, l, j, private bty , v) = (σ2, 0)

(γ, σ, acc, ∗x = e) ⇓∗wdp3 (γ, σ2, acc, skip)

Private Pointer Dereference Write Public Value
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, v) v 6= skip acc = 0 γ(x) = (l,private bty∗)

(bty = int) ∨ (bty = float) σ1(l) = (ω,private bty∗, α,PermL(Freeable,private bty∗,private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1] UpdatePriv(σ1, α, l, j, private bty , encrypt(v)) = (σ2, 1)

(γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ2, acc, skip)

Private Pointer Dereference Write Public Value (Not Aligned)
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, v) v 6= skip acc = 0 γ(x) = (l,private bty∗)

(bty = int) ∨ (bty = float) σ1(l) = (ω,private bty∗, α,PermL(Freeable,private bty∗,private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1] UpdatePriv(σ1, α, l, j, private bty , encrypt(v)) = (σ2, 0)

(γ, σ, acc, ∗x = e) ⇓∗wdp4 (γ, σ2, acc, skip)

Figure 3.22: Basic SMC2 pointer dereference write rules for the first level of indirection.
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of information about the private data with public pointers and the possibility of incorrect resolution when a

private pointer is used at multiple levels within such a statement, as shown in the example in Figure 4.1a.

The rules shown in this figure are mostly standard, with the exceptions described below. The rules with

⇓∗ indicate that the incremented location is not aligned or not of the same type as the expected type of the

pointer.

In rule Private Pointer Dereference Write Private Value, we use Algorithm 50 (UpdatePriv) to appropri-

ately update the value at private location. To do this, we must touch each of the α locations that the pointer

refers to, and at each location number n, assign (jn ∧ vnew ) ∨ (¬jn ∧ vold ). The behavior here is similar to

that of resolving a value after executing a private-conditioned if else, as discussed earlier in this section.

Rule Private Pointer Dereference Write Public Value is nearly identical, with the added call to encrypt the

public value before it is stored.

In rule Private Pointer Dereference Write Higher Level Indirection, we handle writing a new location

to the lower level private pointer that a higher level private pointer refers to when the higher level private

pointer has multiple locations. We use Algorithm 49 (UpdatePrivPtr) to do this, and it’s behavior is similar

to that of resolving a private pointer after executing a private-conditioned if else, as discussed earlier in

this section. To do this, we must go to each of the α locations that the higher level pointer stores, then use the

Algorithm 78 (CondAssign) on the locations stored for the lower level pointer (and their corresponding tags)

and the new location we are trying to write from within this rule (and the corresponding tag that the higher

level pointer has for that lower level pointer location).

In rule Private Pointer Dereference, we use Algorithm 73 (Retrieve_vals) to securely iterate through the

locations and obtain the value for the true location that the pointer refers to. To do this, we perform j ∧ v for

each of the α locations that the pointer refers to, and perform bitwise or operations between all such values.

In rule Private Pointer Dereference Higher Level Indirection, we use Algorithm 72 (DerefPrivPtr)

to dereference multiple locations of a private pointer at a higher level of indirection. For each location

dereference of the higher level private pointer, we may obtain multiple locations for the lower level private

pointer. To resolve these to a condensed list and find the true location for the dereference, we use an algorithm

similar to Algorithm 78 (CondAssign) to handle merging the location lists and resolving down to the final

set of tags, such that there are no duplicates of a location within the location list and the private tag set to 1

correctly identifies the true location.
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Private Pointer Dereference Write Higher Level Indirection
Label(e, γ) = private (γ, σ, acc, e) ⇓e (γ, σ1, acc, (le, µe)) i > 1 acc = 0

γ(x) = (l,private bty∗) σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i]

UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i− 1],private bty∗) = (σ2, 1)

(γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ2, acc, skip)

Private Pointer Dereference Write Higher Level Indirection (Not Aligned)
Label(e, γ) = private (γ, σ, acc, e) ⇓e (γ, σ1, acc, (le, µe)) i > 1 acc = 0

γ(x) = (l,private bty∗) σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i]

UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i− 1],private bty∗) = (σ2, 0)

(γ, σ, acc, ∗x = e) ⇓∗wdp2 (γ, σ2, acc, skip)

Private Pointer Dereference Write Higher Level Indirection Multiple Locations
γ(x) = (l,private bty∗) σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

Label(e, γ) = private acc = 0 DecodePtr(private bty∗, α, ω) = [α, l, j, i] i > 1

(γ, σ, acc, e) ⇓e (γ, σ1, acc, [αe, le, je, i− 1])

UpdatePrivPtr(σ1, [α, l, j, i− 1], [αe, le, je, i− 1],private bty∗) = (σ2, 1)

(γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ2, acc, skip)

Private Pointer Dereference Write Higher Level Indirection Multiple Locations (Not Aligned)
γ(x) = (l,private bty∗) σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

Label(e, γ) = private acc = 0 DecodePtr(private bty∗, α, ω) = [α, l, j, i] i > 1

(γ, σ, acc, e) ⇓e (γ, σ1, acc, [αe, le, je, i− 1])

UpdatePrivPtr(σ1, [α, l, j, i− 1], [αe, le, je, i− 1],private bty∗) = (σ2, 1)

(γ, σ, acc, ∗x = e) ⇓∗wdp5 (γ, σ2, acc, skip)

Public Pointer Dereference Write Higher Level Indirection
acc = 0 γ(x) = (l,public bty∗) σ1(l) = (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] (γ, σ, acc, e) ⇓e (γ, σ1, acc, (le, µe))
i > 1 Label(e, γ) = public UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1],public bty∗) = (σ2, 1)

(γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ2, acc, skip)

Public Pointer Dereference Write Higher Level Indirection (Not Aligned)
acc = 0 γ(x) = (l,public bty∗) σ1(l) = (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] (γ, σ, acc, e) ⇓e (γ, σ1, acc, (le, µe))
i > 1 Label(e, γ) = public UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1],public bty∗) = (σ2, 0)

(γ, σ, acc, ∗x = e) ⇓∗wdp1 (γ, σ2, acc, skip)

Figure 3.23: Basic SMC2 semantic rules for pointer dereference writes at higher levels of indirection.
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Public Pointer Dereference Single Location
γ(x) = (l,public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable,public bty∗,public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] DerefPtr(σ,public bty , (l1, µ1)) = (v, 1)

(γ, σ, acc, ∗x) ⇓rdp (γ, σ, acc, v)

Public Pointer Dereference Single Location (Not Aligned)
γ(x) = (l,public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable,public bty∗,public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] DerefPtr(σ,public bty , (l1, µ1)) = (v, 0)

(γ, σ, acc, ∗x) ⇓∗rdp (γ, σ, acc, v)

Public Pointer Dereference Single Location Higher Level Indirection
γ(x) = (l,public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] i > 1
DerefPtrHLI(σ,public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 1)

(γ, σ, acc, ∗x) ⇓rdp1 (γ, σ, acc, (l2, µ2))

Public Pointer Dereference Single Location Higher Level Indirection (Not Aligned)
γ(x) = (l,public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] i > 1
DerefPtrHLI(σ,public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 0)

(γ, σ, acc, ∗x) ⇓∗rdp1 (γ, σ, acc, (l2, µ2))

Private Pointer Dereference
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1] (bty = int) ∨ (bty = float)

Retrieve_vals(α, l, j, private bty , σ) = (v, 1)

(γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v)

Private Pointer Dereference (Not Aligned)
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1] (bty = int) ∨ (bty = float)

Retrieve_vals(α, l, j, private bty , σ) = (v, 0)

(γ, σ, acc, ∗x) ⇓∗rdp2 (γ, σ, acc, v)

Private Pointer Dereference Higher Level Indirection
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i] (bty = int) ∨ (bty = float) i > 1

DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l
′
, j
′
), 1)

(γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l
′
, j
′
, i− 1])

Private Pointer Dereference Higher Level Indirection (Not Aligned)
γ(x) = (l,private bty∗) σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i] (bty = int) ∨ (bty = float) i > 1

DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l
′
, j
′
), 0)

(γ, σ, acc, ∗x) ⇓∗rdp3 (γ, σ, acc, [α′, l
′
, j
′
, i− 1])

Figure 3.24: Basic SMC2 semantic rules for pointer dereference read.
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Figure 3.25 shows semantics for array declarations and writing to an entire array. For array declarations,

we require that the size of the array must be public and that public arrays cannot be declared inside of an

if else statement branching on private data. As is standard for C, we model arrays as a const pointer to the

array data, and this structure is set up in memory when an array is declared.

Figure 3.26 shows the rules for reading from an array, and Figure 3.27 shows the rules for writing to an

index in an array. When reading from or writing to a public index within an array, the behavior is as expected

of C. Reading from a private index in a public array is allowed, as the value can be securely evaluated and

returned as an encrypted value; this is shown in rule Public Array Read Private Index. The rule for reading

from a private index within a private array is similar to this rule, comparing the private index to the encrypted

index at each point in the array, then performing a bitwise and operation over the result of the comparison

and the value stored at that index. Finally, bitwise or operations are performed between all resulting values

for each index of the array, obtaining the true (encrypted) value stored at the private index.

To prevent leakage of information about private data, we do not allow writing a private value to a public

array, nor do we allow writing to a private index within a public array. Otherwise, writing to arrays follows

similarly to reading from arrays, with writes to public indexes occurring as expected, and writes to private

indexes writing an updated value to each index of the array. This updated value is computed for each array

index m and the private index i as ((i = encrypt(m)) ∧ vnew ) ∨ (¬(i = encrypt(m)) ∧ vm).

Additional semantics for overshooting reads and writes with arrays (i.e., using an index less than 0

or greater than the size of the array) are shown in Figures 3.28 and 3.29. There are two rules for each

combination of privacy labels for reads and writes. The rules with ⇓∗ indicate that the read or write goes

beyond the bounds of the array and is not aligned or not of the same type as elements of the array. This

indication is important, as the correctness of the evaluation of such rules is no longer guaranteed.

We use Algorithm 57 (ReadOOB) to find the appropriate location where that index would be expected

to be in memory, grabbing the correct amount of bytes for the size of an element of the type of the array, and

interpreting these bytes of data as a value of the type of the array (i.e., we ignore the type and privacy labels of

the location itself). It returns a two-tuple of this value and an indicator for whether the read was aligned and

of the same type as the array or not. This indicator follows the standard C idea of 0 being false and 1 being

true. The idea of Algorithm 58 (WriteOOB) is similar, but instead of reading from the location we iterate to,

we write the given value to that location in memory as the byte-representation of the value corresponding to

the type of the array (i.e., we ignore the type and privacy labels of the location itself). A two-tuple of the
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Public Array Declaration
((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty = int))) ∨ (ty = char) l = φ()
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, n) acc = 0 n > 0
γ1 = γ[x → (l,public const bty∗)] l1 = φ() ω = EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1])
σ2 = σ1[l → (ω,public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1))]
ω1 = EncodeVal(private bty ,NULL)
σ3 = σ2[l1 → (ω1,public bty , n,PermL(Freeable, public bty ,public, n))]

(γ, σ, acc, ty x[e]) ⇓da (γ1, σ3, acc, skip)

Private Array Declaration
Label(e, γ) = public ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float))
(γ, σ, acc, e) ⇓e (γ, σ1, acc, n) n > 0 l = φ() l1 = φ() γ1 = γ[x → (l,private const bty∗)]
ω = EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1]) ω1 = EncodeVal(private bty ,NULL)
σ2 = σ1[l → (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))]
σ3 = σ2[l1 → (ω1,private bty , n,PermL(Freeable, private bty ,private, n))]

(γ, σ, acc, ty x[e]) ⇓da1 (γ1, σ3, acc, skip)

Array Declaration Assignment
(γ, σ, acc, ty x[e]) ⇓s (γ1, σ1, acc, skip) (γ1, σ1, acc, x = e) ⇓s (γ1, σ2, acc, skip)

(γ, σ, acc, ty x[e] = e) ⇓das (γ1, σ2, acc, skip)

Public Array Write Entire Array
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, [v0, ..., vne−1]) ∀vm ∈ [v0, ..., vne−1].vm 6= skip
γ(x) = (l,public const bty∗)
σ1(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1,public bty , n,PermL(Freeable, public bty ,public, n))
ne = n UpdateVal(σ1, l1, [v0, ..., vne−1], public bty) = σ2

(γ, σ, acc, x = e) ⇓wa5 (γ, σ2, acc, skip)

Private Array Write Entire Private Array
(γ, σ, acc, e) ⇓e (γ, σ1, acc, [v0, ..., vne−1]) γ(x) = (l,private const bty∗)
σ1(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
∀vm ∈ [v0, ..., vne−1].vm 6= skip DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1,private bty , n,PermL(Freeable, private bty ,private, n)) (bty = int) ∨ (bty = float)
Label(e, γ) = private ne = n UpdateVal(σ1, l1, [v0, ..., vn−1], private bty) = σ2

(γ, σ, acc, x = e1) ⇓wa6 (γ, σ2, acc, skip)

Private Array Write Entire Public Array
(γ, σ, acc, e) ⇓e (γ, σ1, acc, [v0, ..., vne−1]) γ(x) = (l,private const bty∗) Label(e, γ) = public
σ1(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
(bty = int) ∨ (bty = float) DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
∀vm ∈ [v0, ..., vne−1].vm 6= skip σ1(l1) = (ω1, private bty , n,PermL(Freeable, private bty ,private, n))
ne = n ∀vm ∈ [v0, ..., vne−1]. v′m = encrypt(vm) UpdateVal(σ1, l1, [v

′
0, ..., v

′
ne−1],private bty) = σ2

(γ, σ, acc, x = e1) ⇓wa7 (γ, σ2, acc, skip)

Figure 3.25: Basic SMC2 semantic rules for array declarations and writing an entire array.
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Public Array Read Public Index
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, i) γ(x) = (l,public const bty∗)
σ1(l) = (ω,public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, public bty , n,PermL(Freeable, public bty , public, n))
DecodeVal(public bty , n, ω1) = [v0, ..., vn−1] 0 ≤ i ≤ n− 1

(γ, σ, acc, x[e]) ⇓ra (γ, σ1, acc, vi)

Public Array Read Private Index
(γ, σ, acc, e) ⇓e (γ, σ1, acc, i) γ(x) = (l,public const bty∗) (bty = int) ∨ (bty = float)

σ1(l) = (ω,public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1)) Label(e, γ) = private
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]

σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n))
DecodeVal(public bty , n, ω1) = [v0, ..., vn−1]

v =

n−1∨
m=0

(i = encrypt(m)) ∧ encrypt(vm)

(γ, σ, acc, x[e]) ⇓ra2 (γ, σ1, acc, v)

Private Array Read Private Index
γ(x) = (l,private const bty∗) (bty = int) ∨ (bty = float) (γ, σ, acc, e) ⇓e (γ, σ1, acc, i)
σ1(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1)) Label(e, γ) = private
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, private bty , n,PermL(Freeable, private bty , private, n))
DecodeVal(private bty , n, ω1) = [v0, ..., vn−1]

v =

n−1∨
m=0

(i = encrypt(m)) ∧ vm

(γ, σ, acc, x[e]) ⇓ra1 (γ, σ1, acc, v)

Private Array Read Public Index
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, i) γ(x) = (l,private const bty∗)
σ1(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, private bty , n,PermL(Freeable, private bty ,private, n))
DecodeVal(private bty , n, ω1) = [v0, ..., vn−1] 0 ≤ i ≤ n− 1

(γ, σ, acc, x[e]) ⇓ra3 (γ, σ1, acc, vi)

Private Array Read Entire Array
γ(x) = (l,private const bty∗) (bty = int) ∨ (bty = float)
σ(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ(l1) = (ω1, private bty , n,PermL(Freeable, private bty , private, n))
DecodeVal(private bty , n, ω1) = [v0, ..., vn−1]

(γ, σ, acc, x) ⇓ra5 (γ, σ, acc, [v0, ..., vn−1])

Public Array Read Entire Array
γ(x) = (l,public const bty∗)
σ(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ(l1) = (ω1, public bty , n,PermL(Freeable, public bty , public, n))
DecodeVal(public bty , n, ω1) = [v0, ..., vn−1]

(γ, σ, acc, x) ⇓ra4 (γ, σ, acc, [v0, ..., vn−1])

Figure 3.26: Basic SMC2 semantic rules for reading from arrays.
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Public Array Write Public Value Public Index
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,public const bty∗)
σ2(l) = (ω,public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] Label(e1, γ) = Label(e2, γ) = public
σ2(l1) = (ω1, public bty , n,PermL(Freeable, public bty ,public, n))
DecodeVal(public bty , n, ω1) = [v0, ..., vn−1] v 6= skip acc = 0

0 ≤ i ≤ n− 1 [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( v
vi

)
UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], public bty) = σ3

(γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ3, acc, skip)

Private Array Write Private Value Public Index
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,private const bty∗)
v 6= skip σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
Label(e2, γ) = private DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n,PermL(Freeable, private bty ,private, n)) 0 ≤ i ≤ n− 1
DecodeVal(private bty , n, ω1) = [v0, ..., vn−1] Label(e1, γ) = public

[v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( v
vi

)
UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], private bty) = σ3

(γ, σ, acc, x[e1] = e2) ⇓wa4 (γ, σ3, acc, skip)

Private Array Write Public Value Public Index
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,private const bty∗)
v 6= skip σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
Label(e1, γ) = Label(e2, γ) = public DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
(bty = int) ∨ (bty = float) σ2(l1) = (ω1,private bty , n,PermL(Freeable, private bty ,private, n))
DecodeVal(private bty , n, ω1) = [v0, ..., vn−1] 0 ≤ i ≤ n− 1

[v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(encrypt(v)

vi

)
UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], private bty) = σ3

(γ, σ, acc, x[e1] = e2) ⇓wa1 (γ, σ3, acc, skip)

Private Array Write Public Value Private Index
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,private const bty∗)
v 6= skip σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n,PermL(Freeable, private bty ,private, n))
DecodeVal(private bty , n, ω1) = [v0, ..., vn−1] (bty = int) ∨ (bty = float)
∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ encrypt(v)) ∨ (¬(i = encrypt(m)) ∧ vm)
Label(e1, γ) = private Label(e2, γ) = public UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], private bty) = σ3

(γ, σ, acc, x[e1] = e2) ⇓wa2 (γ, σ3, acc, skip)

Private Array Write Private Value Private Index
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,private const bty∗)
v 6= skip σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n,PermL(Freeable, private bty ,private, n))
DecodeVal(private bty , n, ω1) = [v0, ..., vn−1] (bty = int) ∨ (bty = float)
∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v) ∨ (¬(i = encrypt(m)) ∧ vm)
Label(e1, γ) = Label(e2, γ) = private UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], private bty) = σ3

(γ, σ, acc, x[e1] = e2) ⇓wa3 (γ, σ3, acc, skip)

Figure 3.27: Basic SMC2 semantic rules for writing to an array.
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Public Array Read Out-of-Bounds Public Index
Label(e, γ) = public γ(x) = (l, public const bty∗) (γ, σ, acc, e) ⇓e (γ, σ1, acc, i)
σ1(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty ,public, n))
(i < 0) ∨ (i ≥ n) ReadOOB(i, n, l1, public bty , σ1) = (v, 1)

(γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v)

Public Array Read Out of Bounds Public Index (Not Aligned)
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, i) γ(x) = (l,public const bty∗)
σ1(l) = (ω,public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, public bty , n,PermL(Freeable,public bty , public, n))
(i < 0) ∨ (i ≥ n) ReadOOB(i, n, l1, public bty , σ1) = (v, 0)

(γ, σ, acc, x[e]) ⇓∗rao (γ, σ1, acc, v)

Private Array Read Out of Bounds Public Index
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, i) γ(x) = (l,private const bty∗)
σ1(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1,private bty , n,PermL(Freeable, private bty ,private, n))
(i < 0) ∨ (i ≥ n) ReadOOB(i, n, l1, private bty , σ1) = (v, 1)

(γ, σ, acc, x[e]) ⇓rao1 (γ, σ1, acc, v)

Private Array Read Out of Bounds Public Index (Not Aligned)
Label(e, γ) = public (γ, σ, acc, e) ⇓e (γ, σ1, acc, i) γ(x) = (l,private const bty∗)
σ1(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, private bty , n,PermL(Freeable, private bty ,private, n))
(i < 0) ∨ (i ≥ n) ReadOOB(i, n, l1, private bty , σ1) = (v, 0)

(γ, σ, acc, x[e]) ⇓∗rao1 (γ, σ1, acc, v)

Figure 3.28: Basic SMC2 array reading out of bounds rules

updated memory and an indicator for whether the write was aligned and of the same type as the array or not.
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Public Array Write Out of Bounds Public Index Public Value
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,public const bty∗)
acc = 0 σ2(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1))
Label(e1, γ) = Label(e2, γ) = public DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1,public bty , n,PermL(Freeable, public bty ,public, n))
v 6= skip (i < 0) ∨ (i ≥ n) WriteOOB(v, i, n, l1,public bty , σ2) = (σ3, 1)

(γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip)

Public Array Write Out-of-Bounds Public Index Public Value (Not Aligned)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,public const bty∗)
σ2(l) = (ω,public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1))
Label(e1, γ) = Label(e2, γ) = public DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, public bty , n, PermL(Freeable, public bty ,public, n))
v 6= skip (i < 0) ∨ (i ≥ n) WriteOOB(v, i, n, l1, public bty , σ2) = (σ3, 0)

(γ, σ, acc, x[e1] = e2) ⇓∗wao (γ, σ3, acc, skip)

Private Array Write Public Value Out of Bounds Public Index
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,private const bty∗)
σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
Label(e1, γ) = Label(e2, γ) = public DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1,private bty , n,PermL(Freeable, private bty ,private, n))
v 6= skip (i < 0) ∨ (i ≥ n) WriteOOB(encrypt(v), i, n, l1, private bty , σ2) = (σ3, 1)

(γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ3, acc, skip)

Private Array Write Public Value Out of Bounds Public Index (Not Aligned)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,private const bty∗)
σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
Label(e1, γ) = Label(e2, γ) = public DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n,PermL(Freeable, private bty ,private, n))
v 6= skip (i < 0) ∨ (i ≥ n) WriteOOB(encrypt(v), i, n, l1, private bty , σ2) = (σ3, 0)

(γ, σ, acc, x[e1] = e2) ⇓∗wao1 (γ, σ3, acc, skip)

Private Array Write Out of Bounds Public Index Private Value
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,private const bty∗)
σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
Label(e2, γ) = private DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
Label(e1, γ) = public σ2(l1) = (ω1,private bty , n,PermL(Freeable, private bty , private, n))
v 6= skip (i < 0) ∨ (i ≥ n) WriteOOB(v, i, n, l1,private bty , σ2) = (σ3, 1)

(γ, σ, acc, x[e1] = e2) ⇓wao2 (γ, σ3, acc, skip)

Private Array Write Out of Bounds Public Index Private Value (Not Aligned)
(γ, σ, acc, e1) ⇓e (γ, σ1, acc, i) (γ, σ1, acc, e2) ⇓e (γ, σ2, acc, v) γ(x) = (l,private const bty∗)
σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))
Label(e1, γ) = public DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
Label(e2, γ) = private σ2(l1) = (ω1,private bty , n,PermL(Freeable, private bty , private, n))
v 6= skip (i < 0) ∨ (i ≥ n) WriteOOB(v, i, n, l1,private bty , σ2) = (σ3, 0)

(γ, σ, acc, x[e1] = e2) ⇓∗wao2 (γ, σ3, acc, skip)

Figure 3.29: Basic SMC2 array writing out of bounds rules
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3.1.5 Vanilla C Algorithms

1 PermL ::= f : (perm, t̂y , public, n̂)→ p̂erm

2 PermL_Fun ::= f : (public)→ p̂erm

3 φ() ::= f : ()→ l̂

4 τ ::= f : (t̂y)→ n̂

5 Cast ::= f : (public, t̂y , n̂)→ n̂

6 GetIndirection ::= f : (∗)→ n̂

7 EncodeVal ::= f : (b̂ty , v̂)→ ω̂

8 DecodeVal ::= f : (b̂ty , n̂, ω̂)→ v̂

9 EncodePtr ::= f : (t̂y , [1, [(l̂, µ̂)], [1], î])→ ω̂

10 DecodePtr ::= f : (t̂y , 1, ω̂)→ [1, [(l̂, µ̂)], [1], î]

11 EncodeFun ::= f : (ŝ,�, p̂)→ ω̂

12 DecodeFun ::= f : (ŝ, �, p̂)→ (ω̂)

13 UpdateVal ::= f : (σ̂, l̂, v̂, b̂ty)→ σ̂

14 UpdatePtr ::= f : (σ̂, (l̂, µ̂), [1, [(l̂, µ̂)], [1], î], b̂ty∗) = (σ̂, ĵ)

15 UpdateOffset ::= f : (σ̂, (l̂, µ̂), v̂, b̂ty)→ (σ̂, ĵ)

16 DerefPtr ::= f : (σ̂, b̂ty , (l̂, µ̂))→ (v̂, ĵ)

17 DerefPtrHLI ::= f : (σ̂, b̂ty∗, (l̂, µ̂))→ ([1, [(l̂, µ̂)], [1], î], ĵ)

18 SetBytes ::= f : ((l̂, µ̂), t̂y , v̂, σ̂)→ σ̂

19 GetBytes ::= f : ((l̂, µ̂), t̂y , σ̂)→ v̂

20 GetBlock ::= f : (l̂)→ l̂

21 GetLocation ::= f : ((l̂, µ̂), n, σ̂)→ ((l̂, µ̂), ĵ)

22 GetFunTypeList ::= f : (p̂)→ t̂y

23 GetFunParamAssign ::= f : (p̂, ê)→ ŝ

26 Free ::= f : (γ̂, l̂, σ̂)→ (σ̂)

27 CheckFreeable ::= f : (γ̂, [(l̂, µ̂)], [1], σ̂)→ ĵ

24 ReadOOB ::= f : (̂i, n̂, l̂, b̂ty , σ̂)→ (v̂, ĵ)

25 WriteOOB ::= f : (v̂, î, n̂, l̂, b̂ty , σ̂)→ (σ̂, ĵ)

60



28 InputValue ::= f : (x̂, n̂)→ n̂

29 InputArray ::= f : (x̂, n̂, n̂)→ n̂

30 OutputValue ::= f : (x̂, n̂, v̂)→ NULL

31 OutputArray ::= f : (x̂, n̂, n̂)→ NULL

Algorithm 1 p̂erm ← PermL(perm, t̂y ,public, n̂)

1: p̂erm = [ ]

2: if t̂y = b̂ty then
3: for all î ∈ {0...τ(b̂ty) · n̂− 1} do
4: p̂erm = (̂i,public, perm) :: p̂erm
5: end for
6: else if (t̂y = b̂ty∗) ∨ (t̂y = const b̂ty∗) then
7: m̂ = τ(int) + τ(int) · 2 + τ(int) + τ(int)
8: for all î ∈ {0...m̂− 1} do
9: p̂erm = (̂i,public, perm) :: p̂erm

10: end for
11: end if
12: return p̂erm

Algorithm 1 (PermL) creates a byte-wise permission list based on the given arguments. In Vanilla C, the

privacy label is always public, so this algorithm just creates a permission list of the appropriate length for the

given type and number of elements. For basic types, this is as simple as getting the byte-length of the type

and multiplying it by the number of elements. For pointer types, it needs to equate to the size of the pointer

data structure, which only even has one possible location in Vanilla C. Therefore, we have the size of an int

for the number of locations, then two ints for the memory block identifier and offset, then an int for the tag,

and another int for the level of indirection. We then add the public permission tuple for each byte into the

permission list, and return it once complete.

Algorithm 2 perm ← PermL_Fun(public)

1: perm = [(0,public,Freeable)]
2: return perm

Algorithm 2 (PermL_Fun) creates a permission list for a function memory. We leave this separate, and

only create a single tuple for this block, which if overshot into will be read as being for all bytes.

Algorithm 3 l̂next ← φ()

1: next = global_location_counter ++
2: return l̂next

Algorithm 3 (φ) defines how new memory block identifiers are obtained, with a global counter that is

monotonically increasing after each time φ is called.
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Algorithm 4 n̂← τ(t̂y)

Algorithm 4 (τ ) returns the expected byte-length for the given type. This is implementation and machine-

specific, so we leave the lengths to be determined by the implementor.

Algorithm 5 (n̂1)← Cast(public, t̂y , n̂)

1: ω̂ = EncodeVal(t̂y , n̂)
2: n̂1 = DecodeVal(t̂y , 1, ω̂)
3: return n̂1

Algorithm 5 (Cast) is designed to take a privacy label, type, and value, and cast the given value as the into

the appropriate size for the new type. Here, we model this as simply encoding the given value into it’s byte

representation for the new type, then decoding it back into a value of the new type. This assumes that there is

a standard handling of casting a value of one type to another type defined in the system or implementation

itself, but leaves it to the implementation to define the precise behavior, which can vary.

Algorithm 6 (n̂)← GetIndirection(∗)
1: n̂ = | ∗ |
2: return n̂

Algorithm 6 (GetIndirection) takes the ∗ and returns the number of them. This is used in pointer

declarations.

Next, we present the algorithms types used for encoding and decoding bytes in memory in our semantics.

It is important to note that we leave the specifics of encoding to bytes and decoding from bytes up to the

implementation, as this low-level function may vary based on the system and underlying architecture.

Algorithm 7 ω̂ ← EncodeVal(t̂y , v̂) Algorithm 8 v̂ ← DecodeVal(t̂y , ω̂)

Algorithm 7 (EncodeVal) takes as input a type and a value. It encodes the given value of the given type

as bytes of data, and returns those bytes.

Algorithm 8 (DecodeVal) takes as input a type and bytes of data. It interprets the given bytes of data as a

value of the given type, and returns that value.

Algorithm 9 ω̂ ← EncodePtr(t̂y , [1, [(l̂, µ̂)], [1], î])

Algorithm 9 (EncodePtr) takes a pointer data structure and encodes it into byte data. It takes a pointer
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type, number, and byte data as input. It then encodes the pointer data structure containing the number 1

indicating there is one location, a list containing the location (l̂, µ̂), a list with the single tag 1, and a number

indicating the level of indirection of the pointer into byte data. This byte data is then returned.

Algorithm 10 [1, [(l̂, µ̂)], [1], î]← DecodePtr(t̂y , 1, ω̂)

Algorithm 10 (DecodePtr) does the opposite of EncodePtr, taking byte data and retrieving the pointer

data structure from it. It takes a pointer type, number, and byte data as input. It then interprets the given set

of bytes as a pointer data structure containing the number number 1 indicating there is one location, a list

containing the location (l̂, µ̂), a list with the single tag 1, and a number indicating the level of indirection of

the pointer into byte data. This pointer data structure is then returned.

Algorithm 11 ω̂ ← EncodeFun(ŝ,�, p̂) Algorithm 12 (ŝ,�, p̂)← DecodeFun(ω̂)

Algorithm 11 (EncodeFun) takes the function data and encodes it into its byte representation. It takes as

input a statement (body of the function), a placeholder for the SMC2 tag for whether the function contains

public side effects, and the function’s parameter list. EncodeFun then encodes this information into byte

data and returns the byte data.

Algorithm 12 (DecodeFun) takes the byte representation of a function and decodes it into the function’s

information: the statement (body of the function), a placeholder for the SMC2 tag for whether the function

contains public side effects, and the parameter list. It takes as input the byte data and then returns the

function’s information.

Next, we present the algorithms used to update memory within the semantics. The following algorithms

are for regular (int or float) values, array values, and pointer values, respectively, when updating these values

in memory.

Algorithm 13 σ̂2 ← UpdateVal(σ̂, l̂, v̂, b̂ty)

1: ω̂2 = EncodeVal(b̂ty , v̂)

2: σ̂1[l̂→ (ω̂1, t̂y , n̂, PermL(Freeable, t̂y ,public, n̂))] = σ

3: σ̂2 = σ̂1[l̂→ (ω̂2, t̂y , n̂, PermL(Freeable, t̂y , public, n̂))]
4: return σ̂2

Algorithm 13 (UpdateVal) is used to update regular (int or float) values in memory. It takes as input

memory σ, the memory block identifier of the location we will be updating, the value to store into memory,
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and the type to store it as. We first encode the value as the specified type, then removes the original mapping

from memory and inserts the new mapping with the updated byte data. It returns the updated memory.

Algorithm 14 (σ̂2, ĵ)← UpdatePtr(σ̂, (l̂, µ̂), [1, [(l̂1, µ̂1)], [1], î], b̂ty∗)
1: ĵ = 0
2: σ̂1[l̂→ (ω̂1, t̂y1, α̂1, PermL(Freeable, t̂y , public, α̂1))] = σ̂

3: if (µ̂ = 0) ∧ (b̂ty∗ = t̂y1) then
4: ω̂ = EncodePtr(b̂ty∗, [1, [(l̂1, µ̂1)], [1], î])

5: σ̂2 = σ̂1[l̂→ (ω̂, t̂y1, 1, PermL(Freeable, t̂y1, public, 1))]
6: ĵ = 1
7: else
8: σ̂2 = SetBytes((l̂, µ̂), b̂ty∗, [1, [(l̂1, µ̂1)], [1], î], σ̂)
9: end if

10: return (σ̂2, ĵ)

Algorithm 14 (UpdatePtr) is used to update the pointer data structure for a pointer. It takes as input

memory σ̂, the location (memory block identifier and offset) we will be updating, the value to store into

memory, and the type to store the value as. First, we extract the given memory block identifier’s mapping

in memory. If the given offset is 0 and the given pointer type matches the pointer type in that mapping, we

encode the pointer data structure into its byte representation and add a new mapping to memory with the new

byte data, and set the tag to 1, indicating that we performed a well-aligned update to memory. Otherwise, we

call SetBytes to perform the update to memory at this location, as it is not well-aligned. Finally, it returns

the updated memory.

Algorithm 15 (σ̂f , ĵ)← UpdateOffset(σ̂, (l̂, µ̂), v̂, b̂ty)

1: ĵ = 0
2: σ̂f [l̂→ (ω̂1, t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂))] = σ̂

3: if (b̂ty = t̂y1) ∧ (µ̂ = 0) ∧ (α̂ = 1) then
4: ω̂2 = EncodeVal(b̂ty , v̂)

5: σ̂f = σ̂f [l̂→ (ω̂2, b̂ty , 1, PermL(Freeable, t̂y ,public, 1))]
6: ĵ = 1
7: else
8: if (b̂ty = t̂y1) ∧ (µ̂ % τ(b̂ty) = 0) ∧ ( µ̂

τ(b̂ty)
< α̂) then

9: ĵ = 1
10: end if
11: σ̂f = SetBytes((l̂, µ̂), b̂ty , v̂, σ̂)
12: end if
13: return (σ̂f , ĵ)

Algorithm 15 (UpdateOffset) is designed to update a value at an offset within a memory block, and is

used by semantic rules Pointer Dereference Write Value and Pointer Dereference Write Value (Not Aligned).

First, we extract the memory block we are looking going to be updating. Next, we check if the memory block
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is of the expected type, the offset is 0, and the number of locations is 1 to see if this is a simple update. In this

case, we encode the value into its byte representation and add the updated mapping into the final memory

and set the tag to be 1, as we have made a well-aligned update to memory. If not, and the memory block

happens to be a block of array data, we can check if our update will be aligned by checking if the type is the

same, then if the byte-offset of the pointer aligns with a value of the given type within the block by using

the modulo operation, and also that it is within the range of the current block based on the given type and

the number of locations in the block. If all of these elements are true, we will have a well-aligned update to

memory. We use Algorithm 18 (SetBytes) to perform the update here, as that algorithm facilitates proper

insertion of the byte representation for a value into a larger block or across blocks. Finally, we return the

updated memory and tag.

Algorithm 16 (v̂, ĵ)← DerefPtr(σ̂, b̂ty , (l̂, µ̂))

1: ĵ = 1
2: v̂ = NULL
3: (ω̂, t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂)) = σ̂(l̂)

4: if (b̂ty = t̂y1) ∧ (µ̂ = 0) ∧ (α̂ = 1) then
5: v̂ = DecodeVal(b̂ty , 1, ω̂)

6: else if (b̂ty = t̂y1) ∧ (µ̂ % τ(b̂ty) = 0) ∧ ( µ̂

τ(b̂ty)
< α̂) then

7: [v̂0, ..., v̂α̂−1] = DecodeVal(b̂ty , α̂, ω̂)
8: n̂ = µ̂

τ(b̂ty)

9: v̂ = v̂n̂
10: else
11: ĵ = 0
12: v̂ = GetBytes((l̂, µ̂), b̂ty , σ̂)
13: end if
14: return (v̂, ĵ)

Algorithm 16 (DerefPtr) is designed to dereference a value at a location in memory. It takes the memory,

a type, and a location as input, and interprets the byte data at that location as a value of the given type. First,

we look up the memory block associated with the location. In line 4, we check to see if this is a simple

lookup by seeing if the location is of the correct type, the offset it 0, and there is only one element in the

block. In line 6, we check to see if this is a simple lookup in an array block, where we have the correct type

and the offset corresponds to an element of the array. For both of these cases, we can use Algorithm 8 to

get the value(s) stored in the block and return the correct value. In line 10, we have a dereference that is not

well-aligned, and so we set the tag to 0 and use Algorithm 19 to obtain a value of the anticipated type from

the byte representation, although the value is likely garbage. Finally, we return the value and the tag.

Algorithm 17 (DerefPtrHLI) is designed to dereference a pointer at a location in memory. It takes the

65



Algorithm 17 ([1, [(l̂, µ̂)], [1], î], ĵ)← DerefPtrHLI(σ̂, b̂ty∗, (l̂, µ̂))

1: (ω̂, t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂)) = σ̂(l̂)

2: if (b̂ty∗ = t̂y1) ∧ (µ̂ = 0) ∧ (α̂ = 1) then
3: [1, [(l̂1, µ̂1)], [1], î] = DecodePtr(b̂ty∗, 1, ω̂)

4: return ([1, [(l̂1, µ̂1)], [1], î], 1)
5: else
6: [1, [(l̂1, µ̂1)], [1], î] = GetBytes((l̂, µ̂), b̂ty∗, σ̂)

7: return ([1, [(l̂1, µ̂1)], [1], î], 0)
8: end if

memory, a type, and a location as input, and interprets the byte representation from that location as a pointer

data structure. For pointers, we currently assert that the location we are grabbing the pointer from must be at

the beginning of the block, otherwise the pointer data is not aligned, as we do not currently support arrays of

pointers. The behavior of this algorithm is similar to the previous algorithm, just obtaining a pointer data

structure instead of a value. It returns the pointer data structure and a tag indicating whether the access was

well-aligned or not.

Algorithm 18 (SetBytes) is designed to store a value into a location in memory that may not be well-

aligned. It takes as input the location, the type to encode the byte representation of the value, the value, and

the memory, and returns the updated memory. We first remove the current block referred to by the location

from memory, then obtain the byte representation of the value based on the type of the value - line 4 handling

non-pointer values, and line 6 handling pointer values (i.e., pointer data structures). In line 8, we are finding

the size of the location (in bytes) that is left after the offset given by the location we received as input. We

then check this size against the size of the value we are trying to store into memory. In line 9, we are checking

if the value’s byte representation will fit somewhere in the middle of the block, with bytes at the beginning

and at the end. We then take the first portion of what was in the block up until the offset and add the byte

representation we are storing to it, and at the end add on whatever bytes were left beyond the chunk that we

replaced. We then store this final byte representation back into this location.

In line 12, we have the the byte representation of the value we obtained should fit within this memory

block, and will take up the space from the offset until the end of the block. Thus, we take the first part of the

bytes currently stored in the block up until the offset, and replace the rest with our byte representation of the

given value, storing it into memory. In line 15, we are entering the portion where we are overflowing from

this block into block(s) that come after it. We first store here whatever portion of our byte representation

of the value that can be stored within this block, then obtain the remaining portion and length that we still
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Algorithm 18 (σ̂f )← SetBytes((l̂, µ̂), t̂y , v̂, σ̂)

1: σ̂f [l̂→ (ω̂, t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂))] = σ̂
2: ω̂v = NULL
3: if t̂y = b̂ty then
4: ω̂v = EncodeVal(t̂y , v̂)
5: else
6: ω̂v = EncodePtr(t̂y , v̂)
7: end if
8: n̂l = τ(t̂y1) · α̂− µ̂
9: if τ(t̂y) < n̂l − 1 then

10: ω̂f = ω̂[0 : µ̂− 1] + ω̂v + ω̂[µ̂+ τ(t̂y) :]

11: σ̂f = σ̂f [l̂→ (ω̂f , t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂))]
12: else if τ(t̂y) = n̂l − 1 then
13: ω̂f = ω̂[0 : µ̂− 1] + ω̂v
14: σ̂f = σ̂f [l̂→ (ω̂f , t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂))]
15: else
16: ω̂f = ω̂[0 : µ̂− 1] + ω̂v[0 : n̂l − 1]

17: σ̂f = σ̂f [l̂→ (ω̂f , t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂))]
18: ω̂v = ω̂v[n̂l :]
19: n̂v = τ(t̂y)− n̂l
20: while n̂v > 0 do
21: l̂ = GetBlock(l̂)

22: σ̂f [l̂→ (ω̂c, t̂yc, α̂c, PermL(Freeable, t̂yc,public, α̂c))] = σ̂f
23: n̂c = τ(t̂yc) · α̂c
24: if n̂v < n̂c then
25: ω̂f = ω̂v + ω̂c[n̂v :]
26: else if n̂v = n̂c then
27: ω̂f = ω̂v
28: else
29: ω̂f = ω̂v[0 : n̂c − 1]
30: ω̂v = ω̂v[n̂c :]
31: end if
32: n̂v = n̂v − n̂c
33: σ̂f = σ̂f [l̂→ (ω̂f , t̂yc, α̂c, PermL(Freeable, t̂yc, public, α̂c))]
34: end while
35: end if
36: return σ̂f

need to store. In line 20, we enter a loop that will iteratively store the rest into memory. It first obtains the

next sequential block, then stores whatever it can into that block, appropriately keeping any bytes of data that

were there if what we are storing will not take up the entire block. It continues this process until the entire

byte representation for the value has been stored into memory.

Algorithm 19 (GetBytes) is designed to take the byte representation from a specific location and interpret

it as the given type. It takes as input the location, the type, and the memory, and returns a value of the

expected type. It is important to note here that when we are trying to read a pointer data structure from a

location that is not aligned, this function will automatically ignore the bytes for the number of locations and

the tag and assume they are both 1, as we can only have a single location for any pointer in Vanilla C.
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Algorithm 19 (v̂)← GetBytes((l̂, µ̂), t̂y , σ̂)

1: (ω̂, t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂)) = σ̂(l̂)
2: v̂f = NULL
3: n̂c = τ(t̂y1) · α̂− µ̂
4: if t̂y = b̂ty then
5: if (τ(t̂y) ≤ n̂c − 1) then
6: ω̂v = ω̂[µ̂ : µ̂+ τ(t̂y)]
7: else
8: ω̂v = ω̂[µ̂ :]
9: n̂v = τ(t̂y)− n̂c

10: while (n̂v > 0) do
11: l̂ = GetBlock(l̂)

12: (ω̂c, t̂yc, α̂c, PermL(Freeable, t̂yc, public, α̂c)) = σ̂(l̂)
13: n̂c = τ(t̂yc) · α̂c
14: ω̂v = ω̂v + ω̂c[0 : min(n̂v, n̂c)− 1]
15: n̂v = n̂v − n̂c
16: end while
17: end if
18: v̂f = DecodeVal(t̂y , 1, ω̂v)

19: else if (t̂y = b̂ty∗) then
20: if (τ(int) · 5 ≤ nc − 1) then
21: ω̂v = ω̂[µ̂ : µ̂+ n̂v]
22: else
23: ω̂v = ω̂[µ̂ :]
24: n̂v = τ(int) · 5− n̂c
25: while (n̂v > 0) do
26: l̂ = GetBlock(l̂)

27: (ω̂c, t̂yc, α̂c, PermL(Freeable, t̂yc,public, α̂c)) = σ̂(l̂)
28: n̂c = τ(t̂yc) · α̂c
29: ω̂v = ω̂v + ω̂c[0 : min(n̂v, n̂c)− 1]
30: n̂v = n̂v − n̂c
31: end while
32: end if
33: [α̂1, [(l̂1, µ̂1)], [̂j1], î1] = DecodePtr(t̂y , 1, ω̂v)

34: v̂f = [1, [(l̂1, µ̂1)], [1], î1]
35: end if
36: return v̂f

Algorithm 20 ((l̂n̂+1)← GetBlock(l̂n̂)

1: return l̂n̂+1

Algorithm 20 (GetBlock) is designed to select the identifier for the next block in memory after the

current one. It takes a memory block identifier as input, and returns the next sequential memory block. We

chose to formalize this as simply grabbing the next higher block, however, our formalization will work with

any implementation of this (e.g., selecting a random block, looping through only allocated blocks, etc.).

Algorithm 21 (GetLocation) is designed to obtain the next location that is n̂ bytes ahead of the current

location (l̂, µ̂). It takes the current location, the number of bytes to get to the next location, and memory as
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Algorithm 21 ((l̂f , µ̂f ), ĵ)← GetLocation((l̂, µ̂), n̂, σ̂)

1: (ω̂1, t̂y1, α̂1, PermL(perm, t̂y1,public, α̂1)) = σ̂(l̂)
2: ĵ = 1
3: if (τ(t̂y1) 6= n̂) ∨ (µ̂ % τ(t̂y1) 6= 0) then
4: ĵ = 0
5: end if
6: if (n̂ < τ(t̂y1) · α̂− µ̂) then
7: (l̂f , µ̂f ) = (l̂, µ̂+ n̂)
8: else
9: n̂2 = n̂− τ(t̂y1) · α̂− µ̂

10: l̂1 = l̂
11: while n̂2 ≥ 0 do
12: (l̂2) = GetBlock(l̂1)
13: if n̂2 = 0 then
14: (l̂f , µ̂f ) = (l̂2, 0)
15: n̂2 = −1
16: if (ĵ = 1) ∧ (τ(t̂y2) 6= n̂) then
17: ĵ = 0
18: end if
19: else
20: ĵ = 0
21: (ω̂2, t̂y2, α̂2, PermL(perm, t̂y2, public, α̂2)) = σ̂(l̂2)
22: if (n̂2 < τ(t̂y2) · α̂2) then
23: (l̂f , µ̂f ) = (l̂2, n̂2)
24: n̂2 = −1
25: else
26: n̂2 = n̂2 − τ(t̂y2) · α̂2

27: end if
28: l̂1 = l̂2
29: end if
30: end while
31: end if
32: return ((l̂f , µ̂f ), ĵ)

input and return the next location and a tag indicating whether the next location is well-aligned or not. We

first look up the current memory block and initialize the tag as 1. Then, we check whether the next location is

not well-aligned with the current block. If it is not, then it cannot be well-aligned with the location we return,

either. Next, we check whether the next location is still within this block. If it is, we update the offset and

return. If it is not, we must obtain the next memory block and keep checking. To do this, we first calculate the

number of bytes that we need to move forward beyond the current block, and we initialize the memory block

identifier we are looking beyond as the original memory block identifier. Then we loop until we have finally

found the next location to return. In each loop iteration, we grab the next block using Algorithm 20, and look

up the location in memory. If the number of bytes we have left is 0, then our next location is at the start of the

block. We perform one last check to see if the current location is well-aligned with the new location (which

is possible if this is the start of the next block immediately after the one we were in). Otherwise, we set the
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tag as 0 and reset the block we are looking beyond to be the new block. Then, we check whether our new

location is within this block. If it is not, we decrease the number of bytes we need to move forward by the

number of bytes within this block, and repeat the loop.

Algorithm 22 t̂y ← GetFunTypeList(p̂)

1: t̂y = [ ]
2: while p̂ 6= void do
3: if p̂ = t̂y then
4: t̂y = t̂y :: t̂y
5: p̂ = void

6: else if p̂ = p̂
′
, t̂y then

7: t̂y = t̂y :: t̂y

8: p̂ = p̂
′

9: end if
10: end while
11: return t̂y

Algorithm 22 (GetFunTypeList) is designed to obtain the function input type from its parameter list,

taking as input a parameter list and returning the corresponding type list.

Algorithm 23 ŝ← GetFunParamAssign(p̂, ê)

Require: length(p̂) = length(ê)
1: ŝ = skip
2: while p̂ 6= void do
3: if (p̂ = t̂y v̂ar) ∧ (ê = ê) then
4: ŝ = t̂y v̂ar = ê; ŝ
5: p̂ = void
6: ê = void
7: else if (p̂ = p̂

′
, t̂y) ∧ (ê = ê

′
, ê) then

8: ŝ = t̂y v̂ar = ê; ŝ

9: p̂ = p̂
′

10: ê = ê
′

11: end if
12: end while
13: return ŝ

Algorithm 23 (GetFunParamAssign) is designed to create assignment statements for the parameters of

a function, taking as input a parameter list and expression list and returning a set of assignment statements to

assign the expressions to the corresponding parameters.

Algorithm 24 (ReadOOB) is designed to read a value of the given type from memory as though it was at

index î of the array in memory block l̂. It takes as input the out of bounds index î, the number of values in the

array n̂, the memory block of the array data l̂, the type of elements in the array b̂ty , and memory σ̂. It then

iterates through memory until it finds the bytes that would be at index î and decodes them as the expected

type b̂ty to obtain value v̂. As the algorithm iterates through memory, if all locations we iterate over are of the
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Algorithm 24 (v̂, ĵ)← ReadOOB(̂i, n̂, l̂, b̂ty , σ̂)

1: n̂v = τ(b̂ty)
2: n̂b = (̂i− n̂) · n̂v
3: ĵ = 1
4: ω̂v = [ ]
5: while (n̂b > 0) ∨ (n̂v > 0) do
6: l̂ = GetBlock(l̂)

7: (ω̂, t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂)) = σ̂(l̂)

8: if (t̂y1 6= b̂ty) then
9: ĵ = 0

10: end if
11: if (n̂b < τ(t̂y1) · α̂) then
12: ω̂v = ω̂v :: ω̂[n̂b : min(n̂b + n̂v, τ(t̂y1) · α̂− 1)]
13: n̂v = n̂v − τ(t̂y1) · α̂+ n̂b
14: end if
15: n̂b = max (0, n̂b − τ(t̂y1) · α̂)
16: end while
17: v̂ = DecodeVal(b̂ty , 1, ω̂v)
18: return (v̂, ĵ)

same type as the expected type, and the location we are reading the value from is also the expected type, then

it will return tag 1, indicating that our read was well-aligned. Otherwise, tag 0 will be returned. We currently

only show the algorithm handling overshooting in the positive direction, however, it can trivially extended to

grab the previous blocks and iterate backwards through memory to handle a negative index as well.

Algorithm 25 (WriteOOB) is designed to store a value of the given type from memory as though it was

at index î of the array in memory block l̂. It takes as input the value to write in memory v̂, the out of bounds

index î, the number of values in the array n̂, the memory block of the array data l̂, the type of elements in

the array b̂ty , and memory σ̂. It then iterates through memory until it finds the position that would be for

index î, encodes value v̂ as the expected type, and places its byte representation into memory starting at that

position. As the algorithm iterates through memory, if all locations we iterate over are of the same type as

the expected type, and the location we are writing the value to is also the expected type, then it will return

tag 1, indicating that our read was well-aligned. Otherwise, tag 0 will be returned. We currently only show

the algorithm handling overshooting in the positive direction, however, it can trivially extended to grab the

previous blocks and iterate backwards through memory to handle a negative index as well.

Algorithm 26 (Free) corresponds to conventional memory deallocation when we call free to deallocate

memory associated with some pointer. In particular, on input location l̂, we first check whether the location

corresponds to memory that can be deallocated using Algorithm 27 (CheckFreeable). If CheckFreeable

returns 1, we will mark location l̂ as unavailable. Otherwise, calling Free has no effect on the state of memory.
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Algorithm 25 (σ̂, ĵ)←WriteOOB(v̂, î, n̂, l̂, b̂ty , σ̂)

1: ω̂v = EncodeVal(b̂ty , v̂)

2: n̂b = (̂i− n̂) · τ(b̂ty)
3: ĵ = 1
4: while (n̂b > 0) ∨ (|ω̂v| > 0) do
5: l̂ = GetBlock(l̂)

6: σ̂1[l̂→ (ω̂, t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂))] = σ̂

7: if (t̂y1 6= b̂ty) then
8: ĵ = 0
9: end if

10: if (n̂b < τ(t̂y1) · α̂) then
11: if (|ω̂v| > τ(t̂y1) · α̂− n̂b) then
12: ω̂1 = ω̂[0 : n̂b] + ω̂v + ω̂[|ω̂v|+ n̂b :]
13: ω̂v = [ ]
14: else if (|ω̂v| = τ(t̂y1) · α̂− n̂b) then
15: ω̂1 = ω̂[0 : n̂b] + ω̂v
16: ω̂v = [ ]
17: else
18: ω̂1 = ω̂[0 : n̂b] + ω̂v[0 : τ(t̂y1) · α̂− n̂b − 1]
19: ω̂v = ω̂v[τ(t̂y1) · α̂− n̂b :]
20: end if
21: σ̂ = σ̂1[l̂→ (ω̂1, t̂y1, α̂, PermL(Freeable, t̂y1, public, α̂))]
22: end if
23: n̂b = max (0, n̂b − τ(t̂y1) · α̂)
24: end while
25: return (σ̂, ĵ)

Algorithm 27 (CheckFreeable) follows the behavior expected of free: if the location was properly

allocated via a call to malloc, it is de-allocatable for the purpose of this function. In particular, the default

location ldefault that corresponds to uninitialized pointers is not de-allocatable (and freeing such a pointer

has no effect); similarly memory associated with statically declared variables is not de-allocatable via this

mechanism (and freeing it here also has no effect). Thus, if CheckFreeable returns 1, we will proceed to

deallocate a location, otherwise, there will be no effect on the state of memory as we cannot safely perform

the deallocation operation.

Algorithm 28 (InputValue) is designed to obtain a single value from a specific input party’s input file.

We first open the input file for that party in read mode, then iterate through the file to find the desired variable.

We then check if there is more than one value - if there is, we take only the first value; otherwise, we return

the value as we read it in.

Algorithm 29 (InputArray) is designed to obtain a list of values from a specific input party’s input file.

We first open the input file for that party in read mode, then iterate through the file to find the desired variable.

We then check if the length of the array given is longer than the desired length, and only take the desired

length if it is. Otherwise, we return the array as we read it in.
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Algorithm 26 (σ̂f )← Free(γ̂, l̂, σ̂)

1: (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗,public, 1)) = σ̂(l̂)

2: [1, [(l̂1, µ̂1)], [1], i] = DecodePtr(b̂ty∗, 1, ω̂)

3: if CheckFreeable(γ̂, [(l̂1, µ̂1)], [1], σ̂) then
4: σ̂1[l̂1 → (ω̂, t̂y , 1, PermL(Freeable, t̂y , public, 1))] = σ̂

5: σ̂f = σ̂1[l̂1 → (ω̂, t̂y , 1, PermL(None, t̂y ,public, 1))]
6: else
7: σ̂f = σ̂
8: end if
9: return (σ̂f )

Algorithm 27 ĵ ← CheckFreeable(γ̂, [(l̂, µ̂)], [1], σ̂)

1: if (l̂default = l̂) ∨ (µ̂ 6= 0) then
2: return 0
3: end if
4: for all x ∈ γ do
5: (lx, tyx) = γ(x)

6: if (lx = l̂) then
7: return 0
8: else if (ty_x = a const bty∗) then
9: (ω, tyx, 1,PermL(Freeable, tyx, a, 1)) = σ(lx)

10: [1, [(l1, 0)], [1], 1] = DecodePtr(tyx, 1, ω)

11: if (l1 = l̂) then
12: return 0
13: end if
14: end if
15: end for
16: return 1

Algorithm 30 (OutputValue) is designed to write a value out to an output file for the output party n̂p.

We first open the output file for that party in append mode, as we want to allow multiple uses of the output

function throughout the program. Next, we write the variable name and the value out to the file, then close

the file and return from this algorithm.

Algorithm 31 (OutputArray) is designed to write the given array to an output file for the output party

n̂p. We first open the output file for that party in append mode, as we want to allow multiple uses of the

output function throughout the program. Next, we write the variable name and its list of values out to the file,

then close the file and return from this algorithm.
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Algorithm 28 (n̂)← InputValue(x̂, n̂p)

1: n̂ = NULL
2: file = open(inputFiles[n̂p − 1], r)
3: for all line ∈ file do
4: (x̂f , v̂) = line.split(=)
5: if x̂f = x̂ then
6: if v̂ = n̂ then
7: n̂ = n̂[0]
8: else
9: n̂ = v̂

10: end if
11: break
12: end if
13: end for
14: file.close()
15: return n̂

Algorithm 29 (n̂)← InputArray(x̂, n̂p, n̂)

1: n̂ = [ ]
2: file = open(inputFiles[n̂p − 1], r)
3: for all line ∈ file do
4: (x̂f , n̂f ) = line.split(=)
5: if x̂f = x̂ then
6: if n̂f .length() > n̂p then
7: n̂ = n̂f [0 : n̂p − 1]
8: else
9: n̂ = n̂f

10: end if
11: break
12: end if
13: end for
14: file.close()
15: return n̂

Algorithm 30 NULL← OutputValue(x̂, n̂p, n̂)

1: file = open(outputFiles[n̂p − 1], a)
2: file.write(x̂ = n̂)
3: file.close()
4: return NULL

Algorithm 31 NULL← OutputArray(x̂, n̂p, n̂)

1: file = open(outputFiles[n̂p − 1], a)
2: file.write(x̂ = n̂)
3: file.close()
4: return NULL
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3.1.6 Basic SMC2 Algorithms

32 Extract_variables ::= f : (s, s)→ xlist

33 InitializeVariables ::= f : (x, γ, σ, acc)→ (γ, σ)

34 RestoreVariables ::= f : (x, γ, σ, acc)→ σ

35 ResolveVariables ::= f : (x, γ, σ, acc, res)→ σ

36 PermL ::= f : (perm, ty , a, n)→ perm

37 PermL_Fun ::= f : (public)→ perm

38 φ() ::= f : ()→ l

39 τ ::= f : (ty)→ n

40 Label ::= f : (e, γ)→ a

41 EncodeVal ::= f : (ty , v)→ ω

42 DecodeVal ::= f : (a bty , n, ω)→ v

43 EncodePtr ::= f : (ty , [α, l, j, i])→ ω

44 DecodePtr ::= f : (ty , α, ω)→ [α, l, j, i]

45 EncodeFun ::= f : (s, j, p)→ ω

46 DecodeFun ::= f : (s, j, p)→ ω

47 UpdateVal ::= f : (σ, l, v, a bty)→ σ

48 UpdatePtr ::= f : (σ, (l, µ), [α, l, j, i], ty)→ (σ, j)

49 UpdatePrivPtr ::= f : (σ, [α, l, j, i], [α, l, j, i], ty)→ (σ, j)

50 UpdatePriv ::= f : (σ, α, l, j, ty , v)→ (σ, j)

51 UpdateOffset ::= f : (σ, (l, µ), v, ty)→ (σ, j)

52 GetFunTypeList ::= f : (p)→ ty

53 GetFunParamAssign ::= f : (p, e)→ s

54 CheckPublicEffects ::= f : (s, x, γ, σ)→ j

55 Cast ::= f : (a, ty , n)→ n

56 encrypt ::= f : (n)→ n

57 ReadOOB ::= f : (i, n, l, ty , σ)→ (v, j)

58 WriteOOB ::= f : (v, i, n, l, ty , σ)→ (σ, j)
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59 InputValue ::= f : (x, n)→ n

60 InputArray ::= f : (x, n, n)→ n

61 OutputValue ::= f : (x, n, n)→ NULL

62 OutputArray ::= f : (x, n, n)→ NULL

63 IncrementList ::= f : (l, n, σ)→ (l, j)

64 GetLocation ::= f : ((l, µ), n, σ)→ ((l, µ), j)

65 SetBytes ::= f : ((l, µ), ty , v, σ)→ σ

66 GetBytes ::= f : ((l, µ), ty , σ)→ v

68 GetBlock ::= f : (l)→ l

69 GetIndirection ::= f : (∗)→ n

70 DerefPtr ::= f : (σ, ty , (l, µ))→ (v, j)

71 DerefPtrHLI ::= f : (σ, ty , (l, µ))→ ([α, l, j, i], j)

72 DerefPrivPtr ::= f : (α, l, j, ty , σ)→ ((α, l, j), j)

73 Retrieve_vals ::= f : (α, l, j, ty , σ)→ (v, j)

74 Free ::= f : (σ, l, γ)→ σ

75 PFree ::= f : (γ, σ, l)→ (σ, l, j)

76 CheckFreeable ::= f : (γ, l, j, σ)→ j

77 UpdatePointerLocations ::= f : (σ, l, j, l, j)→ σ

78 CondAssign ::= f : ([α, l, j], [α, l, j], n)→ [α, l, j]

Our helper algorithms for use in Private If Else (shown in Figure 3.15c) are defined in Algorithms 32, 33, 34,

and 35. These are called from within the Private If Else rule, and are not part of the SMC2 source code.

Algorithm 32 (xmod )← ExtractVariables(s1, s2)

1: xlocal = [ ]
2: xmod = [ ]
3: for all s ∈ {s1; s2} do
4: if ((s = ty x) ∨ (s = ty x[e]) ∨ (s = ty x[e][e])) then
5: xlocal .append(x)
6: else if ((s = x = e) ∧ (¬xlocal .contains(x))) then
7: xmod = xmod ∪ [x]
8: end if
9: end for

10: return xmod

Algorithm 32 (Extract_variables) is used to iterate over the then and else branch statements, creating
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a list of variables that are assigned to within either branch (excluding any variables local to either branch).

This list is returned, enabling us to make copies of these variables and restore and resolve the true values

appropriately.

Algorithm 33 (γf , σf )← InitializeVariables(x, γ, σ, acc)

1: γ1 = [ ]
2: σ1 = [ ]
3: for all x ∈ x do
4: (l, ty) = γ(x)
5: lt = φ(temp)
6: le = φ(temp)
7: γ1 = γ1[xthen_acc → (lt, ty)][xelse_acc → (le, ty)]
8: if (ty = private bty) then
9: (ω,private bty , 1,PermL(Freeable, private bty ,private, 1)) = σ(l)

10: σ2 = σ1[lt → (ω,private bty , 1,PermL(Freeable, private bty ,private, 1)]
11: σ3 = σ2[le → (ω,private bty , 1,PermL(Freeable,private bty , private, 1)]
12: σ1 = σ3

13: else if (ty = private bty∗) then
14: (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)) = σ(l)
15: σ2 = σ1[lt → (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))]
16: σ3 = σ2[le → (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))]
17: σ1 = σ3

18: else if (ty = private const bty∗) then
19: (ω, private constbty∗, 1, PermL(Freeable,private const bty∗, private, 1)) = σ(l)
20: σ2 = σ1[lt → (ω, private constbty∗, 1, PermL(Freeable, private const bty∗,private, 1))]
21: σ3 = σ2[le → (ω, private constbty∗, 1, PermL(Freeable,private const bty∗, private, 1))]
22: [1, [(l′, 0)], [1], 1] = DecodePtr(private const bty∗, 1, ω)]
23: l′t = φ(temp)
24: l′e = φ(temp)
25: (ω,private bty , n,PermL(Freeable,private bty , private, n)) = σ2(l′)
26: σ4 = σ3[l′t → (ω,private bty , n,PermL(Freeable, private bty ,private, n))]
27: σ5 = σ4[l′e → (ω,private bty , n,PermL(Freeable,private bty , private, n))]
28: σ1 = σ5

29: end if
30: end for
31: γf = γ :: γ1
32: σf = σ :: σ1

33: return (γf , σf )

Algorithm 33 (InitializeVariables) ensures copies are made of all variables within the list xlist . This

algorithm adds the new temporary variable names to the environment, then creates copies of the current state

of memory for the original variable. The copies of memory are created by type - this is particularly important

for array variables. Due to arrays being stored as a constant pointer to a block of data, which is standard in C,

we need to perform multiple lookups and make copies of both the array pointer and data.

Algorithm 34 (RestoreVariables) ensures that all variables that are modified within either branch will

have the value they contain at the end of the then branch stored, and then be reset to the value they had

previous to the then branch.
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Algorithm 34 (σ2)← RestoreVariables(x, γ, σ, acc)

1: for all x ∈ x do
2: (lx, ty) = γ(x)
3: (lt, ty) = γ(xthen_acc)
4: (le, ty) = γ(xelse_acc)
5: if (ty = private bty) then
6: (ωx, private bty , 1,PermL(Freeable,private bty , private, 1)) = σ(lx)
7: (ωe, private bty , 1,PermL(Freeable,private bty , private, 1)) = σ(le)
8: vx = DecodeVal(private bty , 1, ωx)
9: ve = DecodeVal(private bty , 1, ωe)

10: σ1 = UpdateVal(σ, lt, vx)
11: σ2 = UpdateVal(σ1, lx, ve)
12: else if (ty = private bty∗) then
13: (ωx, private bty∗, αx,PermL(Freeable,private bty∗,private, αx)) = σ(lx)
14: (ωe, private bty∗, αe,PermL(Freeable,private bty∗,private, αe)) = σ(le)
15: [αx, lx, jx, i] = DecodePtr(private bty∗, αx, ωx)
16: [αe, le, je, i] = DecodePtr(private bty∗, αe, ωe)
17: σ1 = UpdatePtr(σ, (lt, 0), [αx, lx, jx, i])
18: σ2 = UpdatePtr(σ1, (lx, 0), [αe, le, je, i])
19: else if (ty = private const bty∗) then
20: (ωx, private const bty∗, 1, PermL(Freeable,private const bty∗, private, 1)) = σ(lx)
21: [1, [(l′x, 0)], [1], 1] = DecodePtr(private const bty∗, 1, ωx)]
22: (ωt, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)) = σ(lt)
23: [1, [(l′t, 0)], [1], 1] = DecodePtr(private const bty∗, 1, ωx)]
24: (ωe, private const bty∗, 1, PermL(Freeable,private const bty∗, private, 1)) = σ(le)
25: [1, [(l′e, 0)], [1], 1] = DecodePtr(private const bty∗, 1, ωx)]
26: (ω′x, private bty , n,PermL(Freeable, private bty , private, n)) = σ(l′x)
27: (ω′e, private bty , n,PermL(Freeable, private bty , private, n)) = σ(l′e)
28: [v0, ..., vn−1] = DecodeVal(private bty , n, ω′x)
29: [v′0, ..., v

′
n−1] = DecodeVal(private bty , n, ω′e)

30: σ1 = UpdateVal(σ, l′t, [v0, ..., vn−1])
31: σ2 = UpdateVal(σ1, l

′
x, [v

′
0, ..., v

′
n−1])

32: end if
33: σ = σ2

34: end for
35: return σ2

Algorithm 35 (ResolveVariables) ensures the various variables that are modified within either branch

will be appropriately resolved to their true values based on their type. When handling regular variables, it first

looks up both copies of the variable, obtaining the resulting values for each branch, then performs a bit-wise

operations over these two values and the result of the condition, xres , to securely obtain the true value. For

arrays, we handle the extra lookups needed as well as making sure each value within the array is properly

resolved. Lastly, for pointer variables, we use Algorithm 78 (CondAssign) as defined for PICCO [22]) to

assist us in creating the resulting list of locations the pointer can refer to and the corresponding set of tags to

store the true location.

Algorithm 36 (PermL) creates a byte-wise permission list based on the given arguments for all memory

blocks except function memory blocks. For basic types, this is as simple as getting the byte-length of the type
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Algorithm 35 (σ1)← ResolveVariables(x, γ, σ, acc, resacc)

1: (lres ,private int) = γ(resacc)
2: (ωres , private int, 1,PermL(Freeable, private int, private, 1)) = σ(lres)
3: nres = DecodeVal(private bty , 1, ωres)
4: for all x ∈ x do
5: (lx, ty) = γ(x)
6: (lt, ty) = γ(xthen_acc)
7: if (ty = private bty) then
8: (ωt,private bty , 1,PermL(Freeable, private bty , private, 1)) = σ(lt)
9: (ωx, private bty , 1,PermL(Freeable, private bty ,private, 1)) = σ(lx)

10: nt = DecodeVal(private bty , 1, ωt)
11: nx = DecodeVal(private bty , 1, ωx)
12: nf = (nres ∧ nt) ∨ (¬ nres ∧ ne)
13: σ1 = UpdateVal(σ, lx, nf )
14: else if (ty = private bty∗) then
15: (ωt, private bty∗, αt,PermL(Freeable,private bty∗,private, αt)) = σ(lt)
16: (ωx, private bty∗, αx,PermL(Freeable,private bty∗,private, αx)) = σ(lx)
17: [αt, lt, jt, i] = DecodePtr(private bty∗, αt, ωt)
18: [αx, lx, jx, i] = DecodePtr(private bty∗, αx, ωx)
19: [αf , lf , jf ] = CondAssign([αt, lt, jt, [αe, le, je], nres)

20: σ1 = UpdatePtr(σ, (lx, 0), [αf , lf , jf , i])
21: else if (ty = private const bty∗) then
22: (ωt, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)) = σ(lt)
23: [1, [(l′t, 0)], [1], 1] = DecodePtr(private const bty∗, 1, ωx)]
24: (ω′t, private bty , n,PermL(Freeable, private bty ,private, n)) = σ(l′t)
25: [vt0 , ..., vtn−1 ] = DecodeVal(private bty , n, ω′t)
26: (ωx, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)) = σ(lx)
27: [1, [(l′x, 0)], [1], 1] = DecodePtr(private const bty∗, 1, ωx)]
28: (ω′x, private bty , n,PermL(Freeable, private bty , private, n)) = σ(l′x)
29: [vx0 , ..., vxn−1 ] = DecodeVal(private bty , n, ω′x)
30: for all m ∈ [0, ..., n− 1] do
31: vfm = (nres ∧ vtm) ∨ (¬ nres ∧ vxm)
32: end for
33: σ1 = UpdateVal(σ, lx, [vf0 , ..., vfn−1 ])
34: end if
35: end for
36: σ = σ1

37: return σ1

and multiplying it by the number of elements. For pointer types, it needs to equate to the size of the pointer

data structure. Therefore, we have the size of a public int for the number of locations α and two public ints

for each of the α memory block identifier and offset pairs, all of which have public privacy labels. Then we

have an int for each of the α tags, which are public if the privacy label of the type is public, otherwise private,

and another public int for the level of indirection. We then add these permission tuples for each byte into the

permission list as we are calculating the size and ensuring the privacy labels are consistent with that of the

type. Once complete, the permission list is returned.

Algorithm 37 (PermL_Fun) creates a permission list for a function memory. We leave this separate, and

only create a single tuple for this block, which, if overshot into, will be read as being for all bytes.
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Algorithm 36 perm ← PermL(perm, ty , a, α)

1: perm = [ ]
2: if ty = a bty then
3: for all i ∈ {0...τ(ty) · α− 1} do
4: perm = (i, a, perm) :: perm
5: end for
6: else if (ty = a bty∗) ∨ (ty = const a bty∗) then
7: m1 = τ(public int) + τ(public int) · 2 · α
8: for all i ∈ {0...m1 − 1} do
9: perm = (i,public, perm) :: perm

10: end for
11: m2 = τ(a int) · α
12: for all i ∈ {m1...m1 +m2 − 1} do
13: perm = (i, a, perm) :: perm
14: end for
15: m3 = τ(public int)
16: for all i ∈ {m1 +m2...m1 +m2 +m3 − 1} do
17: perm = (i,public, perm) :: perm
18: end for
19: end if
20: return perm

Algorithm 37 perm ← PermL_Fun(public)

1: perm = [(0,public,Freeable)]
2: return perm

Algorithm 38 defines how new memory block identifiers are obtained - each party will have a counter that

is monotonically increasing after each time φ is called, and a temp counter that is monotonically decreasing

after each time φ(temp) is called. The temp argument is optional, and it signifies when the temp counter is

to be used – that is, only during the allocation of temporary variables used within the Private If Else rules.

We separate these elements into their own partition of memory in order to easily show correctness of the

memory with regards to Vanilla C- it is possible to provide a more robust mapping scheme between locations

in Vanilla C and locations in SMC2, but this extension provides unnecessary complexity for our proofs.

Algorithm 39 (τ ) returns the expected bit-length for the given type. This is implementation and machine-

specific, so we leave the lengths to be determined by the implementor.

Algorithm 40 (Label) returns the privacy label of the given expression. We set the default case as

Algorithm 38 lnext ← φ({temp})
1: next = ldefault

2: if temp then
3: next = global_location_temp_counter −−
4: else
5: next = global_location_counter ++
6: end if
7: return lnext
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Algorithm 39 n← τ(ty)

Algorithm 40 a← Label(e, γ)

1: if (e = x(e)) ∧ ((l, ty → ty) = γ(x)) then
2: if ((ty = a bty∗) ∨ (ty = a const bty∗) ∨ (ty = a bty)) then
3: return a
4: end if
5: else if ((e = uop var) ∨ (e = var)) then
6: if (var = x) ∧ ((l, ty) = γ(x)) then
7: if ((ty = public bty∗) ∨ (ty = public bty)) then
8: return public
9: end if

10: else if (var = x[e1]) ∧ ((l, ty) = γ(x)) then
11: if (ty = public const bty∗) then
12: return Label(e1, γ)
13: end if
14: end if
15: else if (e = e1 bop e2) then
16: if (Label(e1, γ) = public) ∧ (Label(e2, γ) = public) then
17: return public
18: end if
19: else if (e = (e1)) then
20: return Label(e1, γ)
21: else if (e = (ty) e1) then
22: if ((ty = public bty) ∨ (ty = public bty∗)) ∧ (Label(e1, γ) = public) then
23: return public
24: end if
25: else if ((e = n) ∨ (e = prim) ∨ (e = NULL) ∨ (e = char) ∨ (e = skip)) then
26: return public
27: else if (e = v) then
28: return Label(v[0], γ)
29: end if
30: return private

returning private, and list out cases that would be public.

Next, we present the algorithms types used for encoding and decoding bytes in memory in our semantics.

It is important to note that we leave the specifics of encoding to bytes and decoding from bytes up to the

implementation, as this low-level function may vary based on the system and underlying architecture.

Algorithm 41 ω ← EncodeVal(ty , v) Algorithm 42 v ← DecodeVal(ty , ω)

Algorithm 41, EncodeVal, takes as input a type and a value. It encodes the given value of the given type

as bytes of data, and returns those bytes.

Algorithm 42, DecodeVal, takes as input a type and bytes of data. It interprets the given bytes of data as

a value of the given type, and returns that value.
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Algorithm 43 ω ← EncodePtr(ty , [α, l, j, i]) Algorithm 44 [α, l, j, i]← DecodePtr(ty , α, ω)

Algorithm 43 (EncodePtr) takes a pointer data structure and encodes it into byte data. It takes a pointer

type, number, and byte data as input. It then encodes the pointer data structure containing the number α

indicating the number of locations, a list of α locations l, a list of α tags, and a number indicating the level of

indirection of the pointer into byte data. This byte data is then returned.

Algorithm 44 (DecodePtr) does the opposite of EncodePtr, taking byte data and retrieving the pointer

data structure from it. It takes a pointer type, number, and byte data as input. It then interprets the given set

of bytes as a pointer data structure containing the number α indicating the number of locations, a list of α

locations l, a list of α tags, and a number indicating the level of indirection of the pointer. This pointer data

structure is then returned.

Algorithm 45 ω ← EncodeFun(s, n, p) Algorithm 46 (s, n, p)← DecodeFun(ω)

Algorithm 45 (EncodeFun) takes the function data and encodes it into its byte representation. It takes as

input a statement (body of the function), the tag for whether it contains public side effects, and the function’s

parameter list. EncodeFun then encodes this information into byte data and returns the byte data.

Algorithm 46 (DecodeFun) takes the byte representation of a function and decodes it into the function’s

information: the statement (body of the function), the tag for whether it contains public side effects, and the

parameter list. It takes as input the byte data and then returns the function’s information.

Next, we present the algorithms used to update memory within the semantics. The following algorithms

are for regular (int or float) values, array values, and pointer values, respectively, when updating these values

in memory.

Algorithm 47 σ2 ← UpdateVal(σ, l, v, a bty)

1: ω2 = EncodeVal(a bty , v)
2: σ1[l→ (ω1, ty , n, PermL(Freeable, ty , a, n))] = σ
3: σ2 = σ1[l→ (ω2, ty , n, PermL(Freeable, ty , a, n))]
4: return σ2

Algorithm 47 (UpdateVal) is used to update regular (int or float) values in memory. It takes as input

memory σ, the memory block identifier of the location we will be updating, the value to store into memory,

and the type to store it as. UpdateVal first encodes the value as the specified type, then removes the original
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mapping from memory and inserts the new mapping with the updated byte data. It then returns the updated

memory.

Algorithm 48 (σ2, j)← UpdatePtr(σ, (l, µ), [α, l, j, i], a bty∗)
1: j = 0
2: σ1[l→ (ω1, ty1, α1, PermL(Freeable, ty , a1, α1))] = σ
3: if (µ = 0) ∧ (a bty∗ = ty1) then
4: ω = EncodePtr(a bty∗, [α, l, j, i])
5: σ2 = σ1[l→ (ω, ty1, 1, PermL(Freeable, ty1, a, 1))]
6: j = 1
7: else
8: σ2 = SetBytes((l, µ), a bty∗, [α, l, j, i], σ)
9: end if

10: return (σ2, j)

Algorithm 48 (UpdatePtr) is used to update the pointer data structure for a pointer. It takes as input

memory σ, the location (memory block identifier and offset) we will be updating, the value to store into

memory, and the type to store the value as. First, we extract the given memory block identifier’s mapping

in memory. If the given offset is 0 and the given pointer type matches the type in that mapping, we encode

the pointer data structure into its byte representation and add a new mapping to memory with the new byte

data, and set the tag to 1, indicating that we performed a well-aligned update to memory. Otherwise, we call

SetBytes to perform the update to memory at this location, as it is not well-aligned. Finally, it returns the

updated memory.

Algorithm 49 (UpdatePrivPtr) is used during private pointer dereference writes at a level of indirection

greater than 1, as shown in Figure 3.23. It facilitates the proper handling of private pointer data, particularly

when there are multiple locations. First, we check if the default location is in the location list. If it is, then

one of the possible locations for the pointer is an uninitialized location, and this would cause a segmentation

fault at runtime. We return tag -1 if this is the case, and the program will get stuck and be unable to evaluate

further. When there is a single location, it calls Algorithm 48 (UpdatePtr) for that location to update the

location stored there, and returns the updated memory and alignment tag. When there are multiple locations,

it iterates through all the locations and updates each location. If the location is aligned, it will combine the

two location lists and privately update the tag list using Algorithm 78, then update the location with the new

location and tag lists. If the location is not aligned, then the alignment tag is set to 0 and the bytes in that

location are overwritten with the new location list that we are storing in memory. If the update is aligned at

all locations, then the tag will be returned as 1; otherwise, 0.

Algorithm 50 (UpdatePriv) is used during private pointer dereference writes at the first level of indirec-
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Algorithm 49 (σf , j)← UpdatePrivPtr(σ, [α, l, j, i], [αe, le, je, i− 1], private bty∗)
1: j = 1
2: if (ldefault , 0) ∈ l then
3: ERROR
4: j = −1
5: else if α = 1 then
6: [(l, µ)] = l
7: (σf , j)← UpdatePtr(σ, (l, µ), [αe, le, je, i− 1], private bty∗)
8: else
9: for all (lm, µm) ∈ l do

10: σf [lm → (ωm, tym, nm, PermL(Freeable, tym, am, nm))] = σ
11: if (µm = 0) ∧ (tym = private bty∗) then
12: [αm, lm, jm, i− 1] = DecodePtr(ty , 1, ωm)

13: [α′m, l
′
m, j

′
m] = CondAssign([αe, le, je], [αm, lm, jm], jm)

14: ω = EncodePtr(a bty∗, [α′m, l
′
m, j

′
m, i− 1])

15: σf = σ1[lm → (ω, tym, α, PermL(Freeable, tym, am, α))]
16: σ = σf
17: else
18: σf = SetBytes((lm, µm), a bty∗, [1, [(lnew , µnew )], [1], i], σ)
19: j = 0
20: end if
21: end for
22: end if
23: return (σf , j)

tion, as shown in Figure 3.22. It facilitates the proper handling of private pointer data, particularly when there

are multiple locations. First, we check if the default location is in the location list. If it is, then one of the

possible locations for the pointer is an uninitialized location, and this would cause a segmentation fault at

runtime. We return tag -1 if this is the case, and the program will get stuck and be unable to evaluate further.

When there is a single location, it calls Algorithm 51 (UpdateOffset) for that location to update the value

stored there and returns the updated memory and alignment tag. When there are multiple locations, it iterates

through all the locations and updates each at location. If the location is aligned, it will privately update the

value based on the tag for the location, and then update the location with this value. If the location is not

aligned, then the alignment tag is set to 0 and the bytes in that location are overwritten with the new value

that we are storing in memory. If the update is aligned at all locations, then the tag will be returned as 1;

otherwise, 0.

Algorithm 51 (UpdateOffset) is designed to update a value at an offset within a memory block, and is

used by semantic rules Pointer Dereference Write Value and Pointer Dereference Write Value (Not Aligned).

First, we check that we are not trying to update the default location, which is not valid (i.e., this would cause

a segmentation fault). If we are, we return with the tag -1, which will not allow the statement that triggered

this to resolve any further. We extract the memory block we are looking going to be updating. Next, we
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Algorithm 50 (σ1, j)← UpdatePriv(σ, α, l, j, private bty , v)

1: j = 1
2: if (ldefault , 0) ∈ l then
3: ERROR
4: return (σ,−1)
5: else if α = 1 then
6: [(l1, µ1)] = l
7: (σ1, j) = UpdateOffset(σ, (l1, µ1), v, private bty)
8: else
9: for all (lm, µm) ∈ l do

10: (ωm, tym, n, PermL(Freeable, tym, am, n)) = σ(lm)
11: if (µm = 0) ∧ (tym = private bty) ∧ (n = 1) then
12: vm = DecodeVal(private bty , ωm)
13: v′m = (j[m] ∧ v) ∨ (¬ j[m] ∧ vm)
14: σ1 = UpdateVal(σ, lm, v

′
m,private bty)

15: σ = σ1

16: else if (µ % τ(private bty) = 0) ∧ ( µ
τ(private bty)

< n) ∧ (tym = private bty) then
17: [v0, ..., vn−1] = DecodeVal(private bty , n, ωm)
18: v′µm = (j[m] ∧ v) ∨ (¬ j[m] ∧ vµm)

19: [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v′µm
vµm

)
20: σ1 = UpdateVal(σ, lm, [v′0, ..., v

′
n−1], private bty)

21: σ = σ1

22: else
23: σ1 = SetBytes((lm, µm), private bty , v, σ)
24: j = 0
25: σ = σ1

26: end if
27: end for
28: end if
29: return (σ1, j)

check if the memory block is of the expected type, the offset is 0, and the number of locations is 1 to see if

this is a simple update. In this case, we encode the value into its byte representation and add the updated

mapping into the final memory and set the tag to be 1, as we have made a well-aligned update to memory. If

not, and the memory block happens to be a block of array data, we can check if our update will be aligned

by checking if the type is the same, then if the byte-offset of the pointer aligns with a value of the given

type within the block by using the modulo operation, and also that it is within the range of the current block

based on the given type and the number of locations in the block. If all of these elements are true, we will

have a well-aligned update to memory. We use Algorithm 65 (SetBytes) to perform the update here, as that

algorithm facilitates proper insertion of the byte representation for a value into a larger block or across blocks.

Finally, we return the updated memory and tag.

Algorithm 52 (GetFunTypeList) is designed to obtain the function input type from its parameter list,

taking as input a parameter list and returning the corresponding type list.

Algorithm 53 (GetFunParamAssign) is designed to create assignment statements for the parameters of
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Algorithm 51 (σf , j)← UpdateOffset(σ, (l, µ), v, a bty)

1: if ldefault = l then
2: ERROR
3: return (σ,−1)
4: end if
5: j = 0
6: σf [l→ (ω1, ty1, α, PermL(Freeable, ty1, a1, α))] = σ
7: if (a bty = ty1) ∧ (µ = 0) ∧ (α = 1) then
8: ω2 = EncodeVal(a bty , v)
9: σf = σf [l→ (ω2, ty1, 1, PermL(Freeable, t̂y1, a, 1))]

10: j = 1
11: else
12: if (a bty = ty1) ∧ (µ % τ(ty1) = 0) ∧ ( µ

τ(ty1)
< α) then

13: j = 1
14: end if
15: σf = SetBytes((l, µ), a bty , v, σ)
16: end if
17: return (σf , j)

Algorithm 52 ty ← GetFunTypeList(p)

1: ty = [ ]
2: while (p 6= void) do
3: if (p = ty x) then
4: ty = ty :: ty
5: p = void
6: else if (p = p′, ty x) then
7: ty = ty :: ty
8: p = p′

9: end if
10: end while
11: return ty

a function, taking as input a parameter list and expression list and returning a set of assignment statements to

assign the expressions to the corresponding parameters.

Algorithm 54 (CheckPublicEffects) is designed to decide whether a function has public side effects or

not. It takes as input the function body s, the function name x, the environment γ, and the memory σ, and

returns a tag j indicating whether there are public side effects found (1) or not (0). It is worth noting that

we pass in the name of the function that we are evaluating in order to account for recursive functions, as the

name of the function we are evaluating will not yet have an annotation in memory for whether it has public

effects or not; we make the explicit annotation within the check for function calls that the function . This

algorithm short-circuits on finding the first public side effect.
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Algorithm 53 s← GetFunParamAssign(p, e)

Require: length(p) = length(e)
1: s = skip
2: while (p 6= void) do
3: if (p = ty var) ∧ (e = e) then
4: s = ty var = e; s
5: p = void
6: e = void
7: else if (p = p′, ty) ∧ (e = e′, e) then
8: s = ty var = e; s
9: p = p′

10: e = e′

11: end if
12: end while
13: return s

Algorithm 54 j ← CheckPublicEffects(s, x, γ, σ)

1: j = 0
2: for all s1 ∈ s do
3: if (s1 = x1 ++) then
4: (l, ty) = γ(x1)
5: if (ty = public bty) ∨ (ty = public bty∗) then
6: return 1
7: end if
8: else if (s1 = x1 = e) then
9: (l, ty) = γ(x1)

10: if (ty = public bty) ∨ (ty = public bty∗) ∨ (CheckPublicEffects(e, x, γ, σ) = 1) then
11: return 1
12: end if
13: else if (s1 = ty var) then
14: if (ty = public bty) ∨ (ty = public bty∗) then
15: return 1
16: end if
17: else if (s1 = ty var = e) then
18: if (ty = public bty) ∨ (ty = public bty∗) ∨ (CheckPublicEffects(e, x, γ, σ) = 1) then
19: return 1
20: end if
21: else if (pmalloc(e, ty)) ∨ (malloc(e)) ∨ (pfree(x)) ∨ (free(x)) ∨ (smcinput(var , e)) ∨ (smcoutput(var , e)) then
22: return 1
23: else if s1 = ty x1(p){s2} then
24: if CheckPublicEffects(s2, x1, γ, σ) = 1 then
25: return 1
26: end if
27: else if (s1 = x1(e)) ∧ (x 6= x1) then
28: (l, ty) = γ(x1)
29: (ω, ty , 1,PermL_Fun(public)) = σ(l)
30: if ((s2, 1, p) = DecodeFun(ω)) ∨ ((NULL,−1, p) = DecodeFun(ω)) then
31: return 1
32: end if
33: end if
34: end for
35: return j
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Algorithm 55 (n1)← Cast(a, ty , n)

1: ω = EncodeVal(ty , n)
2: n1 = DecodeVal(ty , 1, ω)
3: return n1

Algorithm 55 (Cast) is designed to take a privacy label, type, and value, and cast the given value as

the into the appropriate size for the new type. Here, we model this as simply encoding the given value into

it’s byte representation for the new type, then decoding it back into a value of the new type. This assumes

that there is a standard handling of casting a value of one type to another type defined in the system or

implementation itself, but leaves it to the implementation to define the precise behavior, which can vary.

Algorithm 56 (n1)← encrypt(n)

Algorithm 56 (encrypt) is designed to take a number and return its encrypted representation. We do not

define the specifics of encryption in our model, as it is dependent on the implementation. However, we do

assert that the encryption algorithm must maintain the correctness and security properties we define.

Algorithm 57 (v, j)← ReadOOB(i, n, l, a bty , σ)

1: nv = τ(a bty)
2: nb = (i− n) · nv
3: j = 1
4: ωv = [ ]
5: while (nb > 0) ∨ (nv > 0) do
6: l = GetBlock(l)
7: (ω, ty1, α, PermL(Freeable, ty1, a1, α)) = σ(l)
8: if (ty1 6= a bty) then
9: j = 0

10: end if
11: if (nb < τ(ty1) · α) then
12: ωv = ωv :: ω[nb : min(nb + nv, τ(ty1) · α− 1)]
13: nv = nv − τ(ty1) · α+ nb
14: end if
15: nb = max (0, nb − τ(ty1) · α)
16: end while
17: v = DecodeVal(a bty , 1, ωv)
18: return (v, j)

Algorithm 57 (ReadOOB) is designed to read a value of the given type from memory as though it was at

index i of the array in memory block l. It takes as input the out of bounds index i, the number of values in the

array n, the memory block of the array data l, the type of elements in the array a bty , and memory σ. It then

iterates through memory until it finds the bytes that would be at index i and decodes them as the expected

type bty to obtain value v. It is important to note here that index i will be public, as we do not overshoot the
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bounds of an array when we have a private index. As the algorithm iterates through memory, if all locations

we iterate over are of the same type as the expected type, and the location we are reading the value from is

also the expected type, then it will return tag 1, indicating that our read was well-aligned. Otherwise, tag

0 will be returned. We currently only show the algorithm handling overshooting in the positive direction,

however, it can trivially extended to grab the previous blocks and iterate backwards through memory to

handle a negative index as well.

Algorithm 58 (σ, j)←WriteOOB(v, i, n, l, a bty , σ)

1: ωv = EncodeVal(a bty , v)
2: nb = (i− n) · τ(a bty)
3: j = 1
4: while (nb > 0) ∨ (|ωv| > 0) do
5: l = GetBlock(l)
6: σ1[l→ (ω, ty1, α, PermL(Freeable, ty1, a1, α))] = σ
7: if (ty1 6= a bty) then
8: j = 0
9: end if

10: if (nb < τ(ty1) · α) then
11: if (|ωv| > τ(ty1) · α− nb) then
12: ω1 = ω[0 : nb] + ωv + ω[|ωv|+ nb :]
13: ωv = [ ]
14: else if (|ωv| = τ(ty1) · α− nb) then
15: ω1 = ω[0 : nb] + ωv
16: ωv = [ ]
17: else
18: ω1 = ω[0 : nb] + ωv[0 : τ(ty1) · α− nb − 1]
19: ωv = ωv[τ(ty1) · α− nb :]
20: end if
21: σ = σ1[l→ (ω1, ty1, α, PermL(Freeable, ty1, a1, α))]
22: end if
23: nb = max (0, nb − τ(ty1) · α)
24: end while
25: return (σ, j)

Algorithm 58 (WriteOOB) is designed to store a value of the given type from memory as though it was

at index i of the array in memory block l. It takes as input the value to write in memory v, the out of bounds

index i, the number of values in the array n, the memory block of the array data l, the type of elements in

the array a bty , and memory σ. It then iterates through memory until it finds the position that would be for

index i, encodes value v as the expected type, and places its byte representation into memory starting at that

position. It is important to note here that index i will be public, as we do not overshoot the bounds of an array

when we have a private index. As the algorithm iterates through memory, if all locations we iterate over are of

the same type as the expected type, and the location we are writing the value to is also the expected type, then

it will return tag 1, indicating that our read was well-aligned. Otherwise, tag 0 will be returned. We currently
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only show the algorithm handling overshooting in the positive direction, however, it can trivially extended to

grab the previous blocks and iterate backwards through memory to handle a negative index as well.

Algorithm 59 (n)← InputValue(x, np)

1: n = NULL
2: file = open(inputFiles[np − 1], r)
3: for all line ∈ file do
4: (xf , v) = line.split(=)
5: if xf = x then
6: if v = n then
7: n = n[0]
8: else
9: n = v

10: end if
11: break
12: end if
13: end for
14: file.close()
15: return n

Algorithm 59 (InputValue) is designed to obtain a single value from a specific input party’s input file.

We first open the input file for that party in read mode, then iterate through the file to find the desired variable.

We then check if there is more than one value - if there is, we take only the first value; otherwise, we return

the value as we read it in.

Algorithm 60 (n)← InputArray(x, np, n)

1: n = [ ]
2: file = open(inputFiles[np − 1], r)
3: for all line ∈ file do
4: (xf , nf ) = line.split(=)
5: if xf = x then
6: if nf .length() > np then
7: n = nf [0 : np − 1]
8: else
9: n = nf

10: end if
11: break
12: end if
13: end for
14: file.close()
15: return n

Algorithm 60 (InputArray) is designed to obtain a list of values from a specific input party’s input file.

We first open the input file for that party in read mode, then iterate through the file to find the desired variable.

We then check if the length of the array given is longer than the desired length, and only take the desired

length if it is. Otherwise, we return the array as we read it in.

Algorithm 61 (OutputValue) is designed to write a value out to an output file for the output party np.
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Algorithm 61 NULL← OutputValue(x, np, n)

1: file = open(outputFiles[np − 1], a)
2: file.write(x = n)
3: file.close()
4: return NULL

We first open the output file for that party in append mode, as we want to allow multiple uses of the output

function throughout the program. Next, we write the variable name and the value out to the file, then close

the file and return from this algorithm.

Algorithm 62 NULL← OutputArray(x, np, n)

1: file = open(outputFiles[np − 1], a)
2: file.write(x = n)
3: file.close()
4: return NULL

Algorithm 62 (OutputArray) is designed to write the given array to an output file for the output party

np. We first open the output file for that party in append mode, as we want to allow multiple uses of the

output function throughout the program. Next, we write the variable name and its list of values out to the file,

then close the file and return from this algorithm.

Algorithm 63 (l2, jf )← IncrementList(l1, n, σ)

1: if (ldefault , 0) ∈ l1 then
2: ERROR
3: return (l1,−1)
4: end if
5: l2 = [ ]
6: jfinal = 1
7: for all (l, µ) ∈ l1 do
8: if l = ldefault then
9: l2.append((ldefault , 0))

10: else
11: ((l1, µ1), j) = GetLocation((l, µ), n, σ)
12: jf = j ∧ jf
13: l2.append((l1, µ1))
14: end if
15: end for
16: return (l2, jf )

Algorithm 63 (IncrementList) is used to increment every location in the location list of a private pointer

by the given size n. It takes a location list l1, size n, and memory σ as input, and returns the incremented

location list l2 and alignment indicator jfinal . The alignment indicator is used to show whether or not the

increment operation over each location is well-aligned or not (i.e., every location was incremented over an

element of the expected size and type). This is used when proving correctness with respect to Vanilla C, as
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we only consider operations that are well-aligned. In this algorithm, we check if the default location is in the

location list first. If it is, then one of the possible locations for the pointer is an uninitialized location, and this

would cause a segmentation fault at runtime. We return tag -1 if this is the case, and the program will get

stuck and be unable to evaluate further.

Algorithm 64 ((lf , µf ), j)← GetLocation((l, µ), n, σ)

1: (ω1, ty1, α1, PermL(perm, ty1, a1, α1)) = σ(l)
2: j = 1
3: if (τ(ty1) 6= n) ∨ (µ % τ(ty1) 6= 0) then
4: j = 0
5: end if
6: if (n < τ(ty1) · α1 − µ) then
7: (lf , µf ) = (l, µ+ n)
8: else
9: n2 = n− τ(ty1) · α1 − µ

10: l1 = l
11: while n2 ≥ 0 do
12: (l2) = GetBlock(l1)
13: (ω2, ty2, α2, PermL(perm, ty2, a2, α2)) = σ(l2)
14: if (n2 = 0) then
15: (lf , µf ) = (l2, 0)
16: n2 = −1
17: if (j = 1) ∧ (τ(ty2) 6= n) then
18: j = 0
19: end if
20: else
21: (j, l1) = (0, l2)
22: if (n2 < τ(ty2) · α2) then
23: (lf , µf ) = (l2, n2)
24: n2 = −1
25: else
26: n2 = n2 − τ(ty2) · α2

27: end if
28: end if
29: end while
30: end if
31: return ((lf , µf ), j)

Algorithm 64 (GetLocation) is designed to obtain the next location that is n bytes ahead of the current

location (l, µ). It takes the current location, the number of bytes to get to the next location, and memory as

input and return the next location and a tag indicating whether the next location is well-aligned or not. We

first look up the current memory block and initialize the tag as 1. Then, we check whether the next location is

not well-aligned with the current block. If it is not, then it cannot be well-aligned with the location we return,

either. Next, we check whether the next location is still within this block. If it is, we update the offset and

return. If it is not, we must obtain the next memory block and keep checking. To do this, we first calculate the

number of bytes that we need to move forward beyond the current block, and we initialize the memory block
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identifier we are looking beyond as the original memory block identifier. Then we loop until we have finally

found the next location to return. In each loop iteration, we grab the next block using Algorithm 68, and look

up the location in memory. If the number of bytes we have left is 0, then our next location is at the start of the

block. We perform one last check to see if the current location is well-aligned with the new location (which

is possible if this is the start of the next block immediately after the one we were in). Otherwise, we set the

tag as 0 and reset the block we are looking beyond to be the new block. Then, we check whether our new

location is within this block. If it is not, we decrease the number of bytes we need to move forward by the

number of bytes within this block, and repeat the loop.

Algorithm 65 (σf )← SetBytes((l, µ), ty , v, σ)

1: σf [l→ (ω, ty1, α, PermL(Freeable, ty1, a, α))] = σ
2: ωv = NULL
3: if ty = a bty then
4: ωv = EncodeVal(ty , v)
5: else
6: ωv = EncodePtr(ty , v)
7: end if
8: nl = τ(ty1) · α− µ
9: if (τ(ty) < nl − 1) then

10: ωf = ω[0 : µ− 1] + ωv + ω[µ+ τ(ty) :]
11: σf = σf [l→ (ωf , ty1, α, PermL(Freeable, ty1, a, α))]
12: else if (τ(ty) = nl − 1) then
13: ωf = ω[0 : µ− 1] + ωv
14: σf = σf [l→ (ωf , ty1, α, PermL(Freeable, ty1, a, α))]
15: else
16: ωf = ω[0 : µ− 1] + ωv[0 : nl − 1]
17: σf = σf [l→ (ωf , ty1, α, PermL(Freeable, ty1, a, α))]
18: ωv = ωv[nl :]
19: nv = τ(ty)− nl
20: while (nv > 0) do
21: l = GetBlock(l)
22: σf [l→ (ωc, tyc, αc, PermL(Freeable, tyc, a, αc))] = σf
23: nc = τ(tyc) · αc
24: if (nv < nc) then
25: ωf = ωv + ωc[0 : nv]
26: else if (nv = nc) then
27: ωf = ωv
28: else
29: ωf = ωv[0 : nc − 1]
30: ωv = ωv[nc :]
31: end if
32: nv = nv − nc
33: σf = σf [l→ (ωf , tyc, αc, PermL(Freeable, tyc, a, αc))]
34: end while
35: end if
36: return σf

Algorithm 65 (SetBytes) is designed to store a value into a location in memory that may not be well-

aligned. It takes as input the location, the type to encode the byte representation of the value as, the value, and
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the memory, and returns the updated memory. It is worthwhile to note here that we never change the privacy

label or type for the location, we simply encode the value into a byte representation based on it’s expected

type (not that of the location). This prevents any unintentional encryption of public values or decryption of

private values. When we later read from this location, we will again read from it as the type we are expecting

to be there rather than the type that is there - this may result in garbage values being used in a program that

was not ensured to be correct by the programmer, but it prevents any information leakage about private data

when private data is stored in an incorrect position.

In this algorithm, we first remove the current block referred to by the location from memory, then obtain

the byte representation of the value based on the type of the value - line 4 handling non-pointer values, and

line 6 handling pointer values (i.e., pointer data structures). In line 8, we are finding the size of the location

(in bytes) that is left after the offset given by the location we received as input. We then check this size

against the size of the value we are trying to store into memory. In line 9, we are checking if the value’s byte

representation will fit somewhere in the middle of the block, with bytes at the beginning and at the end. We

then take the first portion of what was in the block up until the offset and add the byte representation we are

storing to it, and at the end add on whatever bytes were left beyond the chunk that we replaced. We then store

this final byte representation back into this location.

In line 12, we have the the byte representation of the value we obtained should fit within this memory

block, and will take up the space from the offset until the end of the block. Thus, we take the first part of the

bytes currently stored in the block up until the offset, and replace the rest with our byte representation of the

given value, storing it into memory. In line 15, we are entering the portion where we are overflowing from

this block into block(s) that come after it. We first store here whatever portion of our byte representation

of the value that can be stored within this block, then obtain the remaining portion and length that we still

need to store. In line 20, we enter a loop that will iteratively store the rest into memory. It first obtains the

next sequential block, then stores whatever it can into that block, appropriately keeping any bytes of data that

were there if what we are storing will not take up the entire block. It continues this process until the entire

byte representation for the value has been stored into memory.

Algorithm 66 (GetBytes) is designed to take the byte representation from a specific location and interpret

it as the given type. It takes as input the location, the expected type, and the memory, and returns a value of

the expected type. It is important to note here that when we are trying to read a pointer data structure for a

public pointer from a location that is not aligned, this function will automatically ignore the bytes for the
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Algorithm 66 (vf )← GetBytes((l, µ), ty , σ)

1: (ω, ty1, α, PermL(Freeable, ty1, a, α)) = σ(l)
2: vf = NULL
3: nc = τ(ty1) · α− µ
4: if ty = a bty then
5: if (τ(ty) ≤ nc − 1) then
6: ωv = ω[µ : µ+ τ(ty)]
7: else
8: ωv = ω[µ :]
9: nv = τ(ty)− nc

10: while (nv > 0) do
11: l = GetBlock(l)
12: (ωc, tyc, αc, PermL(Freeable, tyc, a, αc)) = σ(l)
13: nc = τ(tyc) · αc
14: ωv = ωv + ωc[0 : min(nv, nc)− 1]
15: nv = nv − nc
16: end while
17: end if
18: vf = DecodeVal(ty , 1, ωv)
19: else if (ty = public bty∗) then
20: if (τ(public int) · 5 ≤ nc − 1) then
21: ωv = ω[µ : µ+ nv]
22: else
23: ωv = ω[µ :]
24: nv = τ(public int) · 5− nc
25: while (nv > 0) do
26: l = GetBlock(l)
27: (ωc, tyc, αc, PermL(Freeable, tyc, a, αc)) = σ(l)
28: nc = τ(tyc) · αc
29: ωv = ωv + ωc[0 : min(nv, nc)− 1]
30: nv = nv − nc
31: end while
32: end if
33: [α1, [(l1, µ1)], [j1], i1] = DecodePtr(ty , 1, ωv)
34: vf = [1, [(l1, µ1)], [1], i1]
35: else if (ty = private bty∗) then
36: (vf ) = GetBytesPrivPtr((l, µ), private bty∗, σ)
37: end if
38: return vf

number of locations and the tag and assume they are both 1. If we are trying to read a pointer data structure

for a private pointer, we will try to interpret the bytes as such and use the first public int-sized chunk to find

out how many locations this pointer is intended to have. We split the behavior for obtaining the bytes for

private pointers into its own algorithm (67) in order to reduce the length and complexity of this algorithm.

As with any read that isn’t necessarily well-aligned, this many introduce garbage into the evaluation due to

errors in the original program, but will not leak anything about private data, as we will interpret the byte

representations as the type we anticipate them to be, rather than the type of the memory block that the bytes

are stored in.

Algorithm 67 (GetBytesPrivPtr) is an extension to Algorithm 66, handling the private pointer case
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Algorithm 67 (vf )← GetBytesPrivPtr((l, µ), private bty∗, σ)

1: (ω, ty1, α, PermL(Freeable, ty1, a, α)) = σ(l)
2: vf = NULL
3: nc = τ(ty1) · α− µ
4: if (τ(public int) ≤ nc − 1) then
5: ωp = ω[µ : µ+ τ(public int)]
6: else
7: ωp = ω[µ :]
8: np = τ(public int)− nc
9: l1 = l

10: while (np > 0) do
11: l1 = GetBlock(l1)
12: (ωc, tyc, αc, PermL(Freeable, tyc, a, αc)) = σ(l)
13: nc = τ(tyc) · αc
14: ωp = ωp + ωc[0 : min(np, nc)− 1]
15: np = np − nc
16: end while
17: end if
18: αp = DecodeVal(public int, 1, ωp)
19: nv = τ(public int) + τ(public int) · 2 · αp + τ(private int) · 2 · αp + τ(public int)
20: if (nv ≤ nc − 1) then
21: ωv = ω[µ : µ+ nv]
22: else
23: ωv = ω[µ :]
24: nv = nv − nc
25: while (nv > 0) do
26: l = GetBlock(l)
27: (ωc, tyc, αc, PermL(Freeable, tyc, a, αc)) = σ(l)
28: nc = τ(tyc) · αc
29: ωv = ωv + ωc[0 : min(nv, nc)− 1]
30: nv = nv − nc
31: end while
32: end if
33: vf = DecodePtr(private bty∗, αp, ωv)
34: return vf

where we may have multiple locations. In this case, we must obtain the first public integer-sized bytes and

decode them to obtain how many locations should be stored for this private pointer (lines 4-18). We then

determine the size of this private pointer data structure in bytes, and obtain that number of bytes from memory

before returning the decoded pointer data structure as the final value.

Algorithm 68 (ln+1)← GetBlock(ln)

1: return ln+1

Algorithm 68 (GetBlock) is designed to select the identifier for the next block in memory after the

current one. It takes a memory block identifier as input, and returns the next sequential memory block. We

chose to formalize this as simply grabbing the next higher block, however, our formalization will work with

any implementation of this (e.g., selecting a random block, looping through only allocated blocks, etc.).
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Algorithm 69 (n)← GetIndirection(∗)
1: n = | ∗ |
2: return n

Algorithm 69 (GetIndirection) takes the ∗ and returns the number of them. This is used in pointer

declarations. We use the | | syntax to indicate finding the number (or length) of the ∗.

Algorithm 70 (v, j)← DerefPtr(σ, public bty , (l, µ))

1: if (ldefault = l) then
2: ERROR
3: return (NULL,−1)
4: end if
5: (v, j) = (NULL, 1)

6: (ω, ty1, α, PermL(Freeable, ty1, a, α)) = σ̂(l̂)
7: if (public bty = ty1) ∧ (µ = 0) ∧ (α = 1) then
8: v = DecodeVal(public bty , 1, ω)
9: else if (public bty = ty1) ∧ (µ % τ(public bty) = 0) ∧ ( µ

τ(public bty)
< α) then

10: [v0, ..., vα−1] = DecodeVal(public bty , α, ω)
11: n = µ

τ(public bty)

12: v = vn
13: else
14: j = 0
15: v = GetBytes((l, µ),public bty , σ)
16: end if
17: return (v, j)

Algorithm 70 (DerefPtr) is designed to dereference a pointer at with a single level of indirection and a

single location, obtaining the value stored at the location that the pointer refers to. It takes the memory, a

type, and a location as input, and interprets the byte data at that location as a value of the given type. First,

we check that we are not trying to update the default location, which is not valid (i.e., this would cause a

segmentation fault). If we are, we return with the tag -1, which will not allow the statement that triggered this

to resolve any further. Then, we look up the memory block associated with the location. In line 7, we check

to see if this is a simple lookup by seeing if the location is of the correct type, the offset it 0, and there is only

one element in the block. In line 9, we check to see if this is a simple lookup in an array block, where we

have the correct type and the offset corresponds to an element of the array. For both of these cases, we can

use Algorithm 42 to get the value(s) stored in the block and return the correct value. In line 14, we have a

dereference that is not well-aligned, and so we set the tag to 0 and use Algorithm 66 to obtain a value of the

anticipated type from the byte representation, although the value is likely garbage. Finally, we return the

value and the tag.

Algorithm 71 (DerefPtrHLI) is designed to dereference a pointer of a level of indirection greater than 1
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Algorithm 71 ([1, [(l1, µ1)], [1], i], j)← DerefPtrHLI(σ, a bty∗, (l, µ))

1: if ldefault = l then
2: ERROR
3: return ([0, [ ], [ ], 0],−1)
4: end if
5: (ω, ty1, α, PermL(Freeable, ty1, a1, α)) = σ(l)
6: if (a bty∗ = ty1) ∧ (µ = 0) ∧ (α̂ = 1) then
7: [1, [(l1, µ1)], [1], i] = DecodePtr(a bty∗, 1, ω)
8: return ([1, [(l1, µ1)], [1], i], 1)
9: else

10: [1, [(l1, µ1)], [1], i] = GetBytes((l, µ), a bty∗, σ)
11: return ([1, [(l1, µ1)], [1], i], 0)
12: end if

when the pointer only has a single location, obtaining the pointer data structure stored at that location. It

takes the memory, a type, and a location as input, and interprets the byte representation from that location

as a pointer data structure. For pointers, we currently assert that the location we are grabbing the pointer

from must be at the beginning of the block, otherwise the pointer data is not aligned, as we do not currently

support arrays of pointers. The behavior of this algorithm is similar to the previous algorithm, just obtaining a

pointer data structure instead of a value. It returns the pointer data structure and a tag indicating whether the

access was well-aligned or not. In this algorithm, we first check if the location we are trying to dereference is

the default location. If it is, then this is an uninitialized location, and would cause a segmentation fault at

runtime. We return tag -1 if this is the case, and the program will get stuck and be unable to evaluate further.

Algorithm 72 (DerefPrivPtr) is designed to to dereference a private pointer of a level of indirection

greater than 1, obtaining the pointer data structure stored at that location. It takes the memory and the number

of locations, location list, tag list, and type of pointer to be dereferenced as input. First, we check that we

will not be trying to update the default location, which is not valid (i.e., this would cause a segmentation

fault). If we are, we return with the tag -1, which will not allow the statement that triggered this to resolve

any further. In line 5, we initialize the variables we are using to return values from this algorithm. Then, we

check if there is only a single location, and if so, we can use Algorithm 71 (DerefPtrHLI) to obtain the final

values. If there are multiple locations, we must iterate through all the locations and dereference each. For

each location, we first look up the location in memory. We then check if the offset is 0 and the type is the

expected private pointer type, in which case we have a well-aligned location and we can use Algorithm 44 to

properly interpret the pointer data structure stored in that location. If not, we set the alignment tag to be 0,

and use Algorithm 66 to obtain a pointer data structure from memory at the given location and offset. We

then iterate through all the locations in the lower level location list, creating a combined location list and
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Algorithm 72 ((αf , lf , jf ), jf )← DerefPrivPtr(α, l, j, private bty∗, σ)

1: if (ldefault , 0) ∈ l then
2: ERROR
3: return ((0, [ ], [ ]),−1)
4: end if
5: ((αf , lf , jf ), jf ) = ((0, [ ], [ ]), 1)

6: if (α = 1) ∧ ([(l, µ)] = l) then
7: ([αf , lf , jf , i], jf ) = DerefPtrHLI(σ,private bty∗, (l, µ))
8: else
9: [αk, lk, jk, ik] = [1, [(ldefault , 0)], [1], 1]

10: for all (lk, µk) ∈ l do
11: (ωk, tyk, αk, PermL(Freeable, tyk, ak, αk) = σ(lk)
12: if (µk = 0) ∧ (private bty∗) then
13: [αk, lk, jk, ik] = DecodePtr(private bty∗, αk, ωk)
14: else
15: jf = 0
16: [αk, lk, jk, ik] = GetBytes((lk, µk), private bty∗, σ)
17: end if
18: for all lm ∈ lk do
19: if (lm ∈ lf ) then
20: pos = lf .find(lm])
21: jf [pos] = (j[k] ∧ jk[m]) ∨ (¬j[k] ∧ jk[m])
22: else
23: lf .append(lm)
24: jf .append(j[k] ∧ jk[m])
25: end if
26: end for
27: end for
28: αf = |lf |
29: end if
30: return ((αf , lf , jf ), jf )

corresponding tag list. Finally, we return the final number of locations, location list, and tag list that we’ve

obtained by dereferencing the locations referred to by the pointer, as well as tag jf to indicate whether any of

the dereferences were not aligned.

Algorithm 73 (Retrieve_vals) is designed to privately obtain the value from the true location for a private

pointer dereference. It takes as input the number of locations the pointer refers to, the list of locations and list

of tags for the pointer, the private type that is expected to be at each location, and memory. First, we check

that we will not be trying to dereference from the default location, which is not valid (i.e., this would cause a

segmentation fault). If we are, we return with the tag -1, which will not allow the statement that triggered this

to resolve any further. We then iterate through all of the locations for the pointer, obtaining the value at each

location by interpreting the bytes at the location as the expected type. We take this value and and perform a

private computation of whether to keep this value or not (i.e., whether this was from the true location or not)

based on the list of tags for the pointer. Once we have touched all locations, the algorithm returns the final
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Algorithm 73 (vf , jf )← Retrieve_vals(α, l, j, private bty , σ)

1: if (ldefault ∈ l) then
2: ERROR
3: return (NULL,−1)
4: end if
5: jf = 1
6: vf = encrypt(0)
7: for all (lm, µm) ∈ l do
8: (ωm, tym, αm, PermL(Freeable, tym, am, αm) = σ(lm)
9: if (µm = 0) ∧ (tym = private bty) ∧ (αm = 1) then

10: vm = DecodeVal(private bty , 1, ωm)
11: vf = (j[m] ∧ vm) ∨ (¬j[m] ∧ vf )
12: else if (µm < αm) ∧ (tym = private bty) then
13: [v0, ..., vαm−1] = DecodeVal(private bty , αm, ωm)
14: vf = (j[m] ∧ vµm) ∨ (¬j[m] ∧ vf )
15: else
16: vm = GetBytes((lm, µm),private bty , σ)
17: vf = (j[m] ∧ vm) ∨ (¬j[m] ∧ vf )
18: jf = 0
19: end if
20: end for
21: return (vf , jf )

private value we’ve obtained from memory and the tag indicating whether the dereference was well-aligned

or not.

Algorithm 74 σf ← Free(σ1, l, γ)

1: (ω, a bty∗, 1, PermL(Freeable, a bty∗, a, α)) = σ1(l)
2: [1, [(l1, µ1)], [j1], i] = DecodePtr(a bty∗, 1, ω)
3: if CheckFreeable(γ, [(l1, µ1)], [j1], σ1) then
4: σ2[l1 →

(
ω, ty , 1, PermL(Freeable, ty , a, 1))] = σ1

5: σf = σ2

[
l1 →

(
ω, ty , 1, PermL(None, ty , a, 1))]

6: else
7: σf = σ1

8: end if
9: return σf

Algorithm 74 (Free) corresponds to conventional memory deallocation when we call free to deallocate

memory associated with some pointer. In particular, on input location l, we first check whether the location

corresponds to memory that can be deallocated using Algorithm 76 (CheckFreeable). If CheckFreeable

returns 1, we will mark location l as unavailable. Otherwise, calling Free has no effect on the state of memory.

Algorithm 75 (PFree) corresponds to deallocating memory associated with a pointer to private data which

may be associated with multiple locations where the data may actually reside. It distinguishes between two

main cases: when the number of locations associated with a pointer is 1 (i.e., α = 1) and when it is larger than

1. In the former case, we invoke Free from Algorithm 74 as described above. Otherwise, the true location is

not known and the location to be removed should be chosen based on public knowledge. For the purposes of
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Algorithm 75 (σf , l, j)← PFree(γ, σ, l)

1: (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α)) = σ(l)
2: if (α = 1) then
3: [1, [(l1, µ1)], [j1], 1] = DecodePtr(a bty∗, 1, ω)
4: σf = Free(σ, l, γ)
5: return (σf , [(l1, µ1)], [0])
6: else
7: [α, [(l0, 0), ..., (lα−1, 0)], [j0, ..., jα−1], 1] = DecodePtr(private bty∗, α, ω)
8: if ¬CheckFreeable(γ, [l0, ..., lα−1], [j0, ..., jα−1], σ) then
9: return (σ, [l0, ..., lα−1], [0])

10: end if
11: σ1[l0 → (ω0, private bty , 1, PermL(Freeable, private bty ,private, 1))] = σ
12: ω′0 = ω0

13: j = [0, j1, ..., jα−1]
14: for all lm ∈ [l1, ..., lα−1] do
15: σ2[lm → (ωm, private bty , 1, PermL(Freeable, private bty , private, 1))] = σ1

16: ω′m = (ωm ∧ ¬jm) ∨ (ω0 ∧ jm)
17: ω′0 = (ωm ∧ jm) ∨ (ω′0 ∧ ¬jm)
18: σ3 = σ2[lm →

(
ω′m, private bty , 1, PermL(Freeable, private bty , private, 1))]

19: σ1 = σ3

20: j[0] = j[0] ∨ jm
21: end for
22: σ4 = σ3[l0 → (ω′0, private bty , 1, PermL(None,private bty , private, 1))]
23: σf = UpdatePointerLocations(σ4, [(l1, 0), ..., (lα−1, 0)], [j1, ..., jα−1], l0, j0)
24: return (σf , [l0, ..., lα−1], j)
25: end if

this functionality, and without loss of generality, we deallocate the first location on the list. However, before

we can proceed, we need to ensure that memory is in fact deallocatable. Thus, similar to Algorithm 74 we

first call CheckFreeable to determine whether deallocation is permitted. Unlike calling CheckFreeable from

Algorithm 74, we pass the entire list of α to locations to that function (note that CheckFreeable is written to

take a list of locations, but we call it on a list consisting of a single entry from Free). This time, if locations

which cannot be deallocated (e.g., the default location ldefault which corresponds to uninitialized pointers

and locations associated with statically allocated variables) appear on the list, the pointer is viewed as not

deallocatable because it may point to locations on which free has no effect. In this case, no changes are

performed to the state and we return the original list of locations.

If CheckFreeable returns 1, we can proceed with deallocating memory associated with one of the

locations, i.e., l0. If l0 is the true location of the pointer, this is all that is necessary. However, if l0 is not

the true location, deallocating it requires additional work because that location might be in use by other

pointers. That is, based on the fact that freeing a pointer has been called, we know that the true location can

be released, but it might not be safe to deallocate other locations associated with the pointer. For that reason,

in Algorithm 75 we iterate through all locations l1 through lα−1 and swap the content of the current location
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lm and l0 if lm is in fact the true location (i.e., flag jm is set). That is, ω′m corresponds to the updated content

of location lm: the content will remain unchanged if jm is not set, and otherwise, it will be replaced with the

content of location l0. Similarly, ω′0 corresponds to the updated content of location l0. Note that it may be

modified in at most one iteration of the loop, namely, when jm is set. All other iterations will keep the value

unchanged (and it will never be modified if none of the table j1, . . . , jα−1 are set and j0 is instead 1). The

function is written to be data-oblivious, i.e., to not reveal the true location associated with the pointer. Once

the content of the locations has been updated, we can mark location l0 as inaccessible, remove it from the list,

and call function UpdatePointerLocations in Algorithm 77 with the remaining locations l1, . . . , lα−1.

Algorithm 76 j ← CheckFreeable(γ, l, j, σ)

1: if (ldefault , 0) ∈ l then
2: return 0
3: end if
4: for all (lm, µm) ∈ l do
5: if µm 6= 0 then
6: return 0
7: end if
8: end for
9: if 1 /∈ j then

10: return 0
11: end if
12: for all x ∈ γ do
13: (lx, tyx) = γ(x)
14: if (lx, 0) ∈ l then
15: return 0
16: else if ty_x = a const bty∗ then
17: (ω, tyx, 1,PermL(Freeable, tyx, a, 1)) = σ(lx)
18: [1, [(l1, 0)], [1], 1] = DecodePtr(tyx, 1, ω)
19: if (l1, 0) ∈ l then
20: return 0
21: end if
22: end if
23: end for
24: return 1

Algorithm 76 (CheckFreeable) follows the behavior expected of free: if the location was properly

allocated via a call to malloc, it is de-allocatable for the purpose of this function. In particular, the default

location ldefault that corresponds to uninitialized pointers is not de-allocatable (and freeing such a pointer

has no effect); similarly memory associated with statically declared variables is not de-allocatable via this

mechanism (and freeing it here also has no effect). Thus, if CheckFreeable returns 1, we will proceed to

deallocate a location, otherwise, there will be no effect on the state of memory as we cannot safely perform

the deallocation operation.

In Algorithm 77 (UpdatePointerLocations) we are given location lr which is being removed and a
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Algorithm 77 σ1 ← UpdatePointerLocations(σ, l, j, lr, jr)

1: σ1 = [ ]
2: for all lk ∈ σ do
3: (ωk, ty , n, PermL(Freeable, ty , a, n)) = σ(lk)
4: if (ty = private bty∗) then
5: [n, lk, jk, i] = DecodePtr(private bty∗, n, ω)
6: if lr ∈ lk then
7: pos = lk.find(lr)
8: j

′
k = jk \ jk_pos

9: l
′
k = lk \ lr

10: [αnew , lnew , jnew ] = CondAssign([|l|, l, j], [n− 1, l
′
k, j
′
k], jk_pos)

11: ω′k = EncodePtr(private bty∗, [αnew , lnew , jnew , i])
12: σ1 = σ1[lk → (ω′k, ty , n, PermL(Freeable, ty , a, n))]
13: else
14: σ1 = σ1[lk → (ωk, ty , n, PermL(Freeable, ty , a, n))]
15: end if
16: else
17: σ1 = σ1[lk → (ωk, ty , n, PermL(Freeable, ty , a, n))]
18: end if
19: end for

list of other locations l associated with the pointer in question. In the event that lr was not the true pointer

location, its content has been moved to another location, but it still may remain in the lists of other pointers,

which is what this function is to correct. In particular, the function iterates through other pointers in the

system and searches for location lr in their lists. If lr is present (i.e., lr ∈ lk), we need to remove it and

replace it with another location from l to which the data has been moved. However, because we do not know

which location in L is set and contains the relevant data, we are left with merging all locations in L with the

pointer’s current locations l
′
k after removing lr. This is done using function CondAssign from Algorithm 78

as described next.

Algorithm 78 (CondAssign) takes two pointer data structures with the associated number of locations,

lists of locations, and lists of tags as well as a flag nres . Its primary purpose is to merge two pointer data

structures during the execution of conditional statements with private conditions. Here, nres is a flag that

indicates whether the true pointer location should be taken from the first or the second data structure; nres = 1

means that the true location is in the first data structure. For example, when executing code if (priv)

p1 = p2;, nres is the result of evaluating private condition priv, the first data structure corresponds

to p1’s data structure prior to executing this statement, and the second data structure corresponds to p2’s

data structure. The function first computes the union of the two lists of locations and then updates their

corresponding tags based on their tags at the time of calling this function and the value of nres . For example,

if a particular location lm is found on both lists, we retain its tag from the first list if nres is set and otherwise

103



retain its tag from the second list if nres is not set. When lm is found only in one of the lists, we use a similar

logic and conditionally retain its original tag based on the value of nres . If a tag is not retained, it is reset to 0.

This ensures that for any pointer data structure only one tag is set to 1 and all others are set to 0.

Algorithm 78 [α3, l3, j3]← CondAssign([α1, l1, j1], [α2, l2, j2], nres)

1: l3 = l1 ∪ l2
2: α3 = |l3|
3: j3 = [ ]
4: for all lm ∈ l3 do
5: pos1 = l1.find(lm)
6: pos2 = l2.find(lm)
7: if (pos1 ∧ pos2) then
8: j′′m = (nres ∧ j′pos2

) ∨ (¬ nres ∧ jpos1
)

9: else if (¬ pos2) then
10: j′′m = ¬ nres ∧ jpos1

11: else
12: j′′m = nres ∧ j′pos2

13: end if
14: j3.append(j′′m)
15: end for
16: return [α3, l3, j3]

Returning to our use of Algorithm 78 (CondAssign) in Algorithm 77 (UpdatePointerLocations), notice

that we are also merging two pointer data structures based on a flag. This time the flag is jkpos , which indicates

whether the true location is in the first or second list of locations. That is, if lr was the true location of the

pointer, the data has been moved and resides in one of the locations in l. Otherwise, if lr was not the true

location, the data resides at one of the remaining locations associated with the pointer on its location list l
′
k.

Thus, we merge the list of locations and update the corresponding tags in the same way this is done during

evaluation of conditional statements with private conditions.

3.2 Correctness

The most challenging result is correctness, which we discuss first. Once correctness is proven, noninterference

follows from a standard argument, with some adaptations needed to deal with the fact that private data is

encrypted and that we want to show indistinguishability of evaluation traces.

We show the correctness of the Basic SMC2 semantics with respect to the Vanilla C semantics. As

usual we will do this by establishing a simulation relation between a Basic SMC2 program and a cor-

responding Vanilla C program. To do so we face two main challenges. First, we need to guarantee

that the private operations in a Basic SMC2 program are reflected in the corresponding Vanilla C pro-
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ŝb

⇓ty ⇓′
t̂y

⇓ep ⇓′êp
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Figure 3.30: Table of SMC2 evaluation codes in SmcC \ SmcCX and their congruent Vanilla C evaluation
codes in V anC \ V anCX .

gram and that the evaluation steps between the two programs correspond. To address the former issue,

we define an erasure function Erase which translates a Basic SMC2 program into a Vanilla C program

by erasing all labels and replacing all functions specific to Basic SMC2 with their public equivalents.

This function also translates memory. As an example, let us consider pmalloc; in this case, we have

Erase(pmalloc(e, ty) = (malloc(sizeof(Erase(ty)) ·Erase(e)))). That is, pmalloc is rewritten to use

malloc, and since the given private type is now public we can use the sizeof function to find the size we will

need to allocate. To address the latter issue, we have defined our operational semantics in terms of big-step

evaluation judgments which allow the evaluation trees of the two programs to have a corresponding structure.

In particular, notice how we designed the Private If Else rule to perform multiple operations at one step,

guaranteeing that we have similar “synchronization points” in the two evaluation trees.

Second, we need to guarantee that at each evaluation step the memory used by a Basic SMC2 program

corresponds to the one used by the Vanilla C program. In our setting, with explicit memory management,

manipulations of pointers, and array overshooting, the latter becomes particularly challenging. To better
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understand the issue here, let us consider the the rule Private Free. Remember that our semantic model

associates a pointer with a list of locations, and the Private Free rule frees the first location in the list, and

relocates the content of that location if it is not the true location. Essentially, this rule may swap the content

of two locations if the first location in the list is not the location intended to be freed and make the Basic

SMC2 memory and the Vanilla C memory look quite different. To address this challenge in the proof of

correctness, we use a map, denoted ψ, to track the swaps that happen when the rule Private Free is used. The

simulation uses and modifies this map to guarantee that the two memories correspond.

Another related challenge comes from array overshooting. If, by overshooting an array, a program goes

over or into memory blocks of different types, we may end up in a situation where the locations in the Basic

SMC2 memory are significantly different from the ones in the Vanilla C memory. This is mostly due to the

size of private types being larger than their public counterpart. One option to address this problem would be

to keep a more complex map between the two memories. However, this can result in a much more complex

proof, for capturing a behavior that is faulty, in principle. Instead, we prefer to focus on situations where

overshooting arrays are well-aligned, in the sense that they access only memory locations and blocks of the

right type and size. An illustration of this is given in Figure 3.4.

Before stating our correctness, we need to introduce some notation. We use codes [d1, . . . , dn], [d̂1,

. . . , d̂m] in evaluations (i.e., ⇓[d1,...,dn]) to describe the rules of the semantics that are applied in order to

derive the result. We write [d1, . . . , dn] ∼= [d̂1, . . . , d̂m] to state that the Basic SMC2 codes [d1, . . . , dn] are

in correspondence with the Vanilla C codes [d̂1, . . . , d̂m]. Almost every Basic SMC2 rule is in one-to-one

correspondence with a single Vanilla C rule within an execution trace (exceptions being private-conditioned

branches and pmalloc).

We write s ∼= ŝ to state that the Vanilla C configuration statement ŝ can be obtained by applying the

erasure function to the Basic SMC2 statement s. Similarly, we can extend this notation to configuration by

also using the map ψ. That is, we write (γ, σ, acc, s)∼=ψ (γ̂, σ̂,�, ŝ) to state that the Vanilla C configuration

(γ̂, σ̂, �, ŝ) can be obtained by applying the erasure function to the Basic SMC2 configuration (γ, σ, acc, s),

and memory σ̂ can be obtained from σ by using the map ψ.

We state correctness in terms of evaluation trees, since we will use evaluation trees to prove a strong form

of noninterference in the next subsection. We use capital greek letters Π,Σ to denote evaluation trees. In the

Basic SMC2 semantics, we write Π. (γ, σ, acc, s) ⇓[d1,...,dn] (γ1, σ1, acc1, v), to stress that the evaluation

tree Π proves as conclusion that configuration (γ, σ, acc, s) evaluates to configuration (γ1, σ1, acc1, v)
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by means of the codes [d1, ..., dn]. Similarly, for the Vanilla C semantics. We then write Π ∼=ψ Σ for the

extension to evaluation trees of the congruence relation with map ψ.

We can now state our correctness result showing that if a Basic SMC2 program s can be evaluated to

a value v, and the evaluation is well-aligned (it is an evaluation where all the overshooting of arrays are

well-aligned), then the Vanilla C program ŝ obtained by applying the erasure function to s, i.e., s ∼= ŝ can be

evaluated to v̂ where v ∼= v̂. This property can be formalized in terms of congruence:

Theorem 3.2.1 (Semantic Correctness). Given configuration (γ, σ, acc, s), (γ̂, σ̂, �, ŝ) and map ψ such that

(γ, σ, acc, s) ∼=ψ (γ̂, σ̂, �, ŝ),

if Π . (γ, σ, acc, s) ⇓[d1,...,dn] (γ1, σ1, acc, v1) for codes [d1, ..., dn] ∈ SmcC \ SmcCX ,

then there exists a derivation Σ . (γ̂, σ̂, �, ŝ) ⇓[d̂1,...,d̂m] (γ̂1, σ̂1, �, v̂1) for codes [d̂1, ..., d̂m] ∈ V anC \ V anCX

and a map ψ1 such that [d1, ..., dn] ∼= [d̂1, ..., d̂m], (γ1, σ1, acc, v1) ∼=ψ1 (γ̂1, σ̂1, �, v̂1), and Π ∼=ψ1 Σ.

Proof. Proof Sketch: By induction over all Basic SMC2 semantic rules.

The bulk of the complexity of this proof lies with rules pertaining to Private If Else, handling of pointers,

and freeing of memory. We first provide a brief overview of the intuition behind some assumptions we must

make for the proof and reasoning behind the use of some of the elements of the rules; then we dive deeper

into the details for the more complex cases. The full proof is available in Section 3.2.4, with this theorem

identical to Theorem 3.2.2.

First, we need to assume private indexing is within bounds. Otherwise, we will not be able to prove

correctness, because when using private indexing we will not go out of the bounds of the array in Basic SMC2,

whereas the Vanilla C equivalent would. We also need to assume that input files are congruent, otherwise we

cannot reason over the data input functions.

Similarly, when reasoning about rules containing overshooting and offsets into memory blocks, we must

assert that such operations are well-aligned by type (i.e., for overshooting, we can only assert correctness

over memory blocks and elements of the same type, and for offsets, the offset must be aligned with the start

of an element within the block, and the expected and actual types of memory the same). Going over or into

memory blocks of different types could cause significantly different locations between Basic SMC2 and

Vanilla C due to private types being larger in size. An illustration of this is shown in Figure 3.4.

The correctness of most semantic rules follows easily, with Private Free being a notable exception. We

leverage the correctness of Algorithm 75 (PFree), to show that correctness follows due to the deterministic
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definitions of this algorithm and those used by this algorithm. In this case, we must also show that the

locations that are swapped within this rule, which is done to hide the true location, are deterministic based on

our memory model definition. We use ψ to map the swapped locations, enabling us to show that, if these

swaps were reversed, we would once again have memories that are directly congruent. This concept of

locations being ψ-congruent is particularly necessary when reasoning about pointers in other rule cases.

We make the assertion that v 6= skip in some rules where skip is not allowed as a value - this is especially

important for asserting that an expression cannot contain pfree(e) (as any expression containing pfree(e)

would evaluate to skip) and thus that ψ could not have been modified over said evaluation.

Another common assertion we must make is that in a semantic rule, we do not accept a hard-coded

location (l, µ), (l̂, µ̂) as the starting statement s, ŝ. Hard-coded locations could lead to evaluating locations

that are not congruent to each other and therefore we would not be able to prove correctness over such

statements. This makes it so we can easily assert that our starting statements are congruent (i.e., s ∼= ŝ).

For all the rules using private pointers, we will rely upon the pointer data structure containing a set of

locations and their associated tags, only one of which being the true location. With this proven to be the case,

it is then clear that the true location indicated within the private pointer’s data structure in Basic SMC2 will be

ψ-congruent with the location given by the pointer data structure in Vanilla C. We define this correspondence

between locations as location ψ-congruence - ensuring that memory block IDs are the same, and the position

into the block is congruent (i.e., the same position if public, or a proportional position if private).

For rule Private Malloc, we must relate this rule to the sequence of Vanilla C rules for Malloc, Multipli-

cation, and Size of Type. This is due to the definition of pmalloc as a helper that allows the user to write

programs without knowing the size of private types. This case follows from the definition of translating

the Basic SMC2 program to a Vanilla C program, Erase(pmalloc(e, ty) = (malloc(sizeof(Erase(ty))·

Erase(e)))).

For the Private If Else rule, we must reason that our end results in memory after executing both branches

and resolving correctly match the end result of having only executed the intended branch. The cases for

both of these rules will have two subcases - one for the conditional being true, and the other for false. We

must first show that ExtractVariables will correctly find all non-local variables that are modified within

both branches, including non-assignment modifications such as use of the pre-increment operator + + x, and

that all such modified variables will be added to the list. These properties follow deterministically from the

definition of the algorithm.
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We then reason that InitializeVariables will correctly create the assignment statements for our temporary

variables, and that the original values for each of the modified variables will be stored into the else temporary

variables. When we allocate these temporary variables, we place them into a specific portion of memory

designated for such temporaries. In this way, we can easily maintain our congruence between locations.

It is possible to introduce an additional tracking structure to maintain a mapping between all Basic SMC2

locations and Vanilla C locations so that we do not need to place such temporaries into a specific portion

of memory, but proving such a tracking structure and mapping scheme correct is trivial and introduces

unnecessary complications in reasoning about congruence between memories.

Next we have the evaluation of the then branch, which will result in the values that are correct for if

the condition had been true - this holds by induction. We then proceed to reason that RestoreVariables

will properly create the statements to store the ending results of the then branch into the then temporary

variables, and restore all of the original values from the else variables (the original values being correctly

stored follows from InitializeVariables and the evaluation of it’s statements). The correct evaluation of

the this set of statements follows by induction. Next we have the evaluation of the else branch, which

will result in the values that are correct for if the condition had been false - this holds by induction and the

values having been restored to the original values properly. We will then reason about the correctness of

ResolveVariables. It must be set up to correctly take the information from the then temporary variable, the

temporary variable for the condition for the branch, and the ending result for all variables from the else

branch. For the resolution of pointers, we must also reason about Algorithm 78 (CondAssign), because the

resolution of pointer data is more involved. By proving that this algorithm will correctly resolve the true

locations for pointers, we will then have that the statements created by ResolveVariables will appropriately

resolve all pointers.

3.2.1 Erasure Function

Here, we show the full erasure function in Figure 3.31. This function is intended to take a SMC2 program or

configuration and remove all private privacy labels, decrypt any private data, and clear any additional tracking

features that are specific to SMC2; this process will result in a Vanilla C program or configuration. This

function precisely defines the expected correspondence between SMC2 and Vanilla C, enabling us to reason

about the correctness of SMC2 with respect to the standard C semantics we show using Vanilla C.
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Figure 3.31a shows erasure over an entire configuration, calling Erase on the four-tuple of the environ-

ment, memory, and two empty maps needed as the base for the Vanilla C environment and memory; removing

the accumulator (i.e., replacing it with �); and calling Erase on the statement. Figure 3.31b shows erasure

over types and type lists (i.e., for function types). Here, we remove any privacy labels given to the types, with

unlabeled types being returned as is. For function types, we must iterate over the entire list of types as well as

the return type. Figure 3.31c shows erasure over expression lists (i.e., from function calls) and parameter lists

(i.e., from function definitions).

Figure 3.31d shows erasure over statements. For statements, we case over the various possible statements.

When we reach a private value (i.e., encrypt(n)), we decrypt and then return the decrypted value. For

function pmalloc, we replace the function name with malloc, modifying the argument to appropriately

evaluate the expected size of the type. For functions pfree, smcinput, and smcoutput, we simply replace the

function name with its Vanilla C equivalent. All other cases recursively call the erasure function as needed,

with the last case (_) handling all cases that are already identical to the Vanilla Cequivalent (i.e., NULL,

locations).

Figure 3.31e shows erasure over bytes stored in memory, which is used from within the erasure on the

environment and memory. This function takes the byte-wise data representation, the type that it should be

interpreted as, and the size expected for the data. For regular public types, we do not need to modify the

byte-wise data. For regular private types (i.e., single values and array data), we get back the value(s) from the

representation, decrypt, and obtain the byte-wise data for the decrypted value(s). For pointers with a single

location, we must get back the pointer data structure, then simply remove the privacy label from the type

stored there. For private pointers with multiple locations, we must declassify the pointer, retrieving it’s true

location and returning the byte-wise data for the pointer data structure with only that location. For functions,

we get back the function data, then call Erase on the function body, remove the tag for whether the function

has public side effects (i.e., replace with �), and call Erase on the function parameter list.

Figure 3.32 shows erasure over the environment and memory. In order to properly handle all types of

variables and data stored, we must iterate over both the SMC2 environment and memory maps, and pass along

the Vanilla C environment and memory maps as we remove elements from the SMC2 maps and either add to

them to the Vanilla C maps or discard them. The first case is the base case, when the SMC2 environment and

memory are both empty, and we return the Vanilla C environment and memory. Next, we have three cases

which continue to iterate through the SMC2 memory after the environment has been emptied. These cases
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Erase((γ, σ, acc, s)) =
(Erase(γ, σ, [ ], [ ]), ���, Erase(s))

(a) Erasure function over configurations

Erase(ty) =
| a bty => bty
| a bty ∗ => bty∗
| ty → ty => Erase(ty)→ Erase(ty))
| _ => ty

Erase(ty) =
| [ ] => [ ]
| ty :: ty => Erase(ty) :: Erase(ty)

(b) Erasure function over types and type lists

Erase(e) =
| e, e => Erase(e), Erase(e)
| e => Erase(e)
| void => void

Erase(p) =
| p, ty var => Erase(p), Erase(ty var)
| ty var => Erase(ty) Erase(var)
| void => void

(c) Erasure function over lists

Erase(s) =
| x[e] => x[Erase(e)]
| [v0, ..., vn] =>

[Erase(v0), Erase(...), Erase(vn)]
| malloc(e) => malloc(Erase(e))
| pmalloc(e, ty) =>

malloc(sizeof(Erase(ty)) ·Erase(e))
| free(e) => free(Erase(e))
| pfree(e) => free(Erase(e))
| sizeof(ty) => sizeof(Erase(ty))
| smcinput(e) => mcinput(Erase(e))
| smcoutput(e) => mcoutput(Erase(e))
| x(e) => x(Erase(e))
| e1 bop e2 => Erase(e1) bop Erase(e2)
| uop x => uop x
| (e) => (Erase(e))
| (ty) e => Erase(ty)) Erase(e)
| var = e => Erase(var) = Erase(e)
| ∗x = e => ∗x = Erase(e)
| s1; s2 => Erase(s1); Erase(s2)
| {s} => {Erase(s)}
| ty var => Erase(ty) Erase(var)
| ty var = e =>

Erase(ty) Erase(var) = Erase(e)
| ty x(p) => Erase(ty) x(Erase(p))
| ty x(p) {s} =>

Erase(ty x(p)) {Erase(s)}
| if(e) s1 else s2 =>

if(Erase(e)) Erase(s1) else Erase(s2)
| while (e) s => while (Erase(e)) Erase(s)
| _ => s

(d) Erasure function over statements

Erase(ω, ty , α) =
| (ω, public bty , α) => ω
| (ω, private bty , 1) => v1 = DecodeVal(ty , 1, ω); v2 = decrypt(v1); ω1 = EncodeVal(bty , v2); ω1

| (ω, private bty , α) => [v1 = DecodeVal(ty , RTα, ω);
[v′1, ..., v

′
α] = [decrypt(v1), decrypt(...), decrypt(vα)]; ω1 = EncodeVal(bty , [v′1, ..., v

′
α]); ω1

| (ω, public bty ∗, 1) => [1, [(l, µ)], [1], i] = DecodePtr(public bty ∗, 1, ω);
ω1 = EncodePtr(bty ∗, [1, [(l, µ)], [1], Erase(ty ′), i]); ω1

| (ω, private bty ∗, 1) => [1, [(l, µ)], [1], i] = DecodePtr(private bty ∗, 1, ω);
if (i = 1) then {ty1 = public bty ; ty2 = private bty} else {ty1 = public bty∗; ty2 = private bty∗};
µ1 = µ·τ(ty1)

τ(ty2)
; ω1 = EncodePtr(bty ∗, [1, [(l, µ1)], [1], Erase(ty ′), i]); ω1

| (ω, private bty ∗, α) => [α, l, j, i] = DecodePtr(private bty ∗, α, ω);

(l, µ) = DeclassifyPtr([α, l, j, i], private bty∗);
if (i = 1) then {ty1 = public bty ; ty2 = private bty} else {ty1 = public bty∗; ty2 = private bty∗};
µ1 = µ·τ(ty1)

τ(ty2)
; ω1 = EncodePtr(bty ∗, [1, [(l, µ1)], [1], i]); ω1

| (ω, ty → ty , 1) => (s, n, p) = DecodeFun(ω); ω1 = EncodeFun(Erase(s), �, Erase(p)); ω1

(e) Erasure function over bytes

Figure 3.31: The Erasure function, broken down into various functionalities.
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Erase(γ, σ, γ̂, σ̂) =
match (γ, σ) with
| ([ ], [ ]) => (γ̂, σ̂)
| ([ ], σ1[l→ (NULL, void∗, α, PermL(Freeable, void∗, public, α))])

=> (Erase([ ], σ1, γ̂, σ̂[l→ (NULL, void∗, α̂, PermL(perm, void∗, public, α̂))]))
| ([ ], σ1[l→ (NULL, void∗, α, PermL(Freeable, ty , private, α))])

=> α̂ =
(

α
τ(ty)

)
· τ(Erase(ty))

(Erase([ ], σ1, γ̂, σ̂[l→ (NULL, void∗, α̂, PermL(perm, void∗, public, α̂))]))
| ([ ], σ1[l→ (ω, ty , α, PermL(perm, ty , a, α))])

=> (Erase([ ], σ1, γ̂, σ̂[l→ (Erase(ω, ty , α),Erase(ty), α, PermL(perm,Erase(ty),public, α))]))
| ([ ], σ1[l→ (ω, ty , α, PermL(perm, ty , a, α))])

=> (Erase([ ], σ1, γ̂, σ̂[l→ (Erase(ω, ty , α),Erase(ty), α,PermL(perm,Erase(ty),public, α))]))
| ([ ], σ1[l→ (ω, ty , 1, PermL_Fun(public))])

=> (Erase([ ], σ1, γ̂, σ̂[l→ (Erase(ω, ty ,1), Erase(ty), 1, PermL_Fun(public))]))
| (γ1[x→ (l, a bty)], σ1[l→ (ω, a bty , 1, PermL(perm, a bty , a, 1))])

=> (Erase(γ1, σ1, γ̂[x→ (l, bty)], σ̂[l→ (Erase(ω,a bty ,1), bty ,1,PermL(perm, bty ,public,1))]))
| (γ1[res_n→ (l,private bty)], σ1[l→ (ω,private bty , 1,PermL(perm, private bty , private, 1))])

=> (Erase(γ1, σ1, γ̂, σ̂))
| (γ1[x_then_n→ (l, a bty)], σ1[l→ (ω, a bty , 1, PermL(perm, a bty , a, 1))]) => (Erase(γ1, σ1, γ̂, σ̂))
| (γ1[x_else_n→ (l, a bty)], σ1[l→ (ω, a bty , 1, PermL(perm, a bty , a, 1))]) => (Erase(γ1, σ1, γ̂, σ̂))
| (γ1[x→ (l, a const bty∗)], σ1[l→ (ω, a const bty∗, 1, PermL(perm, a const bty∗, a, 1))])

=> DecodePtr(a const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1];
σ1 = σ2[l1 → (ω1, a bty , α, PermL(perm, a bty , a, α))];
(Erase(γ1, σ2, γ̂[x→ (l, Erase(a const bty∗))],
σ̂[l→ (Erase(ω,a const bty∗,1), const bty∗),1,PermL(perm, const bty∗, public, 1))]
[l1→ (Erase(ω1, a bty , α), bty , α,PermL(perm, bty , public, α))]))

| (γ1[x_then_n→ (l, a const bty∗)], σ1[l→ (ω, a const bty∗, 1, PermL(perm, a const bty∗, a, 1))])
=> DecodePtr(a const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1];

σ1 = σ2[l1 → (ω1, a bty , α, PermL(perm, a bty , a, α))]; (Erase(γ1, σ2, γ̂, σ̂))
| (γ1[x_else_n→ (l, a const bty∗)], σ1[l→ (ω, a const bty∗, 1, PermL(perm, a const bty∗, a, 1))])

=> DecodePtr(a const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1];
σ1 = σ2[l1 → (ω1, a bty , α, PermL(perm, a bty , a, α))]; (Erase(γ1, σ2, γ̂, σ̂))

| (γ1[x→ (l, a bty∗)], σ1[l→ (ω, a bty∗, α, PermL(perm, a bty∗, a, α))])
=> (Erase(γ1, σ1, γ̂[x→ (l, Erase(a bty∗))],

σ̂[l→ (Erase(ω, ty , n), Erase(ty), α, PermL(perm, Erase(ty), public, α))]))
| (γ1[x_then_n→ (l, a bty∗)], σ1[l→ (ω, a bty∗, α, PermL(perm, a bty∗, a, α))])

=> (Erase(γ1, σ1, γ̂, σ̂))
| (γ1[x_else_n→ (l, a bty∗)], σ1[l→ (ω, a bty∗, α, PermL(perm, a bty∗, a, α))])

=> (Erase(γ1, σ1, γ̂, σ̂))
| (γ1[tempctr _n→ (l, private bty∗)], σ1[l→ (ω, private bty∗, α, PermL(perm, private bty∗, private, α))])

=> (Erase(γ1, σ1, γ̂, σ̂))
| (γ1[x→ (l, ty → ty)], σ1[l→ (ω, ty → ty , 1, PermL_Fun(public))]

=> (Erase(γ1, σ1, γ̂[x→ (l, Erase(ty → ty))],
σ̂[l→ (Erase(ω, ty → ty ,1), Erase(ty → ty), 1, PermL_Fun(public))]))

Figure 3.32: Erasure function over the environment and memory
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are possible due to the fact that in SMC2 we remove mappings from the environment once they are out of

scope, but we never remove mappings from memory.

Then we have three cases to handle regular variables. The first adds mappings to the Vanilla C environment

and memory without the privacy annotations on the types, and calls Erase on the byte-wise data stored at that

location (the behavior of this is shown in Figure 3.31e and described later in this section). The other two

remove temporary variables (an their corresponding data) inserted by an if else statement branching on

private data. The cases for arrays, pointers, and functions behave similarly; however, when we have an array

we handle the array pointer as well as the array data within those cases.

The following algorithms are used in the proof of correctness to help prove congruence between the

SMC2 semantics and the Vanilla C semantics - in particular, they assist us in proving the memories are

equivalent in the presence of pfree in the SMC2 semantics, which can free a location that was not the true

location. These algorithms facilitate managing the locations that have been swapped and comparing the

locations.

Algorithm 79 l1 ← GetLocationSwap(l, j)

1: l1 = [ ]
2: for all m ∈ {0, ..., |j| − 1} do
3: if j[m] =private 1 then
4: l1.append(l[m])
5: end if
6: end for
7: return l1

Algorithm 79, (GetLocationSwap), is used to analyze the location and tag lists returned by Algorithm

PFree to show which location has been swapped, if any were swapped.

Algorithm 80 σ2 ← SwapMemory(σ, ψ)

1: for all l ∈ ψ do
2: if (l = [(l1, 0), (l2, 0)]) then
3: σ1[l1 → (ω1, ty1, n1,PermL(perm1, ty1, a1, n1))][l2 → (ω2, ty2, n2,PermL(perm2, ty2, a2, n2))] = σ
4: σ2 = σ1[l1 → (ω2, ty2, n2,PermL(perm2, ty2, a2, n2))][l2 → (ω1, ty1, n1,PermL(perm1, ty1, a1, n1))]
5: end if
6: σ = σ2

7: end for
8: return σ2

Algorithm 80, (SwapMemory), is used to swap two locations in memory, to get back the original memory

before swaps occurred in order to easily compare the congruence of the Basic SMC2 memory and the Vanilla

C memory.
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Algorithm 81 ψ1 ← GetFinalSwap(ψ)

1: ψ1 = [ ]
2: for all l ∈ ψ do
3: if (l = [(l1, 0), (l2, 0)]) then
4: if ([(l1, 0), (lm, 0)] /∈ ψ1) then
5: if ([(l2, 0), (ln, 0)] /∈ ψ1) then
6: ψ1 = ψ1[(l1, 0), (l2, 0)][(l2, 0), (l1, 0)]
7: else
8: ψ2[(l2, 0), (ln, 0)] = ψ1

9: ψ3 = ψ2[(l1, 0), (ln, 0)][(l2, 0), (l1, 0)]
10: ψ1 = ψ3

11: end if
12: else
13: if ([(l2, 0), (ln, 0)] /∈ ψ1) then
14: ψ2[(l1, 0), (lm, 0)] = ψ1

15: ψ3 = ψ2[(l1, 0), (l2, 0)][(l2, 0), (lm, 0)]
16: ψ1 = ψ3

17: else
18: ψ2[(l1, 0), (lm, 0)][(l2, 0), (ln, 0)] = ψ1

19: ψ3 = ψ2[(l1, 0), (ln, 0)][(l2, 0), (lm, 0)]
20: ψ1 = ψ3

21: end if
22: end if
23: end if
24: end for
25: return ψ1

Algorithm 81 (GetFinalSwap) iterates over map ψ to get a map ψ1 that has the final listing of congruent

locations between SMC2 memory and Vanilla C memory, particularly in the case where locations may

have been swapped more than once. For example, if only l1 and l2 are swapped, then we have ψ1 =

[(l1, 0), (l2, 0)][(l2, 0), (l1, 0)] (i.e., meaning that l1 ∼=ψ1 l̂2 and l2 ∼=ψ1 l̂1). If we first swap l1 and l2 and

then swap l2 and l3, we have ψ1 = [(l1, 0), (l2, 0)][(l2, 0), (l3, 0)][(l3, 0), (l1, 0)] (i.e., meaning that l1 ∼=ψ1 l̂2,

l2 ∼=ψ1 l̂3, and l3 ∼=ψ1 l̂1). This behavior extends for any additional location mappings within ψ.

Algorithm 82 j ← CheckIDCongruence(ψ, l1, l̂)

1: l2 = l̂
2: ψ1 = GetFinalSwap(ψ)
3: if ([(l1, 0), (l2, 0)] ∈ ψ1) then
4: return 1
5: else if (([(l1, 0), (lm, 0)] ∈ ψ1) ∧ (lm 6= l2)) then
6: return 0
7: else if (([(ln, 0), (l2, 0)] ∈ ψ1) ∧ (ln 6= l1)) then
8: return 0
9: else if (l1 = l2) then

10: return 1
11: else
12: return 0
13: end if

Algorithm 82, (CheckIDCongruence), takes a Basic SMC2 memory block identifier and a Vanilla C
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memory block identifier and checks whether they are congruent.

Algorithm 83 j ← CheckCodeCongruence(d, d̂)

1: if (|d| = 0) ∧ (|d̂| = 0) then
2: return 1
3: else if (|d| = 1) ∧ (|d̂| = 1) then
4: [d] = d

5: [d̂] = d̂

6: if d ∼= d̂ then
7: return 1
8: else
9: return 0

10: end if
11: else
12: [d0, ..., dn] = d

13: [d̂0, ..., d̂m] = d̂
14: if d0 = malp then
15: if (d̂0 = mal) ∧ (d̂1 = bm) ∧ (d̂2 = ty) then
16: return CheckCodeCongruence([d1, ..., dn], [d̂3, ..., d̂m])
17: else
18: return 0
19: end if
20: else
21: if d0 ∼= d̂0 then
22: return CheckCodeCongruence([d1, ..., dn], [d̂1, ..., d̂m])
23: else
24: return 0
25: end if
26: end if
27: end if

Algorithm 83 (CheckCodeCongruence) shows how we compare evaluation codes to ensure that two

evaluation traces are corresponding between Basic SMC2 and Vanilla C. In particular, it ensures that the

evaluation trace for pmalloc in the Basic SMC2 evaluation code trace has the corresponding Vanilla C

evaluation code trace.

3.2.2 Definitions

Definition 3.2.1. A memory location (l, µ), (l̂, µ̂) is aligned if and only if the location refers to either the beginning

of a memory block (µ = µ̂ = 0) or the beginning of an element inside an array.

Definition 3.2.2. An overshooting memory access by an array is well-aligned if and only if:

• the initial memory location is aligned and of the expected type,

• the ending memory location is aligned and of the expected type, and

• all memory blocks or elements iterated over are of the expected type.
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Definition 3.2.3. A SMC2 alignment indicator and a Vanilla C alignment indicator are congruent, in symbols j ∼= ĵ,

if and only if either j = 1 and ĵ = 1 or j = 0 and (ĵ = 0) ∨ (ĵ = 1).

Definition 3.2.4. A location list is aligned if and only if for all locations (li, µi) in the list:

• all memory block identifiers li are of the expected type,

• all memory block identifiers li are of the same size, and

• all offsets µi are equal.

Definition 3.2.5. An overshooting memory access by a pointer is well-aligned if and only if:

• the initial location list li is aligned,

• the final location list lf is aligned, and

• for each location in the initial location list, all memory blocks or elements iterated over to get to the corresponding

location in the final location list are of the expected type.

Definition 3.2.6. A SMC2 type and a Vanilla C type are congruent, in symbols ty ∼= t̂y , if and only if Erase(ty) = t̂y .

Definition 3.2.7. A SMC2 type list and a Vanilla C type list are congruent, in symbols ty ∼= t̂y , if and only if

Erase(ty) = t̂y .

Definition 3.2.8. A SMC2 expression list and a Vanilla C expression list are congruent, in symbols e ∼= ê, if and only

if Erase(e) = ê.

Definition 3.2.9. A SMC2 parameter list and a Vanilla C parameter list are congruent, in symbols p ∼= p̂, if and only

if Erase(p) = p̂.

Definition 3.2.10. A SMC2 statement and a Vanilla C statement are congruent, in symbols s ∼= ŝ, if and only if

Erase(s) = ŝ.

Definition 3.2.11. ψ = [ ] | ψ[l]

A map ψ is defined as a list of lists of locations that is formed by tracking which locations are privately switched during

the execution of the statement pfree(x) in a SMC2 program s to enable comparison with the congruent Vanilla C

program ŝ.

Definition 3.2.12. A SMC2 memory block identifier and a Vanilla C memory block identifier are ψ-congruent, in

symbols l ∼=ψ l̂, given map ψ, if and only if CheckIDCongruence(ψ, l, l̂) = 1.

Definition 3.2.13. A SMC2 location and a Vanilla C location are ψ-congruent, in symbols (l, µ) ∼=ψ (l̂, µ̂), given

SMC2 type ty correlating to (l, µ) and Vanilla C type t̂y correlating to (l̂, µ̂), if and only if ty ∼= t̂y , l ∼=ψ l̂, and either

ty is a public type and µ = µ̂, or ty is a private type and (µ) ·
( τ(t̂y)
τ(ty)

)
= µ̂.

116



Definition 3.2.14. A SMC2 pointer data structure for a pointer of type ty ∈ {a const bty∗, a bty∗} and a Vanilla

C pointer data structure for a pointer of type t̂y ∈ {const b̂ty∗, b̂ty∗} are ψ-congruent, in symbols [α, l, j, i] ∼=ψ

[1, [(l̂, µ̂)], [1], î], given map ψ, if ty ∼= t̂y , i = î and either a = public and α = 1, l = (l, µ) such that (l, µ) ∼=ψ (l̂, µ̂),

and j = [1] or a = private and DeclassifyPtr([α, l, j, i], private bty∗) = (l, µ) such that (l, µ) ∼=ψ (l̂, µ̂).

Definition 3.2.15. A SMC2 environment and memory pair and a Vanilla C environment and memory pair are

ψ-congruent, in symbols (γ, σ) ∼=ψ (γ̂, σ̂), if and only if Erase(γ, σ, [ ], [ ]) = (γ̂, σ̂′), and SwapMemory(σ̂′, ψ) = σ̂.

Definition 3.2.16. A SMC2 byte-wise representation ω of a given type ty and size n and a Vanilla C byte-wise

representation ω̂ are ψ-congruent, in symbols ω ∼=ψ ω̂, if and only if either ty 6= private bty∗ and Erase(ω, ty , n) = ω̂

or ty = private bty∗ and Erase(ω, ty , n) = ω̂1 such that the pointer data structure stored in ω and the pointer data

structure stored in ω̂ are ψ-congruent by Definition 3.2.14.

Definition 3.2.17. A SMC2 value and Vanilla C value are ψ-congruent, in symbols v ∼=ψ v̂, if and only if either

v 6= (l, µ), v̂ 6= (l̂, µ̂), and v ∼= v̂, or v = (l, µ), v̂ = (l̂, µ̂), and (l, µ) ∼=ψ (l̂, µ̂).

Definition 3.2.18. A SMC2 statement and Vanilla C statement are ψ-congruent, in symbols s ∼=ψ ŝ, if and only if for

all vi ∈ s, v̂i ∈ ŝ, vi ∼=ψ v̂i and otherwise s ∼= ŝ.

Definition 3.2.19. A SMC2 expression list and a Vanilla C expression list are ψ-congruent, in symbols e ∼=ψ ê, given

a map ψ, if and only if ∀e 6= (l, µ) ∈ e, Erase(e) = ê and ∀e = (l, µ) ∈ e, e ∼=ψ ê by Definition 3.2.10.

Definition 3.2.20. A SMC2 configuration and a Vanilla C configuration are ψ-congruent, in symbols (γ, σ, acc, s)

∼=ψ (γ̂, σ̂, �, ŝ), if and only if (γ, σ) ∼=ψ (γ̂, σ̂) and s ∼=ψ ŝ.

Definition 3.2.21. A SMC2 evaluation code and a Vanilla C evaluation code are congruent, in symbols d ∼= d̂, if and

only if (γ, σ, acc, s) ⇓d (γ1, σ1, acc, v) and (γ̂, σ̂,�, ŝ) ⇓d̂ (γ̂1, σ̂1,�, v̂) such that (γ, σ, acc, s) ∼=ψ (γ̂, σ̂,�, ŝ) and

(γ1, σ1, acc, v) ∼=ψ (γ̂1, σ̂1,�, v̂) by Definition 3.2.20.

Definition 3.2.22. The SMC2 evaluation code trace ([malp, d1]) for the statement pmalloc(e, ty) and the Vanilla C

evaluation code trace ([m̂al , b̂m, t̂y , d̂1]) for the congruent statement malloc(sizeof(t̂y) · ê) are congruent if and only

if d1
∼= d̂1.

Definition 3.2.23. A SMC2 evaluation code trace and a Vanilla C evaluation code trace are congruent, in symbols

[d1, ..., dn] ∼= [d̂1, ..., d̂m], if and only if CheckCodeCongruence([d1, ..., dn], [d̂1, ..., d̂m]) = 1 by Algorithm 83.

Definition 3.2.24. A SMC2 derivation Π . (γ, σ, acc, s) ⇓[d1,...,dn] (γ1, σ1, acc, v) and a Vanilla C derivation

Σ . (γ̂, σ̂,�, ŝ) ⇓′
[d̂1,...,d̂m]

(γ̂1, σ̂1,�, v̂) are ψ-congruent, in symbols Π ∼=′ψ Σ, if and only if given initial map ψ and ψ′

derived from evaluating Π, (γ, σ, acc, s) ∼=ψ (γ̂, σ̂,�, ŝ), [d1, ..., dn] ∼= [d̂1, ..., d̂m], (γ1, σ1, acc, v) ∼=′ψ (γ̂1, σ̂1,�, v̂).
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Definition 3.2.25. Two input files are congruent, in symbols inp ∼= ˆinp, if and only if for all mappings of variables

to values x = v ∈ inp and x̂ = v̂ ∈ ˆinp, x = x̂ and v ∼= v̂ by Definition 3.2.10.

Definition 3.2.26. Two output files are congruent, in symbols out ∼= ˆout , if and only if for all mappings of variables

to values x = v ∈ out and x̂ = v̂ ∈ ˆout , x = x̂ and v ∼= v̂ by Definition 3.2.10.

3.2.3 Lemmas

Axiom 3.2.1. Given an array [v0, ..., vn−1] and a private index i, we assume that the private index is within the

bound of the array, in symbols 0 ≤ i ≤ n− 1.

Axiom 3.2.2. For every execution of an if else statement branching on private data at any level of nesting, the

temporary variables injected by SMC2 will be unique when compared to all variables in the current environment, and

these variables can only be accessed and modified through the helper algorithms for the if else statement branching

on private data.

Axiom 3.2.3. Given a SMC2 program of statement s and a ψ-congruent Vanilla C program of statement ŝ, in symbols

s ∼=ψ ŝ, any time a new memory block identifier is obtained from the available pool in the SMC2 program such that

l = φ(), an identical memory block identifier is obtained from the available pool in the Vanilla C program such that

l̂ = φ() and l = l̂ and (l, 0) ∼=ψ (l̂, 0).

Axiom 3.2.4. Given a SMC2 configuration and the congruent Vanilla C configuration, we assume that all input files

used during execution using these configurations are congruent.

Axiom 3.2.5. Given a SMC2 private pointer data structure [α, l, j, i] stored at memory block l and ψ-congruent

Vanilla C pointer data structure [1, [(l̂1, µ̂1)], [1], î] stored at ψ-congruent memory block l̂, we consider l, l̂ to be equally

freeable if either:

• both CheckFreeable(γ, l, j) = 1 and CheckFreeable(γ̂, [(l̂1, µ̂1)], [1]) = 1, or

• both CheckFreeable(γ, l, j) = 0 and CheckFreeable(γ̂, [(l̂1, µ̂1)], [1]) = 0.

Lemma 3.2.1. Given an initial map ψ, environment γ, memory σ, accumulator acc, and expression e,

if (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v) such that v 6= skip, then pfree(e1) /∈ e and the ending map ψ1 is equivalent to ψ.

Proof. By definition of SMC2 rule pfree, skip is returned from the evaluation of pfree(e1). Therefore, by case analysis

of the rules, if v 6= skip, then pfree(e1) /∈ e. By Definition 3.2.11, ψ is only modified after the execution of function

pfree; therefore we have that ψ1 = ψ.

Lemma 3.2.2. Given configuration (γ, σ, acc, s), if (γ, σ, acc, s) ⇓d1
(γ1, σ1, acc, v), then (l, µ) /∈ s.
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Proof. Proof by contradiction using all semantic rules.

Lemma 3.2.3. Given map ψ and statement s, ŝ, if s ∼=ψ ŝ and (l, µ) /∈ s, then s ∼= ŝ.

Proof. Proof by case analysis over possible SMC2 statements, using Definition 3.2.10.

Lemma 3.2.4. Given map ψ and configuration (γ, σ, acc, s), (γ̂, σ̂, �, ŝ) such that (γ, σ) ∼=ψ (γ̂, σ̂) and s ∼= ŝ, if

(l, µ) /∈ s, then s ∼=ψ ŝ and (γ, σ, acc, s) ∼=ψ (γ̂, σ̂, �, ŝ).

Proof. By Definition 3.2.10, if s ∼= ŝ then Erase(s) = ŝ. Given s ∼= ŝ and (l, µ) /∈ s, we have for all vi ∈ s, v̂i ∈ ŝ,

vi ∼= v̂i, and therefore by Definition 3.2.17 we have vi ∈ s, v̂i ∈ ŝ, vi ∼=ψ v̂i. Therefore, by Definition 3.2.18 we have

s ∼=ψ ŝ and by Definition 3.2.20 we have (γ, σ, acc, s) ∼=ψ (γ̂, σ̂, �, ŝ).

Lemma 3.2.5. Given map ψ, number n1, n2, n̂1, n̂2, and bop ∈ {<,<=, >=, >,==, ! =},

if n1
∼=ψ n̂1, n2

∼=ψ n̂2, and n1 bop n2, then n̂1 bop n̂2.

Proof. By Definition 3.2.17 we have n1
∼= n̂1 and n2

∼= n̂2. Given n1 bop n2 such that bop ∈ {<,<=, >=, >,==

, ! =}, by definition of Erase and decrypt we will also have n̂1 bop n̂2.

Lemma 3.2.6. Given SMC2 statement pmalloc(e, ty) and Vanilla C statement malloc(ê),

if ê = sizeof(Erase(ty)) · Erase(e) then pmalloc(e, ty) ∼= malloc(ê).

Proof. By definition of Erase.

Lemma 3.2.7. Given map ψ, environment γ, γ̂, memory σ, σ̂, memory block identifier l, l̂, and size n, n̂,

if σ1 = σ
[
l →

(
NULL, void∗, n,PermL(Freeable, void∗,public, n)

]
, (γ, σ) ∼=ψ (γ̂, σ̂), l = l̂, and n = n̂ then

σ̂1 = σ̂[l̂→ (NULL, void∗, n̂, PermL(Freeable, void∗,public, n̂))] such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Proof. By definition of the Erase function.

Lemma 3.2.8. Given map ψ, environment γ, γ̂, memory σ, σ̂, memory block identifier l, l̂, type ty , and size n, n̂, if

σ1 = σ
[
l →

(
NULL, void∗, n, PermL(Freeable, ty ,private, n)

]
, (γ, σ) ∼=ψ (γ̂, σ̂), l = l̂, ty ∼= t̂y , and n

τ(ty) =

n̂
τ(t̂y)

, then σ̂1 = σ̂[l̂→ (NULL, void∗, n̂, PermL(Freeable, void∗, public, n̂))] such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Lemma 3.2.9. Given map ψ, array [v0, ..., vn−1], [v̂0, ..., v̂n−1], and index i, î,

if [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], i ∼=ψ î, and v =
∨n−1
m=0 (i = encrypt(m)) ∧ vm, then v ∼=ψ v̂̂i.

Lemma 3.2.10. Given map ψ, array [v0, ..., vn−1], [v̂0, ..., v̂n−1], and index i, î,

if [v0, ..., vn−1] = [v̂0, ..., v̂n−1], i ∼=ψ î, and v =
∨n−1
m=0 (i = encrypt(m)) ∧ encrypt(vm), then v ∼=ψ v̂̂i.

119



Lemma 3.2.11. Given map ψ, array [v0, ..., vn−1], [v̂0, ..., v̂n−1], value v, v̂, and index i, î, if [v0, ..., vn−1] = [v̂0,

..., v̂n−1], 0 < i < n, i ∼=ψ î, and ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m))∧ v)∨ (¬(i = encrypt(m))∧ vm),

then [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
and [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Lemma 3.2.12. Given map ψ, array [v0, ..., vn−1], [v̂0, ..., v̂n−1], value v, v̂, and index i, î, if [v0, ..., vn−1] =

[v̂0, ..., v̂n−1], 0 < i < n, i ∼=ψ î, and ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m))∧v′)∨ (¬(i = encrypt(m))∧

vm), then [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
and [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Lemma 3.2.13 (encrypt(n) ∈ σ =⇒ n̂ ∈ σ̂). Given program traces Π and Σ such that Π ∼=ψ Σ and values n

and n̂ such that n ∼= n̂, if an encrypted value n is written to memory σ at location l in trace Π, then the corresponding

decrypted value n̂ is written to memory σ̂ at the ψ-congruent location l̂ in trace Σ.

Lemma 3.2.14. Given ψ, (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂ such that x ∈ γ and x̂ ∈ γ̂,

if γ(x) = (l, ty), then γ̂(x̂) = (l̂, t̂y) where l = l̂, (l, 0) ∼=ψ (l̂, 0), and ty ∼= t̂y .

Proof. This holds by Definition 3.2.15 and the definition of function Erase.

Lemma 3.2.15. Given ψ, (γ, σ) ∼=ψ (γ̂, σ̂), and l ∼=ψ l̂ such that l ∈ σ and l̂ ∈ σ̂,

if σ(l) = (ω, ty , n, PermL(perm, ty , a, n)),

then σ̂(l̂) = (ω̂, t̂y , n̂,PermL(perm, t̂y ,public, n̂)) where ω ∼=ψ ω̂, ty ∼= t̂y , n = n̂, and perm = perm .

Proof. This holds by Definition 3.2.15 and the definition of function Erase.

Lemma 3.2.16. Given ψ, (γ, σ) ∼=ψ (γ̂, σ̂), and l ∼=ψ l̂ such that l ∈ σ and l̂ ∈ σ̂,

if σ(l) = (ω, a bty∗, n, PermL(perm, ty , a, n)),

then σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(perm, t̂y ,public, 1)) where ω ∼=ψ ω̂, ty ∼= t̂y , and perm = perm .

Proof. This holds by Definition 3.2.15 and the definition of function Erase.

Lemma 3.2.17. Given ψ and (γ, σ, acc, s) ∼=ψ (γ̂, σ̂,�, ŝ), if (γ, σ, acc, s) ⇓d (γ1, σ1, acc, v) and (γ̂, σ̂,�, ŝ) ⇓d̂
(γ̂1, σ̂1,�, v̂) such that (γ1, σ1, acc, v) ∼=ψ (γ̂1, σ̂1,�, v̂), then (γ, σ1) ∼=ψ (γ̂, σ̂1).

Proof. Proof Idea:

Proof by induction over congruent evaluations. Using the definition of function Erase, we show that with every rule

that adds to γ or adds to or modifies σ maintains both (γ1, σ1) ∼=ψ (γ̂1, σ̂1) and (γ, σ1) ∼=ψ (γ̂, σ̂1) by Definition

3.2.15.

Lemma 3.2.18. Given array [v0, ..., vn−1], [v̂0, ..., v̂n̂−1], if [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n̂−1] then n = n̂.

Proof. By definition of Erase([v0, ..., vn−1]).
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Lemma 3.2.19. Given expression v, v̂, if (l, µ) 6= v and Erase(v) = v̂, then v ∼=ψ v̂ for any possible ψ.

Proof. By Definition 3.2.10.

Lemma 3.2.20. Given evaluation trace Π . (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, v), Σ . (γ̂, σ̂,�, ê) ⇓d̂1
(γ̂, σ̂1, �, v̂), if

(l, µ) 6= v and Erase(e) = ê, then e ∼=ψ ê for any possible map ψ.

Proof. By Definition 3.2.10 and case analysis of SMC2 semantic rules.

Lemma 3.2.21. Given an initial map ψ, environment γ, memory σ, accumulator acc, and stmt s,

if (γ, σ, acc, s) ⇓d (γ1, σ1, acc, v) and pfree(e) /∈ s, then the ending map ψ1 is equivalent to ψ.

Proof. By definition of ψ.

Lemma 3.2.22. Given binary operation bop and value v1, v2, v̂1, v̂2,

if v3 = v1 bopa v2, v1
∼= v̂1, and v2

∼= v̂2, then v̂3 = v̂1 bop v̂2 such that v3
∼= v̂3.

Proof. By definition of Erase.

Lemma 3.2.23. For every SMC2 execution of an if else statement branching on private data at any level of

nesting, the memory block identifiers, in symbols lthen , lelse given by phi for temporary variables used to track changes

inside the if else statement, in symbols xthen , xelse , will be unique and selected from a separate pool of memory

block identifiers designated for this use.

Proof. Proof Idea:

By definition of φ, when called with argument temp, in symbols φ(temp), a unique memory block identifier will be

given from a separate pool of memory block identifiers than those accessed from a regular call of φ(). Algorithm

InitializeVariables is the only place in the semantics where this property of φ is leveraged.

Lemma 3.2.24. Given type ty , t̂y and value n, n̂,

if n1 = Cast(public, ty , n), ty ∼= t̂y , and n = n̂ then n̂1 = Cast(public, t̂y , n̂) such that n1 = n̂1.

Proof. By definition of algorithm Cast and Cast.

Lemma 3.2.25. Given type ty , t̂y and number n, n̂,

if n1 = Cast(private, ty , n), ty ∼= t̂y , and n ∼=ψ n̂ then n̂1 = Cast(public, t̂y , n̂) such that n1
∼=ψ n̂1.

Proof. By definition of algorithms Cast and Cast and function Erase.

Lemma 3.2.26. Given variable name x, x̂ and input party number n, n̂ such that the corresponding input files

inp_n, înp_n̂ are congruent,

if InputValue(x, n) = n1, x = x̂, and n = n̂, then InputValue(x̂, n̂) = n̂1 such that n1
∼= n̂1.
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Proof. By definition of algorithm InputValue and by Definition 3.2.25.

Lemma 3.2.27. Given variable name x, x̂, input party number n, n̂ such that the corresponding input files inp_n, înp_n̂

are congruent, and array length n1, n̂1, if InputArray(x, n, n1) = [m0, ..., mn1
], x = x̂, n = n̂, and n1 = n̂1, then

InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1
] such that [m0, ..., mn1

] ∼= [m̂0, ..., m̂n̂1
].

Proof. By definition of algorithm InputArray and by Definition 3.2.25.

Lemma 3.2.28. Given variable name x, x̂ and input party number n, n̂ such that the corresponding input files

outn , ôut n̂ are congruent, if OutputValue(x, n, n1), x = x̂, n = n̂, and n1
∼= n̂1, then OutputValue(x̂, n̂, n̂1) such

that outn ∼= ôut n̂ .

Proof. By definition of algorithm OutputArray and by Definition 3.2.26.

Lemma 3.2.29. Given variable name x, x̂, input party number n, n̂ such that the corresponding input files outn ,

ˆout n̂ are congruent, and array [m0, ..., mn1
], [m̂0, ..., m̂n̂1

],

if OutputArray(x, n, [m0, ..., mn1 ]), x = x̂, n = n̂, and [m0, ..., mn1 ] ∼= [m̂0, ..., m̂n̂1
],

then OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1
]) such that outn ∼= ôut n̂ .

Proof. By definition of algorithm OutputArray and by Definition 3.2.26.

Lemma 3.2.30. Given parameter list p, p̂,

if GetFunTypeList(p) = ty and p ∼= p̂, then GetFunTypeList(p̂) = t̂y where ty ∼= t̂y .

Proof. By definition of algorithm GetFunTypeList.

Lemma 3.2.31. Given parameter list p, p̂ and expression list e, ê, if GetFunParamAssign(p, e) = s1, p ∼= p̂, and

e ∼= ê, then GetFunParamAssign(p̂, ê) = ŝ1 where s1
∼=ψ ŝ1.

Proof. By definition of GetFunParamAssign.

Lemma 3.2.32. Given map ψ, memory σ, σ̂ and environment γ, γ̂ such that (γ, σ) ∼=ψ (γ̂, σ̂), and variable name

x, n̂, if x /∈ γ and x = x̂, then x̂ /∈ γ̂.

Proof. By definition of function Erase and Definition 3.2.15.

Lemma 3.2.33. Given map ψ, environment γ, γ̂, memory σ, σ̂, variable name x, x̂, and type ty → ty , t̂y → t̂y ,

if x ∈ γ, (γ, σ) ∼=ψ (γ̂, σ̂), x = x̂, ty → ty ∼= t̂y → t̂y , and γ(x) = (l, ty → ty) then x̂ ∈ γ̂ such that

γ̂(x̂) = (l̂, t̂y → t̂y) and l = l̂.

Proof. By Definition 3.2.15, Erase, and Algorithms pfree. By Algorithm CheckFreeable, no memory block identifier

that belongs to a variable in γ can be freed using pfree, and therefore l must be equal to l̂.
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Lemma 3.2.34. Given map ψ, environment γ, γ̂, memory σ, σ̂, variable name x, x̂, memory block identifier l, l̂, and

type ty , t̂y , if γ1 = γ[x → (l, ty)], x = x̂, l = l̂, ty ∼= t̂y , and (γ, σ) ∼=ψ (γ̂, σ̂), then γ̂1 = γ̂[x̂ → (l̂, t̂y)] such

that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Proof. By Definition 3.2.15 and the structure of the environment.

Lemma 3.2.35. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type ty ∈ {a bty , a

const bty∗, a bty∗}, t̂y , byte representation ω, ω̂, number n, n̂, and permission perm, ˆperm , if σ2 = σ1[l → (ω, ty , n,

PermL(perm, ty , a, n))], (γ, σ1) ∼=ψ (γ̂, σ̂1), l ∼=ψ l̂, ω ∼=ψ ω̂, n
τ(ty) = n̂

τ(t̂y)
, and ty ∼= t̂y , then σ̂2 = σ̂1[l̂ →

(ω, ty , n̂, PermL(perm, t̂y ,public, n̂))] such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Proof. By Definition 3.2.15 and the structure of memory.

Lemma 3.2.36. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type ty ∈ {a bty ,

a const bty∗, a bty∗}, t̂y , byte representation ω, ω̂, number n, n̂, and permission perm, ˆperm , if σ1 = σ2[l →

(ω, ty , n, PermL(perm, ty , a, n))], (γ, σ1) ∼=ψ (γ̂, σ̂1), and l ∼=ψ l̂, then σ̂1 = σ̂2[l̂ → (ω̂, t̂y , n̂, PermL(perm, t̂y ,

public, n̂))] such that (γ, σ2) ∼=ψ (γ̂, σ̂2), ω ∼=ψ ω̂, n
τ(ty) = n̂

τ(t̂y)
, ty ∼= t̂y , and perm = perm .

Proof. By Definition 3.2.15 and the structure of memory.

Lemma 3.2.37. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type ty ∈ {a bty ,

a bty∗}, void∗, t̂y , byte representation ω, ω̂, and number n, n̂, if σ1 = σ2[l → (ω, void∗, n, PermL(Freeable, ty , a,

n))], (γ, σ1) ∼=ψ (γ̂, σ̂1), ty ∼= t̂y , and l ∼=ψ l̂, then σ̂1 = σ̂2[l̂ → (ω̂, void∗, n̂, PermL(Freeable, void∗,public, n̂))]

such that (γ, σ2) ∼=ψ (γ̂, σ̂2), ω ∼=ψ ω̂, and n
τ(ty) = n̂

τ(t̂y)
.

Proof. By Definition 3.2.15.

Lemma 3.2.38. Given map ψ, memory σ, σ̂ and environment γ, γ̂ such that (γ, σ) ∼=ψ (γ̂, σ̂), and memory block

identifier l, l̂, if Free(σ, l, γ) = σ1 and l ∼=ψ l̂, then Free(σ̂, l̂, γ̂) = σ̂1 such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Proof. By definition of Free, the ψ-congruent location will be marked as deallocated.

Lemma 3.2.39. Given map ψ, memory σ, σ̂ and environment γ, γ̂ such that (γ, σ) ∼=ψ (γ̂, σ̂), and memory block

identifier l, l̂ such that l, l̂ are equally freeable by Axiom 3.2.5,

if PFree(σ, l, γ) = (σ1, l, j), l ∼=ψ l̂, GetLocationSwap(l, j) = l′, ψ1 = ψ[l′], SwapMemory(σ̂1, ψ1) = σ̂2, and

(γ, σ1) ∼= (γ̂, σ̂2), then Free(σ̂, l̂, γ̂) = σ̂1 such that (γ, σ1) ∼=ψ1
(γ̂, σ̂1).

Proof. Proof Idea:

If the number of locations α referred to by the pointer stored in memory block l is 1, then PFree calls Free and returns

the updated memory from Free, the location that was freed, and tag list of [encrypt(0)]. Therefore, by Lemma 3.2.38,
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we will have that (γ, σ1) ∼=ψ (γ̂, σ̂1). We then call GetLocationSwap(l, j) = l′, which would obtain l′ = [ ] and in turn

ψ1 = ψ[ ]. By definition of algorithm SwapMemory, SwapMemory(σ̂1, ψ) = σ̂2 and SwapMemory(σ̂1, ψ1) = σ̂′2

such that ψ1 = ψ[ ], we have σ̂2 = σ̂′2. Therefore, also we have that (γ, σ1) ∼=ψ1 (γ̂, σ̂1).

Otherwise, when α > 1, we free the first location relating to memory block identifier l0. If this location was

the true location, then PFree will not swap any new locations, and in turn neither will SwapMemory, as calling

GetLocationSwap(l, j) = l′ would obtain l′ = [ ] and in turn ψ1 = ψ[ ]. By definition of algorithm SwapMemory,

SwapMemory(σ̂1, ψ) = σ̂2 and SwapMemory(σ̂1, ψ1) = σ̂′2 such that ψ1 = ψ[ ], we have σ̂2 = σ̂′2. This gives

us that (γ, σ2) ∼=ψ1 (γ̂, σ̂2). If this location was not the true location, then PFree will return a tag list with two

locations marked, the first being memory block identifier l0, and the second at the memory block identifier indicated

by the other marker in the tag list. Then GetLocationSwap(l, j) = l′ such that l′ = [(l1, 0), (l2, 0)], ψ1 = ψ[l′], and

SwapMemory(σ̂1, ψ1) = σ̂2 will then perform this swap in the Vanilla C memory so that we obtain σ̂2 such that

(γ, σ1) ∼= (γ̂, σ̂2). Therefore, by Definition 3.2.15 we have (γ, σ1) ∼=ψ1
(γ̂, σ̂1).

Lemma 3.2.40. Given type a bty , b̂ty , and value v, v̂, if EncodeVal(a bty , v) = ω, a bty ∼= b̂ty , and v ∼=ψ v̂, then

EncodeVal(b̂ty , v̂) = ω̂ such that ω ∼=ψ ω̂.

Proof. By definition of Algorithm EncodeVal, EncodeVal and function Erase.

Lemma 3.2.41. Given type a bty , b̂ty , number n, n̂, and byte representation ω, ω̂, if DecodeVal(a bty , n, ω) = v,

a bty ∼= b̂ty , n ∼= n̂, and ω ∼=ψ ω̂, then DecodeVal(b̂ty , n̂, ω̂) = v̂ and v ∼=ψ v̂.

Proof. By case analysis of the semantics, Lemma 3.2.40, definition of Algorithm DecodeVal, DecodeVal and function

Erase.

Lemma 3.2.42. Given map ψ, pointer type ty ∈ {a const bty∗, a bty∗}, t̂y ∈ {const b̂ty∗, b̂ty∗}, and pointer data

structure [1, [(l, µ)], [1], i], [1, [(l̂, µ̂)], [1], î], if EncodePtr(ty , [1, [(l, µ)], [1], i]) = ω, ty ∼= t̂y , (l, µ) ∼=ψ (l̂, µ̂), then

EncodePtr(t̂y , [1, [(l̂, µ̂)], [1], î]) = ω′ such that ω ∼=ψ ω̂.

Proof. By definition of Algorithm EncodePtr, EncodePtr, and definition of function Erase.

Lemma 3.2.43. Given map ψ, pointer type ty ∈ {private const bty∗,private bty∗}, t̂y ∈ {const b̂ty∗, b̂ty∗}, and

pointer data structure [α, l, j, i], [1, (l̂, µ̂), [1], î], if EncodePtr(ty , [α, l, j, i]) = ω, ty ∼= t̂y , and DeclassifyPtr([α, l,

j, i], private bty∗) = (l, µ) such that (l, µ) ∼=ψ (l̂, µ̂), then EncodePtr(t̂y , [1, [(l̂, µ̂)], [1], î]) = ω̂ such that ω ∼=ψ ω̂.

Proof. By definition of Algorithm EncodePtr, EncodePtr, and definition of function Erase.

Lemma 3.2.44. Given map ψ, pointer type ty ∈ {a const bty∗, a bty∗}, t̂y ∈ {const b̂ty∗, b̂ty∗} and byte

representation ω, ω̂, if DecodePtr(ty , 1, ω) = [1, (l, µ), [1], i], ty ∼= t̂y , and ω ∼=ψ ω̂, then DecodePtr(t̂y , 1, ω̂) =

[1, (l̂, µ̂), [1], î] such that (l, µ) ∼=ψ (l̂, µ̂).
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Proof. By case analysis of the semantics, Lemma 3.2.42, definition of Algorithm DecodePtr, DecodePtr, and

definition of Erase.

Lemma 3.2.45. Given pointer type ty ∈ {private const bty∗, private bty∗}, t̂y ∈ {const b̂ty∗, b̂ty∗}, number α, 1,

and byte representation ω, ω̂, if DecodePtr(ty , α, ω) = [α, l, j, i], ty ∼= t̂y , ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j, i],

private bty∗) = (l, µ), then DecodePtr(t̂y , 1, ω̂) = [1, (l̂, µ̂), [1], î] such that [α, l, j, i] ∼= [1, (l̂, µ̂), [1], î] and

(l, µ) ∼=ψ (l̂, µ̂).

Proof. By case analysis of the semantics, Lemma 3.2.43, definition of Algorithm DecodePtr, DecodePtr, definition

of Erase, and Definition 3.2.14 (pointer list congruence).

Lemma 3.2.46. Given statement s, ŝ, number n, and parameter list p, p̂, if EncodeFun(s, n, p) = ω, s ∼= ŝ, and

p ∼= p̂, then EncodeFun(ŝ,�, p̂) = ω̂ and ω ∼=ψ ω̂.

Proof. By definition of Algorithm EncodeFun, EncodeFun, and definition of Erase.

Lemma 3.2.47. Given byte representation ω, ω̂, if DecodeFun(ω) = (s, n, p), and ω ∼=ψ ω, then DecodeFun(ω̂)

= (ŝ,�, p̂), s ∼= ŝ and p ∼= p̂.

Proof. By case analysis of the semantics, Lemma 3.2.46, definition of Algorithms DecodeFun and DecodeFun, and

definition of function Erase.

Lemma 3.2.48. Given public type ty , t̂y , if n = τ(ty) and ty ∼= t̂y , then n̂ = τ(t̂y) such that n = n̂.

Proof. By definition of function Erase and the size of two public types being equivalent.

Lemma 3.2.49. Given ∗, ∗ if GetIndirection(∗) = i and |∗| = | ∗ |, then GetIndirection(∗) = î such that i = î.

Proof. By definition of function Erase, when two types are congruent, their levels of indirection will be the same.

Therefore, when we evaluate the level of indirection from the number of ∗, we will get the same number in both SMC2

and Vanilla C.

Lemma 3.2.50. Given map ψ, location (l1, µ1), (l̂1, µ̂1), type ty , t̂y , number n, n̂, environment γ, γ̂, and memory

σ, σ̂, if GetLocation((l1, µ1), n, σ) = ((l2, µ2), j), (l1, µ1) ∼=ψ (l̂1, µ̂1), ty ∼= t̂y , τ(ty) = n, τ(t̂y) = n̂, and

(γ, σ) ∼=ψ (γ̂, σ̂), then GetLocation((l̂1, µ̂1), n̂, σ̂) = ((l̂2, µ̂2), ĵ) such that (l2, µ2) ∼=ψ (l̂2, µ̂2) and j ∼= ĵ.

Proof. By definition of algorithms GetLocation and Erase and Definition 3.2.13.

Lemma 3.2.51. Given location list l, location (l̂, µ̂), type ty , t̂y , number n, n̂, map ψ, environment γ, γ̂, and memory

σ, σ̂, if IncrementList(l, n, σ) = (l′, j), DeclassifyPtr([α, l, j, i], ty) = (l1, µ1) such that (l1, µ1) ∼=ψ (l̂1, µ̂1),

(γ, σ) ∼=ψ (γ̂, σ̂), ty ∼= t̂y , τ(ty) = n, τ(t̂y) = n̂, and DeclassifyPtr([α, l′, j, i], private bty∗) = (l2, µ2), then

GetLocation((l̂1, µ̂1), n̂, σ̂) = ((l̂2, µ̂2), ĵ) such that (l2, µ2) ∼=ψ (l̂2, µ̂2) and j ∼= ĵ.
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Proof. By definition of algorithms IncrementList, GetLocation, and Erase and Definitions 3.2.13 and 3.2.14.

Lemma 3.2.52. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, value v, v̂, and type

a bty , b̂ty , if UpdateVal(σ1, l, v, a bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l ∼=ψ l̂, v ∼=ψ v̂, and a bty ∼= b̂ty , then

UpdateVal(σ̂1, l̂, v̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Proof. By definition of UpdateVal, UpdateVal, and Erase.

Lemma 3.2.53. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, location (l, µ), (l̂, µ̂), value v, v̂, and type

a bty , b̂ty , if UpdateOffset(σ1, (l, µ), v, a bty) = (σ2, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), (l, µ) ∼=ψ (l̂, µ̂), v = v̂, and a bty ∼=

b̂ty , then UpdateOffset(σ̂1, (l̂, µ̂), v̂, b̂ty) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2) and j ∼= ĵ.

Proof. By definition of Algorithm UpdateOffset, UpdateOffset, and Erase, as well as Definition 3.2.13 and 3.2.3.

Lemma 3.2.54. Given map ψ, environment γ, γ̂, memory σ, σ̂, location (l, µ), (l̂, µ̂), pointer data structure [α, l, j,

i], [1, [(l̂1, µ̂1)], [1], î], and type a bty∗, b̂ty∗, if UpdatePtr(σ, (l, µ), [α, l, j, i], a bty∗) = (σ1, j), a bty∗ ∼= b̂ty∗,

(γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) ∼=ψ (l̂, µ̂), and [α, l, j, i] ∼=ψ [1, [(l̂1, µ̂1)], [1], î], then UpdatePtr(σ̂, (l̂, µ̂), [1, [(l̂1, µ̂1)], [1],

i], b̂ty∗) = (σ̂1, ĵ) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and j ∼= ĵ.

Proof. By definition of UpdatePtr, UpdatePtr, and Erase, as well as Definition 3.2.14, 3.2.13, and 3.2.3.

Lemma 3.2.55. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, number of locations α, memory block identifier list

l, location (l̂1, µ̂1), tag list j, ĵ, level of indirection i, type private bty , b̂ty , and value v, v̂,

if UpdatePriv(σ1, α, l, j, private bty , v) = (σ2, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), DeclassifyPtr([α, l, j, i], private bty∗) =

(l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), private bty ∼= b̂ty , and v ∼=ψ v̂,

then UpdateOffset(σ̂1, (l̂1, µ̂1), v̂, b̂ty) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2) and j ∼= ĵ.

Proof. By definition of UpdatePriv, UpdateOffset, and Erase.

Lemma 3.2.56. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, location (l̂1, µ̂1), and pointer data structure [α, l,

j, i], [αe, le, je, i− 1], [1, [(l̂e, µ̂e)], [1], î− 1] and type private bty∗, b̂ty∗,

if UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i− 1], private bty∗) = (σ2, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), DeclassifyPtr([α,

l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), private bty∗ ∼= b̂ty∗ and [αe, le, je, i−1] ∼=ψ [1, [(l̂e, µ̂e)], [1],

î− 1], then UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2) and j = ĵ.

Proof. By definition of UpdatePrivPtr, UpdatePtr, and Erase, as well as Definition 3.2.14 and 3.2.13.
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Lemma 3.2.57. Given map ψ, environment γ, γ̂, memory σ, σ̂, type private bty∗, b̂ty∗, pointer data structure

[α, l, j, i], location (l̂1, µ̂1), and level of indirection î,

if DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l′, j′), j), i = î, (γ, σ)∼=ψ (γ̂, σ̂), DeclassifyPtr([α, l, j, i], private

bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), DeclassifyPtr([α′, l′, j
′
, i−1], private bty∗) = (l2, µ2), and private bty∗ ∼=

b̂ty∗, then DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 1) such that [α′, l′, j′, i− 1] ∼=ψ [1, [(l̂2, µ̂2)],

[1], î− 1], (l2, µ2) ∼=ψ (l̂2, µ̂2), and j ∼= ĵ.

Proof. By definition of DerefPrivPtr, DerefPrivPtr, and Erase.

Lemma 3.2.58. Given map ψ, environment γ, γ̂, memory σ, σ̂, type public bty , b̂ty , and location (l1, µ1), (l̂1, µ̂1),

if DerefPtr(σ,public bty , (l1, µ1)) = (v, j), (γ, σ) ∼=ψ (γ̂, σ̂), public bty ∼= b̂ty , and (l1, µ1) ∼=ψ (l̂1, µ̂1), then

(v̂, ĵ) = DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) such that v ∼=ψ v̂ and j ∼= ĵ.

Proof. By definition of DerefPtr, DerefPtr, and Erase.

Lemma 3.2.59. Given map ψ, environment γ, γ̂, memory σ, σ̂, type public bty∗, b̂ty∗, and location (l1, µ1), (l̂1, µ̂1),

if DerefPtrHLI(σ, public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i − 1], j), (γ, σ) ∼=ψ (γ̂, σ̂), public bty∗ ∼= b̂ty∗, and

(l1, µ1) ∼=ψ (l̂1, µ̂1), then ([1, [(l̂2, µ̂2)], [1], î − 1], ĵ) = DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) such that [1, [(l2, µ2)], [1],

i− 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1], (l2, µ2) ∼=ψ (l̂2, µ̂2), and j ∼= ĵ.

Proof. By definition of DerefPtrHLI, DerefPtrHLI, and Erase.

Lemma 3.2.60. Given map ψ, environment γ, γ̂, memory σ, σ̂, type private bty , b̂ty , pointer data structure [α, l, j,

1], and location (l̂1, µ̂1), if Retrieve_vals(α, l, j, private bty , σ) = (v, j), DeclassifyPtr([α, l, j, 1], private bty∗)

= (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), (γ, σ) ∼=ψ (γ̂, σ̂), and private bty ∼= b̂ty , then DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, ĵ)

such that v ∼=ψ v̂ and j ∼= ĵ.

Proof. By definition of DerefPtr, Retrieve_vals, and Erase.

Lemma 3.2.61. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type a bty , b̂ty , value

v, v̂, array index i, î and size n, n̂, if WriteOOB(v, i, n, l, a bty , σ1) = (σ2, j), v ∼=ψ v̂, i = î, n = n̂, l = l̂,

a bty ∼= b̂ty , and (γ, σ1) ∼=ψ (γ̂, σ̂1), then WriteOOB(v̂, î, n̂, l̂, b̂ty , σ̂1) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2)

and j ∼= ĵ.

Proof. Proof Idea:

By definition of WriteOOB, if the number returned with the updated memory is 1, then the out of bounds access was

well-aligned by Definition 3.2.2. Therefore, when we iterate over the ψ-congruent Vanilla C memory, the resulting out

of bounds access will also be well-aligned. We use the definition of WriteOOB, WriteOOB, and Erase to help prove

this.
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Lemma 3.2.62. Given map ψ, environment γ, γ̂, memory σ, σ̂, memory block identifier l, l̂, type a bty , b̂ty , and

array index i, î and size n, n̂, if ReadOOB(i, n, l, a bty , σ) = (v, j), (γ, σ) ∼=ψ (γ̂, σ̂), i = î, n = n̂, l = l̂, and

a bty ∼= b̂ty , then ReadOOB(̂i, n̂, l̂, b̂ty , σ̂) = (v̂, ĵ) such that v ∼=ψ v̂ and j ∼= ĵ.

Proof. By definition of ReadOOB, if the number returned with the updated memory is 1, then the out of bounds

access was well-aligned by Definition 3.2.2. Therefore, when we iterate over the ψ-congruent Vanilla C memory, the

resulting out of bounds access will also be well-aligned. We use the definition of ReadOOB, ReadOOB, and Erase to

help prove this.

Lemma 3.2.63. Given array [v0, ..., vn−1], [v̂0, ..., v̂n̂−1] and value v, v̂,

if [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
, [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], i = î and v ∼=ψ v̂,

then [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Proof. Proof Idea:

This equation replaces the value at index i, î with the new value v, v̂. Given that the initial arrays were ψ-congruent

([v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1]), the new values are ψ- congruent (v ∼=ψ v̂) and we have the same index (i = î), then

the resulting arrays will also be ψ-congruent ([v′0, ..., v
′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1]). We can prove this using Erase and

Definition 3.2.10.

Lemma 3.2.64. Given (γ, σ, acc,private int res_acc = n) where Label(n, γ) = private,

if (γ, σ, acc, private int res_acc) ⇓ds (γ1, σ1, acc, skip)

then γ1 = γ :: γA such that γA = [res_acc → (private int, l)] and σ1 = σ :: σA such that σA = [l →

(EncodeVal(private int, n), private int, 1, PermL(Freeable, private int,private, 1))].

Proof.

Given (γ, σ, acc, private int res_acc = n) where Label(n, γ) = private, we have (γ, σ, acc, private int

res_acc = n) ⇓ds (γ1, σ2, acc, skip) by rule Declaration Assignment if (γ, σ, acc, private int res_acc) ⇓d1

(γ1, σ1, acc, skip) and (γ1, σ1, acc, res_acc = n) ⇓w2 (γ1, σ2, acc, skip).

Given (γ, σ, acc, private int res_acc), by rule Private Declaration we have (γ, σ, acc, private int res_acc) ⇓d1

(γ1, σ1, acc, skip) where l = φ(), γ1 = γ[res_acc → (l, private int)],

ω = EncodeVal(private int,NULL), σ1 = σ[l → (ω, private int, 1, PermL(Freeable,private int, private, 1))].

By Axiom 3.2.2, we have res_acc /∈ γ. By definition of φ, we have l /∈ σ. Therefore, we have γ1 = γ[res_acc →

(private int, l)] and σ1 = σ[l→ (ω, private int, 1, PermL(Freeable, private int, private, 1))].

Given (γ1, σ1, acc, res_acc = n) where Label(res_acc, γ1) = Label(n, γ1) = private, by rule Write Private
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Variable we have (γ1, σ1, acc, res_acc = n) ⇓w2 (γ1, σ2, acc, skip) where γ1(res_acc) = (l, private int) and

UpdateVal(σ1, l, n, private bty) = σ2. By definition of UpdateVal, we have σ1 = σ3[l → (ω, private int, 1,

PermL(Freeable, private int, private, 1))] and σ2 = σ3[l → (ω′, private int, 1, PermL(Freeable, private int,

private, 1))]. Given σ1 = σ[l→ (ω, private int, 1, PermL(Freeable, private int, private, 1))], we have σ3 = σ and

therefore σ2 = σ[l→ (ω′, private int, 1,

PermL(Freeable, private int, private, 1))].

Given γ1 = γ[res_acc → (private int, l)], we can conclude that γ1 = γ :: γA where γA = [res_acc →

(private int, l)].

Given σ2 = σ[l → (ω′, private int, 1, PermL(Freeable, private int,private, 1))], we can conclude that σ2 = σ ::

σA where σA = [l→ (ω′, private int, 1, PermL(Freeable, private int,private, 1))].

Therefore, we can conclude (γ, σ, acc, private int res = n) ⇓ds (γ :: γA, σ :: σA, acc, skip) by rule Declaration

Assignment.

Lemma 3.2.65. Given map ψ, environment γ, γ̂, memory σ, σ̂, accumulator acc, and statement private int resacc+1

= n, if (γ, σ) ∼=ψ (γ̂, σ̂) and (γ, σ, acc, private int resacc+1 = n) ⇓d1
(γ1, σ1, acc, skip) then (γ1, σ1) ∼=ψ

(γ̂, σ̂).

Proof. By definition of Erase.

Lemma 3.2.66. Given statement s, environment γ, memory σ, and accumulator acc > 0, the data stored at the

memory block identified by l can be modified within σ during the execution of s if and only if either x = e ∈ s

and γ(x) = (l, ty) or if x[e1] = e2 ∈ s or x = e ∈ s such that γ(x) = (l1,private const bty∗), σ(l1) = (ω,

private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), and DecodePtr(private const bty∗, 1,

ω) = [1, [(l, 0)], [1], 1].

Proof. Proof by contradiction to show that no modifications can be made to memory σ except those from assignments

are allowed within the scope (i.e., acc > 0) of the if else branching on a private condition.

Lemma 3.2.67. Given statement s1, s2, memory σ,

if Extract_variables(s1, s2) = xlist_acc+1, then ∀x /∈ xlist_acc+1, x = e /∈ {s1;s2}.

Proof. By Algorithm ExtractVariables, all cases where variables are assigned to within either statement will be

found.
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Lemma 3.2.68. Given environment γ, temporary variable environment γA, memory σ, temporary variable mem-

ory σA, accumulator acc, and statement s, if γ1 = γ :: γA, σ1 = σ :: σA, and (γ1, σ1, acc + 1, s) ⇓d1

(γ2, σ2, acc + 1, skip), then γ2 = γ′2 :: γA, and σ2 = σ′2 :: σA.

Proof. By Axiom 3.2.2.

Lemma 3.2.69. Given variable name list xlist , environment γ, memory σ, and accumulator acc,

if InitializeVariables(xlist , γ, σ, acc) = (γ′, σ′), then ∀x ∈ xlist , {xthen_acc, xelse_acc} ∈ γ′.

Proof. By definition of Algorithm InitializeVariables.

Lemma 3.2.70. Given variable name list xlist , environment γ, memory σ, and accumulator acc,

if InitializeVariables(xlist , γ, σ, acc) = (γ′, σ′), then γ′ = γ :: γ1 and σ′ = σ :: σ1.

Proof. By definition of Algorithm InitializeVariables and Lemma 3.2.69.

Lemma 3.2.71. Given map ψ, variable list xlist_acc+1, environment γ, γ̂, memory σ, σ̂, and accumulator acc, if

(γ, σ) ∼=ψ (γ̂, σ̂) and InitializeVariables(xlist_acc+1, γ, σ, acc + 1) = (γ1, σ1) then (γ1, σ1) ∼=ψ (γ̂, σ̂).

Proof. By definition of Erase.

Lemma 3.2.72. Given an initial map ψ, environment γ, memory σ, accumulator acc,

if (γ, σ, acc + 1, s) ⇓d1 (γ1, σ1, acc + 1, v) then pfree(e) /∈ s and ψ1 = ψ.

Proof. Proof by contradiction over the semantics showing that when acc > 0, pfree(e) cannot be executed and

therefore pfree(e) /∈ s if (γ, σ, acc + 1, s) ⇓d1
(γ1, σ1, acc + 1, v).

Lemma 3.2.73. Given map ψ, environment γ, γ̂, temporary variable environment γA, memory σ, σ̂, and temporary

variable memory σA, if (γ :: γA, σ :: σA) ∼=ψ (γ̂, σ̂), then (γ, σ) ∼=ψ (γ̂, σ̂).

Proof. By definition of Erase and Definition 3.2.15.

Lemma 3.2.74. Given statement s1, s2, environment γ, memory σ, and accumulator acc,

if Extract_variables(s1, s2) = xlist_acc+1, InitializeVariables(xlist_acc+1, γ, σ, acc + 1) = (γ :: γA, σ :: σA),

and (γ :: γA, σ :: σA, acc + 1, s1) ⇓d1 (γ1 :: γA, σ1 :: σA, acc + 1, skip),

then ∀x ∈ xlist_acc+1, the corresponding temporary variable xelse_acc maintains the original value for x from the

starting memory σ, and the only differences between memory σ and σ1 that can occur are stored at the memory blocks

with identifiers l such that γ(x) = (l, ty).
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Proof. By definition of InitializeVariables, if the portion of the memory containing the temporary then and else

variables remains unmodified through the subsequent execution of any allowed statement s1, then xelse_acc will maintain

the original value stored in x from the starting memory σ. By Lemma 3.2.66 we have that the only differences between

memory σ and σ1 that can occur are stored at the memory blocks with identifiers l such that γ(x) = (l, ty).

Lemma 3.2.75. Given original memory σ, updated memory σ1, temporary memory σA, σB such that σB stores the

temporary xthen_acc and xelse_acc variables, updated environment γ1, and accumulator acc,

if ∀x ∈ xlist_acc+1, the corresponding temporary variable xelse_acc maintains the original value for x from the

starting memory σ, and the only differences between memory σ and σ1 that can occur are stored at the memory

blocks with identifiers l such that γ(x) = (l, ty), and RestoreVariables(xlist_acc+1, γ1 :: γA :: γB , σ1 :: σA :: σB ,

acc + 1) = σ2, then σ2 = σ :: σA :: σC such that ∀x ∈ xlist_acc+1, xthen_acc remains unchanged in σC , xthen_acc is

updated with the modified values for x from the execution of the then branch, and x is updated to its original value

from σ.

Proof. By definition of Algorithm RestoreVariables.

Lemma 3.2.76. Given map ψ, variable list xlist_acc+1, private condition result variable name resacc+1, accumulator

acc, starting environment γ, γ̂, else environment γe, temporary variable environment γA, then memory σt, σ̂t,

else memory σe, σ̂e, and temporary variable environment σA,

if ResolveVariables(xlist_acc+1, γe :: γA, σe :: σA, acc + 1, resacc+1) = σ7, resacc+1 6=private encrypt(0), σA

stores all modifications made to that variable within the then branch using the temporary variables xthen_acc, and

(γ, σt) ∼=ψ (γ̂, σ̂t), then σf = σt :: σA such that (γ, σf ) ∼=ψ (γ̂, σ̂t).

Proof. By definition of Algorithm ResolveVariables, we have σf = σt :: σA. By Definition 3.2.15 we have

(γ, σt :: σA) ∼=ψ (γ̂, σ̂t).

Lemma 3.2.77. Given map ψ, variable list xlist_acc+1, private condition result variable name resacc+1, accumulator

acc, starting environment γ, γ̂, else environment γe, temporary variable environment γA, then memory σt, σ̂t,

else memory σe, σ̂e, and temporary variable environment σA,

if ResolveVariables(xlist_acc+1, γe :: γA, σe :: σA, acc + 1, resacc+1) = σf , resacc+1 =private encrypt(0),

(γ, σe) ∼=ψ (γ̂, σ̂e) then σf = σe :: σA such that (γ, σf ) ∼=ψ (γ̂, σ̂e).

Proof. By definition of Algorithm ResolveVariables, we have σf = σe :: σA. By Definition 3.2.15 we have

(γ, σe :: σA) ∼=ψ (γ̂, σ̂e).
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3.2.4 Proof of Correctness

Theorem 3.2.2 (Semantic Correctness). Given configuration (γ, σ, acc, s), (γ̂, σ̂, �, ŝ) and map ψ such that (γ,

σ, acc, s) ∼=ψ (γ̂, σ̂, �, ŝ), if Π . (γ, σ, acc, s) ⇓[d1,...,dn] (γ1, σ1, acc, v1) for codes [d1, ..., dn] ∈ SmcC \SmcCX ,

then there exists a derivation Σ . (γ̂, σ̂, �, ŝ) ⇓[d̂1,...,d̂m] (γ̂1, σ̂1, �, v̂1) for codes [d̂1, ..., d̂m] ∈ V anC \ V anCX

and a map ψ1 such that [d1, ..., dn] ∼= [d̂1, ..., d̂m], (γ1, σ1, acc, v1) ∼=ψ1 (γ̂1, σ̂1, �, v̂1), and Π ∼=ψ1 Σ.

Proof.

Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3)

Given Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3) by SMC2 rule Private Less Than True, we have Label(e1, γ) =

Label(e2, γ) = private, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓d2

(γ, σ2, acc, n2), n1 <private n2,

and encrypt(1) = n3.

Given (γ̂, σ̂, �, ê1 < ê2) and ψ such that (γ, σ, acc, e1 < e2) ∼=ψ (γ̂, σ̂, �, ê1 < ê2), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and e1 < e2
∼=ψ ê1 < ê2. Given (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3), by Lemma 3.2.2

we have (l, µ) /∈ e1 < e2. Therefore, by Lemma 3.2.3, we have e1 < e2
∼= ê1 < ê2. By Definition 3.2.10 we have

e1 < e2 = Erase(e1) < Erase(e2) = ê1 < ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, n1), (γ̂, σ̂, �, ê1), (l, µ) /∈ e1 < e2, and ψ such that (γ, σ) ∼=ψ (γ̂, σ̂) and

e1
∼= ê1, by Lemma 3.2.4 we have (γ, σ, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the inductive hypothesis, we have (γ̂, σ̂, �,

ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, acc, n1) ∼=ψ1 (γ̂, σ̂1, �, n̂1) and d1

∼= d̂1. Given n1 6= skip, by

Lemma 3.2.1 we have ψ1 = ψ, therefore (γ, σ1, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 3.2.20 we

have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1.

Given (γ, σ1, acc, e2) ⇓d2
(γ, σ2, acc, n2), ψ, (l, µ) /∈ e1 < e2, and (γ̂, σ̂1,�, ê2) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and

e2
∼= ê2, by Lemma 3.2.4 we have (γ, σ1, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By the inductive hypothesis, we have (γ̂, σ̂1,

�, ê2) ⇓d̂2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, acc, n2) ∼=ψ2

(γ̂, σ̂2, �, n̂2) and d2
∼= d̂2. Given n2 6= skip, by

Lemma 3.2.1 we have ψ2 = ψ and therefore (γ, σ2, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 3.2.20 we

have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2.

Given n1 <private n2, n1
∼=ψ n̂1, and n2

∼=ψ n̂2, by Lemma 3.2.5 we have n̂1 < n̂2.

Given encrypt(1) = n3 and Erase(encrypt(1)) = 1 by Definition 3.2.17 we have n3
∼=ψ 1.
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Given (γ̂, σ̂, �, ê1 < ê2), (γ̂, σ̂, �, ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓d̂2

(γ̂, σ̂2, �, n̂2), and n̂1 < n̂2, we

have Σ . (γ̂, σ̂, �, ê1 < ê2) ⇓′
l̂tt

(γ̂, σ̂2, �, 1) by Vanilla C rule Less Than True.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ 1, by Definition 3.2.20 we have (γ, σ2, acc, n3) ∼=ψ (γ̂, σ̂2, �, 1). Therefore,

we have (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 < ê2) ⇓′
l̂tt

(γ̂, σ̂2, �, 1), Π ∼=ψ Σ, and ltt1 ∼= l̂tt

by Definition 3.2.21.

Case Π . (γ, σ, acc, e1 < e2) ⇓ltf1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqt1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqf1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓nef1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓net1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3)

Given Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3) by SMC2 rule Public-Private Less Than True, we have Label(e1,

γ) = public, Label(e2, γ) = private, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓d2

(γ, σ2, acc, n2),

encrypt(n1) <private n2, and encrypt(1) = n3.

Given (γ̂, σ̂, �, ê1 < ê2) and ψ such that (γ, σ, acc, e1 < e2) ∼=ψ (γ̂, σ̂, �, ê1 < ê2), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and e1 < e2
∼=ψ ê1 < ê2. Given (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3), by Lemma 3.2.2

we have (l, µ) /∈ e1 < e2. Therefore, by Lemma 3.2.3, we have e1 < e2
∼= ê1 < ê2. By Definition 3.2.10 we have

e1 < e2 = Erase(e1) < Erase(e2) = ê1 < ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

133



Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), (γ̂, σ̂, �, ê1), (l, µ) /∈ e1 < e2, and ψ such that (γ, σ) ∼=ψ (γ̂, σ̂) and

e1
∼= ê1, by Lemma 3.2.4 we have (γ, σ, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the inductive hypothesis, we have (γ̂, σ̂,

�, ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, acc, n1) ∼=ψ1 (γ̂, σ̂1, �, n̂1) and d1

∼= d̂1. Given n1 6= skip,

by Lemma 3.2.1 we have ψ1 = ψ, therefore (γ, σ1, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 3.2.20

we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. Given Label(e1, γ) = public, we have Label(n1, γ) = public, and by

definition of Erase, we have n1 = n̂1.

Given (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, n2), ψ, (l, µ) /∈ e1 < e2, and (γ̂, σ̂1,�, ê2) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and

e2
∼= ê2, by Lemma 3.2.4 we have (γ, σ1, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By the inductive hypothesis, we have (γ̂, σ̂1,

�, ê2) ⇓d̂2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, acc, n2) ∼=ψ2 (γ̂, σ̂2, �, n̂2) and d2

∼= d̂2. Given n2 6= skip, by

Lemma 3.2.1 we have ψ2 = ψ, therefore (γ, σ2, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 3.2.20 we have

(γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2.

Given encrypt(n1) <private n2, n1 = n̂1, and n2
∼=ψ n̂2, by Definition 3.2.10 we have

Erase(encrypt(n1)) = n̂1, and therefore encrypt(n1) ∼=ψ n̂1 by Definition 3.2.17. Therefore by Lemma 3.2.5 we

have n̂1 < n̂2.

Given encrypt(1) = n3 and Erase(encrypt(1)) = 1 by Definition 3.2.17 we have n3
∼=ψ 1.

Given (γ̂, σ̂, �, ê1 < ê2), (γ̂, σ̂, �, ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓d̂2

(γ̂, σ̂2, �, n̂2), and n̂1 < n̂2, we

have Σ . (γ̂, σ̂, �, ê1 < ê2) ⇓′
l̂tt

(γ̂, σ̂2, �, 1) by Vanilla C rule Less Than True.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ 1, by Definition 3.2.20 we have (γ, σ2, acc, n3) ∼=ψ (γ̂, σ̂2, �, 1). Therefore,

we have (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 < ê2) ⇓′
l̂tt

(γ̂, σ̂2, �, 1), Π ∼=ψ Σ and ltt2 ∼= l̂tt

by Definition 3.2.21.

Case Π . (γ, σ, acc, e1 < e2) ⇓ltf2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqt2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqf2 (γ, σ2, acc, n3)
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This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓net2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓nef2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 < e2) ⇓ltt3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 < e2) ⇓ltf3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqt3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqf3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓net3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓nef3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1)

Given Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1) by SMC2 rule Public Less Than True, we have Label(e1, γ) =

Label(e2, γ) = public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓d2

(γ, σ2, acc, n2), and n1 <public n2.

Given (γ̂, σ̂, �, ê1 < ê2) and ψ such that (γ, σ, acc, e1 < e2) ∼=ψ (γ̂, σ̂, �, ê1 < ê2), by Definition 3.2.20 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and e1 < e2
∼=ψ ê1 < ê2. Given (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, n3), by Lemma 3.2.2
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we have (l, µ) /∈ e1 < e2. Therefore, by Lemma 3.2.3, we have e1 < e2
∼= ê1 < ê2. By Definition 3.2.10 we have

e1 < e2 = Erase(e1) < Erase(e2) = ê1 < ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), (γ̂, σ̂, �, ê1), (l, µ) /∈ e1 < e2, and ψ such that (γ, σ) ∼=ψ (γ̂, σ̂) and

e1
∼= ê1, by Lemma 3.2.4 we have (γ, σ, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the inductive hypothesis, we have (γ̂, σ̂,

�, ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, acc, n1) ∼=ψ1

(γ̂, σ̂1, �, n̂1) and d1
∼= d̂1. Given n1 6= skip,

by Lemma 3.2.1 we have ψ1 = ψ, therefore (γ, σ1, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 3.2.20

we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. Given Label(e1, γ) = public, we have Label(n1, γ) = public, and by

definition of Erase, we have n1 = n̂1.

Given (γ, σ1, acc, e2) ⇓d2
(γ, σ2, acc, n2), ψ, (l, µ) /∈ e1 < e2, and (γ̂, σ̂1,�, ê2) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and

e2
∼= ê2, by Lemma 3.2.4 we have (γ, σ1, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By the inductive hypothesis, we have (γ̂, σ̂1,

�, ê2) ⇓d̂2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, acc, n2) ∼=ψ2

(γ̂, σ̂2, �, n̂2) and d2
∼= d̂2. Given n2 6= skip, by

Lemma 3.2.1 we have ψ2 = ψ, therefore (γ, σ2, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 3.2.20 we have

(γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2. Given Label(e2, γ) = public, we have Label(n2, γ) = public, and by definition

of Erase, we have n2 = n̂2.

Given n1 <public n2, n1 = n̂1, and n2 = n̂2, we have n̂1 < n̂2.

By Definition 3.2.17, we have 1 ∼=ψ 1. Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and 1 ∼=ψ 1, by Definition 3.2.20 we have (γ, σ2,

acc, 1) ∼=ψ (γ̂, σ̂2, �, 1).

Given (γ̂, σ̂, �, ê1 < ê2), (γ̂, σ̂, �, ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓d̂2

(γ̂, σ̂2, �, n̂2), and n̂1 < n̂2, we

have Σ . (γ̂, σ̂, �, ê1 < ê2) ⇓′
l̂tt

(γ̂, σ̂2, �, 1) by Vanilla C rule Less Than True.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and 1 ∼=ψ 1, by Definition 3.2.20 we have (γ, σ2, acc, 1) ∼=ψ (γ̂, σ̂2, �, 1). Therefore, we

have (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1) ∼=ψ (γ̂, σ̂, �, ê1 < ê2) ⇓′
l̂tt

(γ̂, σ̂2, �, 1), Π ∼=ψ Σ, and ltt ∼= l̂tt by

Definition 3.2.21.

Case Π . (γ, σ, acc, e1 < e2) ⇓ltf (γ, σ2, acc, 0)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).
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Case Π . (γ, σ, acc, e1 == e2) ⇓eqt (γ, σ2, acc, 1)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqf (γ, σ2, acc, 0)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).

Case Π . (γ, σ, acc, e1! = e2) ⇓net (γ, σ2, acc, 1)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).

Case Π . (γ, σ, acc, e1! = e2) ⇓nef (γ, σ2, acc, 0)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).

Case Π . (γ, σ, acc, e1+e2) ⇓bp (γ, σ2, acc, n3)

Given Π.(γ, σ, acc, e1+e2) ⇓bp (γ, σ2, acc, n3) by SMC2 rule Public Addition, we have Label(e1, γ) = Label(e2, γ)

= public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓d2

(γ, σ2, acc, n2), and n1 +public n2 = n3.

Given (γ̂, σ̂, �, ê1 + ê2) and ψ such that (γ, σ, acc, e1 + e2) ∼=ψ (γ̂, σ̂, �, ê1 + ê2), by Definition 3.2.20 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and e1 + e2
∼=ψ ê1 + ê2. Given (γ, σ, acc, e1 + e2) ⇓bp (γ, σ2, acc, n3), by Lemma 3.2.2

we have (l, µ) /∈ e1 + e2. Therefore, by Lemma 3.2.3, we have e1 + e2
∼= ê1 + ê2. By Definition 3.2.10 we have

e1 + e2 = Erase(e1) + Erase(e2) = ê1 + ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂, �, ê1) such that (γ, σ) ∼=ψ (γ̂, σ̂) and

e1
∼= ê1, by Lemma 3.2.4 we have (γ, σ, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the inductive hypothesis, we have (γ̂, σ̂, �,

ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, acc, n1) ∼=ψ1

(γ̂, σ̂1, �, n̂1) and d1
∼= d̂1. Given n1 6= skip, by

Lemma 3.2.1 we have ψ1 = ψ, therefore (γ, σ1, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 3.2.20 we

have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. By Definition 3.2.17 we have n1

∼= n̂1. Given Label(e1, γ) = public, we

have Label(n1, γ) = public, and by definition of Erase, we have n1 = n̂1.

Given (γ, σ1, acc, e2) ⇓d2
(γ, σ2, acc, n2), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂1,�, ê2) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and

e2
∼= ê2, by Lemma 3.2.4 we have (γ, σ1, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By the inductive hypothesis, we have (γ̂, σ̂1,

�, ê2) ⇓d̂2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, acc, n2) ∼=ψ2 (γ̂, σ̂2, �, n̂2) and d2

∼= d̂2. Given n2 6= skip, by

Lemma 3.2.1 we have ψ2 = ψ, therefore (γ, σ2, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 3.2.20 we have
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(γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2. By Definition 3.2.17 we have n2

∼= n̂2. Given Label(e2, γ) = public, we have

Label(n2, γ) = public, and by definition of Erase, we have n2 = n̂2.

Given n1 +public n2 = n3, n1 = n̂1, and n2 = n̂2, we have n̂1 + n̂2 = n̂3 where n3 = n̂3. Therefore by

Definition 3.2.17 we have n3
∼=ψ n̂3.

Given (γ̂, σ̂, �, ê1 + ê2), (γ̂, σ̂, �, ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓d̂2

(γ̂, σ̂2, �, n̂2), and n̂1 + n̂2 = n̂3,

we have Σ . (γ̂, σ̂, �, ê1 + ê2) ⇓′
b̂p

(γ̂, σ̂2, �, n̂3) by Vanilla C rule Addition.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ n̂3, by Definition 3.2.20 we have (γ, σ2, acc, n3)∼=ψ (γ̂, σ̂2,�, n̂3). Therefore,

we have (γ, σ, acc, e1+e2) ⇓bp (γ, σ2, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 + ê2) ⇓′
b̂p

(γ̂, σ̂2, �, n̂3), Π ∼=ψ Σ, and bp ∼= b̂p

by Definition 3.2.21.

Case Π . (γ, σ, acc, e1−e2) ⇓bs (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1·e2) ⇓bm (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1+e2) ⇓bp1 (γ, σ2, acc, n3)

Given Π . (γ, σ, acc, e1+e2) ⇓bp1 (γ, σ2, acc, n3) by SMC2 rule Private Addition, we have Label(e1, γ) =

Label(e2, γ) = private, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓d2

(γ, σ2, acc, n2), and n1+privaten2 =

n3.

Given (γ̂, σ̂, �, ê1 + ê2) and ψ such that (γ, σ, acc, e1 + e2) ∼=ψ (γ̂, σ̂, �, ê1 + ê2), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and e1 + e2
∼=ψ ê1 + ê2. Given (γ, σ, acc, e1 + e2) ⇓bp1 (γ, σ2, acc, n3), by Lemma 3.2.2

we have (l, µ) /∈ e1 + e2. Therefore, by Lemma 3.2.3, we have e1 + e2
∼= ê1 + ê2. By Definition 3.2.10 we have

e1 + e2 = Erase(e1) + Erase(e2) = ê1 + ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂, �, ê1) such that (γ, σ) ∼=ψ (γ̂, σ̂) and

e1
∼= ê1, by Lemma 3.2.4 we have (γ, σ, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the inductive hypothesis, we have (γ̂, σ̂, �,

ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, acc, n1) ∼=ψ1

(γ̂, σ̂1, �, n̂1) and d1
∼= d̂1. Given n1 6= skip, by
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Lemma 3.2.1 we have ψ1 = ψ, therefore (γ, σ1, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 3.2.20 we

have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. By Definition 3.2.17 we have n1

∼= n̂1.

Given (γ, σ1, acc, e2) ⇓d2
(γ, σ2, acc, n2), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂1,�, ê2) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and

e2
∼= ê2, by Lemma 3.2.4 we have (γ, σ1, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By the inductive hypothesis, we have (γ̂, σ̂1,

�, ê2) ⇓d̂2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, acc, n2) ∼=ψ2

(γ̂, σ̂2, �, n̂2) and d2
∼= d̂2. Given n2 6= skip, by

Lemma 3.2.1 we have ψ2 = ψ, therefore (γ, σ2, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 3.2.20 we have

(γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2. By Definition 3.2.17 we have n2

∼= n̂2.

Given n1 +private n2 = n3, n1
∼= n̂1, and n2

∼= n̂2, by Definition 3.2.10 we have n̂1 + n̂2 = n̂3 where n3
∼=ψ n̂3 by

Definition 3.2.17.

Given (γ̂, σ̂, �, ê1 + ê2), (γ̂, σ̂, �, ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓d̂2

(γ̂, σ̂2, �, n̂2), and n̂1 + n̂2 = n̂3,

we have Σ . (γ̂, σ̂, �, ê1 + ê2) ⇓′
b̂p

(γ̂, σ̂2, �, n̂3) by Vanilla C rule Addition.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ n̂3, by Definition 3.2.20 we have (γ, σ2, acc, n3)∼=ψ (γ̂, σ̂2,�, n̂3). Therefore,

we have (γ, σ, acc, e1+e2) ⇓bp1 (γ, σ2, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 + ê2) ⇓′
b̂p

(γ̂, σ̂2, �, n̂3), Π ∼=ψ Σ, and bp1 ∼= b̂p

by Definition 3.2.21.

Case Π . (γ, σ, acc, e1−e2) ⇓bs1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1·e2) ⇓bm1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1+e2) ⇓bp2 (γ, σ2, acc, n3)

Given Π . (γ, σ, acc, e1+e2) ⇓bp2 (γ, σ2, acc, n3) by SMC2 rule Public-Private Addition, we have Label(e1, γ)

= public, Label(e2, γ) = private, (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, n2), and

encrypt(n1) +private n2 = n3.

Given (γ̂, σ̂, �, ê1 + ê2) and ψ such that (γ, σ, acc, e1 + e2) ∼=ψ (γ̂, σ̂, �, ê1 + ê2), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and e1 + e2
∼=ψ ê1 + ê2. Given (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3), by Lemma 3.2.2
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we have (l, µ) /∈ e1 + e2. Therefore, by Lemma 3.2.3, we have e1 + e2
∼= ê1 + ê2. By Definition 3.2.10 we have

e1 + e2 = Erase(e1) + Erase(e2) = ê1 + ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, n1), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂, �, ê1) such that (γ, σ) ∼=ψ (γ̂, σ̂) and

e1
∼= ê1, by Lemma 3.2.4 we have (γ, σ, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the inductive hypothesis, we have (γ̂, σ̂, �,

ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, acc, n1) ∼=ψ1

(γ̂, σ̂1, �, n̂1) and d1
∼= d̂1. Given n1 6= skip, by

Lemma 3.2.1 we have ψ1 = ψ, therefore (γ, σ1, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 3.2.20 we

have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. By Definition 3.2.17 we have n1

∼= n̂1. Given Label(e1, γ) = public, we

have Label(n1, γ) = public, and by definition of Erase, we have n1 = n̂1.

Given (γ, σ1, acc, e2) ⇓d2
(γ, σ2, acc, n2), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂1,�, ê2) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and

e2
∼= ê2, by Lemma 3.2.4 we have (γ, σ1, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By the inductive hypothesis, we have (γ̂, σ̂1,

�, ê2) ⇓d̂2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, acc, n2) ∼=ψ2

(γ̂, σ̂2, �, n̂2) and d2
∼= d̂2. Given n2 6= skip, by

Lemma 3.2.1 we have ψ2 = ψ, therefore (γ, σ2, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 3.2.20 we have

(γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2. By Definition 3.2.17 we have n2

∼= n̂2.

Given encrypt(n1) +private n2 = n3, n1 = n̂1, and n2
∼= n̂2, by Definition 3.2.10 we have Erase(encrypt(n1)) = n̂1,

and therefore encrypt(n1) ∼= n̂1. By Definition 3.2.10, we have n̂1 + n̂2 = n̂3 where n3
∼= n̂3. By Definition 3.2.17

we have n3
∼=ψ n̂3.

Given (γ̂, σ̂, �, ê1 + ê2), (γ̂, σ̂, �, ê1) ⇓d̂1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓d̂2

(γ̂, σ̂2, �, n̂2), and n̂1 + n̂2 = n̂3,

we have Σ . (γ̂, σ̂, �, ê1 + ê2) ⇓′
b̂p

(γ̂, σ̂2, �, n̂3) by Vanilla C rule Addition.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ n̂3, by Definition 3.2.20 we have (γ, σ2, acc, n3)∼=ψ (γ̂, σ̂2,�, n̂3). Therefore,

we have (γ, σ, acc, e1+e2) ⇓bp2 (γ, σ2, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 + ê2) ⇓′
b̂p

(γ̂, σ̂2, �, n̂3), Π ∼=ψ Σ, and bp2 ∼= b̂p

by Definition 3.2.21.

Case Π . (γ, σ, acc, e1−e2) ⇓bs2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1+e2) ⇓bp3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp2 (γ, σ2, acc, n3).
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Case Π . (γ, σ, acc, e1−e2) ⇓bs3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1·e2) ⇓bm2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1·e2) ⇓bm3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1+e2) ⇓bp2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ7, acc, skip)

Given Π . (γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ7, acc, skip) by SMC2 rule Private If Else, we have Label(e, γ) =

private, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), (γ, σ1, acc, private int resacc+1 = n) ⇓d2

(γ1, σ2, acc, skip),

Extract_variables(s1, s2) = xlist_acc+1, InitializeVariables(xlist_acc+1, γ1, σ2, acc + 1) = (γ2, σ3), (γ2, σ3,

acc + 1, s1) ⇓d3 (γ3, σ4, acc + 1, skip),

RestoreVariables(xlist_acc+1, γ3, σ4, acc + 1) = σ5, (γ2, σ5, acc + 1, s2) ⇓d4
(γ4, σ6, acc + 1, skip), and

ResolveVariables(xlist_acc+1, γ4, σ6, acc + 1, resacc+1) = σ7.

Given (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) and ψ such that (γ, σ, acc, if (e) s1 else s2) ∼=ψ (γ̂, σ̂, �, if (ê)ŝ1 else ŝ2), by Def-

inition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and if (e) s1 else s2
∼=ψ if (ê)ŝ1 else ŝ2. Given (γ, σ, acc, if (e) s1 else s2)

⇓iep (γ, σ7, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ if (e) s1 else s2. Therefore, by Lemma 3.2.3, we have

if (e) s1 else s2
∼= if (ê)ŝ1 else ŝ2. By Definition 3.2.10, we have Erase(if (e) s1 else s2) = if (Erase(e) Erase(s1)

else Erase(s2), Erase(e) = ê, Erase(s1) = ŝ1, and Erase(s2) = ŝ2. Therefore, we have e ∼= ê, s1
∼= ŝ1, and s2

∼= ŝ2.

Given (γ, σ) ∼=ψ (γ̂, σ̂), ψ, and e ∼= ê, by Lemma 3.2.4 we have (γ, σ, acc, e) ∼=ψ (γ̂, σ̂,�, ê). Given (γ, σ,

acc, e) ⇓d1
(γ, σ1, acc, n), by the inductive hypothesis, we have (γ̂, σ̂,�, ê) ⇓′

d̂1
(γ̂, σ̂1, �, n̂) and ψ1 such that

(γ, σ1, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂). Given n 6= skip, by Lemma 3.2.1 we have ψ1 = ψ, therefore (γ, σ1, acc, n)

∼=ψ (γ̂, σ̂1, �, n̂). Therefore, by Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂.

Given (γ, σ1, acc, private int resacc+1 = n) ⇓d2
(γ1, σ2, acc, skip), by Lemma 3.2.64 we have γ1 = γ :: γA such

that γA = [res_acc → (private int, lres)] and σ2 = σ1 :: σA such that σA = [lres → (EncodeVal(private int, n),

private int, 1, PermL(Freeable, private int, private, 1))]. By Lemma 3.2.65, we have (γ1, σ2) ∼=ψ (γ̂, σ̂1) and

(γ :: γA, σ1 :: σA) ∼=ψ (γ̂, σ̂1). Given pfree(e) /∈ private int resacc+1 = n, by Definition 3.2.11 ψ is not updated
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over the evaluation (γ, σ1, acc, private int resacc+1 = n) ⇓d2
(γ1, σ2, acc, skip).

Given Extract_variables(s1, s2) = xlist_acc+1, by Lemma 3.2.67 we have ∀x /∈ xlist_acc+1, x = e /∈ {s1;s2} and by

Lemma 3.2.66 no other modifications to memory can occur within the evaluation of s1 or s2.

Given InitializeVariables(xlist_acc+1, γ1, σ2, acc + 1) = (γ2, σ3), γ1 = γ :: γA, and σ2 = σ1 :: σA, by

Lemma 3.2.70 we have γ2 = γ :: γA :: γB and σ3 = σ1 :: σA :: σB . Given xlist_acc+1, by Lemma 3.2.69,

we have ∀x ∈ xlist_acc+1, {xthen_acc, xelse_acc} ∈ γ2. By Lemma 3.2.71, we have (γ2, σ3) ∼=ψ (γ̂, σ̂1) and

(γ :: γA :: γB , σ1 :: σA :: σB) ∼=ψ (γ̂, σ̂1).

Given (γ2, σ3, acc + 1, s1) ⇓d3
(γ3, σ4, acc + 1, skip), γ2 = γ :: γA :: γB , and σ3 = σ1 :: σA :: σB ,

(γ :: γA :: γB , σ1 :: σA :: σB) ∼=ψ (γ̂, σ̂1), and s1
∼= ŝ1, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ŝ1) such that (γ2, σ3,

acc + 1, s1) ∼=ψ (γ̂, σ̂1, �, ŝ1). By the inductive hypothesis, we have (γ̂, σ̂1, �, ŝ1) ⇓′
d̂3

(γ̂1, σ̂2, �, skip)

and ψ2 such that (γ3, σ4, acc + 1, skip) ∼=ψ2
(γ̂1, σ̂2, �, skip). By Lemma 3.2.72, we have pfree(e) /∈ s1 and

ψ2 = ψ. By Definition 3.2.20 we have (γ3, σ4) ∼=ψ (γ̂1, σ̂2). By Lemma 3.2.68, we have γ3 = γ′3 :: γA :: γB and

σ4 = σ′4 :: σA :: σB . By Lemma 3.2.73 we have (γ′3, σ
′
4) ∼=ψ (γ̂1, σ̂2).

By Lemma 3.2.74 we have that ∀x ∈ xlist_acc+1, the corresponding temporary variable xelse_acc maintains the original

value for x from the starting memory σ1, and the only differences between memory σ1 and σ′4 that can occur are stored

at the memory blocks with identifiers l such that γ(x) = (l, ty).

Given RestoreVariables(xlist_acc+1, γ3, σ4, acc + 1) = σ5, γ3 = γ′3 :: γA :: γB , σ4 = σ′4 :: σA :: σB , by

Lemma 3.2.75 we have σ5 = σ1 :: σA :: σC such that ∀x ∈ xlist_acc+1, xthen_acc remains unchanged in σC , xthen_acc

is updated with the modified values for x from the execution of the then branch, and x is updated to its original value

from σ. By Definition 3.2.15, we have (γ3, σ5) ∼=ψ (γ̂1, σ̂1). By Lemma 3.2.17, we have (γ, σ5) ∼=ψ (γ̂, σ̂1). By

Definition 3.2.15, we have (γ :: γA :: γB , σ5) ∼=ψ (γ̂, σ̂1), and given γ2 = γ :: γA :: γB we have (γ2, σ5) ∼=ψ (γ̂, σ̂1).

Given (γ2, σ5, acc + 1, s2) ⇓d4
(γ4, σ6, acc + 1, skip), s2

∼= ŝ2, and (γ2, σ5) ∼=ψ (γ̂, σ̂1), by Lemma 3.2.4 we have

(γ2, σ5, acc + 1, s2)∼=ψ (γ̂, σ̂1, �, ŝ2). By the inductive hypothesis, we have (γ̂, σ̂1, �, ŝ2) ⇓′
d̂4

(γ̂2, σ̂3, �, skip)

and ψ3 such that (γ4, σ6, acc + 1, skip) ∼=ψ3
(γ̂2, σ̂3, �, skip). By Lemma 3.2.72, we have pfree(e) /∈ s2 and

ψ3 = ψ. By Definition 3.2.20 we have (γ4, σ6) ∼=ψ (γ̂2, σ̂3). By Lemma 3.2.68, we have γ4 = γ′4 :: γA :: γB and

σ6 = σ′6 :: σA :: σC . By Lemma 3.2.73 we have (γ′4, σ
′
6) ∼=ψ (γ̂2, σ̂3). By Lemma 3.2.17, we have (γ, σ′6) ∼=ψ (γ̂, σ̂3).
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Subcase n 6=private encrypt(0)

Given n ∼=ψ n̂ and n 6=private encrypt(0), we have n̂ 6= 0.

Given ResolveVariables(xlist_acc+1, γ4, σ6, acc + 1, resacc+1) = σ7, by Lemma 3.2.77 we have σ7 = σ′4 :: σA :: σC

and (γ, σ7) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂,�, if (ê) ŝ1 else ŝ2), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, n̂), n̂ 6= 0, and (γ̂, σ̂1, �, ŝ1) ⇓′
d̂3

(γ̂1, σ̂2, �, skip),

we have Σ . (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′
îet

(γ̂, σ̂2, �, skip) by Vanilla C rule If Else True.

Given (γ, σ7) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ7, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ7, acc, skip) ∼=ψ (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′
îet

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ,

and iep ∼= îet by Definition 3.2.21.

Subcase n =private encrypt(0)

Given n ∼=ψ n̂ and n =private encrypt(0), we have n̂ = 0.

Given ResolveVariables(xlist_acc+1, γ4, σ6, acc + 1, resacc+1) = σ7, by Lemma 3.2.77 we have σ7 = σ′6 :: σA :: σC

and (γ, σ7) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂,�, if (ê) ŝ1 else ŝ2), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, n̂), n̂ = 0, and (γ̂, σ̂1, �, ŝ2) ⇓′
d̂4

(γ̂2, σ̂3, �, skip),

we have Σ . (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′
îef

(γ̂, σ̂3, �, skip) by Vanilla C rule If Else True.

Given (γ, σ7) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ7, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we have

(γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ7, acc, skip) ∼=ψ (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′
îef

(γ̂, σ̂3, �, skip), Π ∼=ψ Σ,

and iep ∼= îef by Definition 3.2.21.

Case Π . (γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip)

Given Π.(γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip) by SMC2 rule If Else True, we have Label(e, γ) = public,

(γ, σ, acc, e) ⇓d1 (γ, σ1, acc, n), n 6= 0, and (γ, σ1, acc, s1) ⇓d2 (γ1, σ2, acc, skip).
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Given (γ̂, σ̂, �, if (ê)ŝ1 else ŝ2) and ψ such that (γ, σ, acc, if (e) s1 else s2) ∼=ψ (γ̂, σ̂, �, if (ê)ŝ1 else ŝ2),

by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and if (e) s1 else s2
∼=ψ if (ê) ŝ1 else ŝ2. Given (γ, σ, acc,

if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ if (e) s1 else s2. Therefore, by Lemma 3.2.3

we have if (e) s1 else s2
∼= if (ê)ŝ1 else ŝ2. By Definition 3.2.10, we have Erase(if (e) s1 else s2) = if (Erase(e)

Erase(s1) else Erase(s2), Erase(e) = ê, Erase(s1) = ŝ1, and Erase(s2) = ŝ2. Therefore, we have e ∼= ê, s1
∼= ŝ1,

and s2
∼= ŝ2.

Given (γ, σ) ∼=ψ (γ̂, σ̂), ψ, (l, µ) /∈ if (e) s1 else s2, and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

acc, e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �, n̂)

and ψ1 such that (γ, σ1, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂) and d1
∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have ψ1 = ψ,

therefore (γ, σ1, acc, n) ∼=ψ (γ̂, σ̂1, �, n̂). By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. By

Definition 3.2.17 we have n ∼= n̂. Given Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂.

Given n 6= 0 and n = n̂, we have n̂ 6= 0.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1), ψ, (l, µ) /∈ if (e) s1 else s2, and s1
∼= ŝ1, by Lemma 3.2.4 we have (γ, σ1, acc, s1)

∼=ψ (γ̂, σ̂, �, ŝ1). Given (γ, σ1, acc, s1) ⇓d2 (γ1, σ2, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂1, �,

ŝ1) ⇓′
d̂2

(γ̂1, σ̂2,�, skip) andψ2 such that (γ1, σ2, acc, skip)∼=ψ2
(γ̂1, σ̂2,�, skip) and d2

∼= d̂2. By Definition 3.2.20,

we have (γ1, σ2) ∼=ψ2
(γ̂1, σ̂2).

Given (γ̂, σ̂,�, if (ê) ŝ1 else ŝ2), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, n̂), n̂ 6= 0, and (γ̂, σ̂1, �, ŝ1) ⇓′
d̂2

(γ̂1, σ̂2, �, skip),

we have Σ . (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′
îet

(γ̂, σ̂2, �, skip) by Vanilla C rule If Else True.

Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip)∼=ψ2

(γ̂, σ̂2,�, skip). Therefore, we have

(γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip) ∼=ψ2
(γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′

îet
(γ̂, σ̂2, �, skip), Π ∼=ψ2

Σ,

and iet ∼= îet by Definition 3.2.21.

Case Π . (γ, σ, acc, if (e) s1 else s2) ⇓ief (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, &x) ⇓loc (γ, σ, acc, (l, 0))

Given Π . (γ, σ, acc, &x) ⇓loc (γ, σ, acc, (l, 0)) by SMC2 rule Address Of, we have γ(x) = (l, ty).
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Given (γ̂, σ̂, �, &x̂) and ψ such that (γ, σ, acc, &x) ∼=ψ (γ̂, σ̂, �, &x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and &x ∼=ψ &x̂. By Definition 3.2.18 we have Erase(&x) = & Erase(x) and Erase(x) = x̂ where x = x̂.

Given γ(x) = (l, ty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, t̂y) such that l = l̂, (l, 0) ∼=ψ (l̂, 0), and

ty ∼= t̂y by Lemma 3.2.14.

Given (γ̂, σ̂, �, &x̂) and γ̂(x̂) = (l̂, t̂y), we have Σ . (γ̂, σ̂, �, &x̂) ⇓′
l̂oc

(γ̂, σ̂, �, (l̂, 0)) by Vanilla C rule Address

Of.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and (l, 0) ∼=ψ (l̂, 0), by Definition 3.2.20 we have (γ, σ, acc, (l, 0)) ∼=ψ (γ̂, σ̂, �, (l̂, 0)).

Therefore, we have (γ, σ, acc, &x) ⇓loc (γ, σ, acc, (l, 0)) ∼=ψ (γ̂, σ̂, �, &x̂) ⇓′
l̂oc

(γ̂, σ̂, �, (l̂, 0)), Π ∼=ψ Σ, and

loc ∼= l̂oc by Definition 3.2.21.

Case Π . (γ, σ, acc, sizeof(ty)) ⇓ty (γ, σ, acc, n)

Given Π . (γ, σ, acc, sizeof(ty)) ⇓ty (γ, σ, acc, n) by SMC2 rule Size of Type, we have n = τ(ty).

Given (γ̂, σ̂, �, sizeof(t̂y)) and ψ such that (γ, σ, acc, sizeof(ty)) ∼=ψ (γ̂, σ̂, �, sizeof(t̂y)), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and sizeof(ty) ∼=ψ sizeof(t̂y). By Definition 3.2.18 we have Erase(sizeof(ty)) =

sizeof(Erase(ty)) and Erase(ty) = t̂y . Therefore, we have ty ∼= t̂y .

Given n = τ(ty), ty ∼= t̂y and Label(ty , γ) = public, we have n̂ = τ(t̂y) and n = n̂ by Lemma 3.2.48. By

Definition 3.2.17 we have n ∼=ψ n̂.

Given (γ̂, σ̂, �, sizeof(t̂y)) and n̂ = τ(t̂y), we have Σ . (γ̂, σ̂, �, sizeof(t̂y)) ⇓′
t̂y

(γ̂, σ̂, �, n̂) by Vanilla C rule Size

of Type.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and n ∼=ψ n̂, by Definition 3.2.20 we have (γ, σ, acc, n) ∼=ψ (γ̂, σ̂, �, n̂). Therefore, we

have (γ, σ, acc, sizeof(ty)) ⇓ty (γ, σ, acc, n) ∼=ψ (γ̂, σ̂, �, sizeof(t̂y)) ⇓′
t̂y

(γ̂, σ̂, �, n̂), Π ∼=ψ Σ and ty ∼= t̂y by

Definition 3.2.21.
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Case Π . (γ, σ, acc, while (e) s) ⇓wle (γ, σ1, acc, skip)

Given Π . (γ, σ, acc, while (e) s) ⇓wle (γ, σ1, acc, skip) by SMC2 rule While End, we have (γ, σ, acc, e) ⇓d1

(γ, σ1, acc, n), Label(e, γ) = public, and n = 0.

Given (γ̂, σ̂, �, while (ê) ŝ) and ψ such that (γ, σ, acc, while (e) s) ∼=ψ (γ̂, σ̂, �, while (ê) ŝ), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and while (e) s ∼=ψ while (ê) ŝ. Given (γ, σ, acc, while (e) s) ⇓wle (γ, σ1, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ while (e) s. Therefore, by Lemma 3.2.3 we have while (e) s ∼= while (ê) ŝ.

By Definition 3.2.10 we have Erase(while (e) ŝ) = while (Erase(e)) Erase(s), Erase(e) = ê, and Erase(s) = ŝ.

Therefore, we have e ∼= ê and s ∼= ŝ.

Given (γ, σ) ∼=ψ (γ̂, σ̂), e ∼= ê, (l, µ) /∈ while (e) s, and ψ, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �, n̂)

such that (γ, σ1, acc, n) ∼=ψ1
(γ̂, σ̂1, �, n̂) and d1

∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have ψ1 = ψ,

therefore (γ, σ1, acc, n) ∼=ψ (γ̂, σ̂1, �, n̂). By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. By

Definition 3.2.17 we have n ∼= n̂. Given Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂.

Given n = 0 and n = n̂, we have n̂ = 0.

Given (γ̂, σ̂, �, while (ê) ŝ), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, n̂), and n̂ = 0, we have Σ . (γ̂, σ̂, �, while (ê) ŝ) ⇓′
ŵle

(γ̂, σ̂1, �, skip) by Vanilla C rule While End.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1), by Definition 3.2.20 we have (γ, σ1, acc, skip) ∼=ψ (γ̂, σ̂1, �, skip). Therefore, we

have (γ, σ, acc, while (e) s) ⇓wle (γ, σ1, acc, skip) ∼=ψ (γ̂, σ̂, �, while (ê) ŝ) ⇓′
ŵle

(γ̂, σ̂1, �, skip), Π ∼=ψ Σ, and

wle ∼= ŵle by Definition 3.2.21.

Case Π . (γ, σ, acc, while (e) s) ⇓wlc (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, while (e) s) ⇓wlc (γ, σ3, acc, skip) by SMC2 rule While Continue, we have Label(e, γ)

= public, (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, n), n 6= 0, (γ, σ1, acc, s) ⇓d2 (γ1, σ2, acc, skip), and (γ1, σ2, acc,

while (e) s) ⇓d3
(γ2, σ3, acc, skip).

Given (γ̂, σ̂, �, while (ê) ŝ) and ψ such that (γ, σ, acc, while (e) s) ∼=ψ (γ̂, σ̂, �, while (ê) ŝ), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and while (e) s ∼=ψ while (ê) ŝ. Given (γ, σ, acc, while (e) s) ⇓wlc (γ, σ3, acc, skip),
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by Lemma 3.2.2 we have (l, µ) /∈ while (e) s. Therefore, by Lemma 3.2.3 we have while (e) s ∼= while (ê) ŝ.

By Definition 3.2.10 we have Erase(while (e) ŝ) = while (Erase(e)) Erase(s), Erase(e) = ê, and Erase(s) = ŝ.

Therefore, we have e ∼=ψ ê and s ∼=ψ ŝ.

Given (γ, σ) ∼=ψ (γ̂, σ̂), e ∼= ê, (l, µ) /∈ while (e) s, and ψ, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �, n̂)

such that (γ, σ1, acc, n) ∼=ψ1
(γ̂, σ̂1, �, n̂) and d1

∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have ψ1 = ψ,

therefore (γ, σ1, acc, n) ∼=ψ (γ̂, σ̂1, �, n̂). By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. By

Definition 3.2.17 we have n ∼= n̂. Given Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂.

Given n 6= 0 and n = n̂, we have n̂ 6= 0.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1), s ∼= ŝ, (l, µ) /∈ while (e) s, and ψ, by Lemma 3.2.4 we have (γ, σ1, acc, s) ∼=ψ

(γ̂, σ̂1, �, ŝ). Given (γ, σ1, acc, s) ⇓d2
(γ1, σ2, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂1, �,

ŝ) ⇓′
d̂2

(γ̂1, σ̂2, �, skip) such that (γ1, σ2, acc, skip) ∼=ψ2 (γ̂1, σ̂2, �, skip) and d2
∼= d̂2. By Definition 3.2.20, we

have (γ1, σ2) ∼=ψ2
(γ̂1, σ̂2). By Lemma 3.2.17, we have (γ, σ2) ∼=ψ2

(γ̂, σ̂2).

Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2), while (e) s ∼= while (ê) ŝ, and (l, µ) /∈ while (e) s, by Lemma 3.2.4 we have (γ, σ2, acc,

while (e) s) ∼=ψ2
(γ̂, σ̂2, �, while (ê) ŝ). Given (γ, σ2, acc, while (e) s) ⇓d3

(γ2, σ3, acc, skip), by the inductive

hypothesis, we have (γ̂, σ̂2, �, while (ê) ŝ) ⇓′
d̂3

(γ̂2, σ̂3, �, skip) such that (γ2, σ3, acc, skip) ∼=ψ3 (γ̂2, σ̂3, �, skip)

and d3
∼= d̂3. By Definition 3.2.20, we have (γ2, σ3) ∼=ψ3

(γ̂2, σ̂3). By Lemma 3.2.17, we have (γ, σ3) ∼=ψ3
(γ̂, σ̂3).

Given (γ̂, σ̂, �, while (ê) ŝ), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, n̂), n̂ 6= 0, (γ̂, σ̂1, �, ŝ) ⇓′d̂2
(γ̂1, σ̂2, �, skip), and

(γ̂, σ̂2,�, while (e) s) ⇓′
d̂3

(γ̂2, σ̂3,�, skip), we have Σ . (γ̂, σ̂, �, while (ê) ŝ) ⇓′
ŵlc

(γ̂, σ̂3, �, skip) by Vanilla C

rule While Continue.

Given (γ, σ3) ∼=ψ3 (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ3 (γ̂, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, while (e) s) ⇓wlc (γ, σ3, acc, skip) ∼=ψ3
(γ̂, σ̂, �, while (ê) ŝ) ⇓′

ŵlc
(γ̂, σ̂3, �, skip), Π ∼=ψ3

Σ,

and wlc ∼= ŵlc by Definition 3.2.21.

Case Π . (γ, σ, acc, s1;s2) ⇓ss (γ2, σ2, acc, v)

Given Π . (γ, σ, acc, s1;s2) ⇓ss (γ2, σ2, acc, v) by SMC2 rule Statement Sequencing, we have (γ, σ, acc, s1)
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⇓d1
(γ1, σ1, acc, skip) and (γ1, σ1, acc, s2) ⇓d2

(γ2, σ2, acc, v).

Given (γ̂, σ̂, �, ŝ1; ŝ2) and ψ such that (γ, σ, acc, s1;s2) ∼=ψ (γ̂, σ̂, �, ŝ1; ŝ2), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and s1;s2
∼=ψ ŝ1; ŝ2. Given (γ, σ, acc, s1;s2) ⇓ss (γ2, σ2, acc, v), by Lemma 3.2.2 we have

(l, µ) /∈ s1;s2. Therefore, by Lemma 3.2.3 we have s1;s2
∼= ŝ1; ŝ2. By Definition 3.2.10 we have Erase(s1;s2)

= Erase(s1); Erase(s2), Erase(s1) = ŝ1, and Erase(s2) = ŝ2. Therefore, we have s1
∼=ψ ŝ1 and s2

∼= ŝ2.

Given (γ, σ) ∼=ψ (γ̂, σ̂), s1
∼= ŝ1, and (l, µ) /∈ s1;s2, by Lemma 3.2.4 we have (γ, σ, acc, s1) ∼=ψ (γ̂, σ̂, �,

ŝ1). Given (γ, σ, acc, s1) ⇓d1
(γ1, σ1, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂, �, ŝ1) ⇓′

d̂1
(γ̂1, σ̂1,

�, skip) and ψ1 such that (γ1, σ1, acc, skip) ∼=ψ1 (γ̂1, σ̂1, �, skip) and d1
∼= d̂1. By Definition 3.2.20, we have

(γ1, σ1) ∼=ψ1
(γ̂1, σ̂1).

Given (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1), s2

∼= ŝ2 and (l, µ) /∈ s1;s2, by Lemma 3.2.4 we have we have (γ1, σ1, acc, s2) ∼=ψ1

(γ̂1, σ̂1, �, ŝ2). Given (γ1, σ1, acc, s2) ⇓d2
(γ2, σ2, acc, v), by the inductive hypothesis, we have (γ̂1, σ̂1, �,

ŝ2) ⇓′
d̂2

(γ̂2, σ̂2, �, v̂) such that (γ2, σ2, acc, v) ∼=ψ2 (γ̂2, σ̂2, �, v̂) and d2
∼= d̂2. By Definition 3.2.20, we have

(γ2, σ2) ∼=ψ2
(γ̂2, σ̂2) and v ∼=ψ2

v̂.

Given (γ̂, σ̂, �, ŝ1; ŝ2), (γ̂, σ̂, �, ŝ1) ⇓′
d̂1

(γ̂1, σ̂1, �, skip), and (γ̂1, σ̂1, �, ŝ2) ⇓′
d̂2

(γ̂2, σ̂2, �, v̂), we have

Σ . (γ̂, σ̂, �, ŝ1; ŝ2) ⇓′ŝs (γ̂2, σ̂2, �, v̂) by Vanilla C rule Statement Sequencing.

Given (γ2, σ2) ∼=ψ2
(γ̂2, σ̂2) and v ∼=ψ2

v̂, by Definition 3.2.20 we have (γ2, σ2, acc, v) ∼=ψ2
(γ̂2, σ̂2, �, v̂).

Therefore, we have (γ, σ, acc, s1; s2) ⇓ss (γ2, σ2, acc, v) ∼=ψ2 (γ̂, σ̂, �, ŝ1; ŝ2) ⇓′ŝs (γ̂2, σ̂2, �, v̂), Π ∼=ψ2 Σ, and

ss ∼= ŝs by Definition 3.2.21.

Case Π . (γ, σ, acc, (e)) ⇓ep (γ, σ1, acc, v)

Given Π . (γ, σ, acc, (e)) ⇓ep (γ, σ1, acc, v) by SMC2 rule Parentheses, we have (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, v).

Given (γ̂, σ̂,�, (ê)) and ψ such that (γ, σ, acc, (e))∼=ψ (γ̂, σ̂,�, (ê)), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and (e) ∼=ψ (ê). Given (γ, σ, acc, (e)) ⇓ep (γ, σ1, acc, v), by Lemma 3.2.2 we have (l, µ) /∈ (e). Therefore, by

Lemma 3.2.3 we have (e) ∼= (ê). By Definition 3.2.10 we have Erase((e)) = (Erase(e)) and Erase(e) = ê. Therefore,

we have e ∼= ê.
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Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (e), and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ,

σ, acc, e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �,

v̂) and ψ1 such that (γ, σ1, acc, v)∼=ψ1 (γ̂, σ̂1,�, v̂) and d1
∼= d̂1. By Definition 3.2.20 we have (γ, σ1) ∼=ψ1 (γ̂, σ̂1)

and v ∼=ψ1
v̂.

Given (γ̂, σ̂, �, (ê)) and (γ̂, σ̂,�, ê) ⇓′
d̂1

(γ̂, σ̂1,�, v̂), we have Σ . (γ̂, σ̂, �, (ê)) ⇓′êp (γ̂, σ̂1, �, v̂) by Vanilla C

rule Parentheses.

Given (γ, σ1) ∼=ψ1
(γ̂, σ̂1) and v ∼=ψ1

v̂, by Definition 3.2.20 we have (γ, σ1, acc, v) ∼=ψ1
(γ̂, σ̂1, �, v̂). Therefore,

we have (γ, σ, acc, (e)) ⇓ep (γ, σ1, acc, v) ∼=ψ1 (γ̂, σ̂, �, (ê)) ⇓′êp (γ̂, σ̂1, �, v̂), Π ∼=ψ1 Σ, and ep ∼= êp by

Definition 3.2.21.

Case Π . (γ, σ, acc, {s}) ⇓sb (γ, σ1, acc, skip)

Given Π . (γ, σ, acc, {s}) ⇓sb (γ, σ1, acc, skip) by SMC2 rule Statement Block, we have (γ, σ, acc, s) ⇓d1

(γ1, σ1, acc, skip).

Given (γ̂, σ̂, �, {ŝ}) and ψ such that (γ, σ, acc, {s}) ∼=ψ (γ̂, σ̂, �, {ŝ}), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and {s} ∼=ψ {ŝ}. Given (γ, σ, acc, {s}) ⇓sb (γ, σ1, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ {s}.

Therefore, by Lemma 3.2.3 we have {s} ∼= {ŝ}. By Definition 3.2.10 we have Erase({s}) = {Erase(s)} and

Erase(s) = ŝ. Therefore, we have s ∼= ŝ.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ {s}, and s ∼= ŝ, by Lemma 3.2.4 we have (γ, σ, acc, s) ∼= (γ̂, σ̂, �, ŝ). Given

(γ, σ, acc, s) ⇓d1
(γ1, σ1, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂, �, ŝ) ⇓′

d̂1
(γ̂1, σ̂1, �, skip) and ψ1

such that (γ1, σ1, acc, skip)∼=ψ1
(γ̂1, σ̂1,�, skip) and d1

∼= d̂1. By Definition 3.2.20, we have (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1).

Given (γ̂, σ̂, �, {ŝ}) and (γ̂, σ̂,�, ŝ) ⇓′
d̂1

(γ̂1, σ̂1,�, skip), we have Σ . (γ̂, σ̂, �, {ŝ}) ⇓′
ŝb

(γ̂, σ̂1, �, skip) by

Vanilla C rule Statement Block.

Given (γ, σ1) ∼=ψ1
(γ̂, σ̂1), by Definition 3.2.20 we have (γ, σ1, acc, skip) ∼=ψ1

(γ̂, σ̂1, �, skip). Therefore, we

have (γ, σ, acc, {s}) ⇓sb (γ, σ1, acc, skip) ∼=ψ1
(γ̂, σ̂, �, {ŝ}) ⇓′

ŝb
(γ̂, σ̂1, �, skip), Π ∼=ψ1

Σ, and sb ∼= ŝb by

Definition 3.2.21.
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Case Π . (γ, σ, acc, (ty) e) ⇓cl (γ, σ3, acc, (l, 0))

Given Π . (γ, σ, acc, (ty) e) ⇓cl (γ, σ3, acc, (l, 0)) by SMC2 rule Cast Public Location, we have (γ, σ, acc, e)

⇓d1
(γ, σ1, acc, (l, 0)), (ty = public bty∗) ∨ (ty = char∗), σ1 = σ2

[
l →

(
ω, void, n, PermL(Freeable, void,

public, n)
)]

, and σ3 = σ2

[
l→

(
ω, ty , n

τ(ty) , PermL
(
Freeable, ty , public, n

τ(ty)

))]
.

Given (γ̂, σ̂, �, (t̂y) ê) and ψ such that (γ, σ, acc, (ty) e) ∼=ψ (γ̂, σ̂, �, (t̂y) ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and (ty) e ∼=ψ (t̂y) ê. Given (γ, σ, acc, (ty) e) ⇓cl (γ, σ3, acc, (l, 0)), by Lemma 3.2.2

we have (l, µ) /∈ (ty) e. Therefore, by Lemma 3.2.3 we have (ty) e ∼= (t̂y) ê. By Definition 3.2.10 we have

Erase((ty) e) = (Erase(ty)) Erase(e), Erase(ty) = t̂y , and Erase(e) = ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (ty) e, and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ

(γ, σ, acc, e) by Definition 3.2.20. Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, (l, 0)), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂, 0)) and ψ1 such that (γ, σ1, acc, (l, 0)) ∼=ψ1
(γ̂, σ̂1, �, (l̂, 0)) and d1

∼= d̂1. Given

(l, 0) 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and (l, 0) ∼=ψ (l̂, 0).

By Definition 3.2.13 we have l ∼=ψ l̂.

Given σ1 = σ2

[
l →

(
ω, void, n, PermL(Freeable, void, public, n)

)]
, l ∼=ψ l̂, and (γ, σ1) ∼=ψ (γ̂, σ̂1), by

Lemma 3.2.36 we have σ̂1 = σ̂2

[
l̂→

(
ω̂, void, n̂, PermL(Freeable, void, public, n̂)

)]
such that (γ, σ2) ∼=ψ (γ̂, σ̂2),

n
τ(ty) = n̂

τ(t̂y)
, ty ∼= t̂y , and ω ∼=ψ ω̂.

Given σ3 = σ2

[
l→

(
ω, ty , n

τ(ty) , PermL
(
Freeable, ty , public, n

τ(ty)

))]
, n
τ(ty) = n̂

τ(t̂y)
, l ∼=ψ l̂, ty ∼= t̂y , (γ, σ2) ∼=ψ

(γ̂, σ̂2), and ω ∼=ψ ω̂, by Lemma 3.2.35 we have σ̂3 = σ̂2

[
l̂ →

(
ω̂, t̂y , n̂

τ(t̂y)
, PermL

(
Freeable, t̂y ,public, n̂

τ(t̂y)

))]
such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, (t̂y) ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂, 0)), σ̂1 = σ̂2

[
l̂→

(
ω̂, void, n̂,

PermL(Freeable, void, public, n̂)
)]

, (t̂y = b̂ty∗), and σ̂3 = σ̂2

[
l̂→

(
ω̂, t̂y , n̂

τ(t̂y)
,

PermL
(
Freeable, t̂y , public, n̂

τ(t̂y)

))]
, we have Σ . (γ̂, σ̂, �, (t̂y) ê) ⇓′

ĉl
(γ̂, σ̂3, �, (l̂, 0)) by Vanilla C rule Cast

Location.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3) and (l, 0) ∼=ψ (l̂, 0), by Definition 3.2.20 we have (γ, σ3, acc, (l, 0))∼=ψ (γ̂, σ̂3, �, (l̂, 0)).

Therefore, we have (γ, σ, acc, (ty) e) ⇓cl (γ, σ3, acc, (l, 0)) ∼=ψ (γ̂, σ̂, �, (t̂y) ê) ⇓′
ĉl

(γ̂, σ̂3, �, (l̂, 0)), Π ∼=ψ Σ,

and cl1 ∼= ĉl by Definition 3.2.21.
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Case Π . (γ, σ, acc, (ty) e) ⇓cl1 (γ, σ3, acc, (l, 0))

Given Π . (γ, σ, acc, (ty) e) ⇓cl1 (γ, σ3, acc, (l, 0)) by SMC2 rule Case Private Location, we have (γ, σ, acc,

e) ⇓d1 (γ, σ1, acc, (l, 0)), (ty = private int∗) ∨ (ty = private float∗) ∨ (ty = int∗) ∨(ty = float∗),

σ1 = σ2

[
l →

(
ω, void, n, PermL(Freeable, void,private, n)

)]
, and σ3 = σ2

[
l →

(
ω, ty , n

τ(ty) ,PermL
(
Freeable,

ty , private, n
τ(ty)

))]
.

Given (γ̂, σ̂, �, (t̂y) ê) and ψ such that (γ, σ, acc, (ty) e) ∼=ψ (γ̂, σ̂, �, (t̂y) ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and (ty) e ∼=ψ (t̂y) ê. Given (γ, σ, acc, (ty) e) ⇓cl1 (γ, σ3, acc, (l, 0)), by Lemma 3.2.2

we have (l, µ) /∈ (ty) e. Therefore, by Lemma 3.2.3 we have (ty) e ∼= (t̂y) ê. By Definition 3.2.10 we have

Erase((ty) e) = (Erase(ty)) Erase(e), Erase(ty) = t̂y , and Erase(e) = ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (ty) e, and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �,

ê) ∼=ψ (γ, σ, acc, e). Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, (l, 0)), by the inductive hypothesis we have (γ̂, σ̂, �,

ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂, 0)) and ψ1 such that (γ, σ1, acc, (l, 0)) ∼=ψ1
(γ̂, σ̂1, �, (l̂, 0)) and d1

∼= d̂1. Given (l, 0) 6= skip,

by Lemma 3.2.1 we have (γ, σ1, acc, (l, 0)) ∼=ψ (γ̂, σ̂1, �, (l̂, 0)). By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1)

and (l, 0) ∼=ψ (l̂, 0).

Given σ1 = σ2

[
l →

(
ω, void∗, n, PermL(Freeable, ty , private, n)

)]
, l ∼=ψ l̂, ty ∼= t̂y , and (γ, σ1) ∼=ψ (γ̂, σ̂1), by

Lemma 3.2.36 we have σ̂1 = σ̂2

[
l̂→

(
ω̂, void∗, n̂, PermL(Freeable, void∗, public, n̂)

)]
such that (γ, σ2) ∼=ψ (γ̂,

σ̂2), ω ∼=ψ ω̂, and n
τ(ty) = n̂

τ(t̂y)
.

Given σ3 = σ2

[
l →

(
ω, ty , n

τ(ty) , PermL
(
Freeable, ty , private, n

τ(ty)

))]
, n
τ(ty) = n̂

τ(t̂y)
, l ∼=ψ l̂, ty ∼= t̂y ,

(γ, σ2) ∼=ψ (γ̂, σ̂2), and ω ∼=ψ ω̂, by Lemma 3.2.35 we have σ̂3 = σ̂2

[
l̂ →

(
ω̂, t̂y , n̂

τ(t̂y)
, PermL

(
Freeable,

t̂y ,public, n̂
τ(t̂y)

))]
such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, (t̂y) ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂, 0)), σ̂1 = σ̂2

[
l̂ →

(
ω̂, void, n̂, PermL(Freeable, void,

public, n̂)
)]

, (t̂y = b̂ty∗), and σ̂3 = σ̂2

[
l̂→

(
ω̂, t̂y , n̂

τ(t̂y)
, PermL

(
Freeable, t̂y ,public, n̂

τ(t̂y)

))]
, we have Σ. (γ̂, σ̂,

�, (t̂y) ê) ⇓′
ĉl

(γ̂, σ̂3, �, (l̂, 0)) by Vanilla C rule Cast Location.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3) and (l, 0) ∼=ψ (l̂, 0), by Definition 3.2.20 we have (γ, σ3, acc, (l, 0))∼=ψ (γ̂, σ̂3, �, (l̂, 0)).

Therefore, we have (γ, σ, acc, (ty) e) ⇓cl1 (γ, σ3, acc, (l, 0)) ∼=ψ (γ̂, σ̂, �, (t̂y) ê) ⇓′
ĉl

(γ̂, σ̂3, �, (l̂, 0)), Π ∼=ψ Σ
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and cl ∼= ĉl by Definition 3.2.21.

Case Π . (γ, σ, acc, (ty) e) ⇓cv (γ, σ1, acc, n1)

Given Π . (γ, σ, acc, (ty) e) ⇓cv (γ, σ1, acc, n1) by SMC2 rule Cast Public Value, we have Label(e, γ) = public,

(γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), (ty = public int) ∨ (ty = public float), and n1 = Cast(public, ty , n).

Given (γ̂, σ̂, �, (t̂y) ê) and ψ such that (γ, σ, acc, (ty) e) ∼=ψ (γ̂, σ̂, �, (t̂y) ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and (ty) e ∼=ψ (t̂y) ê. Given (γ, σ, acc, (ty) e) ⇓cv (γ, σ3, acc, n1), by Lemma 3.2.2 we have

(l, µ) /∈ (ty) e. Therefore, by Lemma 3.2.3 we have (ty) e ∼= (t̂y) ê. By Definition 3.2.10 we have Erase((ty)

e) = (Erase(ty)) Erase(e), Erase(ty) = t̂y , and Erase(e) = ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (ty) e, and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ

(γ, σ, acc, e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1,

�, n̂) and ψ1 such that (γ, σ1, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂) and d1
∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. By Definition 3.2.17 we have n ∼= n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.10.

Given n1 = Cast(public, ty , n), ty ∼= t̂y , and n = n̂, by Lemma 3.2.24 we have n̂1 = Cast(public, t̂y , n̂) such that

n1 = n̂1. By Definition 3.2.10 we have n1
∼= n̂1, and by Definition 3.2.17 we have n1

∼=ψ n̂1.

Given (γ̂, σ̂, �, (t̂y) ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, n̂), and n̂1 = Cast(public, t̂y , n̂), we have Σ . (γ̂, σ̂, �,

(t̂y) ê) ⇓′ĉv (γ̂, σ̂1, �, n̂1) by Vanilla C rule Cast Value.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1, by Definition 3.2.20 we have (γ, σ1, acc, n1) ∼= (γ̂, σ̂1, �, n̂1). Therefore,

we have (γ, σ, acc, (ty) e) ⇓cv (γ, σ1, acc, n1) ∼=ψ (γ̂, σ̂, �, (t̂y) ê) ⇓′ĉv (γ̂, σ̂1, �, n̂1), Π ∼=ψ Σ and cv ∼= ĉv by

Definition 3.2.21.

Case Π . (γ, σ, acc, (ty) e) ⇓cv1 (γ, σ1, acc, n1)

Given Π . (γ, σ, acc, (ty) e) ⇓cv1 (γ, σ1, acc, n1) by SMC2 rule Cast Private Value, we have Label(e, γ) = private,

(γ, σ, acc, e) ⇓d1 (γ, σ1, acc, n), (ty = private int) ∨ (ty = private float) ∨ (ty = int) ∨ (ty = float), and

n1 = Cast(private, ty , n).
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Given (γ̂, σ̂, �, (t̂y) ê) such that (γ, σ, acc, (ty) e) ∼=ψ (γ̂, σ̂, �, (t̂y) ê), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and (ty) e ∼=ψ (t̂y) ê. Given (γ, σ, acc, (ty) e) ⇓cv1 (γ, σ3, acc, n1), by Lemma 3.2.2 we have (l, µ) /∈

(ty) e. Therefore, by Lemma 3.2.3 we have (ty) e ∼= (t̂y) ê. By Definition 3.2.10 we have Erase((ty) e) =

(Erase(ty)) Erase(e), Erase(ty) = t̂y , and Erase(e) = ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (ty) e, and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=

(γ, σ, acc, e). Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1,

�, n̂) and ψ1 such that (γ, σ1, acc, n) ∼=ψ1
(γ̂, σ̂1, �, n̂) and d1

∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂.

Given n1 = Cast(private, ty , n), ty ∼= t̂y , and n ∼=ψ n̂, by Lemma 3.2.25 we have n̂1 = Cast(public, t̂y , n̂) such

that n1
∼=ψ n̂1.

Given (γ̂, σ̂, �, (t̂y) ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, n̂), and n̂1 = Cast(public, t̂y , n̂), we have Σ . (γ̂, σ̂, �,

(t̂y) ê) ⇓′ĉv (γ̂, σ̂1, �, n̂1) by Vanilla C rule Cast Value.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1, by Definition 3.2.20 we have (γ, σ1, acc, n1)∼=ψ (γ̂, σ̂1,�, n̂1). Therefore,

we have (γ, σ, acc, (ty) e) ⇓cv1 (γ, σ1, acc, n1) ∼=ψ (γ̂, σ̂, �, (t̂y) ê) ⇓′ĉv (γ̂, σ̂1, �, n̂1), Π ∼=ψ Σ and cv1 ∼= ĉv

by Definition 3.2.21.

Case Π . (γ, σ, acc, smcinput(e1, e2)) ⇓inp (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, smcinput(e1,e2)) ⇓inp (γ, σ3, acc, skip) by SMC2 rule SMC Input Public Value, we

have Label(e2, γ) = public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), acc = 0, (γ, σ1, acc, e2) ⇓d2

(γ, σ2, acc, n),

γ(x) = (l,public bty), InputValue(x, n) = n1, and (γ, σ2, acc, x = n1) ⇓d3
(γ, σ3, acc, skip).

Given (γ̂, σ̂, �, mcinput(ê1, ê2)) and ψ such that (γ, σ, acc, smcinput(e1, e2)) ∼=ψ (γ̂, σ̂, �, mcinput(ê1, ê2)),

by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcinput(e1, e2) ∼=ψ mcinput(ê1, ê2). Given (γ, σ, acc,

smcinput(e1,e2)) ⇓inp (γ, σ3, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ smcinput(e1,e2). Therefore, by

Lemma 3.2.3 we have smcinput(e1,e2) ∼= mcinput(ê1, ê2). By Definition 3.2.10 we have Erase(smcinput(e1, e2)) =

mcinput(Erase(e1, e2)). By Definition 3.2.8, we have Erase(e1, e2) = Erase(e1),Erase(e2)). By Definition 3.2.10

we have Erase(e1) = ê1 and Erase(e2) = ê2. Therefore, we have e1
∼= ê1, and e2

∼= ê2.
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Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc, e1).

Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂) and

ψ1 such that (γ, σ1, acc, x) ∼=ψ1
(γ̂, σ̂1, �, x̂) and d1

∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ σ1, acc, e2) ⇓d2 (γ, σ2, acc, n), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2,

�, n̂) and ψ2 such that (γ, σ2, acc, n) ∼=ψ2
(γ̂, σ̂2, �, n̂) and d2

∼= d̂2. Given n 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n ∼=ψ n̂. By Definition 3.2.17 we have n ∼= n̂. Given

Label(e2, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.10.

Given γ(x) = (l,public bty), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by public

bty ∼= b̂ty by Lemma 3.2.14.

Given InputValue(x, n) = n1, x = x̂, and n = n̂, by Axiom 3.2.4 and Lemma 3.2.26 we have InputValue(x̂, n̂) = n̂1

such that n1
∼= n̂1. By Definition 3.2.17 we have n1

∼=ψ n̂1.

Given x = x̂ and n1
∼= n̂1, by Definition 3.2.10 we have x = n1

∼= x̂ = n̂1, and by Definition 3.2.18 we have

x = n1
∼=ψ x̂ = n̂1. Given (γ, σ2) ∼=ψ (γ̂, σ̂2), we have (γ̂, σ̂2, �, x̂ = n̂1) such that (γ̂, σ̂2, �, x̂ = n̂1) ∼=ψ

(γ, σ2, acc, x = n1) by Definition 3.2.20. Given (γ, σ2, acc, x = n1) ⇓d3
(γ, σ3, acc, skip), by the inductive

hypothesis, we have (γ̂, σ̂2, �, x̂ = n̂1) ⇓′
d̂3

(γ̂, σ̂3, �, skip) and ψ3 such that (γ, σ3, acc, skip) ∼=ψ3 (γ̂, σ̂3, �,

skip) and d3
∼= d̂3. Given pfree(e) /∈ x = n1, by Definition 3.2.11 we have ψ3 = ψ. By Definition 3.2.20 we have

(γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, mcinput(ê1, ê2)), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, n̂),

γ̂(x̂) = (l̂, b̂ty), InputValue(x̂, n̂) = n̂1, and (γ̂, σ̂2, �, x̂ = v̂) ⇓′
d̂3

(γ̂, σ̂3, �, skip), we have Σ . (γ̂, σ̂,

�, mcinput(ê1, ê2)) ⇓′
înp

(γ̂, σ̂3, �, skip) by Vanilla C rule Input Value.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, smcinput(e1,e2)) ⇓inp (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, mcinput(ê1, ê2)) ⇓′
înp

(γ̂, σ̂3, �, skip),

Π ∼=ψ Σ and inp ∼= înp by Definition 3.2.21.
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Case Π . (γ, σ, acc, smcinput(e1,e2)) ⇓inp3 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, smcinput(e1, e2)) ⇓inp3 (γ, σ3, acc, skip) by SMC2 rule Input Private Variable, we have

Label(e2, γ) = private, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), (γ σ1, acc, e2) ⇓d2

(γ, σ2, acc, n), γ(x) = (l,private bty),

InputValue(x, n) = n1, and (γ, σ2, acc, x = n1) ⇓d3 (γ, σ3, acc, skip).

Given (γ̂, σ̂, �, mcinput(ê1, ê2)) and ψ such that (γ, σ, acc, smcinput(e1, e2)) ∼=ψ (γ̂, σ̂, �, mcinput(ê1, ê2)),

by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcinput(e1, e2) ∼=ψ mcinput(ê1, ê2). Given (γ, σ, acc,

smcinput(e1, e2)) ⇓inp3 (γ, σ3, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ smcinput(e1, e2). Therefore, by

Lemma 3.2.3 we have smcinput(e1, e2) ∼= mcinput(ê1, ê2). By Definition 3.2.10 we have Erase(smcinput(e1,

e2)) = mcinput(Erase(e1, e2)). By Definition 3.2.8, we have Erase(e1, e2) = Erase(e1),Erase(e2)). By Defini-

tion 3.2.10 we have Erase(e1) = ê1 and Erase(e2) = ê2. Therefore, we have e1
∼= ê1, and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂)

and ψ1 such that (γ, σ1, acc, x) ∼=ψ1
(γ̂, σ̂1, �, x̂) and d1

∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ.

By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have

x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ σ1, acc, e2) ⇓d2
(γ, σ2, acc, n), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′

d̂2
(γ̂, σ̂2,

�, n̂) and ψ2 such that (γ, σ2, acc, n) ∼=ψ2 (γ̂, σ̂2, �, n̂) and d2
∼= d̂2. Given n 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n ∼=ψ n̂. Given Label(e2, γ) = public, we have

Label(n, γ) = public and therefore n = n̂ by Definition 3.2.17 and Definition 3.2.10.

Given γ(x) = (l,private bty), (γ, σ) ∼= (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by private bty ∼=

b̂ty by Lemma 3.2.14.

Given InputValue(x, n) = n1, x = x̂, and n = n̂, by Axiom 3.2.4 and Lemma 3.2.26 we have InputValue(x̂, n̂) = n̂1

such that n1
∼= n̂1.

Given x = x̂ and n1
∼= n̂1, by Definition 3.2.10 we have x = n1

∼= x̂ = n̂1. Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by

Lemma 3.2.4 we have (γ̂, σ̂2, �, x̂ = n̂1) such that (γ̂, σ̂2, �, x̂ = n̂1) ∼=ψ (γ, σ2, acc, x = n1). Given (γ, σ2,
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acc, x = n1) ⇓d3
(γ, σ3, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂2, �, x̂ = n̂1) ⇓′

d̂3
(γ̂, σ̂3, �, skip)

and ψ3 such that (γ, σ3, acc, skip) ∼=ψ3
(γ̂, σ̂3, �, skip) and d3

∼= d̂3. Given pfree(e) /∈ , we have ψ3 = ψ1. By

Definition 3.2.20 we have (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, mcinput(ê1, ê2)), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, n̂),

γ̂(x̂) = (l̂, b̂ty), InputValue(x̂, n̂) = n̂1, and (γ̂, σ̂2, �, x̂ = v̂) ⇓′
d̂3

(γ̂, σ̂3, �, skip), we have Σ . (γ̂, σ̂,

�, mcinput(ê1, ê2)) ⇓′
înp

(γ̂, σ̂3, �, skip) by Vanilla C rule Input Value.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, smcinput(e1, e2)) ⇓inp3 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, mcinput(ê1, ê2)) ⇓′
înp

(γ̂, σ̂3, �, skip),

Π ∼=ψ Σ and inp3 ∼= înp by Definition 3.2.21.

Case Π . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ4, acc, skip)

Given Π . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ4, acc, skip) by SMC2 rule SMC Input Public 1D Array, we

have Label(e2, γ) = Label(e3, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), (γ, σ1, acc, e2) ⇓d2

(γ,

σ2, acc, n), (γ, σ2, acc, e3) ⇓d3 (γ, σ3, acc, n1), γ(x) = (l,public const bty∗), InputArray(x, n, n1) = [m0, ...,

mn1
], and (γ, σ3, acc, x = [m0, ..., mn1

]) ⇓d4
(γ, σ4, acc, skip).

Given (γ̂, σ̂, �, mcinput(ê1, ê2, e3)) and ψ such that (γ, σ, acc, smcinput(e1, e2)) ∼=ψ (γ̂, σ̂, �, mcinput(ê1,

ê2, ê3)), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcinput(e1, e2, e3) ∼=ψ mcinput(ê1, ê2, ê3). Given

(γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ4, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ smcinput(e1, e2,

e3). Therefore, by Lemma 3.2.3 we have smcinput(e1, e2, e3) ∼= mcinput(ê1, ê2, ê3). By Definition 3.2.10 we

have Erase(smcoutput(e1, e2, e3)) = mcinput(Erase(e1, e2, e3)). By Definition 3.2.8, we have Erase(e1, e2, e3)

= Erase(e1),

Erase(e2), Erase(e3). By Definition 3.2.10 we have Erase(e1) = ê1, Erase(e2) = ê2, and Erase(e3) = ê3. Therefore,

we have e1
∼= ê1, e2

∼= ê2, and e3
∼= ê3.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′

d̂1
(γ̂, σ̂1, �, x̂)

and ψ1 such that (γ, σ1, acc, x) ∼=ψ1
(γ̂, σ̂1, �, x̂) and d1

∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ.

By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have

x = x̂.
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Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ σ1, acc, e2) ⇓d2 (γ, σ2, acc, n), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2,

�, n̂) and ψ2 such that (γ, σ2, acc, n) ∼=ψ2
(γ̂, σ̂2, �, n̂) and d2

∼= d̂2. Given n 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n ∼=ψ n̂. Given Label(e2, γ) = public, we have

Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and e3
∼= ê3, by Lemma 3.2.4 we have (γ̂, σ̂2, �, ê3) such that (γ̂, σ̂2, �, ê3) ∼=ψ (γ, σ2,

acc, e3). Given (γ, σ2, acc, e3) ⇓d3
(γ, σ3, acc, n1), by the inductive hypothesis we have (γ̂, σ̂2, �, ê3) ⇓′

d̂3
(γ̂, σ̂3,

�, n̂1) and ψ3 such that (γ, σ3, acc, n1) ∼=ψ3 (γ̂, σ̂3, �, n̂1) and d3
∼= d̂3. Given n1 6= skip, by Lemma 3.2.1 we

have ψ3 = ψ. By Definition 3.2.20 we have (γ, σ3) ∼=ψ (γ̂, σ̂3) and n1
∼=ψ n̂1. Given Label(e3, γ) = public, we

have Label(n1, γ) = public and therefore n1 = n̂1 by Definition 3.2.18 and Definition 3.2.10.

Given γ(x) = (l, public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given InputArray(x, n, n1) = [m0, ..., mn1 ], x = x̂, n = n̂, n1 = n̂1, by Axiom 3.2.4 and Lemma 3.2.27 we have

InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1
] such that [m0, ..., mn1

] ∼= [m̂0, ..., m̂n̂1
].

Given x = x̂ and [m0, ..., mn1 ] ∼= [m̂0, ..., m̂n̂1
], by Definition 3.2.10 we have x = [m0, ..., mn1 ] ∼= x̂ = [m̂0, ..., m̂n̂1

].

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), we have (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1
]) such that (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1

]) ∼=ψ

(γ, σ3, acc, x = [m0, ..., mn1 ]) by Lemma 3.2.4. Given (γ, σ3, acc, x = [m0, ..., mn1 ]) ⇓d4 (γ, σ4, acc, skip), by

the inductive hypothesis, we have (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1
]) ⇓′

d̂4
(γ̂, σ̂4 �, skip) and ψ4 such that (γ, σ4, acc,

skip) ∼=ψ4
(γ̂, σ̂4, �, skip) and d4

∼= d̂4. Given pfree(e) /∈ x = [m0, ..., mn1
], we have ψ4 = ψ. By Definition 3.2.20

we have (γ, σ4) ∼=ψ (γ̂, σ̂4).

Given (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �,

n̂), (γ̂, σ̂2, �, ê3) ⇓′
d̂3

(γ̂, σ̂3, �, n̂1), γ̂(x̂) = (l̂, const b̂ty∗), InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1
], and

(γ̂, σ̂3,�, x̂ = [m̂0, ..., m̂n̂1
]) ⇓′

d̂4
(γ̂, σ̂4,�, skip), we have Σ . (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)) ⇓′

ôut1
(γ̂, σ̂4,

�, skip) by Vanilla C rule Input 1D Array.

Given (γ, σ4) ∼=ψ (γ̂, σ̂4), by Definition 3.2.20 we have (γ, σ4, acc, skip) ∼=ψ (γ̂, σ̂4, �, skip). Therefore, we have

(γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ4, acc, skip) ∼=ψ (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)) ⇓′
ôut1

(γ̂, σ̂4, �,
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skip), Π ∼=ψ Σ, and inp1 ∼= ̂inp1 by Definition 3.2.21.

Case Π . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp4 (γ, σ4, acc, skip)

Given Π . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp4 (γ, σ4, acc, skip) by SMC2 rule SMC Input Private 1D Array, we

have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), (γ, σ1, acc, e2) ⇓d2

(γ, σ2, acc, n),

(γ, σ2, acc, e3) ⇓d3
(γ, σ3, acc, n1), γ(x) = (l, private const bty∗), InputArray(x, n, n1) = [m0, ..., mn1

], and

(γ, σ3, acc, x = [m0, ..., mn1 ]) ⇓d4 (γ, σ4, acc, skip).

Given (γ̂, σ̂, �, mcinput(ê1, ê2, e3)) such that (γ, σ, acc, smcinput(e1, e2)) ∼=ψ (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)),

by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcinput(e1, e2, e3) ∼=ψ mcinput(ê1, ê2, ê3). Given (γ,

σ, acc, smcinput(e1, e2, e3)) ⇓inp4 (γ, σ4, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ smcinput(e1, e2, e3).

Therefore, by Lemma 3.2.3 we have smcinput(e1, e2, e3) ∼= mcinput(ê1, ê2, e3). By Definition 3.2.10 we have

Erase(smcoutput(e1, e2, e3)) = mcinput(Erase(e1, e2, e3)). By Definition 3.2.8, we have Erase(e1, e2, e3) =

Erase(e1), Erase(e2), Erase(e3). By Definition 3.2.10 we have Erase(e1) = ê1, Erase(e2) = ê2, and Erase(e3)

= ê3. Therefore, we have e1
∼= ê1, e2

∼= ê2, and e3
∼= ê3.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′

d̂1
(γ̂, σ̂1, �, x̂)

and ψ1 such that (γ, σ1, acc, x) ∼=ψ1 (γ̂, σ̂1, �, x̂) and d1
∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ.

By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have

x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ σ1, acc, e2) ⇓d2
(γ, σ2, acc, n), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′

d̂2
(γ̂, σ̂2,

�, n̂) and ψ2 such that (γ, σ2, acc, n) ∼=ψ2
(γ̂, σ̂2, �, n̂) and d2

∼= d̂2. Given 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n ∼=ψ n̂. Given Label(e2, γ) = public, we have

Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and e3
∼= ê3, by Lemma 3.2.4 we have (γ̂, σ̂2, �, ê3) such that (γ̂, σ̂2, �, ê3) ∼= (γ, σ2,

acc, e3). Given (γ, σ2, acc, e3) ⇓d3
(γ, σ3, acc, n1), by the inductive hypothesis we have (γ̂, σ̂2, �, ê3) ⇓′

d̂3
(γ̂, σ̂3,

�, n̂1) and ψ3 such that (γ, σ3, acc, n1) ∼=ψ3 (γ̂, σ̂3, �, n̂1) and d3
∼= d̂3. Given n1 6= skip, by Lemma 3.2.1 we

have ψ3 = ψ. By Definition 3.2.20 we have (γ, σ3) ∼=ψ (γ̂, σ̂3) and n1
∼=ψ n̂1. Given Label(e3, γ) = public, we
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have Label(n1, γ) = public and therefore n1 = n̂1 by Definition 3.2.18 and Definition 3.2.10.

Given γ(x) = (l, private const bty∗), (γ, σ3) ∼=ψ (γ̂, σ̂3), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given InputArray(x, n, n1) = [m0, ..., mn1
], x = x̂, n = n̂, n1 = n̂1, by Axiom 3.2.4 and Lemma 3.2.27 we have

InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1
] such that [m0, ..., mn1

] ∼= [m̂0, ..., m̂n̂1
].

Given x = x̂ and [m0, ..., mn1
] ∼= [m̂0, ..., m̂n̂1

], by Definition 3.2.10 we have x = [m0, ..., mn1
] ∼= x̂ = [m̂0, ..., m̂n̂1

].

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Lemma 3.2.4 we have (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1
]) such that (γ̂, σ̂3, �, x̂ =

[m̂0, ..., m̂n̂1
]) ∼=ψ (γ, σ3, acc, x = [m0, ..., mn1

]). Given (γ, σ3, acc, x = [m0, ..., mn1
]) ⇓d4

(γ, σ4, acc, skip),

by the inductive hypothesis, we have (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1
]) ⇓′

d̂4
(γ̂, σ̂4 �, skip) and ψ4 such that (γ, σ4, acc,

skip) ∼=ψ4
(γ̂, σ̂4, �, skip) and d4

∼= d̂4. Given pfree(e) /∈ x = [m0, ..., mn1
], we have ψ4 = ψ. By Definition 3.2.20

we have (γ, σ4) ∼=ψ (γ̂, σ̂4).

Given (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, n̂),

(γ̂, σ̂2, �, ê3) ⇓′
d̂3

(γ̂, σ̂3, �, n̂1), γ̂(x̂) = (l̂, const b̂ty∗), InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1
], and (γ̂, σ̂3,�, x̂ =

[m̂0, ..., m̂n̂1
]) ⇓′

d̂4
(γ̂, σ̂4,�, skip), we have Σ . (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)) ⇓′

ôut1
(γ̂, σ̂4, �, skip) by Vanilla

C rule Input 1D Array.

Given (γ, σ4) ∼=ψ (γ̂, σ̂4), by Definition 3.2.20 we have (γ, σ4, acc, skip) ∼=ψ (γ̂, σ̂4, �, skip). Therefore, we have

(γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp4 (γ, σ4, acc, skip) ∼=ψ (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)) ⇓′
ôut1

(γ̂, σ̂4, �,

skip), Π ∼=ψ Σ, and inp4 ∼= ̂inp1 by Definition 3.2.21.

Case Π . (γ, σ, acc, smcoutput(e1, e2)) ⇓out (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, smcoutput(e1, e2)) ⇓out (γ, σ2, acc, skip) by SMC2 rule SMC Output Public Value, we have

Label(e2, γ) = public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), (γ, σ1, acc, e2) ⇓d2

(γ, σ2, acc, n), γ(x) = (l, public

bty), σ2(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1)), DecodeVal(public bty , 1, ω) = n1, and

OutputValue(x, n, n1).

Given (γ̂, σ̂, �, mcoutput(ê1, ê2)) and ψ such that (γ, σ, acc, smcoutput(e1, e2)) ∼=ψ (γ̂, σ̂, �, mcinput(ê1, ê2)),

by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcoutput(e1, e2) ∼=ψ mcinput(ê1, ê2). Given (γ, σ, acc,
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smcoutput(e1, e2)) ⇓out (γ, σ2, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ smcoutput(e1, e2). Therefore, by

Lemma 3.2.3 we have smcoutput(e1, e2) ∼= mcoutput(ê1, ê2). By Definition 3.2.10 we have Erase(smcoutput(e1,

e2)) = mcoutput(Erase(e1, e2)). By Definition 3.2.8, we have Erase(e1, e2) = Erase(e1),Erase(e2)). By Defini-

tion 3.2.10 we have Erase(e1) = ê1 and Erase(e2) = ê2. Therefore, we have e1
∼= ê1, and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′

d̂1
(γ̂, σ̂1, �, x̂)

and ψ1 such that (γ, σ1, acc, x) ∼=ψ1 (γ̂, σ̂1, �, x̂) and d1
∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ.

By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have

x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ σ1, acc, e2) ⇓d2
(γ, σ2, acc, n), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′

d̂2
(γ̂, σ̂2,

�, n̂) and ψ2 such that (γ, σ2, acc, n) ∼=ψ2
(γ̂, σ̂2, �, n̂) and d2

∼= d̂2. Given n 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n ∼=ψ n̂. Given Label(e2, γ) = public, we have

Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given γ(x) = (l,public bty), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by public

bty ∼= b̂ty by Lemma 3.2.14.

Given σ2(l) = (ω,public bty , 1, PermL(Freeable, public bty , public, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l = l̂, by

Lemma 3.2.15 we have σ̂2(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, bty , public, 1)) where ω1
∼=ψ ω̂1.

Given DecodeVal(public bty , 1, ω) = n1, public bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(bty ,

1, ω̂) = n̂1 and n1
∼= n̂1.

Given OutputValue(x, n, n1), x = x̂, n = n̂, and n1
∼= n̂1, by Lemma 3.2.28 we have OutputValue(x̂, n̂, n̂1) such

that the corresponding output files are congruent.

Given (γ̂, σ̂, �, mcoutput(ê1, ê2)), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, n̂), γ̂(x̂) =

(l̂, b̂ty), σ̂2(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1)), DecodeVal(b̂ty , 1, ω̂) = v̂, and OutputValue(x̂, n̂,

v̂), we have Σ . (γ̂, σ̂, �, mcoutput(ê1, ê2)) ⇓′
ôut

(γ̂, σ̂2, �, skip) by Vanilla C rule Output Value.
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Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, smcoutput(e1, e2)) ⇓out (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, mcoutput(ê1, ê2)) ⇓′
ôut

(γ̂, σ̂2, �, skip),

Π ∼=ψ Σ, and out ∼= ôut by Definition 3.2.21.

Case Π . (γ, σ, acc, smcoutput(e1, e2)) ⇓out3 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, smcoutput(e1, e2)) ⇓out3 (γ, σ2, acc, skip) by SMC2 rule SMC Output Private Value, we

have Label(e2, γ) = public, (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, x), (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, n), γ(x) =

(l, private bty), σ2(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1)), DecodeVal(private bty ,

1, ω) = n1, and OutputValue(x, n, n1).

Given (γ̂, σ̂,�,mcoutput(ê1, ê2)) and ψ such that (γ, σ, acc, smcoutput(e1, e2))∼=ψ (γ̂, σ̂,�,mcoutput(ê1, ê2)),

by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcoutput(e1, e2) ∼=ψ mcoutput(ê1, ê2). Given (γ, σ, acc,

smcoutput(e1, e2)) ⇓out3 (γ, σ2, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ smcoutput(e1, e2). Therefore, by

Lemma 3.2.3 we have smcoutput(e1, e2) ∼= mcoutput(ê1, ê2). By Definition 3.2.10 we have Erase(smcoutput(e1,

e2)) = mcoutput(Erase(e1, e2)). By Definition 3.2.8, we have Erase(e1, e2) = Erase(e1),Erase(e2)). By Defini-

tion 3.2.10 we have Erase(e1) = ê1 and Erase(e2) = ê2. Therefore, we have e1
∼= ê1, and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂)

and ψ1 such that (γ, σ1, acc, x) ∼=ψ1
(γ̂, σ̂1, �, x̂) and d1

∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ.

By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have

x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ σ1, acc, e2) ⇓d2
(γ, σ2, acc, n), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′

d̂2
(γ̂, σ̂2,

�, n̂) and ψ2 such that (γ, σ2, acc, n) ∼=ψ2 (γ̂, σ̂2, �, n̂) and d2
∼= d̂2. Given n 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n ∼=ψ n̂. Given Label(e2, γ) = public, we have

Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given γ(x) = (l,private bty), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by

private bty ∼= b̂ty by Lemma 3.2.14.
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Given σ2(l) = (ω,private bty , 1, PermL(Freeable, private bty , private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l = l̂, by

Lemma 3.2.15 we have σ̂2(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, bty , public, 1)) where ω1
∼=ψ ω̂1.

Given DecodeVal(private bty , 1, ω) = n1, private bty ∼=ψ b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have

DecodeVal(bty , 1, ω̂) = n̂1 and n1
∼= n̂1.

Given OutputValue(x, n, n1), x = x̂, n = n̂, and n1
∼= n̂1, by Lemma 3.2.28 we have OutputValue(x̂, n̂, n̂1) such

that the corresponding output files are congruent.

Given (γ̂, σ̂, �, mcoutput(ê1, ê2)), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, n̂),

γ̂(x̂) = (l̂, b̂ty), σ̂2(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1)), DecodeVal(b̂ty , 1, ω̂) = n̂1, and

OutputValue(x̂, n̂, n̂1), we have Σ . (γ̂, σ̂, �, mcoutput(ê1, ê2)) ⇓′
ôut

(γ̂, σ̂2, �, skip) by Vanilla C rule

Output Value.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, smcoutput(e1, e2)) ⇓out3 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, mcoutput(ê1, ê2)) ⇓′
ôut

(γ̂, σ̂2, �, skip),

Π ∼=ψ Σ, and out3 ∼= ôut by Definition 3.2.21.

Case Π . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip) by SMC2 rule SMC Output Public 1D Ar-

ray, we have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, x), (γ, σ1, acc, e2) ⇓d2 (γ,

σ2, acc, n), (γ, σ2, acc, e3) ⇓d3
(γ, σ3, acc, n1), γ(x) = (l,public const bty∗), σ3(l) = (ω, public const

bty∗, 1, PermL(Freeable, public const bty∗, public, 1), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ3(l1) = (ω1,public bty , n1,PermL(Freeable, public bty , public, n1)), DecodeVal(public bty , n1, ω1) = [m0, ...,

mn1
], and OutputArray(x, n, [m0, ...,mn1

]).

Given (γ̂, σ̂,�,mcoutput(ê1, ê2, ê3)) andψ such that (γ, σ, acc, smcoutput(e1, e2, e3))∼=ψ (γ̂, σ̂, �,mcoutput(ê1,

ê2, ê3)), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcoutput(e1, e2, e3) ∼=ψ mcoutput(ê1, ê2, ê3). Given

(γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ smcoutput(e1, e2, e3).

Therefore, by Lemma 3.2.3 we have smcoutput(e1, e2, e3) ∼= mcoutput(ê1, ê2, ê3). By Definition 3.2.10 we have

Erase(smcoutput(e1, e2, e3)) = mcoutput(Erase(e1, e2, e3)). By Definition 3.2.8, we have Erase(e1, e2, e3) =

Erase(e1),Erase(e2),Erase(e3). By Definition 3.2.10 we have Erase(e1) = ê1, Erase(e2) = ê2, and Erase(e3) = ê3.
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Therefore, we have e1
∼= ê1, e2

∼= ê2, and e3
∼= ê3.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′

d̂1
(γ̂, σ̂1, �, x̂)

and ψ1 such that (γ, σ1, acc, x) ∼=ψ1 (γ̂, σ̂1, �, x̂) and d1
∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ.

By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have

x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ σ1, acc, e2) ⇓d2 (γ, σ2, acc, n), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2,

�, n̂) and ψ2 such that (γ, σ2, acc, n) ∼=ψ2
(γ̂, σ̂2, �, n̂) and d2

∼= d̂2. Given n 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n ∼=ψ n̂. Given Label(e2, γ) = public, we have

Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and e3
∼= ê3, by Lemma 3.2.4 we have (γ̂, σ̂2, �, ê3) such that (γ̂, σ̂2, �, ê3) ∼=ψ (γ,

σ2, acc, e3) by Definition 3.2.20. Given (γ, σ2, acc, e3) ⇓d3
(γ, σ3, acc, n1), by the inductive hypothesis we have

(γ̂, σ̂2, �, ê3) ⇓′
d̂3

(γ̂, σ̂3, �, n̂1) and ψ3 such that (γ, σ3, acc, n1) ∼=ψ3 (γ̂, σ̂3, �, n̂1) and d3
∼= d̂3. Given

n1 6= skip, by Lemma 3.2.1 we have ψ3 = ψ. By Definition 3.2.20 we have (γ, σ3) ∼=ψ (γ̂, σ̂3) and n1
∼=ψ n̂1.

Given Label(e3, γ) = public, we have Label(n1, γ) = public and therefore n1 = n̂1 by Definition 3.2.18 and

Definition 3.2.10.

Given γ(x) = (l,public const bty∗), (γ, σ3) ∼=ψ (γ̂, σ̂3), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ3(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ3) ∼=ψ (γ̂, σ̂3),

and l = l̂, by Lemma 3.2.16 we have σ̂3(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0). By Definition 3.2.13 we have l1 ∼=ψ l̂1.

Given σ3(l1) = (ω1,public bty , n1, PermL(Freeable, public bty ,public, n1)), (γ, σ3) ∼=ψ (γ̂, σ̂3), and l1 ∼=ψ l̂1,
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by Lemma 3.2.15 we have σ̂3(l̂1) = (ω̂1, b̂ty , n̂1,PermL(Freeable, bty , public, n̂1)) where ω1
∼=ψ ω̂1, private bty ∼=

b̂ty , and n1 = n̂1.

Given DecodeVal(public bty , n1, ω1) = [m0, ..., mn1
], public bty ∼= b̂ty , and ω1

∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1
] and [m0, ..., mn1 ] ∼= [m̂0, ..., m̂n̂1

].

Given OutputArray(x, n, [m0, ...,mn1
]), x = x̂, n = n̂, and [m0, ...,mn1

] ∼= [m̂0, ..., m̂n̂1
], by Lemma 3.2.29 we

have OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1
]) such that the corresponding output files are congruent.

Given (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, n̂),

(γ̂, σ̂2, �, ê3) ⇓′
d̂3

(γ̂, σ̂3, �, n̂1), γ̂(x̂) = (l̂, const b̂ty∗), σ̂3(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const

b̂ty∗,public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂3(l̂1) = (ω̂1, b̂ty , n̂2, PermL(Freeable,

b̂ty , public, n̂1)), DecodeVal(b̂ty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1
], and OutputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1

], we have

Σ . (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) ⇓′
ôut1

(γ̂, σ̂3, �, skip) by Vanilla C rule Output 1D Array.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we have

(γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) ⇓′
ôut1

(γ̂, σ̂3, �,

skip), Π ∼=ψ Σ, and out1 ∼= ôut1 by Definition 3.2.21.

Case Π . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out4 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out4 (γ, σ3, acc, skip) by SMC2 rule SMC Output Private 1D Array,

we have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, x), (γ, σ1, acc, e2) ⇓d2

(γ, σ2,

acc, n), (γ, σ2, acc, e3) ⇓d3
(γ, σ3, acc, n1), γ(x) = (l,private const bty∗), σ3(l) = (ω,private const bty∗,

1,PermL(Freeable, private const bty∗, private, 1), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ3(l1) = (ω1, private bty , n1, PermL(Freeable, private bty , private, n1)), DecodeVal(private bty , n1, ω1) =

[m0, ..., mn1 ], and OutputArray(x, n, [m0, ...,mn1 ]).

Given (γ̂, σ̂,�,mcoutput(ê1, ê2, ê3)) andψ such that (γ, σ, acc, smcoutput(e1, e2, e3))∼=ψ (γ̂, σ̂, �,mcoutput(ê1,

ê2, ê3)), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcoutput(e1, e2, e3) ∼=ψ mcoutput(ê1, ê2, ê3). Given

(γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out4 (γ, σ3, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ smcoutput(e1, e2, e3).

Therefore, by Lemma 3.2.3 we have smcoutput(e1, e2, e3) ∼= mcoutput(ê1, ê2, ê3). By Definition 3.2.10 we have

Erase(smcoutput(e1, e2, e3)) = mcoutput(Erase(e1, e2, e3)). By Definition 3.2.8, we have Erase(e1, e2, e3) =
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Erase(e1),Erase(e2),Erase(e3). By Definition 3.2.10 we have Erase(e1) = ê1, Erase(e2) = ê2, and Erase(e3) = ê3.

Therefore, we have e1
∼= ê1, e2

∼= ê2, and e3
∼= ê3.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂)

and ψ1 such that (γ, σ1, acc, x) ∼=ψ1
(γ̂, σ̂1, �, x̂) and d1

∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ.

By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have

x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ σ1, acc, e2) ⇓d2
(γ, σ2, acc, n), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′

d̂2
(γ̂, σ̂2,

�, n̂) and ψ2 such that (γ, σ2, acc, n) ∼=ψ2
(γ̂, σ̂2, �, n̂) and d2

∼= d̂2. Given n 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n ∼=ψ n̂. Given Label(e2, γ) = public, we have

Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and e3
∼= ê3, by Lemma 3.2.4 we have (γ̂, σ̂2, �, ê3) such that (γ̂, σ̂2, �, ê3) ∼=ψ (γ, σ2,

acc, e3). Given (γ, σ2, acc, e3) ⇓d3 (γ, σ3, acc, n1), by the inductive hypothesis we have (γ̂, σ̂2, �, ê3) ⇓′
d̂3

(γ̂, σ̂3,

�, n̂1) and ψ3 such that (γ, σ3, acc, n1) ∼=ψ3
(γ̂, σ̂3, �, n̂1) and d3

∼= d̂3. Given n1 6= skip, by Lemma 3.2.1 we

have ψ3 = ψ. By Definition 3.2.20 we have (γ, σ3) ∼=ψ (γ̂, σ̂3) and n1
∼=ψ n̂1. Given Label(e3, γ) = public, we

have Label(n1, γ) = public and therefore n1 = n̂1 by Definition 3.2.18 and Definition 3.2.10.

Given γ(x) = (l,private const bty∗), (γ, σ3) ∼=ψ (γ̂, σ̂3), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ3(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ3) ∼=ψ (γ̂, σ̂3),

and l = l̂, by Lemma 3.2.16 we have σ̂3(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0). By Definition 3.2.13 we have l1 ∼=ψ l̂1.

Given σ3(l1) = (ω1,private bty , n1, PermL(Freeable, private bty ,private, n1)), (γ, σ3) ∼=ψ (γ̂, σ̂3), and l1 ∼=ψ l̂1,
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by Lemma 3.2.15 we have σ̂3(l̂1) = (ω̂1, b̂ty , n̂1, PermL(Freeable, bty , public, n̂1)) where ω1
∼=ψ ω̂1, private bty ∼=

b̂ty , and n1 = n̂1.

Given DecodeVal(private bty , n1, ω1) = [m0, ..., mn1
], private bty ∼= b̂ty , and ω1

∼=ψ ω̂1, by Lemma 3.2.41 we

have DecodeVal(bty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1
] and [m0, ..., mn1 ] ∼= [m̂0, ..., m̂n̂1

].

Given OutputArray(x, n, [m0, ...,mn1
]), x = x̂, n = n̂, and [m0, ..., mn1

] ∼= [m̂0, ..., m̂n̂1
], by Lemma 3.2.29 we

have OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1
]) such that the corresponding output files are congruent.

Given (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, n̂),

(γ̂, σ̂2, �, ê3) ⇓′
d̂3

(γ̂, σ̂3, �, n̂1), γ̂(x̂) = (l̂, const b̂ty∗), σ̂3(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const

b̂ty∗,public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂3(l̂1) = (ω̂1, b̂ty , n̂2, PermL(Freeable,

b̂ty , public, n̂1)), DecodeVal(b̂ty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1
], and OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1

]), we have

Σ . (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) ⇓′
ôut1

(γ̂, σ̂3, �, skip) by Vanilla C rule Output 1D Array.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we have

(γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out4 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) ⇓′
ôut1

(γ̂, σ̂3, �,

skip), Π ∼=ψ Σ, and out4 ∼= ôut1 by Definition 3.2.21.

Case Π . (γ, σ, acc, ty x(p)) ⇓df (γ1, σ1, acc, skip)

Given Π . (γ, σ, acc, ty x(p)) ⇓df (γ1, σ1, acc, skip) by SMC2 rule Function Declaration, we have acc = 0,

GetFunTypeList(p) = ty , l = φ(), γ1 = γ[x → (l, ty → ty)], and σ1 = σ[l → (NULL, ty → ty , 1,

PermL_Fun(public))].

Given (γ̂, σ̂, �, t̂y x̂(p̂)) and ψ such that (γ, σ, acc, ty x(p)) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂)), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x(p) ∼=ψ t̂y x̂(p̂). Given (γ, σ, acc, ty x(p)) ⇓df (γ1, σ1, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ty x(p). Therefore, by Lemma 3.2.3 we have ty x(p) ∼= t̂y x̂(p̂). By Definition 3.2.10 we have

Erase(ty x(p)) = Erase(ty) x̂(Erase(p)) where x = x̂, Erase(ty) = t̂y , and Erase(p) = p̂ by Definition 3.2.9.

Therefore, we have ty ∼= t̂y and p ∼= p̂.

Given GetFunTypeList(p) = ty and p ∼= p̂, by Lemma 3.2.30 we have GetFunTypeList(p̂) = t̂y where ty ∼= t̂y .

Therefore, we have ty → ty ∼= t̂y → t̂y by Definition 3.2.6.
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Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l, ty → ty)], x = x̂, l = l̂, ty → ty ∼= t̂y → t̂y , and (γ, σ) ∼=ψ (γ̂, σ̂), by Lemma 3.2.34 we

have γ̂1 = γ̂[x̂→ (l̂, t̂y → t̂y)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given σ1 = σ[l → (NULL, ty → ty , 1,PermL_Fun(public))], l = l̂, (γ1, σ) ∼=ψ (γ̂1, σ̂), and ty → ty ∼= t̂y → t̂y ,

by Lemma 3.2.35 we have σ̂1 = σ̂[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, t̂y x̂(p̂)), l̂ = φ(), GetFunTypeList(p̂) = t̂y , γ̂1 = γ̂[x̂ → (l̂, t̂y → t̂y)], and σ̂1 = σ̂[l̂ →

(NULL, t̂y → t̂y , 1, PermL_Fun(public))], we have Σ . (γ̂, σ̂, �, t̂y x̂(p̂)) ⇓′
d̂f

(γ̂1, σ̂1, �, skip) by Vanilla C rule

Function Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 3.2.20 we have (γ1, σ1, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip). Therefore, we

have (γ, σ, acc, ty x(p)) ⇓df (γ1, σ1, acc, skip)∼=ψ (γ̂, σ̂,�, t̂y x̂(p̂)) ⇓′
d̂f

(γ̂1, σ̂1,�, skip), Π ∼=ψ Σ, and df ∼= d̂f

by Definition 3.2.21.

Case Π . (γ, σ, acc, ty x(p){s}) ⇓fpd (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ty x(p){s}) ⇓fpd (γ, σ2, acc, skip) by SMC2 rule Pre-Declared Function Definition, we have

acc = 0, x ∈ γ, γ(x) = (l, ty → ty), CheckPublicEffects(s, x, γ, σ) = n, EncodeFun(s, n, p) = ω, σ = σ1[l→

(NULL, ty → ty , 1, PermL_Fun(public))], and σ2 = σ1[l→ (ω, ty → ty , 1, PermL_Fun(public))].

Given (γ̂, σ̂,�, t̂y x̂(p̂) {ŝ}) and ψ such that (γ, σ, acc, ty x (p){s})∼=ψ (γ̂, σ̂,�, t̂y x̂(p̂) {ŝ}), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x(p){s} ∼=ψ t̂y x̂(p̂) {ŝ}. Given (γ, σ, acc, ty x(p){s}) ⇓fpd (γ, σ2, acc, skip), by

Lemma 3.2.2 we have (l, µ) /∈ ty x(p){s}. Therefore, by Lemma 3.2.3 we have ty x(p){s} ∼= t̂y x̂(p̂) {ŝ}. By Def-

inition 3.2.10 we have Erase(ty x(p){s}) = Erase(ty x(p)) {Erase(s)}, Erase(ty x(p)) = Erase(ty) x̂(Erase(p))

where x = x̂, Erase(ty) = t̂y , Erase(s) = ŝ, and Erase(p) = p̂ by Definition 3.2.9. Therefore, we have ty ∼= t̂y and

p ∼= p̂.

Given x ∈ γ, γ(x) = (l, ty → ty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, t̂y → t̂y) such that l = l̂ by

ty → ty ∼= t̂y → t̂y by Lemma 3.2.14 and x̂ ∈ γ̂ by Lemma 3.2.33.
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Given EncodeFun(s, n, p) = ω, s ∼= ŝ, and p ∼= p̂, by Lemma 3.2.46 we have EncodeFun(ŝ, �, p̂) = ω̂ such that

ω ∼=ψ ω̂.

Given σ = σ1[l→ (NULL, ty → ty , 1, PermL_Fun(public))], (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by Lemma 3.2.36 we

have σ̂ = σ̂1[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))] and (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given σ2 = σ1[l→ (ω, ty → ty , 1,PermL_Fun(public))], (γ, σ1) ∼= (γ̂, σ̂1), l = l̂, ω ∼=ψ ω̂, and ty → ty ∼= t̂y →

t̂y , by Lemma 3.2.35 we have σ̂2 = σ̂1[l̂→ (ω̂, t̂y → t̂y , 1, PermL_Fun(public))] such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂,�, t̂y x̂(p̂){ŝ}), x ∈ γ̂, γ̂(x) = (l̂, t̂y → t̂y), σ̂ = σ̂1[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))],

EncodeFun(ŝ,�, p̂) = ω̂, and σ̂2 = σ̂1[l̂ → (ω̂, t̂y → t̂y , 1, PermL_Fun(public))], we have Σ . (γ̂, σ̂, �,

t̂y x̂(p̂){ŝ}) ⇓′
f̂pd

(γ̂, σ̂2, �, skip) by Vanilla C rule Pre-Declared Function Definition.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, ty x(p){s}) ⇓fpd (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂){ŝ}) ⇓′
f̂pd

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and

fpd ∼= f̂pd by Definition 3.2.21.

Case Π . (γ, σ, acc, ty x(p){s}) ⇓fd (γ1, σ1, acc, skip)

Given Π . (γ, σ, acc, ty x(p){s}) ⇓fd (γ1, σ1, acc, skip) by SMC2 rule Function Definition, we have l = φ(),

GetFunTypeList(p) = ty , x /∈ γ, γ1 = γ[x → (l, ty → ty)], acc = 0, CheckPublicEffects(s, x, γ, σ) = n,

EncodeFun(s, n, p) = ω, and σ1 = σ[l→ (ω, ty → ty , 1, PermL_Fun(public))].

Given (γ̂, σ̂, �, t̂y x̂(p̂) {ŝ}) such that (γ, σ, acc, ty x(p){s}) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂) {ŝ}), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x(p){s} ∼=ψ t̂y x̂(ê) {ŝ}. Given (γ, σ, acc, ty x(p){s}) ⇓fd (γ1, σ1, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ ty x(p){s}. Therefore, by Lemma 3.2.3 we have ty x(p){s} ∼= t̂y x̂(p̂) {ŝ}).

By Definition 3.2.10 we have Erase(ty x(p){s}) = Erase(ty x(p)) {Erase(s)}, Erase(ty x(p)) = Erase(ty)

x̂(Erase(p)) where x = x̂, Erase(ty) = t̂y , Erase(p) = p̂, and Erase(s) = ŝ by Definition 3.2.9. Therefore,

we have ty ∼= t̂y , p ∼= p̂, and s ∼= ŝ.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given GetFunTypeList(p) = ty and p ∼= p̂, by Lemma 3.2.30 we have GetFunTypeList(p̂) = t̂y where ty ∼= t̂y .
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Given x /∈ γ, (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, by Lemma 3.2.32 we have x̂ /∈ γ̂.

Given γ1 = γ[x → (l, ty → ty)], x = x̂, l = l̂, ty → ty ∼= t̂y → t̂y , and (γ, σ) ∼=ψ (γ̂, σ̂), by Lemma 3.2.34 we

have γ̂1 = γ̂[x̂→ (l̂, t̂y → t̂y)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given EncodeFun(s, n, p) = ω, s ∼= ŝ, and p ∼= p̂, by Lemma 3.2.46 we have EncodeFun(ŝ, �, p̂) = ω̂ such that

ω ∼=ψ ω̂.

Given σ1 = σ[l → (NULL, ty → ty , 1,PermL_Fun(public))], l = l̂, (γ1, σ) ∼=ψ (γ̂1, σ̂), and ty → ty ∼= t̂y → t̂y ,

by Lemma 3.2.35 we have σ̂1 = σ̂[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, t̂y x̂(p̂){ŝ}), x /∈ γ̂, l̂ = φ(), GetFunTypeList(p̂) = t̂y , γ̂1 = γ̂[x→ (l̂, t̂y → t̂y)], EncodeFun(ŝ,

�, p̂) = ω̂, and σ̂1 = σ̂[l̂ → (ω̂, t̂y → t̂y , 1, PermL_Fun(public))], we have Σ . (γ̂, σ̂, �, t̂y x̂(p̂){ŝ}) ⇓′
f̂d

(γ̂1,

σ̂1, �, skip) by Vanilla C rule Function Definition.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 3.2.20 we have (γ1, σ1, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip). Therefore, we

have (γ, σ, acc, ty x(p){s}) ⇓fd (γ1, σ1, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂){ŝ}) ⇓′
f̂d

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and

fd ∼= f̂d by Definition 3.2.21.

Case Π . (γ, σ, acc, x(e)) ⇓fc (γ, σ2, acc, NULL)

Given Π . (γ, σ, acc, x(e)) ⇓fc (γ, σ2, acc, NULL) by SMC2 rule Function Call No Return With Public Side Effects,

we have γ(x) = (l, ty → ty), σ(l) = (ω, ty → ty , 1, PermL_Fun(public)), DecodeFun(ω) = (s, 1, p), acc = 0,

GetFunParamAssign(p, e) = s1, (γ, σ, acc, s1) ⇓d1
(γ1, σ1, acc, skip), and (γ1, σ1, acc, s) ⇓d2

(γ2, σ2, acc,

skip).

Given (γ̂, σ̂, �, x̂(ê)) and ψ such that (γ, σ, acc, x(e)) ∼=ψ (γ̂, σ̂, �, x̂(ê)), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x(e) ∼=ψ x̂(ê). Given (γ, σ, acc, x(e)) ⇓fc (γ, σ2, acc, NULL), by Lemma 3.2.2 we have (l, µ) /∈ x(e).

Therefore, by Lemma 3.2.3 we have x(e) ∼= x̂(ê). By Definition 3.2.10 we have Erase(x(e)) = x̂(Erase(e)) where

x = x̂ and Erase(e) = ê by Definition 3.2.8. Therefore, we have e ∼= ê.

Given γ(x) = (l, ty → ty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, t̂y → t̂y) such that l = l̂ by
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ty → ty ∼= t̂y → t̂y by Lemma 3.2.14.

Given σ(l) = (ω, ty → ty , 1,PermL_Fun(public)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by Lemma 3.2.15 we have

σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)) where ω ∼=ψ ω̂.

Given DecodeFun(ω) = (s, 1, p) and ω ∼=ψ ω̂, by Lemma 3.2.47 we have DecodeFun(ω̂) = (ŝ, �, p̂) such that

s ∼= ŝ and p ∼= p̂.

Given GetFunParamAssign(p, e) = s1, p ∼= p̂, and e ∼= ê, by Lemma 3.2.31 we have

GetFunParamAssign(p̂, ê) = ŝ1 where s1
∼=ψ ŝ1.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and s1
∼=ψ ŝ1, we have (γ, σ, acc, s1) ∼=ψ (γ̂, σ̂, �, ŝ1) by Definition 3.2.20. Given (γ, σ,

acc, s1) ⇓d1
(γ1, σ1, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂, �, ŝ1) ⇓′

d̂1
(γ̂1, σ̂1, �, skip) and ψ1

such that (γ1, σ1, acc, skip)∼=ψ1
(γ̂1, σ̂1,�, skip) and d1

∼= d̂1. By Definition 3.2.20, we have (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1).

By Lemma 3.2.17, we have (γ, σ1) ∼=ψ1 (γ̂, σ̂1).

Given (γ1, σ1) ∼=ψ1 (γ̂1, σ̂1) and s ∼= ŝ, BY Lemma 3.2.4 we have (γ1, σ1, acc, s) ∼=ψ1 (γ̂1, σ̂1, �, ŝ) by Def-

inition 3.2.20. Given (γ1, σ1, acc, s) ⇓d2
(γ2, σ2, acc, skip), by the inductive hypothesis, we have (γ̂1, σ̂1, �,

ŝ) ⇓′
d̂2

(γ̂2, σ̂2, �, skip) and ψ2 such that (γ2, σ2, acc, skip) ∼=ψ2 (γ̂2, σ̂2, �, skip) and d2
∼= d̂2. By Defini-

tion 3.2.20, we have (γ2, σ2) ∼=ψ2
(γ̂2, σ̂2). By Lemma 3.2.17, we have (γ, σ2) ∼=ψ2

(γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂(ê)), γ̂(x̂) = (l̂, t̂y → t̂y), σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)), DecodeFun(ω̂) =

(ŝ, �, p̂), GetFunParamAssign(p̂, ê) = ŝ1, (γ̂, σ̂, �, ŝ1) ⇓′
d̂1

(γ̂1, σ̂1, �, skip), and (γ̂1, σ̂1, �, ŝ) ⇓′
d̂2

(γ̂2, σ̂2, �, skip), we have Σ . (γ̂, σ̂, �, x̂(ê)) ⇓′
f̂c

(γ̂, σ̂2, �, NULL) by Vanilla C rule Function Call.

Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2) and NULL = NULL, by Definition 3.2.17 we have NULL ∼=ψ2

NULL and by Defini-

tion 3.2.20 we have (γ, σ2, acc, NULL) ∼=ψ2 (γ̂, σ̂2, �, NULL). Therefore, we have (γ, σ, acc, x(e)) ⇓fc (γ, σ2,

acc, NULL) ∼=ψ2
(γ̂, σ̂, �, x̂(ê)) ⇓′

f̂c
(γ̂, σ̂2, �, NULL), Π ∼=ψ2

Σ, and fc ∼= f̂c by Definition 3.2.21.

Case Π . (γ, σ, acc, x(e)) ⇓fc1 (γ, σ2, acc, NULL)

Given Π . (γ, σ, acc, x(e)) ⇓fc1 (γ, σ2, acc, NULL) by SMC2 rule Function Call No Return Without Public Side

Effects, we have γ(x) = (l, ty → ty), σ(l) = (ω, ty → ty , 1,
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PermL_Fun(public)), DecodeFun(ω) = (s, 1, p), GetFunParamAssign(p, e) = s1, (γ, σ, acc, s1) ⇓d1
(γ1, σ1,

acc, skip), and (γ1, σ1, acc, s) ⇓d2
(γ2, σ2, acc, skip).

Given (γ̂, σ̂, �, x̂(ê)) and ψ such that (γ, σ, acc, x(e)) ∼=ψ (γ̂, σ̂, �, x̂(ê)), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x(e) ∼=ψ x̂(ê). Given (γ, σ, acc, x(e)) ⇓fc1 (γ, σ2, acc, NULL), by Lemma 3.2.2 we have (l, µ) /∈ x(e).

Therefore, by Lemma 3.2.3 we have x(e) ∼= x̂(ê). By Definition 3.2.10 we have Erase(x(e)) = x̂(Erase(e)) where

x = x̂ and Erase(e) = ê by Definition 3.2.8. Therefore, we have e ∼= ê.

Given γ(x) = (l, ty → ty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, t̂y → t̂y) such that l = l̂ by

ty → ty ∼= t̂y → t̂y by Lemma 3.2.14.

Given σ(l) = (ω, ty → ty , 1,PermL_Fun(public)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by Lemma 3.2.15 we have

σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)) where ω ∼=ψ ω̂.

Given DecodeFun(ω) = (s, 1, p) and ω ∼=ψ ω̂, by Lemma 3.2.47 we have DecodeFun(ω̂) = (ŝ, �, p̂) such that

s ∼= ŝ and p ∼= p̂.

Given GetFunParamAssign(p, e) = s1, p ∼= p̂, and e ∼= ê, by Lemma 3.2.31 we have

GetFunParamAssign(p̂, ê) = ŝ1 where s1
∼=ψ ŝ1.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and s1
∼=ψ ŝ1, we have (γ, σ, acc, s1) ∼=ψ (γ̂, σ̂, �, ŝ1) by Definition 3.2.20. Given (γ, σ,

acc, s1) ⇓d1 (γ1, σ1, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂, �, ŝ1) ⇓′
d̂1

(γ̂1, σ̂1, �, skip) and ψ1

such that (γ1, σ1, acc, skip)∼=ψ1
(γ̂1, σ̂1,�, skip) and d1

∼= d̂1. By Definition 3.2.20, we have (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1).

By Lemma 3.2.17, we have (γ, σ1) ∼=ψ1
(γ̂, σ̂1).

Given (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1) and s ∼= ŝ, by Lemma 3.2.4 we have (γ1, σ1, acc, s) ∼=ψ1

(γ̂1, σ̂1, �, ŝ) by Def-

inition 3.2.20. Given (γ1, σ1, acc, s) ⇓d2 (γ2, σ2, acc, skip), by the inductive hypothesis, we have (γ̂1, σ̂1, �,

ŝ) ⇓′
d̂2

(γ̂2, σ̂2, �, skip) and ψ2 such that (γ2, σ2, acc, skip) ∼=ψ2
(γ̂2, σ̂2, �, skip) and d2

∼= d̂2. By Defini-

tion 3.2.20, we have (γ2, σ2) ∼=ψ2 (γ̂2, σ̂2). By Lemma 3.2.17, we have (γ, σ2) ∼=ψ2 (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂(ê)), γ̂(x̂) = (l̂, t̂y → t̂y), σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)), DecodeFun(ω̂) =

(ŝ, �, p̂), GetFunParamAssign(p̂, ê) = ŝ1, (γ̂, σ̂, �, ŝ1) ⇓′
d̂1

(γ̂1, σ̂1, �, skip), and (γ̂1, σ̂1, �, ŝ) ⇓′
d̂2

(γ̂2, σ̂2, �, skip), we have Σ . (γ̂, σ̂, �, x̂(ê)) ⇓′
f̂c

(γ̂, σ̂2, �, NULL) by Vanilla C rule Function Call.
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Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2) and NULL ∼= NULL, by Lemma 3.2.4 we have (γ, σ2, acc, NULL) ∼=ψ2

(γ̂, σ̂2, �,

NULL). Therefore, we have (γ, σ, acc, x(e)) ⇓fc1 (γ, σ2, acc, NULL) ∼=ψ2 (γ̂, σ̂, �, x̂(ê)) ⇓′
f̂c

(γ̂, σ̂2, �, NULL),

Π ∼=ψ2
Σ, and fc1 ∼= f̂c by Definition 3.2.21.

Case Π . (γ, σ, acc, malloc(e)) ⇓mal (γ, σ2, acc, (l, 0))

Given Π.(γ, σ, acc,malloc(e)) ⇓mal (γ, σ2, acc, (l, 0)) by SMC2 rule Public Malloc, we have Label(e, γ) = public,

acc = 0, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), l = φ(), and σ2 = σ1

[
l →

(
NULL, void∗, n,PermL(Freeable,

void∗,public, n)
])]

.

Given (γ̂, σ̂, �, malloc(ê)) and ψ such that (γ, σ, acc, malloc(e)) ∼=ψ (γ̂, σ̂, �, malloc(ê)), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and malloc(e) ∼=ψ malloc(ê). Given (γ, σ, acc, malloc(e)) ⇓mal (γ, σ2, acc, (l, 0)),

by Lemma 3.2.2 we have (l, µ) /∈ malloc(e). Therefore, by Lemma 3.2.3 we have malloc(e) ∼= malloc(ê). By

Definition 3.2.10 we have Erase(malloc(e)) = malloc(Erase(e)) and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �,

n̂) and ψ1 such that (γ, σ1, acc, n) ∼=ψ1
(γ̂, σ̂1, �, n̂) and d1

∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given Label(e, γ) = public, we have

Label(n, γ) = public, and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ(), l = l̂, and (l, 0) ∼=ψ (l̂, 0).

Given σ2 = σ1

[
l→

(
NULL, void∗, n, PermL(Freeable, void∗, public, n)

)]
, n = n̂, l = l̂, (γ, σ1) ∼=ψ (γ̂, σ̂1), by

Lemma 3.2.7 we have σ̂2 = σ̂1

[
l̂→

(
NULL, void∗, n̂, PermL(Freeable, void∗, public, n̂)

)]
such that (γ, σ2) ∼=ψ

(γ̂, σ̂2).

Given (γ̂, σ̂, �, malloc(ê)), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, n̂), l̂ = φ(), and σ̂2 = σ̂1

[
l̂ →

(
NULL, void∗, n̂,

PermL(Freeable, void∗, public, n̂)
)]

, we have Σ . (γ̂, σ̂, �, malloc(ê)) ⇓′
m̂al

(γ̂, σ̂2, �, (l̂, 0)) by Vanilla C rule

Malloc.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and (l, 0) ∼=ψ (l̂, 0), by Definition 3.2.20 we have (γ, σ2, acc, (l, 0)) ∼=ψ (γ̂, σ̂2, �, (l̂, 0)).
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Therefore, we have (γ, σ, acc, malloc(e)) ⇓mal (γ, σ2, acc, (l, 0)) ∼= (γ̂, σ̂, �, malloc(ê)) ⇓′
m̂al

(γ̂, σ̂2, �, (l̂, 0)),

Π ∼=ψ Σ, and mal ∼= m̂al by Definition 3.2.21.

Case Π . (γ, σ, acc, pmalloc(e, ty)) ⇓malp (γ, σ2, acc, (l, 0))

Given Π . (γ, σ, acc, pmalloc(e, ty)) ⇓malp (γ, σ2, acc, (l, 0)) by SMC2 rule Private Malloc, we have (ty =

private int) ∨ (ty = private float), Label(e, γ) = public, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), acc = 0, l = φ(), and

σ2 = σ1

[
l→

(
NULL, void∗, n, PermL(Freeable, ty ,private, n)

]
.

Given (γ̂, σ̂, �, malloc(ê′)) such that (γ, σ, acc, pmalloc(e, ty)) ∼=ψ (γ̂, σ̂, �, malloc(ê′)), by Definition 3.2.20 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and pmalloc(e, ty) ∼=ψ malloc(ê′). Given (γ, σ, acc, pmalloc(e, ty)) ⇓malp (γ, σ2, acc,

(l, 0)), by Lemma 3.2.2 we have (l, µ) /∈ pmalloc(e, ty). Therefore, by Lemma 3.2.3 we have pmalloc(e, ty) ∼=

malloc(ê′). By Lemma 3.2.6, we have that ê′ = sizeof(Erase(ty)) · Erase(e). By Definition 3.2.6, we have

Erase(ty) = t̂y such that ty ∼= t̂y . By Definition 3.2.10, we have Erase(e) = ê such that e ∼= ê. Therefore,

we have ê′ = sizeof(t̂y) · (ê).

Given ê′ = sizeof(t̂y) · (ê), we have (γ̂, σ̂, �, sizeof(t̂y) · (ê)).

Given sizeof(t̂y), we have (γ̂, σ̂,�, sizeof(t̂y)) ⇓′
t̂y

(γ̂, σ̂, �, n̂1) by Vanilla C rule Size of Type such that n̂1 = τ(t̂y).

Given (γ, σ) ∼=ψ (γ̂, σ̂) and ê ∼= e, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �,

n̂) and ψ1 such that (γ, σ1, acc, n) ∼=ψ1
(γ̂, σ̂1, �, n̂) and d1

∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given Label(e, γ) = public, we have

Label(n, γ) = public, and therefore by Definition 3.2.18 and Definition 3.2.10 we have n = n̂.

Given n̂1 and n̂, we have n̂′ = n̂1 · n̂. Therefore, by Vanilla C rule Multiplication we have (γ̂, σ̂, �, sizeof(t̂y) · (ê))

⇓′
b̂m

(γ̂, σ̂1, �, n̂′).

Given ê′ = sizeof(t̂y) · (ê), (γ̂, σ̂, �, sizeof(t̂y)) ⇓′
t̂y

(γ̂, σ̂, �, n̂1), n̂1 = τ(t̂y), and (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �,

n̂), we have ê′ = τ(t̂y) · n̂ = n̂′.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ(), l = l̂, and (l, 0) ∼= (l̂, 0).
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Given σ2 = σ1

[
l →

(
NULL, void∗, n · τ(ty), PermL(Freeable, void∗, private, n · τ(ty))

]
, n = n̂, τ(t̂y) · n̂ = n̂′,

(γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, ty ∼= t̂y , and n·τ(ty)
τ(ty) = n̂′

τ(t̂y)
, by Lemma 3.2.8 we have σ̂2 = σ̂1

[
l̂→

(
NULL, void∗, n̂′,

PermL(Freeable, void, public, n̂′)
)]

such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, malloc(ê′)), (γ̂, σ̂, �, ê′) ⇓′
d̂1

(γ̂, σ̂1, �, n̂′), l̂ = φ(), EncodePtr(void∗, [1, [(l̂default ,

0)], [1], 1]) = ω̂, and σ̂2 = σ̂1

[
l̂→

(
NULL, void∗, n̂′, PermL(Freeable, void, public, n̂′)

)]
, we have Σ . (γ̂, σ̂, �,

malloc(ê)) ⇓′
m̂al

(γ̂, σ̂2, �, (l̂, 0)) by Vanilla C rule Malloc.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and (l, 0) ∼=ψ (l̂, 0), by Definition 3.2.20 we have (γ, σ2, acc, (l, 0)) ∼=ψ (γ̂, σ̂2, �, (l̂, 0)).

Therefore, we have (γ, σ, acc, pmalloc(e, ty)) ⇓malp (γ, σ2, acc, (l, 0)) ∼=ψ (γ̂, σ̂, �, malloc(ê)) ⇓′
m̂al

(γ̂, σ̂2, �,

(l̂, 0)), Π ∼=ψ Σ, and [malp, d1 ] ∼= [mal , bm, ty , d̂1 ] by Definition 3.2.22.

Case Π . (γ, σ, acc, free(e)) ⇓fre (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, free(e)) ⇓fre (γ, σ2, acc, skip) by SMC2 rule Public Free, we have (γ, σ, acc, e) ⇓d1
(γ,

σ1, acc, x), γ(x) = (l,public bty∗), (bty = int) ∨ (bty = float) ∨ (bty = char) ∨ (bty = void), acc = 0, and

Free(σ1, l, γ) = σ2.

Given (γ̂, σ̂, �, free(ê)) such that (γ, σ, acc, free(e)) ∼=ψ (γ̂, σ̂, �, free(ê)), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and free(e) ∼=ψ free(ê). Given (γ, σ, acc, free(e)) ⇓fre (γ, σ2, acc, skip), by Lemma 3.2.2 we have

(l, µ) /∈ free(e). Therefore, by Lemma 3.2.3 we have free(e) ∼= free(ê). By Definition 3.2.10 we have Erase(free(e)) =

free(Erase(e)) and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �, x̂) and

ψ1 such that (γ, σ1, acc, x) ∼=ψ1 (γ̂, σ̂1, �, x̂) and d1
∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given γ(x) = (l,public bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂,

(l, 0) ∼=ψ (l̂, 0), and public bty∗ ∼= b̂ty∗ by Lemma 3.2.14. By Definition 3.2.13 we have l ∼=ψ l̂.

Given Free(σ1, l, γ) = σ2 and l ∼=ψ l̂, by Lemma 3.2.38 we have Free(σ̂1, l̂, γ̂) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).
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Given (γ̂, σ̂, �, free(ê)), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), and Free(σ̂1, l̂, γ̂) = σ̂2, we have

Σ . (γ̂, σ̂, �, free(ê)) ⇓′
f̂re

(γ̂, σ̂2, �, skip) by Vanilla C rule Free.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, free(e)) ⇓fre (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, free(ê)) ⇓′
f̂re

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and fre ∼= f̂re by

Definition 3.2.21.

Case Π . (γ, σ, acc, pfree(e)) ⇓frep (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, pfree(e)) ⇓frep (γ, σ2, acc, skip) by SMC2 rule Private Free, we have (γ, σ, acc, e)

⇓d1
(γ, σ1, acc, x), γ(x) = (l, private bty∗), acc = 0, (bty = int) ∨ (bty = float), and PFree(σ1, l) = σ2.

Given (γ̂, σ̂, �, free(ê)) such that (γ, σ, acc, pfree(e)) ∼=ψ (γ̂, σ̂, �, free(ê)), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and pfree(e) ∼=ψ free(ê). Given (γ, σ, acc, pfree(e)) ⇓frep (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ pfree(e). Therefore, by Lemma 3.2.3 we have pfree(e) ∼= free(ê). By Definition 3.2.10 we have

Erase(pfree(e)) = free(Erase(e)) and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, x), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, x̂) and

ψ1 such that (γ, σ1, acc, x) ∼=ψ1
(γ̂, σ̂1, �, x̂) and d1

∼= d̂1. Given x 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given γ(x) = (l, private bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂,

(l, 0) ∼=ψ (l̂, 0), and private bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given PFree(γ, σ1, l) = (σ2, l, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), l ∼=ψ l̂, GetLocationSwap(l, j) = l′, ψ2 = ψ[l′], and

SwapMemory(σ̂2, ψ2) = σ̂3, by Lemma 3.2.39 we have Free(σ̂1, l̂, γ̂) = σ̂2, such that (γ, σ2) ∼=ψ2
(γ̂, σ̂2).

Given (γ̂, σ̂, �, free(ê)), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), and Free(σ̂1, l̂) = σ̂2, we have

Σ . (γ̂, σ̂, �, free(ê)) ⇓′
f̂re

(γ̂, σ̂2, �, skip) by Vanilla C rule Free.

Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ2

(γ̂, σ̂2, �, skip). Therefore, we
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have (γ, σ, acc, pfree(e)) ⇓frep (γ, σ2, acc, skip) ∼=ψ2
(γ̂, σ̂, �, free(ê)) ⇓′

f̂re
(γ̂, σ̂2, �, skip), Π ∼=ψ2

Σ, and

frep ∼= f̂re by Definition 3.2.21.

Case Π . (γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip)

Given Π . (γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip) by SMC2 rule Declaration Assignment, we have (γ, σ, acc,

ty x) ⇓d1
(γ1, σ1, acc, skip), and (γ1, σ1, acc, x = e) ⇓d2

(γ1, σ2, acc, skip).

Given (γ̂, σ̂, �, t̂y x̂ = ê) and ψ such that (γ, σ, acc, ty x = e) ∼=ψ (γ̂, σ̂, �, t̂y x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x = e ∼=ψ t̂y x̂ = ê. Given (γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ty x = e. Therefore, by Lemma 3.2.3 we have ty x = e ∼= t̂y x̂ = ê. By Definition 3.2.10 we have

Erase(ty x = e) = Erase(ty) Erase(x) = Erase(e), Erase(ty) = t̂y , Erase(x) = x̂ where x = x̂, and Erase(e) = ê.

Therefore, we have ty ∼= t̂y and e ∼= ê.

Given ty ∼= t̂y and x = x̂, by Definition 3.2.10 we have ty x ∼= t̂y x̂. Given (γ, σ) ∼=ψ (γ̂, σ̂), by Lemma 3.2.4

we have (γ̂, σ̂, �, t̂y x̂) such that (γ̂, σ̂, �, t̂y x̂) ∼=ψ (γ, σ, acc, ty x) by Definition 3.2.20. Given (γ, σ, acc,

ty x) ⇓d1 (γ1, σ1, acc, skip), by the inductive hypothesis we have (γ̂, σ̂, �, t̂y x) ⇓′
d̂1

(γ̂1, σ̂1, �, skip) and ψ1

such that (γ1, σ1, acc, skip) ∼=ψ1
(γ̂1, σ̂1, �, skip). Given pfree(e) /∈ ty x, we have ψ1 = ψ by Definition 3.2.11.

By Definition 3.2.20 we have (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given x = x̂ and e ∼= ê, by Definition 3.2.10 we have x = e ∼= x̂ = ê. Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Lemma 3.2.4

we have (γ̂1, σ̂1, �, x̂ = ê) such that (γ̂1, σ̂1, �, x̂ = ê) ∼=ψ (γ1, σ1, acc, x = e). Given (γ1, σ1, acc, x = e) ⇓d2

(γ1, σ2, acc, skip), by the inductive hypothesis we have (γ̂1, σ̂1, �, x = ê) ⇓′
d̂2

(γ̂1, σ̂2, �, skip) and ψ2 such

that (γ1, σ2, acc, skip) ∼=ψ2
(γ̂1, σ̂2, �, skip). Given pfree(e) /∈ x = e, we have ψ2 = ψ by Definition 3.2.11. By

Definition 3.2.20, we have (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given (γ̂, σ̂, �, t̂y x̂ = ê), (γ̂, σ̂, �, t̂y x) ⇓′
d̂1

(γ̂1, σ̂1, �, skip), and (γ̂1, σ̂1, �, x = ê) ⇓′
d̂2

(γ̂1, σ̂2, �, skip),

we have Σ . (γ̂, σ̂, �, t̂y x̂ = ê) ⇓′
d̂s

(γ̂1, σ̂2, �, skip) by Vanilla C rule Declaration Assignment.

Given (γ1, σ2) ∼=ψ (γ̂1, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂ = ê) ⇓′
d̂s

(γ̂1, σ̂2, �, skip), Π ∼=ψ Σ, and

ds ∼= d̂s by Definition 3.2.21.
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Case Π . (γ, σ, acc, ty x[e1] = e2) ⇓das (γ1, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip).

Case Π . (γ, σ, acc, ty x) ⇓d (γ1, σ1, acc, skip)

Given Π . (γ, σ, acc, ty x) ⇓d (γ1, σ1, acc, skip) by SMC2 rule Public Declaration, we have (ty = public

bty) ∨ (ty = char), acc = 0, l = φ(), γ1 = γ[x → (l, ty)], ω = EncodeVal(ty ,NULL), and σ1 = σ[l → (ω, ty , 1,

PermL(Freeable, ty ,public, 1))].

Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and ty x ∼=ψ t̂y x̂. Given (γ, σ, acc, ty x) ⇓d (γ1, σ1, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ ty x. Therefore, by

Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have Erase(ty x) = Erase(ty) Erase(x), Erase(ty) = t̂y

and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y .

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l, ty)], x = x̂, l = l̂, ty ∼= t̂y , and (γ, σ) ∼=ψ (γ̂, σ̂), by Lemma 3.2.34 we have γ̂1 = γ̂[x̂ →

(l̂, b̂ty)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodeVal(ty ,NULL), and ty ∼= t̂y , by Lemma 3.2.40 we have ω̂ = EncodeVal(b̂ty , NULL) such that

ω ∼=ψ ω̂.

Given σ1 = σ[l→ (ω, ty , 1, PermL(Freeable, ty , public, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂), l = l̂, ω ∼=ψ ω̂, and ty ∼= t̂y , by

Lemma 3.2.35 we have σ̂1 = σ̂[l̂→ (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1))] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, b̂ty x̂), l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, b̂ty)], ω̂ = EncodeVal(b̂ty ,NULL), and σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1,

PermL(Freeable, b̂ty ,public, 1))], we have Σ . (γ̂, σ̂, �, b̂ty x̂) ⇓′
d̂

(γ̂1, σ̂1, �, skip) by Vanilla C rule Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 3.2.20 we have (γ1, σ1, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip). Therefore, we

have (γ, σ, acc, ty x) ⇓d (γ1, σ1, acc, skip) ∼= (γ̂, σ̂, �, b̂ty x̂) ⇓′
d̂

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and d ∼= d̂ by

Definition 3.2.21.
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Case Π . (γ, σ, acc, ty x) ⇓d1 (γ1, σ1, acc, skip)

Given Π . (γ, σ, acc, ty x) ⇓d1 (γ1, σ1, acc, skip) by SMC2 rule Private Declaration, we have ((ty = bty) ∨ (ty =

private bty)) ∧ ((bty = int) ∨ (bty = float)), l = φ(), γ1 = γ[x → (l,private bty)], ω = EncodeVal(ty ,NULL),

and σ1 = σ[l→ (ω,private bty , 1,PermL(Freeable, private bty , private, 1))].

Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and ty x ∼=ψ t̂y x̂. Given (γ, σ, acc, ty x) ⇓d1 (γ1, σ1, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ ty x.

Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have Erase(ty x) = Erase(ty) Erase(x),

Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y . Given ty ∼= t̂y and ((ty =

private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), by Definition 3.2.6 we have bty ∼= b̂ty . Therefore, we

have private bty ∼= b̂ty by Definition 3.2.6.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l,private bty)], x = x̂, l = l̂, private bty , and (γ, σ) ∼= (γ̂, σ̂), by Lemma 3.2.34 we have

γ̂1 = γ̂[x̂→ (l̂, b̂ty)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodeVal(private bty ,NULL), and private bty ∼= b̂ty , by Lemma 3.2.40 we have ω̂ = EncodeVal(b̂ty ,

NULL) such that ω ∼=ψ ω̂.

Given σ1 = σ[l → (ω,private bty , 1, PermL(Freeable, private bty , private, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂), l = l̂, ω ∼=ψ

ω̂, and private bty ∼= b̂ty , by Lemma 3.2.35 we have σ̂1 = σ̂[l̂→ (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1))] such

that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, b̂ty x̂), l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, b̂ty)], ω̂ = EncodeVal(b̂ty ,NULL), and σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1,

PermL(Freeable, b̂ty ,public, 1))], we have Σ . (γ̂, σ̂, �, b̂ty x̂) ⇓′
d̂

(γ̂1, σ̂1, �, skip) by Vanilla C rule Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 3.2.20 we have (γ1, σ1, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip). Therefore, we

have (γ, σ, acc, ty x) ⇓d1 (γ1, σ1, acc, skip) ∼=ψ (γ̂, σ̂, �, b̂ty x̂) ⇓′
d̂

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and d1 ∼= d̂ by

Definition 3.2.21.

Case Π . (γ, σ, acc, ty x) ⇓dp (γ1, σ1, acc, skip)
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Given Π . (γ, σ, acc, ty x) ⇓dp (γ1, σ1, acc, skip) by SMC2 rule Public Pointer Declaration, we have (ty = public

bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))), GetIndirection(∗) = i, acc = 0, l = φ(), γ1 = γ[x

→ (l,public bty∗)], ω = EncodePtr(public bty∗, [1, [(ldefault , 0)], [1], i]), and σ1 = σ[l → (ω,public bty∗, 1,

PermL(Freeable, public bty∗, public, 1))].

Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and ty x ∼=ψ t̂y x̂. Given (γ, σ, acc, ty x) ⇓dp (γ1, σ1, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ ty x.

Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have Erase(ty x) = Erase(ty) Erase(x),

Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y such that ∗ = ∗.

Given GetIndirection(∗) = i and ∗ = ∗, by Lemma 3.2.49 we have GetIndirection(∗) = î such that i = î.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x→ (l,public bty∗)], x = x̂, l = l̂, (γ, σ) ∼=ψ (γ̂, σ̂), and public bty∗ ∼= b̂ty∗, by Lemma 3.2.34 we

have γ̂1 = γ̂[x̂→ (l̂, b̂ty∗)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodePtr(public bty∗, [1, [(ldefault , 0)], [1], i]), public bty∗ ∼= b̂ty∗, i = î, and [1, [(ldefault , 0)], [1],

i] ∼=ψ [1, [(l̂default , 0)], [1], î], by Lemma 3.2.42 we have ω̂ = EncodePtr(t̂y∗, [1, [(l̂default , 0)], [1], î]) such that

ω ∼=ψ ω̂.

Given σ1 = σ[l → (ω, public bty∗, 1, PermL(Freeable, public bty∗,public, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂), l = l̂,

ω ∼=ψ ω̂, and public bty∗ ∼= b̂ty∗, by Lemma 3.2.35 we have σ̂1 = σ̂[l̂→ (ω̂, t̂y , 1, PermL(Freeable, t̂y ,public, 1))]

such that (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given (γ̂, σ̂, �, t̂y x̂), (t̂y = b̂ty∗), GetIndirection(∗) = î, l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, t̂y)], ω̂ = EncodePtr(t̂y∗,

[1, [(l̂default , 0)], [1], î]), and σ̂1 = σ̂[l̂→ (ω̂, t̂y , 1, PermL(Freeable, t̂y , public, 1))], we have Σ . (γ̂, σ̂, �, t̂y x̂)

⇓′
d̂p

(γ̂1, σ̂1, �, skip) by Vanilla C rule Pointer Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 3.2.20 we have (γ1, σ1, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip). Therefore, we

have (γ, σ, acc, ty x) ⇓dp (γ1, σ1, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂) ⇓′
d̂p

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and dp ∼= d̂p by

Definition 3.2.21.
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Case Π . (γ, σ, acc, ty x) ⇓dp1 (γ1, σ1, acc, skip)

Given Π.(γ, σ, acc, ty x) ⇓dp1 (γ1, σ1, acc, skip) by SMC2 rule Private Pointer Declaration, we have ((ty = bty∗)∨

(ty = private bty∗))∧((bty = int)∨(bty = float)), GetIndirection(∗) = i, l = φ(), γ1 = γ[x→ (l,private bty∗)],

ω = EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i]), and σ1 = σ[l → (ω,private bty∗, 1,PermL(Freeable,

private bty∗, private, 1))].

Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and ty x ∼=ψ t̂y x̂. Given (γ, σ, acc, ty x) ⇓dp1 (γ1, σ1, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ ty x.

Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have Erase(ty x) = Erase(ty) Erase(x),

Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y such that ∗ = ∗.

Given ((ty = bty∗)∨(ty = private bty∗))∧((bty = int)∨(bty = float)) and ty ∼= t̂y , we have private bty∗ ∼= b̂ty∗

and bty ∼= b̂ty by Definition 3.2.6.

Given GetIndirection(∗) = i and ∗ = ∗, by Lemma 3.2.49 we have GetIndirection(∗) = î such that i = î.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l,private bty∗)], x = x̂, l = l̂, (γ, σ) ∼=ψ (γ̂, σ̂), and private bty∗ ∼= b̂ty∗, by Lemma 3.2.34

we have γ̂1 = γ̂[x̂→ (l̂, b̂ty∗)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i]), i = î, private bty∗ ∼= b̂ty∗, and [1, [(ldefault ,

0)], [1], i] ∼=ψ [1, [(l̂default , 0)], [1], î], by Lemma 3.2.42 we have ω̂ = EncodePtr(b̂ty∗, [1, [(l̂default , 0)], [1], î]) such

that ω ∼=ψ ω̂.

Given σ1 = σ[l → (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂), private

bty∗ ∼= b̂ty∗, l = l̂, and ω ∼=ψ ω̂, by Lemma 3.2.35 we have σ̂1 = σ̂[l̂ → (ω̂, b̂ty∗, 1, PermL(Freeable,

t̂y ,public, 1))] such that (γ1, σ1) ∼= (γ̂1, σ̂1).

Given (γ̂, σ̂, �, t̂y x̂), (t̂y = b̂ty∗), GetIndirection(∗) = î, l̂ = φ(), γ̂1 = γ̂[x̂→ (l̂, b̂ty∗)], ω̂ = EncodePtr(b̂ty∗,

[1, [(l̂default , 0)], [1], î]), and σ̂1 = σ̂[l̂ → (ω̂, b̂ty∗, 1, PermL(Freeable, t̂y ,public, 1))], we have Σ . (γ̂, σ̂, �, t̂y

x̂) ⇓′
d̂p

(γ̂1, σ̂1, �, skip) by Vanilla C rule Pointer Declaration.
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Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 3.2.20 we have (γ1, σ1, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip). Therefore, we

have (γ, σ, acc, ty x) ⇓dp1 (γ1, σ1, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂) ⇓′
d̂p

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and dp1 ∼= d̂p

by Definition 3.2.21.

Case Π . (γ, σ, acc, x) ⇓r (γ, σ, acc, v)

Given Π . (γ, σ, acc, x) ⇓r (γ, σ, acc, v) by SMC2 rule Read Public Variable, we have γ(x) = (l,public bty),

σ(l) = (ω,public bty , 1,PermL(Freeable, public bty ,public, 1)), and

DecodeVal(public bty , 1, ω) = v.

Given (γ̂, σ̂, �, x̂) such that (γ, σ, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and

x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,public bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by public

bty ∼= b̂ty by Lemma 3.2.14.

Given σ(l) = (ω,public bty , 1, PermL(Freeable, public bty , public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.15 we have σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, bty , public, 1)) where ω ∼=ψ ω̂.

Given DecodeVal(public bty , 1, ω) = v, public bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(bty ,

1, ω̂) = v̂ and v ∼=ψ v̂.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty), σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty , public, 1)), and DecodeVal(b̂ty ,

1, ω̂) = v̂, we have Σ . (γ̂, σ̂, �, x̂) ⇓′r̂ (γ̂, σ̂, �, v̂) by Vanilla C rule Read Variable.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and v ∼=ψ v̂, by Definition 3.2.20 we have (γ, σ, acc, v) ∼=ψ (γ̂, σ̂, �, v̂). Therefore, we

have (γ, σ, acc, x) ⇓r (γ, σ, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂ (γ̂, σ̂, �, v̂), Π ∼=ψ Σ, and r ∼= r̂ by Definition 3.2.21.

Case Π . (γ, σ, acc, x) ⇓r1 (γ, σ, acc, v)

Given Π . (γ, σ, acc, x) ⇓r1 (γ, σ, acc, v) by SMC2 rule Read Public Variable, we have γ(x) = (l, private bty),

σ(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1)), and DecodeVal(private bty , 1, ω) = v.
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Given (γ̂, σ̂, �, x̂) such that (γ, σ, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and

x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,private bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by private

bty ∼= b̂ty by Lemma 3.2.14.

Given σ(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.15 we have σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, bty , public, 1)) where ω ∼=ψ ω̂.

Given DecodeVal(private bty , 1, ω) = v, private bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(bty ,

1, ω̂) = v̂ and v ∼=ψ v̂.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty), σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty , public, 1)), and DecodeVal(b̂ty ,

1, ω̂) = v̂, we have Σ . (γ̂, σ̂, �, x̂) ⇓′r̂ (γ̂, σ̂, �, v̂) by Vanilla C rule Read Variable.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and v ∼=ψ v̂, by Definition 3.2.20 we have (γ, σ, acc, v) ∼=ψ (γ̂, σ̂, �, v̂). Therefore, we

have (γ, σ, acc, x) ⇓r1 (γ, σ, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂ (γ̂, σ̂, �, v̂), Π ∼=ψ Σ, and r1 ∼= r̂ by Definition 3.2.21.

Case Π . (γ, σ, acc, x = e) ⇓w (γ, σ2, acc, skip)

Given Π.(γ, σ, acc, x = e) ⇓w (γ, σ2, acc, skip) by SMC2 rule Public Write Variable, we have Label(e, γ) = public,

(γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), v 6= skip, acc = 0, γ(x) = (l,public bty), and UpdateVal(σ1, l, v,public bty)

= σ2.

Given (γ̂, σ̂, �, x̂ = ê) such that (γ, σ, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓w (γ, σ2, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ x = e.

Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have Erase(x = e) = Erase(x) =

Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼= (γ, σ, acc, e). Given (γ, σ, acc,

e) ⇓d1 (γ, σ1, acc, v), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, v̂) and ψ1 such that (γ, σ1,

acc, v) ∼=ψ1
(γ̂, σ̂1, �, v̂) and d1

∼= d̂1.
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Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip and by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.

Given γ(x) = (l,public bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by public

bty ∼= b̂ty by Lemma 3.2.14.

Given UpdateVal(σ1, l, v,public bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, v ∼=ψ v̂, and public bty ∼= b̂ty , by

Lemma 3.2.52 we have UpdateVal(σ̂1, l̂, v̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty), and UpdateVal(σ̂1, l̂, v̂,

b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′ŵ (γ̂, σ̂2, �, skip) by Vanilla C rule Write.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, x = e) ⇓w (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′ŵ (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and w ∼= ŵ by

Definition 3.2.21.

Case Π . (γ, σ, acc, x = e) ⇓w2 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓w2 (γ, σ2, acc, skip) by SMC2 rule Private Write Variable, we have Label(e, γ) =

private, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), v 6= skip, γ(x) = (l, private bty), and UpdateVal(σ1, l, v, private bty) =

σ2.

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓w2 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have

Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e) by Definition 3.2.20. Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), by the inductive hypothesis we have (γ̂, σ̂, �,

ê) ⇓′
d̂1

(γ̂, σ̂1,�, v̂) and ψ1 such that (γ, σ1, acc, v)∼=ψ1
(γ̂, σ̂1,�, v̂) and d1

∼= d̂1. Given v 6= skip, by Lemma 3.2.1

we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.
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Given v 6= skip and v ∼= v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private bty), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by private

bty ∼= b̂ty by Lemma 3.2.14.

Given UpdateVal(σ1, l, v,private bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, v ∼=ψ v̂, and private bty ∼= b̂ty , by

Lemma 3.2.52 we have UpdateVal(σ̂1, l̂, v̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty), and UpdateVal(σ̂1, l̂, v̂,

b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′ŵ (γ̂, σ̂2, �, skip) by Vanilla C rule Write.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, x = e) ⇓w2 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′ŵ (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and w2 ∼= ŵ by

Definition 3.2.21.

Case Π . (γ, σ, acc, x = e) ⇓w1 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓w1 (γ, σ2, acc, skip) by SMC2 rule Write Private Variable Public Value, we have

Label(e, γ) = public, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), v 6= skip, γ(x) = (l, private bty), and UpdateVal(σ1, l,

encrypt(v), private bty) = σ2.

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓w1 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have

Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �, v̂) and ψ1

such that (γ, σ1, acc, v) ∼=ψ1 (γ̂, σ̂1, �, v̂) and d1
∼= d̂1. Given v 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.
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Given γ(x) = (l, private bty), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by private

bty ∼= b̂ty by Lemma 3.2.14.

Given UpdateVal(σ1, l, encrypt(v),private bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, v ∼=ψ v̂, and private bty ∼= b̂ty ,

by Lemma 3.2.52 we have UpdateVal(σ̂1, l̂, v̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty), and UpdateVal(σ̂1, l̂,

v̂, b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′ŵ (γ̂, σ̂2, �, skip) by Vanilla C rule Write.

Given Π . (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, x = e) ⇓w1 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′ŵ (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and w1 ∼= ŵ by

Definition 3.2.21.

Case Π . (γ, σ, acc, x) ⇓rp (γ, σ, acc, (l1, µ1))

Given Π . (γ, σ, acc, x) ⇓rp (γ, σ, acc, (l1, µ1)) by SMC2 rule Public Pointer Read Single Location, we have γ(x) =

(l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), and DecodePtr(public

bty∗, 1, ω) = [1, [(l1, µ1)], [1], i].

Given (γ̂, σ̂, �, x̂) and ψ such that (γ, σ, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l, public bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), and

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], we have Σ . (γ̂, σ̂, �, x̂) ⇓′r̂p (γ̂, σ̂, �, (l̂1, µ̂1)) by Vanilla C rule
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Pointer Read Location.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and (l1, µ1) ∼=ψ (l̂1, µ̂1), by Definition 3.2.20 we have (γ, σ, acc, (l1, µ1)) ∼=ψ (γ̂, σ̂,

�, (l̂1, µ̂1)). Therefore, we have (γ, σ, acc, x) ⇓rp (γ, σ, acc, (l1, µ1)) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂p (γ̂, σ̂, �, (l̂1, µ̂1)),

Π ∼=ψ Σ, and rp ∼= r̂p by Definition 3.2.21.

Case Π . (γ, σ, acc, x) ⇓rp2 (γ, σ, acc, (l1, µ1))

Given Π . (γ, σ, acc, x) ⇓rp2 (γ, σ, acc, (l1, µ1)) by SMC2 rule Private Pointer Read Single Location, we

have γ(x) = (l, private bty∗), σ(l) = (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1)), and

DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i].

Given (γ̂, σ̂, �, x̂) and ψ such that (γ, σ, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l, private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,private bty∗, 1 PermL(Freeable, private bty∗, private, 1), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], private bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), and

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], we have Σ . (γ̂, σ̂, �, x̂) ⇓′r̂p (γ̂, σ̂, �, (l̂1, µ̂1)) by Vanilla C rule

Pointer Read Location.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and (l1, µ1) ∼=ψ (l̂1, µ̂1), by Definition 3.2.20 we have (γ, σ, acc, (l1, µ1)) ∼=ψ (γ̂, σ̂, �,

(l̂1, µ̂1)). Therefore, we have (γ, σ, acc, x) ⇓rp2 (γ, σ, acc, (l1, µ1)) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂p (γ̂, σ̂, �, (l̂1, µ̂1)),

Π ∼=ψ Σ, and rp2 ∼= r̂p by Definition 3.2.21.
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Case Π . (γ, σ, acc, x) ⇓rp1 (γ, σ, acc, [α, l, j, i])

Given Π . (γ, σ, acc, x) ⇓rp1 (γ, σ, acc, [α, l, j, i]) by SMC2 rule Private Pointer Read Multiple Locations, we have

γ(x) = (l,private bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗,

private, α)), and DecodePtr(private bty∗, α, ω) = [α, l, j, i].

Given (γ̂, σ̂, �, x̂) and ψ such that (γ, σ, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l,

j, i], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where

[α, l, j, i] ∼=ψ [1, (l̂1, µ̂1), [1], i] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), and

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], we have Σ . (γ̂, σ̂, �, x̂) ⇓′r̂p (γ̂, σ̂, �, (l̂1, µ̂1)) by Vanilla C rule

Pointer Read Location.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and [α, l, j, i] ∼=ψ (l̂1, µ̂1), by Definition 3.2.20 we have (γ, σ, acc, [α, l, j, i]) ∼=ψ (γ̂, σ̂,

�, (l̂1, µ̂1)). Therefore, we have (γ, σ, acc, x) ⇓rp1 (γ, σ, acc, [α, l, j, i]) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂p (γ̂, σ̂, �, (l̂1, µ̂1)),

Π ∼=ψ Σ, and rp1 ∼= r̂p by Definition 3.2.21.

Case Π . (γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip) by SMC2 rule Public Pointer Write Single Location, we have

Label(e, γ) = public, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, (le, µe)), γ(x) = (l,public bty∗), σ1(l) = (ω, public bty∗,

1, PermL(Freeable, public bty∗, public, 1)), acc = 0, DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], and

UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], public bty∗) = (σ2, 1).
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Given (γ̂, σ̂,�, x̂ = ê) such that (γ, σ, acc, x = e)∼= (γ̂, σ̂,�, x̂ = ê), by Definition 3.2.20 we have (γ, σ) ∼= (γ̂, σ̂)

and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip), by Lemma 3.2.2 we have (l, µ) /∈ x = e.

Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have Erase(x = e) = Erase(x) =

Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, (le, µe)), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1,

�, (le, µ̂e)) and ψ1 such that (γ, σ1, acc, (le, µe)) ∼=ψ1 (γ̂, σ̂1, �, (l̂e, µ̂e)) and d1
∼= d̂1. Given (le, µe) 6= skip, by

Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and (le, µe) ∼=ψ (l̂e, µ̂e).

Given γ(x) = (l,public bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i],public bty∗) = (σ2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), (l, 0) ∼=ψ (l̂, 0), public

bty∗ ∼= b̂ty∗, and [1, [(le, µe)], [1], i] ∼=ψ [1, [(l̂e, µ̂e)], [1], î], by Lemma 3.2.54 we have UpdatePtr(σ̂, (l̂, 0), [1,

[(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], and UpdatePtr(σ̂1,

(l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′ŵp (γ̂, σ̂2, �, skip) by Vanilla C rule

Pointer Assign Location.

Given (γ, σ2) ∼=ψ (γ, σ2), by Definition 3.2.20 we have (γ, σ2, acc, skip)∼=ψ (γ, σ2, acc, skip). Therefore, we have

(γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip) ∼=ψ (γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip), Π ∼=ψ Σ, and wp ∼= ŵp by

Definition 3.2.21.
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Case Π . (γ, σ, acc, x = e) ⇓wp2 (γ, σ1, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓wp2 (γ, σ1, acc, skip) by SMC2 rule Private Pointer Write Multiple Locations,

we have (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, [α, l, j, i]), γ(x) = (l, private bty∗), (bty = int) ∨ (bty = float), and

UpdatePtr(σ1, (l, 0), [α, l, j, i],private bty∗) = (σ2, 1).

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓wp2 (γ, σ1, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have

Erase(x = e) = x̂ = ê where x = x̂ and e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, [α, l, j, i]), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �,

(l̂e, µ̂e)) and ψ1 such that (γ, σ1, acc, [α, l, j, i]) ∼=ψ1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and d1

∼= d̂1. Given [α, l, j, i] 6= skip, by

Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [α, l, j, i] ∼=ψ (l̂e, µ̂e).

Given γ(x) = (l,private bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given UpdatePtr(σ, (l, 0), [α, l, j, i]) = (σ1, 1), [α, l, j, i] ∼=ψ (l̂e, µ̂e), private bty∗ ∼= b̂ty∗, and (γ, σ) ∼=ψ (γ̂, σ̂),

(l, 0) ∼=ψ (l̂, 0), by Lemma 3.2.54 we have UpdatePtr(σ̂, (l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1) such that

(γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], and UpdatePtr(σ̂1,

(l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′ŵp (γ̂, σ̂2, �, skip) by Vanilla C rule

Pointer Assign Location.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, x = [α, l, j, i]) ⇓wp2 (γ, σ1, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′ŵp (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and

wp2 ∼= ŵp by Definition 3.2.21.

Case Π . (γ, σ, acc, x = e) ⇓wp1 (γ, σ2, acc, skip)
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Given Π . (γ, σ, acc, x = e) ⇓wp1 (γ, σ2, acc, skip) by SMC2 rule Private Pointer Assign Single Location, we have

γ(x) = (l, private bty∗), (bty = int)∨ (bty = float), (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, (le, µe)), σ1(l) = (ω, private

bty∗, α, PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, i], Label(e, γ)

= public, and UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], private bty∗) = (σ2, 1).

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓wp1 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have

Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l, private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, (le, µe)), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1,

�, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, acc, (le, µe)) ∼=ψ1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and d1

∼= d̂1. Given (le, µe) 6= skip, by

Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and (le, µe) ∼=ψ (l̂e, µ̂e).

Given σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

i], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j,

i] ∼=ψ [1, (l̂1, µ̂1), [1], i] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i],private bty∗) = (σ2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), (l, 0) ∼=ψ (l̂, 0),

private bty∗ ∼= b̂ty∗, and [1, [(le, µe)], [1], i] ∼=ψ [1, [(l̂e, µ̂e)], [1], î], by Lemma 3.2.54 we have UpdatePtr(σ̂, (l̂, 0),

[1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], and UpdatePtr(σ̂1,

(l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′ŵp (γ̂, σ̂2, �, skip) by Vanilla C

rule Pointer Assign Location.
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Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, x = e) ⇓wp1 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′ŵp (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wp1 ∼= ŵp by

Definition 3.2.21.

Case Π . (γ, σ, acc, ∗x) ⇓rdp (γ, σ, acc, v)

Given Π . (γ, σ, acc, ∗x) ⇓rdp (γ, σ, acc, v) by SMC2 rule Private Pointer Dereference Single Location, we have

γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), DecodePtr(public

bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], and DerefPtr(σ,public bty , (l1, µ1)) = (v, 1).

Given (γ̂, σ̂,�, ∗x̂) and ψ such that (γ, σ, acc, ∗x)∼=ψ (γ̂, σ̂,�, ∗x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and ∗x ∼=ψ ∗x̂. Given (γ, σ, acc, ∗x) ⇓rdp (γ, σ, acc, v), by Lemma 3.2.2 we have (l, µ) /∈ ∗x. Therefore, by

Lemma 3.2.3 we have ∗x ∼= ∗x̂. By Definition 3.2.10 we have Erase(∗x) = ∗x̂ where x = x̂.

Given γ(x) = (l,public bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14. Therefore, by Definition 3.2.6 we have bty ∼= b̂ty .

Given σ(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ1).

Given DerefPtr(σ,public bty , (l1, µ1)) = (v, 1), (γ, σ) ∼=ψ (γ̂, σ̂), bty ∼= b̂ty , and (l1, µ1) ∼=ψ (l̂1, µ̂1), by Lemma

3.2.58 we have DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1) such that v ∼=ψ v̂.

Given (γ̂, σ̂, �, ∗x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), DecodeVal(b̂ty∗,

1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], and DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1), we have Σ . (γ̂, σ̂, �, ∗x̂) ⇓′
r̂dp

(γ̂, σ̂, �, v̂) by

Vanilla C rule Pointer Dereference.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and v ∼=ψ v̂, by Definition 3.2.20 we have (γ, σ, acc, v) ∼=ψ (γ̂, σ̂, �, v̂). Therefore, we have

(γ, σ, acc, ∗x) ⇓rdp (γ, σ, acc, v) ∼=ψ (γ̂, σ̂, �, ∗x̂) ⇓′
r̂dp

(γ̂, σ̂, �, v̂), Π ∼=ψ Σ, and rdp ∼= r̂dp by Definition 3.2.21.
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Case Π . (γ, σ, acc, ∗x) ⇓rdp1 (γ, σ, acc, (l2, µ2))

Given Π . (γ, σ, acc, ∗x) ⇓rdp1 (γ, σ, acc, (l2, µ2)) by SMC2 rule Public Pointer Dereference Single Loca-

tion Higher Level Indirection, we have γ(x) = (l,public bty∗), σ(l) = (ω,public bty∗, 1, PermL(Freeable,

public bty∗,public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], i > 1, and DerefPtrHLI(σ,public

bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 1).

Given (γ̂, σ̂,�, ∗x̂) and ψ such that (γ, σ, acc, ∗x)∼=ψ (γ̂, σ̂,�, ∗x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and ∗x ∼=ψ ∗x̂. Given (γ, σ, acc, ∗x) ⇓rdp1 (γ, σ, acc, (l2, µ2)), by Lemma 3.2.2 we have (l, µ) /∈ ∗x. Therefore, by

Lemma 3.2.3 we have ∗x ∼= ∗x̂. By Definition 3.2.10 we have Erase(∗x) = ∗x̂ where x = x̂.

Given γ(x) = (l,public bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14. Therefore, by Definition 3.2.6 we have bty ∼= b̂ty .

Given σ(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, 0)], [1], i], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], î] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given i > 1 and i = î, we have î > 1.

Given DerefPtrHLI(σ,public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i−1], 1), (γ, σ) ∼=ψ (γ̂, σ̂), (l1, µ1) ∼=ψ (l̂1, µ̂1),

bty ∼= b̂ty , and i = î, by Lemma 3.2.59, we have DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 1) such

that [1, [(l2, µ2)], [1], i− 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1] and (l2, µ2) ∼=ψ (l̂2, µ̂2).

Given (γ̂, σ̂, �, ∗x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗,

1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], î > 1, and DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î − 1], 1), we have

Σ . (γ̂, σ̂, �, ∗x̂) ⇓′
r̂dp1

(γ̂, σ̂, �, (l̂2, µ̂2)) by Vanilla C rule Pointer Dereference Higher Level Indirection.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and (l2, µ2) ∼=ψ (l̂2, µ̂2), by Definition 3.2.20 we have (γ, σ, acc, (l2, µ2)) ∼=ψ (γ̂, σ̂, �,

(l̂2, µ̂2)). Therefore, we have (γ, σ, acc, ∗x) ⇓rdp1 (γ, σ, acc, (l2, µ2)) ∼=ψ (γ̂, σ̂, �, ∗x̂) ⇓′
r̂dp1

(γ̂, σ̂, �, (l̂2, µ̂2)),
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Π ∼=ψ Σ, and rdp1 ∼= r̂dp1 by Definition 3.2.21.

Case Π . (γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v)

Given Π . (γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v) by SMC2 rule Private Pointer Dereference, we have γ(x) =

(l,private bty∗), (bty = int)∨(bty = float), σ(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗,private, α)),

DecodePtr(private bty∗, α, ω) = [α, l, j, 1], and Retrieve_vals(α, l, j, private bty , σ) = (v, 1).

Given (γ̂, σ̂,�, ∗x̂) and ψ such that (γ, σ, acc, ∗x)∼=ψ (γ̂, σ̂,�, ∗x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and ∗x ∼=ψ ∗x̂. Given (γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v), by Lemma 3.2.2 we have (l, µ) /∈ ∗x. Therefore, by

Lemma 3.2.3 we have ∗x ∼= ∗x̂. By Definition 3.2.10 we have Erase(∗x) = ∗x̂ where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14. Therefore, by Definition 3.2.6 we have bty ∼= b̂ty .

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

1], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, 1]

∼=ψ [1, (l̂1, µ̂1), [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given Retrieve_vals(α, l, j, private bty , σ) = (v, 1), DeclassifyPtr([α, l, j, 1], private bty∗) = (l1, µ1), (l1, µ1)

∼=ψ (l̂1, µ̂1), (γ, σ) ∼=ψ (γ̂, σ̂), and private bty ∼= b̂ty , by Lemma 3.2.60 we have DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1)

such that v ∼=ψ v̂.

Given (γ̂, σ̂, �, ∗x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗,

1, ω̂) = [1, [(l̂1, µ1)], [1], 1], and DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1), we have Σ . (γ̂, σ̂, �, ∗x̂) ⇓′
r̂dp

(γ̂, σ̂, �, v̂)

by Vanilla C rule Pointer Dereference.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and v ∼=ψ v̂, by Definition 3.2.20 we have (γ, σ, acc, v) ∼=ψ (γ̂, σ̂, �, v̂). Therefore,

we have (γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v) ∼=ψ (γ̂, σ̂, �, ∗x̂) ⇓′
r̂dp

(γ̂, σ̂, �, v̂), Π ∼=ψ Σ, and rdp2 ∼= r̂dp by

Definition 3.2.21.
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Case Π . (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l′, j′, i− 1])

Given Π . (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l′, j′, i− 1]) by SMC2 rule Private Pointer Dereference Higher

Level Indirection, we have γ(x) = (l,private bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω, private bty∗, α,

PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, i], i > 1, and

DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l′, j′), 1).

Given (γ̂, σ̂,�, ∗x̂) and ψ such that (γ, σ, acc, ∗x)∼=ψ (γ̂, σ̂,�, ∗x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and ∗x ∼=ψ ∗x̂. Given (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l′, j′, i− 1]), by Lemma 3.2.2 we have (l, µ) /∈ ∗x.

Therefore, by Lemma 3.2.3 we have ∗x ∼= ∗x̂. By Definition 3.2.10 we have Erase(∗x) = ∗x̂ where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j, i],

private bty∗) = (l1, 0), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [α, l, j, i] ∼=ψ

[1, (l̂1, 0), [1], i] such that (l1, 0) ∼=ψ (l̂1, 0) and i = î.

Given i > 1 and i = î, we have î > 1.

Given DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l′, j′), 1), i = î, (γ, σ) ∼=ψ (γ̂, σ̂), DeclassifyPtr([α, l,

j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), DeclassifyPtr([α′, l′, j
′
, i− 1], private bty∗) = (l2, µ2), and

private bty∗ ∼= b̂ty∗, by Lemma 3.2.57 we have DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 1) such

that [α′, l′, j′, i− 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1] and (l2, µ2) ∼=ψ (l̂2, µ̂2).

Given (γ̂, σ̂,�, ∗x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1,

ω̂) = [1, [(l̂1, µ1)], [1], î], î > 1, σ̂(l̂1) = (ω̂1, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), and DecodeVal(b̂ty∗,

1, ω̂1) = [1, [(l̂2, µ̂2)], [1], î − 1], we have Σ . (γ̂, σ̂, �, ∗x̂) ⇓′
r̂dp1

(γ̂, σ̂, �, (l̂2, µ̂2)) by Vanilla C rule Pointer

Dereference Higher Level Indirection.
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Given (γ, σ) ∼=ψ (γ̂, σ̂) and [α′, l′, j′, i− 1] ∼=ψ (l̂2, µ̂2), by Definition 3.2.20 we have (γ, σ, acc, [α′, l′, j′, i −1])

∼=ψ (γ̂, σ̂,�, (l̂2, µ̂2)). Therefore, we have (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l′, j′, i−1])∼=ψ (γ̂, σ̂,�, ∗x̂) ⇓′
r̂dp1

(γ̂, σ̂, �, (l̂2, µ̂2)), Π ∼=ψ Σ, and rdp3 ∼= r̂dp1 by Definition 3.2.21.

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp (γ, σ2, acc, skip) by SMC2 rule Public Pointer Dereference Write Public

Value, we have (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), v 6= skip, γ(x) = (l,public bty∗), σ1(l) = (ω,public bty∗, 1,

PermL(Freeable, public bty∗,public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1],

UpdateOffset(σ1, (l1, µ1), v,public bty) = (σ2, 1), Label(e, γ) = public, and acc = 0.

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, acc, ∗x = e) ⇓wdp (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By Definition 3.2.10 we have

Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �, v̂) and ψ1

such that (γ, σ1, acc, v) ∼=ψ1 (γ̂, σ̂1, �, v̂) and d1
∼= d̂1. Given v 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,public bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).
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Given UpdateOffset(σ1, (l1, µ1), v,public bty) = (σ2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), (l1, µ1) ∼=ψ (l̂1, µ̂1), public bty ∼=

b̂ty , and v ∼=ψ v̂, by Lemma 3.2.53 we have UpdateOffset(σ̂1, (l̂1, µ̂1), v̂, b̂ty) = (σ̂2, 1) such that (γ, σ2) ∼=ψ

(γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, v̂), v̂ 6= skip. γ̂(x) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], and UpdateOffset(σ̂1, (l̂1,

µ̂1), v̂, b̂ty) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp

(γ̂, σ̂2, �, skip) by Vanilla C rule Pointer Dereference

Write Value.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, ∗x = e) ⇓wdp (γ, σ2, acc, skip)∼=ψ (γ̂, σ̂,�, ∗x̂ = ê) ⇓′
ŵdp

(γ̂, σ̂2,�, skip), Π ∼=ψ Σ, and wdp ∼= ŵdp

by Definition 3.2.21.

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ2, acc, skip) by SMC2 rule Public Pointer Dereference Write Higher Level

Indirection, we have acc = 0, (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, (le, µe)), γ(x) = (l,public bty∗), σ1(l) = (ω, public

bty∗, 1, PermL(Freeable, public bty∗,public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], i > 1,

Label(e, γ) = public, and UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1], public bty∗) = (σ2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By Definition 3.2.10 we have

Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼= (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, (le, µe)), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1,

�, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, acc, (le, µe)) ∼=ψ1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and d1

∼= d̂1. Given (le, µe) 6= skip, by

Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and (le, µe) ∼=ψ (l̂e, µ̂e).

Given γ(x) = (l,public bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

196



Given σ1(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given i > 1 and i = î, we have î > 1.

Given UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i − 1]) = (σ2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), (l1, µ1) ∼=ψ (l̂1, µ̂1), public

bty∗ ∼= b̂ty∗, and [1, [(le, µe)], [1], 1] ∼=ψ [1, [(l̂e, µ̂e)], [1], 1], by Lemma 3.2.54 we have UpdatePtr(σ̂1, s(l̂1, µ̂1),

[1, [(l̂e, µ̂e)], [1], i], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], î > 1, and UpdatePtr(σ̂1,

(l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp1

(γ̂, σ̂2, �, skip) by Vanilla C

rule Pointer Dereference Write Higher Level Indirection.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp1

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and

wdp1 ∼= ŵdp1 by Definition 3.2.21.

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ2, acc, skip) by SMC2 rule Private Pointer Dereference Write Higher

Level Indirection, we have γ(x) = (l,private bty∗), (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, (le, µe)), σ1(l) = (ω,

private bty∗, α, PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, i], and

UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i− 1], private bty∗) = (σ2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By Definition 3.2.10 we have

Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.
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Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, (le, µe)), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1,

�, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, acc, (le, µe)) ∼=ψ1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and d1

∼= d̂1. Given (le, µe) 6= skip, by

Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and (le, µe) ∼=ψ (l̂e, µ̂e).

Given σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α,

l, j, i], private bty∗) = (l1, 0), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], i] where [α, l, j,

i] ∼=ψ [1, (l̂1, 0), [1], î] such that (l1, 0) ∼=ψ (l̂1, 0) and i = î.

Given UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i − 1],private bty∗) = (σ2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1),

private bty∗ ∼= b̂ty∗, DeclassifyPtr([α, l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), and [αe, le, je, i −

1] ∼= [1, [(l̂e, µ̂e)], [1], î−1], by Lemma 3.2.56 we have UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î−1], b̂ty∗) = (σ̂2, 1)

such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], î > 1, and UpdatePtr(σ̂1,

(l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp1

(γ̂, σ̂2, �, skip) by Vanilla C

rule Pointer Dereference Write Higher Level Indirection.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp1

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and

wdp2 ∼= ŵdp1 by Definition 3.2.21.

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ2, acc, skip) by SMC2 rule Private Pointer Dereference Write Private

Value, we have γ(x) = (l,private bty∗), (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), v 6= skip, σ1(l) = (ω,private bty∗, α,
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PermL(Freeable, private bty∗,private, α)), Label(e, γ) = private, (bty = int)∨(bty = float), DecodePtr(private

bty∗, α, ω) = [α, l, j, 1], acc = 0, and UpdatePriv(σ1, α, l, j, private bty , v) = (σ2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By Definition 3.2.10 we have

Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �, v̂) and ψ1

such that (γ, σ1, acc, v) ∼=ψ1
(γ̂, σ̂1, �, v̂) and d1

∼= d̂1. Given v 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.

Given v 6= skip and v ∼= v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

1], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, 1]

∼=ψ [1, (l̂1, µ̂1), [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given UpdatePriv(σ1, α, l, j, private bty , v) = (σ2, 1) (γ, σ1) ∼=ψ (γ̂, σ̂1), private bty ∼= b̂ty , DeclassifyPtr([α,

l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), private bty∗ ∼= t̂y , and v ∼=ψ v̂, by Lemma 3.2.55 we have

UpdateOffset(σ̂1, (l̂1, µ̂1), v̂, b̂ty) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗,

1, PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], and UpdateOffset(σ̂1,

(l̂1, µ̂1), v̂, b̂ty) = (σ̂2, 1), we have Σ. (γ̂, σ̂,�, ∗x̂ = ê) ⇓′
ŵdp

(γ̂, σ̂2,�, skip) by Vanilla C rule Pointer Dereference

Write Value.
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Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and

wdp3 ∼= ŵdp by Definition 3.2.21.

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ2, acc, skip) by SMC2 rule Private Pointer Dereference Write Public

Value, we have Label(e, γ) = public, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), v 6= skip, acc = 0, γ(x) = (l,private

bty∗), (bty = int) ∨ (bty = float), σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗,private, α)),

DecodePtr(private bty∗, α, ω) = [α, l, j, 1], and UpdatePriv(σ1, α, l, j, private bty , encrypt(v)) = (σ2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By Definition 3.2.10 we have

Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e) by Definition 3.2.20. Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, v), by the inductive hypothesis we have (γ̂, σ̂, �,

ê) ⇓′
d̂1

(γ̂, σ̂1,�, v̂) and ψ1 such that (γ, σ1, acc, v)∼=ψ1 (γ̂, σ̂1,�, v̂) and d1
∼= d̂1. Given v 6= skip, by Lemma 3.2.1

we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂. Given Label(e2, γ) = public, we

have Label(v, γ) = public and therefore v = v̂ by Definition 3.2.18 and Definition 3.2.10.

Given v 6= skip and v ∼= v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

1], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, 1]
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∼=ψ [1, (l̂1, µ̂1), [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given v = v̂, by Definition 3.2.18 we have encrypt(v) ∼=ψ v̂. Given UpdatePriv(σ1, α, l, j, private bty ,

encrypt(v)) = (σ2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), DeclassifyPtr([α, l, j, i], private bty∗) = (l1, µ1) , (l1, µ1) ∼=ψ

(l̂1, µ1), private bty ∼= b̂ty , and v ∼=ψ v̂, by Lemma 3.2.55 we have UpdateOffset(σ̂1, (l̂1, µ̂1), v̂, b̂ty) = (σ̂2, 1)

such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], and UpdateOffset(σ̂1, (l̂1,

µ̂1), v̂, b̂ty) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp

(γ̂, σ̂2, �, skip) by Vanilla C rule Pointer Dereference

Write Value.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and

wdp4 ∼= ŵdp by Definition 3.2.21.

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ2, acc, skip) by SMC2 rule Private Pointer Dereference Write Higher Level

Indirection Multiple Locations, we have γ(x) = (l,private bty∗), (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, [αe, le, je, i− 1]),

σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), Label(e, γ) = private, acc = 0,

DecodePtr(private bty∗, α, ω) = [α, l, j, i], i > 1, and UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i − 1], private

bty∗) = (σ2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By Definition 3.2.10 we have

Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ and private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,
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acc, e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, [αe, le, je, i− 1]), by the inductive hypothesis we have (γ̂, σ̂, �,

ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, acc, [αe, le, je, i− 1]) ∼=ψ1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and d1

∼= d̂1.

Given [αe, le, je, i− 1] 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1)

and [αe, le, je, i− 1] ∼=ψ [1, [(l̂e, µ̂e)], [1], î− 1].

Given σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

i], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j,

i] ∼=ψ [1, (l̂1, µ̂1), [1], i] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given i > 1 and i = î, we have î > 1.

Given UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i − 1], private bty∗) = (σ2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), private

bty∗ ∼= b̂ty∗, DeclassifyPtr([α, l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), and [αe, le, je, i − 1] ∼=ψ

[1, [(l̂e, µ̂e)], [1], î − 1], by Lemma 3.2.56 we have UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î − 1], b̂ty∗) = (σ̂2, 1)

such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], î > 1, and UpdatePtr(σ̂1,

(l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp1

(γ̂, σ̂2, �, skip) by Vanilla C

rule Pointer Dereference Write Higher Level Indirection.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we

have (γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê) ⇓′
ŵdp1

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and

wdp5 ∼= ŵdp1 by Definition 3.2.21.

Case Π . (γ, σ, acc, ++ x) ⇓pin (γ, σ1, acc, v1)

Given Π . (γ, σ, acc, ++ x) ⇓pin (γ, σ1, acc, v1) by SMC2 rule Pre-Increment Public Variable, we have acc = 0,

γ(x) = (l,public bty), σ(l) = (ω,public bty , 1, PermL(Freeable, public bty ,public, 1)), DecodeVal(public

bty , 1, ω) = v, v1 =public v +public 1, and UpdateVal(σ, l, v1, public bty) = σ1.
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Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,public bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,public bty , 1, PermL(Freeable, public bty , public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.15 we have σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, bty , public, 1)) where ω ∼=ψ ω̂.

Given DecodeVal(public bty , 1, ω) = v, public bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(bty ,

1, ω̂) = v̂ and v ∼=ψ v̂.

Given v1 =public v +public 1 and v ∼=ψ v̂, by Lemma 3.2.22 we have v̂1 = v̂ + 1 such that v1
∼=ψ v̂1.

Given UpdateVal(σ, l, v1,public bty) = σ1, public bty ∼= b̂ty (γ, σ) ∼=ψ (γ̂, σ̂), l = l̂, and v1
∼=ψ v̂1, by

Lemma 3.2.52 we have UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1 such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x̂) = (l̂, b̂ty), σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty , public, 1)), DecodeVal(b̂ty ,

1, ω̂) = v̂, v̂1 = v̂ + 1, and UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1, we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in

(γ̂, σ̂1, �, v̂1) by

Vanilla C rule Pre-Increment Variable.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v1
∼=ψ v̂1, by Definition 3.2.20 we have (γ, σ1, acc, v1) ∼=ψ (γ̂, σ̂1, �, v̂1). Therefore,

we have (γ, σ, acc, ++ x) ⇓pin (γ, σ1, acc, v1) ∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in

(γ̂, σ̂1, �, v̂1), Π ∼=ψ Σ, and pin ∼= p̂in

by Definition 3.2.21.

Case Π . (γ, σ, acc, ++ x) ⇓pin1 (γ, σ1, acc, v1)

Given Π . (γ, σ, acc, ++ x) ⇓pin1 (γ, σ1, acc, v1) by SMC2 rule Pre-Increment Private Variable, we have

acc = 0, γ(x) = (l,private bty), (bty = int) ∨ (bty = float), σ(l) = (ω,private bty , 1, PermL(Freeable,

private bty ,private, 1)), DecodeVal(private bty , 1, ω) = v, v1 =private v+private encrypt(1), and UpdateVal(σ, l,

v1,private bty) = σ1.
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Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,private bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,private bty , 1, PermL(Freeable, private bty , private, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.15 we have σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, bty , public, 1)) where ω ∼=ψ ω̂.

Given DecodeVal(private bty , 1, ω) = v, private bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(b̂ty ,

1, ω̂) = v̂ and v ∼=ψ v̂.

Given encrypt(1), by Definition 3.2.18 we have encrypt(1) ∼=ψ 1. Given v1 =private v +private encrypt(1) and

v ∼=ψ v̂, by Lemma 3.2.22 we have v̂1 = v̂ + 1 such that v1
∼=ψ v̂1.

Given UpdateVal(σ, l, v1,private bty) = σ1, (γ, σ) ∼=ψ (γ̂, σ̂), l = l̂, private bty ∼= b̂ty , and v1
∼=ψ v̂1, by

Lemma 3.2.52 we have UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1 such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x̂) = (l̂, b̂ty), σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty , public, 1)), DecodeVal(b̂ty ,

1, ω̂) = v̂, v̂1 = v̂ + 1, and UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1, we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in

(γ̂, σ̂1, �, v̂1) by

Vanilla C rule Pre-Increment Variable.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v1
∼=ψ v̂1, by Definition 3.2.20 we have (γ, σ1, acc, v1) ∼=ψ (γ̂, σ̂1, �, v̂1). Therefore,

we have (γ, σ, acc, ++ x) ⇓pin1 (γ, σ1, acc, v1) ∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in

(γ̂, σ̂1, �, v̂1), Π ∼=ψ Σ, and

pin1 ∼= p̂in by Definition 3.2.21.

Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2))

Given Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)) by SMC2 rule Pre-Increment Public Pointer Single Location,

we have acc = 0, γ(x) = (l,public bty∗), σ(l) = (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1)),

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ), and
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UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1],public bty∗) = (σ1, 1).

Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,public bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ), (l1, µ1) ∼=ψ (l̂1, µ̂1), public bty ∼= b̂ty , (γ, σ) ∼=ψ

(γ̂, σ̂), by Lemma 3.2.50 we have GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂) = ((l̂2, µ̂2), 1) such that (l2, µ2) ∼=ψ (l̂2, µ̂2).

By Definition 3.2.14 we have [α, l′, j, 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1].

Given UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1],public bty∗) = (σ1, 1), (γ, σ) ∼=ψ (γ̂, σ̂), (l, 0) ∼=ψ (l̂, 0), public

bty∗ ∼= b̂ty∗, and [1, [(l2, µ2)], [1], 1] ∼=ψ [1, [(l̂2, µ2)], [1], 1], by Lemma 3.2.54 we have UpdatePtr(σ̂, (l̂, 0), [1,

[(l̂2, µ̂2)], [1], i], b̂ty∗) = (σ̂1, 1) such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)),

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty)), and UpdatePtr(σ̂,

(l̂, 0), [1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) = (σ̂1, 1), we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in2

(γ̂, σ̂1, �, (l̂2, µ̂2)) by Vanilla C

rule Pre-Increment Pointer.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and (l2, µ2) ∼=ψ (l̂2, µ̂2), by Definition 3.2.20 we have (γ, σ1, acc, (l2, µ2)) ∼=ψ (γ̂, σ̂1,

�, (l̂2, µ̂2)). Therefore, we have (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)) ∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in2

(γ̂, σ̂1,

�, (l̂2, µ̂2)), Π ∼=ψ Σ, and pin2 ∼= p̂in2 by Definition 3.2.21.

Case Π . (γ, σ, acc, ++ x) ⇓pin3 (γ, σ1, acc, (l2, µ2))
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This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓pin6 (γ, σ1, acc, (l2, µ2))

Given Π . (γ, σ, acc, ++ x) ⇓pin6 (γ, σ1, acc, (l2, µ2)) by SMC2 rule Pre-Increment Private Pointer Single Location,

we have acc = 0, γ(x) = (l,private bty∗), σ(l) = (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1)),

DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], GetLocation((l1, µ1), τ(private bty), σ) = ((l2, µ2), 1), and

UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1],private bty∗) = (σ1, 1).

Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ and private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], private bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44

we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given ((l2, µ2), 1) = GetLocation((l1, µ1), τ(private bty), σ), (l1, µ1) ∼=ψ (l̂1, µ̂1), private bty ∼= b̂ty , (γ, σ) ∼=ψ

(γ̂, σ̂), by Lemma 3.2.50 we have GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂) = ((l̂2, µ̂2), 1) such that (l2, µ2) ∼=ψ (l̂2, µ̂2).

By Definition 3.2.14 we have [1, [(l2, µ2)], [1], 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1].

Given UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1],private bty∗) = (σ1, 1), (γ, σ) ∼=ψ (γ̂, σ̂), (l, 0) ∼=ψ (l̂, 0), private

bty∗ ∼= b̂ty∗, and [1, [(l2, µ2)], [1], 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1], by Lemma 3.2.54 we have UpdatePtr(σ̂, (l̂, 0), [1,

[(l̂2, µ̂2)], [1], i], b̂ty∗) = (σ̂1, 1) such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)),

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂), and UpdatePtr(σ̂,

(l̂, 0), [1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) = (σ̂1, 1), we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in2

(γ̂, σ̂1, �, (l̂2, µ̂2)) by Vanilla C
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rule Pre-Increment Pointer.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and (l2, µ2) ∼=ψ (l̂2, µ̂2), by Definition 3.2.20 we have (γ, σ1, acc, (l2, µ2)) ∼=ψ (γ̂, σ̂1,

�, (l̂2, µ̂2)). Therefore, we have (γ, σ, acc, ++ x) ⇓pin6 (γ, σ1, acc, (l2, µ2)) ∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in2

(γ̂, σ̂1,

�, (l̂2, µ̂2)), Π ∼=ψ Σ, and pin6 ∼= p̂in2 by Definition 3.2.21.

Case Π . (γ, σ, acc, ++ x) ⇓pin7 (γ, σ1, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin6 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l′, j, 1])

Given Π . (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l′, j, 1]) by SMC2 rule Pre-Increment Private Pointer Multiple

Locations, we have acc = 0, γ(x) = (l, private bty∗), σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗,

private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], IncrementList(l, τ(private bty), σ) = (l′, 1), and

UpdatePtr(σ, (l, 0), [α, l′, j, 1], private bty∗) = (σ1, 1).

Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14. By Definition 3.2.6, we have private bty ∼= bty .

Given σ(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗,private, α)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j, i],

private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, 1] ∼=ψ

[1, (l̂1, µ̂1), [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given IncrementList(l, τ(private bty), σ) = (l′, 1), DeclassifyPtr([α, l, j, 1], private bty∗) = (l1, µ1) such that

(l1, µ1) ∼=ψ (l̂1, µ̂1), (γ, σ) ∼=ψ (γ̂, σ̂), ty ∼= t̂y , and DeclassifyPtr([α, l′, j, 1], private bty∗) = (l2, µ2), by

Lemma 3.2.51 we have ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty∗)) such that (l2, µ2) ∼=ψ (l̂2, µ̂2). By Defini-
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tion 3.2.14 we have [α, l′, j, 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1].

Given UpdatePtr(σ, (l, 0), [α, l′, j, 1],private bty∗) = (σ1, 1), (γ, σ) ∼=ψ (γ̂, σ̂), (l, 0) ∼=ψ (l̂, 0), private bty∗ ∼=

b̂ty∗, and [α, l′, j, 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1], by Lemma 3.2.54 we have UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], 1],

b̂ty∗) = (σ̂1, 1) such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)),

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], î > 1, ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty∗)), and

UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], i], b̂ty∗) = (σ̂1, 1), we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′
p̂in3

(γ̂, σ̂1, �, (l̂2, µ̂2))

by Vanilla C rule Pre-Increment Pointer Higher Level Indirection.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and [α, l′, j, 1] ∼=ψ (l̂2, µ̂2), by Definition 3.2.20 we have (γ, σ1, acc, [α, l′, j, 1]) ∼=ψ

(γ̂, σ̂1, �, (l̂2, µ̂2)). Therefore, we have (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l′, j, 1]) ∼=ψ (γ̂, σ̂, �, ++ x̂)

⇓′
p̂in3

(γ̂, σ̂1, �, (l̂2, µ̂2)), Π ∼=ψ Σ, and pin4 ∼= p̂in3 by Definition 3.2.21.

Case Π . (γ, σ, acc, ++ x) ⇓pin5 (γ, σ1, acc, [α, l′, j, i])

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l′, j, 1]).

Case Π . (γ, σ, acc, ty x[e]) ⇓da (γ1, σ3, acc, skip)

Given Π . (γ, σ, acc, ty x[e]) ⇓da (γ1, σ3, acc, skip) by SMC2 rule Public 1 Dimension Array Declaration, we have

((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty = int))) ∨ (ty = char), l = φ(), Label(e, γ) = public,

(γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), γ1 = γ[x → (l,public const bty∗)], l1 = φ(), ω = EncodePtr(public const

bty∗, [1, [(l1, 0)], [1], 1]), σ2 = σ1[l → (ω,public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1))],

acc = 0, n > 0, ω1 = EncodeVal(public bty , NULL), and σ3 = σ2[l1 → (ω1, public bty , n, PermL(Freeable,

public bty , public, n))].

Given (γ̂, σ̂, �, t̂y x̂[ê]) and ψ such that (γ, σ, acc, ty x[e]) ∼=ψ (γ̂, σ̂, �, t̂y x̂[ê]), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x[e] ∼=ψ t̂y x̂[ê]. Given (γ, σ, acc, ty x[e]) ⇓da (γ1, σ3, acc, skip), by Lemma 3.2.2 we have

(l, µ) /∈ ty x[e]. Therefore, by Lemma 3.2.3 we have ty x[e] ∼= t̂y x̂[ê]. By Definition 3.2.10 we have Erase(ty x[e]) =

Erase(ty) Erase(x[e]), Erase(ty) = t̂y , Erase(x[e]) = x̂[Erase(e)] where x = x̂, and Erase(e) = ê. Therefore, we

have ty ∼= t̂y and e ∼= ê.
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Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �,

n̂) and ψ1 such that (γ, σ1, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂) and d1
∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given Label(e, γ) = public, we have

Label(n, γ) = public and therefore v = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given ty ∼= t̂y and ((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty = int))) ∨ (ty = char), by

Definition 3.2.6 we have bty ∼= b̂ty . Therefore, we have public const bty∗ ∼= const b̂ty∗ and public bty ∼= b̂ty by

Definition 3.2.6.

Given γ1 = γ[x→ (l,public const bty∗)], x = x̂, l = l̂, (γ, σ1) ∼=ψ (γ̂, σ̂1), and public const bty∗ ∼= const b̂ty∗,

by Lemma 3.2.34 we have γ̂1 = γ̂[x̂→ (l̂, b̂ty∗)] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given l1 = φ(), by Axiom 3.2.3 we have l̂1 = φ() and l1 = l̂1.

Given [1, [(l1, 0)], [1], 1], by Definition 3.2.14 we have [1, [(l1, 0)], [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]. Given ω =

EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1]) and public const bty∗ ∼= const b̂ty∗, by Lemma 3.2.42 we have

ω ∼=ψ ω̂.

Given σ2 = σ1[l→ (ω,public const bty∗, 1,

PermL(Freeable, public const bty∗,public, 1))], (γ1, σ1) ∼=ψ (γ̂1, σ̂1), l = l̂, ω ∼=ψ ω̂, and public const bty∗ ∼=

const b̂ty∗, by Lemma 3.2.35 we have σ̂2 = σ̂1[l̂→ (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗,public, 1))]

such that (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given n > 0 and n = n̂, we have n̂ > 0.

Given ω1 = EncodeVal(public bty , NULL), and public bty ∼= b̂ty , by Lemma 3.2.40 we have EncodeVal(b̂ty ,

NULL) = ω̂1 such that ω1
∼=ψ ω̂1.

Given σ3 = σ2[l1 → (ω1,public bty , n, PermL(Freeable, public bty ,public, n))], l1 = l̂1, ω1
∼=ψ ω̂1, (γ1, σ2) ∼=ψ

(γ̂1, σ̂2), n = n̂, and public bty ∼= b̂ty , by Lemma 3.2.35 we have σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty ,
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public, n̂))] such that (γ1, σ3) ∼=ψ (γ̂1, σ̂3).

Given (γ̂, σ̂, �, t̂y x[ê]), (γ̂, σ̂, �, ê) ⇓′e (γ̂, σ̂1, �, n̂), l̂ = φ(), l̂1 = φ(), ω̂ = EncodePtr(const b̂ty∗,

[1, [(l̂1, 0)], [1], 1]), γ̂1 = γ̂[x → (l̂, const b̂ty∗)], σ̂2 = σ̂1[l̂ → (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗,

public, 1))], EncodeVal(b̂ty , NULL) = ω̂1, σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂))], and

n̂ > 0, we have Σ . (γ̂, σ̂, �, t̂y x[ê]) ⇓′
d̂a

(γ̂1, σ̂3, �, skip) by Vanilla C rule 1D Array Declaration.

Given (γ1, σ3) ∼=ψ (γ̂1, σ̂3), by Definition 3.2.20 we have (γ1, σ3, acc, skip) ∼=ψ (γ̂1, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, ty x[e]) ⇓da (γ1, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x[ê]) ⇓′
d̂a

(γ̂1, σ̂3, �, skip), Π ∼=ψ Σ, and da ∼= d̂a

by Definition 3.2.21.

Case Π . (γ, σ, acc, ty x[e]) ⇓da1 (γ1, σ3, acc, skip)

Given Π . (γ, σ, acc, ty x[e]) ⇓da1 (γ1, σ3, acc, skip) by SMC2 rule Private 1 Dimension Array Declaration, we have

Label(e, γ) = public, ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), (γ, σ, acc, e) ⇓d1 (γ,

σ1, acc, n), n > 0, l = φ(), l1 = φ(), γ1 = γ[x → (l,private const bty∗)], ω = EncodePtr(private const

bty∗, [1, [(l1, 0)], [1], 1]), σ2 = σ1[l → (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private,

1))], ω1 = EncodeVal(private bty , NULL), and σ3 = σ2[l1 → (ω1, private bty , n, PermL(Freeable, private bty ,

private, n))].

Given (γ̂, σ̂, �, t̂y x̂[ê]) and ψ such that (γ, σ, acc, ty x[e]) ∼=ψ (γ̂, σ̂, �, t̂y x̂[ê]), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x[e] ∼=ψ t̂y x̂[ê]. Given (γ, σ, acc, ty x[e]) ⇓da1 (γ1, σ3, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ ty x[e]. Therefore, by Lemma 3.2.3 we have ty x[e] ∼= t̂y x̂[ê]. By Definition 3.2.10 we have

Erase(ty x[e]) = Erase(ty) Erase(x[e]), Erase(ty) = t̂y , Erase(x[e]) = x̂[Erase(e)] where x = x̂, and Erase(e) =

ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given ty ∼= t̂y and ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), by Definition 3.2.6 we have

bty ∼= b̂ty . Therefore, we have private const bty∗ ∼= const b̂ty∗ and private bty ∼= b̂ty by Definition 3.2.6.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, n), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �,

n̂) and ψ1 such that (γ, σ1, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂) and d1
∼= d̂1. Given n 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given Label(e, γ) = public, we have
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Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given n > 0 and n = n̂, we have n̂ > 0.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given l1 = φ(), by Axiom 3.2.3 we have l̂1 = φ() and l1 = l̂1.

Given γ1 = γ[x→ (l,private const bty∗)], x = x̂, l = l̂, (γ, σ1) ∼=ψ (γ̂, σ̂1), and private const bty∗ ∼= const b̂ty∗,

by Lemma 3.2.34 we have γ̂1 = γ̂[x̂→ (l̂, b̂ty∗)] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given [1, [(l1, 0)], [1], 1], by Definition 3.2.14 we have [1, [(l1, 0)], [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]. Given ω =

EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1]) and private const bty∗ ∼= const b̂ty∗, by Lemma 3.2.42 we have

ω ∼=ψ ω̂.

Given σ2 = σ1[l → (ω,private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1))], (γ1, σ1) ∼=ψ

(γ̂1, σ̂1), l = l̂, ω ∼=ψ ω̂, and private const bty∗ ∼= const b̂ty∗, by Lemma 3.2.35 we have σ̂2 = σ̂1[l̂ → (ω̂, const

b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1))] such that (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given ω1 = EncodeVal(private bty ,NULL), and private bty ∼= b̂ty , by Lemma 3.2.40 we have EncodeVal(b̂ty ,

NULL) = ω̂1 such that ω1
∼=ψ ω̂1.

Given σ3 = σ2[l1 → (ω1,private bty , n,PermL(Freeable, private bty ,private, n))], l1 = l̂1, ω1
∼=ψ ω̂1, (γ1, σ2) ∼=ψ

(γ̂1, σ̂2), n = n̂, and private bty ∼= b̂ty , by Lemma 3.2.35 we have σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable,

b̂ty ,public, n̂))] such that (γ1, σ3) ∼=ψ (γ̂1, σ̂3).

Given (γ̂, σ̂, �, t̂y x[ê]), (γ̂, σ̂, �, ê) ⇓′e (γ̂, σ̂1, �, n̂), l̂ = φ(), l̂1 = φ(), ω̂ = EncodePtr(const b̂ty∗,

[1, [(l̂1, 0)], [1], 1]), γ̂1 = γ̂[x → (l̂, const b̂ty∗)], σ̂2 = σ̂1[l̂ → (ω̂, const b̂ty∗, 1, PermL(Freeable, const

b̂ty∗,public, 1))], EncodeVal(b̂ty , NULL) = ω̂1, σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂))],

and n̂ > 0, we have Σ . (γ̂, σ̂, �, t̂y x[ê]) ⇓′
d̂a

(γ̂1, σ̂3, �, skip) by Vanilla C rule 1D Array Declaration.

Given (γ1, σ3) ∼=ψ (γ̂1, σ̂3), by Definition 3.2.20 we have (γ1, σ3, acc, skip) ∼=ψ (γ̂1, σ̂3, �, skip). Therefore,

we have (γ, σ, acc, ty x[e]) ⇓da1 (γ1, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x[ê]) ⇓′
d̂a

(γ̂1, σ̂3, �, skip), Π ∼=ψ Σ, and
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da1 ∼= d̂a by Definition 3.2.21.

Case Π . (γ, σ, acc, x[e]) ⇓ra (γ, σ1, acc, vi)

Given Π. (γ, σ, acc, x[e]) ⇓ra (γ, σ1, acc, vi) by SMC2 rule Public 1D Array Read Public Index, we have Label(e, γ)

= public, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, i), γ(x) = (l,public const bty∗), σ1(l) = (ω, public const bty∗, 1,

PermL(Freeable, public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1)

= (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], and

0 ≤ i ≤ n− 1.

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, acc, x[e]) ⇓ra (γ, σ1, acc, vi), by Lemma 3.2.2 we have (l, µ) /∈ x[e]. Therefore,

by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have Erase(x[e]) = x̂[Erase(e)] where x = x̂ and

Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

acc, e). Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)],

[1], 1] such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by
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Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], public bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we

have DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1]. By Definition 3.2.10 we have

∀m ∈ {0, ..., n− 1}, vm ∼=ψ v̂m. Therefore, given i = î, we have vi ∼=ψ v̂̂i.

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given (γ̂, σ̂, �, x̂), γ̂(x) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)),

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)),

(γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, î), 0 ≤ î ≤ n̂− 1, and DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1], we have Σ . (γ̂, σ̂, �,

x̂) ⇓′r̂a (γ̂, σ̂, �, v̂̂i) by Vanilla C rule Array Read.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and vi ∼=ψ v̂̂i, by Definition 3.2.20 we have (γ, σ1, acc, vi) ∼=ψ (γ̂, σ̂1, �, v̂̂i). Therefore,

we have (γ, σ, acc, x[e]) ⇓ra (γ, σ1, acc, vi) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂a (γ̂, σ̂1, �, v̂̂i), Π ∼=ψ Σ, and ra ∼= r̂a by

Definition 3.2.21.

Case Π . (γ, σ, acc, x[e]) ⇓ra3 (γ, σ1, acc, vi)

Given Π.(γ, σ, acc, x[e]) ⇓ra3 (γ, σ1, acc, vi) by SMC2 rule Private 1D Array Read Public Index, we have Label(e, γ)

= public, (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, i), γ(x) = (l, private const bty∗), σ1(l) = (ω, private const bty∗,

1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) =

[v0, ..., vn−1], and 0 ≤ i ≤ n− 1.

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, acc, x[e]) ⇓ra3 (γ, σ1, acc, vi), by Lemma 3.2.2 we have (l, µ) /∈ x[e].

Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have Erase(x[e]) = x̂[Erase(e)] where

x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

acc, e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1,
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�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given γ(x) = (l,private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we

have DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1]. By Definition 3.2.10 we have

∀m ∈ {0, ..., n− 1}, vm ∼=ψ v̂m. Therefore, given i = î, we have vi ∼=ψ v̂̂i.

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given (γ̂, σ̂, �, x̂), γ̂(x) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)),

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)),

(γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, î), 0 ≤ î ≤ n̂− 1, and DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1], we have Σ . (γ̂, σ̂, �,

x̂) ⇓′r̂a (γ̂, σ̂, �, v̂̂i) by Vanilla C rule Array Read.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and vi ∼=ψ v̂̂i, by Definition 3.2.20 we have (γ, σ1, acc, vi) ∼=ψ (γ̂, σ̂1, �, v̂̂i). Therefore,

we have (γ, σ, acc, x[e]) ⇓ra3 (γ, σ1, acc, vi) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂a (γ̂, σ̂1, �, v̂̂i), Π ∼=ψ Σ, and ra3 ∼= r̂a by

Definition 3.2.21.
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Case Π . (γ, σ, acc, x[e]) ⇓ra1 (γ, σ1, acc, v)

Given Π . (γ, σ, acc, x[e]) ⇓ra1 (γ, σ1, acc, v) by SMC2 rule Private 1D Array Read Private Index we have (γ,

σ, acc, e) ⇓d1 (γ, σ1, acc, i), γ(x) = (l,private const bty∗), (bty = int) ∨ (bty = float), σ1(l) = (ω, private

const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1,

0)], [1], 1], σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), Label(e, γ) = private,

DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], and v =
∨n−1
m=0 (i = encrypt(m)) ∧ vm.

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, acc, x[e]) ⇓ra1 (γ, σ1, acc, v), by Lemma 3.2.2 we have (l, µ) /∈ x[e].

Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have Erase(x[e]) = x̂[Erase(e)] where

x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e) by Definition 3.2.20. Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �,

ê) ⇓′
d̂1

(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and d1
∼= d̂1. Given i 6= skip, by Lemma 3.2.1

we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î.

Given γ(x) = (l,private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty , private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.
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Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given v =
∨n−1
m=0 (i = encrypt(m)) ∧ vm, by Axiom 3.2.1 and Lemma 3.2.9, we have v ∼=ψ v̂̂i.

Given (γ̂, σ̂, �, x̂), γ̂(x) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)),

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)),

(γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, î), 0 ≤ î ≤ n̂− 1, and DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1], we have Σ . (γ̂, σ̂, �,

x̂) ⇓′r̂a (γ̂, σ̂1, �, v̂̂i) by Vanilla C rule Array Read.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂̂i, by Definition 3.2.20 we have (γ, σ1, acc, v) ∼=ψ (γ̂, σ̂1, �, v̂̂i). Therefore,

we have (γ, σ, acc, x[e]) ⇓ra1 (γ, σ1, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂a (γ̂, σ̂1, �, v̂̂i), Π ∼=ψ Σ, and ra1 ∼= r̂a by

Definition 3.2.21.

Case Π . (γ, σ, acc, x[e]) ⇓ra2 (γ, σ1, acc, v)

Given Π . (γ, σ, acc, x[e]) ⇓ra2 (γ, σ1, acc, v) by SMC2 rule Public 1D Array Read Private Index, we have γ(x) =

(l, public const bty∗), (bty = int) ∨ (bty = float), (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, i), σ1(l) = (ω, public const

bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), Label(e, γ) = private, DecodePtr(public const bty∗, 1,

ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty ,public, n)), DecodeVal(public

bty , n, ω1) = [v0, ..., vn−1], and v =
∨n−1
m=0 (i = encrypt(m)) ∧ encrypt(vm).

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, acc, x[e]) ⇓ra2 (γ, σ1, acc, v), by Lemma 3.2.2 we have (l, µ) /∈ x[e].

Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have Erase(x[e]) = x̂[Erase(e)] where

x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l, public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc,

e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1, �, î) and
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ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼= (γ̂, σ̂1) and i ∼=ψ î.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂, by

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)],

[1], 1] such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], public bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given γ(x) = (l, public const bty∗), by Definition 3.2.17 we have [v0, ..., vn−1] = [v̂0, ..., v̂n−1]. Given v =∨n−1
m=0 (i = encrypt(m)) ∧ encrypt(vm), by Axiom 3.2.1 and Lemma 3.2.10 we have v ∼=ψ v̂̂i.

Given (γ̂, σ̂, �, x̂), γ̂(x) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗,public, 1)),

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)),

(γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, î), 0 ≤ î ≤ n̂− 1, and DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1], we have Σ . (γ̂, σ̂, �,

x̂) ⇓′r̂a (γ̂, σ̂1, �, v̂̂i) by Vanilla C rule Array Read.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂̂i, by Definition 3.2.20 we have (γ, σ1, acc, v) ∼=ψ (γ̂, σ̂1, �, v̂̂i). Therefore,

we have (γ, σ, acc, x[e]) ⇓ra2 (γ, σ1, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂a (γ̂, σ̂1, �, v̂̂i), Π ∼=ψ Σ, and ra2 ∼= r̂a by

Definition 3.2.21.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ3, acc, skip)

Given Π.(γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ3, acc, skip) by SMC2 rule Public 1D Array Write Public Value Public Index,
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we have Label(e1, γ) = Label(e2, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i), (γ, σ1, acc, e2) ⇓d2

(γ,

σ2, acc, v), v 6= skip, γ(x) = (l,public const bty∗), σ2(l) = (ω, public const bty∗, 1, PermL(Freeable, public

const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1,public bty , n,

PermL(Freeable, public bty , public, n)), DecodeVal( public bty , n, ω1) = [v0, ..., vn−1], [v′0, ..., v
′
n−1] = [v0, ...,

vn−1]
(
v
vi

)
, 0 ≤ i ≤ n− 1, and UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1],public bty) = σ3.

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ3, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we have x[e1] = e2
∼= x̂[ê1] = ê2. By

Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2), Erase(x[e1]) = x̂[Erase(e1)] where x = x̂,

Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ,

acc, e1). Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′

d̂1
(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and d1
∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, v), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2,

�, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2
(γ̂, σ̂2, �, v̂) and d2

∼= d̂2. Given v 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,
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Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)],

[1], 1] such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], public bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
, v ∼=ψ v̂, i = î, and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Lemma 3.2.63 we

have [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1],public bty) = σ3, (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1, public bty ∼= b̂ty , and

[v′0, ..., v
′
ne−1] ∼=ψ [v̂′0, ..., v̂

′
n̂e−1], by Lemma 3.2.52 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3 such that

(γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂,�, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, v̂), v̂ 6= skip, γ̂(x̂) =

(l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1, ω̂)

= [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ...,

v̂n̂−1], 0 ≤ î ≤ n̂− 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3, we have

Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and

wa ∼= ŵa by Definition 3.2.21.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa4 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wa4 (γ, σ3, acc, skip) by SMC2 rule Private 1D Array Write Private Value

Public Index, we have Label(e1, γ) = public, Label(e2, γ) = private, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i),
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(γ, σ1, acc, e2) ⇓d1
(γ, σ2, acc, v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private const

bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)],

[1], 1], σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) =

[v0, ..., vn−1], [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
0 ≤ i ≤ n − 1, and UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1],private bty)

= σ3.

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, acc, x[e1] = e2) ⇓wa4 (γ, σ3, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we have x[e1] = e2
∼= x̂[ê1] = ê2. By

Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2), Erase(x[e1]) = x̂[Erase(e1)] where x = x̂,

Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ,

acc, e1). Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′

d̂1
(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and d1
∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, v), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2,

�, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2
(γ̂, σ̂2, �, v̂) and d2

∼= d̂2. Given v 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,
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Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
, v ∼=ψ v̂, i = î, and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Lemma 3.2.63 we

have [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1],private bty) = σ3, (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1, private bty ∼= b̂ty , and

[v′0, ..., v
′
ne−1] ∼=ψ [v̂′0, ..., v̂

′
n̂e−1], by Lemma 3.2.52 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3 such that

(γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, v̂), v̂ 6= skip,

γ̂(x̂) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const

b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂,

ω̂1) = [v̂0, ..., v̂n̂−1], 0 ≤ î ≤ n̂ − 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1],

b̂ty) = σ̂3, we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, x[e1] = e2) ⇓wa4 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and

wa4 ∼= ŵa by Definition 3.2.21.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa1 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wa1 (γ, σ3, acc, skip) by SMC2 rule Private 1D Array Write Public Value Public

Index, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i), (γ, σ1, acc, e2) ⇓d2

(γ,
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σ2, acc, v), v 6= skip, γ(x) = (l,private const bty∗), (bty = int) ∨ (bty = float), σ2(l) = (ω, private const

bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1],

1], σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) =

[v0, ..., vn−1], [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( encrypt(v)
vi

)
, 0 ≤ i ≤ n−1, and UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1],private

bty) = σ3.

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, acc, x[e1] = e2) ⇓wa1 (γ, σ3, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we have x[e1] = e2
∼= x̂[ê1] = ê2. By

Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2), Erase(x[e1]) = x̂[Erase(e1)] where x = x̂,

Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ,

acc, e1). Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′

d̂1
(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and d1
∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, v), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2,

�, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2
(γ̂, σ̂2, �, v̂) and d2

∼= d̂2. Given v 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂. Given Label(e2, γ) = public, we have

Label(v, γ) = public and therefore v = v̂ by Definition 3.2.17.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.
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Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( encrypt(v)
vi

)
and v = v̂, by Definition 3.2.18 and Definition 3.2.10 we have

encrypt(v) ∼=ψ v̂. Given i = î and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Lemma 3.2.63 we have [v̂′0, ..., v̂
′
n̂−1] =

[v̂0, ..., v̂n̂−1]
(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1]) = σ3, (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1, private bty ∼= b̂ty , and [v′0, ..., v

′
ne−1] ∼=ψ

[v̂′0, ..., v̂
′
n̂e−1], by Lemma 3.2.52 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3 such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, v̂), v̂ 6= skip,

γ̂(x̂) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const

b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) =

[v̂0, ..., v̂n̂−1], 0 ≤ î ≤ n̂ − 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3,

we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, x[e1] = e2) ⇓wa1 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and

wa1 ∼= ŵa by Definition 3.2.21.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa2 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wa2 (γ, σ3, acc, skip) by SMC2 rule Private 1D Array Write Public Value
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Private Index, we have Label(e1, γ) = private, Label(e2, γ) = public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i), (γ,

σ1, acc, e2) ⇓d2
(γ, σ2, acc, v), v 6= skip, γ(x) = (l,private const bty∗), σ2(l) = (ω,private const bty∗,

1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1],

1], σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) =

[v0, ..., vn−1], (bty = int) ∨ (bty = float), v′ = encrypt(v), ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧

v′) ∨ (¬(i = encrypt(m)) ∧ vm), and UpdateVal(σ2, l1, [v′0, ..., v
′
n−1], private bty) = σ3.

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, acc, x[e1] = e2) ⇓wa2 (γ, σ3, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we have x[e1] = e2
∼= x̂[ê1] = ê2. By

Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2), Erase(x[e1]) = x̂[Erase(e1)] where x = x̂,

Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î) and

ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, v), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2,

�, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2
(γ̂, σ̂2, �, v̂) and d2

∼= d̂2. Given v 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂. Given Label(e2, γ) = public, we have

Label(v, γ) = public and therefore v = v̂ by Definition 3.2.17.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.
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Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty , private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given v′ = encrypt(v) and v = v̂, by Definition 3.2.17 we have v′ ∼=ψ v̂.

Given ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v′) ∨ (¬(i = encrypt(m)) ∧ vm), by Axiom 3.2.1 and

Lemma 3.2.12, we have [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1],private bty) = σ3, (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1, private bty ∼= b̂ty and [v′0,

..., v′ne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 3.2.52 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂
′
n̂−1], b̂ty) = σ̂3 such that

(γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, v̂), v̂ 6= skip,

γ̂(x̂) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const

b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) =

[v̂0, ..., v̂n̂−1], 0 ≤ î ≤ n̂− 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3,

we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, x[e1] = e2) ⇓wa2 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and

wa2 ∼= ŵa by Definition 3.2.21.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa3 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wa3 (γ, σ3, acc, skip) by SMC2 rule Private 1D Array Write Private Value Private
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Index, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i), (γ, σ1, acc, e2) ⇓d2

(γ,

σ2, acc, v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private

const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], (bty = int) ∨ (bty =

float), ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v) ∨ (¬(i = encrypt(m)) ∧ vm), and UpdateVal(σ2, l1,

[v′0, ..., v
′
n−1], private bty) = σ3.

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, acc, x[e1] = e2) ⇓wa3 (γ, σ3, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we have x[e1] = e2
∼= x̂[ê1] = ê2. By

Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2), Erase(x[e1]) = x̂[Erase(e1)] where x = x̂,

Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, acc,

e1). Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î) and

ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By

Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, v), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2,

�, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2
(γ̂, σ̂2, �, v̂) and d2

∼= d̂2. Given v 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l, private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,
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Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v) ∨ (¬(i = encrypt(m)) ∧ vm), [v0, ..., vn−1] ∼=ψ [v̂0, ...,

v̂n−1], and i ∼=ψ î, by Axiom 3.2.1 and Lemma 3.2.11 we have [v′0, ..., v
′
n−1] ∼=ψ [v̂0, ..., v̂n̂−1].

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1],private bty) = σ3, (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1, private bty ∼= b̂ty , and

[v′0, ..., v
′
ne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 3.2.52 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3 such that

(γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, v̂), v̂ 6= skip,

γ̂(x̂) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const

b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) =

[v̂0, ..., v̂n̂−1], 0 ≤ î ≤ n̂− 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3,

we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we

have (γ, σ, acc, x[e1] = e2) ⇓wa3 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and

wa3 ∼= ŵa by Definition 3.2.21.

Case Π . (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v)

Given Π . (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v) by SMC2 rule Public 1D Array Read Out of Bounds Pub-

lic Index, we have Label(e, γ) = public, γ(x) = (l, public const bty∗), (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, i),

σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), DecodePtr(public const bty∗,

1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1,public bty , n,PermL(Freeable, public bty , public, n)), (i < 0)∨ (i ≥ n),
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and ReadOOB(i, n, l1, public bty , σ1) = (v, 1).

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v), by Lemma 3.2.2 we have (l, µ) /∈ x[e].

Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have Erase(x[e]) = x̂[Erase(e)] where

x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l, public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

acc, e). Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1],

1] such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given ReadOOB(i, n, l1, public bty , σ1) = (v, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), i = î, n = n̂, l = l̂, and public bty ∼= b̂ty ,

by Lemma 3.2.62 we have ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1) such that v ∼=ψ v̂.
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Given (γ̂, σ̂, �, x̂), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, î), γ̂(x̂) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1,

PermL(Freeable, const b̂ty∗,public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty ,

n̂, PermL(Freeable, b̂ty , public, n̂)), (̂i < 0) ∨ (̂i ≥ n̂), and ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1), we have

Σ . (γ̂, σ̂, �, x̂) ⇓′r̂ao (γ̂, σ̂1, �, v̂) by Vanilla C rule 1D Array Read Out of Bounds.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂, by Definition 3.2.20 we have (γ, σ1, acc, v) ∼=ψ (γ̂, σ̂1, �, v̂). Therefore,

we have (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r̂ao (γ̂, σ̂1, �, v̂), Π ∼=ψ Σ, and rao ∼= r̂ao by

Definition 3.2.21.

Case Π . (γ, σ, acc, x[e]) ⇓rao1 (γ, σ1, acc, v)

Given Π . (γ, σ, acc, x[e]) ⇓rao1 (γ, σ1, acc, v) by SMC2 rule Private 1D Array Read Out of Bounds Pub-

lic Index, we have Label(e, γ) = public, γ(x) = (l, private const bty∗), (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, i),

σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const

bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)),

(i < 0) ∨ (i ≥ n), and ReadOOB(i, n, l1, private bty , σ1) = (v, 1).

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 3.2.20 we have (γ, σ) ∼=ψ

(γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, acc, x[e]) ⇓rao1 (γ, σ1, acc, v), by Lemma 3.2.2 we have (l, µ) /∈ x[e].

Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have Erase(x[e]) = x̂[Erase(e)] where

x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l, private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

acc, e). Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that
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ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given ReadOOB(i, n, l1, private bty , σ1) = (v, 1), (γ, σ1)∼=ψ (γ̂, σ̂1), i = î, n = n̂, l = l̂, and private bty ∼= b̂ty ,

by Lemma 3.2.62 we have ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1) such that v ∼=ψ v̂.

Given (γ̂, σ̂, �, x̂), (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1, �, î), γ̂(x̂) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1,

PermL(Freeable, const b̂ty∗,public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂,

PermL(Freeable, b̂ty , public, n̂)), (̂i < 0) ∨ (̂i ≥ n̂), and ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1), we have Σ . (γ̂, σ̂,

�, x̂) ⇓′r̂ao (γ̂, σ̂1, �, v̂) by Vanilla C rule 1D Array Read Out of Bounds.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂, by Definition 3.2.20 we have (γ, σ1, acc, v) ∼=ψ (γ̂, σ̂, �, v̂). Therefore,

we have (γ, σ, acc, x[e]) ⇓rao1 (γ, σ1, acc, v) ∼=ψ (γ̂, σ̂1, �, x̂) ⇓′r̂ao (γ̂, σ̂1, �, v̂), Π ∼=ψ Σ, and rao1 ∼= r̂ao by

Definition 3.2.21.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip) by SMC2 rule Public 1D Array Write Out of Bounds

Public Index Public Value, we have Label(e1, γ) = Label(e2, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓d1
(γ, σ1,

acc, i), (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, v), v 6= skip, γ(x) = (l,public const bty∗), σ2(l) = (ω, public const

bty∗, 1, PermL(Freeable, public sconst bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ2(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), (i < 0) ∨ (i ≥ n), and WriteOOB(v, i, n,

l1, public bty , σ2) = (σ3, 1).
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Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we have x[e1] = e2
∼= x̂[ê1] = ê2. By

Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2), Erase(x[e1]) = x̂[Erase(e1)] where x = x̂,

Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼= (γ, σ,

acc, e1). Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ, σ1, acc, e2) ⇓d2
(γ, σ2, acc, v), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′

d̂2
(γ̂, σ̂2,

�, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2 (γ̂, σ̂2, �, v̂) and d2
∼= d̂2. Given v 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,public const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)],

[1], 1] such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.
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Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given WriteOOB(v, i, n, l1,public bty , σ2) = (σ3, 1), v ∼=ψ v̂, i = î, n = n̂, l1 = l̂1, public bty ∼= b̂ty , and

(γ, σ2) ∼=ψ (γ̂, σ̂2), by Lemma 3.2.61 we have WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1) such that (γ, σ3) ∼=ψ

(γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, v̂), v̂ 6= skip,

γ̂(x) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const

b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂)), (̂i < 0) ∨ (̂i ≥ n̂), and

WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1), we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵao (γ̂, σ̂3, �, skip) by Vanilla C

rule 1D Array Write Out of Bounds.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we have

(γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵao (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and

wao ∼= ŵao by Definition 3.2.21.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao2 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wao2 (γ, σ3, acc, skip) by SMC2 rule Private 1D Array Write Out of Bounds

Public Index Public Value, we have Label(e1, γ) = public, Label(e2, γ) = private, (γ, σ, acc, e1) ⇓d1
(γ, σ1,

acc, i), (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, v), v 6= skip, γ(x) = (l,private const bty∗), σ2(l) = (ω, private

const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1,

0)], [1], 1], σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), (i < 0) ∨ (i ≥ n), and

WriteOOB(v, i, n, l1,private bty , σ2) = (σ3, 1).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, acc, x[e1] = e2) ⇓wao2 (γ, σ3, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we have x[e1] = e2
∼= x̂[ê1] = ê2. By

Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2), Erase(x[e1]) = x̂[Erase(e1)] where x = x̂,

Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ,
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acc, e1). Given (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′

d̂1
(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ, σ1, acc, e2) ⇓d2
(γ, σ2, acc, v), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′

d̂2
(γ̂, σ̂2,

�, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2 (γ̂, σ̂2, �, v̂) and d2
∼= d̂2. Given v 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given WriteOOB(v, i, n, l1,private bty , σ2) = (σ3, 1) and v ∼=ψ v̂, i = î, n = n̂, l1 = l̂1, private bty ∼= b̂ty , and

(γ, σ2) ∼=ψ (γ̂, σ̂2), by Lemma 3.2.61 we have WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1) such that (γ, σ3) ∼=ψ

(γ̂, σ̂3).
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Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, v̂), v̂ 6= skip,

γ̂(x) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const

b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)), (̂i < 0) ∨ (̂i ≥ n̂), and

WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1), we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵao (γ̂, σ̂3, �, skip) by Vanilla C

rule 1D Array Write Out of Bounds.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we have

(γ, σ, acc, x[e1] = e2) ⇓wao2 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵao (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and

wao2 ∼= ŵao by Definition 3.2.21.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ3, acc, skip) by SMC2 rule Private 1D Array Write Public Value

Out of Bounds Public Index, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, acc, e1) ⇓d1
(γ, σ1, acc,

i), (γ, σ1, acc, e2) ⇓d2 (γ, σ2, acc, v), v 6= skip, γ(x) = (l,private const bty∗), σ2(l) = (ω,private const

bty∗, 1,PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), (i < 0) ∨ (i ≥ n), and

WriteOOB(encrypt(v), i, n, l1,private bty , σ2) = (σ3, 1).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 3.2.20

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ3, acc, skip),

by Lemma 3.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we have x[e1] = e2
∼= x̂[ê1] = ê2. By

Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2), Erase(x[e1]) = x̂[Erase(e1)] where x = x̂,

Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ,

acc, e1). Given (γ, σ, acc, e1) ⇓d1 (γ, σ1, acc, i), by the inductive hypothesis we have (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1,

�, î) and ψ1 such that (γ, σ1, acc, i) ∼=ψ1
(γ̂, σ̂1, �, î) and d1

∼= d̂1. Given i 6= skip, by Lemma 3.2.1 we have

ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given Label(e1, γ) = public, we have

Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 3.2.4 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2) ∼=ψ (γ, σ1,

acc, e2). Given (γ, σ1, acc, e2) ⇓d2
(γ, σ2, acc, v), by the inductive hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′

d̂2
(γ̂, σ̂2,
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�, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2
(γ̂, σ̂2, �, v̂) and d2

∼= d̂2. Given v 6= skip, by Lemma 3.2.1 we have

ψ2 = ψ. By Definition 3.2.20 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂. Given Label(e2, γ) = public, we have

Label(v, γ) = public and therefore v = v̂ by Definition 3.2.17.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given WriteOOB(encrypt(v), i, n, l1,private bty , σ2) = (σ3, 1) and v = v̂, by Definition 3.2.10 we have encrypt(v)

∼=ψ v̂. Given i = î, n = n̂, l1 = l̂1, private bty ∼= b̂ty , and (γ, σ2) ∼=ψ (γ̂, σ̂2), by Lemma 3.2.61 we have

WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1) such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′
d̂1

(γ̂, σ̂1, �, î), γ̂(x) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1,

PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,

PermL(Freeable, b̂ty , public, n̂)), (̂i < 0)∨ (̂i ≥ n̂), (γ̂, σ̂1, �, ê2) ⇓′
d̂2

(γ̂, σ̂2, �, v̂), and WriteOOB(v̂, î, n̂, l̂1,

b̂ty , σ̂2) = (σ̂3, 1), we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵao (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write Out

of Bounds.
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Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 3.2.20 we have (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip). Therefore, we have

(γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ3, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′ŵao (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and

wao1 ∼= ŵao by Definition 3.2.21.

Case Π . (γ, σ, acc, x) ⇓ra5 (γ, σ, acc, skip)

Given Π . (γ, σ, acc, x) ⇓ra5 (γ, σ, acc, [v0, ..., vn−1]) by SMC2 rule Private 1D Array Read Entire Array, we have

γ(x) = (l,private const bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω,private const bty∗, 1, PermL(Freeable,

private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ(l1) = (ω1,

private bty , n, PermL(Freeable, private bty , private, n)), and DecodeVal(private bty , n, ω1) = [v0, ..., vn−1].

Given (γ̂, σ̂, �, x̂) such that (γ, σ, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂) and

x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ) ∼=ψ (γ̂, σ̂),

and l = l̂, by Lemma 3.2.16 we have σ̂(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ) ∼=ψ (γ̂, σ̂), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, const b̂ty∗), σ̂(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)),
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DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)), and

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1], we have Σ . (γ̂, σ̂, �, x̂) ⇓′
r̂a4

(γ̂, σ̂, �, [v̂0, ..., v̂n−1]) by Vanilla C rule

1D Array Read Entire Array.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Definition 3.2.20 we have (γ, σ, acc, [v0, ..., vn−1])

∼=ψ (γ̂, σ̂, �, [v̂0, ..., v̂n−1]). Therefore, we have (γ, σ, acc, x) ⇓ra5 (γ, σ, acc, [v0, ..., vn−1]) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′
r̂a4

(γ̂, σ̂, �, [v̂0, ..., v̂n−1]), Π ∼=ψ Σ, and ra5 ∼= r̂a4 by Definition 3.2.21.

Case Π . (γ, σ, acc, x) ⇓ra4 (γ, σ, acc, [v0, ..., vn−1])

Given Π . (γ, σ, acc, x) ⇓ra4 (γ, σ, acc, [v0, ..., vn−1]) by SMC2 rule Public 1D Array Read Entire Array, we have

γ(x) = (l,public const bty∗), σ(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)),

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ(l1) = (ω1, public bty , n, PermL(Freeable,

public bty , public, n)), and DecodeVal(public bty , n, ω1) = [v0, ..., vn−1].

Given (γ̂, σ̂, �, x̂) and ψ such that (γ, σ, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 3.2.20 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and

l = l̂, by Lemma 3.2.16 we have σ̂(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)],

[1], 1] such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ(l1) = (ω1,public bty , n, PermL(Freeable, public bty , public, n)), (γ, σ) ∼=ψ (γ̂, σ̂), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.
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Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], public bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, const b̂ty∗), σ̂(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)),

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)), and

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1], we have Σ . (γ̂, σ̂, �, x̂) ⇓′
r̂a4

(γ̂, σ̂, �, [v̂0, ..., v̂n−1]) by Vanilla C rule

1D Array Read Entire Array.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Definition 3.2.20 we have (γ, σ, acc, [v0, ..., vn−1])

∼=ψ (γ̂, σ̂, �, [v̂0, ..., v̂n−1]). Therefore, we have (γ, σ, acc, x) ⇓ra4 (γ, σ, acc, [v0, ..., vn−1]) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′
r̂a4

(γ̂, σ̂, �, [v̂0, ..., v̂n−1]), Π ∼=ψ Σ, and ra4 ∼= r̂a4 by Definition 3.2.21.

Case Π . (γ, σ, acc, x = e) ⇓wa5 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓wa5 (γ, σ2, acc, skip) by SMC2 rule Public 1D Array Write Entire Array, we

have Label(e, γ) = public, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1]. vm 6= skip,

γ(x) = (l,public const bty∗), σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)),

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, public bty , n, PermL(Freeable, public

bty , public, n)), ne = n, and UpdateVal(σ1, l1, [v0, ..., vne−1],public bty) = σ2.

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓wa5 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have

Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼= (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, [v0, ..., vne−1]), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′
d̂1

(γ̂, σ̂1,

�, [v̂0, ..., v̂n̂e−1]) and ψ1 such that (γ, σ1, acc, [v0, ..., vne−1]) ∼=ψ1
(γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]) and d1

∼= d̂1. Given

[v0, ..., vne−1] 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [v0,

..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1].

Given ∀vm ∈ [v0, ..., vne−1]. vm 6= skip and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Definition 3.2.10 we have

∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip.
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Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)],

[1], 1] such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given ne = n, n = n̂, and ne = n̂e, we have n̂e = n̂.

Given UpdateVal(σ1, l1, [v0, ..., vne−1],public bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l1 = l̂1, public bty ∼= b̂ty , and

[v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 3.2.52 we have UpdateVal(σ̂1, l̂1, [v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2 such that

(γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂,�, ê) ⇓′
d̂1

(γ̂, σ̂1,�, [v̂0, ..., v̂n̂e−1]), ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip, γ̂(x̂) = (l̂,

const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) =

[1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)), n̂e = n̂, and UpdateVal(σ̂1, l̂1,

[v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′
ŵa5

(γ̂, σ̂2, �, skip) by Vanilla C rule 1D Array Write

Entire Array.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, x = e) ⇓wa5 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′
ŵa5

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wa5 ∼= ŵa5

by Definition 3.2.21.
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Case Π . (γ, σ, acc, x = e1) ⇓wa6 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓wa6 (γ, σ2, acc, skip) by SMC2 rule Private 1D Array Write Entire Private Array,

we have Label(e, γ) = private, (γ, σ, acc, e) ⇓d1 (γ, σ1, acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1]. vm 6= skip,

γ(x) = (l,private const bty∗), σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private,

1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, private bty , n, PermL(Freeable,

private bty , private, n)), ne = n, and UpdateVal(σ1, l1, [v0, ..., vne−1], private bty) = σ2.

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓wa6 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have

Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, [v0, ..., vne−1]), by the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′

d̂1
(γ̂, σ̂1,

�, [v̂0, ..., v̂n̂e−1]) and ψ1 such that (γ, σ1, acc, [v0, ..., vne−1]) ∼=ψ1 (γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]) and d1
∼= d̂1. Given

[v0, ..., vne−1] 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [v0,

..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1].

Given ∀vm ∈ [v0, ..., vne−1]. vm 6= skip and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Definition 3.2.18 and Defini-

tion 3.2.10 we have ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗,public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by
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Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given ne = n, n = n̂, and ne = n̂e, we have n̂e = n̂.

Given UpdateVal(σ1, l1, [v0, ..., vne−1],private bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l1 = l̂1, private bty ∼= b̂ty , and

[v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 3.2.52 we have UpdateVal(σ̂1, l̂1, [v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2 such that

(γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂,�, ê) ⇓′
d̂1

(γ̂, σ̂1,�, [v̂0, ..., v̂n̂e−1]), ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip, γ̂(x̂) = (l̂,

const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1, ω̂)

= [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)), n̂e = n̂, and UpdateVal(σ̂1, l̂1,

[v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′
ŵa5

(γ̂, σ̂2, �, skip) by Vanilla C rule 1D Array Write

Entire Array.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, x = e) ⇓wa6 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′
ŵa5

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wa6 ∼= ŵa5

by Definition 3.2.21.

Case Π . (γ, σ, acc, x = e) ⇓wa7 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓wa7 (γ, σ2, acc, skip) by SMC2 rule Private 1D Array Write Entire Public Array,

we have Label(e, γ) = public, (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1]. vm 6= skip,

γ(x) = (l, private const bty∗), (bty = int) ∨ (bty = float), σ1(l) = (ω, private const bty∗, 1, PermL(Freeable,

private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], ∀vm ∈ [v0, ...,

vne−1]. v′m = encrypt(vm), σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), ne = n,

and UpdateVal(σ1, l1, [v′0, ..., v
′
ne−1],private bty) = σ2.

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 3.2.20 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, acc, x = e) ⇓wa7 (γ, σ2, acc, skip), by Lemma 3.2.2

we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we have

Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have e ∼= ê.
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Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 3.2.4 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, acc, e).

Given (γ, σ, acc, e) ⇓d1
(γ, σ1, acc, [v0, ..., vne−1]), by the inductive hypothesis we have (γ̂, σ̂,�, ê) ⇓′

d̂1
(γ̂, σ̂1,�,

[v̂0, ..., v̂n̂e−1]) and ψ1 such that (γ, σ1, acc, [v0, ..., vne−1]) ∼=ψ1 (γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]) and d1
∼= d̂1. Given [v0,

..., vne−1] 6= skip, by Lemma 3.2.1 we have ψ1 = ψ. By Definition 3.2.20 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [v0, ...,

vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1]. By Lemma 3.2.18, we have ne = n̂e. Given Label(e, γ) == public, we have Label([v0,

..., vne−1], γ) == public and therefore [v0, ..., vne−1] = [v̂0, ..., v̂n̂e−1] by Definition 3.2.18 and Definition 3.2.10.

Given ∀vm ∈ [v0, ..., vne−1]. vm 6= skip and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Definition 3.2.18 and Defini-

tion 3.2.10 we have ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip.

Given γ(x) = (l, private const bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given ∀vm ∈ [v0, ..., vne−1]. v′m = encrypt(vm) and [v0, ..., vne−1] = [v̂0, ..., v̂n̂e−1], by Definition 3.2.10 and

Definition 3.2.18 we have [v′0, ..., v
′
ne−1] ∼=ψ [v̂0, ..., v̂n̂e−1].

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given ne == n, n = n̂, and ne = n̂e, we have n̂e == n̂.

Given UpdateVal(σ1, l1, [v
′
0, ..., v

′
ne−1],private bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l1 = l̂1, private bty ∼= b̂ty , and

[v′0, ..., v
′
ne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 3.2.52 we have UpdateVal(σ̂1, l̂1, [v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2 such that

(γ, σ2) ∼=ψ (γ̂, σ̂2).
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Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂,�, ê) ⇓′
d̂1

(γ̂, σ̂1,�, [v̂0, ..., v̂n̂e−1]), ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip, γ̂(x̂) = (l̂,

const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1,

ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)), n̂e == n̂, and UpdateVal(σ̂1, l̂1,

[v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′
ŵa5

(γ̂, σ̂2, �, skip) by Vanilla C rule 1D Array Write

Entire Array.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 3.2.20 we have (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip). Therefore, we have

(γ, σ, acc, x = e) ⇓wa7 (γ, σ2, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′
ŵa5

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wa7 ∼= ŵa5

by Definition 3.2.21.

3.3 Noninterference

Basic SMC2 satisfies a strong form of noninterferences guaranteeing that two execution traces are indistin-

guishable up to differences in private values. This stronger version entails data-obliviousness. Instead of

using execution traces, we will work directly with evaluation trees in the Basic SMC2 semantics – equivalence

of evaluation trees up to private values implies equivalence of execution traces based on the Basic SMC2

semantics. This guarantee is provided at the semantics level, we do not consider here compiler optimizations.

For noninterference, it is convenient to introduce a notion of equivalence requiring that the two memories

agree on publicly observable values. Because we assume that private data in memories are encrypted, and so

their encrypted value is publicly observable, it is sufficient to consider syntactic equality of memories. Notice

that if σ1 = σ2 we can still have σ1` 6= σ2`, i.e., two executions starting from the same configuration can

actually differ with respect to private data. What we show is that this difference can occur only in atomic

operations working on private data, which we assume is not publicly observable.

We want to consider two evaluation trees as low-equivalent if they are identical up to private relational

operations. To formalize this, we need first to identify codes up to private relational operations – these are

atomic operations that are implemented by means of some cryptographic primitive and we assume that their

difference is not publicly observable. We define low-equivalence over Basic SMC2 evaluation codes in

Definition 3.3.1 and evaluation trees in Definition 3.3.3. Based on the notion of low-equivalence between

evaluation trees, we can now state our main noninterference result.
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Theorem 3.3.1 (Noninterference over evaluation trees). For every environment γ, γ′, γ′′; memory σ, σ′, σ′′ ∈

Mem; accumulator acc, acc′, acc′′ ∈ N; statement s, values v′, v′′; and step evaluation codes [c′1, ..., c
′
n], [c′′1 , ..., c

′′
n];

if Π . (γ, σ, acc, s) ⇓[l
′
1,...,l

′
n]

[c′1,...,c
′
n] (γ′, σ′, acc′, v′) and Σ . (γ, σ, acc, s) ⇓[c′′1 ,...,c

′′
n] (γ′′, σ′′, acc′′, v′′), then γ′ = γ′′,

σ′ = σ′′, acc′ = acc′′, v′ = v′′, [c′1, ..., c
′
n] 'L [c′′1 , ..., c

′′
n], and Π 'L Σ.

Proof. Proof Sketch: By induction over all Basic SMC2 semantic rules. Notice that low-equivalence of

evaluation trees already implies the equivalence of the resulting configurations. We repeated them to make

the meaning of the theorem clearer. Moreover, notice that two evaluation trees can differ only in atomic

operations implemented through cryptographic primitives. Thus the two corresponding traces are equivalent

and data-obliviousness follows.

We make the assumption that both evaluation traces are over the same program (this is given by having

the same s in the starting states) and all public data will remain the same, including data read as input during

the evaluation of the program. A portion of the complexity of this proof is within ensuring that memory

accesses within our semantics remain data oblivious. Several rules follow fairly simply and leverage similar

ideas, which we will discuss first, and then we will provide further intuition behind the more complex cases.

The full proof is available in Section 3.3.2, with this theorem identical to Theorem 3.3.2.

For all rules leveraging helper algorithms, we must reason about the helper algorithms, and that they

behave deterministically by definition and have data-oblivious memory accesses. Given this and that these

helper algorithms do no modify the private data, we maintain the properties of noninterference of this

theorem. First we reason that our helper algorithms to translate values into their byte representation will do

so deterministically, and therefore maintain indistinguishability between the value and byte representation.

We can then reason that our helper algorithms that take these byte values and store them into memory will

also do so deterministically, so that when we later access the data in memory we will obtain the same

indistinguishable values we had stored.

It is also important to take note here our functions to help us retrieve data from memory, particularly in

cases such as when reading out of bounds of an array. When proving these cases to maintain noninterference,

we leverage our definition of how memory blocks are assigned in a monotonically increasing fashion, and

how the algorithms for choosing which memory block to read into after the current one are deterministic.

This, as well as our original assumptions of having identical public input, allows us to reason that if we access

out of bounds (including accessing data at a non-aligned position, such as a chunk of bytes in the middle of a

memory block), we will be pulling from the same set of bytes each time, and therefore we will end up with
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the same interpretation of the data as we continue to evaluate the remainder of the program. It is important to

note again here that by definition, our semantics will always interpret bytes of data as the type it is expected

to be, not the type it actually is (i.e., reading bytes of data that marked private in memory by overshooting a

public array will not decrypt the bytes of data, but instead give you back a garbage public value). To reiterate

this point, even when reading out of bounds, we will not reveal anything about private data, as the results of

these helper algorithms will be indistinguishable.

For private pointers, it is important to note that the obtaining multiple locations is deterministic based

upon the program that is being evaluated. A pointer can initially gain multiple locations through the evaluation

of a private if else. Once there exists a pointer that has obtained multiple locations in such a way, it can

be assigned to another pointer to give that pointer multiple locations. The other case for a pointer to gain

multiple location is through the use of pfree on a pointer with multiple locations (i.e., the case where a

pointer has locations l1, l2, l3 and we free l1) - when this occurs, if another pointer had referred to only l1, it

will now gain locations in order to mask whether we had to move the true location or not. When reasoning

about pointers with multiple locations, we maintain that given the tags for which location is the true location

are indistinguishable, then it is not possible to distinguish between them by their usage as defined in the

rules or helper algorithms using them. Additionally, to reason about pfree, we leverage that the definitions

of the helper algorithms are deterministic, and that (wlog), we will be freeing the same location. We will

then leverage our Axiom about the multiparty protocol MPCfree . After the evaluation of MPCfree , it will

deterministically update memory and all other pointers as we mentioned in the brief example above.

For the Private If Else rule, the most important element we must leverage is how values are resolved,

showing that given our resolution style, we are not able to distinguish between the ending values. In order to

do this, we also must reason about the entirety of the rule, including all of if else helper algorithms. First, we

note that the evaluation of the then branches follows by induction, as does the evaluation of the else branch

once we have reasoned through the restoration phase. It is clear from the definitions of ExtractVariables,

InitializeVariables, and RestoreVariables that the behavior of these algorithms is deterministic and given

the same program, we will be extracting, initializing, and restoring the same set variables every time we

evaluate the program. Now, we are able to move on to reasoning about resolution, and show that given all of

this and the definitions of the resolution helper algorithms and rule, we are not able to distinguish between

the ending values.

Within the array rules, the main concern is in reading from and writing at a private index. We currently
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handle this complexity within our rules by accessing all locations within the array in rules Array Read Private

Index and Array Write Private Index. In Array Read Private Index, we clearly read data from every index of

the array, privately computing the true value from all values in the array. Similarly, in Array Write Private

Index, we read data from every index of the array, then proceed to privately update every value of in array.

All other array rules use public indices, and in turn only access that publicly known location. Within the

pointer rules, our main concern is that we access all locations that are referred to by a private pointer when

we have multiple locations. For this, we will reason about the contents of the rules and the helper algorithms

used by the pointer rules, which can be shown to deterministically do so.

3.3.1 Supporting Metatheory

Definition 3.3.1. We define low-equivalence over codes by cases as follows: 1 if c = c′, then c 'L c′; if the codes

are private less than (<) operations, we also have: ltt1 'L ltf1, ltt2 'L ltf2, ltt3 'L ltf3; if the codes are private

equal to (==) operations, we also have: eqt1 'L eqf1, eqt2 'L eqf2, eqt3 'L eqf3; if the codes are private not

equal to (! =) operations, we also have: net1 'L nef1, net2 'L nef2, net3 'L nef3.

Definition 3.3.2. We define low-equivalence over two sets of evaluation codes [c1, ..., cn], [c′1, ..., c
′
n] if and only if

for every code cm ∈ [c1, ..., cn] and c′m ∈ [c′1, ..., c
′
n], cm 'L c′m.

Definition 3.3.3. Two SMC2 evaluation trees Π and Σ are low-equivalent, in symbols Π 'L Σ, if and only if Π

and Σ have the same structure as trees, and for each node in Π proving (γ, σ, acc, s) ⇓cΠ (γ1, σ1, acc1, v), the

corresponding node in Σ proves (γ, σ, acc, s) ⇓cΣ (γ1, σ1, acc1, v) and cΠ ∼=L cΣ.

Definition 3.3.4. Given input files input1, input2, input1 = input2 if and only if

• for every public variable x, if {x = n} ∈ input1 then {x = n} ∈ input2,

• for every public array x, if {x = n0, ..., nm} ∈ input1 then {x = n0, ..., nm} ∈ input2,

• for every private variable x, if {x = n} ∈ input1 then {x = n′} ∈ input2 such that n = n′ by Axiom 3.3.1,

and

• for every private array x, if {x = n0, ..., nm} ∈ input1 then {x = n′0, ..., n
′
m} ∈ input2 such that for every

index i in 0...m, ni = n′i by Axiom 3.3.1.
1In these codes, the first two letters denote the operation (less than - lt, equal to - et, not equal to - ne); the third letter denotes

true (t) or false (f ); and the ending number denotes what mix of public and private data is being operated over (1 - both operands are
private, 2 - left operand is public, right operand is private, 3 - left operand is private, right operand is public).
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Definition 3.3.5. We define the function φ to return a single unused memory block identifier in a monotonically

increasing fashion.

Axiom 3.3.1 (Encrypt). Given the use of an encryption scheme that ensures encrypted numbers are indistinguishable,

we assume that given any two numbers n1, n2, their respective encrypted values n′1, n
′
2 can be viewed as equivalent.

Axiom 3.3.2 (Private Operations). Given Axiom 3.3.1, when performing a private operation on two sets of encrypted

values n1, n
′
1 and n2, n

′
2, we will have resulting encrypted values n3, n

′
3 that can also be viewed as equivalent.

Axiom 3.3.3 (InputValue). Given two input files input1, input2 and variable x corresponding to a program of

statement s, if and only if input1 = input2 by Definition 3.3.4 then InputValue(x, input1) = n and InputValue(x,

input2) = n′ such that n = n′.

Axiom 3.3.4 (InputArray). Given two input files input1, input2 and array x of length m corresponding to a

program of statement s, if and only if input1 = input2 by Definition 3.3.4 then InputArray(x, input1, m) =

[n0, ..., nm−1] and InputArray(x, input2, m) = [n′0, ..., n
′
m−1] such that for every index i in 0...m, ni = n′i.

Axiom 3.3.5 (φ). Given a program of statement s, during any two executions Π,Σ over s such that Π 'L Σ by

Definition 5.3.2, if φ returns memory block identifier l at step c in Π, then by definition 3.3.5 φ will also return l at step

c in Σ.

Lemma 3.3.1. Given parameter list p, p′,

if GetFunTypeList(p) = ty , GetFunTypeList(p′) = ty
′, and p = p′, then ty = ty

′.

Proof. By definition of Algorithm GetFunTypeList, GetFunTypeList is deterministic.

Lemma 3.3.2. Given parameter list p, p′, expression list e, e′,

if GetFunParamAssign(p, e) = s, GetFunParamAssign(p′, e′) = s′, p = p′, and e = e′, then s = s′.

Proof. By definition of Algorithm GetFunParamAssign, GetFunParamAssign is deterministic.

Lemma 3.3.3. Given type ty , ty ′ ∈ {a bty}, and value v, v′,

if EncodeVal(ty , v) = ω, EncodeVal(ty ′, v′) = ω′, ty = ty ′, and v = v′, then ω = ω′.

Proof. By definition of Algorithm EncodeVal, EncodeVal is deterministic.

Lemma 3.3.4. Given type ty , ty ′ ∈ {a bty}, number n, n′, and byte representation ω, ω′,

if DecodeVal(ty , n, ω) = v, DecodeVal(ty ′, n′, ω′) = v′, ty = ty ′, n = n′, and ω = ω′, then v = v′.

Proof. By definition of Algorithm DecodeVal, DecodeVal is deterministic.
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Lemma 3.3.5. Given pointer type ty , ty ′ ∈ {a const bty∗, a bty∗}, and pointer data structure [α, l, j, n], [α′, l
′
, j
′
,

n′], if EncodePtr(ty , [α, l, j, n]) = ω, EncodePtr(ty ′, [α′, l
′
, j
′
, n′]) = ω′, ty = ty ′, and [α, l, j, n] = [α′, l

′
, j
′
, n′],

then ω = ω′.

Proof. By definition of Algorithm EncodePtr, EncodePtr is deterministic.

Lemma 3.3.6. Given pointer type ty , ty ′ ∈ {a const bty∗, a bty∗}, number α, α′, and byte representation ω, ω′,

if DecodePtr(ty , α, ω) = [α, l, j, n], DecodePtr(ty ′, α′, ω′) = [α′, l
′
, j
′
, n′], ty = ty ′, α = α′ and ω = ω′, then

[α, l, j, n] = [α′, l
′
, j
′
, n′].

Proof. By definition of Algorithm DecodePtr, DecodePtr is deterministic.

Lemma 3.3.7. Given statement s, s′, number n, n′, and parameter list p, p′,

if EncodeFun(s, n, p) = ω, EncodeFun(s′, n′, p′) = ω′, s = s′, n = n′, and p = p′, then ω = ω′.

Proof. By definition of Algorithm EncodeFun, EncodeFun is deterministic.

Lemma 3.3.8. Given byte representation ω, ω′, if DecodeFun(ω) = (s, n, p), DecodeFun(ω′) = (s′, n′, p′), ty =

ty ′, n = n′, and ω = ω′, then s = s′, n = n′, and p = p′.

Proof. By definition of Algorithm DecodeFun, DecodeFun is deterministic.

Lemma 3.3.9. Given memory σ1, σ
′
1, memory block identifier l, l′, and environment γ, γ′, if Free(σ1, l, γ) = σ′2,

Free(σ′1, l
′, γ′) = σ′2, σ1 = σ′1, l = l′, and γ = γ′, then σ2 = σ′2.

Proof. By definition of Algorithm Free, Free is deterministic.

Lemma 3.3.10. Given environment γ, γ′, memory σ1, σ
′
1 and memory block identifier l, l′, if PFree(γ, σ1, l) = (σ2, j),

PFree(γ′, σ′1, l
′) = (σ′2, j

′
), γ = γ′, σ1 = σ′1, and l = l′, then σ2 = σ′2 and j = j

′
.

Proof. By definition of Algorithm PFree, PFree is deterministic. By Axiom 3.3.1, given that private tags are always

encrypted, j = j
′
.

Lemma 3.3.11. Given pointer indirection level indicator ∗, ∗′, if GetIndirection(∗) = i, GetIndirection(∗′) = i′,

and ∗ = ∗′, then i = i′.

Proof. By definition of Algorithm GetIndirection, GetIndirection is deterministic.

Lemma 3.3.12. Given memory σ1, σ
′
1, memory block identifier l, l′, value v, v′, and ty , ty ′, if UpdateVal(σ1, l,

v, ty) = σ2, UpdateVal(σ′1, l
′, v′, ty ′) = σ′2, σ1 = σ′1, l = l′, v = v′, and ty = ty ′, then σ2 = σ′2.

Proof. By definition of Algorithm UpdateVal, UpdateVal is deterministic.
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Lemma 3.3.13. Given memory σ1, σ
′
1, location (l, µ), (l′, µ′), value v, v′, and type ty , ty ′, if UpdateOffset(σ1,

(l, µ), v, ty) = (σ2, j), UpdateOffset(σ′1, (l
′, µ′), v′, ty ′) = (σ′2, j

′), σ1 = σ′1, (l, µ) = (l′, µ′), v = v′, and ty = ty ′,

then σ2 = σ′2 and j = j′.

Proof. By definition of Algorithm UpdateOffset, UpdateOffset is deterministic.

Lemma 3.3.14. Given memory σ1, σ
′
1, memory block identifier list l, l

′
, tag list j, j

′
, type ty , ty ′, and value v1,

v2, v
′
1, v
′
2, if UpdatePriv(σ1, v1, l, j, ty , v2) = (σ2, j), UpdatePriv(σ1, v

′
1, l
′
, j
′
, ty ′, v′2) = (σ′2, j

′), σ1 = σ′1,

v1 = v′1, l = l
′
, j = j

′
, ty = ty ′, and v2 = v′2, then σ2 = σ′2 and j = j′.

Proof. By definition of Algorithm UpdatePriv, UpdatePriv is deterministic.

Lemma 3.3.15. Given memory σ1, σ
′
1, location (l, µ), (l′, µ′), pointer data structure [α, l, j, i], [α′, l

′
, j
′
, i′], and

type ty , ty ′ if UpdatePrivPtr(σ1, (l, µ), [α, l, j, i], ty) = (σ2, j), UpdatePrivPtr(σ1, (l
′, µ′), [α′, l

′
, j
′
, i′], ty ′) =

(σ′2, j
′), σ1 = σ′1, (l, µ) = (l′, µ′), [α, l, j, i] = [α′, l

′
, j
′
, i′], and ty = ty ′, then σ2 = σ′2 and j = j′.

Proof. By definition of Algorithm UpdatePtr, UpdatePtr is deterministic.

Lemma 3.3.16. Given memory σ1, σ
′
1, location (l, µ), (l′, µ′), pointer data structure [α, l, j, i], [α′, l

′
, j
′
, i′], and

type ty , ty ′, if UpdatePrivPtr(σ1, [α, l, j, i], (l, µ), ty) = (σ2, j), UpdatePrivPtr(σ1, [α
′, l
′
, j
′
, i′], (l′, µ′), ty ′) =

(σ′2, j
′), σ1 = σ′1, (l, µ) = (l′, µ′), [α, l, j, i] = [α′, l

′
, j
′
, i′], and ty = ty ′, then σ2 = σ′2 and j = j′.

Proof. By definition of Algorithm UpdatePrivPtr, UpdatePrivPtr is deterministic.

Lemma 3.3.17. Given number α, α′, location list l, l
′
, tag list j, j

′
, type ty , ty ′ and memory σ, σ′,

if Retrieve_vals(α, l, j, ty , σ) = (v, j), Retrieve_vals(α′, l
′
, j
′
, ty ′, σ′) = (v′, j′), α = α′, l = l

′
, j = j

′
, ty = ty ′

and σ = σ′, then v = v′ and j = j′.

Proof. By definition of Algorithm Retrieve_vals, Retrieve_vals is deterministic.

Lemma 3.3.18. Given number α1, α
′
1, location list l1, l

′
1, tag list j1, j

′
1, type ty , ty ′ and memory σ, σ′,

if DerefPrivPtr(α1, l1, j1, ty , σ) = ((α2, l2, j2), j), DerefPrivPtr(α′1, l
′
1, j
′
1, ty ′, σ′) = ((α′2, l

′
2, j
′
2), j′), α1 = α′1,

l1 = l
′
1, j1 = j

′
1, ty = ty ′ and σ = σ′, then (α2, l2, j2) = (α′2, l

′
2, j
′
2) and j = j′.

Proof. By definition of Algorithm DerefPrivPtr, DerefPrivPtr is deterministic.

Lemma 3.3.19. Given memory σ, σ′, type public bty , public bty ′, and location (l1, µ1), (l′1, µ
′
1),

if DerefPtr(σ, public bty , (l1, µ1)) = (v, j), σ = σ′, bty = bty ′, and (l1, µ1) = (l′1, µ
′
1),

then DerefPtr(σ′,public bty ′, (l′1, µ
′
1)) = (v′, j′) such that v = v′ and j = j′.

Proof. By definition of Algorithm DerefPtr, DerefPtr is deterministic.
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Lemma 3.3.20. Given memory σ, σ′, type public bty∗, public bty ′∗, and location (l1, µ1), (l′1, µ
′
1),

if DerefPtrHLI(σ, public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i], j), then DerefPtrHLI(σ′, public bty ′∗, (l′1, µ
′
1)) =

([1, [(l′2, µ
′
2)], [1], i′], j′) such that [1, [(l2, µ2)], [1], i] = [1, [(l′2, µ

′
2)], [1], i′] and j = j′.

Proof. By definition of Algorithm DerefPtrHLI, DerefPtrHLI is deterministic.

Lemma 3.3.21. Given location (l, µ), (l′, µ′), number n, n′, and memory σ, σ′, if GetLocation((l, µ), n, σ) =

((l1, µ1), j), GetLocation((l′, µ′), n′, σ′) = ((l′1, µ
′
1), j′), (l, µ) = (l′, µ′), n = n′, and σ = σ′, then (l1, µ1) =

(l′1, µ
′
1) and j = j′.

Proof. By definition of Algorithm GetLocation, GetLocation is deterministic.

Lemma 3.3.22. Given type ty , ty ′, if τ(ty) = n, τ(ty ′) = n′, and ty = ty ′, then n = n′.

Proof. By definition of Algorithm τ , τ is deterministic.

Lemma 3.3.23. Given location list l, l
′
, number n, n′, and memory σ, σ′, if IncrementList(l, n, σ) = (l1, j),

IncrementList(l, n′, σ) = (l
′
1, j
′), l = l

′
, n = n′, and σ = σ′, then l1 = l

′
1 and j = j′.

Proof. By definition of Algorithm IncrementList, IncrementList is deterministic.

Lemma 3.3.24. Given number n1, n
′
1, n2, n

′
2, memory block identifier l, l′, type ty , ty ′, and memory σ, σ′,

if ReadOOB(n1, n2, l, ty , σ) = (v, j), ReadOOB(n′1, n
′
2, l
′, ty ′, σ′) = (v′, j′), n1 = n′1, n2 = n′2, l = l′, ty = ty ′,

and σ = σ′, then v = v′ and j = j′.

Proof. By definition of Algorithm ReadOOB, ReadOOB is deterministic.

Lemma 3.3.25. Given value v, v′, number n1, n
′
1, n2, n

′
2, memory block identifier l, l′, type ty , ty ′, and memory σ, σ′,

if WriteOOB(v, n1, n2, l, ty , σ) = (σ1, j), WriteOOB(v′, n′1, n
′
2, l
′, ty ′, σ′) = (σ′1, j

′), v = v′, n1 = n′1, n2 = n′2,

l = l′, ty = ty ′, and σ = σ′, then σ1 = σ′1 and j = j′.

Proof. By definition of Algorithm WriteOOB, WriteOOB is deterministic.

Lemma 3.3.26. Given statements s1, s2, s′1, s
′
2, if ExtractVariables(s1, s2) = xmod ,

ExtractVariables(s′1, s
′
2) = x′mod , s1 = s′1 and s2 = s′2, then xmod = x′mod .

Proof. By definition of Algorithm ExtractVariables, ExtractVariables is deterministic.

Lemma 3.3.27. Given variable list xlist , x
′′
list , environment γ, γ′′, memory σ, σ′′, accumulator acc, acc′′,

if InitializeVariables(xlist , γ, σ, acc) = (γ′, σ′), InitializeVariables(x′′list , γ
′′, σ′′, acc′′) = (γ′′′, σ′′′), xlist = x′′list ,

γ = γ′′, σ = σ′′, and acc = acc′′, then γ′ = γ′′′ and σ′ = σ′′′.
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Proof. By definition of Algorithm InitializeVariables, InitializeVariables is deterministic.

Lemma 3.3.28. Given variable list xlist , x
′
list , environment γ, γ′, memory σ, σ′, and accumulator acc, acc′, if

RestoreVariables(xlist , γ, σ, acc) = σ2, RestoreVariables(x′list , γ
′, σ′, acc′) = σ′2, xlist = x′list , γ = γ′, σ = σ′,

and acc = acc′, then σ2 = σ′2.

Proof. By definition of Algorithm RestoreVariables, RestoreVariables is deterministic.

Lemma 3.3.29. Given variable list xlist , x
′
list , environment γ, γ′, memory σ, σ′, and accumulator acc, acc′, if

ResolveVariables(xlist , γ, σ, acc, resacc) = σ1, ResolveVariables(x′list , γ
′, σ′, acc′, res ′acc) = σ1, xlist = x′list ,

γ = γ′, σ = σ′, acc = acc′, and resacc = res ′acc, then σ1 = σ′1.

Proof. By definition of Algorithm ResolveVariables, ResolveVariables is deterministic.

3.3.2 Proof of Noninterference

Theorem 3.3.2 (Noninterference over evaluation trees). For every environment γ, γ′, γ′′; memory σ, σ′, σ′′ ∈

Mem; accumulator acc, acc′, acc′′ ∈ N; statement s, values v′, v′′; and step evaluation codes [c′1, ..., c
′
n], [c′′1 , ..., c

′′
n];

if Π . (γ, σ, acc, s) ⇓[l
′
1,...,l

′
n]

[c′1,...,c
′
n] (γ′, σ′, acc′, v′) and Σ . (γ, σ, acc, s) ⇓[c′′1 ,...,c

′′
n] (γ′′, σ′′, acc′′, v′′), then γ′ = γ′′,

σ′ = σ′′, acc′ = acc′′, v′ = v′′, [c′1, ..., c
′
n] 'L [c′′1 , ..., c

′′
n], and Π 'L Σ.

Proof.

Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3)

Given Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3) by rule Private Less Than True, we have Label(e1, γ) =

Label(e2, γ) = private, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), n1 <private n2,

and encrypt(1) = n3.

By definition 3.3.1, given c = ltt1 , we have c 'L c′ if c′ = ltt1 ∨ ltf1 . Therefore, we have the following two subcases:

Subcase Σ . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ′2, acc, n′3)

Given Σ . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ′2, acc, n′3) by rule Private Less Than True, we have Label(e1, γ) =

Label(e2, γ) = private, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), (γ, σ′1, acc, e′2) ⇓c′2 (γ, σ′2, acc, n′2), n′1 <private n
′
2,

and encrypt(1) = n′3.

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), by the inductive hypothesis we

have that σ1 = σ′1, n1 = n′1, and c1 'L c′1.
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Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and σ1 = σ′1, by the inductive

hypothesis we have that σ2 = σ′2, n2 = n′2, and c2 'L c′2.

Given encrypt(1) = n3 and encrypt(1) = n′3, we have n3 = n′3 = encrypt(1).

Therefore we have γ = γ, σ2 = σ′2, acc = acc, and n3 = n′3, and, by definition 3.3.3, we have Π 'L Σ.

Subcase Σ . (γ, σ, acc, e1 < e2) ⇓ltf1 (γ, σ2, acc, n3)

Given Σ . (γ, σ, acc, e1 < e2) ⇓ltf1 (γ, σ2, acc, n3) by rule Private Less Than False, we have Label(e1, γ) =

Label(e2, γ) = private, (γ, σ, acc, e1) ⇓e (γ, σ′1, acc, n′1), (γ, σ′1, acc, e2) ⇓e (γ, σ′2, acc, n′2), n′1 >=private n
′
2,

and encrypt(0) = n′3.

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), by the inductive hypothesis we

have that σ1 = σ′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and σ1 = σ′1, by the inductive

hypothesis we have that σ2 = σ′2, n2 = n′2, and c2 'L c′2.

Given encrypt(1) = n3 and encrypt(0) = n′3, by Axiom 3.3.1 we have n3 = n′3.

Therefore we have γ = γ, σ2 = σ′2, acc = acc, and n3 = n′3, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, e1 < e2) ⇓ltt2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 < e2) ⇓ltt3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 < e2) ⇓ltf1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).
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Case Π . (γ, σ, acc, e1 < e2) ⇓ltf2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 < e2) ⇓ltf3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqt1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqt2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqt3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqf1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqf2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqf3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓net1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓net2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓net3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).
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Case Π . (γ, σ, acc, e1! = e2) ⇓nef1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓nef2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1! = e2) ⇓nef3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1)

Given Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1) by rule Public Less Than True, we have Label(e1, γ) = Label(e2,

γ) = public, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), and n1 <public n2.

By definition 3.3.1, given c = ltt , we have c 'L c′ if and only if c′ = ltt .

Given Σ . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ′2, acc, 1) by rule Public Less Than True, we have Label(e1, γ) = Label(e2,

γ) = public, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and n′1 <public n
′
2

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), by the inductive hypothesis we have

σ1 = σ′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, n2 = n′2, and c2 'L c′2.

Therefore we have γ = γ, σ2 = σ′2, acc = acc, and 1 = 1, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, e1 < e2) ⇓ltf (γ, σ2, acc, 0)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).

Case Π . (γ, σ, acc, e1 == e2) ⇓eqt (γ, σ2, acc, 1)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).
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Case Π . (γ, σ, acc, e1 == e2) ⇓eqf (γ, σ2, acc, 0)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).

Case Π . (γ, σ, acc, e1! = e2) ⇓net (γ, σ2, acc, 1)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).

Case Π . (γ, σ, acc, e1! = e2) ⇓nef (γ, σ2, acc, 0)

This case is similar to Case Π . (γ, σ, acc, e1 < e2) ⇓ltt (γ, σ2, acc, 1).

Case Π . (γ, σ, acc, e1 + e2) ⇓bp (γ, σ2, acc, n3)

Given Π . (γ, σ, acc, e1 + e2) ⇓bp (γ, σ2, acc, n3) by rule Public Addition, we have Label(e1, γ) = Label(e2, γ)

= public, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), and n1 +public n2 = n3.

By definition 3.3.1, given c = bp, we have c 'L c′ if and only if c′ = bp.

Given Σ . (γ, σ, acc, e1 + e2) ⇓bp (γ, σ′2, acc, n′3) by rule Public Addition, we have Label(e1, γ) = Label(e2, γ)

= public, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n1), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and n′1 +public n
′
2 = n′3.

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), by the inductive hypothesis we have

σ1 = σ′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, n2 = n′2, and c2 'L c′2.

Given n1 = n′1, n2 = n′2, n1 +public n2 = n3, and n′1 +public n
′
2 = n′3, we have n3 = n′3.

Therefore we have γ = γ, σ2 = σ′2, acc = acc, and n3 = n′3, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, e1 − e2) ⇓bs (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp (γ, σ2, acc, n3).
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Case Π . (γ, σ, acc, e1 · e2) ⇓bm (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 + e2) ⇓bp1 (γ, σ2, acc, n3)

Given Π . (γ, σ, acc, e1 + e2) ⇓bp1 (γ, σ2, acc, n3) by rule Private Addition, we have Label(e1, γ) = Label(e2, γ)

= private, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), and n1 +private n2 = n3.

By definition 3.3.1, given c = bp1 , we have c 'L c′ if and only if c′ = bp1 .

Given Σ . (γ, σ, acc, e1 + e2) ⇓bp1 (γ, σ′2, acc, n′3) by rule Private Addition, we have Label(e1, γ) = Label(e2, γ)

= private, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and n′1 +private n
′
2 = n′3.

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), by the inductive hypothesis we have

σ1 = σ′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, n2 = n′2, and c2 'L c′2.

Given n1 = n′1, n2 = n′2, n1 +private n2 = n3, and n′1 +private n
′
2 = n′3, by Axiom 3.3.2 we have n3 = n′3.

Therefore we have γ = γ, σ2 = σ′2, acc = acc, and n3 = n′3, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, e1 − e2) ⇓bs1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 · e2) ⇓bm1 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp1 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3)

Given Π . (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3) by rule Public-Private Addition, we have Label(e1, γ)

= public, Label(e2, γ) = private, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2),
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and encrypt(n1) +private n2 = n3.

By definition 3.3.1, given c = bp2 , we have c 'L c′ if and only if c′ = bp2 .

Given Σ . (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ′2, acc, n′3) by rule Public-Private Addition, we have Label(e1, γ) =

public, Label(e2, γ) = private, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and

encrypt(n′1) +private n
′
2 = n′3.

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, n1) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, n′1), by the inductive hypothesis we have

σ1 = σ′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n2), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′2), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, n2 = n′2, and c2 'L c′2.

Given n1 = n′1, encrypt(n1), and encrypt(n′1), by Axiom 3.3.1 we have that encrypt(n1) = encrypt(n′1).

Given encrypt(n1) = encrypt(n′1), n2 = n′2, encrypt(n1) +private n2 = n3, and encrypt(n′1) +private n
′
2 = n′3, by

Axiom 3.3.2 we have n3 = n′3.

Therefore we have γ = γ, σ2 = σ′2, acc = acc, and n3 = n′3, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, e1 + e2) ⇓bp3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 − e2) ⇓bs2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 − e2) ⇓bs3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, e1 · e2) ⇓bm2 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3).
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Case Π . (γ, σ, acc, e1 · e2) ⇓bm3 (γ, σ2, acc, n3)

This case is similar to Case Π . (γ, σ, acc, e1 + e2) ⇓bp2 (γ, σ2, acc, n3).

Case Π . (γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ7, acc, skip)

Given Π . (γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ7, acc, skip) by rule Private If Else, we have Label(e, γ)

= private, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n), (γ, σ1, acc, private int resacc+1 = n) ⇓c2 (γ1, σ2, acc, skip),

Extract_variables(s1, s2) = xlist_acc+1, InitializeVariables(xlist_acc+1, γ1, σ2, acc + 1) = (γ2, σ3), (γ2, σ3,

acc+1, s1) ⇓c3 (γ3, σ4, acc+1, skip), RestoreVariables(xlist_acc+1, γ3, σ4, acc+1) = σ5, (γ3, σ5, acc+1, s2)

⇓c4 (γ4, σ6, acc + 1, skip), and ResolveVariables(xlist_acc+1, γ4, σ6, acc + 1, resacc+1) = σ7.

By definition 3.3.1, given c = iep, we have c 'L c′ if and only if c′ = iep.

Given Σ . (γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ′7, acc, skip) by rule Private If Else, we have Label(e, γ) =

private, (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), (γ, σ′1, acc, private int resacc+1 = n′) ⇓c′2 (γ′1, σ
′
2, acc, skip),

Extract_variables(s1, s2) = x′list_acc+1, InitializeVariables(x′list_acc+1, γ
′
1, σ

′
2, acc + 1) = (γ2, σ3), (γ′2, σ

′
3,

acc + 1, s1) ⇓c′3 (γ′3, σ
′
4, acc + 1, skip), RestoreVariables(x′list_acc+1, γ

′
3, σ
′
4, acc + 1) = σ′5, (γ′3, σ

′
5, acc + 1, s2)

⇓c′4 (γ′4, σ
′
6, acc + 1, skip), and ResolveVariables(x′list_acc+1, γ

′
4, σ

′
6, acc + 1, resacc+1) = σ′7.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n), and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Given (γ, σ1, acc, private int resacc+1 = n) ⇓c2 (γ1, σ2, acc, skip), (γ, σ′1, acc, private int resacc+1 = n′) ⇓c′2
(γ′1, σ

′
2, acc, skip), σ1 = σ′1, and n = n′, we have {private int resacc+1 = n} = {private int resacc+1 = n′}. By

the inductive hypothesis, we have γ1 = γ′1, σ2 = σ′2, and c2 'L c′2.

Given Extract_variables(s1, s2) = xlist_acc+1 and Extract_variables(s1, s2) = x′list_acc+1, by Lemma 3.3.26 we

have xlist_acc+1 = x′list_acc+1.

Given InitializeVariables(xlist_acc+1, γ1, σ2, acc+1) = (γ2, σ3), InitializeVariables(x′list_acc+1, γ
′
1, σ
′
2, acc+1) =

(γ′2, σ
′
3), xlist_acc+1 = x′list_acc+1, γ1 = γ′1, and σ2 = σ′2, by Lemma 3.3.27 we have γ2 = γ′2 and σ3 = σ′3.
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Given (γ2, σ3, acc + 1, s1) ⇓c3 (γ3, σ4, acc + 1, skip), (γ′2, σ
′
3, acc + 1, s1) ⇓c′3 (γ′3, σ

′
4, acc + 1, skip), γ2 = γ′2,

and σ3 = σ′3, by the inductive hypothesis we have γ3 = γ′3, σ4 = σ′4, and c3 'L c′3.

Given RestoreVariables(xlist_acc+1, γ3, σ4, acc + 1) = σ5, RestoreVariables(x′list_acc+1, γ
′
3, σ

′
4, acc + 1) = σ′5,

xlist_acc+1 = x′list_acc+1, γ3 = γ′3, and σ4 = σ′4, by Lemma 3.3.28 we have σ5 = σ′5.

Given (γ3, σ5, acc + 1, s2) ⇓c4 (γ4, σ6, acc + 1, skip), (γ′3, σ
′
5, acc + 1, s2) ⇓c′4 (γ′4, σ

′
6, acc + 1, skip), γ3 = γ′3,

and σ5 = σ′5, by the inductive hypothesis we have γ4 = γ′4, σ6 = σ′6, and c4 'L c′4.

Given ResolveVariables(xlist_acc+1, γ4, σ6, acc + 1, resacc+1) = σ7, ResolveVariables(x′list_acc+1, γ
′
4, σ
′
6, acc +

1, resacc+1) = σ′7, xlist_acc+1 = x′list_acc+1, γ4 = γ′4, and σ6 = σ′6, by Lemma 3.3.29 we have σ7 = σ′7.

Therefore, we have γ = γ, σ7 = σ′7, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip) by rule If Else True, we have Label(e, γ) = public, (γ,

σ, acc, e) ⇓c1 (γ, σ1, acc, n), n 6= 0, and (γ, σ1, acc, s1) ⇓c2 (γ1, σ2, acc, skip).

By definition 3.3.1, given c = iet , we have c 'L c′ if and only if c′ = iet .

Given Σ . (γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ′2, acc, skip) by rule If Else True, we have Label(e, γ) = public, (γ,

σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), n′ 6= 0, and (γ, σ′1, acc, s1) ⇓c′2 (γ′1, σ
′
2, acc, skip).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Given (γ, σ1, acc, s1) ⇓c2 (γ1, σ2, acc, skip), (γ, σ′1, acc, s1) ⇓c′2 (γ′1, σ
′
2, acc, skip), and σ1 = σ′1, by the inductive

hypothesis we have γ1 = γ′1, σ2 = σ′2, and c2 'L c′2.

Therefore, we have γ = γ, σ = σ, acc = acc, and skip = skip, and, by definition 3.3.3, we have Π 'L Σ.
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Case Π . (γ, σ, acc, if (e) s1 else s2) ⇓ief (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, if (e) s1 else s2) ⇓iet (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, &x) ⇓loc (γ, σ, acc, (l, 0))

Given Π . (γ, σ, acc, &x) ⇓loc (γ, σ, acc, (l, 0)) by rule Address Of, we have γ(x) = (l, ty).

By definition 3.3.1, given c = loc, we have c 'L c′ if and only if c′ = loc.

Given Σ . (γ, σ, acc, &x) ⇓loc (γ, σ, acc, (l′, 0)) by rule Address Of, we have γ(x) = (l′, ty ′).

Given γ = γ, we have that l = l′ and ty = ty ′.

Therefore, we have γ = γ, σ = σ, acc = acc, and (l, 0) = (l′, 0), and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, sizeof(ty)) ⇓ty (γ, σ, acc, n)

Given Π . (γ, σ, acc, sizeof(ty)) ⇓ty (γ, σ, acc, n) by rule Size of Type, we have n = τ(ty).

By definition 3.3.1, given c = ty , we have c 'L c′ if and only if c′ = ty .

Given Σ . (γ, σ, acc, sizeof(ty)) ⇓ty (γ, σ, acc, n′) by rule Size of Type, we have n′ = τ(ty).

Given n = τ(ty) and n′ = τ(ty), by definition of τ we have n = n′.

Therefore, we have γ = γ, σ = σ, acc = acc, and n = n′, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, while (e) s) ⇓wle (γ, σ1, acc, skip)

Given Π . (γ, σ, acc, while (e) s) ⇓wle (γ, σ1, acc, skip) by rule While End, we have (γ, σ, acc, e) ⇓c1 (γ, σ1, acc,

n), Label(e, γ) = public, and n = 0.

By definition 3.3.1, given c = wle , we have c 'L c′ if and only if c′ = wle .
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Given Σ . (γ, σ, acc, while (e) s) ⇓wle (γ, σ′1, acc, skip) by rule While End, we have (γ, σ, acc, e) ⇓′c1 (γ, σ′1, acc,

n′), Label(e, γ) = public, and n′ = 0.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n) and (γ, σ, acc, e) ⇓′c1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, while (e) s) ⇓wlc (γ, σ3, acc, skip)

Given Π . (γ, σ, acc,while (e) s) ⇓wlc (γ, σ3, acc, skip) by rule While Continue, we have Label(e, γ) = public, (γ, σ,

acc, e) ⇓c1 (γ, σ1, acc, n), n 6= 0, (γ, σ1, acc, s) ⇓c2 (γ1, σ2, acc, skip), and (γ1, σ2, acc,while (e) s) ⇓c3 (γ2, σ3,

acc, skip).

By definition 3.3.1, given c = wlc, we have c 'L c′ if and only if c′ = wlc.

Given Σ . (γ, σ, acc, while (e) s) ⇓wlc (γ, σ′3, acc, skip) by rule While Continue, we have Label(e, γ) = public, (γ,

σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), n′ 6= 0, (γ, σ′1, acc, s) ⇓c′2 (γ′1, σ
′
2, acc, skip), and (γ′1, σ

′
2, acc, while (e) s) ⇓c′3

(γ′2, σ
′
3, acc, skip).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Given (γ, σ1, acc, s) ⇓c2 (γ1, σ2, acc, skip), (γ, σ′1, acc, s) ⇓c′2 (γ′1, σ
′
2, acc, skip), and σ1 = σ′1, by the inductive

hypothesis we have γ1 = γ′1, σ2 = σ′2, and c2 'L c′2.

Given (γ1, σ2, acc, while (e) s) ⇓c3 (γ2, σ3, acc, skip), (γ′1, σ
′
2, acc, while (e) s) ⇓c′3 (γ′2, σ

′
3, acc, skip), γ1 = γ′1,

and σ2 = σ′2, by the inductive hypothesis we have γ2 = γ′2, σ3 = σ′3, and c3 'L c′3.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.
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Case Π . (γ, σ, acc, s1; s2) ⇓ss (γ2, σ2, acc, v)

Given Π . (γ, σ, acc, s1; s2) ⇓ss (γ2, σ2, acc, v) by rule Statement Sequencing, we have (γ, σ, acc, s1) ⇓c1 (γ1, σ1,

acc, skip) and (γ1, σ1, acc, s2) ⇓c2 (γ2, σ2, acc, v).

By definition 3.3.1, given c = ss , we have c 'L c′ if and only if c′ = ss .

Given Σ . (γ, σ, acc, s1; s2) ⇓ss (γ′2, σ
′
2, acc, v′) by rule Statement Sequencing, we have (γ, σ, acc, s1) ⇓c′1 (γ′1, σ

′
1,

acc, skip) and (γ′1, σ
′
1, acc, s2) ⇓c′2 (γ′2, σ

′
2, acc, v).

Given (γ, σ, acc, s1) ⇓c1 (γ1, σ1, acc, skip) and (γ, σ, acc, s1) ⇓c′1 (γ′1, σ
′
1, acc, skip), by the inductive hypothesis

we have γ1 = γ′1, σ1 = σ′1, and c1 'L c′1.

Given (γ1, σ1, acc, s2) ⇓c2 (γ2, σ2, acc, v), (γ′1, σ
′
1, acc, s2) ⇓c′2 (γ′2, σ

′
2, acc, v), γ1 = γ′1, and σ1 = σ′1, by the

inductive hypothesis we have γ2 = γ′2, σ2 = σ′2, v = v′, and c2 'L c′2.

Therefore, we have γ2 = γ′2, σ2 = σ′2, acc = acc, v = v′, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, (e)) ⇓ep (γ, σ1, acc, v)

Given Π . (γ, σ, acc, (e)) ⇓ep (γ, σ1, acc, v) by rule Parentheses, we have (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v).

By definition 3.3.1, given c = ep, we have c 'L c′ if and only if c′ = ep.

Given Σ . (γ, σ, acc, (e)) ⇓ep (γ, σ1, acc, v′) by rule Parentheses, we have (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), by the inductive hypothesis we have

σ1 = σ′1, v = v′, and c1 'L c′1.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, v = v′, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, {s}) ⇓sb (γ, σ1, acc, skip)

Given Π . (γ, σ, acc, {s}) ⇓sb (γ, σ1, acc, skip) by rule Statement Block, we have (γ, σ, acc, s) ⇓c1 (γ1, σ1, acc,
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skip).

By definition 3.3.1, given c = sb, we have c 'L c′ if and only if c′ = sb.

Given Σ . (γ, σ, acc, {s}) ⇓sb (γ, σ′1, acc, skip) by rule Statement Block, we have (γ, σ, acc, s) ⇓c′1 (γ′1, σ
′
1, acc,

skip).

Given (γ, σ, acc, s) ⇓c1 (γ1, σ1, acc, skip) and (γ, σ, acc, s) ⇓c′1 (γ′1, σ
′
1, acc, skip), by the inductive hypothesis we

have γ1 = γ′1, σ1 = σ′1, and c1 'L c′1.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, (ty) e) ⇓cl (γ, σ3, acc, (l, 0))

Given Π . (γ, σ, acc, (ty) e) ⇓cl (γ, σ3, acc, (l, 0)) by rule Cast Public Location, we have (γ, σ, acc, e) ⇓c1 (γ, σ1,

acc, (l, 0)), (ty = public bty∗)∨ (ty = char∗), σ1 = σ2

[
l→

(
ω, void, n, PermL(Freeable, void, public, n)

)]
, and

σ3 = σ2

[
l→

(
ω, ty , n

τ(ty) ,PermL(Freeable, ty ,public, n
τ(ty)

))]
.

By definition 3.3.1, given c = cl , we have c 'L c′ if and only if c′ = cl .

Given Σ . (γ, σ, acc, (ty) e) ⇓cl (γ, σ′3, acc, (l′, 0)) by rule Cast Public Location, we have (γ, σ, acc, e) ⇓c′1 (γ, σ′1,

acc, (l′, 0)), (ty = public bty ′∗) ∨ (ty = char∗), σ′1 = σ′2
[
l′ →

(
ω′, void, n′, PermL(Freeable, void, public, n′)

)]
,

and σ′3 = σ′2

[
l′ →

(
ω′, ty , n′

τ(ty) , PermL(Freeable, ty ,public, n′

τ(ty)

))]
.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, (l, 0)) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, (l′, 0)), by the inductive hypothesis

we have σ1 = σ′1, l = l′, and c1 'L c′1.

Given σ1 = σ2

[
l→

(
ω, void, n, PermL(Freeable, void, public, n)

)]
, σ′1 = σ′2

[
l′→

(
ω′, void, n′, PermL(Freeable,

void, public, n′)
)]

, σ1 = σ′1, and l = l′, we have σ2 = σ′2, ω = ω′, and n = n′.

Given σ3 = σ2

[
l→

(
ω, ty , n

τ(ty) , PermL(Freeable, ty , public, n
τ(ty)

))]
, σ′3 = σ′2

[
l′ →

(
ω′, ty , n′

τ(ty) ,

PermL(Freeable, ty , public, n′

τ(ty) )
)]

, σ2 = σ′2, l = l′, ω = ω′, and n = n′, we have σ3 = σ′3.
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Therefore, we have γ = γ, σ3 = σ′3, acc = acc, (l, 0) = (l′, 0), and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, (ty) e) ⇓cl1 (γ, σ3, acc, (l, 0))

This case is similar to Case Π . (γ, σ, acc, (ty) e) ⇓cl (γ, σ3, acc, (l, 0)).

Case Π . (γ, σ, acc, (ty) e) ⇓cv (γ, σ1, acc, n1)

Given Π . (γ, σ, acc, (ty) e) ⇓cv (γ, σ1, acc, n1) by rule Cast Public Value, we have Label(e, γ) = public, (γ, σ,

acc, e) ⇓c1 (γ, σ1, acc, n), (ty = public int) ∨ (ty = public float), and n1 = Cast(public, ty , n).

By definition 3.3.1, given c = cv , we have c 'L c′ if and only if c′ = cv .

Given Σ . (γ, σ, acc, (ty) e) ⇓cv (γ, σ′1, acc, n′1) by rule Cast Public Value, we have Label(e, γ) = public, (γ, σ,

acc, e) ⇓c′1 (γ, σ′1, acc, n′), (ty = public int) ∨ (ty = public float), and n′1 = Cast(public, ty , n′).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Given n1 = Cast(public, ty , n), n′1 = Cast(public, ty , n′), and n = n′, by definition of Cast, we have n1 = n′1.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, n1 = n′1, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, (ty) e) ⇓cv1 (γ, σ1, acc, n1)

This case is similar to Case Π . (γ, σ, acc, (ty) e) ⇓cv (γ, σ1, acc, n1).

Case Π . (γ, σ, acc, smcinput(e1, e2)) ⇓inp (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, smcinput(e1, e2)) ⇓inp (γ, σ3, acc, skip) by rule SMC Input Public Value, we have Label(e2,

γ) = public, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, x), acc = 0, (γ σ1, acc, e2) ⇓c2 (γ, σ2, acc, n), γ(x) = (l,public bty),

InputValue(x, n) = n1, and (γ, σ2, acc, x = n1) ⇓c3 (γ, σ3, acc, skip).
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By definition 3.3.1, given c = inp, we have c 'L c′ if and only if c′ = inp.

Given Σ . (γ, σ, acc, smcinput(e1, e2)) ⇓inp (γ, σ′3, acc, skip) by rule SMC Input Public Value, we have Label(e2,

γ) = public, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, x′), acc = 0, (γ σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′), γ(x′) = (l′,public

bty ′), InputValue(x′, n′) = n′1, and (γ, σ′2, acc, x′ = n′1) ⇓c′3 (γ, σ′3, acc, skip).

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, x) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, x′), by the inductive hypothesis we have

σ1 = σ′1, x = x′, and c1 'L c′1.

Given (γ σ1, acc, e2) ⇓c2 (γ, σ2, acc, n), (γ σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′), and σ1 = σ′1, by the inductive hypothesis

we have σ2 = σ′2, n = n′, and c2 'L c′2.

Given γ(x) = (l,public bty), γ(x′) = (l′,public bty ′), and x = x′, we have l = l′ and bty = bty ′.

Given InputValue(x, n) = n1, InputValue(x′, n′) = n′1, x = x′, and n = n′, by Axiom 3.3.3 we have n1 = n′1.

Given (γ, σ2, acc, x = n1) ⇓c3 (γ, σ3, acc, skip), (γ, σ′2, acc, x′ = n′1) ⇓c′3 (γ, σ′3, acc, skip), σ2 = σ′2, x = x′, and

n = n′, by the inductive hypothesis we have σ3 = σ′3 and c3 'L c′3.

Therefore, we have γ = γ, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, smcinput(e1, e2)) ⇓inp3 (γ, σ3, acc, skip)

This case is similar to Case Π . (γ, σ, acc, smcinput(e1, e2)) ⇓inp (γ, σ3, acc, skip).

Case Π . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ4, acc, skip)

Given Π . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ4, acc, skip) by rule SMC Input Public 1D Array, we have

Label(e2, γ) = Label(e3, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, x′), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc,

n), (γ, σ2, acc, e3) ⇓c3 (γ, σ3, acc, n1), γ(x) = (l, public const bty∗), InputArray(x, n, n1) = [m0, ..., mn1
], and

(γ, σ3, acc, x = [m0, ..., mn1
]) ⇓c4 (γ, σ4, acc, skip).

By definition 3.3.1, given c = inp1 , we have c 'L c′ if and only if c′ = inp1 .
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Given Σ . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ′4, acc, skip) by rule SMC Input Public 1D Array, we have

Label(e2, γ) = Label(e3, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, x), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc,

n′), (γ, σ′2, acc, e3) ⇓c′3 (γ, σ′3, acc, n′1), γ(x′) = (l′, public const bty ′∗), InputArray(x′, n′, n′1) = [m′0, ..., m
′
n′1

],

and (γ, σ′3, acc, x′ = [m′0, ..., m
′
n′1

]) ⇓c′4 (γ, σ′4, acc, skip).

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, x) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, x′), by the inductive hypothesis we have

σ1 = σ′1, x = x′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, n = n′, and c2 'L c′2.

Given (γ, σ2, acc, e3) ⇓c3 (γ, σ3, acc, n1), (γ, σ′2, acc, e3) ⇓c′3 (γ, σ′3, acc, n′1), and σ2 = σ′2, by the inductive

hypothesis we have σ3 = σ′3, n1 = n′1, and c3 'L c′3.

Given γ(x) = (l, public const bty∗), γ(x′) = (l′, public const bty ′∗), and x = x′, we have l = l′ and bty = bty ′.

Given InputArray(x, n, n1) = [m0, ...,mn1
], InputArray(x′, n′, n′1) = [m′0, ..., m

′
n′1

], x = x′, n = n′, and n1 = n′1,

by Axiom 3.3.4 we have [m0, ...,mn1
] = [m′0, ..., m

′
n′1

]. Therefore, we have {x = [m0, ...,mn1
]} = {x′ = [m′0, ...,

m′n′1
]}.

Given (γ, σ3, acc, x = [m0, ...,mn1 ]) ⇓c4 (γ, σ4, acc, skip), (γ, σ′3, acc, x′ = [m′0, ..., m
′
n′1

]) ⇓c′4 (γ, σ′4, acc, skip),

{x = [m0, ...,mn1
]} = {x′ = [m′0, ..., m

′
n′1

]}, and σ3 = σ′3, by the inductive hypothesis we have σ4 = σ′4 and

c4 'L c′4.

Therefore, we have γ = γ, σ4 = σ′4, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp4 (γ, σ4, acc, skip)

This case is similar to Case Π . (γ, σ, acc, smcinput(e1, e2, e3)) ⇓inp1 (γ, σ4, acc, skip).

Case Π . (γ, σ, acc, smcoutput(e1, e2)) ⇓out (γ, σ2, acc, skip)
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Given Π . (γ, σ, acc, smcoutput(e1, e2)) ⇓out (γ, σ2, acc, skip) by rule SMC Output Public Value, we have

Label(e2, γ) = public, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, x), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n), γ(x) = (l,public

bty), σ2(l) = (ω,public bty , 1, PermL(Freeable, public bty , public, 1)), DecodeVal(public bty , 1, ω) = n1, and

OutputValue(x, n, n1).

By definition 3.3.1, given c = out , we have c 'L c′ if and only if c′ = out .

Given Σ . (γ, σ, acc, smcoutput(e1, e2)) ⇓out (γ, σ′2, acc, skip) by rule SMC Output Public Value, we have Label(e2,

γ) = public, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, x′), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′), γ(x′) = (l′,public bty ′),

σ′2(l′) = (ω′, public bty ′, 1, PermL(Freeable, public bty ′, public, 1)), DecodeVal(public bty ′, 1, ω′) = n′1, and

OutputValue(x′, n′, n′1).

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, x) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, x′), by the inductive hypothesis we have

σ1 = σ′1, x = x′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, n = n′, and c2 'L c′2.

Given γ(x) = (l,public bty), γ(x′) = (l′,public bty ′), and x = x′, we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1)), σ′2(l′) = (ω′, public bty ′, 1,

PermL(Freeable, public bty ′, public, 1)), and l = l′, we have ω = ω′.

Given DecodeVal(public bty , 1, ω) = n1, DecodeVal(public bty ′, 1, ω′) = n′1, ω = ω′, and bty = bty ′, by

definition of DecodeVal we have n1 = n′1.

Given OutputValue(x, n, n1), OutputValue(x′, n′, n′1), x = x′, n = n′, and n1 = n′1, by definition of OutputValue

we will have identical output.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, smcoutput(e1, e2)) ⇓out3 (γ, σ2, acc, skip)
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This case is similar to Case Π . (γ, σ, acc, smcoutput(e1, e2)) ⇓out (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip) by rule SMC Output Public 1D Array, we

have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, x), (γ, σ1, acc, e2) ⇓c2 (γ, σ2,

acc, n), (γ, σ2, acc, e3) ⇓c3 (γ, σ3, acc, n1), γ(x) = (l, public const bty∗), σ3(l) = (ω, public const bty∗,

1, PermL(Freeable, public const bty∗, public, 1), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ3(l1) = (ω1,public bty , n1, PermL(Freeable, public bty , public, n1)), DecodeVal(public bty , n1, ω1) = [m0,

..., mn1 ], and OutputArray(x, n, [m0, ...,mn1 ]).

By definition 3.3.1, given c = out1 , we have c 'L c′ if and only if c′ = out1 .

Given Σ . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip) by rule SMC Output Public 1D Array, we

have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, x′), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc,

n′), (γ, σ′2, acc, e3) ⇓c′3 (γ, σ′3, acc, n′1), γ(x′) = (l′,public const bty ′∗), σ′3(l′) = (ω′, public const bty ′∗, 1,

PermL(Freeable, public const bty ′∗, public, 1), DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′3(l′1)

= (ω′1, public bty , n′1, PermL(Freeable, public bty ′, public, n′1)), DecodeVal(public bty ′, n′1, ω
′
1) = [m′0, ...,

m′n′1
], and OutputArray(x′, n′, [m′0, ..., m

′
n′1

]).

Given (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, x) and (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, x′), by the inductive hypothesis we have

σ1 = σ′1, x = x′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, n), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, n′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, n = n′, and c2 'L c′2.

Given (γ, σ2, acc, e3) ⇓c3 (γ, σ3, acc, n1), (γ, σ′2, acc, e3) ⇓c′3 (γ, σ′3, acc, n′1), and σ2 = σ′2, by the inductive

hypothesis we have σ3 = σ′3, n1 = n′1, and c3 'L c′3.

Given γ(x) = (l, public const bty∗), γ(x′) = (l′, public const bty ′∗), and x = x′, we have l = l′ and bty = bty ′.

Given σ3(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1), σ′3(l′) = (ω′, public const

bty ′∗, 1,PermL(Freeable, public const bty ′∗,public, 1), σ3 = σ′3, and l = l′, we have ω = ω′.
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Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], ω = ω′, and bty = bty ′, by definition of DecodePtr we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1] and

therefore l1 = l′1.

Given σ3(l1) = (ω1,public bty , n1, PermL(Freeable, public bty , public, n1)), σ′3(l′1) = (ω′1,public bty , n′1,

PermL(Freeable, public bty ′, public, n′1)), σ3 = σ′3, and l1 = l′1, we have ω1 = ω′1 and n1 = n′1.

Given DecodeVal(public bty , n1, ω1) = [m0, ..., mn1
], DecodeVal(public bty ′, n′1, ω

′
1) = [m′0, ..., m

′
n′1

], bty =

bty ′, n1 = n′1, and ω1 = ω′1, by definition of DecodeVal we have [m0, ..., mn1 ] = [m′0, ..., m
′
n′1

].

Given OutputArray(x, n, [m0, ...,mn1
]), OutputArray(x′, n′, [m′0, ..., m

′
n′1

]), x = x′, n = n′, and [m0, ..., mn1
]

= [m′0, ..., m
′
n′1

], by definition of OutputArray we will have identical output.

Therefore, we have γ = γ, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out4 (γ, σ3, acc, skip)

This case is similar to Case Π . (γ, σ, acc, smcoutput(e1, e2, e3)) ⇓out1 (γ, σ3, acc, skip).

Case Π . (γ, σ, acc, ty x(p)) ⇓df (γ1, σ1, acc, skip)

Given Π . (γ, σ, acc, ty x(p)) ⇓df (γ1, σ1, acc, skip) by rule Function Declaration, we have acc = 0,

GetFunTypeList(p) = ty , l = φ(), γ1 = γ[x → (l, ty → ty)], and σ1 = σ[l → (NULL, ty → ty , 1,

PermL_Fun(public))].

By definition 3.3.1, given c = df , we have c 'L c′ if and only if c′ = df .

Given Σ . (γ, σ, acc, ty x(p)) ⇓df (γ′1, σ
′
1, acc, skip) by rule Function Declaration, we have acc = 0,

GetFunTypeList(p) = ty
′, l′ = φ(), γ′1 = γ[x → (l′, ty

′ → ty)], and σ′1 = σ[l′ → (NULL, ty
′ → ty , 1,

PermL_Fun(public))].

Given GetFunTypeList(p) = ty and GetFunTypeList(p) = ty
′, by Lemma 3.3.1 we have ty = ty

′.
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Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given γ1 = γ[x→ (l, ty → ty)], γ′1 = γ[x→ (l′, ty
′ → ty)], l = l′, and ty = ty

′, we have γ1 = γ′1.

Given σ1 = σ[l→ (NULL, ty → ty , 1, PermL_Fun(public))], σ′1 = σ[l′ → (NULL, ty
′ → ty , 1,

PermL_Fun(public))], l = l′, and ty = ty
′, we have σ1 = σ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ty x(p){s}) ⇓fpd (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ty x(p){s}) ⇓fpd (γ, σ2, acc, skip) by rule Pre-Declared Function Definition, we have acc = 0,

x ∈ γ, γ(x) = (l, ty → ty), CheckPublicEffects(s, x, γ, σ) = n, EncodeFun(s, n, p) = ω, σ = σ1[l →

(NULL, ty → ty , 1, PermL_Fun(public))], and σ2 = σ1[l→ (ω, ty → ty , 1, PermL_Fun(public))].

By definition 3.3.1, given c = fpd , we have c 'L c′ if and only if c′ = fpd .

Given Σ . (γ, σ, acc, ty x(p){s}) ⇓fpd (γ, σ′2, acc, skip) by rule Pre-Declared Function Definition, we have acc = 0,

x ∈ γ, γ(x) = (l′, ty
′ → ty), CheckPublicEffects(s, x, γ, σ) = n′, EncodeFun(s, n′, p) = ω′, σ = σ′1[l′ →

(NULL, ty
′ → ty , 1,PermL_Fun(public))], and σ′2 = σ′1[l′ → (ω′, ty

′ → ty , 1,PermL_Fun(public))].

Given γ(x) = (l, ty → ty), γ(x) = (l′, ty
′ → ty), we have l = l′ and ty = ty

′.

Given CheckPublicEffects(s, x, γ, σ) = n, CheckPublicEffects(s, x, γ, σ) = n′, by definition of CheckPublicEffects

we have n = n′.

Given EncodeFun(s, n, p) = ω, EncodeFun(s, n′, p) = ω′, and n = n′, by definition of EncodeFun we have

ω = ω′.

Given σ = σ1[l→ (NULL, ty → ty , 1, PermL_Fun(public))], σ = σ′1[l′ → (NULL, ty
′ → ty , 1,

PermL_Fun(public))], l = l′, and ty = ty
′, we have σ1 = σ′1.
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Given σ2 = σ1[l → (ω, ty → ty , 1,PermL_Fun(public))], σ′2 = σ′1[l′ → (ω′, ty
′ → ty , 1, PermL_Fun(public))],

σ1 = σ′1, l = l′, ty = ty
′, and ω = ω′, we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ty x(p){s}) ⇓fd (γ1, σ1, acc, skip)

Given Π . (γ, σ, acc, ty x(p) {s}) ⇓fd (γ1, σ1, acc, skip) by rule function definition, we have l = φ(),

GetFunTypeList(p) = ty , x /∈ γ, γ1 = γ[x → (l, ty → ty)], acc = 0, CheckPublicEffects(s, x, γ, σ) = n,

EncodeFun(s, n, p) = ω, and σ1 = σ[l→ (ω, ty → ty , 1,PermL_Fun(public))].

By definition 3.3.1, given c = fd , we have c 'L c′ if and only if c′ = fd .

Given Σ . (γ, σ, acc, ty x(p){s}) ⇓fd (γ′1, σ
′
1, acc, skip) by rule function definition, we have l′ = φ(),

GetFunTypeList(p) = ty
′, x /∈ γ, γ′1 = γ[x → (l′, ty

′ → ty)], acc = 0, CheckPublicEffects(s, x, γ, σ) = n′,

EncodeFun(s, n′, p) = ω′, and σ′1 = σ[l′ → (ω′, ty
′ → ty , 1,PermL_Fun(public))].

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given GetFunTypeList(p) = ty and GetFunTypeList(p) = ty
′, by Lemma 3.3.1 we have ty = ty

′.

Given γ1 = γ[x→ (l, ty → ty)], γ′1 = γ[x→ (l′, ty
′ → ty)], l = l′, and ty = ty

′, we have γ1 = γ′1.

Given CheckPublicEffects(s, x, γ, σ) = n, CheckPublicEffects(s, x, γ, σ) = n′, by definition of

CheckPublicEffects we have n = n′.

Given EncodeFun(s, n, p) = ω, EncodeFun(s, n′, p) = ω′, and n = n′, by definition of EncodeFun we have

ω = ω′.

Given σ1 = σ[l → (ω, ty → ty , 1,PermL_Fun(public))], σ′1 = σ[l′ → (ω′, ty
′ → ty , 1, PermL_Fun(public))],

l = l′, ty = ty
′, and ω = ω′, we have σ1 = σ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.
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Case Π . (γ, σ, acc, x(e)) ⇓fc (γ, σ2, acc, NULL)

Given Π . (γ, σ, acc, x(e)) ⇓fc (γ, σ2, acc, NULL) by rule Function Call No Return With Public Side Effects, we

have γ(x) = (l, ty → ty), σ(l) = (ω, ty → ty , 1, PermL_Fun(public)), DecodeFun(ω) = (s, 1, p), acc = 0,

GetFunParamAssign(p, e) = s1, (γ, σ, acc, s1) ⇓c1 (γ1, σ1, acc, skip), and (γ1, σ1, acc, s) ⇓c2 (γ2, σ2, acc, skip).

By definition 3.3.1, given c = fc, we have c 'L c′ if and only if c′ = fc.

Given Σ . (γ, σ, acc, x(e)) ⇓fc (γ, σ2, acc, NULL) by rule Function Call No Return With Public Side Effects, we

have γ(x) = (l′, ty
′ → ty ′), σ(l′) = (ω′, ty

′ → ty ′, 1, PermL_Fun(public)), DecodeFun(ω′) = (s′, 1, p′), acc = 0,

GetFunParamAssign(p′, e) = s′1, (γ, σ, acc, s′1) ⇓c′1 (γ′1, σ
′
1, acc, skip), and (γ′1, σ

′
1, acc, s) ⇓c′2 (γ′2, σ

′
2, acc,

skip).

Given γ(x) = (l, ty → ty) and γ(x) = (l′, ty
′ → ty ′), we have l = l′, ty = ty

′, and ty = ty ′.

Given σ(l) = (ω, ty → ty , 1,PermL_Fun(public)), σ(l′) = (ω′, ty
′ → ty ′, 1,

PermL_Fun(public)), and l = l′, we have ω = ω′.

Given DecodeFun(ω) = (s, 1, p), DecodeFun(ω′) = (s′, 1, p′), and ω = ω′, by definition of DecodeFun we have

s = s′ and p = p′.

Given GetFunParamAssign(p, e) = s1, GetFunParamAssign(p′, e) = s′1, and p = p′, by Lemma 3.3.2 we have

s1 = s′1.

Given (γ, σ, acc, s1) ⇓c1 (γ1, σ1, acc, skip), (γ, σ, acc, s′1) ⇓c′1 (γ′1, σ
′
1, acc, skip), and s1 = s′1, by the inductive

hypothesis we have γ1 = γ′1, σ1 = σ′1, and c1 'L c′1.

Given (γ1, σ1, acc, s) ⇓c2 (γ2, σ2, acc, skip), (γ′1, σ
′
1, acc, s) ⇓c′2 (γ′2, σ

′
2, acc, skip), γ1 = γ′1, and σ1 = σ′1, by the

inductive hypothesis we have γ2 = γ′2, σ2 = σ′2, and c2 'L c′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, NULL = NULL, and, by definition 3.3.3, we have Π 'L Σ.
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Case Π . (γ, σ, acc, x(e)) ⇓fc1 (γ, σ2, acc, NULL)

This case is similar to Case Π . (γ, σ, acc, x(e)) ⇓fc (γ, σ2, acc, NULL).

Case Π . (γ, σ, acc, malloc(e)) ⇓mal (γ, σ2, acc, (l, 0))

Given Π . (γ, σ, acc, malloc(e)) ⇓mal (γ, σ2, acc, (l, 0)) by rule Public Malloc, we have Label(e, γ) = public,

acc = 0, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n), l = φ(), and σ2 = σ1

[
l→

(
NULL, void∗, n,

[
(0, public, Freeable), ...,

(n− 1, public, Freeable)
])]

.

By definition 3.3.1, given c = mal , we have c 'L c′ if and only if c′ = mal .

Given Σ . (γ, σ, acc, malloc(e)) ⇓mal (γ, σ′2, acc, (l′, 0)) by rule Public Malloc, we have Label(e, γ) = public,

acc = 0, (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), l′ = φ(), and σ′2 = σ′1
[
l′ →

(
NULL, void∗, n′,

[
(0, public, Freeable),

..., (n′ − 1, public, Freeable)
])]

.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given σ2 = σ1

[
l →

(
NULL, void∗, n,

[
(0, public, Freeable), ..., (n − 1, public, Freeable)

])]
, σ′2 = σ′1

[
l′ →(

NULL, void∗, n′,
[
(0, public, Freeable), ..., (n′ − 1, public, Freeable)

])]
, σ1 = σ′1, l = l′, and n = n′, we have

σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, (l, 0) = (l′, 0), and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, pmalloc(e, ty)) ⇓malp (γ, σ2, acc, (l, 0))

Given Π . (γ, σ, acc, pmalloc(e, ty)) ⇓malp (γ, σ2, acc, (l, 0)) by rule Private Malloc, we have Label(e, γ) = public,

(ty = private int) ∨ (ty = private float) (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n), acc = 0, l = φ(), and σ2 = σ1

[
l →(

NULL, ty , n, PermL(Freeable, ty , private, n)
]
.
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By definition 3.3.1, given c = malp, we have c 'L c′ if and only if c′ = malp.

Given Σ . (γ, σ, acc, pmalloc(e, ty)) ⇓malp (γ, σ′2, acc, (l′, 0)) by rule Private Malloc, we have Label(e, γ) =

public, (ty = private int) ∨ (ty = private float) (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), acc = 0, l′ = φ(), and

σ′2 = σ′1
[
l′ →

(
NULL, ty , n′, PermL(Freeable, ty , private, n′)

]
.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given σ2 = σ1[l →
(
NULL, ty , n, PermL(Freeable, ty , private, n)], σ′2 = σ′1[l′ →

(
NULL, ty , n′,

PermL(Freeable, ty , private, n′)], σ1 = σ′1, l = l′, and n = n′, we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, (l, 0) = (l′, 0), and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, free(e)) ⇓fre (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, free(e)) ⇓fre (γ, σ2, acc, skip) by rule Public Free, we have (γ, σ, acc, e) ⇓c1 (γ, σ1, acc,

x), γ(x) = (l,public bty∗), (bty = int) ∨ (bty = float) ∨ (bty = char) ∨ (bty = void), acc = 0, and Free(σ1, l,

γ) = σ2.

By definition 3.3.1, given c = fre , we have c 'L c′ if and only if c′ = fre.

Given Σ . (γ, σ, acc, free(e)) ⇓fre (γ, σ′2, acc, skip) by rule Public Free, we have (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, x′),

γ(x′) = (l′,public bty ′∗), (bty ′ = int) ∨ (bty ′ = float) ∨ (bty ′ = char) ∨ (bty ′ = void), acc = 0, and Free(σ′1, l
′,

γ) = σ′2.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, x) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, x′), by the inductive hypothesis we have

σ1 = σ′1, x = x′, and c1 'L c′1.

Given γ(x) = (l,public bty∗), γ(x′) = (l′,public bty ′∗), and x = x′, we have l = l′ and bty = bty ′.
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Given Free(σ1, l, γ) = σ2, Free(σ′1, l
′, γ) = σ′2, σ1 = σ′1, and l = l′, by Lemma 3.3.9 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, pfree(e)) ⇓frep (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, pfree(e)) ⇓frep (γ, σ2, acc, skip) by rule Private Free, we have (γ, σ, acc, e) ⇓c1 (γ, σ1, acc,

x), γ(x) = (l, private bty∗), acc = 0, (bty = int) ∨ (bty = float), and PFree(γ, σ1, l) = (σ2, j).

By definition 3.3.1, given c = frep, we have c 'L c′ if and only if c′ = frep.

Given Σ . (γ, σ, acc, pfree(e)) ⇓frep (γ, σ′2, acc, skip) by rule Private Free, we have (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc,

x′), γ(x′) = (l′, private bty ′∗), acc = 0, (bty ′ = int) ∨ (bty ′ = float), and PFree(γ, σ′1, l
′) = (σ′2, j

′
).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, x) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, x′), by the inductive hypothesis we have

σ1 = σ′1, x = x′, and c1 'L c′1.

Given γ(x) = (l, private bty∗), γ(x′) = (l′, private bty ′∗), and x = x′, we have l = l′ and bty = bty ′.

Given PFree(γ, σ1, l) = (σ2, j), PFree(γ, σ′1, l
′) = (σ′2, j

′
), σ1 = σ′1, and l = l′, by Lemma 3.3.10 we have σ2 = σ′2

and j = j
′
.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip)

Given Π . (γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip) by rule Declaration Assignment, we have (γ, σ, acc, ty x)

⇓c1 (γ1, σ1, acc, skip), and (γ1, σ1, acc, x = e) ⇓c2 (γ1, σ2, acc, skip).

By definition 3.3.1, given c = ds , we have c 'L c′ if and only if c′ = ds .

Given Σ . (γ, σ, acc, ty x = e) ⇓ds (γ′1, σ
′
2, acc, skip) by rule Declaration Assignment, we have (γ, σ, acc, ty x)

⇓c′1 (γ′1, σ
′
1, acc, skip), and (γ′1, σ

′
1, acc, x = e) ⇓c′2 (γ′1, σ

′
2, acc, skip).
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Given (γ, σ, acc, ty x) ⇓c1 (γ1, σ1, acc, skip) and (γ, σ, acc, ty x) ⇓c′1 (γ′1, σ
′
1, acc, skip), by the inductive hypothesis

we have γ1 = γ′1, σ1 = σ′1, and c1 'L c′1.

Given (γ1, σ1, acc, x = e) ⇓c2 (γ1, σ2, acc, skip), (γ′1, σ
′
1, acc, x = e) ⇓c′2 (γ′1, σ

′
2, acc, skip), γ1 = γ′1, and σ1 = σ′1,

by the inductive hypothesis we have σ2 = σ′2, and c2 'L c′2.

Therefore, we have γ1 = γ′1, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ty x[e1] = e2) ⇓das (γ1, σ2, acc, skip)

This case is similar to case Π . (γ, σ, acc, ty x = e) ⇓ds (γ1, σ2, acc, skip).

Case Π . (γ, σ, acc, ty x) ⇓d (γ1, σ1, acc, skip)

Given Π . (γ, σ, acc, ty x) ⇓d (γ1, σ1, acc, skip) by rule Public Declaration, we have (ty = public bty) ∨(ty = char),

acc = 0, l = φ(), γ1 = γ[x → (l, ty)], ω = EncodeVal(ty ,NULL), and σ1 = σ[l → (ω, ty , 1, PermL(Freeable,

ty ,public, 1))].

By definition 3.3.1, given c = d , we have c 'L c′ if and only if c′ = d .

Given Σ . (γ, σ, acc, ty x) ⇓d (γ′1, σ
′
1, acc, skip) by rule Public Declaration, we have (ty = public bty) ∨(ty =

char), acc = 0, l′ = φ(), γ′1 = γ[x → (l′, ty)], ω′ = EncodeVal(ty , NULL), and σ′1 = σ[l′ → (ω′, ty , 1,

PermL(Freeable, ty ,public, 1))].

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given γ1 = γ[x → (l, ty)], γ′1 = γ[x → (l′, ty)], and l = l′, we have γ1 = γ′1.

Given ω = EncodeVal(ty ,NULL) and ω′ = EncodeVal(ty , NULL), by Lemma 3.3.3 we have ω = ω′.

Given σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty , public, 1))], σ′1 = σ[l′ → (ω′, ty , 1, PermL(Freeable, ty ,

public, 1))], l = l′, and ω = ω′, we have σ1 = σ′1.
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Therefore, we have γ1 = γ′1, σ1 = σ′1, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ty x) ⇓d1 (γ1, σ1, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ty x) ⇓d (γ1, σ1, acc, skip).

Case Π . (γ, σ, acc, ty x) ⇓dp (γ1, σ1, acc, skip)

Given Π . (γ, σ, acc, ty x) ⇓dp (γ1, σ1, acc, skip) by rule Public Pointer Declaration, we have (ty = public

bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))), GetIndirection(∗) = i, acc = 0, l = φ(), γ1 =

γ[x → (l, ty)], ω = EncodePtr(ty , [1, [ldefault ], [1], i]), and σ1 = σ[l → (ω, ty , 1, PermL(Freeable, public

bty∗,public, 1))].

By definition 3.3.1, given c = dp, we have c 'L c′ if and only if c′ = dp.

Given Σ . (γ, σ, acc, ty x) ⇓dp (γ′1, σ
′
1, acc, skip) by rule Public Pointer Declaration, we have (ty = public

bty ′∗) ∨ ((ty = bty ′∗) ∧ ((bty ′ = char) ∨ (bty ′ = void))), GetIndirection(∗) = i′, acc = 0, l′ = φ(), γ′1 =

γ[x → (l′, ty)], ω′ = EncodePtr(ty , [1, [ldefault ], [1], i′]), and σ′1 = σ[l′ → (ω′, ty , 1, PermL(Freeable, public

bty∗,public, 1))].

Given (ty = public bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))) and (ty = public bty ′∗) ∨ ((ty =

bty ′∗) ∧ ((bty ′ = char) ∨ (bty ′ = void))), we have bty = bty ′.

Given GetIndirection(∗) = i and GetIndirection(∗) = i′, by Lemma 3.3.11 we have i = i′.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given γ1 = γ[x → (l, ty)], γ′1 = γ[x → (l′, ty)], and l = l′, we have γ1 = γ′1.

Given ω = EncodePtr(ty , [1, [ldefault ], [1], i]), ω′ = EncodePtr(ty , [1, [ldefault ], [1], i′]), and i = i′, by Lemma 3.3.5

we have ω = ω′.
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Given σ1 = σ[l → (ω,public bty∗, 1, PermL(Freeable, public bty∗,public, 1))], σ′1 = σ[l′ → (ω′,public

bty ′∗, 1, PermL(Freeable, public bty ′∗,public, 1))], l = l′, ω = ω′, and bty = bty ′, we have σ1 = σ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ty x) ⇓dp1 (γ1, σ1, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ty x) ⇓dp (γ1, σ1, acc, skip).

Case Π . (γ, σ, acc, x) ⇓r (γ, σ, acc, v)

Given Π . (γ, σ, acc, x) ⇓r (γ, σ, acc, v) by rule Read Public Variable, we have γ(x) = (l,public bty), σ(l) =

(ω,public bty , 1,PermL(Freeable, public bty , public, 1)), and DecodeVal(public bty , 1, ω) = v.

By definition 3.3.1, given c = r , we have c 'L c′ if and only if c′ = r .

Given Σ . (γ, σ, acc, x) ⇓r (γ, σ, acc, v′) by rule Read Public Variable, we have γ(x) = (l′,public bty ′), σ(l′) =

(ω′,public bty ′, 1,PermL(Freeable, public bty ′, public, 1)), and DecodeVal(public bty ′, 1, ω′) = v′.

Given γ(x) = (l,public bty) and γ(x) = (l′,public bty ′), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1)), σ(l′) = (ω′,public bty ′, 1,

PermL(Freeable, public bty ′, public, 1)), and l = l′, we have ω = ω′.

Given DecodeVal(public bty , 1, ω) = v, DecodeVal(public bty ′, 1, ω′) = v′, bty = bty ′, and ω = ω′, we have

v = v′.

Therefore, we have γ = γ, σ = σ, acc = acc, v = v, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x) ⇓r1 (γ, σ, acc, v)

This case is similar to case Π . (γ, σ, acc, x) ⇓r (γ, σ, acc, v).
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Case Π . (γ, σ, acc, x = e) ⇓w (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓w (γ, σ2, acc, skip) by rule Public Write Variable, we have Label(e, γ) = public, (γ,

σ, acc, e) ⇓c1 (γ, σ1, acc, v), v 6= skip, acc = 0, γ(x) = (l, public bty), and UpdateVal(σ1, l, v, public bty) = σ2.

By definition 3.3.1, given c = w , we have c 'L c′ if and only if c′ = w .

Given Σ . (γ, σ, acc, x = e) ⇓w (γ, σ′2, acc, skip) by rule Write Public Variable, we have Label(e, γ) = public,

(γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), v′ 6= skip,acc = 0, γ(x) = (l′, public bty ′), and UpdateVal(σ′1, l
′, v′, public

bty ′) = σ′2.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), by the inductive hypothesis we have

σ1 = σ′1, v = v′, and c1 'L c′1.

Given γ(x) = (l, public bty) and γ(x) = (l′, public bty ′), we have l = l′ and bty = bty ′.

Given UpdateVal(σ1, l, v,public bty) = σ2, UpdateVal(σ′1, l
′, v′, public bty ′) = σ′2, σ1 = σ′1, l = l′, bty = bty ′,

and v = v′, by Lemma 3.3.12 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x = e) ⇓w2 (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, x = e) ⇓w (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, x = e) ⇓w1 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓w1 (γ, σ2, acc, skip) by rule Write Private Variable Public Value, we have Label(e, γ)

= public, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n), γ(x) = (l, private bty), and UpdateVal(σ1, l, encrypt(n),private

bty) = σ2.

By definition 3.3.1, given c = w1 , we have c 'L c′ if and only if c′ = w1 .
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Given Σ . (γ, σ, acc, x = e) ⇓w1 (γ, σ′2, acc, skip) by rule Write Private Variable Public Value, we have Label(e,

γ) = public, (γ, σ, acc, e) ⇓c1 (γ, σ′1, acc, n′), γ(x) = (l′, private bty ′), and UpdateVal(σ′1, l
′, encrypt(n′),

private bty ′) = σ′2.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n) and (γ, σ, acc, e) ⇓c1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Given γ(x) = (l, private bty) and γ(x) = (l′, private bty ′), we have l = l′ and bty = bty ′.

Given UpdateVal(σ1, l, encrypt(n),private bty) = σ2, UpdateVal(σ′1, l
′, encrypt(n′),private bty ′) = σ′2,

σ1 = σ′1, l = l′, bty = bty ′, and n = n′, by Axiom 3.3.1 we have encrypt(n) = encrypt(n′) and therefore by Lemma

3.3.12 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x) ⇓rp (γ, σ, acc, (l1, µ1))

Given Π . (γ, σ, acc, x) ⇓rp (γ, σ, acc, (l1, µ1)) by rule Public Pointer Read Single Location, we have γ(x) =

(l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), and DecodePtr(public

bty∗, 1, ω) = [1, [(l1, µ1)], [1], i].

By definition 3.3.1, given c = rp, we have c 'L c′ if and only if c′ = rp.

Given Σ . (γ, σ, acc, x) ⇓rp (γ, σ, acc, (l′1, µ
′
1)) by rule Public Pointer Read Single Location, we have γ(x) =

(l′, public bty ′∗), σ(l′) = (ω′, public bty ′∗, 1, PermL(Freeable, public bty ′∗, public, 1)), and

DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′].

Given γ(x) = (l, public bty∗) and γ(x) = (l′, public bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗,public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1],
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i′], bty = bty ′, and ω = ω′, we have l1 = l′1, µ1 = µ′1, and i = i′.

Therefore, we have γ = γ, σ = σ, acc = acc, (l1, µ1) = (l′1, µ
′
1), and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x) ⇓rp2 (γ, σ, acc, (l1, µ1))

This case is similar to case Π . (γ, σ, acc, x) ⇓rp (γ, σ, acc, (l1, µ1)).

Case Π . (γ, σ, acc, x) ⇓rp1 (γ, σ, acc, [α, l, j, i])

Given Π . (γ, σ, acc, x) ⇓rp1 (γ, σ, acc, [α, l, j, i]) by rule Private Pointer Read Multiple Locations, we have

γ(x) = (l, private bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω, private bty∗, α, PermL(Freeable, private

bty∗, private, α)), and DecodePtr(private bty∗, α, ω) = [α, l, j, i].

By definition 3.3.1, given c = rp1 , we have c 'L c′ if and only if c′ = rp1 .

Given Σ . (γ, σ, acc, x) ⇓rp1 (γ, σ, acc, [α′, l
′
, j
′
, i′]) by rule Private Pointer Read Multiple Locations, we have

γ(x) = (l′, private bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ(l′) = (ω′, private bty ′∗, α′, PermL(Freeable, private

bty ′∗, private, α′)), and DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′].

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α)), σ(l′) = (ω′,private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, i] = [α′, l
′
, j
′
, i′].

Therefore, we have γ = γ, σ = σ, acc = acc, [α, l, j, i] = [α′, l
′
, j
′
, i′], and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip) by rule Public Pointer Write Single Location, we have
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Label(e, γ) = public, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, (le, µe)), γ(x) = (l,public bty∗), σ1(l) = (ω,public bty∗, 1,

PermL(Freeable, public bty∗,public, 1)), acc = 0, DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], and

UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], public bty∗) = (σ2, 1).

By definition 3.3.1, given c = wp, we have c 'L c′ if and only if c′ = wp.

Given Σ . (γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip) by rule Public Pointer Write Single Location, we have Label(e,

γ) = public, (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, (l′e, µ
′
e)), γ(x) = (l′,public bty ′∗), σ′1(l′) = (ω′,public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), acc = 0, DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′], and

UpdatePtr(σ′1, (l′, 0), [1, [(l′e, µ
′
e)], [1], i′], public bty ′∗) = (σ′2, 1).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, (le, µe)) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, (l′e, µ
′
e)), by the inductive hypothesis

we have σ1 = σ′1, le = l′e, µe = µ′e, and c1 'L c′1.

Given γ(x) = (l,public bty∗) and γ(x) = (l′,public bty ′∗) we have l = l′ and bty = bty ′.

Given σ1(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ′1(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have l1 = l′1, µ1 = µ′1, and i = i′.

Given UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i],public bty∗) = (σ2, 1), UpdatePtr(σ′1, (l′, 0), [1, [(l′e, µ
′
e)], [1], i′],

public bty ′∗) = (σ′2, 1), σ1 = σ′1, l = l′, le = l′e, µe = µ′e, i = i′, and bty = bty ′, by Lemma 3.3.15 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x = e) ⇓wp1 (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, x = e) ⇓wp (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, x = e) ⇓wp2 (γ, σ2, acc, skip)
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Given Π . (γ, σ, acc, x = e) ⇓wp2 (γ, σ2, acc, skip) by rule Private Pointer Write Multiple Locations, we have (γ,

σ, acc, e) ⇓c1 (γ, σ1, acc, [α, l, j, i]), γ(x) = (l,private bty∗), (bty = int) ∨ (bty = float), and UpdatePtr(σ1, (l,

0), [α, l, j, i],private bty∗) = (σ2, 1).

By definition 3.3.1, given c = wp2 , we have c 'L c′ if and only if c′ = wp2 .

Given Σ . (γ, σ, acc, x = e) ⇓wp2 (γ, σ′2, acc, skip) by rule Private Pointer Write Multiple Locations, we have

(γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, [α′, l
′
, j
′
, i′]), γ(x) = (l′,private bty ′∗), (bty ′ = int) ∨ (bty ′ = float), and

UpdatePtr(σ′1, (l
′, 0), [α′, l

′
, j
′
, i′],private bty ′∗) = (σ′2, 1).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, [α, l, j, i]) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, [α′, l
′
, j
′
, i′]), by the inductive

hypothesis we have σ1 = σ′1, [α, l, j, i] = [α′, l
′
, j
′
, i′], and c1 'L c′1.

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗), we have l = l′ and bty = bty ′.

Given UpdatePtr(σ1, (l, 0), [α, l, j, i],private bty∗) = (σ2, 1), UpdatePtr(σ′1, (l, 0), [α′, l
′
, j
′
, i′], private bty ′∗) =

(σ′2, 1), σ1 = σ′1, l = l′, bty = bty ′, and [α, l, j, i] = [α′, l
′
, j
′
, i′], by Lemma 3.3.15 we have σ2 = σ′2.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x) ⇓rdp (γ, σ, acc, v)

Given Π . (γ, σ, acc, ∗x) ⇓rdp (γ, σ, acc, v) by rule Public Pointer Dereference Single Location, we have

γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), DecodePtr(public

bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], and DerefPtr(σ, public bty , (l1, µ1)) = (v, 1).

By definition 3.3.1, given c = rdp, we have c 'L c′ if and only if c′ = rdp.

Given Σ . (γ, σ, acc, ∗x) ⇓rdp (γ, σ, acc, v) by rule Public Pointer Dereference Single Location, we have γ(x) =

(l′,public bty ′∗), σ(l′) = (ω′,public bty ′∗, 1, PermL(Freeable, public bty ′∗,public, 1)), DecodePtr(public bty ′∗,

1, ω′) = [1, [(l′1, µ
′
1)], [1], 1], and DerefPtr(σ, public bty ′, (l′1, µ

′
1)) = (v′, 1).

Given γ(x) = (l,public bty∗) and γ(x) = (l′,public bty ′∗), we have l = l′ and bty = bty ′.
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Given σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ1)], [1], 1],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, µ1)], [1], 1] = [1, [(l′1, µ1)], [1], 1] and therefore (l1, µ1) =

(l′1, µ
′
1).

Given DerefPtr(σ, public bty , (l1, µ1)) = (v, 1), DerefPtr(σ, public bty ′, (l′1, µ
′
1)) = (v′, 1), bty = bty ′, (l1, µ1) =

(l′1, µ
′
1), by Lemma 3.3.19 we have v = v′.

Therefore, we have γ = γ, σ = σ, acc = acc, v = v′, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x) ⇓rdp1 (γ, σ, acc, (l2, µ2))

Given Π . (γ, σ, acc, ∗x) ⇓rdp1 (γ, σ, acc, (l2, µ2)) by rule Public Pointer Dereference Single Location Higher Level

Indirection, we have γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗,public, 1)),

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], i > 1, and DerefPtrHLI(σ, public bty∗, (l1, µ1)) = ([1, [(l2,

µ2)], [1], i− 1], 1).

By definition 3.3.1, given c = rdp1 , we have c 'L c′ if and only if c′ = rdp.

Given Σ . (γ, σ, acc, ∗x) ⇓rdp1 (γ, σ, acc, (l′2, µ
′
2)) by rule Public Pointer Dereference Single Location Higher Level In-

direction, we have γ(x) = (l′,public bty ′∗), σ(l′) = (ω′,public bty ′∗, 1, PermL(Freeable, public bty ′∗,public, 1)),

DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′], i′ > 1, and DerefPtrHLI(σ, public bty ′∗, (l′1, µ′1)) = ([1,

[(l′2, µ
′
2)], [1], i′ − 1], 1).

Given γ(x) = (l,public bty∗) and γ(x) = (l′,public bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1],
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i′], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, µ1)], [1], i] = [1, [(l′1, µ
′
1)], [1], i′] and therefore

(l1, µ1) = (l′1, µ
′
1) and i = i′.

Given DerefPtrHLI(σ, public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i−1], 1), DerefPtrHLI(σ, public bty ′∗, (l′1, µ′1)) =

([1, [(l′2, µ
′
2)], [1], i′ − 1], 1), bty = bty ′, and (l1, µ1) = (l′1, µ

′
1), by Lemma 3.3.20 we have [1, [(l2, µ2)], [1], i− 1] =

[1, [(l′2, µ
′
2)], [1], i′ − 1] and therefore (l2, µ2) = (l′2, µ

′
2).

Therefore, we have γ = γ, σ = σ, acc = acc, (l2, µ2) = (l′2, µ
′
2), and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v)

Given Π . (γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v) by rule Private Pointer Dereference, we have γ(x) = (l,private

bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)),

DecodePtr(private bty∗, α, ω) = [α, l, j, 1], and Retrieve_vals(α, l, j, private bty , σ) = (v, 1).

By definition 3.3.1, given c = rdp2 , we have c 'L c′ if and only if c′ = rdp2 .

Given Σ . (γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v) by rule Private Pointer Dereference, we have γ(x) = (l′,private

bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ(l′) = (ω′,private bty ′∗, α′, PermL(Freeable, private bty ′∗, private, α′)),

DecodePtr(private bty ′∗, α′, ω) = [α′, l
′
, j
′
, 1], and Retrieve_vals(α′, l

′
, j
′
, private bty ′, σ) = (v′, 1).

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], DecodePtr(private bty ′∗, α′, ω) = [α′, l
′
, j
′
, 1], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, 1] = [α′, l, j, 1]. Therefore, we have l = l
′

and j = j
′
.

Given Retrieve_vals(α, l, j, private bty , σ) = (v, 1), Retrieve_vals(α′, l
′
, j
′
,private bty ′, σ) = (v′, 1), α = α′,

l = l
′
, j = j

′
, and bty = bty ′, by Lemma 3.3.17 we have v = v′.

Therefore, we have γ = γ, σ = σ, acc = acc, v = v′, and, by definition 3.3.3, we have Π 'L Σ.
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Case Π . (γ, σ, acc, ∗x) ⇓∗rdp2 (γ, σ, acc, v)

This case is similar to Case Π . (γ, σ, acc, ∗x) ⇓rdp2 (γ, σ, acc, v).

Case Π . (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l
′
, j
′
, i− 1])

Given Π . (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l
′
, j
′
, i− 1]) by rule Private Pointer Dereference Higher Level Indirec-

tion, we have γ(x) = (l,private bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω, private bty∗, α, PermL(Freeable,

private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, i], i > 1, and DerefPrivPtr(α, l, j, private

bty∗, σ) = ((α′, l
′
, j
′
), 1).

By definition 3.3.1, given c = rdp3 , we have c 'L c′ if and only if c′ = rdp3 .

Given Σ . (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′′′, l
′′′
, j
′′′
, i′ − 1]) by rule Private Pointer Dereference Higher Level

Indirection, we have γ(x) = (l′,private bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ(l′) = (ω′, private bty ′∗, α′′,

PermL(Freeable, private bty ′∗, private, α′′)),

DecodePtr(private bty ′∗, α′′, ω′) = [α′′, l
′′
, j
′′
, i′], i′ > 1, and DerefPrivPtr(α′′, l

′′
, j
′′
, private bty ′∗, σ) =

((α′′′, l
′′′
, j
′′′

), 1).

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ(l′) = (ω′, private bty ′∗, α′′,

PermL(Freeable, private bty ′∗, private, α′′)), and l = l′, we have ω = ω′ and α = α′′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], DecodePtr(private bty ′∗, α′′, ω′) = [α′′, l
′′
, j
′′
, i′], bty = bty ′,

α = α′′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j = [α′′, l
′′
, j
′′
, i′]. Therefore, we have l = l

′′
, j = j

′′
, and i = i′.

Given DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l
′
, j
′
), 1), DerefPrivPtr(α′′, l

′′
, j
′′
,private bty ′∗, σ) = ((α′′′,

l
′′′
, j
′′′

), 1), α = α′′, l = l
′′

, j = j
′′

, and bty = bty ′, by Lemma 3.3.18 we have (α′, l
′
, j
′
) = (α′′′, l

′′′
, j
′′′

).

Given (α′, l
′
, j
′
) = (α′′′, l

′′′
, j
′′′

) and i = i′, we have [α′, l
′
, j
′
, i− 1] = ([α′′′, l

′′′
, j
′′′
, i′ − 1].

Therefore, we have γ = γ, σ = σ, acc = acc, [α′, l
′
, j
′
, i− 1] = ([α′′′, l

′′′
, j
′′′
, i′ − 1], and, by definition 3.3.3, we
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have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l
′
, j
′
, i− 1])

This case is similar to Case Π . (γ, σ, acc, ∗x) ⇓rdp3 (γ, σ, acc, [α′, l
′
, j
′
, i− 1]).

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp (γ, σ2, acc, skip) by rule Public Pointer Dereference Write Public Value, we have

(γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v), v 6= skip, γ(x) = (l,public bty∗), σ1(l) = (ω, public bty∗, 1, PermL(Freeable,

public bty∗, public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], UpdateOffset(σ1, (l1, µ1), v,

public bty) = (σ2, 1), Label(e, γ) = public, and acc = 0.

By definition 3.3.1, given c = wdp, we have c 'L c′ if and only if c′ = wdp.

Given Σ . (γ, σ, acc, ∗x = e) ⇓wdp (γ, σ′2, acc, skip) by rule Public Pointer Dereference Write Public Value,

we have (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), v′ 6= skip, γ(x) = (l′,public bty ′∗), σ′1(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

UpdateOffset(σ′1, (l′1, µ
′
1), v′,public bty ′) = (σ′2, 1), Label(e, γ) = public, and acc = 0.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), by the inductive hypothesis we have

σ1 = σ′1, v = v′, and c1 'L c′1.

Given γ(x) = (l,public bty∗) and γ(x) = (l′,public bty ′∗) we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ′1(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1], and therefore l1 = l′1.

Given UpdateOffset(σ1, (l1, µ1), v,public bty) = (σ2, 1), UpdateOffset(σ′1, (l
′
1, µ
′
1), v′,public bty ′) = (σ′2, 1),

σ1 = σ′1, l1 = l′1, bty = bty , and v = v′, by Lemma 3.3.13 we have σ2 = σ′2.
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Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x = e) ⇓∗wdp (γ, σ2, acc, skip)

This case is similar to case Π . (γ, σ, acc, ∗x = e) ⇓wdp (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ2, acc, skip) by rule Public Pointer Dereference Write Higher Level

Indirection, we have acc = 0, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, (le, µe)), γ(x) = (l,public bty∗), σ1(l) = (ω, public

bty∗, 1, PermL(Freeable, public bty∗,public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], i > 1,

Label(e, γ) = public, and UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1], public bty∗) = (σ2, 1).

By definition 3.3.1, given c = wdp1 , we have c 'L c′ if and only if c′ = wdp1 .

Given Σ . (γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ′2, acc, skip) by rule Public Pointer Dereference Write Higher Level

Indirection, we have acc = 0, (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, (l′e, µ
′
e)), γ(x) = (l′,public bty ′∗), σ′1(l′) = (ω′, public

bty ′∗, 1, PermL(Freeable, public bty ′∗,public, 1)), DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′], i′ > 1,

Label(e, γ) = public, and UpdatePtr(σ′1, (l′1, µ
′
1), [1, [(l′e, µ

′
e)], [1], i′ − 1], public bty ′∗) = (σ′2, 1).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, (le, µe)) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, (l′e, µ
′
e)), by the inductive hypothesis

we have σ1 = σ′1, (le, µe) = (l′e, µ
′
e), and c1 'L c′1.

Given γ(x) = (l,public bty∗) and γ(x) = (l′,public bty ′∗) we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ′1(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗,public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, µ1)], [1], i] = [1, [(l′1, µ
′
1)], [1], i′]. Therefore, we have (l1,

µ1) = (l′1, µ
′
1) and i = i′.

Given UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i−1], public bty∗) = (σ2, 1), UpdatePtr(σ′1, (l
′
1, µ
′
1), [1, [(l′e, µ

′
e)],

[1], i′ − 1], public bty ′∗) = (σ′2, 1), σ1 = σ′1, (l1, µ1) = (l′1, µ
′
1), (le, µe) = (l′e, µ

′
e), bty = bty ′, and i = i′, by
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Lemma 3.3.15 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x = e) ⇓∗wdp1 (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ∗x = e) ⇓wdp1 (γ, σ2, acc, skip)

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ2, acc, skip) by rule Private Pointer Dereference Write Higher Level

Indirection, we have γ(x) = (l,private bty∗), (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, (le, µe)), σ1(l) = (ω, private bty∗, α,

PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, i], and UpdatePrivPtr(σ1,

[α, l, j, i], [1, [(le, µe)], [1], i− 1], private bty∗) = (σ2, 1).

By definition 3.3.1, given c = wdp2 , we have c 'L c′ if and only if c′ = wdp2 .

Given Σ . (γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ′2, acc, skip) by rule Private Pointer Dereference Write Higher Level

Indirection, we have γ(x) = (l′,private bty ′∗), (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, (l′e, µ
′
e)), σ′1(l′) = (ω′, private

bty ′∗, α′, PermL(Freeable, private bty ′∗, private, α′)), DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], and

UpdatePrivPtr(σ′1, [α′, l
′
, j
′
, i′], [1, [(l′e, µ

′
e)], [1], i′ − 1], private bty ′∗) = (σ′2, 1).

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗) we have l = l′ and bty = bty ′.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, (le, µe)) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, (l′e, µ
′
e)), by the inductive hypothesis

we have σ1 = σ′1, (le, µe) = (l′e, µ
′
e), and c1 'L c′1.

Given σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α)), σ′1(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), σ1 = σ′1, and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], and DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], bty =

bty ′, α = α′, and ω = ω′, by Lemma 3.3.6 [α, l, j, i] = [α′, l
′
, j
′
, i′]. Therefore we have i = i′.

Given UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i − 1], private bty∗) = (σ2, 1), UpdatePrivPtr(σ′1,
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[α′, l
′
, j
′
, i′], [1, [(l′e, µ

′
e)], [1], i′−1],private bty ′∗) = (σ′2, 1), σ1 = σ′1, [α, l, j, i] = [α′, l

′
, j
′
, i′], (le, µe) = (l′e, µ

′
e),

bty = bty ′, and i = i′, by Lemma 3.3.16 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x = e) ⇓∗wdp2 (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ∗x = e) ⇓wdp2 (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ2, acc, skip) by rule Private Pointer Dereference Write Private Value, we have

γ(x) = (l,private bty∗), (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v), v 6= skip, σ1(l) = (ω,private bty∗, α,PermL(Freeable,

private bty∗, private, α)), Label(e, γ) = private, (bty = int) ∨ (bty = float), DecodePtr(private bty∗, α,

ω) = [α, l, j, 1], acc = 0, and UpdatePriv(σ1, α, l, j, private bty , v) = (σ2, 1).

By definition 3.3.1, given c = wdp3 , we have c 'L c′ if and only if c′ = wdp3 .

Given Σ . (γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ′2, acc, skip) by rule Private Pointer Dereference Write Private Value,

we have γ(x) = (l′,private bty ′∗), (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), v′ 6= skip, σ′1(l′) = (ω′,private bty ′∗,

α′,PermL(Freeable, private bty ′∗, private, α′)), Label(e, γ) = private, (bty ′ = int) ∨ (bty ′ = float),

DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, 1], acc = 0, and UpdatePriv(σ′1, α

′, l
′
, j
′
,private bty ′, v′) = (σ′2, 1).

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗) we have l = l′ and bty = bty ′.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), by the inductive hypothesis we have

σ1 = σ′1, v = v′, and c1 'L c′1.

Given σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α)), σ′1(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), σ1 = σ′1, and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, 1], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, 1] = [α′, l
′
, j
′
, 1]. Therefore, we have l = l

′
and j = j

′
.
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Given UpdatePriv(σ1, α, l, j, private bty , v) = (σ2, 1), UpdatePriv(σ′1, α
′, l
′
, j
′
,private bty ′, v′) = (σ′2, 1), σ1 =

σ′1, α = α′, l = l
′
, j = j

′
, bty = bty ′ and v = v′, by Lemma 3.3.14 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x = e) ⇓∗wdp3 (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ∗x = e) ⇓wdp3 (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ2, acc, skip) by rule Private Pointer Dereference Write Public Value,

we have Label(e, γ) = public, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v), acc = 0, γ(x) = (l,private bty∗), (bty =

int) ∨ (bty = float), σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), DecodePtr(private

bty∗, α, ω) = [α, l, j, 1], and UpdatePriv(σ1, α, l, j, private bty , encrypt(v)) = (σ2, 1).

By definition 3.3.1, given c = wdp4 , we have c 'L c′ if and only if c′ = wdp4 .

Given Σ . (γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ′2, acc, skip) by rule Private Pointer Dereference Write Public Value, we have

Label(e, γ) = public, (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), acc = 0, γ(x) = (l′,private bty ′∗), (bty ′ = int) ∨ (bty ′ =

float), σ1(l′) = (ω′,private bty ′∗, α′, PermL(Freeable, private bty ′∗, private, α′)), DecodePtr(private bty ′∗, α′,

ω′) = [α′, l
′
, j
′
, 1], and UpdatePriv(σ′1, α

′, l
′
, j
′
, private bty ′, encrypt(v′)) = (σ′2, 1).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, v) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, v′), by the inductive hypothesis we have

σ1 = σ′1, v = v′, and c1 'L c′1.

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗) we have l = l′ and bty = bty ′.

Given σ1(l) = (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α)), σ1(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), σ1 = σ′1, and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, 1], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, 1] = [α′, l
′
, j
′
, 1]. Therefore, we have l = l

′
and j = j

′
.
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Given UpdatePriv(σ1, α, l, j, private bty , encrypt(v)) = (σ2, 1), UpdatePriv(σ′1, α
′, l
′
, j
′
, private bty ′,

encrypt(v′)) = (σ′2, 1), σ1 = σ′1, α = α′, l = l
′
, j = j

′
, bty = bty ′, and v = v′, by Axiom 3.3.1 we have

encrypt(v) = encrypt(v′), and therefore by Lemma 3.3.14 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x = e) ⇓∗wdp4 (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ∗x = e) ⇓wdp4 (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ2, acc, skip) by rule Private Pointer Dereference Write Higher Level Indirec-

tion Multiple Locations, we have γ(x) = (l,private bty∗), (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, [αe, le, je, i−1]), σ1(l) = (ω,

private bty∗, α, PermL(Freeable, private bty∗, private, α)), Label(e, γ) = private, acc = 0, DecodePtr(private

bty∗, α, ω) = [α, l, j, i], i > 1, and UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i− 1], private bty∗) = (σ2, 1).

By definition 3.3.1, given c = wdp5 , we have c 'L c′ if and only if c′ = wdp5 .

Given Σ . (γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ′2, acc, skip) by rule Private Pointer Dereference Write Higher Level

Indirection Multiple Locations, we have γ(x) = (l′,private bty ′∗), (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, [α′e, l
′
e, j
′
e, i
′ − 1]),

σ′1(l′) = (ω′,private bty ′∗, α′, PermL(Freeable, private bty ′∗, private, α′)), Label(e, γ) = private, acc = 0,

DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], i′ > 1, and UpdatePrivPtr(σ′1, [α′, l

′
, j
′
, i′], [α′e, l

′
e, j
′
e, i
′ −

1],private bty ′∗) = (σ′2, 1).

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗) we have l = l′ and bty = bty ′.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, [αe, le, je, i− 1]) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, [α′e, l
′
e, j
′
e, i
′ − 1]), by the

inductive hypothesis we have σ1 = σ′1, [αe, le, je, i− 1] = [α′e, l
′
e, j
′
e, i
′ − 1], and c1 'L c′1.

Given σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ′1(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), σ1 = σ′1, and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], bty = bty ′,
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α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, i] = [α′, l
′
, j
′
, i′].

Given UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i− 1], private bty∗) = (σ2, 1), UpdatePrivPtr(σ′1, [α′, l
′
, j
′
, i′],

[α′e, l
′
e, j
′
e, i
′ − 1], private bty ′∗) = (σ′2, 1), σ1 = σ′1, [α, l, j, i] = [α′, l

′
, j
′
, i′], bty = bty ′, and [αe, le, je, i− 1] =

[α′e, l
′
e, j
′
e, i
′ − 1], by Lemma 3.3.16 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x = e) ⇓∗wdp5 (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ∗x = e) ⇓wdp5 (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, ++ x) ⇓pin (γ, σ1, acc, v1)

Given Π . (γ, σ, acc, ++ x) ⇓pin (γ, σ1, acc, v1) by rule Pre-Increment Public Variable, we have acc = 0,

γ(x) = (l,public bty), σ(l) = (ω,public bty , 1,PermL(Freeable, public bty , public, 1)), DecodeVal(public bty ,

1, ω) = v, v1 =public v +public 1, and UpdateVal(σ, l, v1,public bty) = σ1.

By definition 3.3.1, given c = pin , we have c 'L c′ if and only if c′ = pin .

Given Σ . (γ, σ, acc, ++ x) ⇓pin (γ, σ′1, acc, v′1) by rule Pre-Increment Public Variable, we have acc = 0,

γ(x) = (l′,public bty ′), σ(l′) = (ω′,public bty ′, 1,PermL(Freeable, public bty ′, public, 1)), DecodeVal(public

bty ′, 1, ω′) = v′, v′1 =public v
′ +public 1, and UpdateVal(σ, l′, v′1, public bty ′) = σ′1.

Given γ(x) = (l,public bty) and γ(x) = (l′,public bty ′) we have l = l′ and bty = bty ′.

Given σ(l) = (ω,public bty , 1,PermL(Freeable, public bty , public, 1)), σ(l′) = (ω′,public bty ′, 1,

PermL(Freeable, public bty ′,public, 1)), and l = l′, we have ω = ω′.

Given DecodeVal(public bty , 1, ω) = v, DecodeVal(public bty ′, 1, ω′) = v′, bty = bty ′, and ω = ω′, by Lemma

3.3.4 we have v = v′.

Given v1 =public v +public 1, v′1 =public v
′ +public 1, and v = v′, we have v1 = v′1.

293



Given UpdateVal(σ, l, v1,public bty) = σ1, UpdateVal(σ, l′, v′1,public bty ′) = σ′1, l = l′, bty = bty , and v1 = v′1,

by Lemma 3.3.12 we have σ1 = σ′1.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, v1 = v′1, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ++ x) ⇓pin1 (γ, σ1, acc, v1)

Given Π . (γ, σ, acc, ++ x) ⇓pin1 (γ, σ1, acc, v1) by rule Pre-Increment Private Variable, we have acc = 0,

γ(x) = (l,private bty), (bty = int) ∨ (bty = float), σ(l) = (ω, private bty , 1, PermL(Freeable, private bty ,

private, 1)), DecodeVal(private bty , 1, ω) = v, v1 =private v+private encrypt(1), and UpdateVal(σ, l, v1,private

bty) = σ1.

By definition 3.3.1, given c = pin1 , we have c 'L c′ if and only if c′ = pin1 .

Given Σ . (γ, σ, acc, ++ x) ⇓pin1 (γ, σ′1, acc, v′1) by rule Pre-Increment Private Variable, we have acc = 0,

γ(x) = (l′, private bty ′), (bty ′ = int) ∨ (bty ′ = float), σ(l′) = (ω′, private bty ′, 1, PermL(Freeable, private

bty ′, private, 1)), DecodeVal(private bty ′, 1, ω′) = v′, v′1 =private v
′ +private encrypt(1), and UpdateVal(σ, l′, v′1,

private bty ′) = σ′1.

Given γ(x) = (l,private bty) and γ(x) = (l′,private bty ′) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1)), σ(l′) = (ω′, private bty ′, 1,

PermL(Freeable, private bty ′, private, 1)), and l = l′, we have ω = ω′.

Given DecodeVal(private bty , 1, ω) = v, DecodeVal(private bty ′, 1, ω) = v′, bty = bty ′, and ω = ω′, by Lemma

3.3.4 we have v = v′.

Given v1 =private v +private encrypt(1), v′1 =private v
′ +private encrypt(1), and v = v′, by Axiom 3.3.2 we have

v1 = v′1.

Given UpdateVal(σ, l, v1,private bty) = σ1, UpdateVal(σ, l, v1, private bty ′) = σ1, l = l′, bty = bty ′, and

v1 = v′1, by Lemma 3.3.12 we have σ1 = σ′1.
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Therefore, we have γ = γ, σ1 = σ′1, acc = acc, v1 = v′1, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2))

Given Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)) by rule Pre-Increment Public Pointer Single Location,

we have acc = 0, γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)),

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], GetLocation((l1, µ1), τ(public bty), σ) = ((l2, µ2), 1), and

UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1],public bty∗) = (σ1, 1).

By definition 3.3.1, given c = pin2 , we have c 'L c′ if and only if c′ = pin2 .

Given Σ . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ′1, acc, (l′2, µ
′
2)) by rule Pre-Increment Public Pointer Single Location, we

have acc = 0, γ(x) = (l′,public bty ′∗), σ(l′) = (ω′,public bty ′∗, 1, PermL(Freeable, public bty ′∗, public, 1)),

DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], 1], GetLocation((l′1, µ

′
1), τ(public bty ′), σ) = ((l′2, µ

′
2), 1),

and UpdatePtr(σ, (l′, 0), [1, [(l′2, µ
′
2)], [1], 1],public bty ′∗) = (σ′1, 1).

Given γ(x) = (l,public bty∗) and γ(x) = (l′,public bty ′∗) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], 1],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, µ1)], [1], 1] = [1, [(l′1, µ
′
1)], [1], 1]. Therefore, we have

(l1, µ1) = (l′1, µ
′
1).

Given ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ), ((l′2, µ
′
2), 1) = GetLocation((l′1, µ

′
1), τ(public

bty ′), σ), (l1, µ1) = (l′1, µ
′
1), and bty = bty ′, by Lemma 3.3.21 we have (l2, µ2) = (l′2, µ

′
2).

Given UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1],public bty∗) = (σ1, 1), UpdatePtr(σ, (l′, 0), [1, [(l′2, µ
′
2)], [1],

1],public bty ′∗) = (σ′1, 1), l = l′, bty = bty , and (l2, µ2) = (l′2, µ
′
2), by Lemma 3.3.15 we have σ1 = σ′1.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, (l2, µ2) = (l′2, µ
′
2), and, by definition 3.3.3, we have Π 'L Σ.
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Case Π . (γ, σ, acc, ++ x) ⇓∗pin2 (γ, σ1, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓pin6 (γ, σ1, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓∗pin6 (γ, σ1, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓pin3 (γ, σ1, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓∗pin3 (γ, σ1, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓pin7 (γ, σ1, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓∗pin7 (γ, σ1, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin2 (γ, σ1, acc, (l2, µ2)).

Case Π . (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l
′
, j, 1])

Given Π . (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l
′
, j, 1]) by rule Pre-Increment Private Pointer Multiple Loca-

tions, we have acc = 0, γ(x) = (l,private bty∗), σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗,

private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], IncrementList(l, τ(private bty), σ) = (l
′
, 1), and

UpdatePtr(σ, (l, 0), [α, l
′
, j, 1],private bty∗) = (σ1, 1).

By definition 3.3.1, given c = pin4 , we have c 'L c′ if and only if c′ = pin4 .

Given Σ . (γ, σ, acc,++ x) ⇓pin4 (γ, σ′1, acc, [α′, l
′′′
, j
′
, 1]) by rule Pre-Increment Private Pointer Multiple Locations,

we have acc = 0, γ(x) = (l′, private bty ′∗), σ(l′) = (ω′, private bty ′∗, α, PermL(Freeable, private bty∗,
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private, α′)), DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′′
, j
′
, 1], IncrementList(l

′′
, τ(private bty ′), σ) = (l

′′′
, 1),

CheckOvershootingM (private bty ′, l
′′′
, j
′
, σ) = 1, and UpdatePtr(σ, (l′, 0), [α′, l

′′′
, j
′
, 1], private bty ′∗) =

(σ′1, 1).

Given γ(x) = (l,private bty∗) and γ(x) = (l′,private bty ′∗) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ(l′) = (ω′, private bty ′∗, α,

PermL(Freeable, private bty∗, private, α′)), l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′′
, j
′
, 1], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, 1] = [α′, l
′′
, j
′
, 1]. Therefore, we have l = l

′′
and j = j

′
.

Given IncrementList(l, τ(private bty), σ) = (l
′
, 1), IncrementList(l

′′
, τ(private bty ′), σ) = (l

′′′
, 1), l = l

′′
, and

bty = bty ′, by Lemma 3.3.22 we have τ(private bty) = τ(private bty ′), and by Lemma 3.3.23 we have l
′

= l
′′′

.

Given UpdatePtr(σ, (l, 0), [α, l
′
, j, 1], private bty∗) = (σ1, 1), UpdatePtr(σ, (l′, 0), [α′, l

′′′
, j
′
, 1], private bty ′∗) =

(σ′1, 1), l = l′, bty = bty ′, and [α, l, j, 1] = [α′, l
′′
, j
′
, 1], by Lemma 3.3.15 we have σ1 = σ′1.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, [α, l
′
, j, 1] = [α′, l

′′′
, j
′
, 1], and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ++ x) ⇓∗pin4 (γ, σ1, acc, [α, l
′
, j, 1])

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l
′
, j, 1]).

Case Π . (γ, σ, acc, ++ x) ⇓pin5 (γ, σ1, acc, [α, l
′
, j, i])

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l
′
, j, 1]).

Case Π . (γ, σ, acc, ++ x) ⇓pin5 (γ, σ1, acc, [α, l
′
, j, i])

This case is similar to Case Π . (γ, σ, acc, ++ x) ⇓pin4 (γ, σ1, acc, [α, l
′
, j, 1]).

Case Π . (γ, σ, acc, ty x[e]) ⇓da (γ1, σ3, acc, skip)

Given Π . (γ, σ, acc, ty x[e]) ⇓da (γ1, σ3, acc, skip) by rule Public 1 Dimension Array Declaration, we have

297



((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty = int))) ∨ (ty = char), l = φ(), Label(e, γ) = public,

(γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n), γ1 = γ[x → (l, public const bty∗)], l1 = φ(), ω = EncodePtr(public const

bty∗, [1, [(l1, 0)], [1], 1]), σ2 = σ1[l → (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1))],

acc = 0, n > 0, ω1 = EncodeVal(private bty , NULL), and σ3 = σ2[l1 → (ω1, public bty , n, PermL(Freeable,

public bty , public, n))].

By definition 3.3.1, given c = da , we have c 'L c′ if and only if c′ = da .

Given Σ . (γ, σ, acc, ty x[e]) ⇓da (γ′1, σ
′
3, acc, skip) by rule Public 1 Dimension Array Declaration, we have

((ty = public bty ′)∧ ((bty ′ = float)∨ (bty ′ = char)∨ (bty ′ = int)))∨ (ty = char), l′ = φ(), Label(e, γ) = public,

(γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), γ′1 = γ[x → (l′, public const bty ′∗)], l′1 = φ(), ω′ = EncodePtr(public

const bty ′∗, [1, [(l′1, 0)], [1], 1]), σ′2 = σ′1[l → (ω′, public const bty ′∗, 1, PermL(Freeable, public const

bty ′∗,public, 1))], acc = 0, n′ > 0, ω′1 = EncodeVal(private bty ′, NULL), and σ′3 = σ′2[l′1 → (ω′1,public

bty ′, n′, PermL(Freeable, public bty ′, public, n′))].

Given (ty = public bty) and (ty = public bty ′), we have bty = bty ′.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, n) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, n′), by the inductive hypothesis we have

σ1 = σ′1, n = n′, and c1 'L c′1.

Given γ1 = γ[x → (l, public const bty∗)], γ′1 = γ[x → (l′, public const bty ′∗)], l = l′, bty = bty ′, we have

γ1 = γ′1.

Given l1 = φ() and l′1 = φ(), by Axiom 3.3.5 we have l1 = l′1.

Given ω = EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1]), ω′ = EncodePtr(public const bty ′∗, [1, [(l′1, 0)], [1],

1]), bty = bty ′, and l1 = l′1, by Lemma 3.3.5 we have ω = ω′.

Given σ2 = σ1[l→ (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1))], σ′2 = σ′1[l→ (ω′,

public const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1))], σ1 = σ′1, l = l′, ω = ω′, and bty = bty ′,

we have σ2 = σ′2.
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Given ω1 = EncodeVal(private bty , NULL), ω′1 = EncodeVal(private bty ′, NULL), and bty = bty ′, by Lemma

3.3.3 we have ω1 = ω′1.

Given σ3 = σ2[l1 → (ω1, public bty , n, PermL(Freeable, public bty , public, n))], σ′3 = σ′2[l′1 → (ω′1, public

bty ′, n′, PermL(Freeable, public bty ′, public, n′))], σ2 = σ′2, l1 = l′1, ω1 = ω′1, n = n′, and bty = bty ′, we have

σ3 = σ′3.

Therefore, we have γ1 = γ′1, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, ty x[e]) ⇓da1 (γ1, σ3, acc, skip)

This case is similar to Case Π . (γ, σ, acc, ty x[e]) ⇓da (γ1, σ3, acc, skip).

Case Π . (γ, σ, acc, x[e]) ⇓ra (γ, σ1, acc, vi)

Given Π . (γ, σ, acc, x[e]) ⇓ra (γ, σ1, acc, vi) by rule Public 1D Array Read Public Index, we have Label(e,

γ) = public, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i), γ(x) = (l, public const bty∗), σ1(l) = (ω, public const bty∗,

1, PermL(Freeable, public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), DecodeVal(public bty , n, ω1) = [v0, ...,

vn−1], and 0 ≤ i ≤ n− 1.

By definition 3.3.1, given c = ra , we have c 'L c′ if and only if c′ = ra .

Given Σ . (γ, σ, acc, x[e]) ⇓ra (γ, σ′1, acc, v′i) by rule Public 1D Array Read Public Index, we have Label(e,

γ) = public, (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), γ(x) = (l′, public const bty ′∗), σ′1(l′) = (ω′, public const

bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)],

[1], 1], σ′1(l′1) = (ω′1, public bty ′, n′, PermL(Freeable, public bty ′, public, n′)), DecodeVal(public bty ′, n′, ω′1) =

[v′0, ..., v
′
n′−1], and 0 ≤ i′ ≤ n′ − 1.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.
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Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′1(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], DecodeVal(public bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], bty = bty ′,

n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′0, ..., v
′
n′−1]. Therefore, we have ∀m ∈ {0, ..., n−1},

vm = v′m.

Given 0 ≤ i ≤ n− 1, 0 ≤ i′ ≤ n′ − 1, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1}, vm = v′m, we have vi = v′i.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, vi = v′i, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x[e]) ⇓ra3 (γ, σ1, acc, vi)

This case is similar to Case Π . (γ, σ, acc, x[e]) ⇓ra (γ, σ1, acc, vi).

Case Π . (γ, σ, acc, x[e]) ⇓ra1 (γ, σ1, acc, v)

Given Π . (γ, σ, acc, x[e]) ⇓ra1 (γ, σ1, acc, v) by rule Private 1D Array Read Private Index we have (γ, σ, acc,

e) ⇓c1 (γ, σ1, acc, i), γ(x) = (l, private const bty∗), (bty = int) ∨ (bty = float), σ1(l) = (ω, private const bty∗,

1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ1(l1) = (ω1, private bty , n,PermL(Freeable, private bty , private, n)), Label(e, γ) = private, DecodeVal(private

bty , n, ω1) = [v0, ..., vn−1], and v =
∨n−1
m=0(i = encrypt(m)) ∧ vm.

By definition 3.3.1, given c = ra1 , we have c 'L c′ if and only if c′ = ra1 .
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Given Σ . (γ, σ, acc, x[e]) ⇓ra1 (γ, σ′1, acc, v′) by rule Private 1D Array Read Private Index we have (γ, σ, acc,

e) ⇓c′1 (γ, σ′1, acc, i′), γ(x) = (l′,private const bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ′1(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], σ′1(l′1) = (ω′1, private bty ′, n′, PermL(Freeable, private bty ′, private, n′)), Label(e, γ) = private,

DecodeVal(private bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], and v′ =

∨n′−1
m′=0(i′ = encrypt(m′)) ∧ v′m.

Given γ(x) = (l,private const bty∗) and γ(x) = (l′,private const bty ′∗), we have l = l′ and bty = bty ′.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′1(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′1(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], bty = bty ′,

n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′0, ..., v
′
n′−1]. Therefore, we have ∀m ∈ {0, ..., n−1},

vm = v′m.

Given v =
∨n−1
m=0(i = encrypt(m)) ∧ vm and v′ =

∨n′−1
m′=0(i′ = encrypt(m′)) ∧ v′m, we have m ∈ {0, ..., n − 1}

and m′ ∈ {0, ..., n′ − 1}. Given n = n′, we have m,m′ ∈ {0, ..., n − 1} and m = m′. Given m = m′, we have

encrypt(m) = encrypt(m′). Given ∀m ∈ {0, ..., n− 1}, vm = v′m and i = i′, we have v = v′.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, v = v′, and, by definition 3.3.3, we have Π 'L Σ.
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Case Π . (γ, σ, acc, x[e]) ⇓ra2 (γ, σ1, acc, v)

Given Π . (γ, σ, acc, x[e]) ⇓ra2 (γ, σ1, acc, v) by rule Public 1D Array Read Private Index, we have γ(x) = (l,

public const bty∗), (bty = int) ∨ (bty = float), (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i), σ1(l) = (ω, public const bty∗,

1, PermL(Freeable, public const bty∗, public, 1)), Label(e, γ) = private, DecodePtr(public const bty∗, 1, ω) =

[1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), DecodeVal(public

bty , n, ω1) = [v0, ..., vn−1], and v =
∨n−1
m=0(i = encrypt(m)) ∧ encrypt(vm).

By definition 3.3.1, given c = ra2 , we have c 'L c′ if and only if c′ = ra2 .

Given Σ . (γ, σ, acc, x[e]) ⇓ra2 (γ, σ′1, acc, v′) by rule Public 1D Array Read Private Index, we have γ(x) = (l′,

public const bty ′∗), (bty ′ = int) ∨ (bty ′ = float), (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), Label(e, γ) = private, DecodePtr(public const

bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′1(l′1) = (ω′1, public bty ′, n′, PermL(Freeable, public bty ′, public, n)),

DecodeVal(public bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], and v′ =

∨n′−1
m′=0(i′ = encrypt(m′)) ∧ encrypt(v′m′).

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty ,public, n)), σ′1(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′,public, n)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], DecodeVal(public bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′0, ..., v
′
n′−1]. Therefore, we have

∀m ∈ {0, ..., n− 1}, vm = v′m.
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Given v =
∨n−1
m=0(i = encrypt(m))∧ encrypt(vm), v′ =

∨n′−1
m′=0(i′ = encrypt(m′))∧ encrypt(v′m′), i = i′, n = n′,

and ∀m ∈ {0, ..., n− 1}, vm = v′m, we have m,m′ ∈ {0, ..., n− 1}. By Axiom 3.3.1 we have ∀m ∈ {0, ..., n− 1},

encrypt(m) = encrypt(m′) and encrypt(vm) = encrypt(v′m′). Therefore, we have v = v′.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, v = v′, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ3, acc, skip) by rule Public 1D Array Write Public Value Public Index,

we have Label(e1, γ) = Label(e2, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, i), (γ, σ1, acc, e2) ⇓c2 (γ,

σ2, acc, v), v 6= skip, γ(x) = (l, public const bty∗), σ2(l) = (ω, public const bty∗, 1, PermL(Freeable, public

const bty∗,public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, public bty , n,

PermL(Freeable, public bty , public, n)), DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], [v′0, ..., v
′
n−1] = [v0, ...,

vn−1]
(
v
vi

)
, 0 ≤ i ≤ n− 1, and UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1],public bty) = σ3.

By definition 3.3.1, given c = wa , we have c 'L c′ if and only if c′ = wa .

Given Σ . (γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ′3, acc, skip) by rule Public 1D Array Write Public Value Public Index, we

have Label(e1, γ) = Label(e2, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, i′), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2,

acc, v′′), v′′ 6= skip, γ(x) = (l′, public const bty ′∗), σ′2(l′) = (ω′, public const bty ′∗, 1, PermL(Freeable, public

const bty ′∗, public, 1)), DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′2(l′1) = (ω′1, public bty ′,

n′, PermL(Freeable, public bty ′, public, n′)), DecodeVal(public bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], [v′′′0 , ..., v

′′′
n′−1] =

[v′′0 , ..., v
′′
n−1]

(
v′′

v′′
i′

)
, 0 ≤ i′ ≤ n′ − 1, and UpdateVal(σ′2, l

′
1, [v

′′′
0 , ..., v

′′′
n′−1],public bty ′) = σ′3.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, v), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, v′′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.
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Given σ2(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1)), σ′2(l′) = (ω′, public const

bty ′∗, 1, PermL(Freeable, public const bty ′∗,public, 1)), σ2 = σ′2, and l = l′, we have ω = ω′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ2(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′2(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal( public bty , n, ω1) = [v0, ..., vn−1], DecodeVal(public bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], bty = bty ′,

n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′′0 , ..., v
′′
n′−1]. Therefore, we have ∀m ∈

{0, ..., n− 1}, vm = v′′m.

Given 0 ≤ i ≤ n− 1, 0 ≤ i′ ≤ n′ − 1, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1}, vm = v′′m, we have vi = v′′i′ .

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
, [v′′′0 , ..., v

′′′
n′−1] = [v′′0 , ..., v

′′
n′−1]

(
v′′

v′′
i′

)
, [v0, ..., vn−1] = [v′′0 , ..., v

′′
n′−1],

v = v′′, and vi = v′′i′ , we have [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1].

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
n−1],public bty) = σ3, UpdateVal(σ′2, l

′
1, [v

′′′
0 , ..., v

′′′
n′−1],public bty ′) = σ′3,

σ2 = σ′2, l1 = l′1, bty = bty ′, and [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1], by Lemma 3.3.12 we have σ3 = σ′3.

Therefore, we have γ = γ, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa4 (γ, σ3, acc, skip)

This case is similar to case Π . (γ, σ, acc, x[e1] = e2) ⇓wa (γ, σ3, acc, skip).

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa1 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wa1 (γ, σ3, acc, skip) by rule Private 1D Array Write Public Value Public Index,

we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, i), (γ, σ1, acc, e2) ⇓c2 (γ, σ2,

acc, v), v 6= skip, γ(x) = (l,private const bty∗), (bty = int) ∨ (bty = float), σ2(l) = (ω, private const bty∗,
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1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0,

..., vn−1], [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( encrypt(v)
vi

)
, 0 ≤ i ≤ n − 1, and UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1],private

bty) = σ3.

By definition 3.3.1, given c = wa1 , we have c 'L c′ if and only if c′ = wa1 .

Given Σ . (γ, σ, acc, x[e1] = e2) ⇓wa1 (γ, σ′3, acc, skip) by rule Private 1D Array Write Public Value Public Index,

we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, i′), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc,

v′′), v′′ 6= skip, γ(x) = (l′,private const bty ′∗), (bty ′ = int)∨ (bty ′ = float), σ′2(l′) = (ω′, private const bty ′∗, 1,

PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

σ′2(l′1) = (ω′1, private bty , n′, PermL(Freeable, private bty ′, private, n′)), DecodeVal(private bty ′, n′, ω′1) =

[v′′0 , ..., v
′′
n′−1], [v′′′0 , ..., v

′′′
n′−1] = [v′′0 , ..., v

′′
n′−1]

( encrypt(v′′)
v′′
i′

)
, 0 ≤ i′ ≤ n′−1, and UpdateVal(σ′2, l

′
1, [v

′′′
0 , ..., v

′′′
n′−1],

private bty ′) = σ′3.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, v), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, v′′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l,private const bty∗) and γ(x) = (l′,private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′2(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ2 = σ′2, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′2(l′1) = (ω′1, private bty , n′,

PermL(Freeable, private bty ′, private, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.
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Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′′0 , ..., v
′′
n′−1]. Therefore, we have

∀m ∈ {0, ..., n− 1}, vm = v′′m.

Given 0 ≤ i ≤ n− 1, 0 ≤ i′ ≤ n′ − 1, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1}, vm = v′′m, we have vi = v′′i′ .

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( encrypt(v)
vi

)
, [v′′′0 , ..., v

′′′
n′−1] = [v′′0 , ..., v

′′
n′−1]

( encrypt(v′′)
v′′
i′

)
, [v0, ..., vn−1] =

[v′′0 , ..., v
′′
n′−1], v = v′′, and vi = v′′i′ , by Axiom 3.3.1 we have encrypt(v) = encrypt(v′′). Therefore, we have

[v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1].

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
n−1],private bty) = σ3, UpdateVal(σ′2, l

′
1, [v

′′′
0 , ..., v

′′′
n′−1],private bty ′) = σ′3,

σ2 = σ′2, l1 = l′1, bty = bty ′, and [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1], by Lemma 3.3.12 we have σ3 = σ′3.

Therefore, we have γ = γ, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa2 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wa2 (γ, σ3, acc, skip) by rule Private 1D Array Write Public Value Private Index,

we have Label(e1, γ) = private, Label(e2, γ) = public, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, i), (γ, σ1, acc, e2) ⇓c2 (γ,

σ2, acc, v), v 6= skip, γ(x) = (l,private const bty∗), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private

const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], (bty = int) ∨ (bty =

float), v′ = encrypt(v), ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v′) ∨ (¬(i = encrypt(m)) ∧ vm), and

UpdateVal(σ2, l1, [v
′
0, ..., v

′
n−1],private bty) = σ3.

By definition 3.3.1, given c = wa2 , we have c 'L c′ if and only if c′ = wa2 .

Given Σ . (γ, σ, acc, x[e1] = e2) ⇓wa2 (γ, σ′3, acc, skip) by rule Private 1D Array Write Public Value Private Index,

we have Label(e1, γ) = private, Label(e2, γ) = public, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, i′), (γ, σ1, acc, e2) ⇓c2 (γ,

σ2, acc, v′′), v′′ 6= skip, γ(x) = (l′,private const bty ′∗), σ′2(l′) = (ω′, private const bty ′∗, 1, PermL(Freeable,

private const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′2(l′1) = (ω′1,

private bty ′, n′, PermL(Freeable, private bty ′, private, n′)), DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1],

(bty ′ = int)∨(bty ′ = float), v′′′ = encrypt(v′′), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′−1]. v′′′m′ = ((i′ = encrypt(m′))∧v′′′)∨(¬(i′ =
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encrypt(m′)) ∧ v′′m′), and UpdateVal(σ′2, l
′
1, [v′′′0 , ..., v

′′′
n′−1], private bty ′) = σ′3.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, v), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, v′′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l,private const bty∗) and γ(x) = (l′,private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′2(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ2 = σ′2, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′2(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′′0 , ..., v
′′
n′−1]. Therefore, we have

∀m ∈ {0, ..., n− 1}, vm = v′′m.

Given v′ = encrypt(v), v′′′ = encrypt(v′′), and v = v′′, by Axiom 3.3.1 we have v′ = v′′′.

Given ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v′) ∨ (¬(i = encrypt(m)) ∧ vm), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′−1].

v′′′m′ = ((i′ = encrypt(m′))∧ v′′′)∨ (¬(i′ = encrypt(m′))∧ v′′m′), v′ = v′′′, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1},

vm = v′′m, we have m,m′ ∈ {0, ..., n− 1} and by Axiom 3.3.1 we have encrypt(m) = encrypt(m′). Therefore, we

have [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1].

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
n−1],private bty) = σ3, UpdateVal(σ′2, l

′
1, [v

′′′
0 , ..., v

′′′
n′−1],private bty ′) = σ′3,

σ2 = σ′2, l1 = l′1, bty = bty ′, and [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1], by Lemma 3.3.12 we have σ3 = σ′3.
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Therefore, we have γ = γ, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wa3 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wa3 (γ, σ3, acc, skip) by rule Private 1D Array Write Private Value Pri-

vate Index, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc, i), (γ, σ1, acc,

e2) ⇓c2 (γ, σ2, acc, v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private const bty∗, 1,

PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ2(l1) = (ω1,private bty , n,PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ...,

vn−1], (bty = int)∨(bty = float), ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m))∧v)∨(¬(i = encrypt(m))∧vm),

and UpdateVal(σ2, l1, [v′0, ..., v
′
n−1],private bty) = σ3.

By definition 3.3.1, given c = wa3 , we have c 'L c′ if and only if c′ = wa3 .

Given Σ . (γ, σ, acc, x[e1] = e2) ⇓wa3 (γ, σ′3, acc, skip) by rule Private 1D Array Write Private Value Private

Index, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, i′), (γ, σ′1, acc, e2) ⇓c′2 (γ,

σ′2, acc, v′′), v′′ 6= skip, γ(x) = (l′, private const bty ′∗), σ′2(l′) = (ω′, private const bty ′∗, 1, PermL(Freeable,

private const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′2(l′1) = (ω′1,

private bty ′, n′, PermL(Freeable, private bty ′, private, n′)), DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1],

(bty ′ = int)∨(bty ′ = float), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′−1]. v′′′m′ = ((i′ = encrypt(m′))∧v′′)∨(¬(i′ = encrypt(m′))∧v′′m′),

and UpdateVal(σ′2, l
′
1, [v

′′′
0 , ..., v

′′′
n′−1], private bty ′) = σ′3.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, v), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, v′′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l,private const bty∗) and γ(x) = (l′,private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′2(l′) = (ω′,private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and
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n = n′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′2(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′′0 , ..., v
′′
n′−1]. Therefore, we have

∀m ∈ {0, ..., n− 1}, vm = v′′m.

Given ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v) ∨ (¬(i = encrypt(m)) ∧ vm), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′−1].

v′′′m′ = ((i′ = encrypt(m′))∧ v′′)∨ (¬(i′ = encrypt(m′))∧ v′′m′), v′ = v′′′, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1},

vm = v′′m, we have m,m′ ∈ {0, ..., n− 1} and by Axiom 3.3.1 we have encrypt(m) = encrypt(m′). Therefore, we

have [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1].

Given UpdateVal(σ2, l1, [v
′
0, ..., v

′
n−1],private bty) = σ3, UpdateVal(σ′2, l

′
1, [v

′′′
0 , ..., v

′′′
n′−1],private bty ′) = σ′3,

σ2 = σ′2, l1 = l′1, bty = bty ′, and [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1], by Lemma 3.3.12 we have σ3 = σ′3.

Therefore, we have γ = γ, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v)

Given Π . (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v) by rule Public 1D Array Read Out of Bounds Public Index,

we have Label(e, γ) = public, γ(x) = (l, public const bty∗), (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i), σ1(l) = (ω,

public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1,

[(l1, 0)], [1], 1], σ1(l1) = (ω1, publicbty , n, PermL(Freeable, public bty , public, n)), (i < 0) ∨ (i ≥ n), and

ReadOOB(i, n, l1, public bty , σ1) = (v, 1).

By definition 3.3.1, given c = rao, we have c 'L c′ if and only if c′ = rao.
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Given Σ . (γ, σ, acc, x[e]) ⇓rao (γ, σ′1, acc, v′) by rule Public 1D Array Read Out of Bounds Public Index, we

have Label(e, γ) = public, γ(x) = (l′, public const bty ′∗), (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), σ′1(l′) = (ω′,

public const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), DecodePtr(public const bty ′∗, 1, ω′) =

[1, [(l′1, 0)], [1], 1], σ′1(l′1) = (ω′1, public bty , n′, PermL(Freeable, public bty ′, public, n′)), (i′ < 0) ∨ (i′ ≥ n′),

and ReadOOB(i′, n′, l′1, public bty ′, σ′1) = (v′, 1).

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and

n = n′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′1(l′1) = (ω′1, public bty , n′,

PermL(Freeable, public bty ′, public, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given ReadOOB(i, n, l1, public bty , σ1) = (v, 1), ReadOOB(i′, n′, l′1, public bty ′, σ′1) = (v′, 1), i = i′,

n = n′, l1 = l′1, bty = bty ′, and σ1 = σ′1, by Lemma 3.3.24 we have v = v′.

Therefore, we have γ = γ, σ1 = σ′1, acc = acc, v = v′, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x[e]) ⇓∗rao (γ, σ1, acc, v)

This case is similar to Case Π . (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v).

Case Π . (γ, σ, acc, x[e]) ⇓rao1 (γ, σ1, acc, v)

This case is similar to Case Π . (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v).
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Case Π . (γ, σ, acc, x[e]) ⇓∗rao1 (γ, σ1, acc, v)

This case is similar to Case Π . (γ, σ, acc, x[e]) ⇓rao (γ, σ1, acc, v).

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip) by rule Public 1D Array Write Out of Bounds Public

Index Public Value, we have Label(e1, γ) = Label(e2, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓c1 (γ, σ1, acc,

i), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, v), v 6= skip, γ(x) = (l, public const bty∗), σ2(l) = (ω, public const

bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ2(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), (i < 0) ∨ (i ≥ n), and WriteOOB(v, i, n,

l1, public bty , σ2) = (σ3, 1).

By definition 3.3.1, given c = wao, we have c 'L c′ if and only if c′ = wao.

Given Σ . (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ′3, acc, skip) by rule Public 1D Array Write Out of Bounds Public

Index Public Value, we have Label(e1, γ) = Label(e2, γ) = public, acc = 0, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, i′),

(γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, v′), v′ 6= skip, γ(x) = (l′, public const bty ′∗), σ′2(l′) = (ω′, public const bty ′∗,

1, PermL(Freeable, public const bty ′∗, public, 1)), DecodePtr( public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

σ′2(l′1) = (ω′1, public bty ′, n′, PermL(Freeable, public bty ′, public, n′)), (i′ < 0) ∨ (i′ ≥ n′), and WriteOOB(v′,

i′, n′, l′1,public bty ′, σ′2) = (σ′3, 1).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, v), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, v′′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′2(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and

n = n′.
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Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr( public const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ2(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′2(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given WriteOOB(v, i, n, l1,public bty , σ2) = (σ3, 1), WriteOOB(v′, i′, n′, l′1,public bty ′, σ′2) = (σ′3, 1), v = v′,

i = i′, n = n′, l1 = l′1, bty = bty ′, and σ2 = σ′2, by Lemma 3.3.25 we have σ3 = σ′3.

Therefore, we have γ = γ, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x[e1] = e2) ⇓∗wao (γ, σ3, acc, skip)

This case is similar to Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip).

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao2 (γ, σ3, acc, skip)

This case is similar to Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip).

Case Π . (γ, σ, acc, x[e1] = e2) ⇓∗wao2 (γ, σ3, acc, skip)

This case is similar to Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao (γ, σ3, acc, skip).

Case Π . (γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ3, acc, skip)

Given Π . (γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ3, acc, skip) by rule Private 1D Array Write Public Value

Out of Bounds Public Index, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, acc, e1) ⇓c1 (γ, σ1,

acc, i), (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private

const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1,

0)], [1], 1], σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), (i < 0) ∨ (i ≥ n), and

WriteOOB(encrypt(v), i, n, l1, private bty , σ2) = (σ3, 1).

By definition 3.3.1, given c = wao1 , we have c 'L c′ if and only if c′ = wao1 .
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Given Σ . (γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ′3, acc, skip) by rule Private 1D Array Write Public Value Out

of Bounds Public Index, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, acc, e1) ⇓c′1 (γ, σ′1, acc, i′),

(γ, σ1, acc, e2) ⇓c′2 (γ, σ′2, acc, v′), v′ 6= skip, γ(x) = (l′,private const bty ′∗), σ′2(l′) = (ω′, private const

bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], σ′2(l′1) = (ω′1, private bty ′, n′, PermL(Freeable, private bty ′, private, n′)), (i′ < 0) ∨ (i′ ≥ n′), and

WriteOOB(encrypt(v′), i′, n′, l′1,private bty ′, σ′2) = (σ′3, 1).

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, i) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, i′), by the inductive hypothesis we have

σ1 = σ′1, i = i′, and c1 'L c′1.

Given (γ, σ1, acc, e2) ⇓c2 (γ, σ2, acc, v), (γ, σ′1, acc, e2) ⇓c′2 (γ, σ′2, acc, v′′), and σ1 = σ′1, by the inductive

hypothesis we have σ2 = σ′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l,private const bty∗) and γ(x) = (l′,private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′2(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ2 = σ′2, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) =

[1, [(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1].

Therefore we have l1 = l′1.

Given σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′2(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given v = v′, by Axiom 3.3.1 we have encrypt(v) = encrypt(v′).

Given WriteOOB(encrypt(v), i, n, l1,private bty , σ2) = (σ3, 1), WriteOOB(encrypt(v′), i′, n′, l′1, private bty ′,

σ′2) = (σ′3, 1), encrypt(v) = encrypt(v′), i = i′, n = n′, l1 = l′1, bty = bty ′, and σ2 = σ′2, by Lemma 3.3.25 we

have σ3 = σ′3.

Therefore, we have γ = γ, σ3 = σ′3, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.
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Case Π . (γ, σ, acc, x[e1] = e2) ⇓∗wao1 (γ, σ3, acc, skip)

This case is similar to case Π . (γ, σ, acc, x[e1] = e2) ⇓wao1 (γ, σ3, acc, skip).

Case Π . (γ, σ, acc, x) ⇓ra5 (γ, σ, acc, skip)

Given Π . (γ, σ, acc, x) ⇓ra5 (γ, σ, acc, [v0, ..., vn−1]) by rule Private 1D Array Read Entire Array, we have

γ(x) = (l,private const bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω, private const bty∗, 1, PermL(Freeable,

private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ(l1) = (ω1, private

bty , n, PermL(Freeable, private bty , private, n)), and DecodeVal(private bty , n, ω1) = [v0, ..., vn−1].

By definition 3.3.1, given c = ra5 , we have c 'L c′ if and only if c′ = ra5 .

Given Σ . (γ, σ, acc, x) ⇓ra5 (γ, σ, acc, [v′0, ..., v
′
n′−1]) by rule Private 1D Array Read Entire Array, we have

γ(x) = (l′,private const bty ′∗), (bty ′ = int)∨(bty ′ = float), σ(l′) = (ω′, private const bty ′∗, 1,PermL(Freeable,

private const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ(l′1) = (ω′1, private

bty ′, n′, PermL(Freeable, private bty ′, private, n′)), and DecodeVal(private bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1].

Given γ(x) = (l,private const bty∗) and γ(x) = (l′,private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore we

have l1 = l′1.

Given σ(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′0, ..., v
′
n′−1].
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Therefore, we have γ = γ, σ = σ, acc = acc, [v0, ..., vn−1] = [v′0, ..., v
′
n′−1], and, by definition 3.3.3, we have

Π 'L Σ.

Case Π . (γ, σ, acc, x) ⇓ra4 (γ, σ, acc, [v0, ..., vn−1])

This case is similar to case Π . (γ, σ, acc, x) ⇓ra5 (γ, σ, acc, [v0, ..., vn−1]).

Case Π . (γ, σ, acc, x = e1) ⇓wa5 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e) ⇓wa5 (γ, σ2, acc, skip) by rule Public 1D Array Write Entire Array, we have Label(e, γ)

= public, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1].vm 6= skip, γ(x) = (l, public const

bty∗), σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), DecodePtr(public const

bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), ne = n,

and UpdateVal(σ1, l1, [v0, ..., vne−1], public bty) = σ2.

By definition 3.3.1, given c = wa5 , we have c 'L c′ if and only if c′ = wa5 .

Given Σ . (γ, σ, acc, x = e) ⇓wa5 (γ, σ′2, acc, skip) by rule Public 1D Array Write Entire Array, we have Label(e, γ)

= public, (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, [v′0, ..., v
′
n′e−1]), ∀v′m ∈ [v′0, ..., v

′
n′e−1].v′m 6= skip, γ(x) = (l′, public const

bty ′∗), σ′1(l′) = (ω′, public const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), DecodePtr(public

const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′1(l′1) = (ω′1, public bty ′, n′, PermL(Freeable, public bty ′, public, n′)),

n′e = n′, and UpdateVal(σ′1, l
′
1, [v

′
0, ..., v

′
n′e−1],public bty ′) = σ′2.

Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, [v0, ..., vne−1]) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, [v′0, ..., v
′
n′e−1]), by the

inductive hypothesis we have σ1 = σ′1, [v0, ..., vne−1] = [v′0, ..., v
′
n′e−1], and c1 'L c′1.

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr( public const bty ′∗, 1, ω′) = [1, [(l′1,
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0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore we

have l1 = l′1.

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′1(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given UpdateVal(σ1, l1, [v0, ..., vne−1],public bty) = σ2, UpdateVal(σ′1, l
′
1, [v

′
0, ..., v

′
n′e−1],public bty ′) = σ′2,

σ1 = σ′1, l1 = l′1, bty = bty ′, and [v0, ..., vne−1] = [v′0, ..., v
′
n′e−1], by Lemma 3.3.12 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.

Case Π . (γ, σ, acc, x = e1) ⇓wa6 (γ, σ3, acc, skip)

This case is similar to Case Π . (γ, σ, acc, x = e1) ⇓wa5 (γ, σ2, acc, skip).

Case Π . (γ, σ, acc, x = e1) ⇓wa7 (γ, σ2, acc, skip)

Given Π . (γ, σ, acc, x = e1) ⇓wa7 (γ, σ2, acc, skip) by rule Private 1D Array Write Entire Public Array, we

have Label(e, γ) = public, (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1].vm 6= skip,

γ(x) = (l, private const bty∗), (bty = int) ∨ (bty = float), σ1(l) = (ω, private const bty∗, 1, PermL(Freeable,

private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], ∀vm ∈ [v0, ...,

vne−1]. v′m = encrypt(vm), σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty , private, n)), ne = n,

and UpdateVal(σ1, l1, [v
′
0, ..., v

′
ne−1], private bty) = σ2.

By definition 3.3.1, given c = wa7 , we have c 'L c′ if and only if c′ = wa7 .

Given Σ . (γ, σ, acc, x = e1) ⇓wa7 (γ, σ′2, acc, skip) by rule Private 1D Array Write Entire Public Array,

we have Label(e, γ) = public, (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, [v′′0 , ..., v
′′
n′e−1]), ∀v′′m ∈ [v′′0 , ..., v

′′
n′e−1].vm 6=

skip, γ(x) = (l′,private const bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ′1(l′) = (ω′, private const bty ′∗, 1,

PermL(Freeable, private const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

∀v′′m′ ∈ [v′′0 , ..., v
′′
n′e−1]. v′′′m′ = encrypt(v′′m′), σ′1(l′1) = (ω′1, private bty ′, n′, PermL(Freeable, private bty ′,

private, n′)), n′e = n′, and UpdateVal(σ′1, l
′
1, [v′′′0 , ..., v

′′′
n′e−1], private bty ′) = σ′2.
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Given (γ, σ, acc, e) ⇓c1 (γ, σ1, acc, [v0, ..., vne−1]) and (γ, σ, acc, e) ⇓c′1 (γ, σ′1, acc, [v′′0 , ..., v
′′
n′e−1]), by the

inductive hypothesis we have σ1 = σ′1, [v0, ..., vne−1] = [v′′0 , ..., v
′′
n′e−1], and c1 'L c′1.

Given [v0, ..., vne−1] = [v′′0 , ..., v
′′
n′e−1], we have ne = n′e.

Given γ(x) = (l,private const bty∗) and γ(x) = (l′,private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′1(l′) = (ω′,private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore we

have l1 = l′1.

Given ∀vm ∈ [v0, ..., vne−1]. v′m = encrypt(vm), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′e−1]. v′′′m′ = encrypt(v′′m′), ne = n′e, and [v0,

..., vne−1] = [v′′0 , ..., v
′′
n′e−1], by Axiom 3.3.1 we have encrypt(vm) = encrypt(v′′m′) and therefore [v′0, ..., v

′
ne−1] =

[v′′′0 , ..., v
′′′
n′e−1].

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty , private, n)), σ′1(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given UpdateVal(σ1, l1, [v′0, ..., v
′
ne−1], private bty) = σ2, UpdateVal(σ′1, l

′
1, [v′′′0 , ..., v

′′′
n′e−1], private bty ′) = σ′2,

σ1 = σ′1, l1 = l′1, bty = bty ′, and [v′0, ..., v
′
ne−1] = [v′′′0 , ..., v

′′′
n′e−1], by Lemma 3.3.12 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, acc = acc, skip = skip, and, by definition 3.3.3, we have Π 'L Σ.
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4 Location-tracking SMC2

In this chapter, we present Location-tracking SMC2 along with its proofs of correctness and noninterference.

While Basic SMC2 presented a solution for a formal model of Secure Multiparty Computation compiler for

general purpose programs written in C, unfortunately, directly adopting this approach exhibits problematic

behavior when more complex operations are considered. Basic SMC2 could not provide full pointer support,

as pointer dereference writes within private branches were disallowed, as well as needing to ensure array

writes at public indices did not go out of bounds. The main challenge with these operations within private-

conditioned branches was due to the tracking of modifications relying on variable names. Thus, if a pointer

referred to the location where a variable was stored and both an assignment to the variable and a pointer

dereference write occurred, we could no longer guarantee that the value stored as a result of the resolution

would be the correct value, as in attempting to use that style of tracking we would end up resolving the same

location twice. Let us next consider examples illustrating why these operations are problematic.

The first level of locations that the pointer refers to is managed, as shown in Figure 6.2b, but dereferencing

the pointer and modifying the value stored at the location that is pointed to can result in incorrect program

behavior and ultimately information leakage. Any SMC system that supports both pointers and branches,

using PICCO style pointers and classic branch resolution cannot handle these cases. This occurs because the

approach we discussed above relies on assignment statements and single-level, constant location changes to

properly restore and resolve the changes made inside the private-conditioned branch. One can try to modify

this approach to support tracking changes made using pointers at a higher level of indirection (i.e., tracking

*p=c using temporary variables dp_t and dp_e, as shown in Figure 4.1a). However, this modification can

lead to the incorrect resolution of data when multiple levels of indirection of a pointer are modified within

the private-conditioned branches. An example of this is shown in Figure 4.1a, where we modify *p in the

then branch, and then change the location that is pointed to by p in the else branch. The then branch,

restoration, and the else branch will execute correctly, however, resolving the variables after the completion

of the else branch will not. Given that we have modified the location pointed to by p, when we attempt to

resolve the modification we made using *p, we will read from and modify the value in lb (where p currently
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1 private int a=3,
2 b=7,c=5,*p=&a;
3 if (a<b) {
4 *p=c; }
5 else {
6 p=&b; }

1 private int a=3,b=7,c=5,*p=&a,res=a<b,
2 dp_e=*p,dp_t,*p_e=p,*p_t;
3 {*p=c;}
4 dp_t=*p; p_t=p; *p=dp_e; p=p_e;
5 {p=&b;}
6 *p=(res·dp_t)+((1-res)·*p); p=resolve(res,p_t,p);

location initial then restore else resolve
la 3 5 3 3 3
lb 7 7 7 7 5
lp (la), (1) (la), (1) (la), (1) (lb), (1) (la, lb), (1, 0)
ldp_t 5 5 5
lp_t (la), (1) (la), (1) (la), (1)

location value
lres 1
ldp_e 3
lp_e (la), (1)

(a) Challenges of pointer manipulations within private-conditioned branches.

1 public int i=1,j=2;
2 private int a[j]={0,0},
3 b=7,c=3,d=4;
4 if (c<d) {
5 a[i]=c; }
6 else {
7 a[j]=d; }

1 public int i=1,j=2;
2 private int a[j]={0,0},b=7,c=3,d=4;
3 private int res=c<d,a_t,a_e=a;
4 a[i]=c;
5 a_t=a; a=a_e;
6 a[j]=d;
7 a=(res·a_t)+((1-res)·a);

location initial then restore else resolve
la 0, 0 0, 3 0, 0 0, 0 0, 3
lb 7 7 7 4 4
la_t 0, 3 0, 3 0, 3

location value
lres 1
la_e 0, 0

(b) Challenges of writing at a public index in a private array within private-conditioned branches.

Figure 4.1: Examples of the challenges of private-conditioned branching examples, with pointer challenges
shown in 4.1a and array challenges shown in 4.1b. We show values in memory that change in the table to
the left, and values for temporary variables that do not change in the table to the right. We indicate correct
updates in memory in green, and problematic values in memory in red.

points) instead of the value in la (where p pointed and wrote to in the then branch).

We encounter a similar issue if we write to a public index within a private array during the execution

of a private-conditioned branch, and that index happens to be out of bounds. We give an example of this in

Figure 4.1b. Here, we assume that b is assigned the location directly after the array data’s location, thus

giving us a well-aligned out-of-bounds write to illustrate why simple variable tracking is not enough here.

In any given implementation, an out-of-bounds access is not guaranteed to be well-aligned, and therefore

unpredictable behavior can occur. In this example, we have a zero-indexed array a of two elements. In the

then branch, we modify index 1 (or the second element), then store this updated array and return the array

back to it’s initial state. In the else branch, we modify index 2 (out-of-bounds of the array), which updates
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the value stored for b. Given that we were not tracking b, this value does not get resolved, and any further

uses of b will result in incorrect results. By using location tracking, we would catch that the location lb

was modified, and in turn properly restore it to it’s original value (as long as the out-of-bounds access is

well-aligned).

Therefore, we introduce Location-tracking SMC2, which extends the Basic SMC2 model with additional

tracking mechanisms to enable location-tracking during private-conditioned branches, resolving the potential

issues for tracking with pointers and arrays discussed above. We will discuss the specifics of Location-tracking

SMC2 next.

4.1 Formal Semantics

C ∈ Configuration ::= (γ, σ,∆, χ, bid, acc, s)

δ ∈ LocationMap ::= f : l→ (v, v, v)
∆ ∈ LocationMapList ::= [ ] | δ :: ∆

χ ∈ LocalVariableList ::= [ ] | l :: χ
χ ∈ LocalVariableTracker ::= [ ] | χ :: χ

bid ∈ BranchIdentifier ::= none | then | else

Figure 4.2: Location-tracking SMC2 configuration with added location map ∆, local variable list χ, and
branch identifier bid

In this section, we will present the Location-tracking SMC2 semantics with respect to the grammar

(Figure 3.1). The semantic judgements in Location-tracking SMC2 are defined over a seven-tuple configu-

ration C = (γ, σ,∆, χ,bid, acc, s), where each rule is a reduction from one configuration to a subsequent.

We denote the environment as γ; memory as σ; location map ∆; local variable tracker χ; branch identifier

bid; the level of nesting of private-conditioned branches as acc; and a big-step evaluation of a statement s

to a value v using ⇓. We annotate each evaluation with evaluation codes (i.e., ⇓td) to facilitate reasoning

over evaluation trees, and we annotate evaluations that are not well-aligned with a star (i.e., ⇓t∗d ) to identify

the rules that we cannot prove correctness over, as they produce unpredictable behavior. The assertions

in each semantic rule can be read in sequential order, from left to right and top to bottom. When proving

correctness for Location-tracking SMC2, we will use the same Vanilla C semantics as for Basic SMC2,

shown in subsection 3.1.3. We chose not to develop an additional set of semantics as the Vanilla C semantics

do not change in relation to this set of semantics, and adding extra � in to the Vanilla C configuration in
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order to maintain an exact configuration mapping proved unnecessary, as we simply define the mapping as

consolidating all unused portions for Vanilla C (i.e., ∆, χ,bid, acc) into the single �.

In this semantics, we introduce three new tracking features: location map ∆, local variable tracker χ,

and branch identifier bid. All three of these features are introduced to manage tracking changes by location

within private-conditioned branches. We will briefly discuss each here, and more fully discuss their uses

when we discuss the private-conditioned if else statement and its algorithms. The first, location map ∆, is

a list of maps δ, one for each level of nesting within the current private-conditioned if else statement. At

the start of a private-conditioned if else statement, we append a new sublist to ∆ to constitute the current

scope of changes within this specific private-conditioned if else statement. This sublist is removed from

∆ once we have completed resolution and the changes are out of scope. Of course, it is not removed before

changes are propagated to any higher level of tracking when we are in a nested private-conditioned if else

statement – this is discussed in more detail when we discuss the private-conditioned if else statement and

the algorithms used within it. Each location map δ maps memory block identifiers to a tuple of three values

– the original value stored in the block, the value stored within the block by the end of the then branch,

and the value stored within the block by the end of the else branch. This gives us the full set of different

values within a block throughout the evaluation of the private-conditioned if else statement, allowing us

to properly restore the modified memory blocks between the evaluation of the branches and resolve the true

value once we have completed evaluation of both branches. It is important to note here that the three values

stored in each mapping will be of the same type, and either a singular value, a list of values, or a pointer data

structure.

The second, local variable tracker χ, is a list of lists (one for each level of nesting within the current

private-conditioned if else statement evaluation) tracking which memory blocks refer to local variables

within the current scope (i.e., level of nesting). This allows us to limit the tracking to variables that will exist

beyond the scope of the private-conditioned if else statement. The last, branch identifier bid, allows us to

know which private-conditioned branch we are currently in, if any. This is necessary to help us with storing

values into ∆, as if we are in the then branch, we need to store the updated value as the then value within

∆, and similarly for when we are in the else branch. The none identifier is used to indicate that we are not

within a private-conditioned branch, and therefore we do not need to be tracking any modifications that are

made; in the semantic rules, we use this in conjunction with the assertion that the accumulator is 0.

321



4.1.1 Location-tracking SMC2

In this section, we give the Location-tracking SMC2 semantics for completeness, and give a basic description

of changes between this set of semantics and the previous set. For a more detailed description of the rules,

please refer back to the Basic SMC2 versions in Section 3.1.4. Figure 4.3 gives the semantics for if else

statements. Figures 4.4 gives the semantics for declarations, reading from, and writing to regular (non-array,

non-pointer) variables, as well as for loops. Figure 4.5 and 4.6 give the semantics for reading in input data

and writing out output data, respectively. Figure 4.7 gives the semantics for the pre-increment operation.

Figure 4.8 gives the semantics for addition and subtraction, and Figure 4.9 gives the semantics for

multiplication and division. Figures 4.10, 4.11, and 4.12 give the semantics for less than comparisons, equal

to comparisons, and not equal to comparisons, respectively. Figure 4.13 gives the semantics for functions,

sequencing, and declaration assignments. Figure 4.14 gives the semantics for memory allocation, deallocation,

and casting. Figure 4.15 gives the semantics for array declarations and writing an entire array. Figures 4.16,

4.17, and 4.18 give the semantics for reading from an array, writing to an array, and reading and writing

out-of-bounds of an array, respectively. Figure 4.19 gives the semantics for pointer declarations, reading, and

writing. Figures 4.20 and 4.21 give the semantics for pointer dereferences and pointer dereference writes,

respectively.

Location-tracking SMC2 rules Public If Else True and Public If Else False are nearly identical to the

Basic SMC2 rules, just with updated configurations. The first three assertions of the Location-tracking SMC2

rule Private If Else are very similar to the Basic SMC2 version, as we first ensure the condition is private,

then evaluate it to a value and store it. For Location-tracking SMC2, we track all modifications by location

as they occur, so we no longer have the extraction or initialization algorithms, and instead push an empty

list into our tracking structures to prepare them for tracking modifications and local locations at this level of

nesting. We then proceed to evaluate the then branch, which will keep location map ∆ up to date throughout

the evaluation, adding new modifications as new locations are modified and updating them if more than one

modification of the location occurs, so the value stored for the then branch will be the most recent value.

Next, we restore the original values back into memory for all locations, using our updated algorithm

(Algorithm 92) in order to properly handle the location map ∆. The idea behind restoration remains the same

- store all final changes for the branch and restore memory back to its original state from before the evaluation

of the then branch. We then evaluate the else branch, which will again keep location map ∆ up to date on
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1 private int a=3, b=7, c=0;
2 if (a < b) {c = a; }
3 else {c = b; }

(a) SMC2 code.

1 private int a=3, b=7, c=0;
2 private int res1 = a < b,
3 c_t = c, c_e = c;
4 c = a;
5 c_t = c; c = c_e;
6 c = b;
7 c = (res1 ∧ c_t) ∨ (¬res1 ∧ c);

(b) Basic SMC2 code execution.

1 private int a=3, b=7, c=0;
2 private int res1 = a < b;
3 c = a; l_c = (0, 3, 0);
4 c = l_c[0];
5 c = b; l_c = (0, 3, 7);
6 c = (res1 ∧ l_c[1]) ∨ (¬res1 ∧ l_c[2]);

(c) Location-tracking SMC2 code execution.

Label(e, γ) = private (γ, σ, acc, e) ⇓e (γ, σ1, acc, n)
(γ, σ1, acc, private int resacc+1 =n)⇓s (γ1, σ2, acc, skip)
Extract_variables(s1, s2) = xlist

InitializeVariables(xlist , γ1, σ2, acc + 1) = (γ2, σ3)
(γ2, σ3, acc + 1, s1)⇓s (γ3, σ4, acc + 1, skip)
RestoreVariables(xlist , γ3, σ4, acc + 1) = σ5

(γ2, σ5, acc + 1, s2)⇓s (γ4, σ6, acc + 1, skip)
ResolveVariables(xlist , γ4, σ6, acc + 1, resacc+1) = σ7

(γ, σ, acc, if (e) s1 else s2) ⇓iep (γ, σ7, acc, skip)

(d) Basic SMC2 rule Private If Else.

Label(e, γ) = private
(γ, σ,∆, χ, bid, acc, e)

⇓te (γ, σ1,∆1, χ,bid, acc, n)
(γ, σ1,∆1, χ, bid, acc, private int resacc+1 = n)

⇓ts (γ1, σ2,∆1, χ1,bid, acc, skip)
∆2 = ∆1.push([ ]) χ2 = χ1.push([ ])
(γ1, σ2,∆2, χ2, then, acc + 1, s1)

⇓ts (γ2, σ3,∆3, χ3, then, acc + 1, skip)
T_restore(σ3,∆3, acc + 1) = σ4

(γ1, σ4,∆3, χ2, else, acc + 1, s2)

⇓ts (γ3, σ5,∆4, χ4, else, acc + 1, skip)
T_resolve(σ5,∆4, χ, bid, acc + 1, resacc+1) = (σ6,∆5)
∆6 = ∆5.pop()

(γ, σ,∆, χ,bid, acc, if (e) s1 else s2)

⇓tiep (γ, σ6,∆6, χ,bid, acc, skip)

(e) Location-tracking SMC2 rule Private If Else.

Label(e, γ) = public (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, n)

n 6= 0 (γ, σ1, ∆1, χ, bid, acc, s1) ⇓ts (γ1, σ2, ∆2, χ1, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2, ∆2, χ, bid, acc, skip)

(f) Location-tracking SMC2 rule Public If Else True

Label(e, γ) = public (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, n)

n = 0 (γ, σ1, ∆1, χ, bid, acc, s2) ⇓ts (γ1, σ2, ∆2, χ1, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tief (γ, σ2, ∆2, χ, bid, acc, skip)

(g) Location-tracking SMC2 rule Public If Else False

Figure 4.3: if else branching on private data example (4.3a, 4.3b) matching to the Basic SMC2 (4.3d),
and Location-tracking SMC2 (4.3e) rules. Coloring in the rules highlight the corresponding code and rule
execution. The public if else rules (4.3f, 4.3g) are shown for reference.
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all modifications. Finally, we use our updated resolution algorithm (Algorithm 93), to evaluate and store the

true values into memory. Again, the idea behind this algorithm is the same as the Basic SMC2 version, and

the resolution mechanisms are identical for both values and pointer locations; we simply facilitate having

tracked everything by location within location map ∆ instead of using temporary variables. Lastly, we also

remove the tracking list for this level of nesting from ∆, but keep all of the other changes made to outer levels

of nesting within ∆ to ensure proper tracking, no matter the level of nesting. In our ending state, we return

the original local variable tracker χ, as any additions we made are out of scope beyond this rule, just like

those made to environment γ.

We have added the semantic rule Location-tracking Private Declaration (Inside a Private - Conditioned If

Else Branch), allowing private declarations within private-conditioned branches. It facilitates adding the new

location to our tracking structure for local variables. The other two basic declaration rules remain the same,

as does reading from variables. In the rules for writing to regular (non-pointer, non-array) variables, the only

difference is using Algorithm 84 in place of the Basic SMC2 update algorithm (47). This algorithm handles

updates just like the previous one did, only with additional checks to see if we are within a private-conditioned

branch, and if so, to ensure location map ∆ if up to date with the original value and any modifications.

The Location-tracking SMC2 rules for input and output of data are nearly identical to those in Basic SMC2,

simply with updated configurations. Likewise, the Location-tracking SMC2 rules for binary comparisons and

operations are only differing from Basic SMC2 in their configurations. The Location-tracking SMC2 rules for

the pre-increment operation also nearly identical to those in Basic SMC2, simply using the Location-tracking

SMC2 versions of the update algorithms in order to ensure that tracking is handled appropriately when such

operations occur within private-conditioned branches. Due to the length of the semantics, we do not show the

versions of these rules that are not well-aligned, as the rules are nearly identical to the well-aligned versions;

the only difference is with the tag indicating alignment being 0 instead of 1. We are still able to handle these

versions of the rules within the noninterference proof, and the interested reader can look back on the Basic

SMC2 versions of these rules to better visualize the differences.

Additionally, our Location-tracking SMC2 semantic rules for sequencing remain nearly identical to the

Basic SMC2 semantics, ensuring to pass along the new tracking structures appropriately. The Location-

tracking SMC2 semantics for functions do not change, evaluating new function definitions for any public side

effects and ensuring that functions with public side effects cannot be called from within private-conditioned

branches. The Location-tracking SMC2 rules for memory allocation, deallocation, and casting do not change.
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Location-tracking Public Declaration
(ty = public bty) ∨ (ty = char) (acc = 0) ∧ (bid = none) l = φ() γ1 = γ[x → (l, ty)]

ω = EncodeVal(ty ,NULL) σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty ,public, 1))]

(γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆, χ, bid, acc, skip)

Location-tracking Private Declaration
((ty = bty) ∨ (ty = private bty)) ∧ ((bty = int) ∨ (bty = float)) (acc = 0) ∧ (bid = none) l = φ()

ω = EncodeVal(ty ,NULL) γ1 = γ[x→ (l, ty)] σ1 = σ[l→ (ω, ty , 1,PermL(Freeable, ty , private, 1))]

(γ, σ, ∆, χ, bid, acc, ty x) ⇓td1 (γ1, σ1, ∆, χ, bid, acc, skip)

Location-tracking Private Declaration (Inside a Private - Conditioned If Else Branch)
((ty = bty) ∨ (ty = private bty)) ∧ ((bty = int) ∨ (bty = float))

l = φ() γ1 = γ[x→ (l, ty)] σ1 = σ[l→ (NULL, ty , 1,PermL(Freeable, ty , private, 1))]
χ1 = l :: χ[acc] (acc > 0) ∧ ((bid = then) ∨ (bid = else))

(γ, σ,∆, χ,bid, acc, ty x) ⇓td2 (γ1, σ1,∆, χ1, bid, acc, skip)

Location-tracking Read Public Variable
γ(x) = (l, public bty) σ(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1))

DecodeVal(public bty , 1, ω) = v

(γ, σ, ∆, χ, bid, acc, x) ⇓tr (γ, σ, ∆, χ, bid, acc, v)

Location-tracking Read Private Variable
γ(x) = (l, private bty) σ(l) = (ω, private bty , 1, PermL(Freeable, private bty ,private, 1))

DecodeVal(private bty , 1, ω) = v

(γ, σ, ∆, χ, bid, acc, x) ⇓tr1 (γ, σ, ∆, χ, bid, acc, v)

Location-tracking Write Public Variable
Label(e, γ) = public (γ, σ,∆, χ,bid, acc, e) ⇓te (γ, σ1,∆1, χ, bid, acc, v) v1 6= skip
γ(x) = (l, public bty) T_UpdateVal(σ1, l, v, ∆1, χ, bid, acc, public bty) = (σ2, ∆2)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Write Private Variable
Label(e, γ) = private (γ, σ,∆, χ, bid, acc, e) ⇓te (γ, σ1,∆1, χ,bid, acc, v) v1 6= skip
γ(x) = (l, private bty) T_UpdateVal(σ1, l, v, ∆, χ, bid, acc, private bty) = (σ2, ∆2)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓tw1 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Write Private Variable Public Value
Label(e, γ) = public (γ, σ,∆, χ, bid, acc, e) ⇓te (γ, σ1,∆1, χ, bid, acc, v) v1 6= skip

γ(x) = (l,private bty) T_UpdateVal(σ1, l, encrypt(v),∆1, χ, bid, acc,private bty) = (σ2, ∆2)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓tw2 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking While End
Label(e, γ) = public (γ, σ,∆, χ, bid, acc, e) ⇓te (γ, σ1,∆1, χ,bid, acc, n) n = 0

(γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twle (γ, σ1, ∆1, χ, bid, acc, skip)

Location-tracking While Continue
Label(e, γ) = public (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, n)

n 6= 0 (γ, σ1, ∆1, χ, bid, acc, s) ⇓ts (γ1, σ2, ∆2, χ1, bid, acc, skip)

(γ, σ2, ∆2, χ, bid, acc, while (e) s) ⇓ts (γ2, σ3, ∆3, χ2, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twlc (γ, σ3, ∆3, χ, bid, acc, while (e) s)

Figure 4.4: Location-tracking SMC2 semantic rules for basic variable declarations, reading, writing, and
loops.
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Location-tracking SMC Input Public Value
acc = 0 Label(e2, γ) = public (γ, σ,∆, χ, bid, acc, e1) ⇓te (γ, σ1,∆1, χ,bid, acc, x)

(γ, σ1,∆1, χ, bid, acc, e2) ⇓te (γ, σ2,∆2, χ, bid, acc, n) γ(x) = (l, public bty)

InputValue(x, n) = n1 (γ, σ2, ∆2, χ, bid, acc, x = n1) ⇓ts (γ, σ3, ∆3, χ, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking SMC Input Private Value
acc = 0 Label(e2, γ) = public (γ, σ,∆, χ, bid, acc, e1) ⇓te (γ, σ1,∆1, χ,bid, acc, x)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n) γ(x) = (l, private bty)

InputValue(x, n) = n1 (γ, σ2, ∆2, χ, bid, acc, x = n1) ⇓ts (γ, σ3, ∆3, χ, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp3 (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking SMC Input Public Array
Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, x)

Label(e3, γ) = public (γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n)

(γ, σ2, ∆2, χ, bid, acc, e3) ⇓te (γ, σ3, ∆3, χ, bid, acc, n1) γ(x) = (l, public const bty∗)
acc = 0 InputArray(x, n, n1) = [m0, ..., mn1 ]

(γ, σ3, ∆3, χ, bid, acc, x = [m0, ..., mn1 ]) ⇓ts (γ, σ4, ∆4, χ, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ4, ∆4, χ, bid, acc, skip)

Location-tracking SMC Input Private Array
Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, x)

Label(e3, γ) = public (γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n)

acc = 0 (γ, σ2, ∆2, χ, bid, acc, e3) ⇓te (γ, σ3, ∆3, χ, bid, acc, n1)
γ(x) = (l, private const bty∗) InputArray(x, n, n1) = [m0, ..., mn1 ]

(γ, σ3, ∆3, χ, bid, acc, x = [m0, ..., mn1 ]) ⇓ts (γ, σ4, ∆4, χ, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp4 (γ, σ4, ∆4, χ, bid, acc, skip)

Figure 4.5: Location-tracking SMC2 semantic rules for input.

We add the assertion that bid = none into the rules for memory allocation and deallocation as an additional

check to asserting that the accumulator is 0, ensuring that we are not within a private-conditioned branch

as these are rules causing public side effects. For Location-tracking SMC2 arrays, the rules remain nearly

identical. We add rule Location-tracking Private Array Declaration (Inside a Private - Conditioned If Else

Branch), allowing local private array within branches, which will be added to the tracking structure for local

locations, as such locations are not intended to persist beyond the scope of the branch and do not need to

be tracked. For Location-tracking SMC2 array writes, we use our new algorithms for updating memory to

facilitate handling of tracking within private-conditioned branches; the main functionality of these algorithms

does not change. For the sake of space, as with pre-increment operations, we do not show the versions

of reading and writing out-of-bounds that are not well-aligned, as these versions do not show anything

new beyond the well-aligned versions. We are still able to handle these versions of the rules within the

noninterference proof, and the interested reader can look back on the Basic SMC2 versions of these rules to

better visualize the differences between such rules.
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Location-tracking SMC Output Value
Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, x)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n) γ(x) = (l, public bty)
σ2(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1))

DecodeVal(public bty , 1, ω) = n1 OutputValue(x, n, n1)

(γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking SMC Output Private Value
Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, x)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n) γ(x) = (l, private bty)
σ2(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1))

DecodeVal(private bty , 1, ω) = n1 OutputValue(x, n, n1)

(γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout3 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking SMC Output Public Array
Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, x)

Label(e3, γ) = public (γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n)

(γ, σ2,∆2, χ, bid, acc, e3) ⇓te (γ, σ3,∆3, χ,bid, acc, n1) γ(x) = (l,public const bty∗)
σ3(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1))

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], public bty , 1]
σ3(l1) = (ω1, public bty , n1, PermL(Freeable, public bty , public, n1))

DecodeVal(public bty , n1, ω1) = [m0, ..., mn1 ] OutputArray(x, n, [m0, ..., mn1 ])

(γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking SMC Output Private Array
Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, x)

Label(e3, γ) = public (γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n)

(γ, σ2,∆2, χ, bid, acc, e3) ⇓te (γ, σ3,∆3, χ,bid, acc, n1) γ(x) = (l,private const bty∗)
σ3(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))

DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], private bty , 1]
σ3(l1) = (ω1, private bty , n1, PermL(Freeable, private bty , private, n1))

DecodeVal(private bty , n2, ω1) = [m0, ..., mn1 ] OutputArray(x, n, [m0, ..., mn1 ])

(γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout4 (γ, σ3, ∆3, χ, bid, acc, skip)

Figure 4.6: Location-tracking SMC2 semantic rules for output.

For Location-tracking SMC2 pointers, the rules remain nearly identical. We add rule Location-tracking

Private Pointer Declaration (Inside a Private - Conditioned If Else Branch), allowing local private pointers

within branches. These are added to the tracking structure for local locations, as such locations are not

intended to persist beyond the scope of the branch and do not need to be tracked. For the sake of space, as

with pre-increment operations, we do not show the versions of dereference reading and dereference writing

that are not well-aligned, as these versions do not show anything new beyond the well-aligned versions. We

are still able to handle these versions of the rules within the noninterference proof, and the interested reader

can look back on the Basic SMC2 versions of these rules to better visualize the differences between such

rules.
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Location-tracking Pre-Increment Public Variable
acc = 0 γ(x) = (l, public bty) σ(l) = (ω, public bty , 1, PermL(Freeable,public bty , public, 1))

DecodeVal(public bty , 1, ω) = v v1 =public v +public 1
T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, public bty) = (σ1, ∆)

(γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin (γ, σ1, ∆, χ, bid, acc, v1)

Location-tracking Pre-Increment Private Variable
γ(x) = (l,private bty) σ(l) = (ω,private bty , 1,PermL(Freeable, private bty , private, 1))

DecodeVal(private bty , 1, ω) = v1 (bty = int) ∨ (bty = float) v2 =private v1 +private encrypt(1)
T_UpdateVal(σ, l, v2,∆, χ,bid, acc, private bty) = (σ1,∆1)

(γ, σ,∆, χ, bid, acc,++ x) ⇓tpin1 (γ, σ1,∆1, χ, bid, acc, v2)

Location-tracking Pre-Increment Public Pointer Single Location
γ(x) = (l, public bty∗) σ(l) = (ω, public bty∗, 1, PermL(Freeable,public bty∗,public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ)
T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], ∆, χ, bid, acc, public bty∗) = (σ1, ∆1, 1)

(γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

Location-tracking Pre-Increment Private Pointer Single Location
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))

DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] ((l2, µ2), 1) = GetLocation((l1, µ1), τ(private bty), σ)
T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], ∆, χ, bid, acc, private bty∗) = (σ1, ∆1, 1)

(γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin6 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

Location-tracking Pre-Increment Public Pointer Higher Level Indirection Single Location
γ(x) = (l, public bty∗) σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty∗), σ)
i > 1 T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], i], ∆, χ, bid, acc, public bty) = (σ1, ∆1, 1)

(γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin3 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

Location-tracking Pre-Increment Private Pointer Higher Level Indirection Single Location
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))

DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] ((l2, µ2), 1) = GetLocation((l1, µ1), τ(private bty∗), σ)
i > 1 T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], i], ∆, χ, bid, acc, private bty) = (σ1, ∆1, 1)

(γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin7 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

Location-tracking Pre-Increment Pointer Multiple Locations
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1] IncrementList(l, τ(private bty), σ) = (l
′
, 1)

T_UpdatePtr(σ, (l, 0), [n, l, j, 1], ∆, χ, bid, acc,private bty∗) = (σ1, ∆1, 1)

(γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1, ∆1, χ, bid, acc, [n, l
′
, j, 1])

Location-tracking Pre-Increment Pointer Higher Level Indirection Multiple Locations
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i] IncrementList(l, τ(private bty∗), σ) = (l
′
, 1)

T_UpdatePtr(σ, (l, 0), [α, l
′
, j, i], ∆, χ, bid, acc,private bty∗) = (σ1, ∆1, 1)

(γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin5 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, i])

Figure 4.7: Location-tracking SMC2 semantic rules for the pre-increment operator.
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Location-tracking Public Addition
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 +public n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private Addition
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 +private n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Addition
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) +private n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Addition
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 +private encrypt(n2) = n3

(γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp3 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public Subtraction
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 −public n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 − e2) ⇓tbs (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private Subtraction
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 −private n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 − e2) ⇓tbs1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Subtraction
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 −private encrypt(n2) = n3

(γ, σ, ∆, χ, bid, acc, e1 − e2) ⇓tbs2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Subtraction
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1)−private n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 − e2) ⇓tbs3 (γ, σ2, ∆2, χ, bid, acc, n3)

Figure 4.8: Location-tracking SMC2 semantics for addition and subtraction.
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Location-tracking Public Multiplication
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 ·public n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbm (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private Multiplication
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 ·private n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbm1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Multiplication
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) ·private n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbm2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Multiplication
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 ·private encrypt(n2) = n3

(γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbm3 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public Division
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 ÷public n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 ÷ e2) ⇓tbd (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private Division
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 ÷private n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 ÷ e2) ⇓tbd1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Division
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) ·private n2 = n3

(γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbd2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Division
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 ÷private encrypt(n2) = n3

(γ, σ, ∆, χ, bid, acc, e1 ÷ e2) ⇓tbd3 (γ, σ2, ∆2, χ, bid, acc, n3)

Figure 4.9: Location-tracking SMC2 semantics for multiplication and division.

330



Location-tracking Public Less Than True
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 <public n2

(γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1)

Location-tracking Private Less Than True
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 <private n2 encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Less Than True
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) <private n2 encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Less Than True
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 <private encrypt(n2) encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt3 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public Less Than False
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 >=public n2

(γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf (γ, σ2, ∆2, χ, bid, acc, 0)

Location-tracking Private Less Than False
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 >=private n2 encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Less Than False
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) >=private n2 encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Less Than False
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 >=private encrypt(n2) encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf3 (γ, σ2, ∆2, χ, bid, acc, n3)

Figure 4.10: Location-tracking SMC2 semantics for less than comparisons.
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Location-tracking Public Equal To True
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 =public n2

(γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt (γ, σ2, ∆2, χ, bid, acc, 1)

Location-tracking Private Equal To True
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 =private n2 encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Equal To True
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private)

(γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) =private n2 encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Equal To True
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 =private encrypt(n2) encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt3 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public Equal To False
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 6=public n2

(γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf (γ, σ2, ∆2, χ, bid, acc, 0)

Location-tracking Private Equal To False
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 6=private n2 encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Equal To False
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) 6=private n2 encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Equal To False
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 6=private encrypt(n2) encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf3 (γ, σ2, ∆2, χ, bid, acc, n3)

Figure 4.11: Location-tracking SMC2 semantics for equal to comparisons.
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Location-tracking Public Not Equal To True
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 6=public n2

(γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet (γ, σ2, ∆2, χ, bid, acc, 1)

Location-tracking Private Not Equal To True
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 6=private n2 encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Not Equal To True
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) 6=private n2 encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Not Equal To True
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 6=private encrypt(n2) encrypt(1) = n3

(γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet3 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public Not Equal To False
Label(e1, γ) = Label(e2, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 =public n2

(γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef (γ, σ2, ∆2, χ, bid, acc, 0)

Location-tracking Private Not Equal To False
Label(e1, γ) = Label(e2, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 =private n2 encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef1 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Public - Private Not Equal To False
(Label(e1, γ) = public) ∧ (Label(e2, γ) = private) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) encrypt(n1) =private n2 encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef2 (γ, σ2, ∆2, χ, bid, acc, n3)

Location-tracking Private - Public Not Equal To False
(Label(e1, γ) = private) ∧ (Label(e2, γ) = public) (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, n1)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, n2) n1 =private encrypt(n2) encrypt(0) = n3

(γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef3 (γ, σ2, ∆2, χ, bid, acc, n3)

Figure 4.12: Location-tracking SMC2 semantics for not equal to comparisons.
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Location-tracking Statement Sequencing
(γ, σ, ∆, χ, bid, acc, s1) ⇓ts (γ1, σ1, ∆1, χ1, bid, acc, skip)

(γ1, σ1, ∆1, χ1, bid, acc, s2) ⇓ts (γ2, σ2, ∆2, χ2, bid, acc, v)

(γ, σ, ∆, χ, bid, acc, s1; s2) ⇓tss (γ2, σ2, ∆2, χ2, bid, acc, v)

Location-tracking Statement Block
(γ, σ, ∆, χ, bid, acc, s) ⇓ts (γ1, σ1, ∆1, χ1, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, {s}) ⇓tsb (γ, σ1, ∆1, χ, bid, acc, skip)

Location-tracking Parentheses
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, v)

(γ, σ, ∆, χ, bid, acc, (e)) ⇓tep (γ, σ1, ∆1, χ, bid, acc, v)

Location-tracking Declaration Assignment
(γ, σ, ∆, χ, bid, acc, ty x) ⇓ts (γ1, σ1, ∆1, χ1, bid, acc, skip)

(γ1, σ1, ∆1, χ1, bid, acc, x = e) ⇓ts (γ1, σ2, ∆2, χ1, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, ty var = e) ⇓tds (γ1, σ1, ∆1, χ1, bid, acc, skip)

Location-tracking Array Declaration Assignment
(γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓ts (γ1, σ1, ∆1, χ1, bid, acc, skip)

(γ1, σ1, ∆1, χ1, bid, acc, x = e) ⇓ts (γ1, σ2, ∆2, χ1, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, ty x[e1] = e2) ⇓tdas (γ1, σ2, ∆2, χ1, bid, acc, skip)

Location-tracking Function Declaration
(acc = 0) ∧ (bid = none) l = φ() GetFunTypeList(p) = ty

γ1 = γ[x→ (l, ty → ty)] σ1 = σ[l→ (NULL, ty → ty , 1, PermL_Fun(public))]

(γ, σ, ∆, χ, bid, acc, ty x(p)) ⇓tdf (γ1, σ1, ∆, χ, bid, acc, skip)

Location-tracking Function Definition
(acc = 0) ∧ (bid = none) x /∈ γ l = φ() GetFunTypeList(p) = ty

γ1 = γ[x→ (l, ty → ty)] CheckPublicEffects(s, x, γ, σ) = n
EncodeFun(s, n, p) = ω σ1 = σ[l→ (ω, ty → ty , 1, PermL_Fun(public))]

(γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfpd (γ1, σ1, ∆, χ, bid, acc, skip)

Location-tracking Pre-Declared Function Definition
(acc = 0) ∧ (bid = none) x ∈ γ γ(x) = (l, ty → ty)

CheckPublicEffects(s, x, γ, σ) = n σ = σ1[l→ (NULL, ty → ty , 1, PermL_Fun(public))]
EncodeFun(s, n, p) = ω σ2 = σ1[l→ (ω, ty → ty , 1, PermL_Fun(public))]

(γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfd (γ, σ2, ∆, χ, bid, acc, skip)

Location-tracking Function Call Without Public Side Effects
γ(x) = (l, ty → ty) σ(l) = (ω, ty → ty , 1, PermL_Fun(public)) GetFunParamAssign(p, e) = s1

DecodeFun(ω) = (s, n, p) (γ, σ, ∆, χ, bid, acc, s1) ⇓ts (γ1, σ1, ∆1, χ1, bid, acc, skip)

n = 0 (γ1, σ1, ∆1, χ1, bid, acc, s) ⇓ts (γ2, σ2, ∆2, χ2, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc1 (γ, σ2, ∆2, χ, bid, acc, NULL)

Location-tracking Function Call With Public Side Effects
γ(x) = (l, ty → ty) σ(l) = (ω, ty → ty , 1, PermL_Fun(public)) DecodeFun(ω) = (s, n, p)

n = 1 GetFunParamAssign(p, e) = s1 (acc = 0) ∧ (bid = none)

(γ, σ, ∆, χ, bid, acc, s1) ⇓ts (γ1, σ1, ∆1, χ1, bid, acc, skip)

(γ1, σ1, ∆1, χ1, bid, acc, s) ⇓ts (γ2, σ2, ∆2, χ2, bid, acc, skip)

(γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc (γ, σ2, ∆2, χ, bid, acc, NULL)

Figure 4.13: Location-tracking SMC2 semantic rules for sequencing and functions
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Location-tracking Public Malloc
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆, χ, bid, acc, n) (bid = none) ∧ (acc = 0)

Label(γ, e) = public l = φ() σ2 = σ1

[
l→

(
NULL, void∗, n,PermL(Freeable, void∗,public, n)

)]
(γ, σ, ∆, χ, bid, acc, malloc(e)) ⇓tmal (γ, σ2, ∆, χ, bid, acc, (l, 0))

Location-tracking Private Malloc
Label(γ, e) = public (bid = none) ∧ (acc = 0) (ty = private int∗) ∨ (ty = private float∗)

(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆, χ, bid, acc, n) l = φ()
σ2 = σ1

[
l→

(
NULL, void∗, n · τ(ty), PermL(Freeable, ty , private, n · τ(ty))

)]
(γ, σ, ∆, χ, bid, acc, pmalloc(e, ty)) ⇓tmalp (γ, σ2, ∆, χ, bid, acc, (l, 0))

Location-tracking Public Free
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆, χ, bid, acc, x) γ(x) = (l, public bty∗)

(bid = none) ∧ (acc = 0) Free(σ1, l, γ) = σ2

(γ, σ, ∆, χ, bid, acc, free(e)) ⇓tfre (γ, σ2, ∆, χ, bid, acc, skip)

Location-tracking Private Free
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆, χ, bid, acc, x) γ(x) = (l, private bty∗)

(bid = none) ∧ (acc = 0) (bty = int) ∨ (bty = float) PFree(γ, σ1, l) = (σ2, l, j)

(γ, σ, ∆, χ, bid, acc, pfree(e)) ⇓tfrep (γ, σ2, ∆, χ, bid, acc, skip)

Location-tracking Cast Private Location
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, (l, 0))

(ty = private int∗) ∨ (ty = private float∗) ∨ (ty = int∗) ∨ (ty = float∗)
σ1 = σ2

[
l→

(
ω, void, n, PermL(Freeable, ty , private, n)

)]
σ3 = σ2

[
l→

(
ω, ty ,

n

τ(ty)
, PermL(Freeable, ty , private,

n

τ(ty)
)
)]

(γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl1 (γ, σ3, ∆1, χ, bid, acc, (l, 0))

Location-tracking Cast Public Location
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, (l, 0))

acc = 0 σ1 = σ2

[
l→

(
ω, void, n, PermL(Freeable, void,public, n)

)]
(ty = public bty∗) ∨ (ty = char∗) σ3 = σ2

[
l→

(
ω, ty ,

n

τ(ty)
, PermL(Freeable, ty , public,

n

τ(ty)
)
)]

(γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ3, ∆1, χ, bid, acc, (l, 0))

Location-tracking Cast Public Value
Label(e, γ) = public (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, n)

(ty = public int) ∨ (ty = public float) n1 = Cast(public, ty , n)

(γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ1, ∆1, χ, bid, acc, n1)

Location-tracking Cast Private Value
Label(e, γ) = private (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, n)

(ty = private int) ∨ (ty = private float) ∨ (ty = int) ∨ (ty = float) n1 = Cast(private, ty , n)

(γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv1 (γ, σ1, ∆1, χ, bid, acc, n1)

Location-tracking Address Of
γ(x) = (l, ty)

(γ, σ, ∆, χ, bid, acc, &x) ⇓tloc (γ, σ, ∆, χ, bid, acc, (l, 0))

Location-tracking Size of type
n = τ(ty)

(γ, σ, ∆, χ, bid, acc, sizeof(ty)) ⇓tty (γ, σ, ∆, χ, bid, acc, n)

Figure 4.14: Location-tracking SMC2 semantic rules for memory allocation, deallocation, and casting.
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Location-tracking Public Array Declaration
((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty = int))) ∨ (ty = char) (acc = 0) ∧ (bid = none)

l = φ() l1 = φ() (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆, χ, bid, acc, n) n > 0
γ1 = γ[x → (l, public const bty∗)] ω = EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1])

Label(e1, γ) = public σ2 = σ1[l → (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1))]
ω1 = EncodeVal(public bty ,NULL) σ3 = σ2[l1 → (ω1, public bty , n, PermL(Freeable, public bty ,public, n))]

(γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ1, σ3, ∆, χ, bid, acc, skip)

Location-tracking Private Array Declaration
Label(e1, γ) = public ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)) l = φ() l1 = φ()

(γ, σ, ∆, χ, bid, acc, e) ⇓t (γ, σ1, ∆, χ, bid, acc, n) n > 0 γ1 = γ[x → (l, private const bty∗)]
ω = EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1]) ω1 = EncodeVal(private bty ,NULL)

σ2 = σ1[l → (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1))]
(acc = 0) ∧ (bid = none) σ3 = σ2[l1 → (ω1, private bty , n, PermL(Freeable,private bty , private, n))]

(γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda1 (γ1, σ3, ∆, χ, bid, acc, skip)

Location-tracking Private Array Declaration (Inside a Private - Conditioned If Else Branch)
Label(e, γ) = public ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float))

(γ, σ,∆, χ,bid, acc, e) ⇓te (γ, σ1,∆1, χ, bid, acc, n) n > 0 l = φ() l1 = φ()
γ1 = γ[x→ (l,private const bty∗)] ω = EncodePtr(private const bty∗, [1, [l1], [1], 1])
σ2 = σ1[l→ (ω,private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1))]

σ3 = σ2[l1 → (NULL, private bty , n,PermL(Freeable, private bty , private, n))]
(acc > 0) ∧ ((bid = then) ∨ (bid = else)) χ1 = l :: l1 :: χ[acc]

(γ, σ,∆, χ,bid, acc, ty x[e]) ⇓tda2 (γ1, σ3,∆1, χ1, bid, acc, skip)

Location-tracking Public Array Write Entire Array
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, [v0, ..., vne−1])

∀vm ∈ [v0, ..., vne−1].vm 6= skip γ(x) = (l, public const bty∗) ne = n Label(e, γ) = public
σ1(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1))

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1,public bty , n,PermL(Freeable, public bty ,public, n))

T_UpdateVal(σ1, l1, [v0, ..., vne−1], ∆1, χ, bid, acc, public bty) = (σ2, ∆2)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓twa5 (γ, σ2, ∆2, χ, bid, acc, skip)
Location-tracking Private Array Write Entire Private Array

(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, [v0, ..., vne−1])
∀vm ∈ [v0, ..., vne−1].vm 6= skip γ(x) = (l, private const bty∗) ne = n Label(e, γ) = private

σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]

σ1(l1) = (ω1,private bty , n,PermL(Freeable, private bty ,private, n))
T_UpdateVal(σ1, l1, [v0, ..., vne−1], ∆1, χ, bid, acc, private bty) = (σ2, ∆2)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓twa6 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Private Array Write Entire Public Array
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, [v0, ..., vne−1])

∀vm ∈ [v0, ..., vne−1]. (v′m = encrypt(vm)) ∧ (vm 6= skip) γ(x) = (l, private const bty∗) ne = n
σ1(l) = (ω, private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))

DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] Label(e, γ) = public
σ1(l1) = (ω1, private bty , n,PermL(Freeable,private bty , private, n))

T_UpdateVal(σ1, l1, [v′0, ..., vn′e−1], ∆1, χ, bid, acc, private bty) = (σ2, ∆2)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓twa7 (γ, σ2, ∆2, χ, bid, acc, skip)

Figure 4.15: Location-tracking SMC2 semantic rules for array declarations and writing an entire array.
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Location-tracking Public Array Read Public Index
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, i) γ(x) = (l, public const bty∗)

σ1(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] Label(e, γ) = public

σ1(l1) = (ω1,public bty , n,PermL(Freeable, public bty ,public, n))
0 ≤ i ≤ n− 1 DecodeVal(public bty , n, ω1) = [v0, ..., vn−1]

(γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ1, ∆1, χ, bid, acc, vi)

Location-tracking Private Array Read Public Index
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, i) γ(x) = (l, private const bty∗)

σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] 0 ≤ i ≤ n− 1

σ1(l1) = (ω1,private bty , n,PermL(Freeable, private bty ,private, n))
Label(e, γ) = public DecodeVal(private bty , n, ω1) = [v0, ..., vn−1]

(γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra3 (γ, σ1, ∆1, χ, bid, acc, vi)

Location-tracking Private Array Read Private Index
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, i) γ(x) = (l, private const bty∗)

σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
Label(e, γ) = private (bty = int) ∨ (bty = float)

DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, private bty , n,PermL(Freeable, private bty ,private, n))

DecodeVal(private bty , n, ω2) = [v0, ..., vn−1]
v =

n−1∨
m=0

(i = encrypt(m)) ∧ vm

(γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra1 (γ, σ1, ∆1, χ, bid, acc, v)

Location-tracking Public Array Read Private Index
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, i) γ(x) = (l, public const bty∗)

σ1(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] Label(e, γ) = private

σ1(l1) = (ω1, public bty , n,PermL(Freeable, public bty , public, n))

DecodeVal(public bty , n, ω1) = [v0, ..., vn−1]
(bty = int) ∨ (bty = float)

v =

n−1∨
m=0

(i = encrypt(m)) ∧ encrypt(vm)

(γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra2 (γ, σ1, ∆1, χ, bid, acc, v)

Location-tracking Public Array Read Entire Array
γ(x) = (l,public const bty∗) σ1(l) = (ω,public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1))

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] Label(e, γ) = public
σ(l1) = (ω1, public bty , n,PermL(Freeable,public bty , public, n))

DecodeVal(public bty , n, ω1) = [v0, ..., vn−1]

(γ, σ, ∆, χ, bid, acc, x) ⇓tra4 (γ, σ, ∆, χ, bid, acc, [v0, ..., vn−1])

Location-tracking Private Array Read Entire Array
γ(x) = (l,private const bty∗) σ1(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1))

DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] Label(e, γ) = private
σ(l1) = (ω1, private bty , n,PermL(Freeable,private bty , private, n))

DecodeVal(private bty , n, ω1) = [v0, ..., vn−1]

(γ, σ, ∆, χ, bid, acc, x) ⇓tra5 (γ, σ, ∆, χ, bid, acc, [v0, ..., vn−1])

Figure 4.16: Location-tracking SMC2 semantic rules for reading from an array at a public or private index
and reading an entire array.
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Location-tracking Public Array Write Public Value Public Index
Label(e1, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, i)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, v) γ(x) = (l, public const bty∗)
v 6= skip σ2(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1))

Label(e2, γ) = public DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, public bty , n,PermL(Freeable, public bty , public, n))

0 ≤ i ≤ n− 1 DecodeVal(public bty , n, ω1) = [v0, ..., vn−1] [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( v
vi

)
T_UpdateVal(σ2, l1, [v′0, ..., v

′
n−1], ∆2, χ, bid, acc, public bty) = (σ3, ∆3)

(γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking Private Array Write Private Value Public Index
Label(e1, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, i)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, v) γ(x) = (l, private const bty∗)
Label(e2, γ) = private σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))

v 6= skip DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n,PermL(Freeable, private bty , private, n))

0 ≤ i ≤ n− 1 DecodeVal(private bty , n, ω1) = [v0, ..., vn−1] [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( v
vi

)
T_UpdateVal(σ2, l1, [v′0, ..., v

′
n−1], ∆2, χ, bid, acc, private bty) = (σ3, ∆3)

(γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa4 (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking Private Array Write Public Value Public Index
Label(e1, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, i)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, v) γ(x) = (l, private const bty∗)
σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))

v 6= skip DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n,PermL(Freeable, private bty , private, n)) (bty = int) ∨ (bty = float)

DecodeVal(private bty , n, ω1) = [v0, ..., vn−1] 0 ≤ i ≤ n− 1 [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( v
vi

)
T_UpdateVal(σ2, l1, [v′0, ..., v

′
n−1], ∆2, χ, bid, acc,private bty) = (σ3, ∆3) Label(e2, γ) = public

(γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa1 (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking Private Array Write Public Value Private Index
Label(e1, γ) = private (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, i)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, v) γ(x) = (l, private const bty∗)
σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1)) Label(e2, γ) = public

v 6= skip DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n,PermL(Freeable,private bty , private, n)) (bty = int) ∨ (bty = float)

DecodeVal(bty , n, ω1) = [v0, ..., vn−1] ∀vm ∈ [v0, ..., vn−1] v′m = ((i = m) ∧ v) ∨ (¬(i = m) ∧ vm)
T_UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1],∆2, χ,bid, acc, private bty) = (σ3,∆3)

(γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa2 (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking Private Array Write Private Value Private Index
Label(e1, γ) = private (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, i)

(γ, σ1, ∆1, χ, bid, acc, e) ⇓te (γ, σ2, ∆2, χ, bid, acc, v) γ(x) = (l, private const bty∗)
σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))

(bty = int) ∨ (bty = float) v 6= skip DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n,PermL(Freeable,private bty , private, n))

DecodeVal(bty , n, ω1) = [v0, ..., vn−1] ∀vm ∈ [v0, ..., vn−1] v′m = ((i = m) ∧ v) ∨ (¬(i = m) ∧ vm)
T_UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], ∆2, χ, bid, acc, private bty) = (σ3, ∆3) Label(e2, γ) = private

(γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa3 (γ, σ3, ∆3, χ, bid, acc, skip)

Figure 4.17: Location-tracking SMC2 semantic rules for writing to an array at an index.
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Location-tracking Public Array Read Out-of-Bounds Public Index
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, i) γ(x) = (l, public const bty∗)

σ1(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1)) Label(e, γ) = public
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] (i < 0) ∨ (i ≥ n)

σ1(l1) = (ω1,public bty , n,PermL(Freeable, public bty ,public, n)) ReadOOB(i, n, l1,public bty , σ1) = (v, 1)

(γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1, ∆1, χ, bid, acc, v)

Location-tracking Private Array Read Out-of-Bounds Public Index
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, i) γ(x) = (l, private const bty∗)

σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1)) Label(e, γ) = public
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1] (i < 0) ∨ (i ≥ n)

σ1(l1) = (ω1, private bty , n,PermL(Freeable, private bty , private, n)) ReadOOB(i, n, l1, private bty , σ1) = (v, 1)

(γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao1 (γ, σ1, ∆1, χ, bid, acc, v)

Location-tracking Public Array Write Out-of-Bounds Public Index Public Value
Label(e1, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, i)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, v) γ(x) = (l,public const bty∗)
Label(e2, γ) = public σ2(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1))

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, public bty , n, PermL(Freeable, public bty ,public, n)) v 6= skip

(i < 0) ∨ (i ≥ n) T_WriteOOB(v, i, n, l1, public bty , σ2, ∆2, χ, bid, acc) = (σ3, ∆3, 1)

(γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking Private Array Write Out-of-Bounds Public Index Private Value
Label(e1, γ) = public (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ1, ∆1, χ, bid, acc, i)

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓te (γ, σ2, ∆2, χ, bid, acc, v) γ(x) = (l,private const bty∗)
Label(e2, γ) = private σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))

v 6= skip DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty ,private, n))

(i < 0) ∨ (i ≥ n) T_WriteOOB(v, i, n, l1, private bty , σ2, ∆2, χ, bid, acc) = (σ3, ∆3, 1)

(γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao2 (γ, σ3, ∆3, χ, bid, acc, skip)

Location-tracking Private Array Write Out-of-Bounds Public Value Public Index
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, i)

(γ, σ1, ∆1, χ, bid, acc, e) ⇓te (γ, σ2, ∆2, χ, bid, acc, v) γ(x) = (l,private const bty∗)
v 6= skip σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))

Label(e1, γ) = Label(e2, γ) = public DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n))

(i < 0) ∨ (i ≥ n) T_WriteOOB(encrypt(v), i, n, l1, private bty , σ2, ∆2, χ, bid, acc) = (σ3, ∆3, 1)

(γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao1 (γ, σ3, ∆3, χ, bid, acc, skip)

Figure 4.18: Location-tracking SMC2 semantic rules for reading and writing out-of-bounds for arrays.
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Location-tracking Public Pointer Declaration
(ty = public bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))) (acc = 0) ∧ (bid = none)
l = φ() GetIndirection(∗) = i ω = EncodeVal(public bty∗, [1, [(ldefault , 0)], [1], i])

γ1 = γ[x → (l, public bty∗)] σ1 = σ[l → (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1))]

(γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ, bid, acc, skip)

Location-tracking Private Pointer Declaration
((ty = bty∗) ∨ (ty = private bty∗)) ∧ ((bty = int) ∨ (bty = float)) (acc = 0) ∧ (bid = none)
l = φ() GetIndirection(∗) = i ω = EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i])

γ1 = γ[x→ (l,private bty∗)] σ1 = σ[l→ (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1))]

(γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp1 (γ1, σ1, ∆, χ, bid, acc, skip)

Location-tracking Private Pointer Declaration (Inside a Private - Conditioned If Else Branch)
((ty = bty∗) ∨ (ty = private bty∗)) ∧ ((bty = int) ∨ (bty = float)) GetIndirection(∗) = i

γ1 = γ[x→ (l,private bty∗)] l = φ() EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i]) = ω
σ1 = σ[l→ (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1))]

(acc > 0) ∧ ((bid = then) ∨ (bid = else)) χ1 = l :: χ[acc]

(γ, σ,∆, χ, bid, acc, ty x) ⇓tdp2 (γ1, σ1,∆, χ1, bid, acc, skip)

Location-tracking Public Pointer Read Single Location
γ(x) = (l, public bty∗) σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

(γ, σ, ∆, χ, bid, acc, x) ⇓trp (γ, σ, ∆, χ, bid, acc, (l1, µ1))

Location-tracking Private Pointer Read Single Location
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))

DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

(γ, σ, ∆, χ, bid, acc, x) ⇓trp2 (γ, σ, ∆, χ, bid, acc, (l1, µ1))

Location-tracking Private Pointer Read Multiple Locations
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

(bty = int) ∨ (bty = float) DecodePtr(private bty∗, α, ω) = [α, l, j, i]

(γ, σ, ∆, χ, bid, acc, x) ⇓trp1 (γ, σ, ∆, χ, bid, acc, [α, l, j, i])

Location-tracking Public Pointer Write
Label(e, γ) = public (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, (le, µe))

γ(x) = (l, public bty∗) σ1(l) = (ω, public bty∗, 1,PermL(Freeable,public bty∗,public, 1))
DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

T_UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], public bty , i], ∆1, χ, bid, acc, public bty∗) = (σ2, ∆2, 1)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Private Pointer Write
Label(e, γ) = public (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, (le, µe))

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i]
T_UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], ∆1, χ, bid, acc, private bty∗) = (σ2, ∆2, 1)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓twp1 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Private Pointer Write Multiple Locations
(γ, σ,∆, χ, bid, acc, e) ⇓te (γ, σ1,∆1, χ, bid, acc, [α, l, j, i]) (bty = int) ∨ (bty = float)

γ(x) = (l,private bty∗) T_UpdatePtr(σ1, (l, 0), [α, l, j, i],∆1, χ,bid, acc, private bty∗) = (σ2,∆2, 1)

(γ, σ, ∆, χ, bid, acc, x = e) ⇓twp2 (γ, σ2, ∆2, χ, bid, acc, skip)

Figure 4.19: Location-tracking SMC2 semantic rules for pointer declarations, reading, and writing.
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Location-tracking Public Pointer Dereference Write Public Value
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, v) γ(x) = (l, public bty∗)

Label(e, γ) = public σ1(l) = (ω, public bty∗, 1,PermL(Freeable,public bty∗,public, 1))
(acc = 0) ∧ (bid = none) DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], public bty , 1]
v 6= skip T_UpdateOffset(σ1, (l1, µ1), v,∆1, χ, bid, acc,private bty) = (σ2,∆2, 1)

(γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Public Pointer Dereference Write Higher Level Indirection
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, (le, µe)) Label(e, γ) = public

γ(x) = (l, public bty∗) σ1(l) = (ω, public bty∗, 1,PermL(Freeable, public bty∗, public, 1))
DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i] i > 1 (acc = 0) ∧ (bid = none)

T_UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1],∆1, χ, bid, acc, , public bty∗) = (σ2,∆2, 1)

(γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Private Pointer Dereference Write Private Value
Label(e, γ) = private (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, v)

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

(bty = int) ∨ (bty = float) v 6= skip DecodePtr(private bty∗, α, ω) = [α, l, j, 1]

T_UpdatePriv(σ1, α, l, j, private bty , v, ∆1, χ, bid, acc) = (σ2, ∆2, 1)

(γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Private Pointer Dereference Write Public Value
Label(e, γ) = public (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, v)

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

(bty = int) ∨ (bty = float) v 6= skip DecodePtr(private bty∗, α, ω) = [α, l, j, 1]

T_UpdatePriv(σ1, α, l, j, private bty , encrypt(v), ∆1, χ, bid, acc) = (σ2, ∆2, 1)

(γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Private Pointer Dereference Write Value Higher Level Indirection
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, (le, µe)) Label(e, γ) = private

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i] i > 1

T_UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i− 1],∆1, χ, bid, acc,private bty∗) = (σ2,∆2, 1)

(γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ2, ∆2, χ, bid, acc, skip)

Location-tracking Private Pointer Dereference Write Value Higher Level Indirection Multiple Location
(γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, [α, le, je, i− 1])

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i] i > 1 Label(e, γ) = private

T_UpdatePrivPtr(σ1, [α, l, j, i], [α, le, je, i− 1],∆1, χ, bid, acc, private bty∗) = (σ2,∆2, 1)

(γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ2, ∆2, χ, bid, acc, skip)

Figure 4.20: Location-tracking SMC2 semantic rules for pointer dereference write.
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Location-tracking Public Pointer Dereference Single Location
γ(x) = (l, public bty∗) σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] DerefPtr(σ,public bty , (l1, µ1)) = (v, 1)

(γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp (γ, σ, ∆, χ, bid, acc, v)

Location-tracking Public Pointer Dereference Single Location Higher Level Indirection
γ(x) = (l, public bty∗) σ(l) = (ω1, public bty∗, 1, PermL(Freeable,public bty∗,public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]
DerefPtrHLI(σ,public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 1)

(γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp1 (γ, σ, ∆, χ, bid, acc, (l2, µ2))

Location-tracking Private Pointer Dereference Single Level Indirection
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1]

Retrieve_vals(n, l, j, private bty , σ) = (v, 1) (bty = int) ∨ (bty = float)

(γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v)

Location-tracking Private Pointer Dereference Higher Level Indirection
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

(bty = int) ∨ (bty = float) DecodePtr(private bty∗, α, ω) = [α, l, j, i]

i > 1 DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l
′
, j
′
), 1)

(γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′, l
′
, j
′
, i− 1])

Figure 4.21: Location-tracking SMC2 semantic rules for pointer dereference read.

4.1.2 Algorithms

In this section, we will present and discuss the algorithms that were modified for use in the Location-tracking

SMC2 semantics. All other algorithms definitions remain the same, and can be found in Section 3.1.6.

Algorithm 84 through Algorithm 89 are used in place of their corresponding algorithms from Basic SMC2

in order to handle location-tracking within private-conditioned branches; they check if a location is already

tracked, and update or add it appropriately before performing the update in memory. We use green text here

to highlight which portions have been added or modified from their corresponding Basic SMC2 algorithms.

Algorithms 92 and 93 are the new private-conditioned if else helper algorithms – none of the previous

Basic SMC2 private-conditioned if else helper algorithms are used in this semantics.

84 T_UpdateVal ::= f : (σ, l, v, ∆, χ, bid, acc, a bty)→ (σ, ∆)

85 T_UpdatePtr ::= f : (σ, (l, µ), [α, l, j, i], ∆, χ, bid, acc, ty)→ (σ, ∆, j)

86 T_UpdateOffset ::= f : (σ, (l, µ), v,∆, χ,bid, acc, ty)→ (σ,∆, j)

87 T_UpdatePriv ::= f : (σ, α, l, j, ty , v,∆, χ,bid, acc)→ (σ,∆, j)

88 T_UpdatePrivPtr ::= f : (σ, [α, l, j, i], [α, l, j, i],∆, χ,bid, acc, ty)→ (σ,∆, j)

89 T_WriteOOB ::= f : (v, i, n, l, ty , σ,∆, χ,bid, acc)→ (σ,∆, j)
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90 T_SetBytes ::= f : ((l, µ), a bty∗, [α, l, j, i], σ,∆, χ,bid, acc)→ (σ2,∆2)

91 T_UpdateLocationMap ::= f : (ty , α, ω1, ωf ,∆, χ,bid, acc)→ ∆f

92 T_restore ::= f : (σ,∆, acc)→ σ

93 T_resolve ::= f : (σ,∆, χ,bid, acc, res)→ (σ,∆)

Algorithm 84 (σ2, ∆2)← T_UpdateVal(σ, l, v, ∆, χ, bid, acc, a bty)

σ1[l→ (ω1, a bty , n, PermL(Freeable, a bty , a, n))] = σ
if ((bid = then) ∧ (l /∈ χ[acc]) ∧ (a = private)) then

if (l /∈ ∆[acc]) then
v1 = DecodeVal(private bty , n, ω1)
∆2 = (l→ (v1, v, v1)) :: ∆[acc]

else
∆ = (l→ (vorig, vthen, vorig)) :: ∆1[acc]
∆2 = (l→ (vorig, v, vorig)) :: ∆1[acc]

end if
∆ = ∆2

else if ((bid = else) ∧ (l /∈ χ[acc]) ∧ (a = private)) then
if (lm /∈ ∆[acc]) then
v1 = DecodeVal(ty , n, ω1)
∆2 = (l→ (v1, v1, v)) :: ∆[acc]

else
∆ = (l→ (vorig, vthen, velse)) :: ∆1[acc]
∆2 = (l→ (vorig, vthen, v)) :: ∆1[acc]

end if
∆ = ∆2

else
∆2 = ∆

end if
ω2 = EncodeVal(a bty , v)
σ2 = σ1[l→ (ω2, a bty , n, PermL(Freeable, a bty , a, n))]
return (σ2, ∆2)

Algorithm 84 (T_UpdateVal) is used to update regular (int or float) values in memory. This algorithm

corresponds to Basic SMC2 Algorithm 47, and like UpdateVal, it takes as input memory σ, the memory

block identifier of the location we will be updating, the value to store into memory, and the type to store it

as. This algorithm has the additional input arguments of location map ∆, local variable tracker χ, branch

identifier bid, and the accumulator acc. T_UpdateVal first removes the original mapping from memory and

proceeds to check if we are in a private-conditioned branch, and if so checks that this location is not that of a

local variable (as we do not need to track modifications to local variables, whose use will not persist beyond

the scope of this branch). If both of these conditions are true, we check whether or not this location is already

being tracked. If it is not, we need to add a mapping for this location with the original value and the new

value. If we are inside the then branch, we add the new value as the then value and the original value as

both the original and else values, in case this location does not get modified within the else branch. If
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we are inside the else branch, we add the original value as both the original and then values (as it was

not modified within the then branch), and the new value as the else value. If this location is already being

tracked, we simply update the new value for the branch that we are currently in. Finally, it encodes the value

as the specified type, then inserts the new mapping with the updated byte data back into memory. It then

returns the updated memory and location map.

Algorithm 85 (σ2, ∆2, j)← T_UpdatePtr(σ, (l, µ), [αnew, lnew, jnew, i],∆, χ,bid, acc, a bty∗)
j = 0
σ1[l→ (ω1, ty1, α3, PermL(Freeable, ty1, a1, α3)] = σ
if (µ = 0) ∧ (a bty∗ = ty1) then

if ((bid = then) ∧ (lm /∈ χ[acc]) ∧ (a = private)) then
if (l /∈ ∆[acc]) then

[α3, l1, j1, i2] = DecodePtr(ty , n3, ω1)
∆2 = (l→ ([α3, l1, j1, i], [αnew, lnew, jnew, i], [α3, l1, j1, i])) :: ∆[acc])

else
∆ = (l→ ([αorig, lorig, jorig, i], [nthen, lthen, jthen, i], [αorig, lorig, jorig, i])) :: ∆1[acc]

∆2 = (l→ ([αorig, lorig, jorig, i], [αnew, lnew, jnew, i], [αorig, lorig, jorig, i])) :: ∆1[acc]
end if
∆ = ∆2

else if ((bid = else) ∧ (lm /∈ χ[acc]) ∧ (a = private)) then
if (lm /∈ ∆[acc]) then

[α3, l, j, i] = DecodePtr(ty , α3, ω1)
∆2 = (l→ ([α3, l1, j1, i], [α3, l1, j1, i], [αnew, lnew, jnew, i])) :: ∆[acc]

else
∆ = (l→ ([αorig, lorig, jorig, i], [αthen, lthen, jthen, i], [αelse, lelse, jelse, i])) :: ∆1[acc]

∆2 = (l→ ([αorig, lorig, jorig, i], [αthen, lthen, jthen, i], [αnew, lnew, jnew, i])) :: ∆1[acc]
end if
∆ = ∆2

else if (bid = none) then
∆2 = ∆

else
ERROR

end if
ω2 = EncodePtr(a bty∗, [αnew, lnew, jnew, i])
σ2 = σ1[l→ (ω2, ty1, αnew,PermL(Freeable, ty1, a1, αnew))]

else
(σ2,∆2) = T_SetBytes((l, µ), a bty∗, [α, l, j, i], σ,∆, χ,bid, acc)

end if
return (σ2, ∆2, j)

Algorithm 85 (T_UpdatePtr) is used to update the pointer data structure for a pointer. This algorithm

corresponds to Basic SMC2 Algorithm 48, and like UpdatePtr, it takes as input memory σ, the location

(memory block identifier and offset) we will be updating, the value to store into memory, and the type to store

the value as. This algorithm has the additional input arguments of location map ∆, local variable tracker χ,

branch identifier bid, and the accumulator acc. First, we extract the given memory block identifier’s mapping

in memory. If the given offset is 0 and the given pointer type matches the type in that mapping, we encode
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the pointer data structure into its byte representation and add a new mapping to memory with the new byte

data, and set the tag to 1, indicating that we performed a well-aligned update to memory. It proceeds to check

if we are in a private-conditioned branch, checking and adding to or modifying the location map as we did for

Algorithm 84, simply with pointer data structures as the values. Otherwise, if the update is not well-aligned,

we call T_SetBytes to perform the update to memory at this location. Finally, it returns the updated memory,

location map, and tag indicating alignment.

Algorithm 86 (σf , ∆f , j)← T_UpdateOffset(σ, (l, µ), v, ∆, χ, bid, acc, a bty)

1: if (ldefault = l) then
2: ERROR
3: return (σ,−1)
4: end if
5: j = 0
6: σf [l→ (ω1, ty1, α, PermL(Freeable, ty1, a1, α))] = σ
7: if (a bty = ty1) ∧ (µ = 0) ∧ (α = 1) then
8: if ((bid = then) ∧ (l /∈ χ[acc]) ∧ (a = private)) then
9: if (l /∈ ∆[acc]) then

10: v1 = DecodeVal(private bty , n, ω1)
11: ∆f = (l→ (v1, v, v1)) :: ∆[acc]
12: else
13: ∆ = (l→ (vorig, vthen, vorig)) :: ∆1[acc]
14: ∆f = (l→ (vorig, v, vorig)) :: ∆1[acc]
15: end if
16: ∆ = ∆f

17: else if ((bid = else) ∧ (l /∈ χ[acc]) ∧ (a = private)) then
18: if (lm /∈ ∆[acc]) then
19: v1 = DecodeVal(ty , n, ω1)
20: ∆f = (l→ (v1, v1, v)) :: ∆[acc]
21: else
22: ∆ = (l→ (vorig, vthen, velse)) :: ∆1[acc]
23: ∆f = (l→ (vorig, vthen, v)) :: ∆1[acc]
24: end if
25: ∆ = ∆f

26: else
27: ∆f = ∆
28: end if
29: ω2 = EncodeVal(a bty , v)
30: σf = σf [l→ (ω2, ty1, 1, PermL(Freeable, t̂y1, a, 1))]
31: j = 1
32: else
33: if (a bty = ty1) ∧ (µ % τ(ty1) = 0) ∧ ( µ

τ(ty1)
< α) then

34: j = 1
35: end if
36: (σf ,∆f ) = T_SetBytes((l, µ), a bty , v, σ,∆, χ, bid, acc)
37: end if
38: return (σf ,∆f , j)

Algorithm 86 (T_UpdateOffset) is designed to update a value at an offset within a memory block, and

is used by semantic rule Location-tracking Public Pointer Dereference Write Public Value. This algorithm

corresponds to Basic SMC2 Algorithm 51, and like UpdateOffset, it takes as input memory, a location,
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a value, and a type. This algorithm has the additional input arguments of location map ∆, local variable

tracker χ, branch identifier bid, and the accumulator acc. First, we check that we are not trying to update

the default location, which is not valid (i.e., this would cause a segmentation fault). If we are, we return

with the tag -1, which will not allow the statement that triggered this to resolve any further. We extract the

memory block we are looking going to be updating. Next, we check if the memory block is of the expected

type, the offset is 0, and the number of locations is 1 to see if this is a simple update. We proceed to check

if we are in a private-conditioned branch, checking and adding to or modifying the location map as we did

for Algorithm 84. We then encode the value into its byte representation and add the updated mapping into

the final memory and set the tag to be 1, as we have made a well-aligned update to memory. If we are not

at offset 0, and the memory block happens to be a block of array data, we can check if our update will be

aligned by checking if the type is the same, then if the byte-offset of the pointer aligns with a value of the

given type within the block by using the modulo operation, and also that it is within the range of the current

block based on the given type and the number of locations in the block. If all of these elements are true, we

will have a well-aligned update to memory. We use Algorithm 90 (T_SetBytes) to perform the update here,

as that algorithm facilitates proper insertion of the byte representation for a value into a larger block or across

blocks. Finally, we return the updated memory, location map, and tag.

Algorithm 87 (T_UpdatePriv) is used during private pointer dereference writes at the first level of

indirection, as shown in Figure 3.22. It facilitates the proper handling of private pointer data, particularly

when there are multiple locations. This algorithm corresponds to Basic SMC2 Algorithm 50, but has

the additional input arguments of location map ∆, local variable tracker χ, branch identifier bid, and the

accumulator acc, which it passes along to the algorithms that will perform the updates and checks to ensure

tracking is handled properly within private-conditioned branches. First, we check if the default location is in

the location list. If it is, then one of the possible locations for the pointer is an uninitialized location, and this

would cause a segmentation fault at runtime. We return tag -1 if this is the case, and the program will get stuck

and be unable to evaluate further. When there is a single location, it calls Algorithm 86 (T_UpdateOffset)

for that location to update the value stored there and returns the updated memory and alignment tag. When

there are multiple locations, it iterates through all the locations and updates each at location. If the location is

aligned, it will privately update the value based on the tag for the location, and then update the location with

this value. If the location is not aligned, then the alignment tag is set to 0 and the bytes in that location are

overwritten with the new value that we are storing in memory. If the update is aligned at all locations, then
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Algorithm 87 (σ1, ∆1, j)← T_UpdatePriv(σ, α, l, j, private bty , v,∆, χ,bid, acc)

1: j = 1
2: if (ldefault , 0) ∈ l then
3: ERROR
4: return (σ,−1)
5: else if (α = 1) then
6: [(l1, µ1)] = l
7: (σ1,∆1, j) = T_UpdateOffset(σ, (l1, µ1), v,∆, χ,bid, acc, private bty)
8: else
9: for all (lm, µm) ∈ l do

10: (ωm, tym, n, PermL(Freeable, tym, am, n)) = σ(lm)
11: if (µm = 0) ∧ (tym = private bty) ∧ (n = 1) then
12: vm = DecodeVal(private bty , ωm)
13: v′m = (j[m] ∧ v) ∨ (¬ j[m] ∧ vm)
14: (σ1,∆1) = T_UpdateVal(σ, lm, v

′
m,∆, χ, bid, acc,private bty)

15: (σ,∆) = (σ1,∆1)
16: else if (µ % τ(private bty) = 0) ∧ ( µ

τ(private bty)
< n) ∧ (tym = private bty) then

17: [v0, ..., vn−1] = DecodeVal(private bty , n, ωm)
18: v′µm = (j[m] ∧ v) ∨ (¬ j[m] ∧ vµm)

19: [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v′µm
vµm

)
20: (σ1,∆1) = T_UpdateVal(σ, lm, [v′0, ..., v

′
n−1],∆, χ,bid, acc, private bty)

21: (σ,∆) = (σ1,∆1)
22: else
23: (σ1,∆1) = T_SetBytes((lm, µm),private bty , v, σ,∆, χ, bid, acc)
24: j = 0
25: (σ,∆) = (σ1,∆1)
26: end if
27: end for
28: end if
29: return (σ1,∆1, j)

the tag will be returned as 1; otherwise, 0.

Algorithm 88 (T_UpdatePrivPtr) is used during private pointer dereference writes at a level of indi-

rection greater than 1, as shown in Figure 3.23. It facilitates the proper handling of private pointer data,

particularly when there are multiple locations. This algorithm corresponds to Basic SMC2 Algorithm 49, but

has the additional input arguments of location map ∆, local variable tracker χ, branch identifier bid, and the

accumulator acc. These arguments are passed along to other algorithms to properly handle the checks and

updates to location map ∆ when the updates occur. First, we check if the default location is in the location

list. If it is, then one of the possible locations for the pointer is an uninitialized location, and this would cause

a segmentation fault at runtime. We return tag -1 if this is the case, and the program will get stuck and be

unable to evaluate further. When there is a single location, it calls Algorithm 85 (T_UpdatePtr) for that

location to update the location stored there, and returns the updated memory and alignment tag. When there

are multiple locations, it iterates through all the locations and updates each location. If the location is aligned,

it will combine the two location lists and privately update the tag list using Algorithm 78, then update the
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Algorithm 88
(σf ,∆f , j)← T_UpdatePrivPtr(σ, [α, l, j, i], [αe, le, je, i− 1],∆, χ,bid, acc, private bty∗)

1: j = 1
2: if (ldefault , 0) ∈ l then
3: ERROR
4: j = −1
5: else if (α = 1) then
6: [(l, µ)] = l
7: (σf , ∆f , j)← T_UpdatePtr(σ, (l, µ), [αe, le, je, i− 1], ∆, χ, bid, acc, private bty∗)
8: else
9: for all (lm, µm) ∈ l do

10: σ1[lm → (ωm, tym, nm, PermL(Freeable, tym, am, nm))] = σ
11: if (µm = 0) ∧ (tym = private bty∗) then
12: [αm, lm, jm, i− 1] = DecodePtr(ty , 1, ωm)

13: [α′m, l
′
m, j

′
m] = CondAssign([αe, le, je], [αm, lm, jm], jm)

14: (σf , ∆f , j1)← T_UpdatePtr(σ, (lm, µm), [α′m, l
′
m, j

′
m, i− 1], ∆, χ,bid, acc, private bty∗)

15: j = j ∧ j1
16: (σ,∆) = (σf ,∆f )
17: else
18: (σf ,∆f ) = T_SetBytes((lm, µm), a bty∗, [1, [(lnew , µnew )], [1], i], σ,∆, χ,bid, acc)
19: j = 0
20: end if
21: end for
22: end if
23: return (σf ,∆f , j)

location with the new location and tag lists. If the location is not aligned, then the alignment tag is set to 0

and the bytes in that location are overwritten with the new location list that we are storing in memory. If the

update is aligned at all locations, then the tag will be returned as 1; otherwise, 0.

Algorithm 89 (T_WriteOOB) is designed to store a value of the given type from memory as though it

was at index i of the array in memory block l. This algorithm corresponds to Basic SMC2 Algorithm 58, and

like T_WriteOOB, it takes as input the value to write in memory v, the out of bounds index i, the number

of values in the array n, the memory block of the array data l, the type of elements in the array a bty , and

memory σ. This algorithm has the additional input arguments of location map ∆, local variable tracker χ,

branch identifier bid, and the accumulator acc. It then iterates through memory until it finds the position that

would be for index i, encodes value v as the expected type, and places its byte representation into memory

starting at that position. Before updating the memory, it proceeds to check if we are in a private-conditioned

branch, checking and adding to or modifying the location map as we did for Algorithm 84, ensuring that

all updates to all locations end up getting tracked. It is important to note here that index i will be public,

as we do not overshoot the bounds of an array when we have a private index. As the algorithm iterates

through memory, if all locations we iterate over are of the same type as the expected type, and the location
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we are writing the value to is also the expected type, then it will return tag 1, indicating that our read was

well-aligned. Otherwise, tag 0 will be returned. We currently only show the algorithm handling overshooting

in the positive direction, however, it can trivially extended to grab the previous blocks and iterate backwards

through memory to handle a negative index as well.

Algorithm 90 (T_SetBytes) is designed to store a value into a location in memory that may not be

well-aligned. This algorithm corresponds to Basic SMC2 Algorithm 65. It takes as input the location, the

type to encode the byte representation of the value as, the value, the memory, location map ∆, local variable

tracker χ, branch identifier bid, and the accumulator acc. It returns the updated memory and location map.

Before it updates any location, it uses Algorithm 91 to check if we are in a private-conditioned branch and

modify the location map as we did for Algorithm 84. We separate this functionality into a separate algorithm

for due to the length and complexity of T_SetBytes as well as the need for the same functionality to be

repeated several times within T_SetBytes.

It is worthwhile to note here that we never change the privacy label or type for the location, we simply

encode the value into a byte representation based on it’s expected type (not that of the location). This prevents

any unintentional encryption of public values or decryption of private values. When we later read from

this location, we will again read from it as the type we are expecting to be there rather than the type that is

there - this may result in garbage values being used in a program that was not ensured to be correct by the

programmer, but it prevents any information leakage about private data when stored in an incorrect position.

This algorithm first encodes the value as the given type, then attempts to store it into the current location. If it

will not fully fit in the current location, it loops until all bytes have been properly stored into memory. For an

in depth description of the functionality of this algorithm, please see Basic SMC2 Algorithm 65.

Algorithm 91 (T_UpdateLocationMap) is designed to ensure proper tracking of values for each location

when we are inside private-conditioned branches. This algorithm is only called from within Algorithm 90,

and its functionality is specific to the needs of that algorithm. It first decodes the bytes into values, with vf

being that value that is being stored into the location and v1 being the value that was stored in the location

originally. It then proceeds to check if we are in a private-conditioned branch, and if so checks that this

location is not that of a local variable (as we do not need to track modifications to local variables, whose use

will not persist beyond the scope of this branch). If both of these conditions are true, we check whether or not

this location is already being tracked. If it is not, we need to add a mapping for this location with the original

value and the new value. If we are inside the then branch, we add the new value as the then value and the
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original value as both the original and else values, in case this location does not get modified within the

else branch. If we are inside the else branch, we add the original value as both the original and then

values (as it was not modified within the then branch), and the new value as the else value. If this location

is already tracked, we simply update the new value for the branch that we are currently in.

Algorithm 92 (T_restore) is used within the private-conditioned if else statement after the then

branch evaluation is complete to restore the original values for all locations before we begin evaluating the

else branch. This algorithm iterates through the entire location map for the current level of nesting, handling

the values at each location based on whether they are singular values, lists of values, or pointer data structures.

For each type, remove its mapping from memory, encode the original value into bytes based on the type, then

store it back into memory.

Algorithm 93 (T_resolve) is used within the private-conditioned if else statement after the else

branch evaluation is complete to privately resolve which values are the true values and place them into

memory. It first looks up the result of the private conditional, then iterates through all mappings within

the current level of nesting. The algorithm handles the resolution of the values for each location based on

their type – this is identical to how we resolved the true values in Basic SMC2, taking the then and else

values and the result of the conditional and performing bitwise operations to privately find the true singular

value, and using Algorithm 78 to find the new list of locations and tag for pointer data structures. We use

T_UpdateVal and T_UpdatePtr to ensure that, if we are within a nested private-conditioned if else

statement, the next outer level of nesting will be updated to reflect the changes that occurred within this level.

It is important to note here that the branch identifier that is passed into this algorithm is that of which we

entered into this private-conditioned if else statement with, and thus it reflects the branch (if any) that we

are inside from the outer scope.
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Algorithm 89 (σ, ∆, j)← T_WriteOOB(v, i, n, l, a bty , σ, ∆, χ,bid, acc)

1: ωv = EncodeVal(a bty , v)
2: nb = (i− n) · τ(a bty)
3: j = 1
4: while (nb > 0) ∨ (|ωv| > 0) do
5: l = GetBlock(l)
6: σ1[l→ (ω, ty1, α, PermL(Freeable, ty1, a1, α))] = σ
7: if (ty1 6= a bty) then
8: j = 0
9: end if

10: if (nb < τ(ty1) · α) then
11: if (|ωv| > τ(ty1) · α− nb) then
12: ω1 = ω[0 : nb] + ωv + ω[|ωv|+ nb :]
13: ωv = [ ]
14: else if (|ωv| = τ(ty1) · α− nb) then
15: ω1 = ω[0 : nb] + ωv
16: ωv = [ ]
17: else
18: ω1 = ω[0 : nb] + ωv[0 : τ(ty1) · α− nb − 1]
19: ωv = ωv[τ(ty1) · α− nb :]
20: end if
21: if ((bid = then) ∧ (l /∈ χ[acc]) ∧ (a = private)) then
22: vf = DecodeVal(private bty , α, ω1)
23: if (l /∈ ∆[acc]) then
24: v1 = DecodeVal(private bty , α, ω)
25: ∆ = (l→ (v1, vf , v1)) :: ∆[acc]
26: else
27: (l→ (vorig, vthen, vorig)) :: ∆1[acc] = ∆
28: ∆ = (l→ (vorig, vf , vorig)) :: ∆1[acc]
29: end if
30: else if ((bid = else) ∧ (l /∈ χ[acc]) ∧ (a = private)) then
31: vf = DecodeVal(ty , α, ω1)
32: if (lm /∈ ∆[acc]) then
33: v1 = DecodeVal(private bty , α, ω)
34: ∆ = (l→ (v1, v1, vf )) :: ∆[acc]
35: else
36: (l→ (vorig, vthen, velse)) :: ∆1[acc] = ∆
37: ∆ = (l→ (vorig, vthen, vf )) :: ∆1[acc]
38: end if
39: end if
40: σ = σ1[l→ (ω1, ty1, α, PermL(Freeable, ty1, a1, α))]
41: end if
42: nb = max (0, nb − τ(ty1) · α)
43: end while
44: return (σ, ∆, j)
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Algorithm 90 (σf ,∆f )← T_SetBytes((l, µ), ty , v, σ,∆, χ,bid, acc)

1: σf [l→ (ω, ty1, α, PermL(Freeable, ty1, a, α))] = σ
2: ωv = NULL
3: if ty = a bty then
4: ωv = EncodeVal(ty , v)
5: else
6: ωv = EncodePtr(ty , v)
7: end if
8: nl = τ(ty1) · α− µ
9: if (τ(ty) < nl − 1) then

10: ωf = ω[0 : µ− 1] + ωv + ω[µ+ τ(ty) :]
11: ∆f = T_UpdateLocationMap(ty , α, ω, ωf ,∆, χ, bid, acc)
12: σf = σf [l→ (ωf , ty1, α, PermL(Freeable, ty1, a, α))]
13: else if (τ(ty) = nl − 1) then
14: ωf = ω[0 : µ− 1] + ωv
15: ∆f = T_UpdateLocationMap(ty , α, ω, ωf ,∆, χ, bid, acc)
16: σf = σf [l→ (ωf , ty1, α, PermL(Freeable, ty1, a, α))]
17: else
18: ωf = ω[0 : µ− 1] + ωv[0 : nl − 1]
19: ∆f = T_UpdateLocationMap(ty , α, ω, ωf ,∆, χ, bid, acc)
20: σf = σf [l→ (ωf , ty1, α, PermL(Freeable, ty1, a, α))]
21: ωv = ωv[nl :]
22: nv = τ(ty)− nl
23: while (nv > 0) do
24: l = GetBlock(l)
25: σf [l→ (ωc, tyc, αc, PermL(Freeable, tyc, a, αc))] = σf
26: nc = τ(tyc) · αc
27: if (nv < nc) then
28: ωf = ωv + ωc[0 : nv]
29: else if (nv = nc) then
30: ωf = ωv
31: else
32: ωf = ωv[0 : nc − 1]
33: ωv = ωv[nc :]
34: end if
35: nv = nv − nc
36: ∆f = T_UpdateLocationMap(ty , αc, ω, ωf ,∆f , χ, bid, acc)
37: σf = σf [l→ (ωf , tyc, αc, PermL(Freeable, tyc, a, αc))]
38: end while
39: end if
40: return (σf ,∆f )
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Algorithm 91 ∆f ← T_UpdateLocationMap(ty , α, ω1, ωf ,∆, χ, bid, acc)

1: if (ty = a bty) then
2: vf = DecodeVal(ty , α, ωf )
3: v1 = DecodeVal(ty , α, ω1)
4: else
5: vf = DecodePtr(ty , α, ωf )
6: v1 = DecodePtr(ty , α, ω1)
7: end if
8: if ((bid = then) ∧ (l /∈ χ[acc]) ∧ (a = private)) then
9: if (l /∈ ∆[acc]) then

10: ∆f = (l→ (v1, vf , v1)) :: ∆[acc]
11: else
12: (l→ (vorig, vthen, vorig)) :: ∆1[acc] = ∆
13: ∆f = (l→ (vorig, vf , vorig)) :: ∆1[acc]
14: end if
15: else if ((bid = else) ∧ (l /∈ χ[acc]) ∧ (a = private)) then
16: if (lm /∈ ∆[acc]) then
17: ∆f = (l→ (v1, v1, vf )) :: ∆[acc]
18: else
19: (l→ (vorig, vthen, velse)) :: ∆1[acc] = ∆
20: ∆f = (l→ (vorig, vthen, vf )) :: ∆1[acc]
21: end if
22: end if
23: return ∆f

Algorithm 92 σ2 ← T_restore(σ, ∆, acc)

for all (l→ β) ∈ ∆[acc] do
if β = (vorig , vthen , velse) then
σ1[l→ (ω,private bty , 1,PermL(Freeable, private bty , private, 1))] = σ
ω1 = EncodeVal(private bty , vorig)
σ2 = σ1[l→ (ω1, private bty , 1,PermL(Freeable,private bty , private, 1))]

else if β = ([vorig_0 , ..., vorig_n ], [vthen_0 , ..., vthen_n ], [velse_0 , ..., velse_n ]) then
σ1[l→ (ω,private bty , n,PermL(Freeable, private bty , private, n))] = σ
ω1 = EncodeVal(private bty , [vorig_0 , ..., vorig_n ])
σ2 = σ1[l→ (ω1, private bty , n,PermL(Freeable, private bty , private, n))]

else if β = ([αorig , lorig , jorig , i], [αthen , lthen , jthen , i], [αelse , lelse , jelse , i]) then
σ1[l→ (ω,private bty∗, 1,PermL(Freeable,private bty∗,private, 1))] = σ
ω1 = EncodePtr(ty , [αorig , lorig , jorig , i])
σ2 = σ1[l→ (ω1,private bty∗, αorig ,PermL(Freeable, private bty ,private, αorig))]

end if
σ = σ2

end for
return σ2
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Algorithm 93 (σ1, ∆1)← T_resolve(σ, ∆, χ, bid, acc, resacc)

(lres , private int) = γ(resacc)
(ωres , private int, 1,PermL(Freeable, private int, private, 1)) = σ(lres)
nres = DecodeVal(private bty , 1, ωres)
for all (l→ β) ∈ ∆[acc] do

if β = (vorig , vthen , velse) then
vfinal = (nres ∧ vthen) ∨ (¬ nres ∧ velse)
(σ1,∆1) = T_UpdateVal(σ, l, vfinal ,∆, χ, bid, acc− 1)

else if β = ([vorig_0 , ..., vorig_n ], [vthen_0 , ..., vthen_n ], [velse_0 , ..., velse_n ]) then
for all m ∈ [0, ..., n] do
vfinal_m = (nres ∧ vthen_m) ∨ (¬ nres ∧ velse_m)

end for
(σ1,∆1) = T_UpdateVal(σ, lx, [vf0 , ..., vfn−1 ],∆, χ, bid, acc− 1)

else if β = ([αorig , lorig , jorig , i], [αthen , lthen , jthen , i], [αelse , lelse , jelse , i]) then
[nfinal , lfinal , jfinal ] = CondAssign([αthen , lthen , jthen ], [αelse , lelse , jelse ], nres)

(σ1, ∆1) = T_UpdatePtr(σ, l, [nfinal , lfinal , jfinal , ty , i],∆, χ, bid, acc− 1)
end if
σ = σ1

∆ = ∆1

end for
return (σ1,∆1)
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4.2 Correctness

The most challenging result is correctness, which we discuss first. Once correctness is proven, noninterference

follows from a standard argument, with some adaptations needed to deal with the fact that private data is

encrypted and that we want to show indistinguishability of evaluation traces.

We show the correctness of the Location-tracking SMC2 semantics with respect to the Vanilla C semantics.

As usual we will do this by establishing a simulation relation between a Location-tracking SMC2 program

and a corresponding Vanilla C program. To do so we face two main challenges. First, we need to guarantee

that the private operations in a Location-tracking SMC2 program are reflected in the corresponding Vanilla C

program and that the evaluation steps between the two programs correspond. To address the former issue,

we define an erasure function Erase which translates a Location-tracking SMC2 program into a Vanilla C

program by erasing all labels and replacing all functions specific to Location-tracking SMC2 with their public

equivalents. This function also translates memory. As an example, let us consider pmalloc; in this case, we

have Erase(pmalloc(e, ty) = (malloc(sizeof(Erase(ty)) ·Erase(e)))). That is, pmalloc is rewritten

to use malloc, and since the given private type is now public we can use the sizeof function to find the size

we will need to allocate. To address the latter issue, we have defined our operational semantics in terms of

big-step evaluation judgments which allow the evaluation trees of the two programs to have a corresponding

structure. In particular, notice how we designed the Private If Else rule to perform multiple operations at one

step, guaranteeing that we have similar “synchronization points” in the two evaluation trees.

Second, we need to guarantee that at each evaluation step the memory used by a Location-tracking

SMC2 program corresponds to the one used by the Vanilla C program. In our setting, with explicit memory

management, manipulations of pointers, and array overshooting, the latter becomes particularly challenging.

To better understand the issue here, let us consider the the rule Private Free. Remember that our semantic

model associates a pointer with a list of locations, and the Private Free rule frees the first location in the list,

and relocates the content of that location if it is not the true location. Essentially, this rule may swap the

content of two locations if the first location in the list is not the location intended to be freed and make the

Location-tracking SMC2 memory and the Vanilla C memory look quite different. To address this challenge

in the proof of correctness, we use a map, denoted ψ, to track the swaps that happen when the rule Private

Free is used. The simulation uses and modifies this map to guarantee that the two memories correspond.

Another related challenge comes from array overshooting. If, by overshooting an array, a program goes
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over or into memory blocks of different types, we may end up in a situation where the locations in the

Location-tracking SMC2 memory are significantly different from the ones in the Vanilla C memory. This is

mostly due to the size of private types being larger than their public counterpart. One option to address this

problem would be to keep a more complex map between the two memories. However, this can result in a

much more complex proof, for capturing a behavior that is faulty, in principle. Instead, we prefer to focus on

situations where overshooting arrays are well-aligned, in the sense that they access only memory locations

and blocks of the right type and size. An illustration of this is given in Figure 3.4.

Before stating our correctness, we need to introduce some notation. We use codes [d1, . . . , dn], [d̂1, . . . ,

d̂m] in evaluations (i.e., ⇓[d1,...,dn]) to describe the rules of the semantics that are applied in order to derive

the result. We write [d1, . . . , dn] ∼= [d̂1, . . . , d̂m] to state that the Location-tracking SMC2 codes [d1, . . . , dn]

are in correspondence with the Vanilla C codes [d̂1, . . . , d̂m]. Almost every Location-tracking SMC2 rule

is in one-to-one correspondence with a single Vanilla C rule within an execution trace (exceptions being

private-conditioned branches and pmalloc).

We write s ∼= ŝ to state that the Vanilla C configuration statement ŝ can be obtained by applying the

erasure function to the Location-tracking SMC2 statement s. Similarly, we can extend this notation to

configuration by also using the map ψ. That is, we write (γ, σ, acc, s) ∼=ψ (γ̂, σ̂, �, ŝ) to state that the

Vanilla C configuration (γ̂, σ̂,�, ŝ) can be obtained by applying the erasure function to the Location-tracking

SMC2 configuration (γ, σ, acc, s), and memory σ̂ can be obtained from σ by using the map ψ.

We state correctness in terms of evaluation trees, since we will use evaluation trees to prove a strong form

of noninterference in the next subsection. We use capital greek letters Π,Σ to denote evaluation trees. In the

Location-tracking SMC2 semantics, we write Π. (γ, σ, acc, s) ⇓[d1,...,dn] (γ1, σ1, acc1, v), to stress that the

evaluation tree Π proves as conclusion that configuration (γ, σ, acc, s) evaluates to configuration (γ1, σ1,

acc1, v) by means of the codes [d1, ..., dn]. Similarly, for the Vanilla C semantics. We then write Π ∼=ψ Σ

for the extension to evaluation trees of the congruence relation with map ψ.

We can now state our correctness result showing that if an Location-tracking SMC2 program s can be

evaluated to a value v, and the evaluation is well-aligned (it is an evaluation where all the overshooting of

arrays are well-aligned), then the Vanilla C program ŝ obtained by applying the erasure function to s, i.e.,

s ∼= ŝ can be evaluated to v̂ where v ∼= v̂. This property can be formalized in terms of congruence:

Theorem 4.2.1 (Location-tracking Correctness). Given configurations (γ, σ, ∆, χ, bid, acc, s), (γ̂, σ̂, �, ŝ), and

map ψ, such that (γ, σ, ∆, χ, bid, acc, s) ∼=t
ψ (γ̂, σ̂, � ŝ), if Π . (γ, σ, ∆, χ, bid, acc, s) ⇓t[d1,...,dn] (γ1, σ1, ∆1, χ1,
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bid, acc, v1) for codes [d1, ..., dn] ∈ (SmcC ∪ SmcCT ) \ SmcCX , then there exists a derivation Σ . (γ̂, σ̂, � ŝ)

⇓′
[d̂1,...,d̂n]

(γ̂1, σ̂1,� ŝ1) for codes [d̂1, ..., d̂m] ∈ V anC \V anCX and a map ψ1 such that [d1, ..., dn] ∼=t [d̂1, ..., d̂m],

(γ1, σ1, ∆1, χ1, bid, acc, v1) ∼=t
ψ1

(γ̂1, σ̂1, � v̂1), and Π ∼=t
ψ1

Σ.

Proof. Proof Sketch: By induction over all Location-tracking SMC2 semantic rules.

The bulk of the complexity of this proof lies with rules pertaining to Private If Else, handling of pointers,

and freeing of memory. We first provide a brief overview of the intuition behind some assumptions we must

make for the proof and reasoning behind the use of some of the elements of the rules; then we dive deeper

into the details for the more complex cases. The majority of this proof follows very similarly to the proof

of correctness for Basic SMC2. The main difference is for rule Private If Else, which is now managed by

location instead of by variable. We will discuss this portion last. The full proof is available in Section 4.2.2,

with this theorem identical to Theorem 4.2.2.

First, we need to assume private indexing is within bounds. Otherwise, we will not be able to prove

correctness, because when using private indexing we will not go out of the bounds of the array in Location-

tracking SMC2, whereas the Vanilla C equivalent would. We also need to assume that input files are congruent,

otherwise we cannot reason over the data input functions.

Similarly, when reasoning about rules containing overshooting and offsets into memory blocks, we must

assert that such operations are well-aligned by type (i.e., for overshooting, we can only assert correctness

over memory blocks and elements of the same type, and for offsets, the offset must be aligned with the start

of an element within the block, and the expected and actual types of memory the same). Going over or into

memory blocks of different types could cause significantly different locations between Location-tracking

SMC2 and Vanilla C due to private types being larger in size. An illustration of this is shown in Figure 3.4.

The correctness of most semantic rules follows easily, with Private Free being a notable exception. We

leverage the correctness of Algorithm 75 (PFree), to show that correctness follows due to the deterministic

definitions of this algorithm and those used by this algorithm. In this case, we must also show that the

locations that are swapped within this rule, which is done to hide the true location, are deterministic based on

our memory model definition. We use ψ to map the swapped locations, enabling us to show that, if these

swaps were reversed, we would once again have memories that are directly congruent. This concept of

locations being ψ-congruent is particularly necessary when reasoning about pointers in other rule cases.

We make the assertion that v 6= skip in some rules where skip is not allowed as a value - this is especially

important for asserting that an expression cannot contain pfree(e) (as any expression containing pfree(e)
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would evaluate to skip) and thus that ψ could not have been modified over said evaluation.

Another common assertion we must make is that in a semantic rule, we do not accept a hard-coded

location (l, µ), (l̂, µ̂) as the starting statement s, ŝ. Hard-coded locations could lead to evaluating locations

that are not congruent to each other and therefore we would not be able to prove correctness over such

statements. This makes it so we can easily assert that our starting statements are congruent (i.e., s ∼= ŝ).

For all the rules using private pointers, we will rely upon the pointer data structure containing a set of

locations and their associated tags, only one of which being the true location. With this proven to be the case,

it is then clear that the true location indicated within the private pointer’s data structure in Location-tracking

SMC2 will be ψ-congruent with the location given by the pointer data structure in Vanilla C. We define this

correspondence between locations as location ψ-congruence - ensuring that memory block IDs are the same,

and the position into the block is congruent (same if public, proportional if private

For rule Private Malloc, we must relate this rule to the sequence of Vanilla C rules for Malloc, Mul-

tiplication, and Size of Type. This is due to the definition of pmalloc as a helper that allows the user

to write programs without knowing the size of private types. This case follows from the definition

of translating the Location-tracking SMC2 program to a Vanilla C program, Erase(pmalloc(e, ty) =

(malloc(sizeof(Erase(ty)) ·Erase(e)))).

For the Private If Else rule, we must reason that our end results in memory after executing both branches

and resolving correctly match the end result of having only executed the intended branch. The cases for both

of these rules will have two subcases - one for the conditional being true, and the other for false. For this

rule, we will need to reason about the location map ∆, and that we will catch all modifications and properly

add them to ∆ if the location being modified is not already tracked. If a new mapping is added, we store

the current value in vorig (as this location has not yet been modified), and the new value into the appropriate

position based on our current branch. To do this, we must reason about each of our update functions, and that

they will catch and add all modifications appropriately. This behavior will be used to ensure the correctness

during both restoration and resolution.

Then we can evaluate the then branch, which will result in the values that are correct for if the condition

had been true - this holds by induction. For T_restore, we reason that we properly store the results of the

then branch as well as the original values for each location, as we discussed above. Then we can evaluate

the else branch, which will result in the values that are correct for if the condition had been false - this holds

by induction. We will then reason about the correctness of T_resolve. It must be set up to correctly take
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the temporary variable for the condition for the branch, and the values stored from the then branch and the

ending values for the else branch. For the resolution of pointers, we must also reason about Algorithm 78

(CondAssign), because the resolution of pointer data is more involved. By proving that this algorithm will

correctly resolve the true locations for pointers, we will then have that the statements created by T_resolve

will appropriately resolve all pointers.

Erase(γ, σ, ∆, χ,bid,acc, s) = (Erase(γ, σ, [ ], [ ]), ���, Erase(s))

(a) Erasure function over configurations.

Figure 4.22: The Erasure function from Location-tracking SMC2 configurations to Vanilla C configurations.

The full erasure function is shown in subsection 3.2.1, Figure 3.31. The only difference is the update

to the erasure function over configurations, replacing subfigure 3.31a with subfigure 4.22a. Figure 4.22

shows erasure over an entire Location-tracking SMC2 configuration, calling Erase on the four-tuple of the

environment, memory, and two empty maps needed as the base for the Vanilla C environment and memory;

removing the location map, local variable map, branch indicator, and accumulator (i.e., replacing it with �);

and calling Erase on the statement.

For the Proof of Correctness over the Location-tracking SMC2 semantics, several definitions, axioms,

and lemmas remain unchanged from their Basic SMC2 versions, as the elements used in defining and proving

these did not change:

• Definitions: 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9, 3.2.10, 3.2.11, 3.2.12, 3.2.13,

3.2.14, 3.2.15, 3.2.16, 3.2.17, 3.2.18, 3.2.19, 3.2.20, 3.2.25, 3.2.26, 3.2.22, 3.2.23

• Axioms: 3.2.1, 3.2.3, 3.2.4, 3.2.5

• Lemmas: 3.2.3, 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9, 3.2.10, 3.2.11, 3.2.12, 3.2.22, 3.2.23, 3.2.24, 3.2.25,

3.2.26, 3.2.27, 3.2.28, 3.2.29, 3.2.30, 3.2.31, 3.2.32, 3.2.33, 3.2.34, 3.2.35, 3.2.36, 3.2.37, 3.2.38,

SmcCT V anC SmcCT V anC SmcCT V anC

⇓td2 ⇓′d ⇓tdp2 ⇓′dp ⇓tda2 ⇓′da

Figure 4.23: Table of Location-tracking SMC2-specific evaluation codes in SmcCT and their congruent
Vanilla C evaluation codes in V anC. These evaluation codes are in addition to the SMC2 evaluation codes
shown in Figure 3.30.
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3.2.39, 3.2.40, 3.2.41, 3.2.42, 3.2.43, 3.2.44, 3.2.45, 3.2.46, 3.2.47, 3.2.48, 3.2.49, 3.2.50, 3.2.51,

3.2.57, 3.2.58, 3.2.59, 3.2.60, 3.2.13, 3.2.63, 3.2.14, 3.2.15, 3.2.16, 3.2.18, 3.2.19, 3.2.62, 3.2.73

4.2.1 Supporting Metatheory

Definition 4.2.1. A Location-tracking SMC2 configuration and a Vanilla C configuration are ψ-congruent, in symbols

(γ, σ, ∆, χ, bid, acc, s) ∼=ψ (γ̂, σ̂, �, ŝ), if and only if (γ, σ) ∼=ψ (γ̂, σ̂) and s ∼=ψ ŝ.

Definition 4.2.2. A Location-tracking SMC2 evaluation code and a Vanilla C evaluation code are congruent, in sym-

bols d ∼= d̂, if and only if (γ, σ,∆, χ, bid, acc, s) ⇓c (γ1, σ1,∆1, χ1, bid1, acc, v) and (γ̂, σ̂,�, ŝ) ⇓d (γ̂1, σ̂1,�, v̂)

such that (γ, σ,∆, χ, bid, acc, s) ∼=ψ (γ̂, σ̂,�, ŝ) and (γ1, σ1,∆1, χ1, bid1, acc, v) ∼=ψ (γ̂1, σ̂1,�, v̂) by Definition

4.2.1.

Definition 4.2.3. A SMC2 derivation Π . (γ, σ, ∆, χ, bid, acc, s) ⇓t[d1,...,dn] (γ1, σ1, ∆1, χ1, bid, acc, v) and a

Vanilla C derivation Σ.(γ̂, σ̂,�, ŝ) ⇓′
[d̂1,...,d̂m]

(γ̂1, σ̂1,�, v̂) are ψ-congruent, in symbols Π ∼=′ψ Σ, if and only if given

initial map ψ and ψ′ derived from evaluating Π, (γ, σ, ∆, χ, bid, acc, s) ∼=ψ (γ̂, σ̂,�, ŝ), [d1, ..., dn] ∼= [d̂1, ..., d̂m],

(γ1, σ1, ∆1, χ1, bid, acc, v) ∼=′ψ (γ̂1, σ̂1,�, v̂).

Lemma 4.2.1. Given an initial map ψ, environment γ, memory σ, accumulator acc, and expression e, if (γ, σ, ∆, χ,

bid, acc, e) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, v) such that v 6= skip, then pfree(e1) /∈ e and the ending map ψ1 is equivalent

to ψ.

Proof. By definition of SMC2 rule pfree, skip is returned from the evaluation of pfree(e1). Therefore, by case analysis

of the rules, if v 6= skip, then pfree(e1) /∈ e. By Definition 3.2.11, ψ is only modified after the execution of function

pfree; therefore we have that ψ1 = ψ.

Lemma 4.2.2. Given configuration (γ, σ, ∆, χ, bid, acc, s), if (γ, σ, ∆, χ, bid, acc, s) ⇓tc1 (γ1, σ1, ∆1, χ1, bid,

acc, v), then (l, µ) /∈ s.

Proof. Proof by contradiction using all semantic rules.

Lemma 4.2.3. Given map ψ and configuration (γ, σ, ∆, χ, bid, acc, s), (γ̂, σ̂, �, ŝ) such that (γ, σ) ∼=ψ (γ̂, σ̂)

and s ∼= ŝ, if (l, µ) /∈ s, then s ∼=ψ ŝ and (γ, σ, acc, s) ∼=ψ (γ̂, σ̂, �, ŝ).

Proof. By Definition 3.2.10, if s ∼= ŝ then Erase(s) = ŝ. Given s ∼= ŝ and (l, µ) /∈ s, we have for all vi ∈ s, v̂i ∈ ŝ,

vi ∼= v̂i, and therefore by Definition 3.2.17 we have vi ∈ s, v̂i ∈ ŝ, vi ∼=ψ v̂i. Therefore, by Definition 3.2.18 we have

s ∼=ψ ŝ and by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, s) ∼=ψ (γ̂, σ̂, �, ŝ).
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Lemma 4.2.4. Given map ψ, location map ∆1, local variable tracker χ, branch identifier bid, accumulator acc,

environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, value v, v̂, and type a bty , b̂ty , if T_UpdateVal(σ1, l,

v, ∆1, χ, bid, acc, a bty) = (σ2,∆2), (γ, σ1) ∼=ψ (γ̂, σ̂1), l ∼=ψ l̂, v ∼=ψ v̂, and a bty ∼= b̂ty , then UpdateVal(σ̂1, l̂,

v̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Proof. By definition of T_UpdateVal, UpdateVal, and Erase.

Lemma 4.2.5. Given map ψ, location map ∆1, local variable tracker χ, branch identifier bid, accumulator acc, envi-

ronment γ, γ̂, memory σ1, σ̂1, location (l, µ), (l̂, µ̂), value v, v̂, and type a bty , b̂ty , if T_UpdateOffset(σ1, (l, µ), v,

∆1, χ, bid, acc, a bty) = (σ2,∆2, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), (l, µ) ∼=ψ (l̂, µ̂), v = v̂, and a bty ∼= b̂ty , then

UpdateOffset(σ̂1, (l̂, µ̂), v̂, b̂ty) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2) and j ∼= j′.

Proof. By definition of Algorithm T_UpdateOffset, UpdateOffset, and Erase, as well as Definition 3.2.13 and 3.2.3.

Lemma 4.2.6. Given map ψ, environment γ, γ̂, memory σ, σ̂, location map ∆1, local variable tracker χ, branch

identifier bid, accumulator acc, location (l, µ), (l̂, µ̂), pointer data structure [α, l, j, i], [1, [(l̂1, µ̂1)], [1], î], and

type a bty∗, b̂ty∗, if T_UpdatePtr(σ, (l, µ), [α, l, j, i], ∆, χ, bid, acc, a bty∗) = (σ1,∆1, j), a bty∗ ∼= b̂ty∗,

(γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) ∼=ψ (l̂, µ̂), and [α, l, j, i] ∼=ψ [1, [(l̂1, µ̂1)], [1], î], then UpdatePtr(σ̂, (l̂, µ̂), [1, [(l̂1,

µ̂1)], [1], i], b̂ty∗) = (σ̂1, ĵ) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and j ∼= ĵ.

Proof. By definition of T_UpdatePtr, UpdatePtr, and Erase, as well as Definition 3.2.14, 3.2.13, and 3.2.3.

Lemma 4.2.7. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, number of locations α, memory block identifier list

l, location (l̂1, µ̂1), tag list j, ĵ, level of indirection i, type private bty , b̂ty , location map ∆1, local variable tracker

χ, branch identifier bid, accumulator acc, and value v, v̂, if T_UpdatePriv(σ1, α, l, j, private bty , v, ∆1, χ, bid,

acc) = (σ2,∆2, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), DeclassifyPtr([α, l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1),

private bty ∼= b̂ty , and v ∼=ψ v̂, then UpdateOffset(σ̂1, (l1, µ̂1), v̂, b̂ty) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2) and

j ∼= j′.

Proof. By definition of T_UpdatePriv, UpdateOffset, and Erase.

Lemma 4.2.8. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, location (l̂1, µ̂1), and pointer data structure [α, l, j, i],

[αe, le, je, i− 1], [1, [(l̂e, µ̂e)], [1], î− 1], location map ∆1, local variable tracker χ, branch identifier bid, accumulator

acc, and type private bty∗, b̂ty∗, if UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i−1],∆1, χ, bid, acc, private bty∗) =

(σ2,∆2, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), DeclassifyPtr([α, l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), private

bty∗ ∼= b̂ty∗ and [αe, le, je, i− 1] ∼=ψ [1, [(l̂e, µ̂e)], [1], î− 1], then UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1],

b̂ty∗) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2) and j = ĵ.
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Proof. By definition of T_UpdatePrivPtr, UpdatePtr, and Erase, as well as Definition 3.2.14 and 3.2.13.

Lemma 4.2.9. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type a bty , b̂ty , value

v, v̂, array index i, î, size n, n̂, location map ∆1, local variable tracker χ, branch identifier bid, and accumulator acc,

if WriteOOB(v, i, n, l, a bty , σ1,∆1, χ, bid, acc) = (σ2,∆2, j), v ∼=ψ v̂, i = î, n = n̂, l = l̂, a bty ∼= b̂ty , and

(γ, σ1) ∼=ψ (γ̂, σ̂1), then WriteOOB(v̂, î, n̂, l̂, b̂ty , σ̂1) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2) and j ∼= ĵ.

Proof. Proof Idea:

By definition of T_WriteOOB, if the number returned with the updated memory is 1, then the out of bounds access

was well-aligned by Definition 3.2.2. Therefore, when we iterate over the ψ-congruent Vanilla C memory, the resulting

out of bounds access will also be well-aligned. We use the definition of T_WriteOOB, WriteOOB, and Erase to help

prove this.

Lemma 4.2.10. Given evaluation trace Π.(γ, σ,∆, χ, bid, acc, e) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, v), Σ.(γ̂, σ̂,�, ê) ⇓′d1

(γ̂, σ̂1,�, v̂), if (l, µ) 6= v and Erase(e) = ê, then e ∼=ψ ê for any possible map ψ.

Proof. By Definition 3.2.10 and case analysis of SMC2 semantic rules.

Lemma 4.2.11. Given an initial map ψ, environment γ, memory σ, location map ∆1, local variable tracker χ,

branch identifier bid, accumulator acc, and stmt s, if (γ, σ, ∆, χ, bid, acc, s) ⇓ts (γ1, σ1, ∆1, χ1, bid, acc, v) and

pfree(e) /∈ s, then the ending map ψ1 is equivalent to ψ.

Proof. By definition of ψ.

Lemma 4.2.12. Given ψ and (γ, σ,∆, χ, bid, acc, s) ∼=ψ (γ̂, σ̂,�, ŝ), if (γ, σ,∆, χ, bid, acc, s) ⇓c (γ1, σ1,∆1,

χ1, bid1, acc, v) and (γ̂, σ̂,�, ŝ) ⇓d (γ̂1, σ̂1,�, v̂) such that (γ1, σ1,∆1, χ1, bid1, acc, v) ∼=ψ (γ̂1, σ̂1,�, v̂), then

(γ, σ1) ∼=ψ (γ̂, σ̂1).

Proof. Proof Idea:

Proof by induction over congruent evaluations. Using the definition of function Erase, we show that with every rule

that adds to γ or adds to or modifies σ maintains both (γ1, σ1) ∼=ψ (γ̂1, σ̂1) and (γ, σ1) ∼=ψ (γ̂, σ̂1) by Definition

3.2.15.

Lemma 4.2.13. Given (γ, σ, ∆, χ, bid, acc, private int res_acc = n) where Label(n, γ) = private, if (γ, σ,

∆, χ, bid, acc, private int res_acc) ⇓tds (γ1, σ2, ∆2, χ1, bid, acc, skip) then γ1 = γ :: γA such that γA =

[res_acc→ (private int, l)] and σ1 = σ :: σA such that σA = [l → (EncodeVal(private int, n), private int, 1,

PermL(Freeable, private int,private, 1))].

362



Proof.

Given (γ, σ, ∆, χ, bid, acc, private int res_acc = n) where Label(n, γ) = private, we have (γ, σ, ∆, χ, bid,

acc, private int res_acc = n) ⇓tds (γ1, σ2, ∆2, χ1, bid, acc, skip) by rule Declaration Assignment if (γ, σ, ∆, χ,

bid, acc, private int res_acc) ⇓td1 (γ1, σ1,∆1, χ1, bid, acc, skip) and (γ1, σ1,∆1, χ1, bid, acc, res_acc = n) ⇓tw2

(γ1, σ2, ∆2, χ1, bid, acc, skip).

Given (γ, σ, ∆, χ, bid, acc, private int res_acc), by rule Private Declaration we have (γ, σ, ∆, χ, bid, acc, private

int res_acc) ⇓td1 (γ1, σ1, ∆1, χ1, bid, acc, skip) where l = φ(), γ1 = γ[res_acc → (l, private int)], ω =

EncodeVal(private int,NULL), σ1 = σ[l → (ω, private int, 1, PermL(Freeable,private int, private, 1))]. By

Axiom 3.2.2, we have res_acc /∈ γ. By definition of φ, we have l /∈ σ. Therefore, we have γ1 = γ[res_acc →

(private int, l)] and σ1 = σ[l→ (ω, private int, 1, PermL(Freeable, private int, private, 1))].

Given (γ1, σ1, ∆1, χ1, bid, acc, res_acc = n) where Label(res_acc, γ1) = Label(n, γ1) = private, by rule Write

Private Variable we have (γ1, σ1, ∆1, χ1, bid, acc, res_acc = n) ⇓tw2 (γ1, σ2, ∆2, χ1, bid, acc, skip) where

γ1(res_acc) = (l, private int) and T_UpdateVal(σ1, l, n, ∆1, χ, bid, acc, private bty) = σ2. By definition

of T_UpdateVal, we have σ1 = σ3[l → (ω, private int, 1, PermL(Freeable, private int, private, 1))] and

σ2 = σ3[l → (ω′, private int, 1, PermL(Freeable, private int, private, 1))]. Given σ1 = σ[l → (ω, private int,

1, PermL(Freeable, private int, private, 1))], we have σ3 = σ and therefore σ2 = σ[l → (ω′, private int, 1,

PermL(Freeable, private int, private, 1))].

Given γ1 = γ[res_acc → (private int, l)], we can conclude that γ1 = γ :: γA where γA = [res_acc →

(private int, l)].

Given σ2 = σ[l → (ω′, private int, 1, PermL(Freeable, private int,private, 1))], we can conclude that σ2 = σ ::

σA where σA = [l→ (ω′, private int, 1, PermL(Freeable, private int,private, 1))].

Therefore, we can conclude (γ, σ,∆, χ, bid, acc, private int res = n) ⇓tds (γ :: γA, σ :: σA,∆2, χ1, bid, acc, skip)

by rule Declaration Assignment.

Lemma 4.2.14. Given map ψ, environment γ, γ̂, memory σ, σ̂, location map ∆, local variable tracker χ, branch

identifier bid, accumulator acc, and statement private int resacc+1 = n, if (γ, σ) ∼=ψ (γ̂, σ̂) and (γ, σ, ∆, χ, bid,

acc, private int resacc+1 = n) ⇓td1
(γ1, σ1, ∆, χ1, bid, acc, skip) then (γ1, σ1) ∼=ψ (γ̂, σ̂).

Proof. By definition of Erase.
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Lemma 4.2.15. Given an initial map ψ, environment γ, memory σ, accumulator acc, if (γ, σ, ∆, χ, bid, acc + 1, s)

⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc + 1, v) then pfree(e) /∈ s and ψ1 = ψ.

Proof. Proof by contradiction over the semantics showing that when acc > 0, pfree(e) cannot be executed and

therefore pfree(e) /∈ s if (γ, σ, ∆, χ, bid, acc + 1, s) ⇓tc1 (γ1, σ1, ∆, χ, bid, acc + 1, v).

Lemma 4.2.16. Given original memory σ, updated memory σ1, temporary memory σA, statement s, updated

environment γ1, and accumulator acc, if for all locations l modified by s, the location map ∆[acc] maintains the

original value for l from the starting memory σ, and the only differences between memory σ and σ1 that can occur are

stored in the memory blocks with identifiers l and T_restore(σ1 :: σA, ∆, acc) = σ2, then σ2 = σ :: σA such that

∀l ∈ ∆[acc], the original value remains unchanged in ∆[acc], ∆[acc] is updated with the modified values for l from the

execution of the then branch, and x is updated to its original value from σ.

Proof. By definition of Algorithm T_restore.

Lemma 4.2.17. Given map ψ, private condition result variable name resacc+1, accumulator acc, starting environment

γ, γ̂, location map ∆, local variable tracker χ, branch identifier bid, then memory σt, σ̂t, else memory σe, σ̂e,

and temporary variable environment σA, if T_resolve(σe :: σA, ∆1, χ, bid, acc + 1, resacc+1) = (σf ,∆2), resacc+1

6=private encrypt(0), DMap1 stores all modifications made to any variable within the then branch, and (γ, σt) ∼=ψ

(γ̂, σ̂t), then σf = σt :: σA such that (γ, σf ) ∼=ψ (γ̂, σ̂t).

Proof. By definition of Algorithm T_resolve, we have σf = σt :: σA. By Definition 3.2.15 we have (γ, σt :: σA) ∼=ψ

(γ̂, σ̂t).

Lemma 4.2.18. Given map ψ, private condition result variable name resacc+1, accumulator acc, starting environment

γ, γ̂, location map ∆, local variable tracker χ, branch identifier bid, then memory σt, σ̂t, else memory σe, σ̂e,

and temporary variable environment σA, if T_resolve(σe :: σA, ∆1, χ, bid, acc + 1, resacc+1) = (σf ,∆2) resacc+1

=private encrypt(0),DMap1 stores all modifications made to any variable within the else branch, (γ, σe)∼=ψ (γ̂, σ̂e)

then σf = σe :: σA such that (γ, σf ) ∼=ψ (γ̂, σ̂e).

Proof. By definition of Algorithm T_resolve, we have σf = σe :: σA. By Definition 3.2.15 we have (γ, σe :: σA) ∼=ψ

(γ̂, σ̂e).

4.2.2 Proof of Correctness

Theorem 4.2.2 (Location-tracking Correctness). Given configurations (γ, σ, ∆, χ, bid, acc, s), (γ̂, σ̂, �, ŝ), and

map ψ, such that (γ, σ, ∆, χ, bid, acc, s) ∼=t
ψ (γ̂, σ̂, � ŝ), if Π . (γ, σ, ∆, χ, bid, acc, s) ⇓t[d1,...,dn] (γ1, σ1, ∆1, χ1,

bid, acc, v1) for codes [d1, ..., dn] ∈ (SmcC ∪ SmcCT ) \ SmcCX , then there exists a derivation Σ . (γ̂, σ̂, � ŝ)
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⇓′
[d̂1,...,d̂n]

(γ̂1, σ̂1,� ŝ1) for codes [d̂1, ..., d̂m] ∈ V anC \V anCX and a map ψ1 such that [d1, ..., dn] ∼=t [d̂1, ..., d̂m],

(γ1, σ1, ∆1, χ1, bid, acc, v1) ∼=t
ψ1

(γ̂1, σ̂1, � v̂1), and Π ∼=t
ψ1

Σ.

Proof.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3)

Given Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3) by Location-tracking SMC2 rule Private

Less Than True, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid,

acc, n1), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), n1 <private n2, and encrypt(1) = n3.

Given (γ̂, σ̂, �, ê1 < ê2) and ψ such that (γ, σ,∆, χ, bid, acc, e1 < e2)∼=ψ (γ̂, σ̂, �, ê1 < ê2), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and e1 < e2
∼=ψ ê1 < ê2. Given (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid,

acc, n3), by Lemma 4.2.2 we have (l, µ) /∈ e1 < e2. Therefore, by Lemma 3.2.3, we have e1 < e2
∼= ê1 < ê2. By

Definition 3.2.10 we have e1 < e2 = Erase(e1) < Erase(e2) = ê1 < ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1), (γ̂, σ̂, �, ê1), (l, µ) /∈ e1 < e2, and ψ such

that (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the

inductive hypothesis, we have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n1) ∼=ψ1

(γ̂, σ̂1, �, n̂1) and c1 ∼= d1. Given n1 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ, bid,

acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), ψ, (l, µ) /∈ e1 < e2, and (γ̂, σ̂1, �, ê2) such

that (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ, σ1, ∆1, χ, bid, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By

the inductive hypothesis, we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n2)

∼=ψ2 (γ̂, σ̂2, �, n̂2) and c2 ∼= d2. Given n2 6= skip, by Lemma 4.2.1 we have ψ2 = ψ and therefore (γ, σ2, ∆2, χ,

bid, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2.

Given n1 <private n2, n1
∼=ψ n̂1, and n2

∼=ψ n̂2, by Lemma 3.2.5 we have n̂1 < n̂2.

Given encrypt(1) = n3 and Erase(encrypt(1)) = 1 by Definition 3.2.17 we have n3
∼=ψ 1.

Given (γ̂, σ̂, �, ê1 < ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂2), and n̂1 < n̂2, we

have Σ . (γ̂, σ̂, �, ê1 < ê2) ⇓′ltt (γ̂, σ̂2, �, 1) by Vanilla C rule Less Than True.
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Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ 1, by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, n3) ∼=ψ (γ̂, σ̂2, �, 1).

Therefore, we have (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 < ê2) ⇓′ltt
(γ̂, σ̂2, �, 1), Π ∼=ψ Σ, and ltt1 ∼= ltt by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3)

Given Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3) by Location-tracking SMC2 rule Public-

Private Less Than True, we have Label(e1, γ) = public, Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1
(γ, σ1,∆1, χ, bid, acc, n1), (γ, σ1,∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2,∆2, χ, bid, acc, n2), encrypt(n1) <private n2,

and encrypt(1) = n3.

Given (γ̂, σ̂, �, ê1 < ê2) and ψ such that (γ, σ,∆, χ, bid, acc, e1 < e2)∼=ψ (γ̂, σ̂, �, ê1 < ê2), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and e1 < e2
∼=ψ ê1 < ê2. Given (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid,

acc, n3), by Lemma 4.2.2 we have (l, µ) /∈ e1 < e2. Therefore, by Lemma 3.2.3, we have e1 < e2
∼= ê1 < ê2. By

Definition 3.2.10 we have e1 < e2 = Erase(e1) < Erase(e2) = ê1 < ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1), (γ̂, σ̂, �, ê1), (l, µ) /∈ e1 < e2, and ψ such
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that (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the

inductive hypothesis, we have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n1) ∼=ψ1

(γ̂, σ̂1, �, n̂1) and c1 ∼= d1. Given n1 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ, bid,

acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. Given

Label(e1, γ) = public, we have Label(n1, γ) = public, and by definition of Erase, we have n1 = n̂1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), ψ, (l, µ) /∈ e1 < e2, and (γ̂, σ̂1, �, ê2) such

that (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ, σ1, ∆1, χ, bid, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By

the inductive hypothesis, we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n2)

∼=ψ2 (γ̂, σ̂2, �, n̂2) and c2 ∼= d2. Given n2 6= skip, by Lemma 4.2.1 we have ψ2 = ψ, therefore (γ, σ2, ∆2, χ, bid,

acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2.

Given encrypt(n1) <private n2, n1 = n̂1, and n2
∼=ψ n̂2, by Definition 3.2.10 we have Erase(encrypt(n1)) = n̂1,

and therefore encrypt(n1) ∼=ψ n̂1 by Definition 3.2.17. Therefore by Lemma 3.2.5 we have n̂1 < n̂2.

Given encrypt(1) = n3 and Erase(encrypt(1)) = 1 by Definition 3.2.17 we have n3
∼=ψ 1.

Given (γ̂, σ̂, �, ê1 < ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂2), and n̂1 < n̂2, we

have Σ . (γ̂, σ̂, �, ê1 < ê2) ⇓′ltt (γ̂, σ̂2, �, 1) by Vanilla C rule Less Than True.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ 1, by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, n3) ∼=ψ (γ̂, σ̂2, �, 1).

Therefore, we have (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 < ê2) ⇓′ltt
(γ̂, σ̂2, �, 1), Π ∼=ψ Σ and ltt2 ∼= ltt by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).
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Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1)

Given Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1) by Location-tracking SMC2 rule Public

Less Than True, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid,

acc, n1), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), and n1 <public n2.

Given (γ̂, σ̂, �, ê1 < ê2) and ψ such that (γ, σ,∆, χ, bid, acc, e1 < e2)∼=ψ (γ̂, σ̂, �, ê1 < ê2), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and e1 < e2
∼=ψ ê1 < ê2. Given (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid,
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acc, n3), by Lemma 4.2.2 we have (l, µ) /∈ e1 < e2. Therefore, by Lemma 3.2.3, we have e1 < e2
∼= ê1 < ê2. By

Definition 3.2.10 we have e1 < e2 = Erase(e1) < Erase(e2) = ê1 < ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1), (γ̂, σ̂, �, ê1), (l, µ) /∈ e1 < e2, and ψ such

that (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By the

inductive hypothesis, we have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n1) ∼=ψ1

(γ̂, σ̂1, �, n̂1) and c1 ∼= d1. Given n1 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ, bid,

acc, n1) ∼=ψ (γ̂, σ̂1, ∆1, χ, bid, �, n̂1). Therefore, by Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1.

Given Label(e1, γ) = public, we have Label(n1, γ) = public, and by definition of Erase, we have n1 = n̂1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), ψ, (l, µ) /∈ e1 < e2, and (γ̂, σ̂1, �, ê2) such

that (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ, σ1, ∆1, χ, bid, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By

the inductive hypothesis, we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n2)

∼=ψ2
(γ̂, σ̂2, �, n̂2) and c2 ∼= d2. Given n2 6= skip, by Lemma 4.2.1 we have ψ2 = ψ, therefore (γ, σ2, ∆2, χ, bid,

acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2. Given

Label(e2, γ) = public, we have Label(n2, γ) = public, and by definition of Erase, we have n2 = n̂2.

Given n1 <public n2, n1 = n̂1, and n2 = n̂2, we have n̂1 < n̂2.

By Definition 3.2.17, we have 1 ∼=ψ 1. Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and 1 ∼=ψ 1, by Definition 4.2.1 we have (γ, σ2, ∆,

χ, bid, acc, 1) ∼=ψ (γ̂, σ̂2, �, 1).

Given (γ̂, σ̂, �, ê1 < ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂2), and n̂1 < n̂2, we

have Σ . (γ̂, σ̂, �, ê1 < ê2) ⇓′ltt (γ̂, σ̂2, �, 1) by Vanilla C rule Less Than True.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and 1 ∼=ψ 1, by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, 1) ∼=ψ (γ̂, σ̂2, �, 1).

Therefore, we have (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1) ∼=ψ (γ̂, σ̂, �, ê1 < ê2) ⇓′ltt
(γ̂, σ̂2, �, 1), Π ∼=ψ Σ, and ltt ∼= ltt by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf (γ, σ2, ∆2, χ, bid, acc, 0)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).
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Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt (γ, σ2, ∆2, χ, bid, acc, 1)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf (γ, σ2, ∆2, χ, bid, acc, 0)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet (γ, σ2, ∆2, χ, bid, acc, 1)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef (γ, σ2, ∆2, χ, bid, acc, 0)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp (γ, σ2 ∆2, χ, bid, acc, n3)

Given Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3) by Location-tracking SMC2 rule Public

Addition, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ,∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, n1),

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), and n1 +public n2 = n3.

Given (γ̂, σ̂, �, ê1 + ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, e1 + e2) ∼=ψ (γ̂, σ̂, �, ê1 + ê2), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and e1 + e2
∼=ψ ê1 + ê2. Given (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp (γ, σ2, ∆2, χ, bid,

acc, n3), by Lemma 4.2.2 we have (l, µ) /∈ e1 + e2. Therefore, by Lemma 3.2.3, we have e1 + e2
∼= ê1 + ê2. By

Definition 3.2.10 we have e1 + e2 = Erase(e1) + Erase(e2) = ê1 + ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂, �, ê1) such

that (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By

the inductive hypothesis, we have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n1)

∼=ψ1
(γ̂, σ̂1, �, n̂1) and c1 ∼= d1. Given n1 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ,

bid, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. By

Definition 3.2.17 we have n1
∼= n̂1. Given Label(e1, γ) = public, we have Label(n1, γ) = public, and by definition

of Erase, we have n1 = n̂1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂1, �, ê2) such
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that (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ, σ1, ∆1, χ, bid, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By

the inductive hypothesis, we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n2)

∼=ψ2 (γ̂, σ̂2, �, n̂2) and c2 ∼= d2. Given n2 6= skip, by Lemma 4.2.1 we have ψ2 = ψ, therefore (γ, σ2, ∆2, χ,

bid, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2. By

Definition 3.2.17 we have n2
∼= n̂2. Given Label(e2, γ) = public, we have Label(n2, γ) = public, and by definition

of Erase, we have n2 = n̂2.

Given n1 +public n2 = n3, n1 = n̂1, and n2 = n̂2, we have n̂1 + n̂2 = n̂3 where n3 = n̂3. Therefore by

Definition 3.2.17 we have n3
∼=ψ n̂3.

Given (γ̂, σ̂, �, ê1 + ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂2), and n̂1 + n̂2 = n̂3,

we have Σ . (γ̂, σ̂, �, ê1 + ê2) ⇓′bp (γ̂, σ̂2, �, n̂3) by Vanilla C rule Addition.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ n̂3, by Definition 4.2.1 we have (γ, σ2,∆2, χ, bid, acc, n3)∼=ψ (γ̂, σ̂2, �, n̂3).

Therefore, we have (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 + ê2) ⇓′bp
(γ̂, σ̂2, �, n̂3), Π ∼=ψ Σ, and bp ∼= bp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, e1−e2) ⇓tbs (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1·e2) ⇓tbm (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3)

Given Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3) by Location-tracking SMC2 rule Private

Addition, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ,∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, n1),

(γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), and n1 +private n2 = n3.

Given (γ̂, σ̂, �, ê1 + ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, e1 + e2) ∼=ψ (γ̂, σ̂, �, ê1 + ê2), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and e1 + e2
∼=ψ ê1 + ê2. Given (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid,

acc, n3), by Lemma 4.2.2 we have (l, µ) /∈ e1 + e2. Therefore, by Lemma 3.2.3, we have e1 + e2
∼= ê1 + ê2. By
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Definition 3.2.10 we have e1 + e2 = Erase(e1) + Erase(e2) = ê1 + ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂, �, ê1) such

that (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By

the inductive hypothesis, we have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n1)

∼=ψ1
(γ̂, σ̂1, �, n̂1) and c1 ∼= d1. Given n1 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ,

bid, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. By

Definition 3.2.17 we have n1
∼= n̂1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂1, �, ê2) such

that (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ, σ1, ∆1, χ, bid, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By

the inductive hypothesis, we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n2)

∼=ψ2
(γ̂, σ̂2, �, n̂2) and c2 ∼= d2. Given n2 6= skip, by Lemma 4.2.1 we have ψ2 = ψ, therefore (γ, σ2, ∆2, χ,

bid, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2. By

Definition 3.2.17 we have n2
∼= n̂2.

Given n1 +private n2 = n3, n1
∼= n̂1, and n2

∼= n̂2, by Definition 3.2.10 we have n̂1 + n̂2 = n̂3 where n3
∼=ψ n̂3 by

Definition 3.2.17.

Given (γ̂, σ̂, �, ê1 + ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂2), and n̂1 + n̂2 = n̂3,

we have Σ . (γ̂, σ̂, �, ê1 + ê2) ⇓′bp (γ̂, σ̂2, �, n̂3) by Vanilla C rule Addition.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ n̂3, by Definition 4.2.1 we have (γ, σ2,∆2, χ, bid, acc, n3)∼=ψ (γ̂, σ̂2, �, n̂3).

Therefore, we have (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 + ê2) ⇓′bp
(γ̂, σ̂2, �, n̂3), Π ∼=ψ Σ, and bp1 ∼= bp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, e1−e2) ⇓tbs1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1·e2) ⇓tbm1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3).
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Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3)

Given Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3) by Location-tracking SMC2 rule Public-

Private Addition, we have Label(e1, γ) = public, Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1,

χ, bid, acc, n1), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), and encrypt(n1) +private n2 = n3.

Given (γ̂, σ̂, �, ê1 + ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, e1 + e2) ∼=ψ (γ̂, σ̂, �, ê1 + ê2), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and e1 + e2
∼=ψ ê1 + ê2. Given (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid,

acc, n3), by Lemma 4.2.2 we have (l, µ) /∈ e1 + e2. Therefore, by Lemma 3.2.3, we have e1 + e2
∼= ê1 + ê2. By

Definition 3.2.10 we have e1 + e2 = Erase(e1) + Erase(e2) = ê1 + ê2, and therefore e1
∼= ê1 and e2

∼= ê2.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂, �, ê1) such

that (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, e1) ∼=ψ (γ̂, σ̂, �, ê1). By

the inductive hypothesis, we have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n1)

∼=ψ1 (γ̂, σ̂1, �, n̂1) and c1 ∼= d1. Given n1 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ,

bid, acc, n1) ∼=ψ (γ̂, σ̂1, �, n̂1). Therefore, by Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1. By

Definition 3.2.17 we have n1
∼= n̂1. Given Label(e1, γ) = public, we have Label(n1, γ) = public, and by definition

of Erase, we have n1 = n̂1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), ψ, (l, µ) /∈ e1 + e2, and (γ̂, σ̂1, �, ê2) such

that (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ, σ1, ∆1, χ, bid, acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). By

the inductive hypothesis, we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂2) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n2)

∼=ψ2
(γ̂, σ̂2, �, n̂2) and c2 ∼= d2. Given n2 6= skip, by Lemma 4.2.1 we have ψ2 = ψ, therefore (γ, σ2, ∆2, χ,

bid, acc, n2) ∼=ψ (γ̂, σ̂2, �, n̂2). Therefore, by Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and n2
∼=ψ n̂2. By

Definition 3.2.17 we have n2
∼= n̂2.

Given encrypt(n1) +private n2 = n3, n1 = n̂1, and n2
∼= n̂2, by Definition 3.2.10 we have Erase(encrypt(n1)) = n̂1,

and therefore encrypt(n1) ∼= n̂1. By Definition 3.2.10, we have n̂1 + n̂2 = n̂3 where n3
∼= n̂3. By Definition 3.2.17

we have n3
∼=ψ n̂3.

Given (γ̂, σ̂, �, ê1 + ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, n̂1), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂2), and n̂1 + n̂2 = n̂3,

we have Σ . (γ̂, σ̂, �, ê1 + ê2) ⇓′bp (γ̂, σ̂2, �, n̂3) by Vanilla C rule Addition.
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Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and n3
∼=ψ n̂3, by Definition 4.2.1 we have (γ, σ2,∆2, χ, bid, acc, n3)∼=ψ (γ̂, σ̂2, �, n̂3).

Therefore, we have (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3) ∼=ψ (γ̂, σ̂, �, ê1 + ê2) ⇓′bp
(γ̂, σ̂2, �, n̂3), Π ∼=ψ Σ, and bp2 ∼= bp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, e1−e2) ⇓tbs2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1−e2) ⇓tbs3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1·e2) ⇓tbm2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1·e2) ⇓tbm3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1+e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiep (γ, σ6, ∆6, χ, bid, acc, skip)

Given Π.(γ, σ,∆, χ, bid, acc, if (e) s1 else s2) ⇓tiep (γ, σ6,∆6, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private If Else, we have Label(e, γ) = private, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), (γ, σ1, ∆1,

χ, bid, acc, private int resacc+1 = n) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), ∆2 = ∆1.push([ ]), χ2 = χ1.push([ ]),

(γ1, σ2, ∆2, χ2, then , acc + 1, s1) ⇓tc3 (γ2, σ3, ∆3, χ3, then , acc + 1, skip), T_restore(σ3, ∆3, acc + 1) = σ4,

(γ1, σ4, ∆3, χ2, else, acc + 1, s2) ⇓tc4 (γ3, σ5, ∆4, χ4, else, acc + 1, skip), T_resolve(σ5, ∆4, χ, bid, acc + 1,

resacc+1) = (σ6,∆5), and ∆6 = ∆5.pop().

Given (γ̂, σ̂, �, if (ê)ŝ1 else ŝ2) and ψ such that (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ∼=ψ (γ̂, σ̂, �, if (ê) ŝ1 else

ŝ2), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and if (e) s1 else s2
∼=ψ if (ê)ŝ1 else ŝ2. Given (γ, σ,∆, χ, bid, acc,

if (e) s1 else s2) ⇓tiep (γ, σ6, ∆6, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ if (e) s1 else s2. Therefore,

by Lemma 3.2.3, we have if (e) s1 else s2
∼= if (ê)ŝ1 else ŝ2. By Definition 3.2.10, we have Erase(if (e) s1 else s2) =
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if (Erase(e)) Erase(s1) else Erase(s2), Erase(e) = ê, Erase(s1) = ŝ1, and Erase(s2) = ŝ2. Therefore, we have

e ∼= ê, s1
∼= ŝ1, and s2

∼= ŝ2.

Given (γ, σ) ∼=ψ (γ̂, σ̂), ψ, and e ∼= ê, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, e) ∼=ψ (γ̂, σ̂,�, ê). Given

(γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive hypothesis, we have (γ̂, σ̂,�, ê) ⇓′d1

(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ1
(γ̂, σ̂1, �, n̂). Given n 6= skip, by Lemma 4.2.1

we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ (γ̂, σ̂1, �, n̂). Therefore, by Definition 4.2.1 we have

(γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂.

Given (γ, σ1, ∆1, χ, bid, acc, private int resacc+1 = n) ⇓tc2 (γ1, σ2, ∆1, χ1, bid, acc, skip), by Lemma 4.2.13

we have γ1 = γ :: γA such that γA = [res_acc → (private int, lres)] and σ2 = σ1 :: σA such that σA = [lres

→ (EncodeVal(private int, n), private int, 1, PermL(Freeable, private int, private, 1))]. By Lemma 4.2.14, we

have (γ1, σ2) ∼=ψ (γ̂, σ̂1) and (γ :: γA, σ1 :: σA) ∼=ψ (γ̂, σ̂1). Given pfree(e) /∈ private int resacc+1 = n, by

Definition 3.2.11 ψ is not updated over the evaluation (γ, σ1,∆1, χ, bid, acc, private int resacc+1 = n) ⇓tc2 (γ1, σ2,

∆1, χ1, bid, acc, skip).

Given (γ1, σ2, ∆2, χ2, then , acc + 1, s1) ⇓tc3 (γ2, σ3, ∆3, χ3, then , acc + 1, skip), γ2 = γ :: γA, and σ2 = σ1 ::

σA, (γ :: γA, σ1 :: σA) ∼=ψ (γ̂, σ̂1), and s1
∼= ŝ1, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ŝ1) such that (γ1, σ2, ∆2, χ2,

bid, acc + 1, s1)∼=ψ (γ̂, σ̂1, �, ŝ1). By the inductive hypothesis, we have (γ̂, σ̂1, �, ŝ1) ⇓′d3
(γ̂1, σ̂2, �, skip) and

ψ2 such that (γ2, σ3, ∆3, χ3, then , acc + 1, skip) ∼=ψ2 (γ̂1, σ̂2, �, skip). By Lemma 4.2.15, we have pfree(e) /∈ s1

and ψ2 = ψ. By Definition 4.2.1 we have (γ2, σ3) ∼=ψ (γ̂1, σ̂2). By Lemma 3.2.68, we have γ2 = γ′2 :: γA and

σ3 = σ′3 :: σA. By Lemma 3.2.73 we have (γ′2, σ
′
3) ∼=ψ (γ̂1, σ̂2).

Given T_restore(σ3, ∆3, acc + 1) = σ4 and σ3 = σ′3 :: σA, by Lemma 4.2.16 we have σ4 = σ :: σA such that

∀l ∈ ∆[acc], ∆[acc] is updated with the modified values for l from the execution of the then branch, and x is

updated to its original value from σ. By Definition 3.2.15, we have (γ2, σ4) ∼=ψ (γ̂1, σ̂1). By Lemma 4.2.12, we

have (γ, σ4) ∼=ψ (γ̂, σ̂1). By Definition 3.2.15, we have (γ :: γA, σ4) ∼=ψ (γ̂, σ̂1), and given γ2 = γ :: γA we have

(γ2, σ4) ∼=ψ (γ̂, σ̂1).

Given (γ1, σ4,∆3, χ2, else , acc + 1, s2) ⇓tc4 (γ3, σ5,∆4, χ4, else , acc + 1, skip), s2
∼= ŝ2, and (γ1, σ4) ∼=ψ (γ̂, σ̂1),

by Lemma 4.2.3 we have (γ1, σ4,∆3, χ2, else , acc + 1, s2)∼=ψ (γ̂, σ̂1, �, ŝ2). By the inductive hypothesis, we have

(γ̂, σ̂1, �, ŝ2) ⇓′d4
(γ̂2, σ̂3, �, skip) and ψ3 such that (γ3, σ5, ∆4, χ4, else , acc + 1, skip) ∼=ψ3 (γ̂2, σ̂3, �, skip).

By Lemma 4.2.15, we have pfree(e) /∈ s2 and ψ3 = ψ. By Definition 4.2.1 we have (γ3, σ5) ∼=ψ (γ̂2, σ̂3). By
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Lemma 3.2.68, we have γ3 = γ′3 :: γA and σ5 = σ′5 :: σA. By Lemma 3.2.73 we have (γ′3, σ
′
5) ∼=ψ (γ̂2, σ̂3). By

Lemma 4.2.12, we have (γ, σ′5) ∼=ψ (γ̂, σ̂3).

Subcase n 6=private encrypt(0)

Given n ∼=ψ n̂ and n 6=private encrypt(0), we have n̂ 6= 0.

Given T_resolve(σ5, ∆4, χ, bid, acc + 1, resacc+1) = (σ6,∆5), by Lemma 4.2.17 we have σ6 = σ′4 :: σA and

(γ, σ6) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), n̂ 6= 0, and (γ̂, σ̂1, �, ŝ1) ⇓′d3

(γ̂1, σ̂2, �, skip), we have Σ . (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′iet (γ̂, σ̂2, �, skip) by Vanilla C rule If Else

True.

Given (γ, σ7) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ6, ∆6, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiep (γ, σ6, ∆6, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, if

(ê) ŝ1 else ŝ2) ⇓′iet (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and iep ∼= iet by Definition 4.2.2.

Subcase n =private encrypt(0)

Given n ∼=ψ n̂ and n =private encrypt(0), we have n̂ = 0.

Given T_resolve(σ5, ∆4, χ, bid, acc + 1, resacc+1) = (σ6,∆5), by Lemma 4.2.18 we have σ6 = σ′5 :: σA and

(γ, σ6) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), n̂ = 0, and (γ̂, σ̂1, �, ŝ2) ⇓′d4

(γ̂2, σ̂3, �, skip), we have Σ . (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′ief (γ̂, σ̂3, �, skip) by Vanilla C rule If Else

True.

Given (γ, σ7) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ6,∆6, χ, bid, acc, skip)∼=ψ (γ̂, σ̂3, �, skip). Therefore,

we have (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiep (γ, σ6, ∆6, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2)

⇓′ief (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and iep ∼= ief by Definition 4.2.2.
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Case Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2

rule If Else True, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), n 6= 0,

and (γ, σ1, ∆1, χ, bid, acc, s1) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip).

Given (γ̂, σ̂, �, if (ê)ŝ1 else ŝ2) and ψ such that (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ∼=ψ (γ̂, σ̂, �, if (ê)ŝ1

else ŝ2), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and if (e) s1 else s2
∼=ψ if (ê) ŝ1 else ŝ2. Given

(γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2, ∆2, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈

if (e) s1 else s2. Therefore, by Lemma 3.2.3 we have if (e) s1 else s2
∼= if (ê) ŝ1 else ŝ2. By Definition 3.2.10,

we have Erase(if (e) s1 else s2) = if (Erase(e) Erase(s1) else Erase(s2), Erase(e) = ê, Erase(s1) = ŝ1, and

Erase(s2) = ŝ2. Therefore, we have e ∼= ê, s1
∼= ŝ1, and s2

∼= ŝ2.

Given (γ, σ) ∼=ψ (γ̂, σ̂), ψ, (l, µ) /∈ if (e) s1 else s2, and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

∆, χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂) and

c1 ∼= d1. Given n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ (γ̂, σ̂1, �, n̂).

By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. By Definition 3.2.17 we have n ∼= n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂.

Given n 6= 0 and n = n̂, we have n̂ 6= 0.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1), ψ, (l, µ) /∈ if (e) s1 else s2, and s1
∼= ŝ1, by Lemma 4.2.3 we have (γ, σ1, ∆1, χ, bid,

acc, s1) ∼=ψ (γ̂, σ̂, �, ŝ1). Given (γ, σ1, ∆1, χ, bid, acc, s1) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), by the inductive

hypothesis, we have (γ̂, σ̂1, �, ŝ1) ⇓′d2
(γ̂1, σ̂2, �, skip) and ψ2 such that (γ1, σ2, ∆2, χ1, bid, acc, skip) ∼=ψ2

(γ̂1, σ̂2, �, skip) and c2 ∼= d2. By Definition 4.2.1, we have (γ1, σ2) ∼=ψ2 (γ̂1, σ̂2).

Given (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), n̂ 6= 0, and (γ̂, σ̂1, �, ŝ1) ⇓′d2

(γ̂1, σ̂2, �, skip), we have Σ . (γ̂, σ̂, �, if (ê) ŝ1 else ŝ2) ⇓′iet (γ̂, σ̂2, �, skip) by Vanilla C rule If Else

True.

Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ2

(γ̂, σ̂2, �, skip).

377



Therefore, we have (γ, σ,∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2,∆2, χ, bid, acc, skip)∼=ψ2
(γ̂, σ̂, �, if (ê) ŝ1

else ŝ2) ⇓′iet (γ̂, σ̂2, �, skip), Π ∼=ψ2
Σ, and iet ∼= iet by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tief (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, &x) ⇓tloc (γ, σ, ∆, χ, bid, acc, (l, 0))

Given Π . (γ, σ, ∆, χ, bid, acc, &x) ⇓tloc (γ, σ, ∆, χ, bid, acc, (l, 0)) by Location-tracking SMC2 rule Address Of,

we have γ(x) = (l, ty).

Given (γ̂, σ̂, �, &x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, &x) ∼=ψ (γ̂, σ̂, �, &x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and &x ∼=ψ &x̂. By Definition 3.2.18 we have Erase(&x) = & Erase(x) and Erase(x) = x̂ where

x = x̂.

Given γ(x) = (l, ty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, t̂y) such that l = l̂, (l, 0) ∼=ψ (l̂, 0), and

ty ∼= t̂y by Lemma 3.2.14.

Given (γ̂, σ̂, �, &x̂) and γ̂(x̂) = (l̂, t̂y), we have Σ . (γ̂, σ̂, �, &x̂) ⇓′loc (γ̂, σ̂, �, (l̂, 0)) by Vanilla C rule Address

Of.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and (l, 0) ∼=ψ (l̂, 0), by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, (l, 0)) ∼=ψ (γ̂, σ̂, �,

(l̂, 0)). Therefore, we have (γ, σ, ∆, χ, bid, acc, &x) ⇓tloc (γ, σ, ∆, χ, bid, acc, (l, 0)) ∼=ψ (γ̂, σ̂, �, &x̂) ⇓′loc

(γ̂, σ̂, �, (l̂, 0)), Π ∼=ψ Σ, and loc ∼= loc by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, sizeof(ty)) ⇓tty (γ, σ, ∆, χ, bid, acc, n)

Given Π . (γ, σ, ∆, χ, bid, acc, sizeof(ty)) ⇓tty (γ, σ, ∆, χ, bid, acc, n) by Location-tracking SMC2 rule Size of

Type, we have n = τ(ty).

Given (γ̂, σ̂, �, sizeof(t̂y)) and ψ such that (γ, σ, ∆, χ, bid, acc, sizeof(ty)) ∼=ψ (γ̂, σ̂, �, sizeof(t̂y)), by Defini-
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tion 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and sizeof(ty) ∼=ψ sizeof(t̂y). By Definition 3.2.18 we have Erase(sizeof(ty)) =

sizeof(Erase(ty)) and Erase(ty) = t̂y . Therefore, we have ty ∼= t̂y .

Given n = τ(ty), ty ∼= t̂y and Label(ty , γ) = public, we have n̂ = τ(t̂y) and n = n̂ by Lemma 3.2.48. By

Definition 3.2.17 we have n ∼=ψ n̂.

Given (γ̂, σ̂, �, sizeof(t̂y)) and n̂ = τ(t̂y), we have Σ . (γ̂, σ̂, �, sizeof(t̂y)) ⇓′ty (γ̂, σ̂, �, n̂) by Vanilla C rule

Size of Type.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and n ∼=ψ n̂, by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, n) ∼=ψ (γ̂, σ̂, �, n̂).

Therefore, we have (γ, σ, ∆, χ, bid, acc, sizeof(ty)) ⇓tty (γ, σ, ∆, χ, bid, acc, n) ∼=ψ (γ̂, σ̂, �, sizeof(t̂y)) ⇓′ty
(γ̂, σ̂, �, n̂), Π ∼=ψ Σ and ty ∼= ty by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twle (γ, σ1, ∆1, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twle (γ, σ1, ∆1, χ, bid, acc, skip) by Location-tracking SMC2 rule

While End, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), Label(e, γ) = public, and n = 0.

Given (γ̂, σ̂, �, while (ê) ŝ) and ψ such that (γ, σ, ∆, χ, bid, acc, while (e) s) ∼=ψ (γ̂, σ̂, �, while (ê) ŝ), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and while (e) s ∼=ψ while (ê) ŝ. Given (γ, σ, ∆, χ, bid, acc, while (e) s)

⇓twle (γ, σ1, ∆1, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ while (e) s. Therefore, by Lemma 3.2.3

we have while (e) s ∼= while (ê) ŝ. By Definition 3.2.10 we have Erase(while (e) ŝ) = while (Erase(e)) Erase(s),

Erase(e) = ê, and Erase(s) = ŝ. Therefore, we have e ∼= ê and s ∼= ŝ.

Given (γ, σ) ∼=ψ (γ̂, σ̂), e ∼= ê, (l, µ) /∈ while (e) s, and ψ, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

∆, χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) such that (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ1

(γ̂, σ̂1, �, n̂) and c1 ∼= d1.

Given n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ (γ̂, σ̂1, �, n̂).

By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. By Definition 3.2.17 we have n ∼= n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂.

Given n = 0 and n = n̂, we have n̂ = 0.

379



Given (γ̂, σ̂, �, while (ê) ŝ), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), and n̂ = 0, we have Σ . (γ̂, σ̂, �, while (ê) ŝ)

⇓′wle (γ̂, σ̂1, �, skip) by Vanilla C rule While End.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1), by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂1, �, skip).

Therefore, we have (γ, σ,∆, χ, bid, acc, while (e) s) ⇓twle (γ, σ1,∆1, χ, bid, acc, skip)∼=ψ (γ̂, σ̂, �, while (ê) ŝ)

⇓′wle (γ̂, σ̂1, �, skip), Π ∼=ψ Σ, and wle ∼= wle by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twlc (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twlc (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2 rule

While Continue, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), n 6= 0,

(γ, σ1, ∆1, χ, bid, acc, s) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), and (γ1, σ2, ∆2, χ1, bid, acc, while (e) s) ⇓tc3
(γ2, σ3, ∆3, χ2, bid, acc, skip).

Given (γ̂, σ̂, �, while (ê) ŝ) and ψ such that (γ, σ, ∆, χ, bid, acc, while (e) s) ∼=ψ (γ̂, σ̂, �, while (ê) ŝ), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and while (e) s ∼=ψ while (ê) ŝ. Given (γ, σ, ∆, χ, bid, acc, while (e) s)

⇓twlc (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ while (e) s. Therefore, by Lemma 3.2.3

we have while (e) s ∼= while (ê) ŝ. By Definition 3.2.10 we have Erase(while (e) ŝ) = while (Erase(e)) Erase(s),

Erase(e) = ê, and Erase(s) = ŝ. Therefore, we have e ∼=ψ ê and s ∼=ψ ŝ.

Given (γ, σ) ∼=ψ (γ̂, σ̂), e ∼= ê, (l, µ) /∈ while (e) s, and ψ, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

∆, χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) such that (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ1

(γ̂, σ̂1, �, n̂) and c1 ∼= d1.

Given n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ, therefore (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ (γ̂, σ̂1, �, n̂).

By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. By Definition 3.2.17 we have n ∼= n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂.

Given n 6= 0 and n = n̂, we have n̂ 6= 0.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1), s ∼= ŝ, (l, µ) /∈ while (e) s, and ψ, by Lemma 4.2.3 we have (γ, σ1, ∆1, χ, bid, acc, s)

∼=ψ (γ̂, σ̂1, �, ŝ). Given (γ, σ1,∆1, χ, bid, acc, s) ⇓tc2 (γ1, σ2,∆2, χ1, bid, acc, skip), by the inductive hypothesis,
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we have (γ̂, σ̂1, �, ŝ) ⇓′d2
(γ̂1, σ̂2, �, skip) such that (γ1, σ2, ∆2, χ1, bid, acc, skip) ∼=ψ2

(γ̂1, σ̂2, �, skip) and

c2 ∼= d2. By Definition 4.2.1, we have (γ1, σ2) ∼=ψ2
(γ̂1, σ̂2). By Lemma 4.2.12, we have (γ, σ2) ∼=ψ2

(γ̂, σ̂2).

Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2), while (e) s ∼= while (ê) ŝ, and (l, µ) /∈ while (e) s, by Lemma 4.2.3 we have (γ, σ2,

∆2, χ, bid, acc, while (e) s) ∼=ψ2 (γ̂, σ̂2, �, while (ê) ŝ). Given (γ, σ2, ∆2, χ, bid, acc, while (e) s) ⇓tc3 (γ2,

σ3, ∆3, χ2, bid, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂2, �, while (ê) ŝ) ⇓′d3
(γ̂2, σ̂3, �, skip)

such that (γ2, σ3, ∆3, χ2, bid, acc, skip) ∼=ψ3
(γ̂2, σ̂3, �, skip) and c3 ∼= d3. By Definition 4.2.1, we have

(γ2, σ3) ∼=ψ3 (γ̂2, σ̂3). By Lemma 4.2.12, we have (γ, σ3) ∼=ψ3 (γ̂, σ̂3).

Given (γ̂, σ̂, �, while (ê) ŝ), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), n̂ 6= 0, (γ̂, σ̂1, �, ŝ) ⇓′d2

(γ̂1, σ̂2, �, skip), and

(γ̂, σ̂2, �, while (e) s) ⇓′d3
(γ̂2, σ̂3,�, skip), we have Σ .(γ̂, σ̂, �, while (ê) ŝ) ⇓′wlc (γ̂, σ̂3, �, skip) by Vanilla C

rule While Continue.

Given (γ, σ3) ∼=ψ3
(γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ3

(γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twlc (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ3 (γ̂, σ̂, �, while

(ê) ŝ) ⇓′wlc (γ̂, σ̂3, �, skip), Π ∼=ψ3
Σ, and wlc ∼= wlc by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, s1;s2) ⇓tss (γ2, σ2, ∆2, χ2, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, s1;s2) ⇓tss (γ2, σ2, ∆2, χ2, bid, acc, v) by Location-tracking SMC2 rule Statement

Sequencing, we have (γ, σ, ∆, χ, bid, acc, s1) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip) and (γ1, σ1, ∆1, χ1, bid,

acc, s2) ⇓tc2 (γ2, σ2, ∆2, χ2, bid, acc, v).

Given (γ̂, σ̂, �, ŝ1; ŝ2) and ψ such that (γ, σ, ∆, χ, bid, acc, s1;s2) ∼=ψ (γ̂, σ̂, �, ŝ1; ŝ2), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and s1;s2
∼=ψ ŝ1; ŝ2. Given (γ, σ, ∆, χ, bid, acc, s1;s2) ⇓tss (γ2, σ2, ∆2, χ2, bid, acc, v),

by Lemma 4.2.2 we have (l, µ) /∈ s1;s2. Therefore, by Lemma 3.2.3 we have s1;s2
∼= ŝ1; ŝ2. By Definition 3.2.10 we

have Erase(s1;s2) = Erase(s1); Erase(s2), Erase(s1) = ŝ1, and Erase(s2) = ŝ2. Therefore, we have s1
∼=ψ ŝ1 and

s2
∼= ŝ2.

Given (γ, σ) ∼=ψ (γ̂, σ̂), s1
∼= ŝ1, and (l, µ) /∈ s1;s2, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, s1) ∼=ψ

(γ̂, σ̂, �, ŝ1). Given (γ, σ, ∆, χ, bid, acc, s1) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), by the inductive hypothesis, we

have (γ̂, σ̂, �, ŝ1) ⇓′d1
(γ̂1, σ̂1, �, skip) and ψ1 such that (γ1, σ1, ∆1, χ1, bid, acc, skip) ∼=ψ1

(γ̂1, σ̂1, �, skip)
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and c1 ∼= d1. By Definition 4.2.1, we have (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1).

Given (γ1, σ1) ∼=ψ1 (γ̂1, σ̂1), s2
∼= ŝ2 and (l, µ) /∈ s1;s2, by Lemma 4.2.3 we have we have (γ1, σ1, ∆1, χ1, bid,

acc, s2)∼=ψ1
(γ̂1, σ̂1, �, ŝ2). Given (γ1, σ1,∆1, χ1, bid, acc, s2) ⇓tc2 (γ2, σ2,∆2, χ2, bid, acc, v), by the inductive

hypothesis, we have (γ̂1, σ̂1, �, ŝ2) ⇓′d2
(γ̂2, σ̂2, �, v̂) such that (γ2, σ2, ∆2, χ2, bid, acc, v) ∼=ψ2 (γ̂2, σ̂2, �, v̂)

and c2 ∼= d2. By Definition 4.2.1, we have (γ2, σ2) ∼=ψ2
(γ̂2, σ̂2) and v ∼=ψ2

v̂.

Given (γ̂, σ̂, �, ŝ1; ŝ2), (γ̂, σ̂, �, ŝ1) ⇓′d1
(γ̂1, σ̂1, �, skip), and (γ̂1, σ̂1, �, ŝ2) ⇓′d2

(γ̂2, σ̂2, �, v̂), we have

Σ . (γ̂, σ̂, �, ŝ1; ŝ2) ⇓′ss (γ̂2, σ̂2, �, v̂) by Vanilla C rule Statement Sequencing.

Given (γ2, σ2) ∼=ψ2
(γ̂2, σ̂2) and v ∼=ψ2

v̂, by Definition 4.2.1 we have (γ2, σ2, ∆2, χ2, bid, acc, v) ∼=ψ2

(γ̂2, σ̂2, �, v̂). Therefore, we have (γ, σ, ∆, χ, bid, acc, s1; s2) ⇓tss (γ2, σ2, ∆2, χ2, bid, acc, v) ∼=ψ2

(γ̂, σ̂, �, ŝ1; ŝ2) ⇓′ss (γ̂2, σ̂2, �, v̂), Π ∼=ψ2
Σ, and ss ∼= ss by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, (e)) ⇓tep (γ, σ1, ∆1, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, (e)) ⇓tep (γ, σ1, ∆1, χ, bid, acc, v) by Location-tracking SMC2 rule Parentheses,

we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v).

Given (γ̂, σ̂, �, (ê)) and ψ such that (γ, σ, ∆, χ, bid, acc, (e)) ∼=ψ (γ̂, σ̂, �, (ê)), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and (e) ∼=ψ (ê). Given (γ, σ, ∆, χ, bid, acc, (e)) ⇓tep (γ, σ1, ∆1, χ, bid, acc, v), by

Lemma 4.2.2 we have (l, µ) /∈ (e). Therefore, by Lemma 3.2.3 we have (e) ∼= (ê). By Definition 3.2.10 we have

Erase((e)) = (Erase(e)) and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (e), and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ

(γ, σ, ∆, χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂) and ψ1 such that (γ, σ1,∆1, χ, bid, acc, v)∼=ψ1

(γ̂, σ̂1, �, v̂) and c1 ∼= d1.

By Definition 4.2.1 we have (γ, σ1) ∼=ψ1 (γ̂, σ̂1) and v ∼=ψ1 v̂.

Given (γ̂, σ̂, �, (ê)) and (γ̂, σ̂,�, ê) ⇓′d1
(γ̂, σ̂1,�, v̂), we have Σ . (γ̂, σ̂, �, (ê)) ⇓′ep (γ̂, σ̂1, �, v̂) by Vanilla C

rule Parentheses.
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Given (γ, σ1) ∼=ψ1
(γ̂, σ̂1) and v ∼=ψ1

v̂, by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ1
(γ̂, σ̂1, �, v̂).

Therefore, we have (γ, σ,∆, χ, bid, acc, (e)) ⇓tep (γ, σ1,∆1, χ, bid, acc, v)∼=ψ1
(γ̂, σ̂, �, (ê)) ⇓′ep (γ̂, σ̂1, �, v̂),

Π ∼=ψ1 Σ, and ep ∼= ep by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, {s}) ⇓tsb (γ, σ1, ∆1, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, {s}) ⇓tsb (γ, σ1, ∆1, χ, bid, acc, skip) by Location-tracking SMC2 rule Statement

Block, we have (γ, σ, ∆, χ, bid, acc, s) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip).

Given (γ̂, σ̂, �, {ŝ}) and ψ such that (γ, σ, ∆, χ, bid, acc, {s}) ∼=ψ (γ̂, σ̂, �, {ŝ}), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and {s} ∼=ψ {ŝ}. Given (γ, σ, ∆, χ, bid, acc, {s}) ⇓tsb (γ, σ1, ∆1, χ, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ {s}. Therefore, by Lemma 3.2.3 we have {s} ∼= {ŝ}. By Definition 3.2.10 we have

Erase({s}) = {Erase(s)} and Erase(s) = ŝ. Therefore, we have s ∼= ŝ.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ {s}, and s ∼= ŝ, by Lemma 4.2.3 we have (γ, σ, ∆, χ, bid, acc, s) ∼= (γ̂, σ̂, �, ŝ).

Given (γ, σ, ∆, χ, bid, acc, s) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), by the inductive hypothesis, we have

(γ̂, σ̂, �, ŝ) ⇓′d1
(γ̂1, σ̂1, �, skip) and ψ1 such that (γ1, σ1, ∆1, χ1, bid, acc, skip) ∼=ψ1

(γ̂1, σ̂1, �, skip)

and c1 ∼= d1. By Definition 4.2.1, we have (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1).

Given (γ̂, σ̂, �, {ŝ}) and (γ̂, σ̂,�, ŝ) ⇓′d1
(γ̂1, σ̂1,�, skip), we have Σ . (γ̂, σ̂, �, {ŝ}) ⇓′sb (γ̂, σ̂1, �, skip) by

Vanilla C rule Statement Block.

Given (γ, σ1) ∼=ψ1
(γ̂, σ̂1), by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, skip) ∼=ψ1

(γ̂, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, {s}) ⇓tsb (γ, σ1, ∆1, χ, bid, acc, skip) ∼=ψ1
(γ̂, σ̂, �, {ŝ}) ⇓′sb

(γ̂, σ̂1, �, skip), Π ∼=ψ1
Σ, and sb ∼= sb by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ3, ∆1, χ, bid, acc, (l, 0))

Given Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ3, ∆1, χ, bid, acc, (l, 0)) by Location-tracking SMC2 rule Cast

Public Location, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (l, 0)), (ty = public bty∗) ∨

(ty = char∗), σ1 = σ2

[
l →

(
ω, void, n, PermL(Freeable, void, public, n)

)]
, and σ3 = σ2

[
l →

(
ω, ty , n

τ(ty) ,
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PermL
(
Freeable, ty , public, n

τ(ty)

))]
.

Given (γ̂, σ̂, �, (t̂y) ê) and ψ such that (γ, σ, ∆, χ, bid, acc, (ty) e) ∼=ψ (γ̂, σ̂, �, (t̂y) ê), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and (ty) e ∼=ψ (t̂y) ê. Given (γ, σ,∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ3,∆1, χ, bid, acc, (l, 0)),

by Lemma 4.2.2 we have (l, µ) /∈ (ty) e. Therefore, by Lemma 3.2.3 we have (ty) e ∼= (t̂y) ê. By Definition 3.2.10

we have Erase((ty) e) = (Erase(ty)) Erase(e), Erase(ty) = t̂y , and Erase(e) = ê. Therefore, we have ty ∼= t̂y and

e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (ty) e, and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê)∼=ψ

(γ, σ, ∆, χ, bid, acc, e) by Definition 4.2.1. Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (l, 0)), by

the inductive hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂, 0)) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, (l, 0))

∼=ψ1
(γ̂, σ̂1, �, (l̂, 0)) and c1 ∼= d1. Given (l, 0) 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we

have (γ, σ1) ∼=ψ (γ̂, σ̂1) and (l, 0) ∼=ψ (l̂, 0). By Definition 3.2.13 we have l ∼=ψ l̂.

Given σ1 = σ2

[
l →

(
ω, void, n, PermL(Freeable, void, public, n)

)]
, l ∼=ψ l̂, and (γ, σ1) ∼=ψ (γ̂, σ̂1), by

Lemma 3.2.36 we have σ̂1 = σ̂2

[
l̂→

(
ω̂, void, n̂, PermL(Freeable, void, public, n̂)

)]
such that (γ, σ2) ∼=ψ (γ̂, σ̂2),

n
τ(ty) = n̂

τ(t̂y)
, ty ∼= t̂y , and ω ∼=ψ ω̂.

Given σ3 = σ2

[
l→

(
ω, ty , n

τ(ty) , PermL
(
Freeable, ty , public, n

τ(ty)

))]
, n
τ(ty) = n̂

τ(t̂y)
, l ∼=ψ l̂, ty ∼= t̂y , (γ, σ2) ∼=ψ

(γ̂, σ̂2), and ω ∼=ψ ω̂, by Lemma 3.2.35 we have σ̂3 = σ̂2

[
l̂ →

(
ω̂, t̂y , n̂

τ(t̂y)
, PermL

(
Freeable, t̂y ,public, n̂

τ(t̂y)

))]
such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, (t̂y) ê), (t̂y = b̂ty∗), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂, 0)), σ̂1 = σ̂2

[
l̂ →

(
ω̂, void, n̂,

PermL(Freeable, void, public, n̂)
)]

, and σ̂3 = σ̂2

[
l̂ →

(
ω̂, t̂y , n̂

τ(t̂y)
, PermL

(
Freeable, t̂y , public, n̂

τ(t̂y)

))]
, we

have Σ . (γ̂, σ̂, �, (t̂y) ê) ⇓′cl (γ̂, σ̂3, �, (l̂, 0)) by Vanilla C rule Cast Location.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3) and (l, 0) ∼=ψ (l̂, 0), by Definition 4.2.1 we have (γ, σ3, ∆1, χ, bid, acc, (l, 0)) ∼=ψ

(γ̂, σ̂3, �, (l̂, 0)). Therefore, we have (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ3, ∆1, χ, bid, acc, (l, 0)) ∼=ψ

(γ̂, σ̂, �, (t̂y) ê) ⇓′cl (γ̂, σ̂3, �, (l̂, 0)), Π ∼=ψ Σ, and cl1 ∼= cl by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl1 (γ, σ3, ∆1, χ, bid, acc, (l, 0))
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Given Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl1 (γ, σ3, ∆1, χ, bid, acc, (l, 0)) by Location-tracking SMC2 rule Case

Private Location, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (l, 0)), (ty = private int∗)∨ (ty =

private float∗) ∨ (ty = int∗) ∨ (ty = float∗), σ1 = σ2

[
l →

(
ω, void, n, PermL(Freeable, void, private, n)

)]
,

and σ3 = σ2

[
l→

(
ω, ty , n

τ(ty) , PermL
(
Freeable, ty , private, n

τ(ty)

))]
.

Given (γ̂, σ̂, �, (t̂y) ê) and ψ such that (γ, σ, ∆, χ, bid, acc, (ty) e) ∼=ψ (γ̂, σ̂, �, (t̂y) ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and (ty) e ∼=ψ (t̂y) ê. Given (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl1 (γ, σ3, ∆1, χ, bid,

acc, (l, 0)), by Lemma 4.2.2 we have (l, µ) /∈ (ty) e. Therefore, by Lemma 3.2.3 we have (ty) e ∼= (t̂y) ê. By

Definition 3.2.10 we have Erase((ty) e) = (Erase(ty)) Erase(e), Erase(ty) = t̂y , and Erase(e) = ê. Therefore, we

have ty ∼= t̂y and e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (ty) e, and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê)

∼=ψ (γ, σ, ∆, χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (l, 0)), by the inductive

hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂, 0)) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, (l, 0)) ∼=ψ1

(γ̂, σ̂1, �, (l̂, 0)) and c1 ∼= d1. Given (l, 0) 6= skip, by Lemma 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, (l, 0)) ∼=ψ

(γ̂, σ̂1, �, (l̂, 0)). By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and (l, 0) ∼=ψ (l̂, 0).

Given σ1 = σ2

[
l →

(
ω, void∗, n, PermL(Freeable, ty , private, n)

)]
, l ∼=ψ l̂, ty ∼= t̂y , and (γ, σ1) ∼=ψ (γ̂, σ̂1),

by Lemma 3.2.36 we have σ̂1 = σ̂2

[
l̂→

(
ω̂, void∗, n̂, PermL(Freeable, void∗, public, n̂)

)]
such that (γ, σ2) ∼=ψ

(γ̂, σ̂2), ω ∼=ψ ω̂, and n
τ(ty) = n̂

τ(t̂y)
.

Given σ3 = σ2

[
l →

(
ω, ty , n

τ(ty) , PermL
(
Freeable, ty , private, n

τ(ty)

))]
, n
τ(ty) = n̂

τ(t̂y)
, l ∼=ψ l̂, ty ∼= t̂y ,

(γ, σ2) ∼=ψ (γ̂, σ̂2), and ω ∼=ψ ω̂, by Lemma 3.2.35 we have σ̂3 = σ̂2

[
l̂→

(
ω̂, t̂y , n̂

τ(t̂y)
,PermL

(
Freeable, t̂y ,public,

n̂
τ(t̂y)

))]
such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, (t̂y) ê), (t̂y = b̂ty∗), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂, 0)), σ̂1 = σ̂2

[
l̂ →

(
ω̂, void, n̂,

PermL(Freeable, void, public, n̂)
)]

, and σ̂3 = σ̂2

[
l̂ →

(
ω̂, t̂y , n̂

τ(t̂y)
, PermL

(
Freeable, t̂y , public, n̂

τ(t̂y)

))]
, we

have Σ . (γ̂, σ̂, �, (t̂y) ê) ⇓′cl (γ̂, σ̂3, �, (l̂, 0)) by Vanilla C rule Cast Location.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3) and (l, 0) ∼=ψ (l̂, 0), by Definition 4.2.1 we have (γ, σ3, ∆1, χ, bid, acc, (l, 0)) ∼=ψ

(γ̂, σ̂3, �, (l̂, 0)). Therefore, we have (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl1 (γ, σ3, ∆1, χ, bid, acc, (l, 0)) ∼=ψ

(γ̂, σ̂, �, (t̂y) ê) ⇓′cl (γ̂, σ̂3, �, (l̂, 0)), Π ∼=ψ Σ and cl ∼= cl by Definition 4.2.2.
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Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ1, ∆1, χ, bid, acc, n1)

Given Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ1, ∆1, χ, bid, acc, n1) by Location-tracking SMC2 rule Cast

Public Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), (ty =

public int) ∨ (ty = public float), and n1 = Cast(public, ty , n).

Given (γ̂, σ̂, �, (t̂y) ê) and ψ such that (γ, σ, ∆, χ, bid, acc, (ty) e) ∼=ψ (γ̂, σ̂, �, (t̂y) ê), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and (ty) e ∼=ψ (t̂y) ê. Given (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ1, ∆1, χ, bid, acc, n1),

by Lemma 4.2.2 we have (l, µ) /∈ (ty) e. Therefore, by Lemma 3.2.3 we have (ty) e ∼= (t̂y) ê. By Definition 3.2.10

we have Erase((ty) e) = (Erase(ty)) Erase(e), Erase(ty) = t̂y , and Erase(e) = ê. Therefore, we have ty ∼= t̂y and

e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (ty) e, and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê)

∼=ψ (γ, σ, ∆, χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive

hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ1

(γ̂, σ̂1, �, n̂)

and c1 ∼= d1. Given n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1)

and n ∼=ψ n̂. By Definition 3.2.17 we have n ∼= n̂. Given Label(e, γ) = public, we have Label(n, γ) = public and

therefore n = n̂ by Definition 3.2.10.

Given n1 = Cast(public, ty , n), ty ∼= t̂y , and n = n̂, by Lemma 3.2.24 we have n̂1 = Cast(public, t̂y , n̂) such that

n1 = n̂1. By Definition 3.2.10 we have n1
∼= n̂1, and by Definition 3.2.17 we have n1

∼=ψ n̂1.

Given (γ̂, σ̂, �, (t̂y) ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), and n̂1 = Cast(public, t̂y , n̂), we have Σ .

(γ̂, σ̂, �, (t̂y) ê) ⇓′cv (γ̂, σ̂1, �, n̂1) by Vanilla C rule Cast Value.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1, by Definition 4.2.1 we have (γ, σ1,∆1, χ, bid, acc, n1)∼= (γ̂, σ̂1, �, n̂1).

Therefore, we have (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ1, ∆1, χ, bid, acc, n1) ∼=ψ (γ̂, σ̂, �, (t̂y) ê) ⇓′cv

(γ̂, σ̂1, �, n̂1), Π ∼=ψ Σ and cv ∼= cv by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv1 (γ, σ1, ∆1, χ, bid, acc, n1)
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Given Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv1 (γ, σ1, ∆1, χ, bid, acc, n1) by Location-tracking SMC2 rule

Cast Private Value, we have Label(e, γ) = private, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n),

(ty = private int) ∨ (ty = private float) ∨ (ty = int) ∨ (ty = float), and n1 = Cast(private, ty , n).

Given (γ̂, σ̂, �, (t̂y) ê) such that (γ, σ, ∆, χ, bid, acc, (ty) e) ∼=ψ (γ̂, σ̂, �, (t̂y) ê), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and (ty) e ∼=ψ (t̂y) ê. Given (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv1 (γ, σ1, ∆1, χ, bid, acc, n1), by

Lemma 4.2.2 we have (l, µ) /∈ (ty) e. Therefore, by Lemma 3.2.3 we have (ty) e ∼= (t̂y) ê. By Definition 3.2.10 we

have Erase((ty) e) = (Erase(ty)) Erase(e), Erase(ty) = t̂y , and Erase(e) = ê. Therefore, we have ty ∼= t̂y and

e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) /∈ (ty) e, and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=

(γ, σ, ∆, χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ1

(γ̂, σ̂1, �, n̂) and

c1 ∼= d1. Given n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and

n ∼=ψ n̂.

Given n1 = Cast(private, ty , n), ty ∼= t̂y , and n ∼=ψ n̂, by Lemma 3.2.25 we have n̂1 = Cast(public, t̂y , n̂) such

that n1
∼=ψ n̂1.

Given (γ̂, σ̂, �, (t̂y) ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), and n̂1 = Cast(public, t̂y , n̂), we have Σ .

(γ̂, σ̂, �, (t̂y) ê) ⇓′cv (γ̂, σ̂1, �, n̂1) by Vanilla C rule Cast Value.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and n1
∼=ψ n̂1, by Definition 4.2.1 we have (γ, σ1,∆1, χ, bid, acc, n1)∼=ψ (γ̂, σ̂1, �, n̂1).

Therefore, we have (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv1 (γ, σ1, ∆1, χ, bid, acc, n1) ∼=ψ (γ̂, σ̂, �, (t̂y) ê) ⇓′cv

(γ̂, σ̂1, �, n̂1), Π ∼=ψ Σ and cv1 ∼= cv by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1,e2)) ⇓tinp (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking

SMC2 rule SMC Input Public Value, we have Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1,

χ, bid, acc, x), acc = 0, (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), γ(x) = (l, public bty),

InputValue(x, n) = n1, and (γ, σ2, ∆2, χ, bid, acc, x = n1) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, skip).
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Given (γ̂, σ̂, �, mcinput(ê1, ê2)) and ψ such that (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ∼=ψ (γ̂, σ̂, �,

mcinput(ê1, ê2)), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcinput(e1, e2) ∼=ψ mcinput(ê1, ê2).

Given (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have

(l, µ) /∈ smcinput(e1,e2). Therefore, by Lemma 3.2.3 we have smcinput(e1,e2) ∼= mcinput(ê1, ê2). By Defini-

tion 3.2.10 we have Erase(smcinput(e1, e2)) = mcinput(Erase(e1, e2)). By Definition 3.2.8, we have Erase(e1, e2)

= Erase(e1),Erase(e2)). By Definition 3.2.10 we have Erase(e1) = ê1 and Erase(e2) = ê2. Therefore, we have

e1
∼= ê1, and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1

(γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n) ∼=ψ2

(γ̂, σ̂2, �, n̂) and

c2 ∼= d2. Given n 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

n ∼=ψ n̂. By Definition 3.2.17 we have n ∼= n̂. Given Label(e2, γ) = public, we have Label(n, γ) = public and

therefore n = n̂ by Definition 3.2.10.

Given γ(x) = (l,public bty), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by

public bty ∼= b̂ty by Lemma 3.2.14.

Given InputValue(x, n) = n1, x = x̂, and n = n̂, by Axiom 3.2.4 and Lemma 3.2.26 we have InputValue(x̂, n̂) = n̂1

such that n1
∼= n̂1. By Definition 3.2.17 we have n1

∼=ψ n̂1.

Given x = x̂ and n1
∼= n̂1, by Definition 3.2.10 we have x = n1

∼= x̂ = n̂1, and by Definition 3.2.18 we have

x = n1
∼=ψ x̂ = n̂1. Given (γ, σ2) ∼=ψ (γ̂, σ̂2), we have (γ̂, σ̂2, �, x̂ = n̂1) such that (γ̂, σ̂2, �, x̂ = n̂1) ∼=ψ

(γ, σ2, ∆2, χ, bid, acc, x = n1) by Definition 4.2.1. Given (γ, σ2, ∆2, χ, bid, acc, x = n1) ⇓tc3 (γ, σ3, ∆3, χ, bid,

acc, skip), by the inductive hypothesis, we have (γ̂, σ̂2, �, x̂ = n̂1) ⇓′d3
(γ̂, σ̂3, �, skip) and ψ3 such that (γ, σ3,

∆3, χ, bid, acc, skip) ∼=ψ3
(γ̂, σ̂3, �, skip) and c3 ∼= d3. Given pfree(e) /∈ x = n1, by Definition 3.2.11 we have

388



ψ3 = ψ. By Definition 4.2.1 we have (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, mcinput(ê1, ê2)), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂), γ̂(x̂) =

(l̂, b̂ty), InputValue(x̂, n̂) = n̂1, and (γ̂, σ̂2, �, x̂ = v̂) ⇓′d3
(γ̂, σ̂3, �, skip), we have Σ . (γ̂, σ̂, �, mcinput(ê1,

ê2)) ⇓′inp (γ̂, σ̂3, �, skip) by Vanilla C rule Input Value.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3,∆3, χ, bid, acc, skip)∼=ψ (γ̂, σ̂3, �, skip). Therefore,

we have (γ, σ, ∆, χ, bid, acc, smcinput(e1,e2)) ⇓tinp (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, mcinput(ê1,

ê2)) ⇓′inp (γ̂, σ̂3, �, skip), Π ∼=ψ Σ and inp ∼= inp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1,e2)) ⇓tinp3 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp3 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking

SMC2 rule Input Private Variable, we have Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid,

acc, x), (γ σ1,∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2,∆2, χ, bid, acc, n), γ(x) = (l,private bty), InputValue(x, n) = n1,

and (γ, σ2, ∆2, χ, bid, acc, x = n1) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, skip).

Given (γ̂, σ̂, �, mcinput(ê1, ê2)) and ψ such that (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ∼=ψ (γ̂, σ̂, �,

mcinput(ê1, ê2)), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcinput(e1, e2) ∼=ψ mcinput(ê1, ê2).

Given (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp3 (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we

have (l, µ) /∈ smcinput(e1, e2). Therefore, by Lemma 3.2.3 we have smcinput(e1, e2) ∼= mcinput(ê1, ê2). By

Definition 3.2.10 we have Erase(smcinput(e1, e2)) = mcinput(Erase(e1, e2)). By Definition 3.2.8, we have

Erase(e1, e2) = Erase(e1),Erase(e2)). By Definition 3.2.10 we have Erase(e1) = ê1 and Erase(e2) = ê2. There-

fore, we have e1
∼= ê1, and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1 (γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,
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∆1, χ, bid, acc, e2). Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n) ∼=ψ2

(γ̂, σ̂2, �, n̂) and

c2 ∼= d2. Given n 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

n ∼=ψ n̂. Given Label(e2, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.17 and

Definition 3.2.10.

Given γ(x) = (l,private bty), (γ, σ) ∼= (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by private bty ∼=

b̂ty by Lemma 3.2.14.

Given InputValue(x, n) = n1, x = x̂, and n = n̂, by Axiom 3.2.4 and Lemma 3.2.26 we have InputValue(x̂, n̂) = n̂1

such that n1
∼= n̂1.

Given x = x̂ and n1
∼= n̂1, by Definition 3.2.10 we have x = n1

∼= x̂ = n̂1. Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by

Lemma 4.2.3 we have (γ̂, σ̂2, �, x̂ = n̂1) such that (γ̂, σ̂2, �, x̂ = n̂1) ∼=ψ (γ, σ2, ∆2, χ, bid, acc, x = n1).

Given (γ, σ2, ∆2, χ, bid, acc, x = n1) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, skip), by the inductive hypothesis, we have

(γ̂, σ̂2, �, x̂ = n̂1) ⇓′d3
(γ̂, σ̂3, �, skip) and ψ3 such that (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ3

(γ̂, σ̂3, �, skip) and

c3 ∼= d3. Given pfree(e) /∈ , we have ψ3 = ψ1. By Definition 4.2.1 we have (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, mcinput(ê1, ê2)), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂), γ̂(x̂) =

(l̂, b̂ty), InputValue(x̂, n̂) = n̂1, and (γ̂, σ̂2, �, x̂ = v̂) ⇓′d3
(γ̂, σ̂3, �, skip), we have Σ . (γ̂, σ̂, �, mcinput(ê1,

ê2)) ⇓′inp (γ̂, σ̂3, �, skip) by Vanilla C rule Input Value.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3,∆3, χ, bid, acc, skip)∼=ψ (γ̂, σ̂3, �, skip). Therefore,

we have (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp3 (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, mcinput(ê1,

ê2)) ⇓′inp (γ̂, σ̂3, �, skip), Π ∼=ψ Σ and inp3 ∼= inp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ4, ∆4, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ4, ∆4, χ, bid, acc, skip) by Location-tracking

SMC2 rule SMC Input Public 1D Array, we have Label(e2, γ) = Label(e3, γ) = public, acc = 0, (γ, σ, ∆, χ, bid,

acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ2, ∆2,

χ, bid, acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), γ(x) = (l,public const bty∗), InputArray(x, n, n1) = [m0, ...,
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mn1
], and (γ, σ3, ∆3, χ, bid, acc, x = [m0, ..., mn1

]) ⇓tc4 (γ, σ4, ∆4, χ, bid, acc, skip).

Given (γ̂, σ̂, �, mcinput(ê1, ê2, e3)) and ψ such that (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ∼=ψ (γ̂, σ̂, �,

mcinput(ê1, ê2, ê3)), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcinput(e1, e2, e3)∼=ψ mcinput(ê1, ê2, ê3).

Given (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ4, ∆4, χ, bid, acc, skip), by Lemma 4.2.2 we have

(l, µ) /∈ smcinput(e1, e2, e3). Therefore, by Lemma 3.2.3 we have smcinput(e1, e2, e3) ∼= mcinput(ê1, ê2, ê3). By

Definition 3.2.10 we have Erase(smcoutput(e1, e2, e3)) = mcinput(Erase(e1, e2, e3)). By Definition 3.2.8, we have

Erase(e1, e2, e3) = Erase(e1), Erase(e2), Erase(e3). By Definition 3.2.10 we have Erase(e1) = ê1, Erase(e2) = ê2,

and Erase(e3) = ê3. Therefore, we have e1
∼= ê1, e2

∼= ê2, and e3
∼= ê3.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ, σ, ∆, χ, bid, acc, e1)

∼=ψ (γ̂, σ̂, �, ê1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1

(γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ, σ1, ∆1, χ, bid,

acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), by the inductive

hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂) and ψ2 such that (γ, σ2,∆2, χ, bid, acc, n)∼=ψ2

(γ̂, σ̂2, �, n̂)

and c2 ∼= d2. Given n 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

n ∼=ψ n̂. Given Label(e2, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and

Definition 3.2.10.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and e3
∼= ê3, by Lemma 4.2.3 we have (γ̂, σ̂2, �, ê3) such that (γ, σ2,∆2, χ, bid, acc, e3)

∼=ψ (γ̂, σ̂2, �, ê3). Given (γ, σ2, ∆2, χ, bid, acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), by the inductive hypothesis

we have (γ̂, σ̂2, �, ê3) ⇓′d3
(γ̂, σ̂3, �, n̂1) and ψ3 such that (γ, σ3, ∆3, χ, bid, acc, n1) ∼=ψ3

(γ̂, σ̂3, �, n̂1) and

c3 ∼= d3. Given n1 6= skip, by Lemma 4.2.1 we have ψ3 = ψ. By Definition 4.2.1 we have (γ, σ3) ∼=ψ (γ̂, σ̂3) and

n1
∼=ψ n̂1. Given Label(e3, γ) = public, we have Label(n1, γ) = public and therefore n1 = n̂1 by Definition 3.2.18

and Definition 3.2.10.

Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.
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Given InputArray(x, n, n1) = [m0, ..., mn1
], x = x̂, n = n̂, n1 = n̂1, by Axiom 3.2.4 and Lemma 3.2.27 we have

InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1
] such that [m0, ..., mn1

] ∼= [m̂0, ..., m̂n̂1
].

Given x = x̂ and [m0, ..., mn1
] ∼= [m̂0, ..., m̂n̂1

], by Definition 3.2.10 we have x = [m0, ..., mn1
] ∼= x̂ = [m̂0, ..., m̂n̂1

].

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), we have (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1
]) such that (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1

])

∼=ψ (γ, σ3, ∆3, χ, bid, acc, x = [m0, ..., mn1
]) by Lemma 4.2.3. Given (γ, σ3, ∆3, χ, bid, acc, x = [m0, ...,

mn1
]) ⇓tc4 (γ, σ4, ∆4, χ, bid, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1

]) ⇓′d4

(γ̂, σ̂4 �, skip) and ψ4 such that (γ, σ4, ∆4, χ, bid, acc, skip) ∼=ψ4 (γ̂, σ̂4, �, skip) and c4 ∼= d4. Given

pfree(e) /∈ x = [m0, ..., mn1
], we have ψ4 = ψ. By Definition 4.2.1 we have (γ, σ4) ∼=ψ (γ̂, σ̂4).

Given (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �,

n̂), (γ̂, σ̂2, �, ê3) ⇓′d3
(γ̂, σ̂3, �, n̂1), γ̂(x̂) = (l̂, const b̂ty∗), InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1

], and

(γ̂, σ̂3,�, x̂ = [m̂0, ..., m̂n̂1
]) ⇓′d4

(γ̂, σ̂4,�, skip), we have Σ . (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)) ⇓′inp1 (γ̂, σ̂4, �,

skip) by Vanilla C rule Input 1D Array.

Given (γ, σ4) ∼=ψ (γ̂, σ̂4), by Definition 4.2.1 we have (γ, σ4, ∆4, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂4, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ4, ∆4, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �,

mcinput(ê1, ê2, ê3)) ⇓′inp1 (γ̂, σ̂4, �, skip), Π ∼=ψ Σ, and inp1 ∼= inp1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp4 (γ, σ4, ∆4, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp4 (γ, σ4, ∆4, χ, bid, acc, skip) by Location-tracking

SMC2 rule SMC Input Private 1D Array, we have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, ∆, χ, bid, acc, e1)

⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ2, ∆2, χ, bid,

acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), γ(x) = (l,private const bty∗), InputArray(x, n, n1) = [m0, ..., mn1
],

and (γ, σ3, ∆3, χ, bid, acc, x = [m0, ..., mn1 ]) ⇓tc4 (γ, σ4, ∆4, χ, bid, acc, skip).

Given (γ̂, σ̂, �, mcinput(ê1, ê2, e3)) such that (γ, σ,∆, χ, bid, acc, smcinput(e1, e2))∼=ψ (γ̂, σ̂, �, mcinput(ê1,

ê2, ê3)), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcinput(e1, e2, e3) ∼=ψ mcinput(ê1, ê2, ê3). Given

(γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp4 (γ, σ4, ∆4, χ, bid, acc, skip), by Lemma 4.2.2 we have

(l, µ) /∈ smcinput(e1, e2, e3). Therefore, by Lemma 3.2.3 we have smcinput(e1, e2, e3) ∼= mcinput(ê1, ê2, ê3). By

Definition 3.2.10 we have Erase(smcoutput(e1, e2, e3)) = mcinput(Erase(e1, e2, e3)). By Definition 3.2.8, we have
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Erase(e1, e2, e3) = Erase(e1), Erase(e2), Erase(e3). By Definition 3.2.10 we have Erase(e1) = ê1, Erase(e2) = ê2,

and Erase(e3) = ê3. Therefore, we have e1
∼= ê1, e2

∼= ê2, and e3
∼= ê3.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ, σ, ∆, χ, bid, acc, e1)

∼=ψ (γ̂, σ̂, �, ê1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1

(γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ, σ1, ∆1, χ, bid,

acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), by the inductive

hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂) and ψ2 such that (γ, σ2,∆2, χ, bid, acc, n)∼=ψ2

(γ̂, σ̂2, �, n̂)

and c2 ∼= d2. Given 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

n ∼=ψ n̂. Given Label(e2, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and

Definition 3.2.10.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and e3
∼= ê3, by Lemma 4.2.3 we have (γ̂, σ̂2, �, ê3) such that (γ, σ2,∆2, χ, bid, acc, e3)

∼= (γ̂, σ̂2, �, ê3). Given (γ, σ2, ∆2, χ, bid, acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), by the inductive hypothesis

we have (γ̂, σ̂2, �, ê3) ⇓′d3
(γ̂, σ̂3, �, n̂1) and ψ3 such that (γ, σ3, ∆3, χ, bid, acc, n1) ∼=ψ3

(γ̂, σ̂3, �, n̂1) and

c3 ∼= d3. Given n1 6= skip, by Lemma 4.2.1 we have ψ3 = ψ. By Definition 4.2.1 we have (γ, σ3) ∼=ψ (γ̂, σ̂3) and

n1
∼=ψ n̂1. Given Label(e3, γ) = public, we have Label(n1, γ) = public and therefore n1 = n̂1 by Definition 3.2.18

and Definition 3.2.10.

Given γ(x) = (l,private const bty∗), (γ, σ3) ∼=ψ (γ̂, σ̂3), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given InputArray(x, n, n1) = [m0, ..., mn1 ], x = x̂, n = n̂, n1 = n̂1, by Axiom 3.2.4 and Lemma 3.2.27 we have

InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1
] such that [m0, ..., mn1

] ∼= [m̂0, ..., m̂n̂1
].

Given x = x̂ and [m0, ..., mn1
] ∼= [m̂0, ..., m̂n̂1

], by Definition 3.2.10 we have x = [m0, ..., mn1
] ∼= x̂ = [m̂0, ..., m̂n̂1

].

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Lemma 4.2.3 we have (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1
]) such that (γ̂, σ̂3, �, x̂ =

[m̂0, ..., m̂n̂1
]) ∼=ψ (γ, σ3, ∆3, χ, bid, acc, x = [m0, ..., mn1 ]). Given (γ, σ3, ∆3, χ, bid, acc, x = [m0, ...,

mn1
]) ⇓tc4 (γ, σ4, ∆4, χ, bid, acc, skip), by the inductive hypothesis, we have (γ̂, σ̂3, �, x̂ = [m̂0, ..., m̂n̂1

]) ⇓′d4
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(γ̂, σ̂4 �, skip) and ψ4 such that (γ, σ4, ∆4, χ, bid, acc, skip) ∼=ψ4
(γ̂, σ̂4, �, skip) and c4 ∼= d4. Given

pfree(e) /∈ x = [m0, ..., mn1
], we have ψ4 = ψ. By Definition 4.2.1 we have (γ, σ4) ∼=ψ (γ̂, σ̂4).

Given (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �,

n̂), (γ̂, σ̂2, �, ê3) ⇓′d3
(γ̂, σ̂3, �, n̂1), γ̂(x̂) = (l̂, const b̂ty∗), InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1

], and

(γ̂, σ̂3,�, x̂ = [m̂0, ..., m̂n̂1
]) ⇓′d4

(γ̂, σ̂4,�, skip), we have Σ . (γ̂, σ̂, �, mcinput(ê1, ê2, ê3)) ⇓′out1 (γ̂, σ̂4, �,

skip) by Vanilla C rule Input 1D Array.

Given (γ, σ4) ∼=ψ (γ̂, σ̂4), by Definition 4.2.1 we have (γ, σ4, ∆4, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂4, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp4 (γ, σ4, ∆4, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �,

mcinput(ê1, ê2, ê3)) ⇓′out1 (γ̂, σ̂4, �, skip), Π ∼=ψ Σ, and inp4 ∼= inp1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking

SMC2 rule SMC Output Public Value, we have Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, ∆1,

χ, bid, σ1, acc, x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), γ(x) = (l, public bty),

σ2(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1)), DecodeVal(public bty , 1, ω) = n1, and

OutputValue(x, n, n1).

Given (γ̂, σ̂, �, mcoutput(ê1, ê2)) and ψ such that (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ∼=ψ (γ̂, σ̂, �,

mcinput(ê1, ê2)), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcoutput(e1, e2) ∼=ψ mcinput(ê1, ê2).

Given (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ2, ∆2, χ, bid, acc, skip), by Lemma 4.2.2 we have

(l, µ) /∈ smcoutput(e1, e2). Therefore, by Lemma 3.2.3 we have smcoutput(e1, e2) ∼= mcoutput(ê1, ê2). By

Definition 3.2.10 we have Erase(smcoutput(e1, e2)) = mcoutput(Erase(e1, e2)). By Definition 3.2.8, we have

Erase(e1, e2) = Erase(e1),Erase(e2)). By Definition 3.2.10 we have Erase(e1) = ê1 and Erase(e2) = ê2. Therefore,

we have e1
∼= ê1, and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1 (γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By
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Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n) ∼=ψ2 (γ̂, σ̂2, �, n̂) and

c2 ∼= d2. Given n 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

n ∼=ψ n̂. Given Label(e2, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and

Definition 3.2.10.

Given γ(x) = (l,public bty), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by

public bty ∼= b̂ty by Lemma 3.2.14.

Given σ2(l) = (ω,public bty , 1, PermL(Freeable, public bty , public, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l = l̂, by

Lemma 3.2.15 we have σ̂2(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, bty ,public, 1)) where ω1
∼=ψ ω̂1.

Given DecodeVal(public bty , 1, ω) = n1, public bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(b̂ty ,

1, ω̂) = n̂1 and n1
∼= n̂1.

Given OutputValue(x, n, n1), x = x̂, n = n̂, and n1
∼= n̂1, by Lemma 3.2.28 we have OutputValue(x̂, n̂, n̂1) such

that the corresponding output files are congruent.

Given (γ̂, σ̂, �, mcoutput(ê1, ê2)), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂), γ̂(x̂) =

(l̂, b̂ty), σ̂2(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1)), DecodeVal(b̂ty , 1, ω̂) = v̂, and OutputValue(x̂, n̂,

v̂), we have Σ . (γ̂, σ̂, �, mcoutput(ê1, ê2)) ⇓′out (γ̂, σ̂2, �, skip) by Vanilla C rule Output Value.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �,

mcoutput(ê1, ê2)) ⇓′out (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and out ∼= out by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout3 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout3 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking
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SMC2 rule SMC Output Private Value, we have Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1,

χ, bid, acc, x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), γ(x) = (l, private bty), σ2(l) = (ω,

private bty , 1, PermL(Freeable, private bty , private, 1)), DecodeVal(private bty , 1, ω) = n1, and

OutputValue(x, n, n1).

Given (γ̂, σ̂, �, mcoutput(ê1, ê2)) and ψ such that (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ∼=ψ (γ̂, σ̂, �,

mcoutput(ê1, ê2)), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcoutput(e1, e2) ∼=ψ mcoutput(ê1,

ê2). Given (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout3 (γ, σ2, ∆2, χ, bid, acc, skip), by Lemma 4.2.2

we have (l, µ) /∈ smcoutput(e1, e2). Therefore, by Lemma 3.2.3 we have smcoutput(e1, e2) ∼= mcoutput(ê1,

ê2). By Definition 3.2.10 we have Erase(smcoutput(e1, e2)) = mcoutput(Erase(e1, e2)). By Definition 3.2.8, we

have Erase(e1, e2) = Erase(e1),Erase(e2)). By Definition 3.2.10 we have Erase(e1) = ê1 and Erase(e2) = ê2.

Therefore, we have e1
∼= ê1, and e2

∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ, σ, ∆, χ, bid, acc, e1)

∼=ψ (γ̂, σ̂, �, ê1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1

(γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ, σ1, ∆1, χ, bid,

acc, e2) ∼=ψ (γ̂, σ̂1, �, ê2). Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), by the inductive

hypothesis we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂) and ψ2 such that (γ, σ2,∆2, χ, bid, acc, n)∼=ψ2 (γ̂, σ̂2, �, n̂)

and c2 ∼= d2. Given n 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

n ∼=ψ n̂. Given Label(e2, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and

Definition 3.2.10.

Given γ(x) = (l,private bty), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by

private bty ∼= b̂ty by Lemma 3.2.14.

Given σ2(l) = (ω,private bty , 1, PermL(Freeable, private bty , private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l = l̂, by

Lemma 3.2.15 we have σ̂2(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, bty ,public, 1)) where ω1
∼=ψ ω̂1.

Given DecodeVal(private bty , 1,ω) = n1, private bty ∼=ψ b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have
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DecodeVal(bty , 1, ω̂) = n̂1 and n1
∼= n̂1.

Given OutputValue(x, n, n1), x = x̂, n = n̂, and n1
∼= n̂1, by Lemma 3.2.28 we have OutputValue(x̂, n̂, n̂1) such

that the corresponding output files are congruent.

Given (γ̂, σ̂, �, mcoutput(ê1, ê2)), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂), γ̂(x̂) =

(l̂, b̂ty), σ̂2(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1)), DecodeVal(b̂ty , 1, ω̂) = n̂1, and OutputValue(x̂,

n̂, n̂1), we have Σ . (γ̂, σ̂, �, mcoutput(ê1, ê2)) ⇓′out (γ̂, σ̂2, �, skip) by Vanilla C rule Output Value.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout3 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �,

mcoutput(ê1, ê2)) ⇓′out (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and out3 ∼= out by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking

SMC2 rule SMC Output Public 1D Array, we have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, ∆, χ, bid,

acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ2,

∆2, χ, bid, acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), γ(x) = (l,public const bty∗), σ3(l) = (ω, public const

bty∗, 1, PermL(Freeable, public const bty∗, public, 1), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ3(l1) = (ω1,public bty , n1,PermL(Freeable, public bty , public, n1)), DecodeVal(public bty , n1, ω1) = [m0, ...,

mn1
], and OutputArray(x, n, [m0, ...,mn1

]).

Given (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) and ψ such that (γ, σ,∆, χ, bid, acc, smcoutput(e1, e2, e3))∼=ψ (γ̂, σ̂, �,

mcoutput(ê1, ê2, ê3)), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcoutput(e1, e2, e3) ∼=ψ mcoutput(ê1,

ê2, ê3). Given (γ, σ,∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ3,∆3, χ, bid, acc, skip), by Lemma 4.2.2 we

have (l, µ) /∈ smcoutput(e1, e2, e3). Therefore, by Lemma 3.2.3 we have smcoutput(e1, e2, e3) ∼= mcoutput(ê1, ê2,

ê3). By Definition 3.2.10 we have Erase(smcoutput(e1, e2, e3)) = mcoutput(Erase(e1, e2, e3)). By Definition 3.2.8,

we have Erase(e1, e2, e3) = Erase(e1),Erase(e2),Erase(e3). By Definition 3.2.10 we have Erase(e1) = ê1,

Erase(e2) = ê2, and Erase(e3) = ê3. Therefore, we have e1
∼= ê1, e2

∼= ê2, and e3
∼= ê3.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,
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χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1

(γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n) ∼=ψ2 (γ̂, σ̂2, �, n̂) and

c2 ∼= d2. Given n 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

n ∼=ψ n̂. Given Label(e2, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and

Definition 3.2.10.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and e3
∼= ê3, by Lemma 4.2.3 we have (γ̂, σ̂2, �, ê3) such that (γ̂, σ̂2, �, ê3) ∼=ψ

(γ, σ2, ∆2, χ, bid, acc, e3) by Definition 4.2.1. Given (γ, σ2, ∆2, χ, bid, acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1),

by the inductive hypothesis we have (γ̂, σ̂2, �, ê3) ⇓′d3
(γ̂, σ̂3, �, n̂1) and ψ3 such that (γ, σ3, ∆3, χ, bid, acc, n1)

∼=ψ3
(γ̂, σ̂3, �, n̂1) and c3 ∼= d3. Given n1 6= skip, by Lemma 4.2.1 we have ψ3 = ψ. By Definition 4.2.1 we have

(γ, σ3) ∼=ψ (γ̂, σ̂3) and n1
∼=ψ n̂1. Given Label(e3, γ) = public, we have Label(n1, γ) = public and therefore

n1 = n̂1 by Definition 3.2.18 and Definition 3.2.10.

Given γ(x) = (l,public const bty∗), (γ, σ3) ∼=ψ (γ̂, σ̂3), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ3(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ3) ∼=ψ (γ̂, σ̂3), and

l = l̂, by Lemma 3.2.16 we have σ̂3(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0). By Definition 3.2.13 we have l1 ∼=ψ l̂1.

Given σ3(l1) = (ω1,public bty , n1, PermL(Freeable, public bty ,public, n1)), (γ, σ3) ∼=ψ (γ̂, σ̂3), and l1 ∼=ψ l̂1,

by Lemma 3.2.15 we have σ̂3(l̂1) = (ω̂1, b̂ty , n̂1,PermL(Freeable, bty , public, n̂1)) where ω1
∼=ψ ω̂1, private bty ∼=

b̂ty , and n1 = n̂1.
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Given DecodeVal(public bty , n1, ω1) = [m0, ..., mn1
], public bty ∼= b̂ty , and ω1

∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1
] and [m0, ..., mn1 ] ∼= [m̂0, ..., m̂n̂1

].

Given OutputArray(x, n, [m0, ...,mn1 ]), x = x̂, n = n̂, and [m0, ..., mn1 ] ∼= [m̂0, ..., m̂n̂1
], by Lemma 3.2.29 we

have OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1
]) such that the corresponding output files are congruent.

Given (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂),

(γ̂, σ̂2, �, ê3) ⇓′d3
(γ̂, σ̂3, �, n̂1), γ̂(x̂) = (l̂, const b̂ty∗), σ̂3(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable,

const b̂ty∗,public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂3(l̂1) = (ω̂1, b̂ty , n̂2,PermL(Freeable,

b̂ty , public, n̂1)), DecodeVal(b̂ty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1
], and OutputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1

], we have

Σ . (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) ⇓′out1 (γ̂, σ̂3, �, skip) by Vanilla C rule Output 1D Array.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ,∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ3,∆3, χ, bid, acc, skip)∼=ψ (γ̂, σ̂, �,

mcoutput(ê1, ê2, ê3)) ⇓′out1 (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and out1 ∼= out1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout4 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout4 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking

SMC2 rule SMC Output Private 1D Array, we have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, ∆, χ, bid,

acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ2,

∆2, χ, bid, acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), γ(x) = (l,private const bty∗), σ3(l) = (ω,private const

bty∗, 1,PermL(Freeable,private const bty∗, private, 1), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1],

1], σ3(l1) = (ω1, private bty , n1, PermL(Freeable, private bty , private, n1)), DecodeVal(private bty , n1, ω1) =

[m0, ..., mn1 ], and OutputArray(x, n, [m0, ..., mn1 ]).

Given (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) and ψ such that (γ, σ,∆, χ, bid, acc, smcoutput(e1, e2, e3))∼=ψ (γ̂, σ̂, �,

mcoutput(ê1, ê2, ê3)), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and smcoutput(e1, e2, e3) ∼=ψ mcoutput(ê1,

ê2, ê3). Given (γ, σ,∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout4 (γ, σ3,∆3, χ, bid, acc, skip), by Lemma 4.2.2 we

have (l, µ) /∈ smcoutput(e1, e2, e3). Therefore, by Lemma 3.2.3 we have smcoutput(e1, e2, e3) ∼= mcoutput(ê1, ê2,

ê3). By Definition 3.2.10 we have Erase(smcoutput(e1, e2, e3)) = mcoutput(Erase(e1, e2, e3)). By Definition 3.2.8,
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we have Erase(e1, e2, e3) = Erase(e1), Erase(e2), Erase(e3). By Definition 3.2.10 we have Erase(e1) = ê1,

Erase(e2) = ê2, and Erase(e3) = ê3. Therefore, we have e1
∼= ê1, e2

∼= ê2, and e3
∼= ê3.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1

(γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, n̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, n) ∼=ψ2

(γ̂, σ̂2, �, n̂) and

c2 ∼= d2. Given n 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

n ∼=ψ n̂. Given Label(e2, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and

Definition 3.2.10.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and e3
∼= ê3, by Lemma 4.2.3 we have (γ̂, σ̂2, �, ê3) such that (γ̂, σ̂2, �, ê3)∼=ψ (γ, σ2,

∆2, χ, bid, acc, e3). Given (γ, σ2,∆2, χ, bid, acc, e3) ⇓tc3 (γ, σ3,∆3, χ, bid, acc, n1), by the inductive hypothesis

we have (γ̂, σ̂2, �, ê3) ⇓′d3
(γ̂, σ̂3, �, n̂1) and ψ3 such that (γ, σ3, ∆3, χ, bid, acc, n1) ∼=ψ3

(γ̂, σ̂3, �, n̂1) and

c3 ∼= d3. Given n1 6= skip, by Lemma 4.2.1 we have ψ3 = ψ. By Definition 4.2.1 we have (γ, σ3) ∼=ψ (γ̂, σ̂3) and

n1
∼=ψ n̂1. Given Label(e3, γ) = public, we have Label(n1, γ) = public and therefore n1 = n̂1 by Definition 3.2.18

and Definition 3.2.10.

Given γ(x) = (l,private const bty∗), (γ, σ3) ∼=ψ (γ̂, σ̂3), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ3(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), (γ, σ3) ∼=ψ (γ̂, σ̂3),

and l = l̂, by Lemma 3.2.16 we have σ̂3(l̂) = (ω̂, const b̂ty∗, 1,

PermL(Freeable, const b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0). By Definition 3.2.13 we have l1 ∼=ψ l̂1.
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Given σ3(l1) = (ω1,private bty , n1, PermL(Freeable, private bty ,private, n1)), (γ, σ3) ∼=ψ (γ̂, σ̂3), and l1 ∼=ψ l̂1,

by Lemma 3.2.15 we have σ̂3(l̂1) = (ω̂1, b̂ty , n̂1,PermL(Freeable, bty , public, n̂1)) where ω1
∼=ψ ω̂1, private bty

∼= b̂ty , and n1 = n̂1.

Given DecodeVal(private bty , n1, ω1) = [m0, ..., mn1
], private bty ∼= b̂ty , and ω1

∼=ψ ω̂1, by Lemma 3.2.41 we

have DecodeVal(bty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1
] and [m0, ..., mn1

] ∼= [m̂0, ..., m̂n̂1
].

Given OutputArray(x, n, [m0, ...,mn1
]), x = x̂, n = n̂, and [m0, ..., mn1

] ∼= [m̂0, ..., m̂n̂1
], by Lemma 3.2.29 we

have OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1
]) such that the corresponding output files are congruent.

Given (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, x̂), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, n̂),

(γ̂, σ̂2, �, ê3) ⇓′d3
(γ̂, σ̂3, �, n̂1), γ̂(x̂) = (l̂, const b̂ty∗), σ̂3(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable,

const b̂ty∗,public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂3(l̂1) = (ω̂1, b̂ty , n̂2,PermL(Freeable,

b̂ty ,public, n̂1)), DecodeVal(b̂ty , n̂1, ω̂1) = [m̂0, ..., m̂n̂1
], and OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1

]), we have

Σ . (γ̂, σ̂, �, mcoutput(ê1, ê2, ê3)) ⇓′out1 (γ̂, σ̂3, �, skip) by Vanilla C rule Output 1D Array.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ,∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout4 (γ, σ3,∆3, χ, bid, acc, skip)∼=ψ (γ̂, σ̂, �,

mcoutput(ê1, ê2, ê3)) ⇓′out1 (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and out4 ∼= out1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x(p)) ⇓tdf (γ1, σ1, ∆, χ, bid, acc, skip)

Given Π.(γ, σ,∆, χ, bid, acc, ty x(p)) ⇓tdf (γ1, σ1,∆, χ, bid, acc, skip) by Location-tracking SMC2 rule Function

Declaration, we have (acc = 0) ∧ (bid = none), GetFunTypeList(p) = ty , l = φ(), γ1 = γ[x→ (l, ty → ty)], and

σ1 = σ[l→ (NULL, ty → ty , 1, PermL_Fun(public))].

Given (γ̂, σ̂, �, t̂y x̂(p̂)) and ψ such that (γ, σ, acc, ty x(p)) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂)), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x(p) ∼=ψ t̂y x̂(p̂). Given (γ, σ, ∆, χ, bid, acc, ty x(p)) ⇓tdf (γ1, σ1, ∆, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ty x(p). Therefore, by Lemma 3.2.3 we have ty x(p) ∼= t̂y x̂(p̂). By

Definition 3.2.10 we have Erase(ty x(p)) = Erase(ty) x̂(Erase(p)) where x = x̂, Erase(ty) = t̂y , and Erase(p) = p̂

by Definition 3.2.9. Therefore, we have ty ∼= t̂y and p ∼= p̂.
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Given GetFunTypeList(p) = ty and p ∼= p̂, by Lemma 3.2.30 we have GetFunTypeList(p̂) = t̂y where ty ∼= t̂y .

Therefore, we have ty → ty ∼= t̂y → t̂y by Definition 3.2.6.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l, ty → ty)], x = x̂, l = l̂, ty → ty ∼= t̂y → t̂y , and (γ, σ) ∼=ψ (γ̂, σ̂), by Lemma 3.2.34 we

have γ̂1 = γ̂[x̂→ (l̂, t̂y → t̂y)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given σ1 = σ[l → (NULL, ty → ty , 1,PermL_Fun(public))], l = l̂, (γ1, σ) ∼=ψ (γ̂1, σ̂), and ty → ty ∼= t̂y → t̂y ,

by Lemma 3.2.35 we have σ̂1 = σ̂[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, t̂y x̂(p̂)), l̂ = φ(), GetFunTypeList(p̂) = t̂y , γ̂1 = γ̂[x̂ → (l̂, t̂y → t̂y)], and σ̂1 = σ̂[l̂ →

(NULL, t̂y → t̂y , 1, PermL_Fun(public))], we have Σ . (γ̂, σ̂, �, t̂y x̂(p̂)) ⇓′df (γ̂1, σ̂1, �, skip) by Vanilla C

rule Function Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 4.2.1 we have (γ1, σ1, ∆, χ, bid, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x(p)) ⇓tdf (γ1, σ1, ∆, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂)) ⇓′df

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and df ∼= df by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfpd (γ, σ2, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfpd (γ, σ2, ∆, χ, bid, acc, skip) by Location-tracking SMC2

rule Pre-Declared Function Definition, we have (acc = 0) ∧ (bid = none), x ∈ γ, γ(x) = (l, ty → ty),

CheckPublicEffects(s, x, γ, σ) = n, EncodeFun(s, n, p) = ω, σ = σ1[l→ (NULL, ty → ty , 1,

PermL_Fun(public))], and σ2 = σ1[l→ (ω, ty → ty , 1, PermL_Fun(public))].

Given (γ̂, σ̂, �, t̂y x̂(p̂) {ŝ}) and ψ such that (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂) {ŝ}), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x(p){s} ∼=ψ t̂y x̂(p̂) {ŝ}. Given (γ, σ,∆, χ, bid, acc, ty x(p){s})

⇓tfpd (γ, σ2, ∆, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ty x(p){s}. Therefore, by Lemma 3.2.3 we

have ty x(p){s} ∼= t̂y x̂(p̂) {ŝ}. By Definition 3.2.10 we have Erase(ty x(p){s}) = Erase(ty x(p)) {Erase(s)},

Erase(ty x(p)) = Erase(ty) x̂ (Erase(p)) where x = x̂, Erase(ty) = t̂y , Erase(s) = ŝ, and Erase(p) = p̂ by
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Definition 3.2.9. Therefore, we have ty ∼= t̂y and p ∼= p̂.

Given x ∈ γ, γ(x) = (l, ty → ty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, t̂y → t̂y) such that l = l̂ by

ty → ty ∼= t̂y → t̂y by Lemma 3.2.14 and x̂ ∈ γ̂ by Lemma 3.2.33.

Given EncodeFun(s, n, p) = ω, s ∼= ŝ, and p ∼= p̂, by Lemma 3.2.46 we have EncodeFun(ŝ, �, p̂) = ω̂ such that

ω ∼=ψ ω̂.

Given σ = σ1[l→ (NULL, ty → ty , 1, PermL_Fun(public))], (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by Lemma 3.2.36 we

have σ̂ = σ̂1[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))] and (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given σ2 = σ1[l→ (ω, ty → ty , 1,PermL_Fun(public))], (γ, σ1) ∼= (γ̂, σ̂1), l = l̂, ω ∼=ψ ω̂, and ty → ty ∼= t̂y →

t̂y , by Lemma 3.2.35 we have σ̂2 = σ̂1[l̂→ (ω̂, t̂y → t̂y , 1, PermL_Fun(public))] such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, t̂y x̂(p̂){ŝ}), x ∈ γ̂, γ̂(x) = (l̂, t̂y → t̂y), σ̂ = σ̂1[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))],

EncodeFun(ŝ, �, p̂) = ω̂, and σ̂2 = σ̂1[l̂→ (ω̂, t̂y → t̂y , 1, PermL_Fun(public))], we have Σ.(γ̂, σ̂, �, t̂y x̂(p̂)

{ŝ}) ⇓′fpd (γ̂, σ̂2, �, skip) by Vanilla C rule Pre-Declared Function Definition.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2,∆, χ, bid, acc, skip)∼=ψ (γ̂, σ̂2, �, skip). Therefore,

we have (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfpd (γ, σ2, ∆, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂){ŝ}) ⇓′fpd

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and fpd ∼= fpd by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfd (γ1, σ1, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfd (γ1, σ1, ∆, χ, bid, acc, skip) by Location-tracking SMC2 rule

Function Definition, we have l = φ(), GetFunTypeList(p) = ty , x /∈ γ, γ1 = γ[x → (l, ty → ty)], (acc =

0) ∧ (bid = none), CheckPublicEffects(s, x, γ, σ) = n, EncodeFun(s, n, p) = ω, and σ1 = σ[l→ (ω, ty → ty , 1,

PermL_Fun(public))].

Given (γ̂, σ̂, �, t̂y x̂(p̂) {ŝ}) such that (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂) {ŝ}), by Defini-

tion 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x(p){s} ∼=ψ t̂y x̂(ê) {ŝ}. Given (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfd
(γ1, σ1, ∆, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ty x(p){s}. Therefore, by Lemma 3.2.3 we

403



have ty x(p){s} ∼= t̂y x̂(p̂) {ŝ}. By Definition 3.2.10 we have Erase(ty x(p){s}) = Erase(ty x(p)) {Erase(s)},

Erase(ty x(p)) = Erase(ty) x̂ (Erase(p)) where x = x̂, Erase(ty) = t̂y , Erase(p) = p̂, and Erase(s) = ŝ by

Definition 3.2.9. Therefore, we have ty ∼= t̂y , p ∼= p̂, and s ∼= ŝ.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given GetFunTypeList(p) = ty and p ∼= p̂, by Lemma 3.2.30 we have GetFunTypeList(p̂) = t̂y where ty ∼= t̂y .

Given x /∈ γ, (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, by Lemma 3.2.32 we have x̂ /∈ γ̂.

Given γ1 = γ[x → (l, ty → ty)], x = x̂, l = l̂, ty → ty ∼= t̂y → t̂y , and (γ, σ) ∼=ψ (γ̂, σ̂), by Lemma 3.2.34 we

have γ̂1 = γ̂[x̂→ (l̂, t̂y → t̂y)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given EncodeFun(s, n, p) = ω, s ∼= ŝ, and p ∼= p̂, by Lemma 3.2.46 we have EncodeFun(ŝ, �, p̂) = ω̂ such that

ω ∼=ψ ω̂.

Given σ1 = σ[l → (NULL, ty → ty , 1,PermL_Fun(public))], l = l̂, (γ1, σ) ∼=ψ (γ̂1, σ̂), and ty → ty ∼= t̂y → t̂y ,

by Lemma 3.2.35 we have σ̂1 = σ̂[l̂→ (NULL, t̂y → t̂y , 1, PermL_Fun(public))] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, t̂y x̂(p̂){ŝ}), x /∈ γ̂, l̂ = φ(), GetFunTypeList(p̂) = t̂y , γ̂1 = γ̂[x → (l̂, t̂y → t̂y)], σ̂1 = σ̂[l̂ →

(ω̂, t̂y → t̂y , 1, PermL_Fun(public))], and EncodeFun(ŝ, �, p̂) = ω̂, we have Σ . (γ̂, σ̂, �, t̂y x̂(p̂){ŝ}) ⇓′fd
(γ̂1, σ̂1, �, skip) by Vanilla C rule Function Definition.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 4.2.1 we have (γ1, σ1, ∆, χ, bid, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfd (γ1, σ1, ∆, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂(p̂) {ŝ})

⇓′fd (γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and fd ∼= fd by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc (γ, σ2, ∆2, χ, bid, acc, NULL)

Given Π. (γ, σ,∆, χ, bid, acc, x(e)) ⇓tfc (γ, σ2,∆2, χ, bid, acc, NULL) by Location-tracking SMC2 rule Function

Call No Return With Public Side Effects, we have γ(x) = (l, ty → ty), σ(l) = (ω, ty → ty , 1, PermL_Fun(public)),

DecodeFun(ω) = (s, 1, p), (acc = 0) ∧ (bid = none), GetFunParamAssign(p, e) = s1, (γ, σ, ∆, χ, bid,
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acc, s1) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), and (γ1, σ1, ∆1, χ1, bid, acc, s) ⇓tc2 (γ2, σ2, ∆2, χ2, bid, acc,

skip).

Given (γ̂, σ̂, �, x̂(ê)) and ψ such that (γ, σ, ∆, χ, bid, acc, x(e)) ∼=ψ (γ̂, σ̂, �, x̂(ê)), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x(e) ∼=ψ x̂(ê). Given (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc (γ, σ2, ∆2, χ, bid, acc, NULL), by

Lemma 4.2.2 we have (l, µ) /∈ x(e). Therefore, by Lemma 3.2.3 we have x(e) ∼= x̂(ê). By Definition 3.2.10 we have

Erase(x(e)) = x̂(Erase(e)) where x = x̂ and Erase(e) = ê by Definition 3.2.8. Therefore, we have e ∼= ê.

Given γ(x) = (l, ty → ty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, t̂y → t̂y) such that l = l̂ by

ty → ty ∼= t̂y → t̂y by Lemma 3.2.14.

Given σ(l) = (ω, ty → ty , 1,PermL_Fun(public)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by Lemma 3.2.15 we have

σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)) where ω ∼=ψ ω̂.

Given DecodeFun(ω) = (s, 1, p) and ω ∼=ψ ω̂, by Lemma 3.2.47 we have DecodeFun(ω̂) = (ŝ, �, p̂) such that

s ∼= ŝ and p ∼= p̂.

Given GetFunParamAssign(p, e) = s1, p ∼= p̂, and e ∼= ê, by Lemma 3.2.31 we have GetFunParamAssign(p̂,

ê) = ŝ1 where s1
∼=ψ ŝ1.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and s1
∼=ψ ŝ1, we have (γ, σ, ∆, χ, bid, acc, s1) ∼=ψ (γ̂, σ̂, �, ŝ1) by Definition 4.2.1.

Given (γ, σ, ∆, χ, bid, acc, s1) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), by the inductive hypothesis, we have

(γ̂, σ̂, �, ŝ1) ⇓′d1
(γ̂1, σ̂1, �, skip) and ψ1 such that (γ1, σ1, ∆1, χ1, bid, acc, skip) ∼=ψ1

(γ̂1, σ̂1, �, skip) and

c1 ∼= d1. By Definition 4.2.1, we have (γ1, σ1) ∼=ψ1 (γ̂1, σ̂1). By Lemma 4.2.12, we have (γ, σ1) ∼=ψ1 (γ̂, σ̂1).

Given (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1) and s ∼= ŝ, BY Lemma 4.2.3 we have (γ1, σ1, ∆1, χ1, bid, acc, s) ∼=ψ1

(γ̂1, σ̂1, �,

ŝ) by Definition 4.2.1. Given (γ1, σ1, ∆1, χ1, bid, acc, s) ⇓tc2 (γ2, σ2, ∆2, χ2, bid, acc, skip), by the inductive

hypothesis, we have (γ̂1, σ̂1, �, ŝ) ⇓′d2
(γ̂2, σ̂2, �, skip) and ψ2 such that (γ2, σ2, ∆2, χ2, bid, acc, skip) ∼=ψ2

(γ̂2, σ̂2, �, skip) and c2 ∼= d2. By Definition 4.2.1, we have (γ2, σ2) ∼=ψ2 (γ̂2, σ̂2). By Lemma 4.2.12, we have

(γ, σ2) ∼=ψ2
(γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂(ê)), γ̂(x̂) = (l̂, t̂y → t̂y), σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)), DecodeFun(ω̂) =

(ŝ, �, p̂), GetFunParamAssign(p̂, ê) = ŝ1, (γ̂, σ̂, �, ŝ1) ⇓′d1
(γ̂1, σ̂1, �, skip), and (γ̂1, σ̂1,�, ŝ) ⇓′d2

(γ̂2, σ̂2, �,
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skip), we have Σ. (γ̂, σ̂, �, x̂(ê)) ⇓′fc (γ̂, σ̂2, �, NULL) by Vanilla C rule Function Call.

Given (γ, σ2) ∼=ψ2 (γ̂, σ̂2) and NULL = NULL, by Definition 3.2.17 we have NULL ∼=ψ2 NULL and by Defini-

tion 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, NULL) ∼=ψ2
(γ̂, σ̂2, �, NULL). Therefore, we have (γ, σ, ∆, χ, bid,

acc, x(e)) ⇓tfc (γ, σ2,∆2, χ, bid, acc, NULL)∼=ψ2 (γ̂, σ̂, �, x̂(ê)) ⇓′fc (γ̂, σ̂2, �, NULL), Π ∼=ψ2 Σ, and fc ∼= fc

by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc1 (γ, σ2, ∆2, χ, bid, acc, NULL)

Given Π . (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc1 (γ, σ2, ∆2, χ, bid, acc, NULL) by Location-tracking SMC2 rule

Function Call No Return Without Public Side Effects, we have γ(x) = (l, ty → ty), σ(l) = (ω, ty → ty , 1,

PermL_Fun(public)), DecodeFun(ω) = (s, 1, p), GetFunParamAssign(p, e) = s1, (γ, σ, ∆, χ, bid, acc, s1) ⇓tc1
(γ1, σ1, ∆1, χ1, bid, acc, skip), and (γ1, σ1, ∆1, χ1, bid, acc, s) ⇓tc2 (γ2, σ2, ∆2, χ2, bid, acc, skip).

Given (γ̂, σ̂, �, x̂(ê)) and ψ such that (γ, σ, ∆, χ, bid, acc, x(e)) ∼=ψ (γ̂, σ̂, �, x̂(ê)), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x(e) ∼=ψ x̂(ê). Given (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc1 (γ, σ2, ∆2, χ, bid, acc, NULL), by

Lemma 4.2.2 we have (l, µ) /∈ x(e). Therefore, by Lemma 3.2.3 we have x(e) ∼= x̂(ê). By Definition 3.2.10 we have

Erase(x(e)) = x̂(Erase(e)) where x = x̂ and Erase(e) = ê by Definition 3.2.8. Therefore, we have e ∼= ê.

Given γ(x) = (l, ty → ty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, t̂y → t̂y) such that l = l̂ by

ty → ty ∼= t̂y → t̂y by Lemma 3.2.14.

Given σ(l) = (ω, ty → ty , 1,PermL_Fun(public)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by Lemma 3.2.15 we have

σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)) where ω ∼=ψ ω̂.

Given DecodeFun(ω) = (s, 1, p) and ω ∼=ψ ω̂, by Lemma 3.2.47 we have DecodeFun(ω̂) = (ŝ, �, p̂) such that

s ∼= ŝ and p ∼= p̂.

Given GetFunParamAssign(p, e) = s1, p ∼= p̂, and e ∼= ê, by Lemma 3.2.31 we have GetFunParamAssign(p̂,

ê) = ŝ1 where s1
∼=ψ ŝ1.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and s1
∼=ψ ŝ1, we have (γ, σ, ∆, χ, bid, acc, s1) ∼=ψ (γ̂, σ̂, �, ŝ1) by Definition 4.2.1.
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Given (γ, σ, ∆, χ, bid, acc, s1) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), by the inductive hypothesis, we have

(γ̂, σ̂, �, ŝ1) ⇓′d1
(γ̂1, σ̂1, �, skip) and ψ1 such that (γ1, σ1, ∆1, χ1, bid, acc, skip) ∼=ψ1

(γ̂1, σ̂1, �, skip) and

c1 ∼= d1. By Definition 4.2.1, we have (γ1, σ1) ∼=ψ1 (γ̂1, σ̂1). By Lemma 4.2.12, we have (γ, σ1) ∼=ψ1 (γ̂, σ̂1).

Given (γ1, σ1) ∼=ψ1 (γ̂1, σ̂1) and s ∼= ŝ, by Lemma 4.2.3 we have (γ1, σ1,∆1, χ1, bid, acc, s)∼=ψ1 (γ̂1, σ̂1, �, ŝ) by

Definition 4.2.1. Given (γ1, σ1, ∆1, χ1, bid, acc, s) ⇓tc2 (γ2, σ2, ∆2, χ2, bid, acc, skip), by the inductive hypothesis,

we have (γ̂1, σ̂1, �, ŝ) ⇓′d2
(γ̂2, σ̂2, �, skip) and ψ2 such that (γ2, σ2,∆2, χ2, bid, acc, skip)∼=ψ2

(γ̂2, σ̂2,�, skip)

and c2 ∼= d2. By Definition 4.2.1, we have (γ2, σ2) ∼=ψ2 (γ̂2, σ̂2). By Lemma 4.2.12, we have (γ, σ2) ∼=ψ2 (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂(ê)), γ̂(x̂) = (l̂, t̂y → t̂y), σ̂(l̂) = (ω̂, t̂y → t̂y , 1, PermL_Fun(public)), DecodeFun(ω̂) =

(ŝ, �, p̂), GetFunParamAssign(p̂, ê) = ŝ1, (γ̂, σ̂, �, ŝ1) ⇓′d1
(γ̂1, σ̂1, �, skip), and (γ̂1, σ̂1, �, ŝ) ⇓′d2

(γ̂2, σ̂2, �, skip), we have Σ. (γ̂, σ̂, �, x̂(ê)) ⇓′fc (γ̂, σ̂2, �, NULL) by Vanilla C rule Function Call.

Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2) and NULL ∼= NULL, by Lemma 4.2.3 we have (γ, σ2, ∆2, χ, bid, acc, NULL) ∼=ψ2

(γ̂, σ̂2, �, NULL). Therefore, we have (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc1 (γ, σ2, ∆2, χ, bid, acc, NULL) ∼=ψ2

(γ̂, σ̂, �, x̂(ê)) ⇓′fc (γ̂, σ̂2, �, NULL), Π ∼=ψ2
Σ, and fc1 ∼= fc by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, malloc(e)) ⇓tmal (γ, σ2, ∆2, χ, bid, acc, (l, 0))

Given Π . (γ, σ, ∆, χ, bid, acc, malloc(e)) ⇓tmal (γ, σ2, ∆2, χ, bid, acc, (l, 0)) by Location-tracking SMC2 rule

Public Malloc, we have Label(e, γ) = public, (acc = 0) ∧ (bid = none), (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1,

χ, bid, acc, n), l = φ(), and σ2 = σ1

[
l→

(
NULL, void∗, n,PermL(Freeable, void∗, public, n)

])]
.

Given (γ̂, σ̂, �, malloc(ê)) and ψ such that (γ, σ, ∆, χ, bid, acc, malloc(e)) ∼=ψ (γ̂, σ̂, �, malloc(ê)), by Defini-

tion 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and malloc(e) ∼=ψ malloc(ê). Given (γ, σ, ∆, χ, bid, acc, malloc(e)) ⇓tmal

(γ, σ2, ∆2, χ, bid, acc, (l, 0)), by Lemma 4.2.2 we have (l, µ) /∈ malloc(e). Therefore, by Lemma 3.2.3 we have

malloc(e) ∼= malloc(ê). By Definition 3.2.10 we have Erase(malloc(e)) = malloc(Erase(e)) and Erase(e) = ê.

Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ1

(γ̂, σ̂1, �, n̂) and c1 ∼= d1. Given
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n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public, and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ(), l = l̂, and (l, 0) ∼=ψ (l̂, 0).

Given σ2 = σ1

[
l→

(
NULL, void∗, n, PermL(Freeable, void∗, public, n)

)]
, n = n̂, l = l̂, (γ, σ1) ∼=ψ (γ̂, σ̂1), by

Lemma 3.2.7 we have σ̂2 = σ̂1

[
l̂ →

(
NULL, void∗, n̂, PermL(Freeable, void∗, public, n̂)

)]
such that (γ, σ2) ∼=ψ

(γ̂, σ̂2).

Given (γ̂, σ̂, �, malloc(ê)), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), l̂ = φ(), and σ̂2 = σ̂1

[
l̂ →

(
NULL, void∗, n̂,

PermL(Freeable, void∗, public, n̂)
)]

, we have Σ . (γ̂, σ̂, �, malloc(ê)) ⇓′mal (γ̂, σ̂2, �, (l̂, 0)) by Vanilla C rule

Malloc.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and (l, 0) ∼=ψ (l̂, 0), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, (l, 0)) ∼=ψ

(γ̂, σ̂2, �, (l̂, 0)). Therefore, we have (γ, σ, ∆, χ, bid, acc, malloc(e)) ⇓tmal (γ, σ2, ∆2, χ, bid, acc, (l, 0)) ∼=

(γ̂, σ̂, �, malloc(ê)) ⇓′mal (γ̂, σ̂2, �, (l̂, 0)), Π ∼=ψ Σ, and mal ∼= mal by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, pmalloc(e, ty)) ⇓tmalp (γ, σ2, ∆2, χ, bid, acc, (l, 0))

Given Π . (γ, σ, ∆, χ, bid, acc, pmalloc(e, ty)) ⇓tmalp (γ, σ2, ∆2, χ, bid, acc, (l, 0)) by Location-tracking SMC2

rule Private Malloc, we have (ty = private int) ∨ (ty = private float), Label(e, γ) = public, (γ, σ, ∆, χ, bid,

acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), (acc = 0) ∧ (bid = none), l = φ(), and σ2 = σ1

[
l →

(
NULL, void∗, n,

PermL(Freeable, ty ,private, n)
]
.

Given (γ̂, σ̂, �, malloc(ê′)) such that (γ, σ,∆, χ, bid, acc, pmalloc(e, ty))∼=ψ (γ̂, σ̂, �,malloc(ê′)), by Definition

4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and pmalloc(e, ty) ∼=ψ malloc(ê′). Given (γ, σ, ∆, χ, bid, acc, pmalloc(e, ty))

⇓tmalp (γ, σ2, ∆2, χ, bid, acc, (l, 0)), by Lemma 4.2.2 we have (l, µ) /∈ pmalloc(e, ty). Therefore, by Lemma 3.2.3

we have pmalloc(e, ty) ∼= malloc(ê′). By Lemma 3.2.6, we have that ê′ = sizeof(Erase(ty)) · Erase(e). By

Definition 3.2.6, we have Erase(ty) = t̂y such that ty ∼= t̂y . By Definition 3.2.10, we have Erase(e) = ê such that

e ∼= ê. Therefore, we have ê′ = sizeof(t̂y) · (ê).

Given ê′ = sizeof(t̂y) · (ê), we have (γ̂, σ̂, �, sizeof(t̂y) · (ê)).
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Given sizeof(t̂y), we have (γ̂, σ̂, �, sizeof(t̂y)) ⇓′ty (γ̂, σ̂, �, n̂1) by Vanilla C rule Size of Type such that

n̂1 = τ(t̂y).

Given (γ, σ) ∼=ψ (γ̂, σ̂) and ê ∼= e, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆, χ, bid, acc, n) ∼=ψ1

(γ̂, σ̂1, �, n̂) and c1 ∼= d1. Given

n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public, and therefore by Definition 3.2.18 and Definition 3.2.10 we

have n = n̂.

Given n̂1 and n̂, we have n̂′ = n̂1 · n̂. Therefore, by Vanilla C rule Multiplication we have (γ̂, σ̂, �, sizeof(t̂y) · (ê))

⇓′bm (γ̂, σ̂1, �, n̂′).

Given ê′ = sizeof(t̂y) · (ê), (γ̂, σ̂, �, sizeof(t̂y)) ⇓′ty (γ̂, σ̂, �, n̂1), n̂1 = τ(t̂y), and (γ̂, σ̂, �, ê) ⇓′d1

(γ̂, σ̂1, �, n̂), we have ê′ = τ(t̂y) · n̂ = n̂′.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ(), l = l̂, and (l, 0) ∼= (l̂, 0).

Given σ2 = σ1

[
l→

(
NULL, void∗, n · τ(ty), PermL(Freeable, void∗,private, n · τ(ty))

]
, n = n̂, τ(t̂y) · n̂ = n̂′,

(γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, ty ∼= t̂y , and n·τ(ty)
τ(ty) = n̂′

τ(t̂y)
, by Lemma 3.2.8 we have σ̂2 = σ̂1

[
l̂→

(
NULL, void∗, n̂′,

PermL(Freeable, void, public, n̂′)
)]

such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, malloc(ê′)), (γ̂, σ̂, �, ê′) ⇓′d1
(γ̂, σ̂1, �, n̂′), l̂ = φ(), EncodePtr(void∗, [1, [(l̂default ,

0)], [1], 1]) = ω̂, and σ̂2 = σ̂1

[
l̂ →

(
NULL, void∗, n̂′, PermL(Freeable, void, public, n̂′)

)]
, we have Σ .

(γ̂, σ̂, �, malloc(ê)) ⇓′mal (γ̂, σ̂2, �, (l̂, 0)) by Vanilla C rule Malloc.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2) and (l, 0) ∼=ψ (l̂, 0), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, (l, 0)) ∼=ψ

(γ̂, σ̂2, �, (l̂, 0)). Therefore, we have (γ, σ, ∆, χ, bid, acc, pmalloc(e, ty)) ⇓tmalp (γ, σ2, ∆2, χ, bid, acc, (l, 0))

∼=ψ (γ̂, σ̂, �, malloc(ê)) ⇓′mal (γ̂, σ̂2, �, (l̂, 0)), Π ∼=ψ Σ, and [malp, d1 ] ∼= [mal , bm, ty , d1 ] by Definition 3.2.22.

Case Π . (γ, σ, ∆, χ, bid, acc, free(e)) ⇓tfre (γ, σ2, ∆2, χ, bid, acc, skip)
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Given Π . (γ, σ, ∆, χ, bid, acc, free(e)) ⇓tfre (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Public Free, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), γ(x) = (l,public bty∗), (bty =

int) ∨ (bty = float) ∨ (bty = char) ∨ (bty = void), (acc = 0) ∧ (bid = none), and Free(σ1, l, γ) = σ2.

Given (γ̂, σ̂, �, free(ê)) such that (γ, σ,∆, χ, bid, acc, free(e))∼=ψ (γ̂, σ̂, �, free(ê)), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and free(e) ∼=ψ free(ê). Given (γ, σ, ∆, χ, bid, acc, free(e)) ⇓tfre (γ, σ2, ∆2, χ, bid, acc, skip),

by Lemma 4.2.2 we have (l, µ) /∈ free(e). Therefore, by Lemma 3.2.3 we have free(e) ∼= free(ê). By Definition 3.2.10

we have Erase(free(e)) = free(Erase(e)) and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1

(γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given γ(x) = (l,public bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂,

(l, 0) ∼=ψ (l̂, 0), and public bty∗ ∼= b̂ty∗ by Lemma 3.2.14. By Definition 3.2.13 we have l ∼=ψ l̂.

Given Free(σ1, l, γ) = σ2 and l ∼=ψ l̂, by Lemma 3.2.38 we have Free(σ̂1, l̂, γ̂) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, free(ê)), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), and Free(σ̂1, l̂, γ̂) = σ̂2, we have

Σ . (γ̂, σ̂, �, free(ê)) ⇓′fre (γ̂, σ̂2, �, skip) by Vanilla C rule Free.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, free(e)) ⇓tfre (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, free(ê)) ⇓′fre
(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and fre ∼= fre by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, pfree(e)) ⇓tfrep (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, pfree(e)) ⇓tfrep (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2

rule Private Free, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), γ(x) = (l, private bty∗),
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(acc = 0) ∧ (bid = none), (bty = int) ∨ (bty = float), and PFree(σ1, l) = σ2.

Given (γ̂, σ̂, �, free(ê)) such that (γ, σ, ∆, χ, bid, acc, pfree(e)) ∼=ψ (γ̂, σ̂, �, free(ê)), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and pfree(e) ∼=ψ free(ê). Given (γ, σ, ∆, χ, bid, acc, pfree(e)) ⇓tfrep (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ pfree(e). Therefore, by Lemma 3.2.3 we have pfree(e) ∼= free(ê). By

Definition 3.2.10 we have Erase(pfree(e)) = free(Erase(e)) and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), by the inductive hypothesis we

have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, x̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, x) ∼=ψ1 (γ̂, σ̂1, �, x̂) and c1 ∼= d1.

Given x 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and x ∼=ψ x̂. By

Definition 3.2.18 and Definition 3.2.10 we have x = x̂.

Given γ(x) = (l, private bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂,

(l, 0) ∼=ψ (l̂, 0), and private bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given PFree(γ, σ1, l) = (σ2, l, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), l ∼=ψ l̂, GetLocationSwap(l, j) = l′, ψ2 = ψ[l′], and

SwapMemory(σ̂2, ψ2) = σ̂3, by Lemma 3.2.39 we have Free(σ̂1, l̂, γ̂) = σ̂2, such that (γ, σ2) ∼=ψ2
(γ̂, σ̂2).

Given (γ̂, σ̂, �, free(ê)), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), and Free(σ̂1, l̂) = σ̂2, we have

Σ . (γ̂, σ̂, �, free(ê)) ⇓′fre (γ̂, σ̂2, �, skip) by Vanilla C rule Free.

Given (γ, σ2) ∼=ψ2
(γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ2

(γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, pfree(e)) ⇓tfrep (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ2
(γ̂, σ̂, �, free(ê))

⇓′fre (γ̂, σ̂2, �, skip), Π ∼=ψ2
Σ, and frep ∼= fre by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds (γ1, σ2, ∆2, χ1, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds (γ1, σ2, ∆2, χ1, bid, acc, skip) by Location-tracking SMC2 rule

Declaration Assignment, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), and (γ1, σ1, ∆1,

χ1, bid, acc, x = e) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip).
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Given (γ̂, σ̂, �, t̂y x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, ty x = e) ∼=ψ (γ̂, σ̂, �, t̂y x̂ = ê), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x = e ∼=ψ t̂y x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds

(γ1, σ2, ∆2, χ1, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ty x = e. Therefore, by Lemma 3.2.3 we

have ty x = e ∼= t̂y x̂ = ê. By Definition 3.2.10 we have Erase(ty x = e) = Erase(ty) Erase(x) = Erase(e),

Erase(ty) = t̂y , Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given ty ∼= t̂y and x = x̂, by Definition 3.2.10 we have ty x ∼= t̂y x̂. Given (γ, σ) ∼=ψ (γ̂, σ̂), by Lemma 4.2.3 we

have (γ̂, σ̂, �, t̂y x̂) such that (γ̂, σ̂, �, t̂y x̂) ∼=ψ (γ, σ, ∆, χ, bid, acc, ty x) by Definition 4.2.1. Given (γ, σ,

∆, χ, bid, acc, ty x) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), by the inductive hypothesis we have (γ̂, σ̂, �, t̂y x) ⇓′d1

(γ̂1, σ̂1, �, skip) and ψ1 such that (γ1, σ1, ∆1, χ1, bid, acc, skip) ∼=ψ1 (γ̂1, σ̂1, �, skip). Given pfree(e) /∈ ty x,

we have ψ1 = ψ by Definition 3.2.11. By Definition 4.2.1 we have (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given x = x̂ and e ∼= ê, by Definition 3.2.10 we have x = e ∼= x̂ = ê. Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by

Lemma 4.2.3 we have (γ̂1, σ̂1, �, x̂ = ê) such that (γ̂1, σ̂1, �, x̂ = ê) ∼=ψ (γ1, σ1, ∆1, χ1, bid, acc, x = e).

Given (γ1, σ1, ∆1, χ1, bid, acc, x = e) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), by the inductive hypothesis we have

(γ̂1, σ̂1, �, x = ê) ⇓′d2
(γ̂1, σ̂2, �, skip) and ψ2 such that (γ1, σ2, ∆2, χ1, bid, acc, skip) ∼=ψ2

(γ̂1, σ̂2, �, skip).

Given pfree(e) /∈ x = e, we have ψ2 = ψ by Definition 3.2.11. By Definition 4.2.1, we have (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given (γ̂, σ̂, �, t̂y x̂ = ê), (γ̂, σ̂, �, t̂y x) ⇓′d1
(γ̂1, σ̂1, �, skip), and (γ̂1, σ̂1, �, x = ê) ⇓′d2

(γ̂1, σ̂2, �, skip),

we have Σ . (γ̂, σ̂, �, t̂y x̂ = ê) ⇓′ds (γ̂1, σ̂2, �, skip) by Vanilla C rule Declaration Assignment.

Given (γ1, σ2) ∼=ψ (γ̂1, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds (γ1, σ2, ∆2, χ1, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂ = ê)

⇓′ds (γ̂1, σ̂2, �, skip), Π ∼=ψ Σ, and ds ∼= ds by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e1] = e2) ⇓tdas (γ1, σ2,∆2, χ1, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds (γ1, σ2,∆2, χ1, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆1, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆1, χ, bid, acc, skip) by Location-tracking SMC2 rule

Public Declaration, we have (ty = public bty) ∨ (ty = char), acc = 0, l = φ(), γ1 = γ[x → (l, ty)], ω =
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EncodeVal(ty ,NULL), and σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty ,public, 1))].

Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, ∆, χ, bid, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x ∼=ψ t̂y x̂. Given (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆1, χ, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ ty x. Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have

Erase(ty x) = Erase(ty) Erase(x), Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y .

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l, ty)], x = x̂, l = l̂, ty ∼= t̂y , and (γ, σ) ∼=ψ (γ̂, σ̂), by Lemma 3.2.34 we have γ̂1 = γ̂[x̂ →

(l̂, b̂ty)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodeVal(ty ,NULL), and ty ∼= t̂y , by Lemma 3.2.40 we have ω̂ = EncodeVal(b̂ty , NULL) such that

ω ∼=ψ ω̂.

Given σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty , public, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂), l = l̂, ω ∼=ψ ω̂, and ty ∼= t̂y , by

Lemma 3.2.35 we have σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1))] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, b̂ty x̂), l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, b̂ty)], ω̂ = EncodeVal(b̂ty ,NULL), and σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1,

PermL(Freeable, b̂ty ,public, 1))], we have Σ . (γ̂, σ̂, �, b̂ty x̂) ⇓′d (γ̂1, σ̂1, �, skip) by Vanilla C rule Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 4.2.1 we have (γ1, σ1, ∆1, χ, bid, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆1, χ, bid, acc, skip) ∼= (γ̂, σ̂, �, b̂ty x̂) ⇓′d
(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and d ∼= d by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td1 (γ1, σ1, ∆1, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td1 (γ1, σ1, ∆1, χ, bid, acc, skip) by Location-tracking SMC2 rule Private

Declaration, we have ((ty = bty) ∨ (ty = private bty)) ∧ ((bty = int) ∨ (bty = float)), (acc = 0)∧ (bid = none),

l = φ(), γ1 = γ[x → (l,private bty)], ω = EncodeVal(ty , NULL), and σ1 = σ[l → (ω,private bty , 1,

PermL(Freeable, private bty , private, 1))].
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Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, ∆, χ, bid, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x ∼=ψ t̂y x̂. Given (γ, σ, ∆, χ, bid, acc, ty x) ⇓td1 (γ1, σ1, ∆1, χ, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ ty x. Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have

Erase(ty x) = Erase(ty) Erase(x), Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y .

Given ty ∼= t̂y and ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), by Definition 3.2.6 we have

bty ∼= b̂ty . Therefore, we have private bty ∼= b̂ty by Definition 3.2.6.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l,private bty)], x = x̂, l = l̂, private bty , and (γ, σ) ∼= (γ̂, σ̂), by Lemma 3.2.34 we have

γ̂1 = γ̂[x̂ → (l̂, b̂ty)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodeVal(private bty ,NULL), and private bty ∼= b̂ty , by Lemma 3.2.40 we have ω̂ = EncodeVal(b̂ty ,

NULL) such that ω ∼=ψ ω̂.

Given σ1 = σ[l → (ω,private bty , 1,PermL(Freeable, private bty , private, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂), l = l̂, ω ∼=ψ

ω̂, and private bty ∼= b̂ty , by Lemma 3.2.35 we have σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1))]

such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, b̂ty x̂), l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, b̂ty)], ω̂ = EncodeVal(b̂ty ,NULL), and σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1,

PermL(Freeable, b̂ty ,public, 1))], we have Σ . (γ̂, σ̂, �, b̂ty x̂) ⇓′d (γ̂1, σ̂1, �, skip) by Vanilla C rule Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 4.2.1 we have (γ1, σ1, ∆1, χ, bid, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓td1 (γ1, σ1, ∆1, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, b̂ty x̂) ⇓′d
(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and d1 ∼= d by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td2 (γ1, σ1, ∆1, χ1, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td2 (γ1, σ1, ∆1, χ1, bid, acc, skip) by Location-tracking SMC2 rule Private

Declaration (Inside a Private - Conditioned If Else Branch), we have ((ty = bty)∨(ty = private bty))∧((bty = int)∨

(bty = float)), (acc > 0)∧ ((bid = then)∨ (bid = else)), l = φ(), χ1 = l :: χ[acc], γ1 = γ[x → (l,private bty)],

ω = EncodeVal(ty ,NULL), and σ1 = σ[l → (ω,private bty , 1,PermL(Freeable, private bty , private, 1))].
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Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, ∆, χ, bid, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x ∼=ψ t̂y x̂. Given (γ, σ, ∆, χ, bid, acc, ty x) ⇓td2 (γ1, σ1, ∆1, χ1, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ ty x. Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have

Erase(ty x) = Erase(ty) Erase(x), Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y .

Given ty ∼= t̂y and ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), by Definition 3.2.6 we have

bty ∼= b̂ty . Therefore, we have private bty ∼= b̂ty by Definition 3.2.6.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l,private bty)], x = x̂, l = l̂, private bty , and (γ, σ) ∼= (γ̂, σ̂), by Lemma 3.2.34 we have

γ̂1 = γ̂[x̂ → (l̂, b̂ty)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodeVal(private bty ,NULL), and private bty ∼= b̂ty , by Lemma 3.2.40 we have ω̂ = EncodeVal(b̂ty ,

NULL) such that ω ∼=ψ ω̂.

Given σ1 = σ[l → (ω,private bty , 1,PermL(Freeable, private bty , private, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂), l = l̂, ω ∼=ψ

ω̂, and private bty ∼= b̂ty , by Lemma 3.2.35 we have σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1))]

such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (γ̂, σ̂, �, b̂ty x̂), l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, b̂ty)], ω̂ = EncodeVal(b̂ty ,NULL), and σ̂1 = σ̂[l̂ → (ω̂, b̂ty , 1,

PermL(Freeable, b̂ty ,public, 1))], we have Σ . (γ̂, σ̂, �, b̂ty x̂) ⇓′d (γ̂1, σ̂1, �, skip) by Vanilla C rule Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 4.2.1 we have (γ1, σ1, ∆1, χ1, bid, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓td2 (γ1, σ1, ∆1, χ1, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, b̂ty x̂) ⇓′d
(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and d2 ∼= d by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ, bid, acc, skip) by Location-tracking SMC2 rule

Public Pointer Declaration, we have (ty = public bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))),

GetIndirection(∗) = i, acc = 0, l = φ(), γ1 = γ[x → (l,public bty∗)], ω = EncodePtr(public bty∗, [1,
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[(ldefault , 0)], [1], i]), and σ1 = σ[l → (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1))].

Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, ∆, χ, bid, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x ∼=ψ t̂y x̂. Given (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ ty x. Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have

Erase(ty x) = Erase(ty) Erase(x), Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y

such that ∗ = ∗.

Given GetIndirection(∗) = i and ∗ = ∗, by Lemma 3.2.49 we have GetIndirection(∗) = î such that i = î.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l,public bty∗)], x = x̂, l = l̂, (γ, σ) ∼=ψ (γ̂, σ̂), and public bty∗ ∼= b̂ty∗, by Lemma 3.2.34

we have γ̂1 = γ̂[x̂ → (l̂, b̂ty∗)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodePtr(public bty∗, [1, [(ldefault , 0)], [1], i]), public bty∗ ∼= b̂ty∗, i = î, and [1, [(ldefault , 0)], [1], i]

∼=ψ [1, [(l̂default , 0)], [1], î], by Lemma 3.2.42 we have ω̂ = EncodePtr(t̂y∗, [1, [(l̂default , 0)], [1], î]) such that ω ∼=ψ ω̂.

Given σ1 = σ[l → (ω, public bty∗, 1, PermL(Freeable, public bty∗,public, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂), l = l̂,

ω ∼=ψ ω̂, and public bty∗ ∼= b̂ty∗, by Lemma 3.2.35 we have σ̂1 = σ̂[l̂ → (ω̂, t̂y , 1, PermL(Freeable, t̂y , public,

1))] such that (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given (γ̂, σ̂, �, t̂y x̂), (t̂y = b̂ty∗), GetIndirection(∗) = î, l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, t̂y)], ω̂ = EncodePtr(t̂y∗,

[1, [(l̂default , 0)], [1], î]), and σ̂1 = σ̂[l̂ → (ω̂, t̂y , 1, PermL(Freeable, t̂y , public, 1))], we have Σ. (γ̂, σ̂, �, t̂y x̂)

⇓′dp (γ̂1, σ̂1, �, skip) by Vanilla C rule Pointer Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 4.2.1 we have (γ1, σ1, ∆, χ, bid, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂) ⇓′dp

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and dp ∼= dp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp1 (γ1, σ1, ∆, χ, bid, acc, skip)
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Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp1 (γ1, σ1, ∆, χ, bid, acc, skip) by Location-tracking SMC2 rule Private

Pointer Declaration, we have ((ty = bty∗) ∨ (ty = private bty∗)) ∧ ((bty = int) ∨ (bty = float)), (acc =

0)∧ (bid = none), GetIndirection(∗) = i, l = φ(), γ1 = γ[x → (l,private bty∗)], ω = EncodePtr(private bty∗,

[1, [(ldefault , 0)], [1], i]), and σ1 = σ[l → (ω,private bty∗, 1, PermL(Freeable, private bty∗, private, 1))].

Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, ∆, χ, bid, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x ∼=ψ t̂y x̂. Given (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp1 (γ1, σ1, ∆, χ, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ ty x. Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have

Erase(ty x) = Erase(ty) Erase(x), Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y

such that ∗ = ∗.

Given ((ty = bty∗)∨(ty = private bty∗))∧((bty = int)∨(bty = float)) and ty ∼= t̂y , we have private bty∗ ∼= b̂ty∗

and bty ∼= b̂ty by Definition 3.2.6.

Given GetIndirection(∗) = i and ∗ = ∗, by Lemma 3.2.49 we have GetIndirection(∗) = î such that i = î.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l,private bty∗)], x = x̂, l = l̂, (γ, σ) ∼=ψ (γ̂, σ̂), and private bty∗ ∼= b̂ty∗, by Lemma 3.2.34

we have γ̂1 = γ̂[x̂ → (l̂, b̂ty∗)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i]), i = î, private bty∗ ∼= b̂ty∗, and [1, [(ldefault ,

0)], [1], i] ∼=ψ [1, [(l̂default , 0)], [1], î], by Lemma 3.2.42 we have ω̂ = EncodePtr(b̂ty∗, [1, [(l̂default , 0)], [1], î])

such that ω ∼=ψ ω̂.

Given σ1 = σ[l → (ω, private bty∗, 1, PermL(Freeable, private bty∗,private, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂),

private bty∗ ∼= b̂ty∗, l = l̂, and ω ∼=ψ ω̂, by Lemma 3.2.35 we have σ̂1 = σ̂[l̂ → (ω̂, b̂ty∗, 1, PermL(Freeable,

t̂y ,public, 1))] such that (γ1, σ1) ∼= (γ̂1, σ̂1).

Given (γ̂, σ̂, �, t̂y x̂), (t̂y = b̂ty∗), GetIndirection(∗) = î, l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, b̂ty∗)], ω̂ =

EncodePtr(b̂ty∗, [1, [(l̂default , 0)], [1], î]), and σ̂1 = σ̂[l̂ → (ω̂, b̂ty∗, 1, PermL(Freeable, t̂y , public, 1))], we

have Σ . (γ̂, σ̂, �, t̂y x̂) ⇓′dp (γ̂1, σ̂1, �, skip) by Vanilla C rule Pointer Declaration.
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Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 4.2.1 we have (γ1, σ1, ∆, χ, bid, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp1 (γ1, σ1, ∆, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂) ⇓′dp

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and dp1 ∼= dp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp2 (γ1, σ1, ∆, χ1, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp2 (γ1, σ1, ∆, χ1, bid, acc, skip) by Location-tracking SMC2 rule

Private Pointer Declaration, we have ((ty = bty∗) ∨ (ty = private bty∗)) ∧ ((bty = int) ∨ (bty = float)),

(acc > 0) ∧ ((bid = then) ∨ (bid = else)), GetIndirection(∗) = i, l = φ(), γ1 = γ[x → (l,private bty∗)], ω =

EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i]), and σ1 = σ[l → (ω,private bty∗, 1, PermL(Freeable, private

bty∗, private, 1))].

Given (γ̂, σ̂, �, t̂y x̂) such that (γ, σ, ∆, χ, bid, acc, ty x) ∼=ψ (γ̂, σ̂, �, t̂y x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ty x ∼=ψ t̂y x̂. Given (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp2 (γ1, σ1, ∆, χ1, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ ty x. Therefore, by Lemma 3.2.3 we have ty x ∼= t̂y x̂. By Definition 3.2.10 we have

Erase(ty x) = Erase(ty) Erase(x), Erase(ty) = t̂y and Erase(x) = x̂ where x = x̂. Therefore, we have ty ∼= t̂y

such that ∗ = ∗.

Given ((ty = bty∗)∨(ty = private bty∗))∧((bty = int)∨(bty = float)) and ty ∼= t̂y , we have private bty∗ ∼= b̂ty∗

and bty ∼= b̂ty by Definition 3.2.6.

Given GetIndirection(∗) = i and ∗ = ∗, by Lemma 3.2.49 we have GetIndirection(∗) = î such that i = î.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given γ1 = γ[x → (l,private bty∗)], x = x̂, l = l̂, (γ, σ) ∼=ψ (γ̂, σ̂), and private bty∗ ∼= b̂ty∗, by Lemma 3.2.34

we have γ̂1 = γ̂[x̂ → (l̂, b̂ty∗)] such that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given ω = EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i]), i = î, private bty∗ ∼= b̂ty∗, and [1, [(ldefault , 0)], [1], i]

∼=ψ [1, [(l̂default , 0)], [1], î], by Lemma 3.2.42 we have ω̂ = EncodePtr(b̂ty∗, [1, [(l̂default , 0)], [1], î]) such that ω ∼=ψ

ω̂.
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Given σ1 = σ[l → (ω, private bty∗, 1, PermL(Freeable, private bty∗,private, 1))], (γ1, σ) ∼=ψ (γ̂1, σ̂),

private bty∗ ∼= b̂ty∗, l = l̂, and ω ∼=ψ ω̂, by Lemma 3.2.35 we have σ̂1 = σ̂[l̂ → (ω̂, b̂ty∗, 1, PermL(Freeable,

t̂y ,public, 1))] such that (γ1, σ1) ∼= (γ̂1, σ̂1).

Given (γ̂, σ̂, �, t̂y x̂), (t̂y = b̂ty∗), GetIndirection(∗) = î, l̂ = φ(), γ̂1 = γ̂[x̂ → (l̂, b̂ty∗)], ω̂ =

EncodePtr(b̂ty∗, [1, [(l̂default , 0)], [1], î]), and σ̂1 = σ̂[l̂ → (ω̂, b̂ty∗, 1, PermL(Freeable, t̂y , public, 1))], we

have Σ . (γ̂, σ̂, �, t̂y x̂) ⇓′dp (γ̂1, σ̂1, �, skip) by Vanilla C rule Pointer Declaration.

Given (γ1, σ1) ∼=ψ (γ̂1, σ̂1), by Definition 4.2.1 we have (γ1, σ1, ∆, χ1, bid, acc, skip) ∼=ψ (γ̂1, σ̂1, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp1 (γ1, σ1, ∆, χ1, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x̂) ⇓′dp

(γ̂1, σ̂1, �, skip), Π ∼=ψ Σ, and dp2 ∼= dp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tr (γ, σ, ∆, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tr (γ, σ, ∆, χ, bid, acc, v) by Location-tracking SMC2 rule Read Public

Variable, we have γ(x) = (l,public bty), σ(l) = (ω, public bty , 1,PermL(Freeable,public bty ,public, 1)), and

DecodeVal(public bty , 1, ω) = v.

Given (γ̂, σ̂, �, x̂) such that (γ, σ,∆, χ, bid, acc, x)∼=ψ (γ̂, σ̂, �, x̂), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,public bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by public

bty ∼= b̂ty by Lemma 3.2.14.

Given σ(l) = (ω,public bty , 1, PermL(Freeable, public bty , public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.15 we have σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, bty ,public, 1)) where ω ∼=ψ ω̂.

Given DecodeVal(public bty , 1, ω) = v, public bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(b̂ty ,

1, ω̂) = v̂ and v ∼=ψ v̂.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty), σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1)), and DecodeVal(b̂ty , 1,

ω̂) = v̂, we have Σ . (γ̂, σ̂, �, x̂) ⇓′r (γ̂, σ̂, �, v̂) by Vanilla C rule Read Variable.
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Given (γ, σ) ∼=ψ (γ̂, σ̂) and v ∼=ψ v̂, by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, v̂).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x) ⇓tr (γ, σ, ∆, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r (γ̂, σ̂, �, v̂),

Π ∼=ψ Σ, and r ∼= r by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tr1 (γ, σ, ∆, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tr1 (γ, σ, ∆, χ, bid, acc, v) by Location-tracking SMC2 rule Read Public

Variable, we have γ(x) = (l,private bty), σ(l) = (ω,private bty , 1, PermL(Freeable,private bty ,private, 1)), and

DecodeVal(private bty , 1, ω) = v.

Given (γ̂, σ̂, �, x̂) such that (γ, σ,∆, χ, bid, acc, x)∼=ψ (γ̂, σ̂, �, x̂), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,private bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by private

bty ∼= b̂ty by Lemma 3.2.14.

Given σ(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.15 we have σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, bty ,public, 1)) where ω ∼=ψ ω̂.

Given DecodeVal(private bty , 1, ω) = v, private bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(b̂ty ,

1, ω̂) = v̂ and v ∼=ψ v̂.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty), σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty ,public, 1)), and DecodeVal(b̂ty , 1,

ω̂) = v̂, we have Σ . (γ̂, σ̂, �, x̂) ⇓′r (γ̂, σ̂, �, v̂) by Vanilla C rule Read Variable.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and v ∼=ψ v̂, by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, v̂).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x) ⇓tr1 (γ, σ, ∆, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′r (γ̂, σ̂, �, v̂),

Π ∼=ψ Σ, and r1 ∼= r by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ2, ∆2, χ, bid, acc, skip)
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Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule Public

Write Variable, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), v 6= skip,

acc = 0, γ(x) = (l,public bty), and T_UpdateVal(σ1, l, v, ∆, χ, bid, acc, public bty) = (σ2,∆2).

Given (γ̂, σ̂, �, x̂ = ê) such that (γ, σ, ∆, χ, bid, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ2, ∆2, χ, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we

have Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have

e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼= (γ, ∆, χ, bid, σ, acc, e).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), by the inductive hypothesis we have (γ̂, σ̂, �,

ê) ⇓′d1
(γ̂, σ̂1, �, v̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ1

(γ̂, σ̂1, �, v̂) and c1 ∼= d1.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip and by Lemma 4.2.1 we have ψ1 = ψ. By

Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.

Given γ(x) = (l,public bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by public

bty ∼= b̂ty by Lemma 3.2.14.

Given T_UpdateVal(σ1, l, v, ∆, χ, bid, acc, public bty) = (σ2,∆2), (γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, v ∼=ψ v̂, and

public bty ∼= b̂ty , by Lemma 4.2.4 we have UpdateVal(σ̂1, l̂, v̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty), and UpdateVal(σ̂1, l̂, v̂, b̂ty) =

σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′w (γ̂, σ̂2, �, skip) by Vanilla C rule Write.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′w
(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and w ∼= w by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw2 (γ, σ2, ∆2, χ, bid, acc, skip)
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Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw2 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private Write Variable, we have Label(e, γ) = private, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v),

v 6= skip, γ(x) = (l,private bty), and T_UpdateVal(σ1, l, v, ∆1, χ, bid, acc, private bty) = (σ2, ∆2).

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw2 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By

Definition 3.2.10 we have Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê.

Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e) by Definition 4.2.1. Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), by the inductive

hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ1

(γ̂, σ̂1, �, v̂)

and c1 ∼= d1. Given v 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and

v ∼=ψ v̂.

Given v 6= skip and v ∼= v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private bty), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by private

bty ∼= b̂ty by Lemma 3.2.14.

Given T_UpdateVal(σ1, l, v, ∆1, χ, bid, acc, private bty) = (σ2,∆2), (γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, v ∼=ψ v̂, and

private bty ∼= b̂ty , by Lemma 4.2.4 we have UpdateVal(σ̂1, l̂, v̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty), and UpdateVal(σ̂1, l̂, v̂, b̂ty) =

σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′w (γ̂, σ̂2, �, skip) by Vanilla C rule Write.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw2 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′w
(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and w2 ∼= w by Definition 4.2.2.
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Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw1 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw1 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Write Private Variable Public Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ,

bid, acc, v), v 6= skip, γ(x) = (l, private bty), and T_UpdateVal(σ1, l, encrypt(v), ∆, χ, bid, acc, private

bty) = (σ2,∆2).

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw1 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By

Definition 3.2.10 we have Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê.

Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ, σ, ∆, χ, bid, acc, e) ∼=ψ

(γ̂, σ̂, �, ê). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ1

(γ̂, σ̂1, �, v̂) and c1 ∼= d1. Given

v 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l, private bty), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty) such that l = l̂ by private

bty ∼= b̂ty by Lemma 3.2.14.

Given T_UpdateVal(σ1, l, encrypt(v),∆, χ, bid, acc, private bty) = (σ2,∆2), (γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, v ∼=ψ v̂,

and private bty ∼= b̂ty , by Lemma 4.2.4 we have UpdateVal(σ̂1, l̂, v̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty), and UpdateVal(σ̂1, l̂, v̂, b̂ty) =

σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′w (γ̂, σ̂2, �, skip) by Vanilla C rule Write.

Given Π . (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw1 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′w
(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and w1 ∼= w by Definition 4.2.2.
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Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp (γ, σ, ∆, χ, bid, acc, (l1, µ1))

Given Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp (γ, σ, ∆, χ, bid, acc, (l1, µ1)) by Location-tracking SMC2 rule Public

Pointer Read Single Location, we have γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public

bty∗, public, 1)), and DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i].

Given (γ̂, σ̂, �, x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l, public bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗,public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44

we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), and

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], we have Σ . (γ̂, σ̂, �, x̂) ⇓′rp (γ̂, σ̂, �, (l̂1, µ̂1)) by Vanilla

C rule Pointer Read Location.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and (l1, µ1) ∼=ψ (l̂1, µ̂1), by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, (l1, µ1))

∼=ψ (γ̂, σ̂, �, (l̂1, µ̂1)). Therefore, we have (γ, σ, ∆, χ, bid, acc, x) ⇓trp (γ, σ, ∆, χ, bid, acc, (l1, µ1)) ∼=ψ

(γ̂, σ̂, �, x̂) ⇓′rp (γ̂, σ̂, �, (l̂1, µ̂1)), Π ∼=ψ Σ, and rp ∼= rp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp2 (γ, σ, ∆, χ, bid, acc, (l1, µ1))

Given Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp2 (γ, σ, ∆, χ, bid, acc, (l1, µ1)) by Location-tracking SMC2 rule Private

Pointer Read Single Location, we have γ(x) = (l, private bty∗), σ(l) = (ω, private bty∗, 1, PermL(Freeable,

private bty∗, private, 1)), and
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DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i].

Given (γ̂, σ̂, �, x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l, private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,private bty∗, 1 PermL(Freeable, private bty∗, private, 1), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], private bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), and

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], we have Σ . (γ̂, σ̂, �, x̂) ⇓′rp (γ̂, σ̂, �, (l̂1, µ̂1)) by Vanilla C rule

Pointer Read Location.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and (l1, µ1) ∼=ψ (l̂1, µ̂1), by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, (l1, µ1))

∼=ψ (γ̂, σ̂, �, (l̂1, µ̂1)). Therefore, we have (γ, σ, ∆, χ, bid, acc, x) ⇓trp2 (γ, σ, ∆, χ, bid, acc, (l1, µ1)) ∼=ψ

(γ̂, σ̂, �, x̂) ⇓′rp (γ̂, σ̂, �, (l̂1, µ̂1)), Π ∼=ψ Σ, and rp2 ∼= rp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp1 (γ, σ, ∆, χ, bid, acc, [α, l, j, i])

Given Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp1 (γ, σ, ∆, χ, bid, acc, [α, l, j, i]) by Location-tracking SMC2 rule Private

Pointer Read Multiple Locations, we have γ(x) = (l,private bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω,

private bty∗, α, PermL(Freeable, private bty∗, private, α)), and DecodePtr(private bty∗, α, ω) = [α, l, j, i].

Given (γ̂, σ̂, �, x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private
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bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗,private, α)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j, i],

private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, i] ∼=ψ

[1, (l̂1, µ̂1), [1], i] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)), and DecodePtr(b̂ty∗,

1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], we have Σ.(γ̂, σ̂, �, x̂) ⇓′rp (γ̂, σ̂, �, (l̂1, µ̂1)) by Vanilla C rule Pointer Read Location.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and [α, l, j, i] ∼=ψ (l̂1, µ̂1), by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, [α, l, j, i])

∼=ψ (γ̂, σ̂, �, (l̂1, µ̂1)). Therefore, we have (γ, σ, ∆, χ, bid, acc, x) ⇓trp1 (γ, σ, ∆, χ, bid, acc, [α, l, j, i]) ∼=ψ

(γ̂, σ̂, �, x̂) ⇓′rp (γ̂, σ̂, �, (l̂1, µ̂1)), Π ∼=ψ Σ, and rp1 ∼= rp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Public Pointer Write Single Location, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ,

bid, acc, (le, µe)), γ(x) = (l,public bty∗), σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)),

acc = 0, DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], and T_UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], ∆1,

χ, bid, acc, public bty∗) = (σ2, ∆2, 1).

Given (γ̂, σ̂, �, x̂ = ê) such that (γ, σ, ∆, χ, bid, acc, x = e) ∼= (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1 we have

(γ, σ) ∼= (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ2, ∆2, χ, bid, acc, skip), by

Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By Definition 3.2.10 we

have Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê. Therefore, we have

e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê)∼=ψ (γ, σ,∆, χ, bid,

acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)), by the inductive hypothesis we have
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(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (le, µ̂e)) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, (le, µe)) ∼=ψ1

(γ̂, σ̂1, �, (l̂e, µ̂e))

and c1 ∼= d1. Given (le, µe) 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1)

and (le, µe) ∼=ψ (l̂e, µ̂e).

Given γ(x) = (l,public bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44

we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given T_UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], ∆1, χ, bid, acc, public bty∗) = (σ2,∆2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1),

(l, 0) ∼=ψ (l̂, 0), public bty∗ ∼= b̂ty∗, and [1, [(le, µe)], [1], i] ∼=ψ [1, [(l̂e, µ̂e)], [1], î], by Lemma 4.2.6 we have

UpdatePtr(σ̂, (l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], and UpdatePtr(σ̂1, (l̂, 0), [1,

[(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1), we have Σ. (γ̂, σ̂, �, x̂ = ê) ⇓′wp (γ̂, σ̂2, �, skip) by Vanilla C rule Pointer

Assign Location.

Given (γ, σ2) ∼=ψ (γ, σ2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2,�, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′wp

(γ̂, σ̂2,�, skip), Π ∼=ψ Σ, and wp ∼= wp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp2 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp2 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private Pointer Write Multiple Locations, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [α, l, j, i]),

γ(x) = (l,private bty∗), (bty = int) ∨ (bty = float), and T_UpdatePtr(σ1, (l, 0), [α, l, j, i], ∆1, χ, bid,

acc, private bty∗) = (σ2,∆2, 1).
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Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp2 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By

Definition 3.2.10 we have Erase(x = e) = x̂ = ê where x = x̂ and e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ,

∆, χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [α, l, j, i]), by the inductive

hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, [α, l, j, i]) ∼=ψ1

(γ̂, σ̂1, �, (l̂e, µ̂e)) and c1 ∼= d1. Given [α, l, j, i] 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we

have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [α, l, j, i] ∼=ψ (l̂e, µ̂e).

Given γ(x) = (l,private bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given T_UpdatePtr(σ, (l, 0), [α, l, j, i], ∆1, χ, bid, acc, private bty∗) = (σ1,∆2, 1), [α, l, j, i] ∼=ψ (l̂e, µ̂e),

private bty∗ ∼= b̂ty∗, and (γ, σ) ∼=ψ (γ̂, σ̂), (l, 0) ∼=ψ (l̂, 0), by Lemma 4.2.6 we have UpdatePtr(σ̂, (l̂, 0), [1, [(l̂e,

µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], and UpdatePtr(σ̂1, (l̂, 0),

[1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′wp (γ̂, σ̂2, �, skip) by Vanilla C rule Pointer

Assign Location.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = [α, l, j, i]) ⇓twp2 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê)

⇓′wp (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wp2 ∼= wp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp1 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp1 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private Pointer Assign Single Location, we have γ(x) = (l, private bty∗), (bty = int) ∨ (bty = float), (γ, σ, ∆,
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χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)), σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗,

private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, i], Label(e, γ) = public, and T_UpdatePtr(σ1, (l, 0),

[1, [(le, µe)], [1], i], ∆1, χ, bid, acc, private bty∗) = (σ2,∆2, 1).

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp1 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By

Definition 3.2.10 we have Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê.

Therefore, we have e ∼= ê.

Given γ(x) = (l, private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê)∼=ψ (γ, σ,∆, χ, bid,

acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, (le, µe)) ∼=ψ1

(γ̂, σ̂1, �, (l̂e, µ̂e))

and c1 ∼= d1. Given (le, µe) 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1)

and (le, µe) ∼=ψ (l̂e, µ̂e).

Given σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α,

l, j, i], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where

[α, l, j, i] ∼=ψ [1, (l̂1, µ̂1), [1], i] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given T_UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i],∆1, χ, bid, acc, private bty∗) = (σ2,∆2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1),

(l, 0) ∼=ψ (l̂, 0), private bty∗ ∼= b̂ty∗, and [1, [(le, µe)], [1], i] ∼=ψ [1, [(l̂e, µ̂e)], [1], î], by Lemma 4.2.6 we have

UpdatePtr(σ̂, (l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], and UpdatePtr(σ̂1, (l̂, 0), [1,

[(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1), we have Σ. (γ̂, σ̂, �, x̂ = ê) ⇓′wp (γ̂, σ̂2, �, skip) by Vanilla C rule Pointer
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Assign Location.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp1 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′wp

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wp1 ∼= wp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp (γ, σ, ∆, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp (γ, σ, ∆, χ, bid, acc, v) by Location-tracking SMC2 rule Private

Pointer Dereference Single Location, we have γ(x) = (l,public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable,

public bty∗, public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], and DerefPtr(σ,public bty , (l1, µ1))

= (v, 1).

Given (γ̂, σ̂, �, ∗x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x) ∼=ψ (γ̂, σ̂, �, ∗x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x ∼=ψ ∗x̂. Given (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp (γ, σ, ∆, χ, bid, acc, v), by Lemma 4.2.2

we have (l, µ) /∈ ∗x. Therefore, by Lemma 3.2.3 we have ∗x ∼= ∗x̂. By Definition 3.2.10 we have Erase(∗x) = ∗x̂

where x = x̂.

Given γ(x) = (l,public bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14. Therefore, by Definition 3.2.6 we have bty ∼= b̂ty .

Given σ(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗,public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ1).

Given DerefPtr(σ,public bty , (l1, µ1)) = (v, 1), (γ, σ) ∼=ψ (γ̂, σ̂), bty ∼= b̂ty , and (l1, µ1) ∼=ψ (l̂1, µ̂1), by Lemma

3.2.58 we have DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1) such that v ∼=ψ v̂.

Given (γ̂, σ̂, �, ∗x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)), DecodeVal(b̂ty∗,

1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], and DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1), we have Σ . (γ̂, σ̂, �, ∗x̂) ⇓′rdp (γ̂, σ̂, �, v̂)
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by Vanilla C rule Pointer Dereference.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and v ∼=ψ v̂, by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, v̂).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp (γ, σ, ∆, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, ∗x̂) ⇓′rdp (γ̂, σ̂, �, v̂),

Π ∼=ψ Σ, and rdp ∼= rdp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp1 (γ, σ, ∆, χ, bid, acc, (l2, µ2))

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp1 (γ, σ, ∆, χ, bid, acc, (l2, µ2)) by Location-tracking SMC2 rule

Public Pointer Dereference Single Location Higher Level Indirection, we have γ(x) = (l,public bty∗), σ(l) =

(ω,public bty∗, 1, PermL(Freeable, public bty∗,public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i],

i > 1, and DerefPtrHLI(σ, public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 1).

Given (γ̂, σ̂, �, ∗x̂) and ψ such that (γ, σ,∆, χ, bid, acc, ∗x)∼=ψ (γ̂, σ̂, �, ∗x̂), by Definition 4.2.1 we have (γ, σ)

∼=ψ (γ̂, σ̂) and ∗x ∼=ψ ∗x̂. Given (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp1 (γ, σ, ∆, χ, bid, acc, (l2, µ2)), by Lemma 4.2.2

we have (l, µ) /∈ ∗x. Therefore, by Lemma 3.2.3 we have ∗x ∼= ∗x̂. By Definition 3.2.10 we have Erase(∗x) = ∗x̂

where x = x̂.

Given γ(x) = (l,public bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14. Therefore, by Definition 3.2.6 we have bty ∼= b̂ty .

Given σ(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗,public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, 0)], [1], i], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44

we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], î] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given i > 1 and i = î, we have î > 1.

Given DerefPtrHLI(σ,public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i−1], 1), (γ, σ) ∼=ψ (γ̂, σ̂), (l1, µ1) ∼=ψ (l̂1, µ̂1),

bty ∼= b̂ty , and i = î, by Lemma 3.2.59 we have DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 1) such

that [1, [(l2, µ2)], [1], i− 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1] and (l2, µ2) ∼=ψ (l̂2, µ̂2).
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Given (γ̂, σ̂, �, ∗x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗,

1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], î > 1, and DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î − 1], 1), we have

Σ . (γ̂, σ̂, �, ∗x̂) ⇓′rdp1 (γ̂, σ̂, �, (l̂2, µ̂2)) by Vanilla C rule Pointer Dereference Higher Level Indirection.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and (l2, µ2) ∼=ψ (l̂2, µ̂2), by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, (l2, µ2))

∼=ψ (γ̂, σ̂, �, (l̂2, µ̂2)). Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp1 (γ, σ, ∆, χ, bid, acc, (l2, µ2)) ∼=ψ

(γ̂, σ̂, �, ∗x̂) ⇓′rdp1 (γ̂, σ̂, �, (l̂2, µ̂2)), Π ∼=ψ Σ, and rdp1 ∼= rdp1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v) by Location-tracking SMC2 rule Private

Pointer Dereference, we have γ(x) = (l,private bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω,private bty∗, α,

PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], and Retrieve_vals(α,

l, j, private bty , σ) = (v, 1).

Given (γ̂, σ̂, �, ∗x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x) ∼=ψ (γ̂, σ̂, �, ∗x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x ∼=ψ ∗x̂. Given (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v), by Lemma 4.2.2

we have (l, µ) /∈ ∗x. Therefore, by Lemma 3.2.3 we have ∗x ∼= ∗x̂. By Definition 3.2.10 we have Erase(∗x) = ∗x̂

where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14. Therefore, by Definition 3.2.6 we have bty ∼= b̂ty .

Given σ(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗,private, α)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

1], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, 1]

∼=ψ [1, (l̂1, µ̂1), [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given Retrieve_vals(α, l, j, private bty , σ) = (v, 1), DeclassifyPtr([α, l, j, 1], private bty∗) = (l1, µ1), (l1, µ1)
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∼=ψ (l̂1, µ̂1), (γ, σ) ∼=ψ (γ̂, σ̂), and private bty ∼= b̂ty , by Lemma 3.2.60 we have DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1)

such that v ∼=ψ v̂.

Given (γ̂, σ̂, �, ∗x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗,

1, ω̂) = [1, [(l̂1, µ1)], [1], 1], and DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (v̂, 1), we have Σ . (γ̂, σ̂, �, ∗x̂) ⇓′rdp (γ̂, σ̂, �, v̂)

by Vanilla C rule Pointer Dereference.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and v ∼=ψ v̂, by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, v̂).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, ∗x̂) ⇓′rdp (γ̂, σ̂, �, v̂),

Π ∼=ψ Σ, and rdp2 ∼= rdp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′, l′, j′, i− 1])

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′, l′, j′, i− 1]) by Location-tracking SMC2

rule Private Pointer Dereference Higher Level Indirection, we have γ(x) = (l,private bty∗), (bty = int) ∨ (bty =

float), σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) =

[α, l, j, i], i > 1, and DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l′, j′), 1).

Given (γ̂, σ̂, �, ∗x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x) ∼=ψ (γ̂, σ̂, �, ∗x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and ∗x ∼=ψ ∗x̂. Given (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′, l′, j′, i− 1]),

by Lemma 4.2.2 we have (l, µ) /∈ ∗x. Therefore, by Lemma 3.2.3 we have ∗x ∼= ∗x̂. By Definition 3.2.10 we have

Erase(∗x) = ∗x̂ where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗,private, α)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j, i],

private bty∗) = (l1, 0), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [α, l, j, i] ∼=ψ

[1, (l̂1, 0), [1], i] such that (l1, 0) ∼=ψ (l̂1, 0) and i = î.
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Given i > 1 and i = î, we have î > 1.

Given DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l′, j′), 1), i = î, (γ, σ) ∼=ψ (γ̂, σ̂), DeclassifyPtr([α, l, j, i],

private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), DeclassifyPtr([α′, l′, j
′
, i − 1], private bty∗) = (l2, µ2), and

private bty∗ ∼= b̂ty∗, by Lemma 3.2.57 we have DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 1) such

that [α′, l′, j′, i− 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1] and (l2, µ2) ∼=ψ (l̂2, µ̂2).

Given (γ̂, σ̂, �, ∗x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗,

1, ω̂) = [1, [(l̂1, µ1)], [1], î], î > 1, σ̂(l̂1) = (ω̂1, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)), and DecodeVal(b̂ty∗,

1, ω̂1) = [1, [(l̂2, µ̂2)], [1], î − 1], we have Σ . (γ̂, σ̂, �, ∗x̂) ⇓′rdp1 (γ̂, σ̂, �, (l̂2, µ̂2)) by Vanilla C rule Pointer

Dereference Higher Level Indirection.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and [α′, l′, j′, i− 1] ∼=ψ (l̂2, µ̂2), by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc,

[α′, l′, j′, i− 1]) ∼=ψ (γ̂, σ̂, �, (l̂2, µ̂2)). Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc,

[α′, l′, j′, i− 1]) ∼=ψ (γ̂, σ̂, �, ∗x̂) ⇓′rdp1 (γ̂, σ̂, �, (l̂2, µ̂2)), Π ∼=ψ Σ, and rdp3 ∼= rdp1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2

rule Public Pointer Dereference Write Public Value, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid,

acc, v), v 6= skip, γ(x) = (l,public bty∗), σ1(l) = (ω, public bty∗, 1, PermL(Freeable,public bty∗, public,

1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], T_UpdateOffset(σ1, (l1, µ1), v, ∆1, χ, bid, acc,

public bty) = (σ2, ∆2, 1), Label(e, γ) = public, and (acc = 0) ∧ (bid = none).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By

Definition 3.2.10 we have Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have

e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,
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bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ1

(γ̂, σ̂1, �, v̂) and c1 ∼= d1. Given

v 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,public bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω,public bty∗, 1, PermL(Freeable,public bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given T_UpdateOffset(σ1, (l1, µ1), v, ∆1, χ, bid, acc, public bty) = (σ2, ∆2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), (l1, µ1) ∼=ψ

(l̂1, µ̂1), public bty ∼= b̂ty , and v ∼=ψ v̂, by Lemma 4.2.5 we have UpdateOffset(σ̂1, (l̂1, µ̂1), v̂, b̂ty) = (σ̂2, 1) such

that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂), v̂ 6= skip. γ̂(x) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], and UpdateOffset(σ̂1, (l̂1,

µ̂1), v̂, b̂ty) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′wdp (γ̂, σ̂2, �, skip) by Vanilla C rule Pointer Dereference

Write Value.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ2, ∆2, χ, bid, acc, skip)∼=ψ (γ̂, σ̂, �, ∗x̂ = ê) ⇓′wdp

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wdp ∼= wdp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Public Pointer Dereference Write Higher Level Indirection, we have (acc = 0) ∧ (bid = none), (γ, σ, ∆, χ, bid,
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acc, e) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, (le, µe)), γ(x) = (l, public bty∗), σ1(l) = (ω, public bty∗, 1,PermL(Freeable,

public bty∗, public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], i > 1, Label(e, γ) = public, and

T_UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1], ∆1, χ, bid, acc, public bty∗) = (σ2,∆2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By

Definition 3.2.10 we have Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have

e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼= (γ, σ, ∆, χ, bid,

acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, (le, µe)) ∼=ψ1

(γ̂, σ̂1, �, (l̂e, µ̂e))

and c1 ∼= d1. Given (le, µe) 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1)

and (le, µe) ∼=ψ (l̂e, µ̂e).

Given γ(x) = (l,public bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44

we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given i > 1 and i = î, we have î > 1.

Given T_UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1] ∆1, χ, bid, acc, private bty∗) = (σ2,∆2, 1), (γ, σ1) ∼=ψ

(γ̂, σ̂1), (l1, µ1) ∼=ψ (l̂1, µ̂1), public bty∗ ∼= b̂ty∗, and [1, [(le, µe)], [1], 1] ∼=ψ [1, [(l̂e, µ̂e)], [1], 1], by Lemma 4.2.6

we have UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], i], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], î > 1, and UpdatePtr(σ̂1,
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(l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′wdp1 (γ̂, σ̂2, �, skip) by Vanilla C

rule Pointer Dereference Write Higher Level Indirection.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê)

⇓′wdp1 (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wdp1 ∼= wdp1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ2, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private Pointer Dereference Write Higher Level Indirection, we have γ(x) = (l,private bty∗), (γ, σ, ∆, χ, bid,

acc, e) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, (le, µe)), σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private,

α)), DecodePtr(private bty∗, α, ω) = [α, l, j, i], and T_UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i− 1] ∆1,

χ, bid, acc, private bty∗) = (σ2,∆2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By

Definition 3.2.10 we have Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have

e ∼= ê.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê)∼=ψ (γ, σ,∆, χ, bid,

acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, (le, µe)) ∼=ψ1

(γ̂, σ̂1, �, (l̂e, µ̂e))

and c1 ∼= d1. Given (le, µe) 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1)

and (le, µe) ∼=ψ (l̂e, µ̂e).

Given σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.
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Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j, i],

private bty∗) = (l1, 0), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], i] where [α, l, j, i] ∼=ψ

[1, (l̂1, 0), [1], î] such that (l1, 0) ∼=ψ (l̂1, 0) and i = î.

Given T_UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i− 1], ∆1, χ, bid, acc, private bty∗) = (σ2, ∆2, 1),

(γ, σ1) ∼=ψ (γ̂, σ̂1), private bty∗ ∼= b̂ty∗, DeclassifyPtr([α, l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1),

and [αe, le, je, i − 1] ∼= [1, [(l̂e, µ̂e)], [1], î − 1], by Lemma 4.2.8 we have UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)],

[1], î− 1], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], î > 1, and UpdatePtr(σ̂1,

(l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′wdp1 (γ̂, σ̂2, �, skip) by Vanilla

C rule Pointer Dereference Write Higher Level Indirection.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê)

⇓′wdp1 (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wdp2 ∼= wdp1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2

rule Private Pointer Dereference Write Private Value, we have γ(x) = (l,private bty∗), (γ, σ, ∆, χ, bid, acc, e)

⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), v 6= skip, σ1(l) = (ω, private bty∗, α, PermL(Freeable,private bty∗,private,

α)), Label(e, γ) = private, (bty = int) ∨ (bty = float), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], acc = 0, and

T_UpdatePriv(σ1, α, l, j, private bty , v, ∆1, χ, bid, acc) = (σ2,∆2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By

Definition 3.2.10 we have Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have

e ∼= ê.
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Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ1

(γ̂, σ̂1, �, v̂) and c1 ∼= d1. Given

v 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂.

Given v 6= skip and v ∼= v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

1], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, 1]

∼=ψ [1, (l̂1, µ̂1), [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given T_UpdatePriv(σ1, α, l, j, private bty , v, ∆1, χ, bid, acc) = (σ2,∆2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), private bty

∼= b̂ty DeclassifyPtr([α, l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), private bty∗ ∼= t̂y , and v ∼=ψ v̂, by

Lemma 4.2.7 we have UpdateOffset(σ̂1, (l̂1, µ̂1), v̂, b̂ty) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], and UpdateOffset(σ̂1, (l̂1,

µ̂1), v̂, b̂ty) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′wdp (γ̂, σ̂2, �, skip) by Vanilla C rule Pointer Dereference

Write Value.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê)

⇓′wdp (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wdp3 ∼= wdp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ2, ∆2, χ, bid, acc, skip)

439



Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private Pointer Dereference Write Public Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1,

∆1, χ, bid, acc, v), v 6= skip, acc = 0, γ(x) = (l, private bty∗), (bty = int) ∨ (bty = float), σ1(l) = (ω,

private bty∗, α, PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], and

T_UpdatePriv(σ1, α, l, j, private bty , encrypt(v), ∆1, χ, bid, acc) = (σ2, ∆2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By

Definition 3.2.10 we have Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have

e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e) by Definition 4.2.1. Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), by the inductive

hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ1

(γ̂, σ̂1, �, v̂)

and c1 ∼= d1. Given v 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and

v ∼=ψ v̂. Given Label(e2, γ) = public, we have Label(v, γ) = public and therefore v = v̂ by Definition 3.2.18 and

Definition 3.2.10.

Given v 6= skip and v ∼= v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

1], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, 1]

∼=ψ [1, (l̂1, µ̂1), [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given v = v̂, by Definition 3.2.18 we have encrypt(v) ∼=ψ v̂. Given T_UpdatePriv(σ1, α, l, j, private bty ,
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encrypt(v), ∆1, χ, bid, acc) = (σ2,∆2, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), DeclassifyPtr([α, l, j, i], private bty∗) =

(l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ1), private bty ∼= b̂ty , and v ∼=ψ v̂, by Lemma 4.2.7 we have UpdateOffset(σ̂1, (l̂1,

µ̂1), v̂, b̂ty) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, v̂), v̂ 6= skip, γ̂(x) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], and UpdateOffset(σ̂1, (l̂1,

µ̂1), v̂, b̂ty) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′wdp (γ̂, σ̂2, �, skip) by Vanilla C rule Pointer Dereference

Write Value.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê)

⇓′wdp (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wdp4 ∼= wdp by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2

rule Private Pointer Dereference Write Higher Level Indirection Multiple Locations, we have γ(x) = (l,private

bty∗), (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [αe, le, je, i− 1]), σ1(l) = (ω,private bty∗, α,

PermL(Freeable,private bty∗, private, α)), Label(e, γ) = private, acc = 0, DecodePtr(private bty∗, α, ω) = [α,

l, j, i], i > 1, and T_UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i− 1], ∆1, χ, bid, acc private bty∗) = (σ2, ∆2, 1).

Given (γ̂, σ̂, �, ∗x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, ∗x = e) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ∗x = e ∼=ψ ∗x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ∗x = e. Therefore, by Lemma 3.2.3 we have ∗x = e ∼= ∗x̂ = ê. By

Definition 3.2.10 we have Erase(∗x = e) = ∗x̂ = Erase(e) where x = x̂ and Erase(e) = ê. Therefore, we have

e ∼= ê.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [αe, le, je, i − 1]), by the inductive
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hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, [αe, le, je, i −

1]) ∼=ψ1
(γ̂, σ̂1, �, (l̂e, µ̂e)) and c1 ∼= d1. Given [αe, le, je, i− 1] 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By

Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [αe, le, je, i− 1] ∼=ψ [1, [(l̂e, µ̂e)], [1], î− 1].

Given σ1(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗, private, α)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l = l̂, by

Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l, j,

i], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where [α, l, j, i]

∼=ψ [1, (l̂1, µ̂1), [1], i] such that (l1, µ1) ∼=ψ (l̂1, µ̂1) and i = î.

Given i > 1 and i = î, we have î > 1.

Given T_UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i − 1], ∆1, χ, bid, acc private bty∗) = (σ2,∆2, 1), (γ, σ1)

∼=ψ (γ̂, σ̂1), private bty∗ ∼= b̂ty∗, DeclassifyPtr([α, l, j, i], private bty∗) = (l1, µ1), (l1, µ1) ∼=ψ (l̂1, µ̂1), and [αe,

le, je, i − 1] ∼=ψ [1, [(l̂e, µ̂e)], [1], î − 1], by Lemma 4.2.8 we have UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î −

1], b̂ty∗) = (σ̂2, 1) such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, ∗x̂ = ê), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, (l̂e, µ̂e)), γ̂(x̂) = (l̂, b̂ty∗), σ̂1(l̂) = (ω̂, b̂ty∗, 1,

PermL(Freeable, b̂ty∗, public, 1)), DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î], î > 1, and UpdatePtr(σ̂1,

(l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1), we have Σ . (γ̂, σ̂, �, ∗x̂ = ê) ⇓′wdp1 (γ̂, σ̂2, �, skip) by Vanilla

C rule Pointer Dereference Write Higher Level Indirection.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, ∗x̂ = ê)

⇓′wdp1 (γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wdp5 ∼= wdp1 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin (γ, σ1, ∆1, χ, bid, acc, v1)

Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin (γ, σ1, ∆1, χ, bid, acc, v1) by Location-tracking SMC2

rule Pre-Increment Public Variable, we have acc = 0, γ(x) = (l, public bty), σ(l) = (ω, public bty , 1,

PermL(Freeable,public bty ,public, 1)), DecodeVal(public bty , 1, ω) = v, v1 =public v +public 1, and

442



T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, public bty) = (σ1,∆1).

Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,public bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,public bty , 1, PermL(Freeable, public bty , public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.15 we have σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, bty ,public, 1)) where ω ∼=ψ ω̂.

Given DecodeVal(public bty , 1, ω) = v, public bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(b̂ty ,

1, ω̂) = v̂ and v ∼=ψ v̂.

Given v1 =public v +public 1 and v ∼=ψ v̂, by Lemma 3.2.22 we have v̂1 = v̂ + 1 such that v1
∼=ψ v̂1.

Given T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, public bty) = (σ1,∆1), public bty ∼= b̂ty (γ, σ) ∼=ψ (γ̂, σ̂), l = l̂, and

v1
∼=ψ v̂1, by Lemma 4.2.4 we have UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1 such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x̂) = (l̂, b̂ty), σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty , public, 1)), DecodeVal(b̂ty ,

1, ω̂) = v̂, v̂1 = v̂ + 1, and UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1, we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′pin (γ̂, σ̂1, �, v̂1) by

Vanilla C rule Pre-Increment Variable.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v1
∼=ψ v̂1, by Definition 4.2.1 we have (γ, σ1,∆1, χ, bid, acc, v1)∼=ψ (γ̂, σ̂1, �, v̂1).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin (γ, σ1, ∆1, χ, bid, acc, v1) ∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′pin

(γ̂, σ̂1, �, v̂1), Π ∼=ψ Σ, and pin ∼= pin by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin1 (γ, σ1, ∆1, χ, bid, acc, v1)

Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin1 (γ, σ1, ∆1, χ, bid, acc, v1) by Location-tracking SMC2 rule

Pre-Increment Private Variable, we have acc = 0, γ(x) = (l,private bty), (bty = int) ∨ (bty = float), σ(l) = (ω,
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private bty , 1, PermL(Freeable,private bty ,private, 1)), DecodeVal(private bty , 1, ω) = v, v1 =private v +private

encrypt(1), and T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, private bty) = (σ1,∆1).

Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,private bty), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,private bty , 1, PermL(Freeable, private bty , private, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.15 we have σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, bty ,public, 1)) where ω ∼=ψ ω̂.

Given DecodeVal(private bty , 1, ω) = v, private bty ∼= b̂ty , and ω ∼=ψ ω̂, by Lemma 3.2.41 we have DecodeVal(b̂ty ,

1, ω̂) = v̂ and v ∼=ψ v̂.

Given encrypt(1), by Definition 3.2.18 we have encrypt(1) ∼=ψ 1. Given v1 =private v +private encrypt(1) and

v ∼=ψ v̂, by Lemma 3.2.22 we have v̂1 = v̂ + 1 such that v1
∼=ψ v̂1.

Given T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, private bty) = (σ1,∆1), (γ, σ) ∼=ψ (γ̂, σ̂), l = l̂, private bty ∼= b̂ty ,

and v1
∼=ψ v̂1, by Lemma 4.2.4 we have UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1 such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x̂) = (l̂, b̂ty), σ̂(l̂) = (ω̂, b̂ty , 1, PermL(Freeable, b̂ty , public, 1)), DecodeVal(b̂ty ,

1, ω̂) = v̂, v̂1 = v̂ + 1, and UpdateVal(σ̂, l̂, v̂1, b̂ty) = σ̂1, we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′pin (γ̂, σ̂1, �, v̂1) by

Vanilla C rule Pre-Increment Variable.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v1
∼=ψ v̂1, by Definition 4.2.1 we have (γ, σ1,∆1, χ, bid, acc, v1)∼=ψ (γ̂, σ̂1, �, v̂1).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin1 (γ, σ1, ∆1, χ, bid, acc, v1) ∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′pin

(γ̂, σ̂1, �, v̂1), Π ∼=ψ Σ, and pin1 ∼= pin by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))
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Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)) by Location-tracking SMC2

rule Pre-Increment Public Pointer Single Location, we have acc = 0, γ(x) = (l,public bty∗), σ(l) = (ω,public

bty∗, 1,PermL(Freeable, public bty∗, public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], ((l2,

µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ), and T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1],∆, χ, bid, acc,

public bty∗) = (σ1,∆1, 1).

Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,public bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by public

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], public bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44 we

have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ), (l1, µ1) ∼=ψ (l̂1, µ̂1), public bty ∼= b̂ty , (γ, σ) ∼=ψ

(γ̂, σ̂), by Lemma 3.2.50 we have GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂) = ((l̂2, µ̂2), 1) such that (l2, µ2) ∼=ψ (l̂2, µ̂2). By

Definition 3.2.14 we have [α, l′, j, 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1].

Given T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], ∆, χ, bid, acc, public bty∗) = (σ1,∆1, 1), (γ, σ) ∼=ψ (γ̂, σ̂),

(l, 0) ∼=ψ (l̂, 0), public bty∗ ∼= b̂ty∗, and [1, [(l2, µ2)], [1], 1] ∼=ψ [1, [(l̂2, µ2)], [1], 1], by Lemma 4.2.6 we have

UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], i],public bty∗) = (σ̂1, 1) such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)),

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty)), and UpdatePtr(σ̂,

(l̂, 0), [1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) = (σ̂1, 1), we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′pin2 (γ̂, σ̂1, �, (l̂2, µ̂2)) by Vanilla C

rule Pre-Increment Pointer.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and (l2, µ2) ∼=ψ (l̂2, µ̂2), by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))
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∼=ψ (γ̂, σ̂1, �, (l̂2, µ̂2)). Therefore, we have (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′pin2 (γ̂, σ̂1, �, (l̂2, µ̂2)), Π ∼=ψ Σ, and pin2 ∼= pin2 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin3 (γ, σ1,∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1,∆1, χ, bid, acc, (l2, µ2)).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin6 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin6 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)) by Location-tracking SMC2

rule Pre-Increment Private Pointer Single Location, we have acc = 0, γ(x) = (l, private bty∗), GetLocation((l1,

µ1), σ(l) = (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1)), DecodePtr(private bty∗, 1, ω) =

[1, [(l1, µ1)], [1], 1], τ(private bty), σ) = ((l2, µ2), 1), and T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], ∆, χ, bid,

acc, private bty∗) = (σ1,∆1, 1).

Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.

Given DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], private bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, by Lemma 3.2.44

we have DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given ((l2, µ2), 1) = GetLocation((l1, µ1), τ(private bty), σ), (l1, µ1) ∼=ψ (l̂1, µ̂1), private bty ∼= b̂ty , (γ, σ) ∼=ψ

(γ̂, σ̂), by Lemma 3.2.50 we have GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂) = ((l̂2, µ̂2), 1) such that (l2, µ2) ∼=ψ (l̂2, µ̂2).

By Definition 3.2.14 we have [1, [(l2, µ2)], [1], 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1].

Given T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], ∆, χ, bid, acc, private bty∗) = (σ1,∆1, 1), (γ, σ) ∼=ψ (γ̂, σ̂),
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(l, 0) ∼=ψ (l̂, 0), private bty∗ ∼= b̂ty∗, and [1, [(l2, µ2)], [1], 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1], by Lemma 4.2.6 we have

UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], i], b̂ty∗) = (σ̂1, 1) such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x̂) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)),

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂), and UpdatePtr(σ̂,

(l̂, 0), [1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) = (σ̂1, 1), we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′pin2 (γ̂, σ̂1, �, (l̂2, µ̂2)) by Vanilla C

rule Pre-Increment Pointer.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and (l2, µ2) ∼=ψ (l̂2, µ̂2), by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

∼=ψ (γ̂, σ̂1, �, (l̂2, µ̂2)). Therefore, we have (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin6 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′pin2 (γ̂, σ̂1, �, (l̂2, µ̂2)), Π ∼=ψ Σ, and pin6 ∼= pin2 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin7 (γ, σ1,∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin6 (γ, σ1,∆1, χ, bid, acc, (l2, µ2)).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1,∆1, χ, bid, acc, [α, l′, j, 1])

Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1, ∆1, χ, bid, acc, [α, l′, j, 1]) by Location-tracking SMC2

rule Pre-Increment Private Pointer Multiple Locations, we have acc = 0, γ(x) = (l, private bty∗), σ(l) =

(ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, 1],

IncrementList(l, τ(private bty), σ) = (l′, 1), and T_UpdatePtr(σ, (l, 0), [α, l′, j, 1], ∆, χ, bid, acc, private

bty∗) = (σ1,∆1, 1).

Given (γ̂, σ̂, �, ++ x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, ++x) ∼=ψ (γ̂, σ̂, �, ++ x̂), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and ++ x ∼=ψ++ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(++x) =++ x̂

where x = x̂.

Given γ(x) = (l,private bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, b̂ty∗) such that l = l̂ by private

bty∗ ∼= b̂ty∗ by Lemma 3.2.14. By Definition 3.2.6, we have private bty ∼= bty .

Given σ(l) = (ω,private bty∗, α, PermL(Freeable, private bty∗,private, α)), (γ, σ) ∼=ψ (γ̂, σ̂), and l = l̂, by

Lemma 3.2.16 we have σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)) such that ω ∼=ψ ω̂.
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Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], private bty∗ ∼= b̂ty∗, ω ∼=ψ ω̂, and DeclassifyPtr([α, l,

j, i], private bty∗) = (l1, µ1), by Lemma 3.2.45 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, µ̂1), [1], 1] where

[α, l, j, 1] ∼=ψ [1, (l̂1, µ̂1), [1], 1] such that (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given IncrementList(l, τ(private bty), σ) = (l′, 1), DeclassifyPtr([α, l, j, 1], private bty∗) = (l1, µ1) such that

(l1, µ1) ∼=ψ (l̂1, µ̂1), (γ, σ) ∼=ψ (γ̂, σ̂), ty ∼= t̂y , and DeclassifyPtr([α, l′, j, 1], private bty∗) = (l2, µ2), by

Lemma 3.2.51 we have ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty∗)) such that (l2, µ2) ∼=ψ (l̂2, µ̂2). By Defini-

tion 3.2.14 we have [α, l′, j, 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1].

Given T_UpdatePtr(σ, (l, 0), [α, l′, j, 1], ∆, χ, bid, acc, private bty∗) = (σ1,∆1, 1), (γ, σ) ∼=ψ (γ̂, σ̂), (l, 0) ∼=ψ

(l̂, 0), private bty∗ ∼= b̂ty∗, and [α, l′, j, 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], 1], by Lemma 4.2.6 we have UpdatePtr(σ̂, (l̂, 0),

[1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) = (σ̂1, 1) such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (γ̂, σ̂, �, ++ x̂), γ̂(x) = (l̂, b̂ty∗), σ̂(l̂) = (ω̂, b̂ty∗, 1, PermL(Freeable, b̂ty∗, public, 1)),

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1], î > 1, ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty∗)), and

UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], i], b̂ty∗) = (σ̂1, 1), we have Σ . (γ̂, σ̂, �, ++ x̂) ⇓′pin3 (γ̂, σ̂1, �,

(l̂2, µ̂2)) by Vanilla C rule Pre-Increment Pointer Higher Level Indirection.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and [α, l′, j, 1] ∼=ψ (l̂2, µ̂2), by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, [α, l′, j,

1]) ∼=ψ (γ̂, σ̂1, �, (l̂2, µ̂2)). Therefore, we have (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1, ∆1, χ, bid, acc, [α, l′,

j, 1]) ∼=ψ (γ̂, σ̂, �, ++ x̂) ⇓′pin3 (γ̂, σ̂1, �, (l̂2, µ̂2)), Π ∼=ψ Σ, and pin4 ∼= pin3 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin5 (γ, σ1,∆1, χ, bid, acc, [α, l′, j, i])

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1,∆1, χ, bid, acc, [α, l′, j, 1]).

Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ1, σ3, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ1, σ3, ∆, χ, bid, acc, skip) by Location-tracking SMC2 rule

Public 1 Dimension Array Declaration, we have ((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty =

int))) ∨ (ty = char), l = φ(), Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid, acc, n),

γ1 = γ[x → (l,public const bty∗)], l1 = φ(), ω = EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1]), σ2 =
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σ1[l → (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1))], (acc = 0) ∧ (bid = none),

n > 0, ω1 = EncodeVal(public bty , NULL), and σ3 = σ2[l1 → (ω1, public bty , n, PermL(Freeable,public bty ,

public, n))].

Given (γ̂, σ̂, �, t̂y x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, ty x[e]) ∼=ψ (γ̂, σ̂, �, t̂y x̂[ê]), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x[e] ∼=ψ t̂y x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ1, σ3, ∆, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ty x[e]. Therefore, by Lemma 3.2.3 we have ty x[e] ∼= t̂y x̂[ê]. By

Definition 3.2.10 we have Erase(ty x[e]) = Erase(ty) Erase(x[e]), Erase(ty) = t̂y , Erase(x[e]) = x̂[Erase(e)]

where x = x̂, and Erase(e) = ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ, σ, ∆, χ, bid, acc, e) ∼=ψ

(γ̂, σ̂, �, ê). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid, acc, n), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆, χ, bid, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂) and c1 ∼= d1. Given

n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public and therefore v = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given ty ∼= t̂y and ((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty = int))) ∨ (ty = char), by

Definition 3.2.6 we have bty ∼= b̂ty . Therefore, we have public const bty∗ ∼= const b̂ty∗ and public bty ∼= b̂ty by

Definition 3.2.6.

Given γ1 = γ[x → (l,public const bty∗)], x = x̂, l = l̂, (γ, σ1) ∼=ψ (γ̂, σ̂1), and public const bty∗ ∼= const b̂ty∗,

by Lemma 3.2.34 we have γ̂1 = γ̂[x̂ → (l̂, b̂ty∗)] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given l1 = φ(), by Axiom 3.2.3 we have l̂1 = φ() and l1 = l̂1.

Given [1, [(l1, 0)], [1], 1], by Definition 3.2.14 we have [1, [(l1, 0)], [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]. Given ω =

EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1]) and public const bty∗ ∼= const b̂ty∗, by Lemma 3.2.42 we have

ω ∼=ψ ω̂.

Given σ2 = σ1[l → (ω,public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1))], (γ1, σ1) ∼=ψ

(γ̂1, σ̂1), l = l̂, ω ∼=ψ ω̂, and public const bty∗ ∼= const b̂ty∗, by Lemma 3.2.35 we have σ̂2 = σ̂1[l̂ → (ω̂,
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const b̂ty∗, 1, PermL(Freeable, const b̂ty∗,public, 1))] such that (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given n > 0 and n = n̂, we have n̂ > 0.

Given ω1 = EncodeVal(public bty , NULL), and public bty ∼= b̂ty , by Lemma 3.2.40 we have EncodeVal(b̂ty ,

NULL) = ω̂1 such that ω1
∼=ψ ω̂1.

Given σ3 = σ2[l1 → (ω1,public bty , n, PermL(Freeable, public bty ,public, n))], l1 = l̂1, ω1
∼=ψ ω̂1, (γ1, σ2) ∼=ψ

(γ̂1, σ̂2), n = n̂, and public bty ∼= b̂ty , by Lemma 3.2.35 we have σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty ,

public, n̂))] such that (γ1, σ3) ∼=ψ (γ̂1, σ̂3).

Given (γ̂, σ̂, �, t̂y x[ê]), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), l̂ = φ(), l̂1 = φ(), EncodePtr(const b̂ty∗, [1, [(l̂1, 0)],

[1], 1]) = ω̂, γ̂1 = γ̂[x → (l̂, const b̂ty∗)], σ̂2 = σ̂1[l̂ → (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public,

1))], EncodeVal(b̂ty , NULL) = ω̂1, σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂))], and n̂ > 0,

we have Σ . (γ̂, σ̂, �, t̂y x[ê]) ⇓′da (γ̂1, σ̂3, �, skip) by Vanilla C rule 1D Array Declaration.

Given (γ1, σ3) ∼=ψ (γ̂1, σ̂3), by Definition 4.2.1 we have (γ1, σ3, ∆, χ, bid, acc, skip) ∼=ψ (γ̂1, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ1, σ3, ∆, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x[ê]) ⇓′da

(γ̂1, σ̂3, �, skip), Π ∼=ψ Σ, and da ∼= da by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda1 (γ1, σ3, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda1 (γ1, σ3, ∆, χ, bid, acc, skip) by Location-tracking SMC2

rule Private 1 Dimension Array Declaration, we have Label(e, γ) = public, ((ty = private bty) ∨ (ty = bty)) ∧

((bty = int) ∨ (bty = float)), (acc = 0) ∧ (bid = none), (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid,

acc, n), n > 0, l = φ(), l1 = φ(), γ1 = γ[x → (l,private const bty∗)], ω = EncodePtr(private const bty∗,

[1, [(l1, 0)], [1], 1]), σ2 = σ1[l → (ω,private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1))],

ω1 = EncodeVal(private bty ,NULL), and σ3 = σ2[l1 → (ω1, private bty , n, PermL(Freeable,private bty ,

private, n))].

Given (γ̂, σ̂, �, t̂y x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, ty x[e]) ∼=ψ (γ̂, σ̂, �, t̂y x̂[ê]), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x[e] ∼=ψ t̂y x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda1 (γ1, σ3, ∆, χ, bid,
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acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ty x[e]. Therefore, by Lemma 3.2.3 we have ty x[e] ∼= t̂y x̂[ê]. By

Definition 3.2.10 we have Erase(ty x[e]) = Erase(ty) Erase(x[e]), Erase(ty) = t̂y , Erase(x[e]) = x̂[Erase(e)]

where x = x̂, and Erase(e) = ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given ty ∼= t̂y and ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), by Definition 3.2.6 we have

bty ∼= b̂ty . Therefore, we have private const bty∗ ∼= const b̂ty∗ and private bty ∼= b̂ty by Definition 3.2.6.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ, σ, ∆, χ, bid, acc, e) ∼=ψ

(γ̂, σ̂, �, ê). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid, acc, n), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆, χ, bid, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂) and c1 ∼= d1. Given

n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given n > 0 and n = n̂, we have n̂ > 0.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given l1 = φ(), by Axiom 3.2.3 we have l̂1 = φ() and l1 = l̂1.

Given γ1 = γ[x → (l,private const bty∗)], x = x̂, l = l̂, (γ, σ1) ∼=ψ (γ̂, σ̂1), and private const bty∗ ∼= const b̂ty∗,

by Lemma 3.2.34 we have γ̂1 = γ̂[x̂ → (l̂, b̂ty∗)] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given [1, [(l1, 0)], [1], 1], by Definition 3.2.14 we have [1, [(l1, 0)], [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]. Given ω =

EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1]) and private const bty∗ ∼= const b̂ty∗, by Lemma 3.2.42 we have

ω ∼=ψ ω̂.

Given σ2 = σ1[l → (ω,private const bty∗, 1, PermL(Freeable,private const bty∗, private, 1))], (γ1, σ1) ∼=ψ

(γ̂1, σ̂1), l = l̂, ω ∼=ψ ω̂, and private const bty∗ ∼= const b̂ty∗, by Lemma 3.2.35 we have σ̂2 = σ̂1[l̂ → (ω̂,

const b̂ty∗, 1, PermL(Freeable, const b̂ty∗,public, 1))] such that (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given ω1 = EncodeVal(private bty ,NULL), and private bty ∼= b̂ty , by Lemma 3.2.40 we have EncodeVal(b̂ty ,

NULL) = ω̂1 such that ω1
∼=ψ ω̂1.
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Given σ3 = σ2[l1 → (ω1,private bty , n, PermL(Freeable, private bty ,private, n))], l1 = l̂1, ω1
∼=ψ ω̂1,

(γ1, σ2) ∼=ψ (γ̂1, σ̂2), n = n̂, and private bty ∼= b̂ty , by Lemma 3.2.35 we have σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂,

PermL(Freeable, b̂ty ,public, n̂))] such that (γ1, σ3) ∼=ψ (γ̂1, σ̂3).

Given (γ̂, σ̂, �, t̂y x[ê]), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), l̂ = φ(), l̂1 = φ(), EncodePtr(const b̂ty∗, [1, [(l̂1, 0)],

[1], 1]) = ω̂, γ̂1 = γ̂[x → (l̂, const b̂ty∗)], σ̂2 = σ̂1[l̂ → (ω̂, const b̂ty∗, 1, PermL(Freeable, const

b̂ty∗,public, 1))], EncodeVal(b̂ty , NULL) = ω̂1, σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public,

n̂))], and n̂ > 0, we have Σ . (γ̂, σ̂, �, t̂y x[ê]) ⇓′da (γ̂1, σ̂3, �, skip) by Vanilla C rule 1D Array Declaration.

Given (γ1, σ3) ∼=ψ (γ̂1, σ̂3), by Definition 4.2.1 we have (γ1, σ3, ∆, χ, bid, acc, skip) ∼=ψ (γ̂1, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda1 (γ1, σ3, ∆, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x[ê]) ⇓′da

(γ̂1, σ̂3, �, skip), Π ∼=ψ Σ, and da1 ∼= da by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda2 (γ1, σ3, ∆1, χ1, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda2 (γ1, σ3, ∆1, χ1, bid, acc, skip) by Location-tracking SMC2

rule Private 1 Dimension Array Declaration (Inside a Private - Conditioned If Else Branch), we have Label(e, γ)

= public, ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), (γ, σ, ∆, χ, bid, acc, e) ⇓tc1
(γ, σ1, ∆1, χ, bid, acc, n), (acc > 0) ∧ ((bid = then) ∨ (else)), n > 0, l = φ(), l1 = φ(), χ1 = l :: l1 ::

χ[acc], γ1 = γ[x → (l,private const bty∗)], ω = EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1]), σ2 =

σ1[l → (ω,private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1))], ω1 = EncodeVal(private

bty ,NULL), and σ3 = σ2[l1 → (ω1,private bty , n,PermL(Freeable, private bty ,private, n))].

Given (γ̂, σ̂, �, t̂y x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, ty x[e]) ∼=ψ (γ̂, σ̂, �, t̂y x̂[ê]), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and ty x[e] ∼=ψ t̂y x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda1 (γ1, σ3, ∆1, χ1,

bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ ty x[e]. Therefore, by Lemma 3.2.3 we have ty x[e] ∼= t̂y x̂[ê].

By Definition 3.2.10 we have Erase(ty x[e]) = Erase(ty) Erase(x[e]), Erase(ty) = t̂y , Erase(x[e]) = x̂[Erase(e)]

where x = x̂, and Erase(e) = ê. Therefore, we have ty ∼= t̂y and e ∼= ê.

Given ty ∼= t̂y and ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), by Definition 3.2.6 we have

bty ∼= b̂ty . Therefore, we have private const bty∗ ∼= const b̂ty∗ and private bty ∼= b̂ty by Definition 3.2.6.
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Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, n) ∼=ψ1 (γ̂, σ̂1, �, n̂) and c1 ∼= d1. Given

n 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and n ∼=ψ n̂. Given

Label(e, γ) = public, we have Label(n, γ) = public and therefore n = n̂ by Definition 3.2.18 and Definition 3.2.10.

Given n > 0 and n = n̂, we have n̂ > 0.

Given l = φ(), by Axiom 3.2.3 we have l̂ = φ() and l = l̂.

Given l1 = φ(), by Axiom 3.2.3 we have l̂1 = φ() and l1 = l̂1.

Given γ1 = γ[x → (l,private const bty∗)], x = x̂, l = l̂, (γ, σ1) ∼=ψ (γ̂, σ̂1), and private const bty∗ ∼= const b̂ty∗,

by Lemma 3.2.34 we have γ̂1 = γ̂[x̂ → (l̂, b̂ty∗)] such that (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given [1, [(l1, 0)], [1], 1], by Definition 3.2.14 we have [1, [(l1, 0)], [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]. Given ω =

EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1]) and private const bty∗ ∼= const b̂ty∗, by Lemma 3.2.42 we have

ω ∼=ψ ω̂.

Given σ2 = σ1[l → (ω,private const bty∗, 1, PermL(Freeable,private const bty∗, private, 1))], (γ1, σ1) ∼=ψ

(γ̂1, σ̂1), l = l̂, ω ∼=ψ ω̂, and private const bty∗ ∼= const b̂ty∗, by Lemma 3.2.35 we have σ̂2 = σ̂1[l̂ → (ω̂, const

b̂ty∗, 1, PermL(Freeable, const b̂ty∗,public, 1))] such that (γ1, σ2) ∼=ψ (γ̂1, σ̂2).

Given ω1 = EncodeVal(private bty ,NULL), and private bty ∼= b̂ty , by Lemma 3.2.40 we have EncodeVal(b̂ty ,

NULL) = ω̂1 such that ω1
∼=ψ ω̂1.

Given σ3 = σ2[l1 → (ω1,private bty , n, PermL(Freeable, private bty ,private, n))], l1 = l̂1, ω1
∼=ψ ω̂1,

(γ1, σ2) ∼=ψ (γ̂1, σ̂2), n = n̂, and private bty ∼= b̂ty , by Lemma 3.2.35 we have σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂,

PermL(Freeable, b̂ty ,public, n̂))] such that (γ1, σ3) ∼=ψ (γ̂1, σ̂3).

Given (γ̂, σ̂, �, t̂y x[ê]), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, n̂), l̂ = φ(), l̂1 = φ(), EncodePtr(const b̂ty∗, [1, [(l̂1, 0)],

[1], 1]) = ω̂, γ̂1 = γ̂[x → (l̂, const b̂ty∗)], σ̂2 = σ̂1[l̂ → (ω̂, const b̂ty∗, 1, PermL(Freeable, const

b̂ty∗,public, 1))], EncodeVal(b̂ty , NULL) = ω̂1, σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public,
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n̂))], and n̂ > 0, we have Σ . (γ̂, σ̂, �, t̂y x[ê]) ⇓′da (γ̂1, σ̂3, �, skip) by Vanilla C rule 1D Array Declaration.

Given (γ1, σ3) ∼=ψ (γ̂1, σ̂3), by Definition 4.2.1 we have (γ1, σ3, ∆1, χ1, bid, acc, skip) ∼=ψ (γ̂1, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda2 (γ1, σ3, ∆1, χ1, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, t̂y x[ê]) ⇓′da

(γ̂1, σ̂3, �, skip), Π ∼=ψ Σ, and da2 ∼= da by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ1, ∆1, χ, bid, acc, vi)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ1, ∆1, χ, bid, acc, vi) by Location-tracking SMC2 rule Public 1D

Array Read Public Index, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i),

γ(x) = (l,public const bty∗), σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)),

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1,public bty , n, PermL(Freeable,public

bty , public, n)), DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], and 0 ≤ i ≤ n− 1.

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ1, ∆1, χ, bid, acc, vi), by

Lemma 4.2.2 we have (l, µ) /∈ x[e]. Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have

Erase(x[e]) = x̂[Erase(e)] where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1

(γ̂, σ̂1, �, î) and c1 ∼= d1. Given

i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.
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Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1]∼=ψ [1, (l̂1, 0), [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], public bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we

have DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1]. By Definition 3.2.10 we have

∀m ∈ {0, ..., n− 1}, vm ∼=ψ v̂m. Therefore, given i = î, we have vi ∼=ψ v̂̂i.

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given (γ̂, σ̂, �, x̂), γ̂(x) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public,

1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)),

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î), 0 ≤ î ≤ n̂−1, and DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1], we have Σ.(γ̂, σ̂, �, x̂)

⇓′ra (γ̂, σ̂, �, v̂̂i) by Vanilla C rule Array Read.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and vi ∼=ψ v̂̂i, by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, vi) ∼=ψ (γ̂, σ̂1, �, v̂̂i).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ1, ∆1, χ, bid, acc, vi) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′ra (γ̂, σ̂1, �, v̂̂i),

Π ∼=ψ Σ, and ra ∼= ra by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra3 (γ, σ1, ∆1, χ, bid, acc, vi)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra3 (γ, σ1, ∆1, χ, bid, acc, vi) by Location-tracking SMC2 rule Private 1D

Array Read Public Index, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i),

γ(x) = (l,private const bty∗), σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private,

1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, private bty , n, PermL(Freeable,

private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], and 0 ≤ i ≤ n− 1.

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 4.2.1 we
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have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra3 (γ, σ1, ∆1, χ, bid, acc, vi), by

Lemma 4.2.2 we have (l, µ) /∈ x[e]. Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have

Erase(x[e]) = x̂[Erase(e)] where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1

(γ̂, σ̂1, �, î) and c1 ∼= d1. Given

i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given γ(x) = (l,private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we

have DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1]. By Definition 3.2.10 we have

∀m ∈ {0, ..., n− 1}, vm ∼=ψ v̂m. Therefore, given i = î, we have vi ∼=ψ v̂̂i.

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given (γ̂, σ̂, �, x̂), γ̂(x) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public,

1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)),
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(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î), 0 ≤ î ≤ n̂−1, and DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1], we have Σ.(γ̂, σ̂, �, x̂)

⇓′ra (γ̂, σ̂, �, v̂̂i) by Vanilla C rule Array Read.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and vi ∼=ψ v̂̂i, by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, vi) ∼=ψ (γ̂, σ̂1, �, v̂̂i).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra3 (γ, σ1, ∆1, χ, bid, acc, vi) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′ra (γ̂, σ̂1, �,

v̂̂i), Π ∼=ψ Σ, and ra3 ∼= ra by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra1 (γ, σ1, ∆1, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra1 (γ, σ1, ∆1, χ, bid, acc, v) by Location-tracking SMC2 rule

Private 1D Array Read Private Index we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i),

γ(x) = (l,private const bty∗), (bty = int) ∨ (bty = float), σ1(l) = (ω, private const bty∗, 1, PermL(Freeable,

private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1,

private bty , n, PermL(Freeable, private bty , private, n)), Label(e, γ) = private, DecodeVal(private bty ,

n, ω1) = [v0, ..., vn−1], and v =
∨n−1
m=0 (i = encrypt(m)) ∧ vm.

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra1 (γ, σ1, ∆1, χ, bid, acc, v), by

Lemma 4.2.2 we have (l, µ) /∈ x[e]. Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have

Erase(x[e]) = x̂[Erase(e)] where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e) by Definition 4.2.1. Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive

hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1

(γ̂, σ̂1, �, î)

and c1 ∼= d1. Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and

i ∼=ψ î.

Given γ(x) = (l,private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that
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ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty , private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given v =
∨n−1
m=0 (i = encrypt(m)) ∧ vm, by Axiom 3.2.1 and Lemma 3.2.9, we have v ∼=ψ v̂̂i.

Given (γ̂, σ̂, �, x̂), γ̂(x) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)),

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty ,public, n̂)),

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î), 0 ≤ î ≤ n̂−1, and DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1], we have Σ.(γ̂, σ̂, �, x̂)

⇓′ra (γ̂, σ̂1, �, v̂̂i) by Vanilla C rule Array Read.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂̂i, by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ (γ̂, σ̂1, �, v̂̂i).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra1 (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′ra (γ̂, σ̂1, �,

v̂̂i), Π ∼=ψ Σ, and ra1 ∼= ra by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra2 (γ, σ1, ∆1, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra2 (γ, σ1, ∆1, χ, bid, acc, v) by Location-tracking SMC2 rule Public

1D Array Read Private Index, we have γ(x) = (l, public const bty∗), (bty = int) ∨ (bty = float), (γ, σ, ∆, χ, bid,

acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,

public, 1)), Label(e, γ) = private, DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1,

public bty , n, PermL(Freeable, public bty ,public, n)), DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], and v =∨n−1
m=0 (i = encrypt(m)) ∧ encrypt(vm).
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Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra2 (γ, σ1, ∆1, χ, bid, acc, v), by

Lemma 4.2.2 we have (l, µ) /∈ x[e]. Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have

Erase(x[e]) = x̂[Erase(e)] where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l, public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1

(γ̂, σ̂1, �, î) and c1 ∼= d1. Given

i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼= (γ̂, σ̂1) and i ∼=ψ î.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1]∼=ψ [1, (l̂1, 0), [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], public bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given γ(x) = (l, public const bty∗), by Definition 3.2.17 we have [v0, ..., vn−1] = [v̂0, ..., v̂n−1]. Given v =∨n−1
m=0 (i = encrypt(m)) ∧ encrypt(vm), by Axiom 3.2.1 and Lemma 3.2.10 we have v ∼=ψ v̂̂i.

Given (γ̂, σ̂, �, x̂), γ̂(x) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,public,
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1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty ,public, n̂)),

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î), 0 ≤ î ≤ n̂−1, and DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1], we have Σ.(γ̂, σ̂, �, x̂)

⇓′ra (γ̂, σ̂1, �, v̂̂i) by Vanilla C rule Array Read.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂̂i, by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ (γ̂, σ̂1, �, v̂̂i).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra2 (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′ra (γ̂, σ̂1, �,

v̂̂i), Π ∼=ψ Σ, and ra2 ∼= ra by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2

rule Public 1D Array Write Public Value Public Index, we have Label(e1, γ) = Label(e2, γ) = public, acc = 0,

(γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ,

bid, acc, v), v 6= skip, γ(x) = (l,public const bty∗), σ2(l) = (ω, public const bty∗, 1,PermL(Freeable, public

const bty∗,public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1,public bty , n,

PermL(Freeable, public bty , public, n)), DecodeVal( public bty , n, ω1) = [v0, ..., vn−1], [v′0, ..., v
′
n−1] = [v0, ...,

vn−1]
(
v
vi

)
, 0 ≤ i ≤ n− 1, and T_UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], ∆2, χ, bid, acc, public bty) = (σ3,∆3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, ∆, χ, bid, acc, x[e1] = e2)

⇓twa (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3

we have x[e1] = e2
∼= x̂[ê1] = ê2. By Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2),

Erase(x[e1]) = x̂[Erase(e1)] where x = x̂, Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and

e2
∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and c1 ∼= d1.

Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,
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∆1, χ, bid, acc, e2). Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, v) ∼=ψ2

(γ̂, σ̂2, �, v̂) and

c2 ∼= d2. Given v 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1]∼=ψ [1, (l̂1, 0), [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], public bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
, v ∼=ψ v̂, i = î, and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Lemma 3.2.63 we

have [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given T_UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1], ∆2, χ, bid, acc, public bty) = (σ3,∆3), (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1,

public bty ∼= b̂ty , and [v′0, ..., v
′
ne−1] ∼=ψ [v̂′0, ..., v̂

′
n̂e−1], by Lemma 4.2.4 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1],

b̂ty) = σ̂3 such that (γ, σ3) ∼=ψ (γ̂, σ̂3).
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Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, v̂), v̂ 6= skip, γ̂(x̂) =

(l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1,

ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) =

[v̂0, ..., v̂n̂−1], 0 ≤ î ≤ n̂− 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3,

we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2)

⇓′wa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and wa ∼= wa by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa4 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa4 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2

rule Private 1D Array Write Private Value Public Index, we have Label(e1, γ) = public, Label(e2, γ) = private,

(γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc1 (γ, σ2, ∆2, χ, bid,

acc, v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private

const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty ,

n, PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], [v′0, ..., v
′
n−1] =

[v0, ..., vn−1]
(
v
vi

)
0 ≤ i ≤ n− 1, and T_UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], ∆2, χ, bid, acc, private bty) = (σ3,∆3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, ∆, χ, bid, acc, x[e1] = e2)

⇓twa4 (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3

we have x[e1] = e2
∼= x̂[ê1] = ê2. By Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2),

Erase(x[e1]) = x̂[Erase(e1)] where x = x̂, Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and

e2
∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and c1 ∼= d1.

Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given
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Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2 (γ̂, σ̂2, �, v̂) and c2 ∼= d2. Given

v 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
, v ∼=ψ v̂, i = î, and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Lemma 3.2.63 we

have [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given T_UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1], ∆, χ, bid, acc, private bty) = (σ3,∆3), (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1,
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private bty ∼= b̂ty , and [v′0, ..., v
′
ne−1] ∼=ψ [v̂′0, ..., v̂

′
n̂e−1], by Lemma 4.2.4 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1],

b̂ty) = σ̂3 such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, v̂), v̂ 6= skip, γ̂(x̂) =

(l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) =

[1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1],

0 ≤ î ≤ n̂ − 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3, we have

Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa4 (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1]

= ê2) ⇓′wa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and wa4 ∼= wa by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa1 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa1 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2

rule Private 1D Array Write Public Value Public Index, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, ∆,

χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v),

v 6= skip, γ(x) = (l, private const bty∗), (bty = int) ∨ (bty = float), σ2(l) = (ω, private const bty∗,

1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0,

..., vn−1], [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( encrypt(v)
vi

)
, 0 ≤ i ≤ n− 1, and T_UpdateVal(σ2, l1, [v

′
0, ..., v

′
n−1], ∆2, χ,

bid, private bty) = (σ3,∆3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, ∆, χ, bid, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, ∆, χ, bid, acc, x[e1] = e2)

⇓twa1 (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3

we have x[e1] = e2
∼= x̂[ê1] = ê2. By Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2),

Erase(x[e1]) = x̂[Erase(e1)] where x = x̂, Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and

e2
∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

464



χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1

(γ̂, σ̂1, �, î) and c1 ∼= d1.

Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, v) ∼=ψ2 (γ̂, σ̂2, �, v̂) and

c2 ∼= d2. Given v 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

v ∼=ψ v̂. Given Label(e2, γ) = public, we have Label(v, γ) = public and therefore v = v̂ by Definition 3.2.17.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( encrypt(v)
vi

)
and v = v̂, by Definition 3.2.18 and Definition 3.2.10 we have

encrypt(v) ∼=ψ v̂. Given i = î and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Lemma 3.2.63 we have [v̂′0, ..., v̂
′
n̂−1] =
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[v̂0, ..., v̂n̂−1]
(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Given 0 ≤ i ≤ n− 1, i = î, and n = n̂, we have 0 ≤ î ≤ n̂− 1.

Given T_UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1], ∆2, χ, bid, acc, private bty) = (σ3,∆3), (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1,

private bty ∼= b̂ty , and [v′0, ..., v
′
ne−1] ∼=ψ [v̂′0, ..., v̂

′
n̂e−1], by Lemma 4.2.4 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1],

b̂ty) = σ̂3 such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, v̂), v̂ 6= skip, γ̂(x̂) =

(l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1,

ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) =

[v̂0, ..., v̂n̂−1], 0 ≤ î ≤ n̂− 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3,

we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa1 (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1]

= ê2) ⇓′wa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and wa1 ∼= wa by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa2 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa2 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2

rule Private 1D Array Write Public Value Private Index, we have Label(e1, γ) = private, Label(e2, γ) = public,

(γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid,

acc, v), v 6= skip, γ(x) = (l,private const bty∗), σ2(l) = (ω,private const bty∗, 1, PermL(Freeable,private

const bty∗,private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], (bty = int) ∨ (bty =

float), v′ = encrypt(v), ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v′) ∨ (¬(i = encrypt(m)) ∧ vm), and

T_UpdateVal(σ2, l1, [v
′
0, ..., v

′
n−1], ∆2, χ, bid, acc, private bty) = (σ3,∆3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa2

(γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3 we
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have x[e1] = e2
∼= x̂[ê1] = ê2. By Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2),

Erase(x[e1]) = x̂[Erase(e1)] where x = x̂, Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and

e2
∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1

(γ̂, σ̂1, �, î) and c1 ∼= d1.

Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, v) ∼=ψ2

(γ̂, σ̂2, �, v̂) and

c2 ∼= d2. Given v 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

v ∼=ψ v̂. Given Label(e2, γ) = public, we have Label(v, γ) = public and therefore v = v̂ by Definition 3.2.17.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have
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DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given v′ = encrypt(v) and v = v̂, by Definition 3.2.17 we have v′ ∼=ψ v̂.

Given ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v′) ∨ (¬(i = encrypt(m)) ∧ vm), by Axiom 3.2.1 and

Lemma 3.2.12, we have [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
such that [v′0, ..., v

′
n−1] ∼=ψ [v̂′0, ..., v̂

′
n̂−1].

Given T_UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1], ∆2, χ, bid, private bty) = (σ3, ∆3), (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1,

private bty ∼= b̂ty and [v′0, ..., v
′
ne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 4.2.4 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1],

b̂ty) = σ̂3 such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, v̂), v̂ 6= skip, γ̂(x̂) =

(l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) =

[1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ..., v̂n̂−1],

0 ≤ î ≤ n̂ − 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3, we have

Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa2 (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1]

= ê2) ⇓′wa (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and wa2 ∼= wa by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa3 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa3 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2

rule Private 1D Array Write Private Value Private Index, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ,

∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid,

acc, v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private

const bty∗,private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], (bty = int) ∨ (bty =

float), ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m))∧ v)∨ (¬(i = encrypt(m))∧ vm), and T_UpdateVal(σ2, l1,

[v′0, ..., v
′
n−1], ∆2, χ, bid, acc, private bty) = (σ3,∆3).
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Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, ∆, χ, bid, acc, x[e1] = e2)

⇓twa3 (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3

we have x[e1] = e2
∼= x̂[ê1] = ê2. By Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2),

Erase(x[e1]) = x̂[Erase(e1)] where x = x̂, Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and

e2
∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and c1 ∼= d1.

Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂) and ψ2 such that (γ, σ2, acc, v) ∼=ψ2 (γ̂, σ̂2, �, v̂) and c2 ∼= d2. Given

v 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l, private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂. By Axiom 3.2.1, we have 0 ≤ î ≤ n̂− 1.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

469



Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v) ∨ (¬(i = encrypt(m)) ∧ vm), [v0, ..., vn−1] ∼=ψ

[v̂0, ..., v̂n−1], and i ∼=ψ î, by Axiom 3.2.1 and Lemma 3.2.11 we have [v′0, ..., v
′
n−1] ∼=ψ [v̂0, ..., v̂n̂−1].

Given T_UpdateVal(σ2, l1, [v
′
0, ..., v

′
ne−1], ∆2, χ, bid, acc, private bty) = (σ3,∆3), (γ, σ2) ∼=ψ (γ̂, σ̂2), l1 = l̂1,

private bty ∼= b̂ty , and [v′0, ..., v
′
ne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 4.2.4 we have UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1],

b̂ty) = σ̂3 such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, v̂), v̂ 6= skip, γ̂(x̂) =

(l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1, ω̂)

= [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, b̂ty , public, n̂)), DecodeVal(b̂ty , n̂, ω̂1) = [v̂0, ...,

v̂n̂−1], 0 ≤ î ≤ n̂− 1, [v̂′0, ..., v̂
′
n̂−1] = [v̂0, ..., v̂n̂−1]

(
v̂
v̂î

)
, and UpdateVal(σ̂2, l̂1, [v̂′0, ..., v̂

′
n̂−1], b̂ty) = σ̂3, we have

Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wa (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3,∆3, χ, bid, acc, skip)∼=ψ (γ̂, σ̂3, �, skip). Therefore,

we have (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa3 (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wa

(γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and wa3 ∼= wa by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1, ∆1, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1, ∆1, χ, bid, acc, v) by Location-tracking SMC2 rule Public 1D

Array Read Out of Bounds Public Index, we have Label(e, γ) = public, γ(x) = (l, public const bty∗), (γ, σ, ∆, χ,

bid, acc, e) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, i), σ1(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗,

public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1,public bty , n,PermL(Freeable,

public bty ,public, n)), (i < 0) ∨ (i ≥ n), and ReadOOB(i, n, l1, public bty , σ1) = (v, 1).

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 4.2.1 we

have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1, ∆1, χ, bid, acc, v), by

Lemma 4.2.2 we have (l, µ) /∈ x[e]. Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have
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Erase(x[e]) = x̂[Erase(e)] where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l, public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and c1 ∼= d1. Given

i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1]∼=ψ [1, (l̂1, 0), [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given ReadOOB(i, n, l1, public bty , σ1) = (v, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), i = î, n = n̂, l = l̂, and public bty ∼= b̂ty ,

by Lemma 3.2.62 we have ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1) such that v ∼=ψ v̂.

Given (γ̂, σ̂, �, x̂), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î), γ̂(x̂) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1,

PermL(Freeable, const b̂ty∗,public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty ,

n̂, PermL(Freeable, b̂ty , public, n̂)), (̂i < 0) ∨ (̂i ≥ n̂), and ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1), we have

Σ . (γ̂, σ̂, �, x̂) ⇓′rao (γ̂, σ̂1, �, v̂) by Vanilla C rule 1D Array Read Out of Bounds.
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Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂, by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ (γ̂, σ̂1, �, v̂).

Therefore, we have (γ, σ,∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1,∆1, χ, bid, acc, v)∼=ψ (γ̂, σ̂, �, x̂) ⇓′rao (γ̂, σ̂1, �, v̂),

Π ∼=ψ Σ, and rao ∼= rao by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao1 (γ, σ1, ∆1, χ, bid, acc, v)

Given Π.(γ, σ,∆, χ, bid, acc, x[e]) ⇓trao1 (γ, σ1,∆1, χ, bid, acc, v) by Location-tracking SMC2 rule Private 1D Ar-

ray Read Out of Bounds Public Index, we have Label(e, γ) = public, γ(x) = (l, private const bty∗), (γ, σ,∆, χ, bid,

acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,

private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, private bty , n,

PermL(Freeable, private bty ,private, n)), (i < 0) ∨ (i ≥ n), and ReadOOB(i, n, l1, private bty , σ1) = (v, 1).

Given (γ̂, σ̂, �, x̂[ê]) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e]) ∼=ψ (γ̂, σ̂, �, x̂[ê]), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x[e] ∼=ψ x̂[ê]. Given (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao1 (γ, σ1, ∆1, χ, bid, acc, v), by

Lemma 4.2.2 we have (l, µ) /∈ x[e]. Therefore, by Lemma 3.2.3 we have x[e] ∼= x̂[ê]. By Definition 3.2.10 we have

Erase(x[e]) = x̂[Erase(e)] where x = x̂ and Erase(e) = ê. Therefore, we have e ∼= ê.

Given γ(x) = (l, private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we have

(γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1

(γ̂, σ̂1, �, î) and c1 ∼= d1. Given

i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such
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that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given ReadOOB(i, n, l1, private bty , σ1) = (v, 1), (γ, σ1) ∼=ψ (γ̂, σ̂1), i = î, n = n̂, l = l̂, and private bty ∼=

b̂ty , by Lemma 3.2.62 we have ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1) such that v ∼=ψ v̂.

Given (γ̂, σ̂, �, x̂), (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, î), γ̂(x̂) = (l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1,

PermL(Freeable, const b̂ty∗,public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂,

PermL(Freeable, b̂ty , public, n̂)), (̂i < 0) ∨ (̂i ≥ n̂), and ReadOOB(̂i, n̂, l̂1, b̂ty , σ̂1) = (v̂, 1), we have

Σ . (γ̂, σ̂, �, x̂) ⇓′rao (γ̂, σ̂1, �, v̂) by Vanilla C rule 1D Array Read Out of Bounds.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and v ∼=ψ v̂, by Definition 4.2.1 we have (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ (γ̂, σ̂, �, v̂).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao1 (γ, σ1, ∆1, χ, bid, acc, v) ∼=ψ (γ̂, σ̂1, �, x̂) ⇓′rao

(γ̂, σ̂1, �, v̂), Π ∼=ψ Σ, and rao1 ∼= rao by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2

rule Public 1D Array Write Out of Bounds Public Index Public Value, we have Label(e1, γ) = Label(e2, γ) = public,

acc = 0, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2,

∆2, χ, bid, acc, v), v 6= skip, γ(x) = (l,public const bty∗), σ2(l) = (ω, public const bty∗, 1, PermL(Freeable,

public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, public bty ,

n, PermL(Freeable, public bty , public, n)), (i < 0) ∨ (i ≥ n), and T_WriteOOB(v, i, n, l1, public bty , σ2, ∆2,

χ, bid, acc) = (σ3,∆3, 1).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, ∆, χ, bid, acc, x[e1] = e2)
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⇓twao (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3

we have x[e1] = e2
∼= x̂[ê1] = ê2. By Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2),

Erase(x[e1]) = x̂[Erase(e1)] where x = x̂, Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and

e2
∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼= (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and c1 ∼= d1.

Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, v) ∼=ψ2

(γ̂, σ̂2, �, v̂) and

c2 ∼= d2. Given v 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,public const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1]∼=ψ [1, (l̂1, 0), [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.
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Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given T_WriteOOB(v, i, n, l1, public bty , σ2, ∆2, χ, bid, acc) = (σ3,∆3, 1), v ∼=ψ v̂, i = î, n = n̂, l1 = l̂1,

public bty ∼= b̂ty , and (γ, σ2) ∼=ψ (γ̂, σ̂2), by Lemma 4.2.9 we have WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1)

such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, v̂), v̂ 6= skip,

γ̂(x) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const

b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂)), (̂i < 0) ∨ (̂i ≥ n̂), and

WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1), we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wao (γ̂, σ̂3, �, skip) by Vanilla

C rule 1D Array Write Out of Bounds.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1]

= ê2) ⇓′wao (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and wao ∼= wao by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao2 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao2 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private 1D Array Write Out of Bounds Public Index Public Value, we have Label(e1, γ) = public, Label(e2, γ) =

private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2,

χ, bid, acc, v), v 6= skip, γ(x) = (l,private const bty∗), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable,

private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1,

private bty , n, PermL(Freeable, private bty , private, n)), (i < 0) ∨ (i ≥ n), and T_WriteOOB(v, i, n, l1,

private bty , σ2, ∆2, χ, bid, acc) = (σ3,∆3, 1).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, ∆, χ, bid, acc, x[e1] = e2)

⇓twao2 (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3

we have x[e1] = e2
∼= x̂[ê1] = ê2. By Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2),

Erase(x[e1]) = x̂[Erase(e1)] where x = x̂, Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and
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e2
∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1 (γ̂, σ̂1, �, î) and c1 ∼= d1.

Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, v) ∼=ψ2

(γ̂, σ̂2, �, v̂) and

c2 ∼= d2. Given v 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

v ∼=ψ v̂.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).
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Given T_WriteOOB(v, i, n, l1, private bty , σ2, ∆2, χ, bid, acc) = (σ3,∆3, 1), v ∼=ψ v̂, i = î, n = n̂, l1 = l̂1,

private bty ∼= b̂ty , and (γ, σ2) ∼=ψ (γ̂, σ̂2), by Lemma 4.2.9 we have WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1)

such that (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î), (γ̂, σ̂1, �, ê2) ⇓′d2

(γ̂, σ̂2, �, v̂), v̂ 6= skip,

γ̂(x) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const

b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, b̂ty , public, n̂)), (̂i < 0) ∨ (̂i ≥ n̂), and

WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1), we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wao (γ̂, σ̂3, �, skip) by Vanilla

C rule 1D Array Write Out of Bounds.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂3, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao2 (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1]

= ê2) ⇓′wao (γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and wao2 ∼= wao by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao1 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao1 (γ, σ3, ∆3, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private 1D Array Write Public Value Out of Bounds Public Index, we have Label(e1, γ) = Label(e2, γ) = public,

(γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ,

bid, acc, v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable,

private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1,

private bty , n, PermL(Freeable, private bty , private, n)), (i < 0) ∨ (i ≥ n), and T_WriteOOB(encrypt(v),

i, n, l1,private bty , σ2, ∆2, χ, bid, acc) = (σ3,∆3, 1).

Given (γ̂, σ̂, �, x̂[ê1] = ê2) and ψ such that (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2), by

Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂) and x[e1] = e2
∼=ψ x̂[ê1] = ê2. Given (γ, σ, ∆, χ, bid, acc, x[e1] = e2)

⇓twao1 (γ, σ3, ∆3, χ, bid, acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x[e1] = e2. Therefore, by Lemma 3.2.3

we have x[e1] = e2
∼= x̂[ê1] = ê2. By Definition 3.2.10 we have Erase(x[e1] = e2 = Erase(x[e1]) = Erase(e2),

Erase(x[e1]) = x̂[Erase(e1)] where x = x̂, Erase(e1) = ê1, and Erase(e2) = ê2. Therefore, we have e1
∼= ê1 and

e2
∼= ê2.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e1
∼= ê1, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê1) such that (γ̂, σ̂, �, ê1) ∼=ψ (γ, σ, ∆,
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χ, bid, acc, e1). Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), by the inductive hypothesis we

have (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, i) ∼=ψ1

(γ̂, σ̂1, �, î) and c1 ∼= d1.

Given i 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and i ∼=ψ î. Given

Label(e1, γ) = public, we have Label(i, γ) = public and therefore i = î by Definition 3.2.17.

Given (γ, σ1) ∼=ψ (γ̂, σ̂1) and e2
∼= ê2, by Lemma 4.2.3 we have (γ̂, σ̂1, �, ê2) such that (γ̂, σ̂1, �, ê2)∼=ψ (γ, σ1,

∆1, χ, bid, acc, e2). Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), by the inductive hypothesis

we have (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂) and ψ2 such that (γ, σ2, ∆2, χ, bid, acc, v) ∼=ψ2 (γ̂, σ̂2, �, v̂) and

c2 ∼= d2. Given v 6= skip, by Lemma 4.2.1 we have ψ2 = ψ. By Definition 4.2.1 we have (γ, σ2) ∼=ψ (γ̂, σ̂2) and

v ∼=ψ v̂. Given Label(e2, γ) = public, we have Label(v, γ) = public and therefore v = v̂ by Definition 3.2.17.

Given v 6= skip and v ∼=ψ v̂, by Definition 3.2.10 we have v̂ 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ2) ∼=ψ (γ̂, σ̂2), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ2) ∼=ψ (γ̂, σ̂2),

and l = l̂, by Lemma 3.2.16 we have σ̂2(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ2(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ2) ∼=ψ (γ̂, σ̂2), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂2(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given (i < 0) ∨ (i ≥ n), i = î, and n = n̂, we have (̂i < 0) ∨ (̂i ≥ n̂).

Given T_WriteOOB(encrypt(v), i, n, l1,private bty , σ2, ∆2, χ, bid, acc) = (σ3,∆3, 1) and v = v̂, by Defini-

tion 3.2.10 we have encrypt(v) ∼=ψ v̂. Given i = î, n = n̂, l1 = l̂1, private bty ∼= b̂ty , and (γ, σ2) ∼=ψ (γ̂, σ̂2), by

Lemma 4.2.9 we have WriteOOB(v̂, î, n̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1) such that (γ, σ3) ∼=ψ (γ̂, σ̂3).
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Given (γ̂, σ̂, �, x̂[ê1] = ê2), (γ̂, σ̂, �, ê1) ⇓′d1
(γ̂, σ̂1, �, î), γ̂(x) = (l̂, const b̂ty∗), σ̂2(l̂) = (ω̂, const b̂ty∗, 1,

PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂2(l̂1) = (ω̂1, b̂ty , n̂,

PermL(Freeable, b̂ty , public, n̂)), (̂i < 0)∨ (̂i ≥ n̂), (γ̂, σ̂1, �, ê2) ⇓′d2
(γ̂, σ̂2, �, v̂), and WriteOOB(v̂, î, n̂, l̂1,

b̂ty , σ̂2) = (σ̂3, 1), we have Σ . (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wao (γ̂, σ̂3, �, skip) by Vanilla C rule 1D Array Write

Out of Bounds.

Given (γ, σ3) ∼=ψ (γ̂, σ̂3), by Definition 4.2.1 we have (γ, σ3,∆3, χ, bid, acc, skip)∼=ψ (γ̂, σ̂3, �, skip). Therefore,

we have (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao1 (γ, σ3, ∆3, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂[ê1] = ê2) ⇓′wao

(γ̂, σ̂3, �, skip), Π ∼=ψ Σ, and wao1 ∼= wao by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tra5 (γ, σ, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tra5 (γ, σ, ∆, χ, bid, acc, [v0, ..., vn−1]) by Location-tracking SMC2 rule

Private 1D Array Read Entire Array, we have γ(x) = (l,private const bty∗), (bty = int) ∨ (bty = float), σ(l) =

(ω,private const bty∗, 1,PermL(Freeable,private const bty∗,private, 1)), DecodePtr(private const bty∗, 1, ω) =

[1, [(l1, 0)], [1], 1], σ(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), and

DecodeVal(private bty , n, ω1) = [v0, ..., vn−1].

Given (γ̂, σ̂, �, x̂) such that (γ, σ,∆, χ, bid, acc, x)∼=ψ (γ̂, σ̂, �, x̂), by Definition 4.2.1 we have (γ, σ) ∼=ψ (γ̂, σ̂)

and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,private const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ) ∼=ψ (γ̂, σ̂),

and l = l̂, by Lemma 3.2.16 we have σ̂(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).
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Given σ(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ) ∼=ψ (γ̂, σ̂), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], private bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, const b̂ty∗), σ̂(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)),

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)), and

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1], we have Σ . (γ̂, σ̂, �, x̂) ⇓′ra4 (γ̂, σ̂, �, [v̂0, ..., v̂n−1]) by Vanilla C

rule 1D Array Read Entire Array.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, [v0,

..., vn−1]) ∼=ψ (γ̂, σ̂, �, [v̂0, ..., v̂n−1]). Therefore, we have (γ, σ, ∆, χ, bid, acc, x) ⇓tra5 (γ, σ, ∆, χ, bid,

acc, [v0, ..., vn−1]) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′ra4 (γ̂, σ̂, �, [v̂0, ..., v̂n−1]), Π ∼=ψ Σ, and ra5 ∼= ra4 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tra4 (γ, σ, ∆, χ, bid, acc, [v0, ..., vn−1])

Given Π.(γ, σ,∆, χ, bid, acc, x) ⇓tra4 (γ, σ,∆, χ, bid, acc, [v0, ..., vn−1]) by Location-tracking SMC2 rule Public 1D

Array Read Entire Array, we have γ(x) = (l, public const bty∗), σ(l) = (ω, public const bty∗, 1, PermL(Freeable,

public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ(l1) = (ω1, public

bty , n, PermL(Freeable, public bty , public, n)), and DecodeVal(public bty , n, ω1) = [v0, ..., vn−1].

Given (γ̂, σ̂, �, x̂) and ψ such that (γ, σ, ∆, χ, bid, acc, x) ∼=ψ (γ̂, σ̂, �, x̂), by Definition 4.2.1 we have

(γ, σ) ∼=ψ (γ̂, σ̂) and x ∼=ψ x̂. By Definition 3.2.18 and Definition 3.2.10 we have Erase(x) = x̂ where x = x̂.

Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ) ∼=ψ (γ̂, σ̂), and

l = l̂, by Lemma 3.2.16 we have σ̂(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that
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ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1]∼=ψ [1, (l̂1, 0), [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ(l1) = (ω1,public bty , n, PermL(Freeable, public bty , public, n)), (γ, σ) ∼=ψ (γ̂, σ̂), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], public bty ∼= b̂ty , and ω1
∼=ψ ω̂1, by Lemma 3.2.41 we have

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1] and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1].

Given (γ̂, σ̂, �, x̂), γ̂(x̂) = (l̂, const b̂ty∗), σ̂(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)),

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)), and

DecodeVal(bty , n̂, ω̂1) = [v̂0, ..., v̂n−1], we have Σ . (γ̂, σ̂, �, x̂) ⇓′ra4 (γ̂, σ̂, �, [v̂0, ..., v̂n−1]) by Vanilla C rule

1D Array Read Entire Array.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and [v0, ..., vn−1] ∼=ψ [v̂0, ..., v̂n−1], by Definition 4.2.1 we have (γ, σ, ∆, χ, bid, acc, [v0,

..., vn−1]) ∼=ψ (γ̂, σ̂, �, [v̂0, ..., v̂n−1]). Therefore, we have (γ, σ, ∆, χ, bid, acc, x) ⇓tra4 (γ, σ, ∆, χ, bid,

acc, [v0, ..., vn−1]) ∼=ψ (γ̂, σ̂, �, x̂) ⇓′ra4 (γ̂, σ̂, �, [v̂0, ..., v̂n−1]), Π ∼=ψ Σ, and ra4 ∼= ra4 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa5 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa5 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Public 1D Array Write Entire Array, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1,

∆1, χ, bid, acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1]. vm 6= skip, γ(x) = (l,public const bty∗), σ1(l) = (ω,

public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) =

[1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), ne = n, and

T_UpdateVal(σ1, l1, [v0, ..., vne−1], ∆1, χ, bid, acc, public bty) = (σ2,∆2).

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1
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we have (γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa5 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By

Definition 3.2.10 we have Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê.

Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼= (γ, σ, ∆, χ, bid,

acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [v0, ..., vne−1]), by the inductive hypothesis

we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, [v0, ..., vne−1])

∼=ψ1
(γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]) and c1 ∼= d1. Given [v0, ..., vne−1] 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By

Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1].

Given ∀vm ∈ [v0, ..., vne−1]. vm 6= skip and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Definition 3.2.10 we have ∀v̂m ∈

[v̂0, ..., v̂n̂e−1]. v̂m 6= skip.

Given γ(x) = (l,public const bty∗), (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that l = l̂

by public const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,public, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(public const bty∗, 1, ω) = [1, (l1, 0), [1], 1], public const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(const b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1]∼=ψ [1, (l̂1, 0), [1], 1]

such that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,public bty , n, PermL(Freeable, public bty ,public, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, public bty ∼= b̂ty ,

and n = n̂.

Given ne = n, n = n̂, and ne = n̂e, we have n̂e = n̂.

Given T_UpdateVal(σ1, l1, [v0, ..., vne−1], ∆1, χ, bid, acc, public bty) = (σ2,∆2), (γ, σ1) ∼=ψ (γ̂, σ̂1), l1 = l̂1,

public bty ∼= b̂ty , and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 4.2.4 we have UpdateVal(σ̂1, l̂1, [v̂0, ..., v̂n̂e−1],
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b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂,�, ê) ⇓′d1
(γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]), ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip, γ̂(x̂) =

(l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1,

ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)), n̂e = n̂, and UpdateVal(σ̂1, l̂1,

[v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′wa5 (γ̂, σ̂2, �, skip) by Vanilla C rule 1D Array Write

Entire Array.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa5 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′wa5

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wa5 ∼= wa5 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e1) ⇓twa6 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa6 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule

Private 1D Array Write Entire Private Array, we have Label(e, γ) = private, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1,

∆1, χ, bid, acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1]. vm 6= skip, γ(x) = (l,private const bty∗), σ1(l) = (ω,

private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) =

[1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), ne = n, and

T_UpdateVal(σ1, l1, [v0, ..., vne−1], ∆1, χ, bid, acc, private bty) = (σ2,∆2).

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa6 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By

Definition 3.2.10 we have Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê.

Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆, χ,

bid, acc, e). Given (γ, σ,∆, χ, bid, acc, e) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, [v0, ..., vne−1]), by the inductive hypothesis

we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]) and ψ1 such that (γ, σ1, acc, [v0, ..., vne−1]) ∼=ψ1

(γ̂, σ̂1, �,

[v̂0, ..., v̂n̂e−1]) and c1 ∼= d1. Given [v0, ..., vne−1] 6= skip, by Lemma 4.2.1 we have ψ1 = ψ. By Definition 4.2.1 we

have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1].
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Given ∀vm ∈ [v0, ..., vne−1]. vm 6= skip and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Definition 3.2.18 and Defini-

tion 3.2.10 we have ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip.

Given γ(x) = (l,private const bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given ne = n, n = n̂, and ne = n̂e, we have n̂e = n̂.

Given T_UpdateVal(σ1, l1, [v0, ..., vne−1], ∆1, χ, bid, acc, private bty) = (σ2,∆2), (γ, σ1) ∼=ψ (γ̂, σ̂1), l1

= l̂1, private bty ∼= b̂ty , and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 4.2.4 we have UpdateVal(σ̂1, l̂1,

[v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂,�, ê) ⇓′d1
(γ̂, σ̂1,�, [v̂0, ..., v̂n̂e−1]), ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip, γ̂(x̂) =

(l̂, const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1,

ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty , public, n̂)), n̂e = n̂, and UpdateVal(σ̂1, l̂1,

[v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′wa5 (γ̂, σ̂2, �, skip) by Vanilla C rule 1D Array Write

Entire Array.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa6 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′wa5
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(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wa6 ∼= wa5 by Definition 4.2.2.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa7 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa7 (γ, σ2, ∆2, χ, bid, acc, skip) by Location-tracking SMC2 rule Private

1D Array Write Entire Public Array, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ,

bid, acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1]. vm 6= skip, γ(x) = (l, private const bty∗), (bty = int) ∨ (bty

= float), σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private

const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], ∀vm ∈ [v0, ..., vne−1]. v′m = encrypt(vm), σ1(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), ne = n, and T_UpdateVal(σ1, l1, [v
′
0, ..., v

′
ne−1], ∆1, χ, bid, acc,

private bty) = (σ2,∆2).

Given (γ̂, σ̂, �, x̂ = ê) and ψ such that (γ, σ, ∆, χ, bid, acc, x = e) ∼=ψ (γ̂, σ̂, �, x̂ = ê), by Definition 4.2.1

we have (γ, σ) ∼=ψ (γ̂, σ̂) and x = e ∼=ψ x̂ = ê. Given (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa7 (γ, σ2, ∆2, χ, bid,

acc, skip), by Lemma 4.2.2 we have (l, µ) /∈ x = e. Therefore, by Lemma 3.2.3 we have x = e ∼= x̂ = ê. By

Definition 3.2.10 we have Erase(x = e) = Erase(x) = Erase(e), Erase(x) = x̂ where x = x̂, and Erase(e) = ê.

Therefore, we have e ∼= ê.

Given (γ, σ) ∼=ψ (γ̂, σ̂) and e ∼= ê, by Lemma 4.2.3 we have (γ̂, σ̂, �, ê) such that (γ̂, σ̂, �, ê) ∼=ψ (γ, σ, ∆,

χ, bid, acc, e). Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [v0, ..., vne−1]), by the inductive

hypothesis we have (γ̂, σ̂, �, ê) ⇓′d1
(γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]) and ψ1 such that (γ, σ1, ∆1, χ, bid, acc, [v0, ...,

vne−1])∼=ψ1
(γ̂, σ̂1, �, [v̂0, ..., v̂n̂e−1]) and c1 ∼= d1. Given [v0, ..., vne−1] 6= skip, by Lemma 4.2.1 we have ψ1 = ψ.

By Definition 4.2.1 we have (γ, σ1) ∼=ψ (γ̂, σ̂1) and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1]. By Lemma 3.2.18, we have

ne = n̂e. Given Label(e, γ) = public, we have Label([v0, ..., vne−1], γ) = public and therefore [v0, ..., vne−1] =

[v̂0, ..., v̂n̂e−1] by Definition 3.2.18 and Definition 3.2.10.

Given ∀vm ∈ [v0, ..., vne−1]. vm 6= skip and [v0, ..., vne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Definition 3.2.18 and Defini-

tion 3.2.10 we have ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip.

Given γ(x) = (l, private const bty∗), (γ, σ1) ∼=ψ (γ̂, σ̂1), and x = x̂, we have γ̂(x̂) = (l̂, const b̂ty∗) such that

l = l̂ by private const bty∗ ∼= const b̂ty∗ by Lemma 3.2.14.
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Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)), (γ, σ1) ∼=ψ (γ̂, σ̂1),

and l = l̂, by Lemma 3.2.16 we have σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)) such that

ω ∼=ψ ω̂.

Given DecodePtr(private const bty∗, 1, ω) = [1, (l1, 0), [1], 1], private const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂,

Lemma 3.2.44 we have DecodePtr(b̂ty∗, 1, ω̂) = [1, (l̂1, 0), [1], 1] where [1, (l1, 0), [1], 1] ∼=ψ [1, (l̂1, 0), [1], 1] such

that (l1, 0) ∼=ψ (l̂1, 0).

Given ∀vm ∈ [v0, ..., vne−1]. v′m = encrypt(vm) and [v0, ..., vne−1] = [v̂0, ..., v̂n̂e−1], by Definition 3.2.10 and

Definition 3.2.18 we have [v′0, ..., v
′
ne−1] ∼=ψ [v̂0, ..., v̂n̂e−1].

Given σ1(l1) = (ω1,private bty , n, PermL(Freeable, private bty ,private, n)), (γ, σ1) ∼=ψ (γ̂, σ̂1), and l1 = l̂1, by

Lemma 3.2.15 we have σ̂1(l̂1) = (ω̂1, b̂ty , n̂,PermL(Freeable, bty ,public, n̂)) where ω1
∼=ψ ω̂1, private bty ∼= b̂ty ,

and n = n̂.

Given ne = n, n = n̂, and ne = n̂e, we have n̂e = n̂.

Given UpdateVal(σ1, l1, [v
′
0, ..., v

′
ne−1], ∆1, χ, bid, acc, private bty) = (σ2,∆2), (γ, σ1) ∼=ψ (γ̂, σ̂1), l1 = l̂1,

private bty ∼= b̂ty , and [v′0, ..., v
′
ne−1] ∼=ψ [v̂0, ..., v̂n̂e−1], by Lemma 4.2.4 we have UpdateVal(σ̂1, l̂1, [v̂0, ..., v̂n̂e−1],

b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (γ̂, σ̂, �, x̂ = ê), (γ̂, σ̂,�, ê) ⇓′d1
(γ̂, σ̂1,�, [v̂0, ..., v̂n̂e−1]), ∀v̂m ∈ [v̂0, ..., v̂n̂e−1]. v̂m 6= skip, γ̂(x̂) = (l̂,

const b̂ty∗), σ̂1(l̂) = (ω̂, const b̂ty∗, 1, PermL(Freeable, const b̂ty∗, public, 1)), DecodePtr(const b̂ty∗, 1,

ω̂) = [1, [(l̂1, 0)], [1], 1], σ̂1(l̂1) = (ω̂1, b̂ty , n̂, PermL(Freeable, bty , public, n̂)), n̂e = n̂, and UpdateVal(σ̂1, l̂1,

[v̂0, ..., v̂n̂e−1], b̂ty) = σ̂2, we have Σ . (γ̂, σ̂, �, x̂ = ê) ⇓′wa5 (γ̂, σ̂2, �, skip) by Vanilla C rule 1D Array Write

Entire Array.

Given (γ, σ2) ∼=ψ (γ̂, σ̂2), by Definition 4.2.1 we have (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂2, �, skip).

Therefore, we have (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa7 (γ, σ2, ∆2, χ, bid, acc, skip) ∼=ψ (γ̂, σ̂, �, x̂ = ê) ⇓′wa5

(γ̂, σ̂2, �, skip), Π ∼=ψ Σ, and wa7 ∼= wa5 by Definition 4.2.2.
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4.3 Noninterference

Location-tracking SMC2 satisfies a strong form of noninterferences guaranteeing that two execution traces

are indistinguishable up to differences in private values. This stronger version entails data-obliviousness.

Instead of using execution traces, we will work directly with evaluation trees in the Location-tracking SMC2

semantics – equivalence of evaluation trees up to private values implies equivalence of execution traces based

on the Location-tracking SMC2 semantics. This guarantee is provided at the semantics level, we do not

consider here compiler optimizations.

For noninterference, it is convenient to introduce a notion of equivalence requiring that the two memories

agree on publicly observable values. Because we assume that private data in memories are encrypted, and so

their encrypted value is publicly observable, it is sufficient to consider syntactic equality of memories. Notice

that if σ1 = σ2 we can still have σ1` 6= σ2`, i.e., two executions starting from the same configuration can

actually differ with respect to private data. What we show is that this difference can occur only in atomic

operations working on private data, which we assume is not publicly observable.

We want to consider two evaluation trees as low-equivalent if they are identical up to private relational

operations. To formalize this, we need first to identify codes up to private relational operations – these are

atomic operations that are implemented by means of some cryptographic primitive and we assume that their

difference is not publicly observable. We define low-equivalence over Location-tracking SMC2 evaluation

codes in Definition 3.3.1 and evaluation trees in Definition 4.3.1. Based on the notion of low-equivalence

between evaluation trees, we can now state our main noninterference result.

Theorem 4.3.1 (Noninterference over evaluation trees). For every environment γ, γ′, γ′′; memory σ, σ′, σ′′ ∈

Mem; location map ∆, ∆′, ∆′′; local variable tracker χ, χ′, χ′′, branch identifier bid, bid′, bid′′; accumulator acc,

acc′, acc′′ ∈ N; statement s, values v′, v′′; step evaluation codes [d′1, ..., d
′
n], [d′′1 , ..., d

′′
n]; if Π . (γ, σ, ∆, χ, bid, acc,

s) ⇓t[d′1,...,d′n] (γ′, σ′, ∆′, χ′, bid′, acc′, v′) and Σ . (γ, σ, ∆, χ, bid, acc, s) ⇓t[d′′1 ,...,d′′n] (γ′′, σ′′, ∆′′, χ′′, bid′′, acc′′,

v′′), then γ′ = γ′′, ∆′ = ∆′′, χ′ = χ′′, bid′ = bid′′, σ′ = σ′′, acc′ = acc′′, v′ = v′′, [d′1, ..., d
′
n] 'L [d′′1 , ..., d

′′
n], and

Π 'L Σ.

Proof. Proof Sketch: By induction over all Location-tracking SMC2 semantic rules. Notice that low-

equivalence of evaluation trees already implies the equivalence of the resulting configurations. We repeated

them to make the meaning of the theorem clearer. Moreover, notice that two evaluation trees can differ only

in atomic operations implemented through cryptographic primitives. Thus the two corresponding traces are
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equivalent and data-obliviousness follows.

We make the assumption that both evaluation traces are over the same program (this is given by having

the same s in the starting states) and all public data will remain the same, including data read as input during

the evaluation of the program. A portion of the complexity of this proof is within ensuring that memory

accesses within our semantics remain data oblivious. Several rules follow fairly simply and leverage similar

ideas, which we will discuss first, and then we will provide further intuition behind the more complex cases.

The full proof is available in Section 4.3.2, with this theorem identical to Theorem 4.3.2.

For all rules leveraging helper algorithms, we must reason about the helper algorithms, and that they

behave deterministically by definition and have data-oblivious memory accesses. Given this and that these

helper algorithms do no modify the private data, we maintain the properties of noninterference of this

theorem. First we reason that our helper algorithms to translate values into their byte representation will do

so deterministically, and therefore maintain indistinguishability between the value and byte representation.

We can then reason that our helper algorithms that take these byte values and store them into memory will

also do so deterministically, so that when we later access the data in memory we will obtain the same

indistinguishable values we had stored.

It is also important to take note here our functions to help us retrieve data from memory, particularly in

cases such as when reading out of bounds of an array. When proving these cases to maintain noninterference,

we leverage our definition of how memory blocks are assigned in a monotonically increasing fashion, and

how the algorithms for choosing which memory block to read into after the current one are deterministic.

This, as well as our original assumptions of having identical public input, allows us to reason that if we access

out of bounds (including accessing data at a non-aligned position, such as a chunk of bytes in the middle of a

memory block), we will be pulling from the same set of bytes each time, and therefore we will end up with

the same interpretation of the data as we continue to evaluate the remainder of the program. It is important to

note again here that by definition, our semantics will always interpret bytes of data as the type it is expected

to be, not the type it actually is (i.e., reading bytes of data that marked private in memory by overshooting a

public array will not decrypt the bytes of data, but instead give you back a garbage public value). To reiterate

this point, even when reading out of bounds, we will not reveal anything about private data, as the results of

these helper algorithms will be indistinguishable.

For private pointers, it is important to note that the obtaining multiple locations is deterministic based

upon the program that is being evaluated. A pointer can initially gain multiple locations through the evaluation
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of a private if else. Once there exists a pointer that has obtained multiple locations in such a way, it can

be assigned to another pointer to give that pointer multiple locations. The other case for a pointer to gain

multiple location is through the use of pfree on a pointer with multiple locations (i.e., the case where a

pointer has locations l1, l2, l3 and we free l1) - when this occurs, if another pointer had referred to only l1, it

will now gain locations in order to mask whether we had to move the true location or not. When reasoning

about pointers with multiple locations, we maintain that given the tags for which location is the true location

are indistinguishable, then it is not possible to distinguish between them by their usage as defined in the

rules or helper algorithms using them. Additionally, to reason about pfree, we leverage that the definitions

of the helper algorithms are deterministic, and that (wlog), we will be freeing the same location. We will

then leverage our Axiom about the multiparty protocol MPCfree . After the evaluation of MPCfree , it will

deterministically update memory and all other pointers as we mentioned in the brief example above.

For the Private If Else rule, the most important element we must leverage is how values are resolved,

showing that given our resolution style, we are not able to distinguish between the ending values. In order to

do this, we also must reason about the entirety of the rule, including all of if else helper algorithms. First,

we note that the evaluation of the then branches follows by induction, as does the evaluation of the else

branch once we have reasoned through the restoration phase. We must then reason about our rules that update

memory and our update algorithms, and how given a program, we will deterministically find all modifications

to memory and add them to our tracking structure ∆ properly. Then we can reason that the behavior of

T_restore will deterministically perform the same updates, because ∆ will contain the same information in

every evaluation. Now, we are able to move on to reasoning about resolution, and show that given all of this

and the definitions of the resolution helper algorithms and rule, we are not able to distinguish between the

ending values.

Within the array rules, the main concern is in reading from and writing at a private index. We currently

handle this complexity within our rules by accessing all locations within the array in rules Location-tracking

Array Read Private Index and Location-tracking Array Write Private Index. In Location-tracking Array Read

Private Index, we clearly read data from every index of the array, privately computing the true value from all

values in the array. Similarly, in Location-tracking Array Write Private Index, we read data from every index

of the array, then proceed to privately update every value of in array. All other array rules use public indices,

and in turn only access that publicly known location. Within the pointer rules, our main concern is that we

access all locations that are referred to by a private pointer when we have multiple locations. For this, we
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will reason about the contents of the rules and the helper algorithms used by the pointer rules, which can be

shown to deterministically do so.

4.3.1 Supporting Metatheory

For the Proof of Noninterference over the Location-tracking semantics several definitions, axioms, and

lemmas remain unchanged:

• Definitions 3.3.1, 3.3.2, 3.3.4, 3.3.5,

• Axioms 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5,

• Lemmas 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5, 3.3.6, 3.3.7, 3.3.8, 3.3.11, 3.3.9, 3.3.10, 3.3.17, 3.3.18, 3.3.19,

3.3.20, 3.3.21, 3.3.22, 3.3.23, 3.3.24

Definition 4.3.1. Two Location-tracking SMC2 evaluation trees Π and Σ are low-equivalent, in symbols Π 'L Σ, if

and only if Π and Σ have the same structure as trees, and for each node in Π proving (γ, σ, ∆, χ, bid, acc, s) ⇓cΠ
(γ1, σ1, ∆1, χ1, bid, acc1, v), the corresponding node in Σ proves (γ, σ, ∆, χ, bid, acc, s) ⇓cΣ (γ1, σ1,

∆1, χ1, bid, acc1, v) and cΠ ∼=L cΣ.

Lemma 4.3.1. Given memory σ, σ′, location map ∆,∆′, and accumulator acc, acc′, if T_restore(σ, ∆, acc) = σ2,

T_restore(σ′,∆′, acc′) = σ′2, σ = σ′, ∆ = ∆′, and acc = acc′, then σ2 = σ′2.

Proof. By definition of Algorithm T_restore, T_restore is deterministic.

Lemma 4.3.2. Given memory σ, σ′, location map ∆,∆′, local variable tracker χ, χ′, branch identifier bid,bid′, accu-

mulator acc, acc′, and variable name resacc, res ′acc, if T_resolve(σ, ∆, χ, bid, acc, resacc) = σ1, T_resolve(σ′,∆′,

χ′,bid′, acc′, res ′acc) = σ1, σ = σ′, acc = acc′, and resacc = res ′acc, then σ1 = σ′1.

Proof. By definition of Algorithm T_resolve, T_resolve is deterministic.

Lemma 4.3.3. Given memory σ1, σ
′
1, memory block identifier l, l′, value v, v′, location map ∆,∆′, local vari-

able tracker χ, χ′, branch identifier bid,bid′, accumulator acc, acc′, and ty , ty ′, if T_UpdateVal(σ1, l, v, ∆1,

χ, bid, acc, ty) = (σ2, ∆2), T_UpdateVal(σ′1, l
′, v′, ∆′1, χ

′, bid′, acc′, ty ′) = (σ′2, ∆′2), σ1 = σ′1, l = l′, v = v′,

∆ = ∆′, χ = χ′, bid = bid′, acc = acc′and ty = ty ′, then σ2 = σ′2 and ∆2 = ∆′2.

Proof. By definition of Algorithm T_UpdateVal, T_UpdateVal is deterministic.
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Lemma 4.3.4. Given memory σ1, σ
′
1, location (l, µ), (l′, µ′), value v, v′, location map ∆1,∆

′
1, local vari-

able tracker χ, χ′, branch identifier bid, bid′, accumulator acc, acc′, and type ty , ty ′, if T_UpdateOffset(σ1,

(l, µ), v, ∆1, χ, bid, acc, ty) = (σ2, ∆2, j), T_UpdateOffset(σ′1, (l′, µ′), v′,∆′1, χ
′, bid′, acc′, ty ′) =

(σ′2,∆
′
2, j
′), σ1 = σ′1, (l, µ) = (l′, µ′), v = v′, ty = ty ′, ∆1 = ∆′1, χ = χ′, bid = bid′, and acc = acc′,

then σ2 = σ′2, ∆2 = ∆′2, and j = j′.

Proof. By definition of Algorithm T_UpdateOffset, T_UpdateOffset is deterministic.

Lemma 4.3.5. Given memory σ1, σ
′
1, memory block identifier list l, l

′
, tag list j, j

′
, type ty , ty ′, location map

∆1,∆
′
1, local variable tracker χ, χ′, branch identifier bid,bid′, accumulator acc, acc′, and value v1, v2, v

′
1, v
′
2, if

T_UpdatePriv(σ1, v1, l, j, ty , v2,∆1, χ, bid, acc) = (σ2,∆2, j), T_UpdatePriv(σ1, v
′
1, l
′
, j
′
, ty ′, v′2,∆

′
1, χ
′, bid′,

acc′) = (σ′2,∆
′
2, j
′), σ1 = σ′1, v1 = v′1, l = l

′
, j = j

′
, ty = ty ′, v2 = v′2, ∆1 = ∆′1, χ = χ′, bid = bid′, and

acc = acc′, then σ2 = σ′2, ∆2 = ∆′2, and j = j′.

Proof. By definition of Algorithm T_UpdatePriv, T_UpdatePriv is deterministic.

Lemma 4.3.6. Given memory σ1, σ
′
1, location (l, µ), (l′, µ′), pointer data structure [α, l, j, i], [α′, l

′
, j
′
, i′], location

map ∆1,∆
′
1, local variable tracker χ, χ′, branch identifier bid,bid′, accumulator acc, acc′, and type ty , ty ′, if

T_UpdatePrivPtr(σ1, (l, µ), [α, l, j, i], ∆1, χ, bid, acc, ty) = (σ2, ∆2, j), T_UpdatePrivPtr(σ′1, (l′, µ′),

[α′, l
′
, j
′
, i′], ∆′1, χ

′, bid′, acc′, ty ′) = (σ′2,∆
′
2, j
′), σ1 = σ′1, (l, µ) = (l′, µ′), [α, l, j, i] = [α′, l

′
, j
′
, i′], ∆1 = ∆′1,

χ = χ′, bid = bid′, acc = acc′, and ty = ty ′, then σ2 = σ′2, ∆2 = ∆′2, and j = j′.

Proof. By definition of Algorithm T_UpdatePtr, T_UpdatePtr is deterministic.

Lemma 4.3.7. Given memory σ1, σ
′
1, location (l, µ), (l′, µ′), pointer data structure [α, l, j, i], [α1, l1, j1, i1, [α′, l

′
,

j
′
, i′], [α′1, l

′
1, j
′
1, i
′
1], location map ∆1,∆

′
1, local variable tracker χ, χ′, branch identifier bid, bid′, accumulator

acc, acc′, and type ty , ty ′, if T_UpdatePrivPtr(σ1, [α, l, j, i], [α1, l1, j1, i1],∆1, χ, bid, acc, ty) = (σ2, ∆2, j),

T_UpdatePrivPtr(σ1, [α
′, l
′
, j
′
, i′], [α′1, l

′
1, j
′
1, i
′
1], ∆′1, χ

′, bid′, acc′, ty ′) = (σ′2,∆
′
2, j
′), σ1 = σ′1, (l, µ) = (l′, µ′),

[α, l, j, i] = [α′, l
′
, j
′
, i′], [α1, l1, j1, i1] = [α′1, l

′
1, j
′
1, i
′
1] ty = ty ′, ∆1 = ∆′1, χ = χ′, bid = bid′, and acc = acc′,

then σ2 = σ′2, ∆2 = ∆′2, and j = j′.

Proof. By definition of Algorithm T_UpdatePrivPtr, T_UpdatePrivPtr is deterministic.

Lemma 4.3.8. Given value v, v′, number n1, n
′
1, n2, n

′
2, memory block identifier l, l′, type ty , ty ′, location map

∆,∆′, local variable tracker χ, χ′, branch identifier bid,bid′, accumulator acc, acc′, and memory σ, σ′,

if T_WriteOOB(v, n1, n2, l, ty , σ,∆, χ, bid, acc) = (σ1,∆1, j), T_WriteOOB(v′, n′1, n
′
2, l
′, ty ′, σ′,∆′, χ′, bid′,

acc′) = (σ′1,∆
′
1, j
′), v = v′, n1 = n′1, n2 = n′2, l = l′, ty = ty ′, σ = σ′, ∆ = ∆′, χ = χ′, bid = bid′, and

acc = acc′, then σ1 = σ′1, ∆1 = ∆′1, and j = j′.

Proof. By definition of Algorithm T_WriteOOB, T_WriteOOB is deterministic.
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4.3.2 Proof of Noninterference

Theorem 4.3.2 (Noninterference over evaluation trees). For every environment γ, γ′, γ′′; memory σ, σ′, σ′′ ∈

Mem; location map ∆, ∆′, ∆′′; local variable tracker χ, χ′, χ′′, branch identifier bid, bid′, bid′′; accumulator acc,

acc′, acc′′ ∈ N; statement s, values v′, v′′; step evaluation codes [c′1, ..., c
′
n], [c′′1 , ..., c

′′
n];

if Π . (γ, σ, ∆, χ, bid, acc, s) ⇓t[c′1,...,c′n] (γ′, σ′, ∆′, χ′, bid′, acc′, v′) and Σ . (γ, σ, ∆, χ, bid, acc, s) ⇓t[c′′1 ,...,c′′n]

(γ′′, σ′′, ∆′′, χ′′, bid′′, acc′′, v′′),

then γ′ = γ′′, ∆′ = ∆′′, χ′ = χ′′, bid′ = bid′′, σ′ = σ′′, acc′ = acc′′, v′ = v′′, [c′1, ..., c
′
n] 'L [c′′1 , ..., c

′′
n], and

Π 'L Σ.

Proof.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3)

Given Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3) by rule Location-tracking Private Less

Than True, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc,

n1), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), n1 <private n2, and encrypt(1) = n3.

By definition 3.3.1, given c = ltt1 , we have c 'L c′ if c′ = ltt1 ∨ ltf1 . Therefore, we have the following two subcases:

Subcase Σ . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ′2, ∆′2, χ, bid, acc, n′3)

Given Σ . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ′2, ∆′2, χ, bid, acc, n′3) by rule Location-tracking Private Less

Than True, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc,

n′1), (γ, σ′1, ∆′1, χ, bid, acc, e′2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, n′2), n′1 <private n
′
2, and encrypt(1) = n′3.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1) and (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, n′1), by the inductive hypothesis we have that σ1 = σ′1, ∆1 = ∆′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′2), and σ1 = σ′1, by the inductive hypothesis we have that σ2 = σ′2, ∆2 = ∆′2, n2 = n′2, and c2 'L c′2.

Given encrypt(1) = n3 and encrypt(1) = n′3, we have n3 = n′3 = encrypt(1).

Therefore we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, and n3 = n′3, and, by definition 4.3.1,

we have Π 'L Σ.

Subcase Σ . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf1 (γ, σ2, ∆1, χ, bid, acc, n3)
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Given Σ . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf1 (γ, σ2, ∆2, χ, bid, acc, n3) by rule Location-tracking Private Less

Than False, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓te (γ, σ′1, ∆′1, χ, bid, acc,

n′1), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓te (γ, σ′2, ∆′2, χ, bid, acc, n′2), n′1 >=private n
′
2, and encrypt(0) = n′3.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, ∆, χ, bid, σ1, acc, n1) and (γ, ∆, χ, bid, σ, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, n′1), by the inductive hypothesis we have that σ1 = σ′1, ∆1 = ∆′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′2), and σ1 = σ′1, by the inductive hypothesis we have that σ2 = σ′2, ∆2 = ∆′2, n2 = n′2, and c2 'L c′2.

Given encrypt(1) = n3 and encrypt(0) = n′3, by Axiom 3.3.1 we have n3 = n′3.

Therefore we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, and n3 = n′3, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).
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Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt1 (γ, σ2, ∆2, χ, bid, acc, n3).
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Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1)

Given Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1) by rule Location-tracking Public Less Than

True, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1), (γ,

σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆1, χ, bid, acc, n2), and n1 <public n2.

By definition 3.3.1, given c = ltt , we have c 'L c′ if and only if c′ = ltt .

Given Σ . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ′2, ∆′2, χ, bid, acc, 1) by rule Location-tracking Public Less Than

True, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, n′1), (γ,

σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, n′2), and n′1 <public n
′
2

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1) and (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, n′1), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′2), and σ1 = σ′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, n2 = n′2, and c2 'L c′2.

Therefore we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, and 1 = 1, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltf (γ, σ2, ∆2, χ, bid, acc, 0)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqt (γ, σ2, ∆2, χ, bid, acc, 1)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 == e2) ⇓teqf (γ, σ2, ∆2, χ, bid, acc, 0)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnet (γ, σ2, ∆2, χ, bid, acc, 1)
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This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1! = e2) ⇓tnef (γ, σ2, ∆2, χ, bid, acc, 0)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 < e2) ⇓tltt (γ, σ2, ∆2, χ, bid, acc, 1).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3)

Given Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3) by rule Location-tracking Public Addition,

we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, acc, n1), (γ, σ1, ∆1, χ, bid,

acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), and n1 +public n2 = n3.

By definition 3.3.1, given c = bp, we have c 'L c′ if and only if c′ = bp.

Given Σ . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp (γ, σ′2, ∆′2, χ, bid, acc, n′3) by rule Location-tracking Public Addition,

we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, n1), (γ, σ′1,

∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, n′2), and n′1 +public n
′
2 = n′3.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1) and (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, n′1), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′2), and σ1 = σ′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, n2 = n′2, and c2 'L c′2.

Given n1 = n′1, n2 = n′2, n1 +public n2 = n3, and n′1 +public n
′
2 = n′3, we have n3 = n′3.

Therefore we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, and n3 = n′3, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 − e2) ⇓tbs (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbm (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp (γ, σ2, ∆2, χ, bid, acc, n3).
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Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3)

Given Π . (γ, σ,∆, χ, bid, acc, e1 + e2) ⇓tbp1 (γ, σ2,∆2, χ, bid, acc, n3) by rule Location-tracking Private Addition,

we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1), (γ, σ1,

∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), and n1 +private n2 = n3.

By definition 3.3.1, given c = bp1 , we have c 'L c′ if and only if c′ = bp1 .

Given Σ . (γ, σ,∆, χ, bid, acc, e1 + e2) ⇓tbp1 (γ, σ′2,∆
′
2, χ, bid, acc, n′3) by rule Location-tracking Private Addition,

we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, n′1), (γ, σ′1,

∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, n′2), and n′1 +private n
′
2 = n′3.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1) and (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, n′1), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′2), and σ1 = σ′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, n2 = n′2, and c2 'L c′2.

Given n1 = n′1, n2 = n′2, n1 +private n2 = n3, and n′1 +private n
′
2 = n′3, by Axiom 3.3.2 we have n3 = n′3.

Therefore we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, and n3 = n′3, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 − e2) ⇓tbs1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbm1 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp1 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, acc, ∆, χ, bid, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3)

Given Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3) by rule Location-tracking Public-Private
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Addition, we have Label(e1, γ) = public, Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid,

acc, n1), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), and encrypt(n1) +private n2 = n3.

By definition 3.3.1, given c = bp2 , we have c 'L c′ if and only if c′ = bp2 .

Given Σ . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ′2, ∆′2, χ, bid, acc, n′3) by rule Location-tracking Public-Private

Addition, we have Label(e1, γ) = public, Label(e2, γ) = private, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, n′1), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, n′2), and encrypt(n′1) +private n
′
2 = n′3.

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n1) and (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, n′1), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n1 = n′1, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n2), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′2), and σ1 = σ′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, n2 = n′2, and c2 'L c′2.

Given n1 = n′1, encrypt(n1), and encrypt(n′1), by Axiom 3.3.1 we have that encrypt(n1) = encrypt(n′1).

Given encrypt(n1) = encrypt(n′1), n2 = n′2, encrypt(n1) +private n2 = n3, and encrypt(n′1) +private n
′
2 = n′3, by

Axiom 3.3.2 we have n3 = n′3.

Therefore we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, and n3 = n′3, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 − e2) ⇓tbs2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 − e2) ⇓tbs3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).
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Case Π . (γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbm2 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, e1 · e2) ⇓tbm3 (γ, σ2, ∆2, χ, bid, acc, n3)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, e1 + e2) ⇓tbp2 (γ, σ2, ∆2, χ, bid, acc, n3).

Case Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiep (γ, σ6, ∆6, χ, bid, acc, skip)

Given Π . (γ, σ,∆, χ, bid, acc, if (e) s1 else s2) ⇓tiep (γ, σ6,∆6, χ, bid, acc, skip) by rule Location-tracking Private

If Else, we have Label(e, γ) = private, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), (γ, σ1, ∆1, χ, bid,

acc, private int resacc+1 = n) ⇓tc2 (γ1, σ2, ∆1, χ1, bid, acc, skip), ∆2 = ∆1.push([ ]), χ2 = χ1.push([ ]), (γ1, σ2,

∆2, χ2, then, acc + 1, s1) ⇓tc3 (γ2, σ3, ∆3, χ3, then, acc + 1, skip), T_restore(σ3, ∆3, acc + 1) = σ4, (γ1, σ4,

∆3, χ2, else, acc + 1, s2) ⇓tc4 (γ3, σ5, ∆4, χ4, else, acc + 1, skip), T_resolve(σ5, ∆4, χ, bid, acc, resacc+1) = (σ6,

∆5), and ∆6 = ∆5.pop().

By definition 3.3.1, given c = iep, we have c 'L c′ if and only if c′ = iep.

Given Σ . (γ, σ,∆, χ, bid, acc, if (e) s1 else s2) ⇓tiep (γ, σ′6,∆
′
6, χ, bid, acc, skip) by rule Location-tracking Private

If Else, we have Label(e, γ) = private, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, n′), (γ, σ′1, ∆′1, χ, bid,

acc, private int resacc+1 = n′) ⇓tc′2 (γ′1, σ
′
2, ∆′1, χ

′
1, bid, acc, skip), ∆′2 = ∆′1.push([ ]), χ′2 = χ′1.push([ ]), (γ′1,

σ′2, ∆′2, χ
′
2, then, acc + 1, s1) ⇓tc′3 (γ′2, σ

′
3, ∆′3, χ

′
3, then, acc + 1, skip), T_restore(σ′3, ∆′3, acc + 1) = σ′4, (γ′1, σ

′
4,

∆′3, χ
′
2, else, acc + 1, s2) ⇓tc′4 (γ′3, σ

′
5, ∆′4, χ

′
4, else, acc + 1, skip), T_resolve(σ′5, ∆′4, χ, bid, acc, resacc+1) = (σ′6,

∆′5), and ∆′6 = ∆′5.pop().

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n = n′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, private int resacc+1 = n) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), (γ, σ′1, ∆′1, χ, bid,

acc, private int resacc+1 = n′) ⇓tc′2 (γ′1, σ
′
2, ∆′1, χ1, bid, acc, skip), σ1 = σ′1, ∆1 = ∆′1, and n = n′, we have

{private int resacc+1 = n} = {private int resacc+1 = n′}. By the inductive hypothesis, we have γ1 = γ′1, σ2 = σ′2,

χ1 = χ′1,and c2 'L c′2.

Given ∆2 = ∆1.push([ ]), ∆′2 = ∆′1.push([ ]), and ∆1 = ∆′1, we have ∆2 = ∆′2.
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Given χ′2 = χ′1.push([ ]), χ2 = χ1.push([ ]), and χ1 = χ′1, we have χ2 = χ′2.

Given (γ1, σ2, ∆2, χ2, then, acc + 1, s1) ⇓tc3 (γ2, σ3, ∆3, χ3, then, acc + 1, skip), (γ′1, σ
′
2, ∆′2, χ

′
2, then, acc + 1,

s1) ⇓tc′3 (γ′2, σ
′
3, ∆′3, χ

′
3, then, acc + 1, skip), γ1 = γ′1, σ2 = σ′2, ∆2 = ∆′2, and χ2 = χ′2, by the inductive hypothesis

we have γ2 = γ′2, σ3 = σ′3, ∆3 = ∆′3, χ3 = χ′3, and c3 'L c′3.

Given T_restore(σ3, ∆3, acc + 1) = σ4, T_restore(σ′3, ∆′3, acc + 1) = σ′4, σ3 = σ′3, and ∆3 = ∆′3, by Lemma 4.3.1

we have σ4 = σ′4.

Given (γ1, σ4, ∆3, χ2, else, acc + 1, s2) ⇓tc4 (γ3, σ5, ∆4, χ4, else, acc + 1, skip), (γ′1, σ
′
4, ∆′3, χ

′
2, else, acc + 1, s2)

⇓tc′4 (γ′3, σ
′
5, ∆′4, χ

′
4, else, acc + 1, skip), γ1 = γ′1, σ4 = σ′4, ∆3 = ∆′3, χ2 = χ′2, by the inductive hypothesis we have

γ3 = γ′3, σ5 = σ′5, ∆4 = ∆′4, χ4 = χ′4, and c4 'L c′4.

Given T_resolve(σ5, ∆4, χ, bid, acc, resacc+1) = (σ6, ∆5), T_resolve(σ′5, ∆′4, χ, bid, acc, resacc+1) = (σ′6, ∆′5),

σ5 = σ′5, and ∆4 = ∆′4, by Lemma 4.3.2 we have σ6 = σ′6 and ∆5 = ∆′5.

Given ∆6 = ∆5.pop(), ∆′6 = ∆′5.pop(), and ∆5 = ∆′5, we have ∆6 = ∆′6.

Therefore, we have γ = γ, σ6 = σ′6, ∆6 = ∆′6, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking If Else

True, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), n 6= 0, and (γ, σ1,

∆1, χ, bid, acc, s1) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip).

By definition 3.3.1, given c = iet , we have c 'L c′ if and only if c′ = iet .

Given Σ . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking If Else

True, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, n′), n′ 6= 0, and (γ, σ′1,

∆′1, χ, bid, acc, s1) ⇓tc′2 (γ′1, σ
′
2, ∆′2, χ

′
1, bid, acc, skip).
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Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n = n′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, s1) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), (γ, σ′1, ∆′1, χ, bid, acc, s1) ⇓tc′2 (γ′1, σ
′
2, ∆′2,

χ′1, bid, acc, skip), σ1 = σ′1, and ∆1 = ∆′1, by the inductive hypothesis we have γ1 = γ′1, σ2 = σ′2, ∆2 = ∆′2,

χ1 = χ′1, and c2 'L c′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, and skip = skip, and, by definition

4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tief (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, if (e) s1 else s2) ⇓tiet (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, &x) ⇓tloc (γ, σ, ∆, χ, bid, acc, (l, 0))

Given Π . (γ, σ, ∆, χ, bid, acc, &x) ⇓tloc (γ, σ, ∆, χ, bid, acc, (l, 0)) by rule Location-tracking Address Of, we have

γ(x) = (l, ty).

By definition 3.3.1, given c = loc, we have c 'L c′ if and only if c′ = loc.

Given Σ . (γ, σ, ∆, χ, bid, acc, &x) ⇓tloc (γ, σ, ∆, χ, bid, acc, (l′, 0)) by rule Location-tracking Address Of, we

have γ(x) = (l′, ty ′).

Given γ = γ, we have that l = l′ and ty = ty ′.

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, and (l, 0) = (l′, 0), and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, sizeof(ty)) ⇓tty (γ, σ, ∆, χ, bid, acc, n)

Given Π . (γ, σ, ∆, χ, bid, acc, sizeof(ty)) ⇓tty (γ, σ, ∆, χ, bid, acc, n) by rule Location-tracking Size of Type, we
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have n = τ(ty).

By definition 3.3.1, given c = ty , we have c 'L c′ if and only if c′ = ty .

Given Σ . (γ, σ, ∆, χ, bid, acc, sizeof(ty)) ⇓tty (γ, σ, ∆, χ, bid, acc, n′) by rule Location-tracking Size of Type, we

have n′ = τ(ty).

Given n = τ(ty) and n′ = τ(ty), by definition of τ we have n = n′.

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, and n = n′, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twle (γ, σ1, ∆1, χ, bid, acc, skip)

Given Π . (γ, σ, acc,while (e) s) ⇓twle (γ, σ1, ∆1, χ, bid, acc, skip) by rule Location-tracking While End, we have

(γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), Label(e, γ) = public, and n = 0.

By definition 3.3.1, given c = wle , we have c 'L c′ if and only if c′ = wle .

Given Σ . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twle (γ, σ′1, ∆′1, χ, bid, acc, skip) by rule Location-tracking While End,

we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, n′), Label(e, γ) = public, and n′ = 0.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n = n′, and c1 'L c′1.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twlc (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twlc (γ, σ3, ∆3, χ, bid, acc, skip) by rule Location-tracking While

Continue, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), n 6= 0, (γ, σ1,

∆1, χ, bid, acc, s) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), and (γ, σ2, ∆2, χ, bid, acc, while (e) s) ⇓tc3 (γ2, σ3, ∆3,
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χ2, bid, acc, skip).

By definition 3.3.1, given c = wlc, we have c 'L c′ if and only if c′ = wlc.

Given Σ . (γ, σ, ∆, χ, bid, acc, while (e) s) ⇓twlc (γ, σ′3, ∆′3, χ, bid, acc, skip) by rule Location-tracking While

Continue, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, n′), n′ 6= 0, (γ, σ′1,

∆′1, χ, bid, acc, s) ⇓tc′2 (γ′1, σ
′
2, ∆′2, χ

′
1, bid, acc, skip), and (γ, σ′2, ∆′2, χ, bid, acc, while (e) s) ⇓tc′3 (γ′2, σ

′
3, ∆′3,

χ′2, bid, acc, skip).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n = n′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, s) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), (γ, σ′1, ∆′1, χ, bid, acc, s) ⇓tc′2 (γ′1, σ
′
2, ∆′2,

χ′1, bid, acc, skip), σ1 = σ′1, and ∆1 = ∆′1, by the inductive hypothesis we have γ1 = γ′1, σ2 = σ′2, ∆2 = ∆′2,

χ1 = χ′1, and c2 'L c′2.

Given (γ1, σ2, ∆2, χ, bid, acc, while (e) s) ⇓tc3 (γ2, σ3, ∆3, χ2, bid, acc, skip), (γ′1, σ
′
2, ∆2, χ, bid, acc,

while (e) s) ⇓tc′3 (γ′2, σ
′
3, ∆′3, χ

′
2, bid, acc, skip), γ1 = γ′1, σ2 = σ′2, and ∆2 = ∆′2, by the inductive hypothesis we

have γ2 = γ′2, σ3 = σ′3, ∆3 = ∆′3, χ2 = χ′2, and c3 'L c′3.

Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, s1; s2) ⇓tss (γ2, σ2, ∆2, χ2, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, s1; s2) ⇓tss (γ2, σ2, ∆2, χ2, bid, acc, v) by rule Location-tracking Statement

Sequencing, we have (γ, σ, ∆, χ, bid, acc, s1) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip) and (γ1, σ1, ∆1, χ1, bid,

acc, s2) ⇓tc2 (γ2, σ2, ∆2, χ
′
2, bid, acc, v).

By definition 3.3.1, given c = ss , we have c 'L c′ if and only if c′ = ss .

Given Σ . (γ, σ, acc, ∆, χ, bid, s1; s2) ⇓tss (γ′2, σ
′
2, ∆′2, χ

′
2, bid, acc, v′) by rule Location-tracking Statement

Sequencing, we have (γ, σ, ∆, χ, bid, acc, s1) ⇓tc′1 (γ′1, σ
′
1, ∆′1, χ

′
1, bid, acc, skip) and (γ′1, σ

′
1, ∆′1, χ

′
1, bid, acc,
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s2) ⇓tc′2 (γ′2, σ
′
2, ∆′2, χ

′
2, bid, acc, v).

Given (γ, σ, ∆, χ, bid, acc, s1) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip) and (γ, σ, ∆, χ, bid, acc, s1) ⇓tc′1 (γ′1, σ
′
1, ∆′1,

χ′1, bid, acc, skip), by the inductive hypothesis we have γ1 = γ′1, σ1 = σ′1, ∆1 = ∆′1, χ1 = χ′1, and c1 'L c′1.

Given (γ1, σ1, ∆1, χ1, bid, acc, s2) ⇓tc2 (γ2, σ2, ∆2, χ2, bid, acc, v), (γ′1, σ
′
1, ∆′1, χ

′
1, bid, acc, s2) ⇓tc′2 (γ′2, σ

′
2,

∆′2, χ
′
2, bid, acc, v), γ1 = γ′1, σ1 = σ′1, ∆1 = ∆′1, and χ1 = χ′1, by the inductive hypothesis we have γ2 = γ′2,

σ2 = σ′2, ∆2 = ∆′2, χ2 = χ′2, v = v′, and c2 'L c′2.

Therefore, we have γ2 = γ′2, σ2 = σ′2, ∆2 = ∆′2, χ2 = χ′2, bid = bid, acc = acc, v = v′, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, (e)) ⇓tep (γ, σ1, ∆1, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, (e)) ⇓tep (γ, σ1, ∆1, χ, bid, acc, v) by rule Location-tracking Parentheses, we have

(γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v).

By definition 3.3.1, given c = ep, we have c 'L c′ if and only if c′ = ep.

Given Σ . (γ, σ, ∆, χ, bid, acc, (e)) ⇓tep (γ, σ′1, ∆′1, χ, bid, acc, v′) by rule Location-tracking Parentheses, we have

(γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, v′).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, v′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, v = v′, and c1 'L c′1.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, v = v′, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, {s}) ⇓tsb (γ, σ1, ∆1, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, {s}) ⇓tsb (γ, σ1, ∆1, χ, bid, acc, skip) by rule Location-tracking Statement Block,

we have (γ, σ, ∆, χ, bid, acc, s) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip).

504



By definition 3.3.1, given c = sb, we have c 'L c′ if and only if c′ = sb.

Given Σ . (γ, σ, ∆, χ, bid, acc, {s}) ⇓tsb (γ, σ′1, ∆′1, χ, bid, acc, skip) by rule Location-tracking Statement Block,

we have (γ, σ, ∆, χ, bid, acc, s) ⇓tc′1 (γ′1, σ
′
1, ∆′1, χ

′
1, bid, acc, skip).

Given (γ, σ, ∆, χ, bid, acc, s) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip) and (γ, σ, ∆, χ, bid, acc, s) ⇓tc′1 (γ′1, σ
′
1, ∆′1,

χ′1, bid, acc, skip), by the inductive hypothesis we have γ1 = γ′1, σ1 = σ′1, ∆1 = ∆′1, χ1 = χ′1, and c1 'L c′1.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ3, ∆1, χ, bid, acc, (l, 0))

Given Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ3, ∆1, χ, bid, acc, (l, 0)) by rule Location-tracking Cast Public

Location, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (l, 0)), (ty = public bty∗) ∨ (ty = char∗),

σ1 = σ2

[
l →

(
ω, void, n, PermL(Freeable, void, public, n)

)]
, and σ3 = σ2

[
l →

(
ω, ty , n

τ(ty) , PermL(Freeable,

ty , public, n
τ(ty)

))]
.

By definition 3.3.1, given c = cl , we have c 'L c′ if and only if c′ = cl .

Given Σ . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ′3, ∆′1, χ, bid, acc, (l′, 0)) by rule Location-tracking Cast Public

Location, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, (l′, 0)), (ty = public bty ′∗) ∨ (ty =

char∗), σ′1 = σ′2
[
l′ →

(
ω′, void, n′, PermL(Freeable, void, public, n′)

)]
, and σ′3 = σ′2

[
l′ →

(
ω′, ty , n′

τ(ty) ,

PermL(Freeable, ty , public, n′

τ(ty)

))]
.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (l, 0)) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, (l′, 0)), by the inductive hypothesis we have σ1 = σ′1, ∆− 1 = ∆′1, l = l′, and c1 'L c′1.

Given σ1 = σ2

[
l→

(
ω, void, n, PermL(Freeable, void, public, n)

)]
, σ′1 = σ′2

[
l′ →

(
ω′, void, n′,PermL(Freeable,

void, public, n′)
)]

, σ1 = σ′1, and l = l′, we have σ2 = σ′2, ω = ω′, and n = n′.

Given σ3 = σ2

[
l →

(
ω, ty , n

τ(ty) , PermL(Freeable, ty , public, n
τ(ty)

))]
, σ′3 = σ′2

[
l′ →

(
ω′, ty , n′

τ(ty) ,

PermL(Freeable, ty , public, n′

τ(ty)

))]
, σ2 = σ′2, l = l′, ω = ω′, and n = n′, we have σ3 = σ′3.
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Therefore, we have γ = γ, σ3 = σ′3, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, (l, 0) = (l′, 0), and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl1 (γ, σ3, ∆3, χ, bid, acc, (l, 0))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcl (γ, σ3, ∆3, χ, bid, acc, (l, 0)).

Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ1, ∆1, χ, bid, acc, n1)

Given Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ1, ∆1, χ, bid, acc, n1) by rule Location-tracking Cast Public

Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n), (ty = public

int) ∨ (ty = public float), and n1 = Cast(public, ty , n).

By definition 3.3.1, given c = cv , we have c 'L c′ if and only if c′ = cv .

Given Σ . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ′1, ∆′1, χ, bid, acc, n′1) by rule Location-tracking Cast Public

Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, n′), (ty = public

int) ∨ (ty = public float), and n′1 = Cast(public, ty , n′).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n = n′, and c1 'L c′1.

Given n1 = Cast(public, ty , n), n′1 = Cast(public, ty , n′), and n = n′, by definition of Cast, we have n1 = n′1.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, n1 = n′1, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv1 (γ, σ1, ∆1, χ, bid, acc, n1)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, (ty) e) ⇓tcv (γ, σ1, ∆1, χ, bid, acc, n1).
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Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp (γ, σ3, ∆3, χ, bid, acc, skip) by rule Location-tracking

SMC Input Public Value, we have Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x),

acc = 0, (γ σ1,∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2,∆2, χ, bid, acc, n), γ(x) = (l, public bty), InputValue(x, n) = n1,

and (γ, σ2, ∆2, χ, bid, acc, x = n1) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, skip).

By definition 3.3.1, given c = inp, we have c 'L c′ if and only if c′ = inp.

Given Σ . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp (γ, σ′3, ∆′3, χ, bid, acc, skip) by rule Location-tracking

SMC Input Public Value, we have Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc,

x′), acc = 0, (γ σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, n′), γ(x′) = (l′, public bty ′), InputValue(x′,

n′) = n′1, and (γ, σ′2, ∆′2, χ, bid, acc, x′ = n′1) ⇓tc′3 (γ, σ′3, ∆′3, χ, bid, acc, skip).

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x) and (γ, σ, acc, ∆, χ, bid, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, x′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, x = x′, and c1 'L c′1.

Given (γ σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid,

acc, n′), σ1 = σ′1, and ∆1 = ∆′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, n = n′, and c2 'L c′2.

Given γ(x) = (l, public bty), γ(x′) = (l′, public bty ′), and x = x′, we have l = l′ and bty = bty ′.

Given InputValue(x, n) = n1, InputValue(x′, n′) = n′1, x = x′, and n = n′, by Axiom 3.3.3 we have n1 = n′1.

Given (γ, σ2, ∆2, χ, bid, acc, x = n1) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, skip), (γ, σ′2, ∆′2, χ, bid, acc, x′ = n′1) ⇓tc′3 (γ,

σ′3, ∆′3, χ, bid, acc, skip), σ2 = σ′2, ∆2 = ∆′2, x = x′, and n = n′, by the inductive hypothesis we have σ3 = σ′3,

∆3 = ∆′3, and c3 'L c′3.

Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp3 (γ, σ3, ∆3, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2)) ⇓tinp (γ, σ3, ∆3, χ, bid, acc, skip).
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Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ4, ∆4, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ4, ∆4, χ, bid, acc, skip) by rule Location-tracking

SMC Input Public 1D Array, we have Label(e2, γ) = Label(e3, γ) = public, acc = 0, (γ, σ, ∆, χ, bid, acc,

e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ2, ∆2, χ, bid,

acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), γ(x) = (l, public const bty∗), InputArray(x, n, n1) = [m0, ..., mn1
],

and (γ, σ3, ∆4, χ, bid, acc, x = [m0, ..., mn1 ]) ⇓tc4 (γ, σ4, ∆4, χ, bid, acc, skip).

By definition 3.3.1, given c = inp1 , we have c 'L c′ if and only if c′ = inp1 .

Given Σ . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ′4, ∆′4, χ, bid, acc, skip) by rule Location-tracking

SMC Input Public 1D Array, we have Label(e2, γ) = Label(e3, γ) = public, acc = 0, (γ, σ, ∆, χ, bid, acc,

e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, x′), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, n′), (γ, σ′2, ∆′2, χ, bid,

acc, e3) ⇓tc′3 (γ, σ′3, ∆′3, χ, bid, acc, n′1), γ(x′) = (l′, public const bty ′∗), InputArray(x′, n′, n′1) = [m′0, ..., m
′
n′1

],

and (γ, σ′3, ∆′3, χ, bid, acc, x′ = [m′0, ..., m
′
n′1

]) ⇓tc′4 (γ, σ′4, ∆′4, χ, bid, acc, skip).

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x) and (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, x′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, x = x′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′), σ1 = σ′1, and ∆1 = ∆′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, n = n′, and c2 'L c′2.

Given (γ, σ2, ∆2, χ, bid, acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), (γ, σ′2, ∆′2, χ, bid, acc, e3) ⇓tc′3 (γ, σ′3, ∆′3,

χ, bid, acc, n′1), σ2 = σ′2, and ∆2 = ∆′2, by the inductive hypothesis we have σ3 = σ′3, ∆3 = ∆′3, n1 = n′1, and

c3 'L c′3.

Given γ(x) = (l, public const bty∗), γ(x′) = (l′, public const bty ′∗), and x = x′, we have l = l′ and bty = bty ′.

Given InputArray(x, n, n1) = [m0, ..., mn1
], InputArray(x′, n′, n′1) = [m′0, ..., m

′
n′1

], x = x′, n = n′, and n1 =

n′1, by Axiom 3.3.4 we have [m0, ..., mn1
] = [m′0, ..., m

′
n′1

]. Therefore, we have {x = [m0, ..., mn1
]} = {x′ = [m′0,

..., m′n′1
]}.
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Given (γ, σ3, ∆3, χ, bid, acc, x = [m0, ..., mn1
]) ⇓tc4 (γ, σ4, ∆4, χ, bid, acc, skip), (γ, σ′3, ∆′3, χ, bid, acc,

x′ = [m′0, ..., m
′
n′1

]) ⇓tc′4 (γ, σ′4, ∆′4, χ, bid, acc, skip), {x = [m0, ..., mn1
]} = {x′ = [m′0, ..., m

′
n′1

]}, σ3 = σ′3, and

∆3 = ∆′3, by the inductive hypothesis we have σ4 = σ′4, ∆4 = ∆′4, and c4 'L c′4.

Therefore, we have γ = γ, σ4 = σ′4, ∆4 = ∆′4, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp4 (γ, σ4, ∆4, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, smcinput(e1, e2, e3)) ⇓tinp1 (γ, σ4, ∆4, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking

SMC Output Public Value, we have Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc,

x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), γ(x) = (l, public bty), σ2(l) = (ω, public bty ,

1,PermL(Freeable, public bty , public, 1)), DecodeVal(public bty , 1, ω) = n1, and OutputValue(x, n, n1).

By definition 3.3.1, given c = out , we have c 'L c′ if and only if c′ = out .

Given Σ . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking

SMC Output Public Value, we have Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, x′),

(γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, n′), γ(x′) = (l′, public bty ′), σ′2(l′) = (ω′, public bty ′, 1,

PermL(Freeable, public bty ′, public, 1)), DecodeVal(public bty ′, 1, ω′) = n′1, and OutputValue(x′, n′, n′1).

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, x) and (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, x′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, x = x′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′), ∆1 = ∆′1, and σ1 = σ′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, n = n′, and c2 'L c′2.

Given γ(x) = (l, public bty), γ(x′) = (l′, public bty ′), and x = x′, we have l = l′ and bty = bty ′.
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Given σ2(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1)), σ′2(l′) = (ω′, public bty ′, 1,

PermL(Freeable, public bty ′, public, 1)), and l = l′, we have ω = ω′.

Given DecodeVal(public bty , 1, ω) = n1, DecodeVal(public bty ′, 1, ω′) = n′1, ω = ω′, and bty = bty ′, by definition

of DecodeVal we have n1 = n′1.

Given OutputValue(x, n, n1), OutputValue(x′, n′, n′1), x = x′, n = n′, and n1 = n′1, by definition of OutputValue

we will have identical output.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout3 (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2)) ⇓tout (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ,∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ3,∆3, χ, bid, acc, skip) by rule Location-tracking

SMC Output Public 1D Array, we have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1,

∆1, χ, bid, acc, x), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ2, ∆2, χ, bid, acc, e3) ⇓tc3 (γ,

σ3, ∆3, χ, bid, acc, n1), γ(x) = (l, public const bty∗), σ3(l) = (ω, public const bty∗, 1,PermL(Freeable, public

const bty∗, public, 1), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ3(l1) = (ω1, public bty , n1,

PermL(Freeable, public bty , public, n1)), DecodeVal(public bty , n1, ω1) = [m0, ..., mn1
], and OutputArray(x,

n, [m0, ..., mn1
]).

By definition 3.3.1, given c = out1 , we have c 'L c′ if and only if c′ = out1 .

Given Σ . (γ, σ,∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ′3,∆
′
3, χ, bid, acc, skip) by rule Location-tracking

SMC Output Public 1D Array, we have Label(e2, γ) = Label(e3, γ) = public, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1,

∆′1, χ, bid, acc, x′), (γ, σ′1,∆
′
1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2,∆

′
2, χ, bid, acc, n′), (γ, σ′2,∆

′
2, χ, bid, acc, e3) ⇓tc′3 (γ,

σ′3, ∆′3, χ, bid, acc, n′1), γ(x′) = (l′, public const bty ′∗), σ′3(l′) = (ω′, public const bty ′∗, 1,PermL(Freeable,

public const bty ′∗, public, 1), DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′3(l′1) = (ω′1, public
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bty , n′1, PermL(Freeable, public bty ′, public, n′1)), DecodeVal(public bty ′, n′1, ω
′
1) = [m′0, ..., m

′
n′1

], and

OutputArray(x′, n′, [m′0, ..., m
′
n′1

]).

Given (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, x) and (γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, x′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, x = x′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, n), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, n′), ∆1 = ∆′1, and σ1 = σ′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, n = n′, and c2 'L c′2.

Given (γ, σ2, ∆2, χ, bid, acc, e3) ⇓tc3 (γ, σ3, ∆3, χ, bid, acc, n1), (γ, σ′2, ∆′2, χ, bid, acc, e3) ⇓tc′3 (γ, σ′3, ∆′3,

χ, bid, acc, n′1), ∆2 = ∆′2, and σ2 = σ′2, by the inductive hypothesis we have σ3 = σ′3, ∆3 = ∆′3, n1 = n′1, and

c3 'L c′3.

Given γ(x) = (l, public const bty∗), γ(x′) = (l′, public const bty ′∗), and x = x′, we have l = l′ and bty = bty ′.

Given σ3(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1), σ′3(l′) = (ω′, public const

bty ′∗, 1,PermL(Freeable, public const bty ′∗, public, 1), σ3 = σ′3, and l = l′, we have ω = ω′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], ω = ω′, and bty = bty ′, by definition of DecodePtr we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]

and therefore l1 = l′1.

Given σ3(l1) = (ω1, public bty , n1,PermL(Freeable, public bty , public, n1)), σ′3(l′1) = (ω′1, public bty , n′1,

PermL(Freeable, public bty ′, public, n′1)), σ3 = σ′3, and l1 = l′1, we have ω1 = ω′1 and n1 = n′1.

Given DecodeVal(public bty , n1, ω1) = [m0, ..., mn1
], DecodeVal(public bty ′, n′1, ω

′
1) = [m′0, ..., m

′
n′1

], bty =

bty ′, n1 = n′1, and ω1 = ω′1, by definition of DecodeVal we have [m0, ..., mn1 ] = [m′0, ..., m
′
n′1

].

Given OutputArray(x, n, [m0, ..., mn1 ]), OutputArray(x′, n′, [m′0, ..., m
′
n′1

]), x = x′, n = n′, and [m0, ..., mn1 ]

= [m′0, ..., m
′
n′1

], by definition of OutputArray we will have identical output.

Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.
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Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout4 (γ, σ3, ∆3, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, smcoutput(e1, e2, e3)) ⇓tout1 (γ, σ3, ∆3, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ty x(p)) ⇓tdf (γ1, σ1, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x(p)) ⇓tdf (γ1, σ1, ∆, χ, bid, acc, skip) by rule Location-tracking Function

Declaration, we have (acc = 0)∧ (bid = none), GetFunTypeList(p) = ty , l = φ(), γ1 = γ[x→ (l, ty → ty)], and

σ1 = σ[l→ (NULL, ty → ty , 1,PermL_Fun(public))].

By definition 3.3.1, given c = df , we have c 'L c′ if and only if c′ = df .

Given Σ . (γ, σ, ∆, χ, bid, acc, ty x(p)) ⇓tdf (γ′1, σ
′
1, ∆, χ, bid, acc, skip) by rule Location-tracking Function

Declaration, we have (acc = 0) ∧ (bid = none), GetFunTypeList(p) = ty
′, l′ = φ(), γ′1 = γ[x → (l′,

ty
′ → ty)], and σ′1 = σ[l′ → (NULL, ty

′ → ty , 1, PermL_Fun(public))].

Given GetFunTypeList(p) = ty and GetFunTypeList(p) = ty
′, by Lemma 3.3.1 we have ty = ty

′.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given γ1 = γ[x→ (l, ty → ty)], γ′1 = γ[x→ (l′, ty
′ → ty)], l = l′, and ty = ty

′, we have γ1 = γ′1.

Given σ1 = σ[l→ (NULL, ty → ty , 1, PermL_Fun(public))], σ′1 = σ[l′ → (NULL, ty
′ → ty , 1,

PermL_Fun(public))], l = l′, and ty = ty
′, we have σ1 = σ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, ∆ = ∆, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfpd (γ, σ2, ∆, χ, bid, acc, skip)

Given Π . (γ, σ,∆, χ, bid, acc, ty x(p){s}) ⇓tfpd (γ, σ2,∆, χ, bid, acc, skip) by rule Location-tracking Pre-Declared

Function Definition, we have (acc = 0) ∧ (bid = none), x ∈ γ, γ(x) = (l, ty → ty), CheckPublicEffects(s, x, γ,
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σ) = n, EncodeFun(s, n, p) = ω, σ = σ1[l → (NULL, ty → ty , 1, PermL_Fun(public))], and σ2 = σ1[l →

(ω, ty → ty , 1, PermL_Fun(public))].

By definition 3.3.1, given c = fpd , we have c 'L c′ if and only if c′ = fpd .

Given Σ . (γ, σ,∆, χ, bid, acc, ty x(p){s}) ⇓tfpd (γ, σ′2,∆, χ, bid, acc, skip) by rule Location-tracking Pre-Declared

Function Definition, we have (acc = 0) ∧ (bid = none), x ∈ γ, γ(x) = (l′, ty
′ → ty), CheckPublicEffects(s, x, γ,

σ) = n′, EncodeFun(s, n′, p) = ω′, σ = σ′1[l′ → (NULL, ty
′ → ty , 1,PermL_Fun(public))], and σ′2 = σ′1[l′ →

(ω′, ty
′ → ty , 1,PermL_Fun(public))].

Given γ(x) = (l, ty → ty), γ(x) = (l′, ty
′ → ty), we have l = l′ and ty = ty

′.

Given CheckPublicEffects(s, x, γ, σ) = n, CheckPublicEffects(s, x, γ, σ) = n′, by definition of

CheckPublicEffects we have n = n′.

Given EncodeFun(s, n, p) = ω, EncodeFun(s, n′, p) = ω′, and n = n′, by definition of EncodeFun we have

ω = ω′.

Given σ = σ1[l → (NULL, ty → ty , 1, PermL_Fun(public))], σ = σ′1[l′ → (NULL, ty
′ → ty , 1,

PermL_Fun(public))], l = l′, and ty = ty
′, we have σ1 = σ′1.

Given σ2 = σ1[l → (ω, ty → ty , 1,PermL_Fun(public))], σ′2 = σ′1[l′ → (ω′, ty
′ → ty , 1, PermL_Fun(public))],

σ1 = σ′1, l = l′, ty = ty
′, and ω = ω′, we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆ = ∆, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfd (γ1, σ1, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfd (γ1, σ1, ∆, χ, bid, acc, skip) by rule Location-tracking Func-

tion Definition, we have l = φ(), GetFunTypeList(p) = ty , x /∈ γ, γ1 = γ[x → (l, ty → ty)], (acc =

0) ∧ (bid = none), CheckPublicEffects(s, x, γ, σ) = n, EncodeFun(s, n, p) = ω, and σ1 = σ[l → (ω, ty → ty ,

1,PermL_Fun(public))].
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By definition 3.3.1, given c = fd , we have c 'L c′ if and only if c′ = fd .

Given Σ . (γ, σ, ∆, χ, bid, acc, ty x(p){s}) ⇓tfd (γ′1, σ
′
1, ∆, χ, bid, acc, skip) by rule Location-tracking Function

Definition, we have l′ = φ(), GetFunTypeList(p) = ty
′, x /∈ γ, γ′1 = γ[x → (l′, ty

′ → ty)], (acc = 0) ∧ (bid =

none), CheckPublicEffects(s, x, γ, σ) = n′, EncodeFun(s, n′, p) = ω′, and σ′1 = σ[l′ → (ω′, ty
′ → ty , 1,

PermL_Fun(public))].

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given GetFunTypeList(p) = ty and GetFunTypeList(p) = ty
′, by Lemma 3.3.1 we have ty = ty

′.

Given γ1 = γ[x→ (l, ty → ty)], γ′1 = γ[x→ (l′, ty
′ → ty)], l = l′, and ty = ty

′, we have γ1 = γ′1.

Given CheckPublicEffects(s, x, γ, σ) = n, CheckPublicEffects(s, x, γ, σ) = n′, by definition of

CheckPublicEffects we have n = n′.

Given EncodeFun(s, n, p) = ω, EncodeFun(s, n′, p) = ω′, and n = n′, by definition of EncodeFun we have

ω = ω′.

Given σ1 = σ[l → (ω, ty → ty , 1,PermL_Fun(public))], σ′1 = σ[l′ → (ω′, ty
′ → ty , 1, PermL_Fun(public))],

l = l′, ty = ty
′, and ω = ω′, we have σ1 = σ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, ∆ = ∆, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc (γ, σ2, ∆2, χ, bid, acc, NULL)

Given Π . (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc (γ, σ2, ∆2, χ, bid, acc, NULL) by rule Location-tracking Function Call

No Return With Public Side Effects, we have γ(x) = (l, ty → ty), σ(l) = (ω, ty → ty , 1,PermL_Fun(public)),

DecodeFun(ω) = (s, 1, p), acc = 0, GetFunParamAssign(p, e) = s1, (γ, σ, acc, ∆, χ, bid, s1) ⇓tc1 (γ1, σ1, ∆1,

χ1, bid, acc, skip), and (γ1, σ1, ∆1, χ1, bid, acc, s) ⇓tc2 (γ2, σ2, ∆2, χ2, bid, acc, skip).
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By definition 3.3.1, given c = fc, we have c 'L c′ if and only if c′ = fc.

Given Σ . (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc (γ, σ2, ∆2, χ, bid, acc, NULL) by rule Location-tracking Function Call

No Return With Public Side Effects, we have γ(x) = (l′, ty
′ → ty ′), σ(l′) = (ω′, ty

′ → ty ′, 1,PermL_Fun(public)),

DecodeFun(ω′) = (s′, 1, p′), acc = 0, GetFunParamAssign(p′, e) = s′1, (γ, σ, ∆, χ, bid, acc, s′1) ⇓tc′1 (γ′1, σ
′
1,

∆′1, χ
′
1, bid, acc, skip), and (γ′1, σ

′
1, ∆′1, χ

′
1, bid, acc, s) ⇓tc′2 (γ′2, σ

′
2, ∆′2, χ

′
2, bid, acc, skip).

Given γ(x) = (l, ty → ty) and γ(x) = (l′, ty
′ → ty ′), we have l = l′, ty = ty

′, and ty = ty ′.

Given σ(l) = (ω, ty → ty , 1,PermL_Fun(public)), σ(l′) = (ω′, ty
′ → ty ′, 1,PermL_Fun(public)), and l = l′, we

have ω = ω′.

Given DecodeFun(ω) = (s, 1, p), DecodeFun(ω′) = (s′, 1, p′), and ω = ω′, by definition of DecodeFun we have

s = s′ and p = p′.

Given GetFunParamAssign(p, e) = s1, GetFunParamAssign(p′, e) = s′1, and p = p′, by Lemma 3.3.2 we have

s1 = s′1.

Given (γ, σ, ∆, χ, bid, acc, s1) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), (γ, σ, ∆, χ, bid, acc, s′1) ⇓tc′1 (γ′1, σ
′
1, ∆′1,

χ′1, bid, acc, skip), and s1 = s′1, by the inductive hypothesis we have γ1 = γ′1, σ1 = σ′1, ∆1 = ∆′1, χ1 = χ′1, and

c1 'L c′1.

Given (γ1, σ1, ∆1, χ1, bid, acc, s) ⇓tc2 (γ2, σ2, ∆2, χ2, bid, acc, skip), (γ′1, σ
′
1, ∆′1, χ

′
1, bid, acc, s) ⇓tc′2 (γ′2, σ

′
2,

∆′2, χ
′
2, bid, acc, skip), ∆1 = ∆′1, χ1 = χ′1, γ1 = γ′1, and σ1 = σ′1, by the inductive hypothesis we have γ2 = γ′2,

σ2 = σ′2, ∆2 = ∆′2, χ2 = χ′2, and c2 'L c′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, NULL = NULL, and, by definition

4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc1 (γ, σ2, ∆2, χ, bid, acc, NULL)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x(e)) ⇓tfc (γ, σ2, ∆2, χ, bid, acc, NULL).
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Case Π . (γ, σ, ∆, χ, bid, acc, malloc(e)) ⇓tmal (γ, σ2, ∆, χ, bid, acc, (l, 0))

Given Π . (γ, σ, ∆, χ, bid, acc, malloc(e)) ⇓tmal (γ, σ2, ∆, χ, bid, acc, (l, 0)) by rule Location-tracking Public

Malloc, we have Label(e, γ) = public, (acc = 0) ∧ (bid = none), (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid,

acc, n), l = φ(), and σ2 = σ1

[
l→

(
NULL, void∗, n,

[
(0, public, Freeable), ..., (n− 1, public, Freeable)

])]
.

By definition 3.3.1, given c = mal , we have c 'L c′ if and only if c′ = mal .

Given Σ . (γ, σ, ∆, χ, bid, acc, malloc(e)) ⇓tmal (γ, σ′2, ∆, χ, bid, acc, (l′, 0)) by rule Location-tracking Public

Malloc, we have Label(e, γ) = public, (acc = 0) ∧ (bid = none), (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆, χ, bid,

acc, n′), l′ = φ(), and σ′2 = σ′1
[
l′ →

(
NULL, void∗, n′,

[
(0, public, Freeable), ..., (n′ − 1, public, Freeable)

])]
.

Given (γ, σ,∆, χ, bid, acc, e) ⇓tc1 (γ, σ1,∆, χ, bid, acc, n) and (γ, σ, acc, e) ⇓tc′1 (γ, σ′1, acc, n′), by the inductive

hypothesis we have σ1 = σ′1, n = n′, and c1 'L c′1.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given σ2 = σ1

[
l →

(
NULL, void∗, n,

[
(0, public,Freeable), ..., (n − 1, public,Freeable)

])]
, σ′2 = σ′1

[
l′ →(

NULL, void∗, n′,
[
(0, public,Freeable), ..., (n′ − 1, public,Freeable)

])]
, σ1 = σ′1, l = l′, and n = n′, we have

σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆ = ∆, χ = χ, bid = bid, acc = acc, (l, 0) = (l′, 0), and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, pmalloc(e, ty)) ⇓tmalp (γ, σ2, ∆, χ, bid, acc, (l, 0))

Given Π . (γ, σ,∆, χ, bid, acc, pmalloc(e, ty)) ⇓tmalp (γ, σ2,∆, χ, bid, acc, (l, 0)) by rule Location-tracking Private

Malloc, we have Label(e, γ) = public, (ty = private int) ∨ (ty = private float) (γ, σ, acc, ∆, χ, bid, e) ⇓tc1 (γ,

σ1, ∆, χ, bid, acc, n), (acc = 0) ∧ (bid = none), l = φ(), and σ2 = σ1

[
l →

(
NULL, ty , n, PermL(Freeable, ty ,

private, n)
]
.

By definition 3.3.1, given c = malp, we have c 'L c′ if and only if c′ = malp.
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Given Σ . (γ, σ, ∆, χ, bid, acc, pmalloc(e, ty)) ⇓tmalp (γ, σ′2, ∆, χ, bid, acc, (l′, 0)) by rule Location-tracking

Private Malloc, we have Label(e, γ) = public, (ty = private int) ∨ (ty = private float) (γ, σ, ∆, χ, bid, acc,

e) ⇓tc′1 (γ, σ′1, ∆, χ, bid, acc, n′), (acc = 0) ∧ (bid = none), l′ = φ(), and σ′2 = σ′1
[
l′ →

(
NULL, ty , n′,

PermL(Freeable, ty , private, n′)
]
.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid, acc, n) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, n = n′, and c1 'L c′1.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given σ2 = σ1

[
l →

(
NULL, ty , n, PermL(Freeable, ty , private, n)

]
, σ′2 = σ′1

[
l′ →

(
NULL, ty , n′,

PermL(Freeable, ty , private, n′)
]
, σ1 = σ′1, l = l′, and n = n′, we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆ = ∆, χ = χ, bid = bid, acc = acc, (l, 0) = (l′, 0), and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, free(e)) ⇓tfre (γ, σ2, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, free(e)) ⇓tfre (γ, σ2, ∆, χ, bid, acc, skip) by rule Location-tracking Public Free,

we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid, acc, x), γ(x) = (l, public bty∗), (bty = int) ∨ (bty =

float) ∨ (bty = char) ∨ (bty = void), (acc = 0) ∧ (bid = none), and Free(σ1, l, γ) = σ2.

By definition 3.3.1, given c = fre , we have c 'L c′ if and only if c′ = fre.

Given Σ . (γ, σ, ∆, χ, bid, acc, free(e)) ⇓tfre (γ, σ′2, ∆, χ, bid, acc, skip) by rule Location-tracking Public Free,

we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆, χ, bid, acc, x′), γ(x′) = (l′, public bty ′∗), (bty ′ = int) ∨ (bty ′ =

float) ∨ (bty ′ = char) ∨ (bty ′ = void), (acc = 0) ∧ (bid = none), and Free(σ′1, l
′, γ) = σ′2.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid, acc, x) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆, χ, bid,

acc, x′), by the inductive hypothesis we have σ1 = σ′1, x = x′, and c1 'L c′1.

Given γ(x) = (l, public bty∗), γ(x′) = (l′, public bty ′∗), and x = x′, we have l = l′ and bty = bty ′.
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Given Free(σ1, l, γ) = σ2, Free(σ′1, l
′, γ) = σ′2, σ1 = σ′1, and l = l′, by Lemma 3.3.9 we have σ2 = σ′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆ = ∆, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, pfree(e)) ⇓tfrep (γ, σ2, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, pfree(e)) ⇓tfrep (γ, σ2, ∆, χ, bid, acc, skip) by rule Location-tracking Private Free,

we have (γ, σ,∆, χ, bid, acc, e) ⇓tc1 (γ, σ1,∆, χ, bid, acc, x), γ(x) = (l, private bty∗), (acc = 0)∧(bid = none),

(bty = int) ∨ (bty = float), and PFree(γ, σ1, l) = (σ2, j).

By definition 3.3.1, given c = frep, we have c 'L c′ if and only if c′ = frep.

Given Σ . (γ, σ,∆, χ, bid, acc, pfree(e)) ⇓tfrep (γ, σ′2,∆, χ, bid, acc, skip) by rule Location-tracking Private Free, we

have (γ, σ,∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1,∆, χ, bid, acc, x′), γ(x′) = (l′, private bty ′∗), (acc = 0)∧ (bid = none),

(bty ′ = int) ∨ (bty ′ = float), and PFree(γ, σ′1, l
′) = (σ′2, j

′
).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid, acc, x) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆, χ, bid,

acc, x′), by the inductive hypothesis we have σ1 = σ′1, x = x′, and c1 'L c′1.

Given γ(x) = (l, private bty∗), γ(x′) = (l′, private bty ′∗), and x = x′, we have l = l′ and bty = bty ′.

Given PFree(γ, σ1, l) = (σ2, l, j), PFree(γ, σ′1, l
′) = (σ′2, l

′
, j
′
), σ1 = σ′1, and l = l′, by Lemma 3.3.10 we have

σ2 = σ′2, l = l
′
, and j = j

′
.

Therefore, we have γ = γ, σ2 = σ′2, ∆ = ∆, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds (γ1, σ2, ∆2, χ1, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds (γ1, σ2, ∆2, χ1, bid, acc, skip) by rule Location-tracking Declaration

Assignment, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip), and (γ1, σ1, ∆1, χ1, bid,

acc, x = e) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip).
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By definition 3.3.1, given c = ds , we have c 'L c′ if and only if c′ = ds .

Given Σ . (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds (γ′1, σ
′
2, ∆′2, χ

′
1, bid, acc, skip) by rule Location-tracking Declaration

Assignment, we have (γ, σ, ∆, χ, bid, acc, ty x) ⇓tc′1 (γ′1, σ
′
1, ∆′1, χ

′
1, bid, acc, skip), and (γ′1, σ

′
1, ∆′1, χ

′
1, bid,

acc, x = e) ⇓tc′2 (γ′1, σ
′
2, ∆′2, χ

′
1, bid, acc, skip).

Given (γ, σ, ∆, χ, bid, acc, ty x) ⇓tc1 (γ1, σ1, ∆1, χ1, bid, acc, skip) and (γ, σ, ∆, χ, bid, acc, ty x) ⇓tc′1 (γ′1, σ
′
1,

∆′1, χ
′
1, bid, acc, skip), by the inductive hypothesis we have γ1 = γ′1, σ1 = σ′1, ∆1 = ∆′1, χ1 = χ′1, and c1 'L c′1.

Given (γ1, σ1, ∆1, χ1, bid, acc, x = e) ⇓tc2 (γ1, σ2, ∆2, χ1, bid, acc, skip), (γ′1, σ
′
1, ∆′1, χ

′
1, bid, acc, x = e) ⇓tc′2

(γ′1, σ
′
2, ∆′2, χ

′
1, bid, acc, skip), γ1 = γ′1, ∆1 = ∆′1, χ1 = χ′1, and σ1 = σ′1, by the inductive hypothesis we have

σ2 = σ′2, ∆2 = ∆′2, and c2 'L c′2.

Therefore, we have γ1 = γ′1, σ2 = σ′2, ∆2 = ∆′2, χ1 = χ′1, bid = bid, acc = acc, skip = skip, and, by definition

4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e1] = e2) ⇓tdas (γ1, σ2, ∆2, χ1, bid, acc, skip)

This case is similar to case Π . (γ, σ, ∆, χ, bid, acc, ty x = e) ⇓tds (γ1, σ2, ∆2, χ1, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆, χ, bid, acc, skip) by rule Location-tracking Public Decla-

ration, we have (ty = public bty) ∨(ty = char), (acc = 0) ∧ (bid = none), l = φ(), γ1 = γ[x → (l, ty)],

ω = EncodeVal(ty , NULL), and σ1 = σ[l → (ω, ty , 1,PermL(Freeable, ty , public, 1))].

By definition 3.3.1, given c = d , we have c 'L c′ if and only if c′ = d .

Given Σ . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ′1, σ
′
1, ∆, χ, bid, acc, skip) by rule Location-tracking Public Declaration,

we have (ty = public bty) ∨(ty = char), (acc = 0) ∧ (bid = none), l′ = φ(), γ′1 = γ[x → (l′, ty)],

ω′ = EncodeVal(ty , NULL), and σ′1 = σ[l′ → (ω′, ty , 1,PermL(Freeable, ty , public, 1))].
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Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given γ1 = γ[x → (l, ty)], γ′1 = γ[x → (l′, ty)], and l = l′, we have γ1 = γ′1.

Given ω = EncodeVal(ty , NULL) and ω′ = EncodeVal(ty , NULL), by Lemma 3.3.3 we have ω = ω′.

Given σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty , public, 1))], σ′1 = σ[l′ → (ω′, ty , 1, PermL(Freeable, ty ,

public, 1))], l = l′, and ω = ω′, we have σ1 = σ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, ∆ = ∆, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td1 (γ1, σ1, ∆, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td2 (γ1, σ1, ∆, χ1, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ1, σ1, ∆, χ, bid, acc, skip) by rule Location-tracking Private Declaration

(Inside a Private - Conditioned If Else Branch), we have ((ty = bty) ∨ (ty = private bty)) ∧ ((bty = int) ∨ (bty =

float)), (acc > 0) ∧ ((bid = then) ∨ (bid = else)), l = φ(), γ1 = γ[x → (l, ty)], ω = EncodeVal(ty , NULL),

σ1 = σ[l → (ω, ty , 1,PermL(Freeable, ty , private, 1))], and χ1 = l :: χ[acc].

By definition 3.3.1, given c = d , we have c 'L c′ if and only if c′ = d .

Given Σ . (γ, σ, ∆, χ, bid, acc, ty x) ⇓td (γ′1, σ
′
1, ∆, χ, bid, acc, skip) by rule Location-tracking Private Declaration

(Inside a Private - Conditioned If Else Branch), we have ((ty = bty) ∨ (ty = private bty)) ∧ ((bty = int) ∨ (bty =

float)), (acc > 0) ∧ ((bid = then) ∨ (bid = else)), l′ = φ(), γ′1 = γ[x → (l′, ty)], ω′ = EncodeVal(ty , NULL),

σ′1 = σ[l′ → (ω′, ty , 1, PermL(Freeable, ty , private, 1))], and χ′1 = l′ :: χ[acc].

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given γ1 = γ[x → (l, ty)], γ′1 = γ[x → (l′, ty)], and l = l′, we have γ1 = γ′1.
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Given ω = EncodeVal(ty , NULL) and ω′ = EncodeVal(ty , NULL), by Lemma 3.3.3 we have ω = ω′.

Given σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty , public, 1))], σ′1 = σ[l′ → (ω′, ty , 1, PermL(Freeable, ty ,

public, 1))], l = l′, and ω = ω′, we have σ1 = σ′1.

Given χ1 = l :: χ[acc], χ′1 = l′ :: χ[acc], and l = l′, we have χ1 = χ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, ∆ = ∆, χ1 = χ′1, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ, bid, acc, skip) by rule Location-tracking Public Pointer

Declaration, we have (ty = public bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))), GetIndirection(∗) = i,

acc = 0, l = φ(), γ1 = γ[x → (l, ty)], ω = EncodePtr(ty , [1, [ldefault ], [1], i]), and σ1 = σ[l → (ω, ty , 1,

PermL(Freeable, public bty∗, public, 1))].

By definition 3.3.1, given c = dp, we have c 'L c′ if and only if c′ = dp.

Given Σ . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ′1, σ
′
1, ∆, χ, bid, acc, skip) by rule Location-tracking Public Pointer

Declaration, we have (ty = public bty ′∗) ∨ ((ty = bty ′∗) ∧ ((bty ′ = char) ∨ (bty ′ = void))), GetIndirection(∗)

= i′, acc = 0, l′ = φ(), γ′1 = γ[x → (l′, ty)], ω′ = EncodePtr(ty , [1, [ldefault ], [1], i′]), and σ′1 = σ[l′ → (ω′, ty ,

1,PermL(Freeable, public bty∗, public, 1))].

Given (ty = public bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))) and (ty = public bty ′∗) ∨ ((ty =

bty ′∗) ∧ ((bty ′ = char) ∨ (bty ′ = void))), we have bty = bty ′.

Given GetIndirection(∗) = i and GetIndirection(∗) = i′, by Lemma 3.3.11 we have i = i′.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given γ1 = γ[x → (l, ty)], γ′1 = γ[x → (l′, ty)], and l = l′, we have γ1 = γ′1.
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Given ω = EncodePtr(ty , [1, [ldefault ], [1], i]), ω′ = EncodePtr(ty , [1, [ldefault ], [1], i′]), and i = i′, by Lemma

3.3.5 we have ω = ω′.

Given σ1 = σ[l → (ω, public bty∗, 1,PermL(Freeable, public bty∗, public, 1))], σ′1 = σ[l′ → (ω′, public bty ′∗,

1, PermL(Freeable, public bty ′∗, public, 1))], l = l′, ω = ω′, and bty = bty ′, we have σ1 = σ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, ∆ = ∆, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp1 (γ1, σ1,∆, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp2 (γ1, σ1, ∆, χ1, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ1, σ1, ∆, χ1, bid, acc, skip) by rule Location-tracking Private

Pointer Declaration (Inside a Private - Conditioned If Else Branch), we have ((ty = bty∗) ∨ (ty = private

bty∗)) ∧ ((bty = int) ∨ (bty = float)), GetIndirection(∗) = i, (acc > 0) ∧ ((bid = then) ∨ (bid = else)),

l = φ(), γ1 = γ[x → (l, ty)], ω = EncodePtr(ty , [1, [ldefault ], [1], i]), σ1 = σ[l → (ω, ty , 1,PermL(Freeable,

private bty∗, private, 1))], and χ1 = l :: χ[acc].

By definition 3.3.1, given c = dp, we have c 'L c′ if and only if c′ = dp.

Given Σ . (γ, σ, ∆, χ, bid, acc, ty x) ⇓tdp (γ′1, σ
′
1, ∆, χ′1, bid, acc, skip) by rule Location-tracking Private Pointer

Declaration (Inside a Private - Conditioned If Else Branch), we have ((ty = bty ′∗)∨ (ty = private bty ′∗))∧ ((bty ′ =

int)∨(bty ′ = float)), GetIndirection(∗) = i′, (acc > 0)∧((bid = then)∨(bid = else)), l′ = φ(), γ′1 = γ[x → (l′,

ty)], ω′ = EncodePtr(ty , [1, [ldefault ], [1], i′]), and σ′1 = σ[l′ → (ω′, ty , 1,PermL(Freeable, private bty∗, private,

1))], and χ′1 = l′ :: χ[acc].

Given ((ty = bty∗) ∨ (ty = private bty∗)) ∧ ((bty = int) ∨ (bty = float)) and ((ty = bty ′∗) ∨ (ty = private

bty ′∗)) ∧ ((bty ′ = int) ∨ (bty ′ = float)), we have bty = bty ′.
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Given GetIndirection(∗) = i and GetIndirection(∗) = i′, by Lemma 3.3.11 we have i = i′.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given γ1 = γ[x → (l, ty)], γ′1 = γ[x → (l′, ty)], and l = l′, we have γ1 = γ′1.

Given ω = EncodePtr(ty , [1, [ldefault ], [1], i]), ω′ = EncodePtr(ty , [1, [ldefault ], [1], i′]), and i = i′, by Lemma

3.3.5 we have ω = ω′.

Given σ1 = σ[l → (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))], σ′1 = σ[l′ → (ω′, private

bty ′∗, 1, PermL(Freeable, private bty ′∗, private, 1))], l = l′, ω = ω′, and bty = bty ′, we have σ1 = σ′1.

Given χ1 = l :: χ[acc], χ′1 = l′ :: χ[acc], and l = l′, we have χ1 = χ′1.

Therefore, we have γ1 = γ′1, σ1 = σ′1, ∆ = ∆, χ1 = χ′1, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tr (γ, σ, ∆, χ, bid, acc, v)

Given Π . (γ, σ,∆, χ, bid, acc, x) ⇓tr (γ, σ,∆, χ, bid, acc, v) by rule Location-tracking Read Public Variable, we have

γ(x) = (l, public bty), σ(l) = (ω, public bty , 1,PermL(Freeable, public bty , public, 1)), and DecodeVal(public

bty , 1, ω) = v.

By definition 3.3.1, given c = r , we have c 'L c′ if and only if c′ = r .

Given Σ . (γ, σ, ∆, χ, bid, acc, x) ⇓tr (γ, σ, ∆, χ, bid, acc, v′) by rule Location-tracking Read Public Variable,

we have γ(x) = (l′, public bty ′), σ(l′) = (ω′, public bty ′, 1,PermL(Freeable, public bty ′, public, 1)), and

DecodeVal(public bty ′, 1, ω′) = v′.

Given γ(x) = (l, public bty) and γ(x) = (l′, public bty ′), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1)), σ(l′) = (ω′, public bty ′, 1,

PermL(Freeable, public bty ′, public, 1)), and l = l′, we have ω = ω′.
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Given DecodeVal(public bty , 1, ω) = v, DecodeVal(public bty ′, 1, ω′) = v′, bty = bty ′, and ω = ω′, we have

v = v′.

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, v = v, and, by definition 4.3.1, we have

Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tr1 (γ, σ, ∆, χ, bid, acc, v)

This case is similar to case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tr (γ, σ, ∆, χ, bid, acc, v).

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Public Write

Variable, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), v 6= skip, acc = 0,

γ(x) = (l, public bty), and T_UpdateVal(σ1, l, v, ∆1, χ, bid, public bty) = (σ2, ∆2).

By definition 3.3.1, given c = w , we have c 'L c′ if and only if c′ = w .

Given Σ . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Write Public

Variable, we have Label(e, γ) = public, (γ, σ,∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1,∆
′
1, χ, bid, acc, v′), v′ 6= skip, acc = 0,

γ(x) = (l′,public bty ′), and T_UpdateVal(σ′1, l
′, v′, ∆′1, χ, bid, public bty ′) = (σ′2, ∆′2).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, v′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, v = v′, and c1 'L c′1.

Given γ(x) = (l,public bty) and γ(x) = (l′,public bty ′), we have l = l′ and bty = bty ′.

Given T_UpdateVal(σ1, l, v, ∆, χ, bid, public bty) = (σ2, ∆2), T_UpdateVal(σ′1, l
′, v′, ∆, χ, bid, public bty ′)

= (σ′2, ∆′2), σ1 = σ′1, ∆1 = ∆′1, l = l′, bty = bty ′, and v = v′, by Lemma 3.3.12 we have σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.
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Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw2 (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw1 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw1 (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Write Private

Variable Public Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n),

γ(x) = (l, private bty), and T_UpdateVal(σ1, l, encrypt(n), ∆1, χ, bid, private bty) = (σ2, ∆2).

By definition 3.3.1, given c = w1 , we have c 'L c′ if and only if c′ = w1 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x = e) ⇓tw1 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Write Private

Variable Public Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ′1, ∆′1, χ, bid, acc, n′),

γ(x) = (l′, private bty ′), and T_UpdateVal(σ′1, l
′, encrypt(n′), ∆′1, χ, bid, private bty ′) = (σ′2, ∆′2).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ′1, ∆′1, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n = n′, and c1 'L c′1.

Given γ(x) = (l, private bty) and γ(x) = (l′, private bty ′), we have l = l′ and bty = bty ′.

Given T_UpdateVal(σ1, l, encrypt(n), ∆1, χ, bid, private bty) = (σ2, ∆2), T_UpdateVal(σ′1, l
′, encrypt(n′),

∆′1, χ, bid, private bty ′) = (σ′2, ∆′2), σ1 = σ′1, ∆1 = ∆′1, l = l′, bty = bty ′, and n = n′, by Axiom 3.3.1 we have

encrypt(n) = encrypt(n′) and therefore by Lemma 3.3.12 we have σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp (γ, σ, ∆, χ, bid, acc, (l1, µ1))

Given Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp (γ, σ, ∆, χ, bid, acc, (l1, µ1)) by rule Location-tracking Public Pointer Read

Single Location, we have γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public,
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1)), and DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i].

By definition 3.3.1, given c = rp, we have c 'L c′ if and only if c′ = rp.

Given Σ . (γ, σ, ∆, χ, bid, acc, x) ⇓trp (γ, σ, ∆, χ, bid, acc, (l′1, µ
′
1)) by rule Location-tracking Public Pointer Read

Single Location, we have γ(x) = (l′, public bty ′∗), σ(l′) = (ω′, public bty ′∗, 1, PermL(Freeable, public bty ′∗,

public, 1)), and DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′].

Given γ(x) = (l, public bty∗) and γ(x) = (l′, public bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1],

i′], bty = bty ′, and ω = ω′, we have l1 = l′1, µ1 = µ′1, and i = i′.

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, (l1, µ1) = (l′1, µ
′
1), and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp2 (γ, σ, ∆, χ, bid, acc, (l1, µ1))

This case is similar to case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓trp (γ, σ, ∆, χ, bid, acc, (l1, µ1)).

Case Π . (γ, σ,∆, χ, bid, acc, x) ⇓trp1 (γ, σ, ∆, χ, bid, acc, [α, l, j, i])

Given Π . (γ, σ,∆, χ, bid, acc, x) ⇓trp1 (γ, σ, ∆, χ, bid, acc, [α, l, j, i]) by rule Location-tracking Private Pointer

Read Multiple Locations, we have γ(x) = (l, private bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω, private

bty∗, α, PermL(Freeable, private bty∗, private, α)), and DecodePtr(private bty∗, α, ω) = [α, l, j, i].

By definition 3.3.1, given c = rp1 , we have c 'L c′ if and only if c′ = rp1 .

Given Σ . (γ, σ,∆, χ, bid, acc, x) ⇓trp1 (γ, σ,∆, χ, bid, acc, [α′, l
′
, j
′
, i′]) by rule Location-tracking Private Pointer

Read Multiple Locations, we have γ(x) = (l′, private bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ(l′) = (ω′, private
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bty ′∗, α′, PermL(Freeable, private bty ′∗, private, α′)), and DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′].

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, i] = [α′, l
′
, j
′
, i′].

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, [α, l, j, i] = [α′, l
′
, j
′
, i′], and, by definition

4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Public

Pointer Write Single Location, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid,

acc, (le, µe)), γ(x) = (l, public bty∗), σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)),

acc = 0, DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], and T_UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i],∆1,

χ, bid, acc, public bty∗) = (σ2, ∆2, 1).

By definition 3.3.1, given c = wp, we have c 'L c′ if and only if c′ = wp.

Given Σ . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Public Pointer

Write Single Location, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, (l′e, µ
′
e)),

γ(x) = (l′, public bty ′∗), σ′1(l′) = (ω′, public bty ′∗, 1, PermL(Freeable, public bty ′∗, public, 1)), acc = 0,

DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′], and T_UpdatePtr(σ′1, (l

′, 0), [1, [(l′e, µ
′
e)], [1], i′], ∆′1, χ,

bid, acc, public bty ′∗) = (σ′2, ∆′2, 1).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1,

χ, bid, acc, (l′e, µ
′
e)), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, le = l′e, µe = µ′e, and c1 'L c′1.

Given γ(x) = (l, public bty∗) and γ(x) = (l′, public bty ′∗) we have l = l′ and bty = bty ′.
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Given σ1(l) = (ω, public bty∗, 1,PermL(Freeable, public bty∗, public, 1)), σ′1(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have l1 = l′1, µ1 = µ′1, and i = i′.

Given T_UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], ∆1, χ, bid, acc, public bty∗) = (σ2, ∆2, 1),

T_UpdatePtr(σ′1, (l
′, 0), [1, [(l′e, µ

′
e)], [1], i′], ∆′1, χ, bid, acc, public bty ′∗) = (σ′2, ∆′2, 1), σ1 = σ′1, ∆1 = ∆′1,

l = l′, le = l′e, µe = µ′e, i = i′, and bty = bty ′, by Lemma 3.3.15 we have σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp1 (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp2 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp2 (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Private Pointer

Write Multiple Locations, we have (γ, σ,∆, χ, bid, acc, e) ⇓c1 (γ, σ1,∆1, χ, bid, acc, [α, l, j, i]), γ(x) = (l, private

bty∗), (bty = int) ∨ (bty = float), and T_UpdatePtr(σ1, (l, 0), [α, l, j, i], ∆1, χ, bid, acc, private bty∗) = (σ2,

∆2, 1).

By definition 3.3.1, given c = wp2 , we have c 'L c′ if and only if c′ = wp2 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twp2 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Private Pointer

Write Multiple Locations, we have (γ, σ,∆, χ, bid, acc, e) ⇓c′1 (γ, σ′1, ∆′1, χ, bid, acc, [α′, l
′
, j
′
, i′]), γ(x) = (l′,

private bty ′∗), (bty ′ = int) ∨ (bty ′ = float), and T_UpdatePtr(σ′1, (l
′, 0), [α′, l

′
, j
′
, i′], ∆′1, χ, bid, acc, private

bty ′∗) = (σ′2, ∆′2, 1).

Given (γ, σ,∆, χ, bid, acc, e) ⇓c1 (γ, σ1, ∆1, χ, bid, acc, [α, l, j, i]) and (γ, σ, ∆, χ, bid, acc, e) ⇓c′1 (γ, σ′1, ∆′1,
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χ, bid, acc, [α′, l
′
, j
′
, i′]), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, [α, l, j, i] = [α′, l

′
, j
′
, i′], and

c1 'L c′1.

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗), we have l = l′ and bty = bty ′.

Given T_UpdatePtr(σ1, (l, 0), [α, l, j, i], ∆1, χ, bid, acc, private bty∗) = (σ2, ∆2, 1), T_UpdatePtr(σ′1, (l, 0),

[α′, l
′
, j
′
, i′], ∆′1, χ, bid, acc, private bty ′∗) = (σ′2, ∆′2, 1), σ1 = σ′1, ∆1 = ∆′1, l = l′, bty = bty ′, and [α, l, j,

i] = [α′, l
′
, j
′
, i′], by Lemma 3.3.15 we have σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid,acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp (γ, σ, ∆, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp (γ, σ, ∆, χ, bid, acc, v) by rule Location-tracking Public Pointer Deref-

erence Single Location, we have γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗,

public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], and DerefPtr(σ, public bty , (l1, µ1)) = (v, 1).

By definition 3.3.1, given c = rdp, we have c 'L c′ if and only if c′ = rdp.

Given Σ . (γ, σ,∆, χ, bid, acc, ∗x) ⇓trdp (γ, σ,∆, χ, bid, acc, v) by rule Location-tracking Public Pointer Dereference

Single Location, we have γ(x) = (l′, public bty ′∗), σ(l′) = (ω′, public bty ′∗, 1, PermL(Freeable, public bty ′∗,

public, 1)), DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], 1], and DerefPtr(σ, public bty ′, (l′1, µ

′
1)) = (v′, 1).

Given γ(x) = (l, public bty∗) and γ(x) = (l′, public bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ1)], [1],

1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, µ1)], [1], 1] = [1, [(l′1, µ1)], [1], 1] and therefore

(l1, µ1) = (l′1, µ
′
1).
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Given DerefPtr(σ, public bty , (l1, µ1)) = (v, 1), DerefPtr(σ, public bty ′, (l′1, µ
′
1)) = (v′, 1), bty = bty ′, (l1, µ1) =

(l′1, µ
′
1), by Lemma 3.3.19 we have v = v′.

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, v = v′, and, by definition 4.3.1, we have

Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp1 (γ, σ, ∆, χ, bid, acc, (l2, µ2))

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp1 (γ, σ, ∆, χ, bid, acc, (l2, µ2)) by rule Location-tracking Public Pointer

Dereference Single Location Higher Level Indirection, we have γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗,

1, PermL(Freeable, public bty∗, public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], i > 1, and

DerefPtrHLI(σ, public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 1).

By definition 3.3.1, given c = rdp1 , we have c 'L c′ if and only if c′ = rdp.

Given Σ . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp1 (γ, σ, ∆, χ, bid, acc, (l′2, µ
′
2)) by rule Location-tracking Public Pointer

Dereference Single Location Higher Level Indirection, we have γ(x) = (l′, public bty ′∗), σ(l′) = (ω′, public bty ′∗,

1, PermL(Freeable, public bty ′∗, public, 1)), DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′], i′ > 1, and

DerefPtrHLI(σ, public bty ′∗, (l′1, µ′1)) = ([1, [(l′2, µ
′
2)], [1], i′ − 1], 1).

Given γ(x) = (l, public bty∗) and γ(x) = (l′, public bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1],

i′], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, µ1)], [1], i] = [1, [(l′1, µ
′
1)], [1], i′] and therefore

(l1, µ1) = (l′1, µ
′
1) and i = i′.

Given DerefPtrHLI(σ, public bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 1), DerefPtrHLI(σ, public bty ′∗, (l′1, µ
′
1))

= ([1, [(l′2, µ
′
2)], [1], i′ − 1], 1), bty = bty ′, and (l1, µ1) = (l′1, µ

′
1), by Lemma 3.3.20 we have [1, [(l2, µ2)], [1],

i− 1] = [1, [(l′2, µ
′
2)], [1], i′ − 1] and therefore (l2, µ2) = (l′2, µ

′
2).
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Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, (l2, µ2) = (l′2, µ
′
2), and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v) by rule Location-tracking Private Pointer Derefer-

ence, we have γ(x) = (l, private bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω, private bty∗, α, PermL(Freeable,

private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], and Retrieve_vals(α, l, j, private bty ,

σ) = (v, 1).

By definition 3.3.1, given c = rdp2 , we have c 'L c′ if and only if c′ = rdp2 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v) by rule Location-tracking Private Pointer

Dereference, we have γ(x) = (l′, private bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), DecodePtr(private bty ′∗, α′, ω) = [α′, l
′
, j
′
, 1], and

Retrieve_vals(α′, l
′
, j
′
, private bty ′, σ) = (v′, 1).

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], DecodePtr(private bty ′∗, α′, ω) = [α′, l
′
, j
′
, 1], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, 1] = [α′, l, j, 1]. Therefore, we have l = l
′

and j = j
′
.

Given Retrieve_vals(α, l, j, private bty , σ) = (v, 1), Retrieve_vals(α′, l
′
, j
′
, private bty ′, σ) = (v′, 1), α = α′,

l = l
′
, j = j

′
, and bty = bty ′, by Lemma 3.3.17 we have v = v′.

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, v = v′, and, by definition 4.3.1, we have

Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓t∗rdp2 (γ, σ, ∆, χ, bid, acc, v)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp2 (γ, σ, ∆, χ, bid, acc, v).
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Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′, l
′
, j
′
, i− 1])

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′, [(l′0, µ
′
0), ..., (l′α′−1, µ

′
α′−1)], j

′
, i− 1]) by rule

Location-tracking Private Pointer Dereference Higher Level Indirection, we have γ(x) = (l, private bty∗), (bty =

int)∨ (bty = float), σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), DecodePtr(private

bty∗, α, ω) = [α, l, j, i], i > 1, and DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l
′
, j
′
), 1).

By definition 3.3.1, given c = rdp3 , we have c 'L c′ if and only if c′ = rdp3 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′′′, [(l′′′0 , µ
′′′
0 ), ..., (l′′′α′′′−1, µ

′′′
α′′′−1)], [j′′′0 , ...,

j′′′α′′′−1], i′ − 1]) by rule Location-tracking Private Pointer Dereference Higher Level Indirection, we have γ(x) = (l′,

private bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ(l′) = (ω′, private bty ′∗, α′′,PermL(Freeable, private bty ′∗,

private, α′′)), DecodePtr(private bty ′∗, α′′, ω′) = [α′′, l
′′
, j
′′
, i′], i′ > 1, and DerefPrivPtr(α′′, l

′′
, j
′′
, private

bty ′∗, σ) = ((α′′′, l
′′′
, j
′′′

), 1).

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α)), σ(l′) = (ω′, private bty ′∗, α′′,

PermL(Freeable, private bty ′∗, private, α′′)), and l = l′, we have ω = ω′ and α = α′′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], DecodePtr(private bty ′∗, α′′, ω′) = [α′′, l
′′
, j
′′
, i′], bty = bty ′,

α = α′′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j = [α′′, l
′′
, j
′′
, i′]. Therefore, we have l = l

′′
, j = j

′′
, and i = i′.

Given DerefPrivPtr(α, l, j, private bty∗, σ) = ((α′, l
′
, j
′
), 1), DerefPrivPtr(α′′, l

′′
, j
′′
, private bty ′∗, σ) = ((α′′′,

l
′′′
, j
′′′

), 1), α = α′′, l = l
′′

, j = j
′′

, and bty = bty ′, by Lemma 3.3.18 we have (α′, l
′
, j
′
) = (α′′′, l

′′′
, j
′′′

).

Given (α′, l
′
, j
′
) = (α′′′, l

′′′
, j
′′′

) and i = i′, we have [α′, l
′
, j
′
, i− 1] = ([α′′′, l

′′′
, j
′′′
, i′ − 1].

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, [α′, l
′
, j
′
, i − 1] = ([α′′′, l

′′′
, j
′′′
, i′ − 1],

and, by definition 4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′, l
′
, j
′
, i− 1])
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This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ∗x) ⇓trdp3 (γ, σ, ∆, χ, bid, acc, [α′, l
′
, j
′
, i− 1]).

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Public

Pointer Dereference Write Public Value, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v), v 6= skip,

γ(x) = (l, public bty∗), σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), DecodePtr(public

bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], T_UpdateOffset(σ1, (l1, µ1), v, ∆1, χ, bid, acc, public bty) = (σ2, ∆2, 1),

Label(e, γ) = public, and (acc = 0) ∧ (bid = none).

By definition 3.3.1, given c = wdp, we have c 'L c′ if and only if c′ = wdp.

Given Σ . (γ, σ,∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ′2,∆
′
2, χ, bid, acc, skip) by rule Location-tracking Public Pointer

Dereference Write Public Value, we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, v′), v′ 6= skip, γ(x) =

(l′, public bty ′∗), σ′1(l′) = (ω′, public bty ′∗, 1, PermL(Freeable, public bty ′∗, public, 1)), DecodePtr(public

bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], T_UpdateOffset(σ′1, (l
′
1, µ
′
1), v′, ∆′1, χ, bid, acc, public bty ′) = (σ′2, ∆′2, 1),

Label(e, γ) = public, and (acc = 0) ∧ (bid = none).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, v′), by the inductive hypothesis we have σ1 = σ′1, ∆′1, v = v′, and c1 'L c′1.

Given γ(x) = (l, public bty∗) and γ(x) = (l′, public bty ′∗) we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ′1(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1], and therefore l1 = l′1.

Given T_UpdateOffset(σ1, (l1, µ1), v, ∆1, χ, bid, acc, public bty) = (σ2, 1), T_UpdateOffset(σ′1, (l′1, µ
′
1),

v′, ∆′1, χ, bid, acc, public bty ′) = (σ′2, 1, public bty ′), σ1 = σ′1, ∆1 = ∆′1, l1 = l′1, bty = bty , and v = v′, by

Lemma 3.3.13 we have σ2 = σ′2 and ∆2 = ∆′2.
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Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓t∗wdp (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Public

Pointer Dereference Write Higher Level Indirection, we have (acc = 0) ∧ (bid = none), (γ, σ, ∆, χ, bid, acc,

e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)), γ(x) = (l, public bty∗), σ1(l) = (ω, public bty∗, 1, PermL(Freeable,

public bty∗, public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], i > 1, Label(e, γ) = public, and

T_UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1], ∆1, χ, bid, acc, public bty∗) = (σ2, ∆2, 1).

By definition 3.3.1, given c = wdp1 , we have c 'L c′ if and only if c′ = wdp1 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Public

Pointer Dereference Write Higher Level Indirection, we have (acc = 0) ∧ (bid = none), (γ, σ, ∆, χ, bid, acc,

e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, (l′e, µ
′
e)), γ(x) = (l′, public bty ′∗), σ′1(l′) = (ω′, public bty ′∗, 1, PermL(Freeable,

public bty ′∗, public, 1)), DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′], i′ > 1, Label(e, γ) = public, and

T_UpdatePtr(σ′1, (l
′
1, µ
′
1), [1, [(l′e, µ

′
e)], [1], i′ − 1], ∆′1, χ, bid, acc, public bty ′∗) = (σ′2, ∆′2, 1).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, (l′e, µ
′
e)), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, (le, µe) = (l′e, µ

′
e), and c1 'L c′1.

Given γ(x) = (l, public bty∗) and γ(x) = (l′, public bty ′∗) we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, public bty∗, 1,PermL(Freeable, public bty∗, public, 1)), σ′1(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, µ1)], [1], i] = [1, [(l′1, µ
′
1)], [1], i′]. Therefore, we have (l1,

µ1) = (l′1, µ
′
1) and i = i′.
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Given T_UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1], ∆, χ, bid, acc, public bty∗) = (σ2, ∆2, 1),

T_UpdatePtr(σ′1, (l
′
1, µ
′
1), [1, [(l′e, µ

′
e)], [1], i′−1],∆′1, χ, bid, acc, public bty ′∗) = (σ′2,∆

′
2, 1), σ1 = σ′1, ∆1 = ∆′1,

(l1, µ1) = (l′1, µ
′
1), (le, µe) = (l′e, µ

′
e), bty = bty ′, and i = i′, by Lemma 3.3.15 we have σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, acc, ∗x = e) ⇓t∗wdp1 (γ, σ2, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp1 (γ, σ2, ∆2, χ, bid, acc, skip)

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Private

Pointer Dereference Write Higher Level Indirection, we have γ(x) = (l, private bty∗), (γ, σ, ∆, χ, bid, acc,

e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)), σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)),

DecodePtr(private bty∗, α, ω) = [α, l, j, i], and T_UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i− 1], ∆1, χ,

bid, acc, private bty∗) = (σ2, ∆2, 1).

By definition 3.3.1, given c = wdp2 , we have c 'L c′ if and only if c′ = wdp2 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Private

Pointer Dereference Write Higher Level Indirection, we have γ(x) = (l′, private bty ′∗), (γ, σ, ∆, χ, bid, acc,

e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, (l′e, µ
′
e)), σ′1(l′) = (ω′, private bty ′∗, α′, PermL(Freeable, private bty ′∗, private,

α′)), DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], and T_UpdatePrivPtr(σ′1, [α′, l

′
, j
′
, i′], [1, [(l′e, µ

′
e)], [1],

i′ − 1], ∆′1, χ, bid, acc, private bty ′∗) = (σ′2, ∆′2, 1).

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗) we have l = l′ and bty = bty ′.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, (le, µe)) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ,

bid, acc, (l′e, µ
′
e)), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, (le, µe) = (l′e, µ

′
e), and c1 'L c′1.

Given σ1(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α)), σ′1(l′) = (ω′, private bty ′∗, α′,
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PermL(Freeable, private bty ′∗, private, α′)), σ1 = σ′1, and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], and DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], bty =

bty ′, α = α′, and ω = ω′, by Lemma 3.3.6 [α, l, j, i] = [α′, l
′
, j
′
, i′]. Therefore we have i = i′.

Given T_UpdatePrivPtr(σ1, [α, l, j, i], [1, [(le, µe)], [1], i − 1], ∆1, χ, bid, acc, private bty∗) = (σ2, ∆2, 1),

T_UpdatePrivPtr(σ′1, [α
′, l
′
, j
′
, i′], [1, [(l′e, µ

′
e)], [1], i′−1],∆′1, χ, bid, acc, private bty ′∗) = (σ′2,∆

′
2, 1), σ1 = σ′1,

∆1 = ∆′1, [α, l, j, i] = [α′, l
′
, j
′
, i′], (le, µe) = (l′e, µ

′
e), bty = bty ′, and i = i′, by Lemma 3.3.16 we have σ2 = σ′2

and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓t∗wdp2 (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp2 (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ,∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ2,∆2, χ, bid, acc, skip) by rule Location-tracking Private Pointer

Dereference Write Private Value, we have γ(x) = (l, private bty∗), (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid,

acc, v), v 6= skip, σ1(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α)), Label(e, γ) = private,

(bty = int) ∨ (bty = float), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], and T_UpdatePriv(σ1, α, l, j, private

bty , v, ∆1, χ, bid, acc) = (σ2, ∆2, 1).

By definition 3.3.1, given c = wdp3 , we have c 'L c′ if and only if c′ = wdp3 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Private

Pointer Dereference Write Private Value, we have γ(x) = (l′, private bty ′∗), (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ,

σ′1, ∆′1, χ, bid, acc, v′), v′ 6= skip, σ′1(l′) = (ω′, private bty ′∗, α′,PermL(Freeable, private bty ′∗, private, α′)),

Label(e, γ) = private, (bty ′ = int) ∨ (bty ′ = float), DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, 1], and

T_UpdatePriv(σ′1, α
′, l
′
, j
′
, private bty ′, v′, ∆′1, χ, bid, acc) = (σ′2, ∆′2, 1).

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗) we have l = l′ and bty = bty ′.
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Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, v′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, v = v′, and c1 'L c′1.

Given σ1(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α)), σ′1(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), σ1 = σ′1, and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, 1], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, 1] = [α′, l
′
, j
′
, 1]. Therefore, we have l = l

′
and j = j

′
.

Given T_UpdatePriv(σ1, α, l, j, private bty , v, ∆1, χ, bid, acc) = (σ2, ∆2, 1), T_UpdatePriv(σ′1, α
′, l
′
,

j
′
, private bty ′, v′, ∆′1, χ, bid, acc) = (σ′2, ∆′2, 1), σ1 = σ′1, ∆1 = ∆′1, α = α′, l = l

′
, j = j

′
, bty = bty ′ and

v = v′, by Lemma 3.3.14 we have σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓t∗wdp3 (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp3 (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ,∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ2,∆2, χ, bid, acc, skip) by rule Location-tracking Private Pointer

Dereference Write Public Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc,

v), v 6= skip, γ(x) = (l, private bty∗), (bty = int) ∨ (bty = float), σ1(l) = (ω, private bty∗, α,PermL(Freeable,

private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], and T_UpdatePriv(σ1, α, l, j, private

bty , encrypt(v), ∆1, χ, bid, acc) = (σ2, ∆2, 1).

By definition 3.3.1, given c = wdp4 , we have c 'L c′ if and only if c′ = wdp4 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Private

Pointer Dereference Write Public Value, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1,

χ, bid, acc, v′), v′ 6= skip, γ(x) = (l′, private bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ1(l′) = (ω′, private
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bty ′∗, α′,PermL(Freeable, private bty ′∗, private, α′)), DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, 1], and

T_UpdatePriv(σ′1, α
′, l
′
, j
′
, private bty ′, encrypt(v′), ∆′1, χ, bid, acc) = (σ′2, ∆′2, 1).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, v) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, v′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, v = v′, and c1 'L c′1.

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗) we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ1(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), σ1 = σ′1, and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, 1], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, 1] = [α′, l
′
, j
′
, 1]. Therefore, we have l = l

′
and j = j

′
.

Given T_UpdatePriv(σ1, α, l, j, private bty , encrypt(v), ∆1, χ, bid, acc) = (σ2, ∆2, 1), T_UpdatePriv(σ′1,

α′, l
′
, j
′
, private bty ′, encrypt(v′), ∆′1, χ, bid, acc) = (σ′2, ∆′2, 1), σ1 = σ′1, ∆1 = ∆′1, α = α′, l = l

′
, j = j

′
,

bty = bty ′, and v = v′, by Axiom 3.3.1 we have encrypt(v) = encrypt(v′), and therefore by Lemma 3.3.14 we have

σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓t∗wdp4 (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp4 (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Private

Pointer Dereference Write Higher Level Indirection Multiple Locations, we have γ(x) = (l, private bty∗), (γ, σ,

∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [αe, le, je, i − 1]), σ1(l) = (ω, private bty∗, α, PermL(Freeable,

private bty∗, private, α)), Label(e, γ) = private, acc = 0, DecodePtr(private bty∗, α, ω) = [α, l, j, i], i > 1, and

T_UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i− 1], ∆1, χ, bid, acc, private bty∗) = (σ2, ∆2, 1).
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By definition 3.3.1, given c = wdp5 , we have c 'L c′ if and only if c′ = wdp5 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Private

Pointer Dereference Write Higher Level Indirection Multiple Locations, we have γ(x) = (l′, private bty ′∗), (γ, σ,

∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, [α′e, l
′
e, j
′
e, i
′ − 1]), σ′1(l′) = (ω′, private bty ′∗, α′, PermL(Freeable,

private bty ′∗, private, α′)), Label(e, γ) = private, acc = 0, DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′],

i′ > 1, and T_UpdatePrivPtr(σ′1, [α′, l
′
, j
′
, i′], [α′e, l

′
e, j
′
e, i
′ − 1], ∆′1, χ, bid, acc, private bty ′∗) = (σ′2, ∆′2, 1).

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗) we have l = l′ and bty = bty ′.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [αe, le, je, i − 1]) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ,

σ′1, ∆′1, χ, bid, acc, [α′e, l
′
e, j
′
e, i
′ − 1]), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, [αe, le, je, i− 1] =

[α′e, l
′
e, j
′
e, i
′ − 1], and c1 'L c′1.

Given σ1(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ′1(l′) = (ω′, private bty ′∗, α′,

PermL(Freeable, private bty ′∗, private, α′)), σ1 = σ′1, and l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, i], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, i] = [α′, l
′
, j
′
, i′].

Given T_UpdatePrivPtr(σ1, [α, l, j, i], [αe, le, je, i− 1], ∆1, χ, bid, acc, private bty∗) = (σ2, ∆2, 1),

T_UpdatePrivPtr(σ′1, [α′, l
′
, j
′
, i′], [α′e, l

′
e, j
′
e, i
′ − 1], ∆′1, χ, bid, acc, private bty ′∗) = (σ′2, ∆′2, 1), σ1 = σ′1,

∆1 = ∆′1, [α, l, j, i] = [α′, l
′
, j
′
, i′], bty = bty ′, and [αe, le, je, i− 1] = [α′e, l

′
e, j
′
e, i
′− 1], by Lemma 3.3.16 we have

σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓t∗wdp5 (γ, σ2, ∆2, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ∗x = e) ⇓twdp5 (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin (γ, σ1, ∆, χ, bid, acc, v1)
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Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin (γ, σ1, ∆, χ, bid, acc, v1) by rule Location-tracking Pre-Increment

Public Variable, we have γ(x) = (l, public bty), σ(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1)),

DecodeVal(public bty , 1, ω) = v, v1 =public v +public 1, and T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, public bty)

= (σ1, ∆).

By definition 3.3.1, given c = pin , we have c 'L c′ if and only if c′ = pin .

Given Σ . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin (γ, σ′1, ∆, χ, bid, acc, v′1) by rule Location-tracking Pre-Increment

Public Variable, we have γ(x) = (l′, public bty ′), σ(l′) = (ω′, public bty ′, 1, PermL(Freeable, public bty ′, public,

1)), DecodeVal(public bty ′, 1, ω′) = v′, v′1 =public v
′ +public 1, and T_UpdateVal(σ, l′, v′1, ∆, χ, bid, acc, public

bty ′) = (σ′1, ∆).

Given γ(x) = (l, public bty) and γ(x) = (l′, public bty ′) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1)), σ(l′) = (ω′, public bty ′, 1,

PermL(Freeable, public bty ′, public, 1)), and l = l′, we have ω = ω′.

Given DecodeVal(public bty , 1, ω) = v, DecodeVal(public bty ′, 1, ω′) = v′, bty = bty ′, and ω = ω′, by Lemma

3.3.4 we have v = v′.

Given v1 =public v +public 1, v′1 =public v
′ +public 1, and v = v′, we have v1 = v′1.

Given T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, public bty) = (σ1, ∆), T_UpdateVal(σ, l′, v′1, ∆, χ, bid, acc, public

bty ′) = (σ′1, ∆), l = l′, bty = bty , and v1 = v′1, by Lemma 3.3.12 we have σ1 = σ′1.

Therefore, we have γ = γ, σ1 = σ′1, ∆ = ∆, χ = χ, bid = bid, acc = acc, v1 = v′1, and, by definition 4.3.1, we have

Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin1 (γ, σ1, ∆1, χ, bid, acc, v1)

Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin1 (γ, σ1, ∆1, χ, bid, acc, v1) by rule Location-tracking Pre-Increment

Private Variable, we have γ(x) = (l, private bty), (bty = int) ∨ (bty = float), σ(l) = (ω, private bty , 1,

PermL(Freeable, private bty , private, 1)), DecodeVal(private bty , 1, ω) = v, v1 =private v +private encrypt(1),
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and T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, private bty) = (σ1, ∆1).

By definition 3.3.1, given c = pin1 , we have c 'L c′ if and only if c′ = pin1 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin1 (γ, σ′1, ∆′1, χ, bid, acc, v′1) by rule Location-tracking Pre-

Increment Private Variable, we have γ(x) = (l′, private bty ′), (bty ′ = int) ∨ (bty ′ = float), σ(l′) = (ω′, private

bty ′, 1, PermL(Freeable, private bty ′, private, 1)), DecodeVal(private bty ′, 1, ω′) = v′, v′1 =private v
′ +private

encrypt(1), and T_UpdateVal(σ, l′, v′1, ∆, χ, bid, acc, private bty ′) = (σ′1, ∆′1).

Given γ(x) = (l, private bty) and γ(x) = (l′, private bty ′) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1)), σ(l′) = (ω′, private bty ′, 1,

PermL(Freeable, private bty ′, private, 1)), and l = l′, we have ω = ω′.

Given DecodeVal(private bty , 1, ω) = v, DecodeVal(private bty ′, 1, ω) = v′, bty = bty ′, and ω = ω′, by Lemma

3.3.4 we have v = v′.

Given v1 =private v +private encrypt(1), v′1 =private v
′ +private encrypt(1), and v = v′, by Axiom 3.3.2 we have

v1 = v′1.

Given T_UpdateVal(σ, l, v1, ∆, χ, bid, acc, private bty) = (σ1, ∆1), T_UpdateVal(σ, l, v1, ∆, χ, bid, acc,

private bty ′) = (σ′1, ∆′1), l = l′, bty = bty ′, and v1 = v′1, by Lemma 3.3.12 we have σ1 = σ′1 and ∆1 = ∆′1.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, v1 = v′1, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)) by rule Location-tracking Pre-

Increment Public Pointer Single Location, we have γ(x) = (l, public bty∗), σ(l) = (ω, public bty∗, 1,

PermL(Freeable, public bty∗, public, 1)), DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], GetLocation((l1,

µ1), τ(public bty), σ) = ((l2, µ2), 1), and T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], ∆, χ, bid, acc, public

bty∗) = (σ1, ∆1, 1).
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By definition 3.3.1, given c = pin2 , we have c 'L c′ if and only if c′ = pin2 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ′1, ∆′1, χ, bid, acc, (l′2, µ
′
2)) by rule Location-tracking

Pre-Increment Public Pointer Single Location, we have γ(x) = (l′, public bty ′∗), σ(l′) = (ω′, public bty ′∗,

1,PermL(Freeable, public bty ′∗, public, 1)), DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], 1],

GetLocation((l′1, µ
′
1), τ(public bty ′), σ) = ((l′2, µ

′
2), 1), and T_UpdatePtr(σ, (l′, 0), [1, [(l′2, µ

′
2)], [1], 1], ∆, χ,

bid, acc, public bty ′∗) = (σ′1, ∆′1, 1).

Given γ(x) = (l, public bty∗) and γ(x) = (l′, public bty ′∗) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1)), σ(l′) = (ω′, public bty ′∗, 1,

PermL(Freeable, public bty ′∗, public, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], 1],

bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, µ1)], [1], 1] = [1, [(l′1, µ
′
1)], [1], 1]. Therefore, we have

(l1, µ1) = (l′1, µ
′
1).

Given ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ), ((l′2, µ
′
2), 1) = GetLocation((l′1, µ

′
1), τ(public

bty ′), σ), (l1, µ1) = (l′1, µ
′
1), and bty = bty ′, by Lemma 3.3.21 we have (l2, µ2) = (l′2, µ

′
2).

Given T_UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], ∆, χ, bid, acc, public bty∗) = (σ1, ∆1, 1), T_UpdatePtr(σ,

(l′, 0), [1, [(l′2, µ
′
2)], [1], 1], ∆, χ, bid, acc, public bty ′∗) = (σ′1, ∆′1, 1), l = l′, bty = bty , and (l2, µ2) = (l′2, µ

′
2), by

Lemma 3.3.15 we have σ1 = σ′1 and ∆1 = ∆′1.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, (l2, µ2) = (l′2, µ
′
2), and, by definition

4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓t∗pin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)).
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Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin6 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓t∗pin6 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin3 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓t∗pin3 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin7 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓t∗pin7 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2))

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin2 (γ, σ1, ∆1, χ, bid, acc, (l2, µ2)).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, 1])

Given Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, 1]) by rule Location-tracking

Pre-Increment Private Pointer Multiple Locations, we have γ(x) = (l, private bty∗), σ(l) = (ω, private bty∗,

α, PermL(Freeable, private bty∗, private, α)), DecodePtr(private bty∗, α, ω) = [α, l, j, 1], IncrementList(l,

τ(private bty), σ) = (l
′
, 1), and T_UpdatePtr(σ, (l, 0), [α, l

′
, j, 1], ∆, χ, bid, acc, private bty∗) = (σ1, ∆1, 1).

By definition 3.3.1, given c = pin4 , we have c 'L c′ if and only if c′ = pin4 .

Given Σ . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ′1, ∆′1, χ, bid, acc, [α′, l
′′′
, j
′
, 1]) by rule Location-tracking
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Pre-Increment Private Pointer Multiple Locations, we have γ(x) = (l′, private bty ′∗), σ(l′) = (ω′, private bty ′∗, α,

PermL(Freeable, private bty∗, private, α′)), DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′′
, j
′
, 1], IncrementList(l

′′
,

τ(private bty ′), σ) = (l
′′′
, 1), and T_UpdatePtr(σ, (l′, 0), [α′, l

′′′
, j
′
, 1], ∆, χ, bid, acc, private bty ′∗) = (σ′1, ∆′1,

1).

Given γ(x) = (l, private bty∗) and γ(x) = (l′, private bty ′∗) we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)), σ(l′) = (ω′, private bty ′∗, α,

PermL(Freeable, private bty∗, private, α′)), l = l′, we have ω = ω′ and α = α′.

Given DecodePtr(private bty∗, α, ω) = [α, l, j, 1], DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′′
, j
′
, 1], bty = bty ′,

α = α′, and ω = ω′, by Lemma 3.3.6 we have [α, l, j, 1] = [α′, l
′′
, j
′
, 1]. Therefore, we have l = l

′′
and j = j

′
.

Given IncrementList(l, τ(private bty), σ) = (l
′
, 1), IncrementList(l

′′
, τ(private bty ′), σ) = (l

′′′
, 1), l = l

′′
, and

bty = bty ′, by Lemma 3.3.22 we have τ(private bty) = τ(private bty ′), and by Lemma 3.3.23 we have l
′

= l
′′′

.

Given T_UpdatePtr(σ, (l, 0), [α, l
′
, j, 1],∆, χ, bid, acc, private bty∗) = (σ1,∆1, 1), T_UpdatePtr(σ, (l′, 0), [α′,

l
′′′
, j
′
, 1], ∆, χ, bid, acc, private bty ′∗) = (σ′1, ∆′1, 1), l = l′, bty = bty ′, and [α, l, j, 1] = [α′, l

′′
, j
′
, 1], by Lemma

3.3.15 we have σ1 = σ′1 and ∆1 = ∆′1.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, [α, l
′
, j, 1] = [α′, l

′′′
, j
′
, 1], and, by

definition 4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓t∗pin4 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, 1])

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, 1]).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin5 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, i])

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, 1]).

Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓t∗pin5 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, i])
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This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ++ x) ⇓tpin4 (γ, σ1, ∆1, χ, bid, acc, [α, l
′
, j, 1]).

Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ1, σ3, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ1, σ3, ∆, χ, bid, acc, skip) by rule Location-tracking Public 1 Dimen-

sion Array Declaration, we have ((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty = int))) ∨ (ty = char),

l = φ(), Label(e, γ) = public, (γ, σ,∆, χ, bid, acc, e) ⇓tc1 (γ, σ1,∆, χ, bid, acc, n), γ1 = γ[x → (l, public const

bty∗)], l1 = φ(), ω = EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1]), σ2 = σ1[l → (ω, public const bty∗, 1,

PermL(Freeable, public const bty∗, public, 1))], (acc = 0)∧ (bid = none), n > 0, ω1 = EncodeVal(private bty ,

NULL), and σ3 = σ2[l1 → (ω1, public bty , n, PermL(Freeable, public bty , public, n))].

By definition 3.3.1, given c = da , we have c 'L c′ if and only if c′ = da .

Given Σ . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ′1, σ
′
3, ∆, χ, bid, acc, skip) by rule Location-tracking Public 1

Dimension Array Declaration, we have ((ty = public bty ′)∧ ((bty ′ = float)∨ (bty ′ = char)∨ (bty ′ = int)))∨ (ty =

char), l′ = φ(), Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆, χ, bid, acc, n′), γ′1 = γ[x → (l′,

public const bty ′∗)], l′1 = φ(), ω′ = EncodePtr(public const bty ′∗, [1, [(l′1, 0)], [1], 1]), σ′2 = σ′1[l → (ω′,

public const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1))], (acc = 0) ∧ (bid = none), n′ > 0,

ω′1 = EncodeVal(private bty ′, NULL), and σ′3 = σ′2[l′1 → (ω′1, public bty ′, n′, PermL(Freeable, public bty ′,

public, n′))].

Given (ty = public bty) and (ty = public bty ′), we have bty = bty ′.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆, χ, bid, acc, n) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, n = n′, and c1 'L c′1.

Given γ1 = γ[x → (l, public const bty∗)], γ′1 = γ[x → (l′, public const bty ′∗)], l = l′, bty = bty ′, we have

γ1 = γ′1.

Given l1 = φ() and l′1 = φ(), by Axiom 3.3.5 we have l1 = l′1.
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Given ω = EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1]), ω′ = EncodePtr(public const bty ′∗, [1, [(l′1, 0)], [1],

1]), bty = bty ′, and l1 = l′1, by Lemma 3.3.5 we have ω = ω′.

Given σ2 = σ1[l → (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1))], σ′2 = σ′1[l → (ω′,

public const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1))], σ1 = σ′1, l = l′, ω = ω′, and bty = bty ′,

we have σ2 = σ′2.

Given ω1 = EncodeVal(public bty , NULL), ω′1 = EncodeVal(public bty ′, NULL), and bty = bty ′, by Lemma

3.3.3 we have ω1 = ω′1.

Given σ3 = σ2[l1 → (ω1, public bty , n, PermL(Freeable, public bty , public, n))], σ′3 = σ′2[l′1 → (ω′1, public

bty ′, n′, PermL(Freeable, public bty ′, public, n′))], σ2 = σ′2, l1 = l′1, ω1 = ω′1, n = n′, and bty = bty ′, we have

σ3 = σ′3.

Therefore, we have γ1 = γ′1, σ3 = σ′3, ∆ = ∆, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda1 (γ1, σ3, ∆, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda (γ1, σ3, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda2 (γ1, σ3, ∆1, χ1, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda2 (γ1, σ3, ∆, χ1, bid, acc, skip) by rule Location-tracking Private 1

Dimension Array Declaration (Inside a Private - Conditioned If Else Branch), we have Label(e, γ) = public, ((ty =

private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ1, ∆1, χ, bid, acc, n),

n > 0, l = φ(), l1 = φ(), γ1 = γ[x→ (l, private const bty∗)], ω = EncodePtr(private const bty∗, [1, [l1], [1], 1]),

σ2 = σ1[l→ (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1))], σ3 = σ2[l1 → (NULL,

private bty , n, PermL(Freeable, private bty , private, n))], (acc > 0) ∧ ((bid = then) ∨ (bid = else)), and

χ1 = l :: l1 :: χ[acc].

By definition 3.3.1, given c = da2 , we have c 'L c′ if and only if c′ = da2 .
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Given Σ . (γ, σ, ∆, χ, bid, acc, ty x[e]) ⇓tda2 (γ′1, σ
′
3, ∆1, χ

′
1, bid, acc, skip) by rule Location-tracking Private

1 Dimension Array Declaration (Inside a Private - Conditioned If Else Branch), we have Label(e, γ) = public,

((ty = private bty ′) ∨ (ty = bty ′)) ∧ ((bty ′ = int) ∨ (bty ′ = float)), (γ, σ, ∆, χ, bid, acc, e) ⇓te (γ, σ′1, ∆′1, χ,

bid, acc, n′), n′ > 0, l′ = φ(), l′1 = φ(), γ′1 = γ[x → (l′, private const bty ′∗)], ω′ = EncodePtr(private const

bty ′∗, [1, [l′1], [1], 1]), σ′2 = σ′1[l′ → (ω′, private const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private,

1))], σ′3 = σ′2[l′1 → (NULL, private bty ′, n′, PermL(Freeable, private bty ′, private, n′))], (acc > 0) ∧ ((bid =

then) ∨ (bid = else)), and χ′1 = l′ :: l′1 :: χ[acc].

Given ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float)), and ((ty = private bty ′) ∨ (ty =

bty ′)) ∧ ((bty ′ = int) ∨ (bty ′ = float)), we have bty = bty ′.

Given l = φ() and l′ = φ(), by Axiom 3.3.5 we have l = l′.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, n) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, n′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, n = n′, and c1 'L c′1.

Given γ1 = γ[x → (l, private const bty∗)], γ′1 = γ[x → (l′, private const bty ′∗)], l = l′, bty = bty ′, we have

γ1 = γ′1.

Given l1 = φ() and l′1 = φ(), by Axiom 3.3.5 we have l1 = l′1.

Given ω = EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1]), ω′ = EncodePtr(private const bty ′∗, [1, [(l′1, 0)],

[1], 1]), bty = bty ′, and l1 = l′1, by Lemma 3.3.5 we have ω = ω′.

Given σ2 = σ1[l → (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1))], σ′2 = σ′1[l →

(ω′, private const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1))], σ1 = σ′1, l = l′, ω = ω′, and

bty = bty ′, we have σ2 = σ′2.

Given ω1 = EncodeVal(private bty , NULL), ω′1 = EncodeVal(private bty ′, NULL), and bty = bty ′, by Lemma

3.3.3 we have ω1 = ω′1.

Given σ3 = σ2[l1 → (ω1, private bty , n, PermL(Freeable, private bty , private, n))], σ′3 = σ′2[l′1 → (ω′1, private

bty ′, n′, PermL(Freeable, private bty ′, private, n′))], σ2 = σ′2, l1 = l′1, ω1 = ω′1, n = n′, and bty = bty ′, we have
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σ3 = σ′3.

Given χ1 = l :: l1 :: χ[acc], χ′1 = l′ :: l′1 :: χ[acc], l = l′, and l1 = l′1, we have χ1 = χ′1.

Therefore, we have γ1 = γ′1, σ3 = σ′3, ∆1 = ∆′1, χ1 = χ′1, bid = bid, acc = acc, skip = skip, and, by definition

4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ1, ∆1, χ, bid, acc, vi)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ1, ∆1, χ, bid, acc, vi) by rule Location-tracking Public 1D Ar-

ray Read Public Index, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i),

γ(x) = (l, public const bty∗), σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)),

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, public bty , n,PermL(Freeable, public

bty , public, n)), DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], and 0 ≤ i ≤ n− 1.

By definition 3.3.1, given c = ra , we have c 'L c′ if and only if c′ = ra .

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ′1, ∆′1, χ, bid, acc, v′i) by rule Location-tracking Public 1D Array

Read Public Index, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′),

γ(x) = (l′, public const bty ′∗), σ′1(l′) = (ω′, public const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public,

1)), DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′1(l′1) = (ω′1, public bty ′, n′, PermL(Freeable,

public bty ′, public, n′)), DecodeVal(public bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], and 0 ≤ i′ ≤ n′ − 1.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore,
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we have l1 = l′1.

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′1(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], DecodeVal(public bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], bty = bty ′,

n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′0, ..., v
′
n′−1]. Therefore, we have ∀m ∈ {0, ...,

n− 1}, vm = v′m.

Given 0 ≤ i ≤ n− 1, 0 ≤ i′ ≤ n′ − 1, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1}, vm = v′m, we have vi = v′i.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, vi = v′i, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra3 (γ, σ1, ∆1, χ, bid, acc, vi)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra (γ, σ1, ∆1, χ, bid, acc, vi).

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra1 (γ, σ1, ∆1, χ, bid, acc, v)

Given Π . (γ, σ,∆, χ, bid, acc, x[e]) ⇓tra1 (γ, σ1, ∆1, χ, bid, acc, v) by rule Location-tracking Private 1D Array

Read Private Index we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), γ(x) = (l, private const bty∗),

(bty = int) ∨ (bty = float), σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)),

DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), Label(e, γ) = private, DecodeVal(private bty , n, ω1) = [v0, ...,

vn−1], and v =
∨n−1
m=0(i = encrypt(m)) ∧ vm.

By definition 3.3.1, given c = ra1 , we have c 'L c′ if and only if c′ = ra1 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra1 (γ, σ′1, ∆′1, χ, bid, acc, v′) by rule Location-tracking Private 1D

Array Read Private Index we have (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), γ(x) = (l′, private

const bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ′1(l′) = (ω′, private const bty ′∗, 1, PermL(Freeable, private const

bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′1(l′1) = (ω′1, private bty ′, n′,
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PermL(Freeable, private bty ′, private, n′)), Label(e, γ) = private, DecodeVal(private bty ′, n′, ω′1) = [v′0, ...,

v′n′−1], and v′ =
∨n′−1
m′=0(i′ = encrypt(m′)) ∧ v′m.

Given γ(x) = (l, private const bty∗) and γ(x) = (l′, private const bty ′∗), we have l = l′ and bty = bty ′.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′1(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore,

we have l1 = l′1.

Given σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′1(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′0, ..., v
′
n′−1]. Therefore, we have ∀m ∈ {0,

..., n− 1}, vm = v′m.

Given v =
∨n−1
m=0(i = encrypt(m)) ∧ vm and v′ =

∨n′−1
m′=0(i′ = encrypt(m′)) ∧ v′m, we have m ∈ {0, ..., n − 1}

and m′ ∈ {0, ..., n′ − 1}. Given n = n′, we have m, m′ ∈ {0, ..., n − 1} and m = m′. Given m = m′, we have

encrypt(m) = encrypt(m′). Given ∀m ∈ {0, ..., n− 1}, vm = v′m and i = i′, we have v = v′.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, v = v′, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra2 (γ, σ1, ∆1, χ, bid, acc, v)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra2 (γ, σ1, ∆1, χ, bid, acc, v) by rule Location-tracking Public 1D Ar-

ray Read Private Index, we have γ(x) = (l, public const bty∗), (bty = int) ∨ (bty = float), (γ, σ, ∆, χ, bid,
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acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗,

public, 1)), Label(e, γ) = private, DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1,

public bty , n, PermL(Freeable, public bty , public, n)), DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], and

v =
∨n−1
m=0(i = encrypt(m)) ∧encrypt(vm).

By definition 3.3.1, given c = ra2 , we have c 'L c′ if and only if c′ = ra2 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓tra2 (γ, σ′1, ∆′1, χ, bid, acc, v′) by rule Location-tracking Public 1D Array

Read Private Index, we have γ(x) = (l′, public const bty ′∗), (bty ′ = int) ∨ (bty ′ = float), (γ, σ, ∆, χ, bid, acc,

e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), σ′1(l′) = (ω′, public const bty ′∗, 1, PermL(Freeable, public const bty ′∗,

public, 1)), Label(e, γ) = private, DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′1(l′1) = (ω′1,

public bty ′, n′, PermL(Freeable, public bty ′, public, n)), DecodeVal(public bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], and

v′ =
∨n′−1
m′=0(i′ = encrypt(m′)) ∧ encrypt(v′m′).

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′1(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(public bty , n, ω1) = [v0, ..., vn−1], DecodeVal(public bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], bty = bty ′,

n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′0, ..., v
′
n′−1]. Therefore, we have ∀m ∈ {0, ...,

n− 1}, vm = v′m.
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Given v =
∨n−1
m=0(i = encrypt(m))∧ encrypt(vm), v′ =

∨n′−1
m′=0(i′ = encrypt(m′))∧ encrypt(v′m′), i = i′, n = n′,

and ∀m ∈ {0, ..., n− 1}, vm = v′m, we have m, m′ ∈ {0, ..., n− 1}. By Axiom 3.3.1 we have ∀m ∈ {0, ..., n− 1},

encrypt(m) = encrypt(m′) and encrypt(vm) = encrypt(v′m′). Therefore, we have v = v′.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, v = v′, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa (γ, σ3, ∆3, χ, bid, acc, skip) by rule Location-tracking Public

1D Array Write Public Value Public Index, we have Label(e1, γ) = Label(e2, γ) = public, acc = 0, (γ, σ, ∆, χ,

bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), v 6= skip,

γ(x) = (l, public const bty∗), σ2(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1)),

DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, public bty , n, PermL(Freeable, public

bty , public, n)), DecodeVal( public bty , n, ω1) = [v0, ..., vn−1], [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
, 0 ≤ i ≤ n− 1,

and T_UpdateVal(σ2, l1, [v′0, ..., v
′
n−1], ∆2, χ, bid, acc, public bty) = (σ3, ∆3).

By definition 3.3.1, given c = wa , we have c 'L c′ if and only if c′ = wa .

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa (γ, σ′3, ∆′3, χ, bid, acc, skip) by rule Location-tracking Public 1D

Array Write Public Value Public Index, we have Label(e1, γ) = Label(e2, γ) = public, acc = 0, (γ, σ, ∆, χ, bid,

acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, v′′), v′′ 6= skip,

γ(x) = (l′, public const bty ′∗), σ′2(l′) = (ω′, public const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public,

1)), DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′2(l′1) = (ω′1, public bty ′, n′,PermL(Freeable,

public bty ′, public, n′)), DecodeVal(public bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], [v′′′0 , ..., v

′′′
n′−1] = [v′′0 , ..., v

′′
n−1]

(
v′′

v′′
i′

)
,

0 ≤ i′ ≤ n′ − 1, and T_UpdateVal(σ′2, l
′
1, [v′′′0 , ..., v

′′′
n′−1], ∆′2, χ, bid, acc, public bty ′) = (σ′3, ∆′3).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, v′′), σ1 = σ′1, and ∆1 = ∆′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, v = v′′, and c2 'L c′2.
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Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1)), σ′2(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ2 = σ′2, and l = l′, we have ω = ω′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1,

0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore, we

have l1 = l′1.

Given σ2(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′2(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal( public bty , n, ω1) = [v0, ..., vn−1], DecodeVal(public bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], bty = bty ′,

n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′′0 , ..., v
′′
n′−1]. Therefore, we have ∀m ∈ {0, ...,

n− 1}, vm = v′′m.

Given 0 ≤ i ≤ n− 1, 0 ≤ i′ ≤ n′ − 1, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1}, vm = v′′m, we have vi = v′′i′ .

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

(
v
vi

)
, [v′′′0 , ..., v

′′′
n′−1] = [v′′0 , ..., v

′′
n′−1]

(
v′′

v′′
i′

)
, [v0, ..., vn−1] = [v′′0 , ..., v

′′
n′−1],

v = v′′, and vi = v′′i′ , we have [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1].

Given T_UpdateVal(σ2, l1, [v′0, ..., v
′
n−1], ∆2, χ, bid, acc, public bty) = (σ3, ∆3), T_UpdateVal(σ′2, l

′
1, [v

′′′
0 ,

..., v′′′n′−1], ∆′2, χ, bid, acc, public bty ′) = (σ′3, ∆′3), σ2 = σ′2, ∆2 = ∆′2, l1 = l′1, bty = bty ′, and [v′0, ..., v
′
n−1] =

[v′′′0 , ..., v
′′′
n′−1], by Lemma 3.3.12 we have σ3 = σ′3 and ∆3 = ∆′3.

Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa4 (γ, σ3, ∆3, χ, bid, acc, skip)

This case is similar to case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa (γ, σ3, ∆3, χ, bid, acc, skip).
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Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa1 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa1 (γ, σ3, ∆3, χ, bid, acc, skip) by rule Location-tracking Private

1D Array Write Public Value Public Index, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, ∆, χ, bid, acc,

e1) ⇓tc1 (γ, σ1,∆1, χ, bid, acc, i), (γ, σ1,∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2,∆2, χ, bid, acc, v), v 6= skip, γ(x) = (l,

private const bty∗), (bty = int) ∨ (bty = float), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private

const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], [v′0, ..., v
′
n−1] = [v0,

..., vn−1]
( encrypt(v)

vi

)
, 0 ≤ i ≤ n− 1, and T_UpdateVal(σ2, l1, [v′0, ..., v

′
n−1], ∆2, χ, bid, acc, private bty) = (σ3,

∆3).

By definition 3.3.1, given c = wa1 , we have c 'L c′ if and only if c′ = wa1 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa1 (γ, σ′3, ∆′3, χ, bid, acc, skip) by rule Location-tracking

Private 1D Array Write Public Value Public Index, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ, ∆, χ,

bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, v′′),

v′′ 6= skip, γ(x) = (l′, private const bty ′∗), (bty ′ = int) ∨ (bty ′ = float), σ′2(l′) = (ω′, private const bty ′∗,

1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)],

[1], 1], σ′2(l′1) = (ω′1, private bty , n′, PermL(Freeable, private bty ′, private, n′)), DecodeVal(private bty ′, n′,

ω′1) = [v′′0 , ..., v
′′
n′−1], [v′′′0 , ..., v

′′′
n′−1] = [v′′0 , ..., v

′′
n′−1]

( encrypt(v′′)
v′′
i′

)
, 0 ≤ i′ ≤ n′ − 1, and T_UpdateVal(σ′2, l

′
1,

[v′′′0 , ..., v
′′′
n′−1], ∆′2, χ, bid, acc, private bty ′) = (σ′3, ∆′3).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, v′′), σ1 = σ′1, and ∆1 = ∆′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l, private const bty∗) and γ(x) = (l′, private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′2(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ2 = σ′2, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) =
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[1, [(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1],

1]. Therefore, we have l1 = l′1.

Given σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′2(l′1) = (ω′1, private bty ,

n′, PermL(Freeable, private bty ′, private, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′′0 , ..., v
′′
n′−1]. Therefore, we have ∀m ∈ {0,

..., n− 1}, vm = v′′m.

Given 0 ≤ i ≤ n− 1, 0 ≤ i′ ≤ n′ − 1, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1}, vm = v′′m, we have vi = v′′i′ .

Given [v′0, ..., v
′
n−1] = [v0, ..., vn−1]

( encrypt(v)
vi

)
, [v′′′0 , ..., v

′′′
n′−1] = [v′′0 , ..., v

′′
n′−1]

( encrypt(v′′)
v′′
i′

)
, [v0, ..., vn−1] =

[v′′0 , ..., v
′′
n′−1], v = v′′, and vi = v′′i′ , by Axiom 3.3.1 we have encrypt(v) = encrypt(v′′). Therefore, we have [v′0,

..., v′n−1] = [v′′′0 , ..., v
′′′
n′−1].

Given T_UpdateVal(σ2, l1, [v′0, ..., v
′
n−1], ∆2, χ, bid, acc, private bty) = (σ3, ∆3), T_UpdateVal(σ′2, l

′
1,

[v′′′0 , ..., v
′′′
n′−1], ∆′2, χ, bid, acc, private bty ′) = (σ′3, ∆′3), σ2 = σ′2, ∆2 = ∆′2, l1 = l′1, bty = bty ′, and [v′0, ...,

v′n−1] = [v′′′0 , ..., v
′′′
n′−1], by Lemma 3.3.12 we have σ3 = σ′3 and ∆3 = ∆′3.

Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa2 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa2 (γ, σ3, ∆3, χ, bid, acc, skip) by rule Location-tracking Pri-

vate 1D Array Write Public Value Private Index, we have Label(e1, γ) = private, Label(e2, γ) = public, (γ, σ,

∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc,

v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private const bty∗, 1,PermL(Freeable, private const

bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], (bty = int) ∨ (bty =

float), v′ = encrypt(v), ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v′) ∨ (¬(i = encrypt(m)) ∧ vm), and

T_UpdateVal(σ2, l1, [v′0, ..., v
′
n−1], ∆2, χ, bid, acc, private bty) = (σ3, ∆3).
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By definition 3.3.1, given c = wa2 , we have c 'L c′ if and only if c′ = wa2 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa2 (γ, σ′3, ∆′3, χ, bid, acc, skip) by rule Location-tracking

Private 1D Array Write Public Value Private Index, we have Label(e1, γ) = private, Label(e2, γ) = public, (γ,

σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc2 (γ, σ′2, ∆′2, χ, bid,

acc, v′′), v′′ 6= skip, γ(x) = (l′, private const bty ′∗), σ′2(l′) = (ω′, private const bty ′∗, 1, PermL(Freeable,

private const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′2(l′1) = (ω′1,

private bty ′, n′, PermL(Freeable, private bty ′, private, n′)), DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1],

(bty ′ = int)∨(bty ′ = float), v′′′ = encrypt(v′′), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′−1]. v′′′m′ = ((i′ = encrypt(m′))∧v′′′)∨(¬(i′ =

encrypt(m′)) ∧ v′′m′), and T_UpdateVal(σ′2, l
′
1, [v′′′0 , ..., v

′′′
n′−1], ∆′2, χ, bid, acc, private bty ′) = (σ′3, ∆′3).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, v′′), σ1 = σ′1, and ∆1 = ∆′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l, private const bty∗) and γ(x) = (l′, private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′2(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ2 = σ′2, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) =

[1, [(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1],

1]. Therefore, we have l1 = l′1.

Given σ2(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′2(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′′0 , ..., v
′′
n′−1]. Therefore, we have ∀m ∈ {0,

..., n− 1}, vm = v′′m.
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Given v′ = encrypt(v), v′′′ = encrypt(v′′), and v = v′′, by Axiom 3.3.1 we have v′ = v′′′.

Given ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v′) ∨ (¬(i = encrypt(m)) ∧ vm), ∀v′′m′ ∈ [v′′0 , ...,

v′′n′−1]. v′′′m′ = ((i′ = encrypt(m′)) ∧ v′′′) ∨ (¬(i′ = encrypt(m′)) ∧ v′′m′), v′ = v′′′, i = i′, n = n′, and ∀m ∈ {0,

..., n − 1}, vm = v′′m, we have m, m′ ∈ {0, ..., n − 1} and by Axiom 3.3.1 we have encrypt(m) = encrypt(m′).

Therefore, we have [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1].

Given T_UpdateVal(σ2, l1, [v′0, ..., v
′
n−1], ∆2, χ, bid, acc, private bty) = (σ3, ∆3), T_UpdateVal(σ′2, l

′
1,

[v′′′0 , ..., v
′′′
n′−1], ∆′2, χ, bid, acc, private bty ′) = (σ′3, ∆′3), σ2 = σ′2, ∆2 = ∆′2, l1 = l′1, bty = bty ′, and [v′0, ...,

v′n−1] = [v′′′0 , ..., v
′′′
n′−1], by Lemma 3.3.12 we have σ3 = σ′3 and ∆3 = ∆′3.

Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa3 (γ, σ3, ∆′3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa3 (γ, σ3, ∆3, χ, bid, acc, skip) by rule Location-tracking Private

1D Array Write Private Value Private Index, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, acc, ∆, χ,

bid, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), v 6= skip,

γ(x) = (l, private const bty∗), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private,

1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty , n,PermL(Freeable,

private bty , private, n)), DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], (bty = int) ∨ (bty = float), ∀vm ∈ [v0,

..., vn−1]. v′m = ((i = encrypt(m)) ∧ v) ∨ (¬(i = encrypt(m)) ∧ vm), and T_UpdateVal(σ2, l1, [v′0, ..., v
′
n−1],

∆2, χ, bid, acc, private bty) = (σ3, ∆3).

By definition 3.3.1, given c = wa3 , we have c 'L c′ if and only if c′ = wa3 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twa3 (γ, σ′3, ∆′3, χ, bid, acc, skip) by rule Location-tracking

Private 1D Array Write Private Value Private Index, we have Label(e1, γ) = Label(e2, γ) = private, (γ, σ, ∆,

χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc,

v′′), v′′ 6= skip, γ(x) = (l′, private const bty ′∗), σ′2(l′) = (ω′, private const bty ′∗, 1, PermL(Freeable, private

const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′2(l′1) = (ω′1, private
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bty ′, n′, PermL(Freeable, private bty ′, private, n′)), DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], (bty ′ =

int)∨ (bty ′ = float), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′−1]. v′′′m′ = ((i′ = encrypt(m′))∧ v′′)∨ (¬(i′ = encrypt(m′))∧ v′′m′), and

T_UpdateVal(σ′2, l
′
1, [v′′′0 , ..., v

′′′
n′−1], ∆′2, χ, bid, acc, private bty ′) = (σ′3, ∆′3).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, v′′), σ1 = σ′1, and ∆1 = ∆′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l, private const bty∗) and γ(x) = (l′, private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′2(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and

n = n′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore,

we have l1 = l′1.

Given σ2(l1) = (ω1, private bty , n,PermL(Freeable, private bty , private, n)), σ′2(l′1) = (ω′1, private bty ′,

n′, PermL(Freeable, private bty ′, private, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′′0 , ..., v
′′
n′−1], bty

= bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′′0 , ..., v
′′
n′−1]. Therefore, we have ∀m ∈ {0,

..., n− 1}, vm = v′′m.

Given ∀vm ∈ [v0, ..., vn−1]. v′m = ((i = encrypt(m)) ∧ v) ∨ (¬(i = encrypt(m)) ∧ vm), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′−1].

v′′′m′ = ((i′ = encrypt(m′))∧ v′′)∨ (¬(i′ = encrypt(m′))∧ v′′m′), v′ = v′′′, i = i′, n = n′, and ∀m ∈ {0, ..., n− 1},

vm = v′′m, we have m, m′ ∈ {0, ..., n− 1} and by Axiom 3.3.1 we have encrypt(m) = encrypt(m′). Therefore, we

have [v′0, ..., v
′
n−1] = [v′′′0 , ..., v

′′′
n′−1].

Given T_UpdateVal(σ2, l1, [v′0, ..., v
′
n−1], ∆2, χ, bid, acc, private bty) = (σ3, ∆3), T_UpdateVal(σ′2, l

′
1, [v′′′0 , ...,
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v′′′n′−1], ∆′2, χ, bid, acc, private bty ′) = (σ′3, ∆′3), σ2 = σ′2, ∆2 = ∆′2, l1 = l′1, bty = bty ′, and [v′0, ..., v
′
n−1] =

[v′′′0 , ..., v
′′′
n′−1], by Lemma 3.3.12 we have σ3 = σ′3 and ∆3 = ∆′3.

Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1, ∆1, χ, bid, acc, v)

Given Π . (γ, σ,∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1,∆1, χ, bid, acc, v) by rule Location-tracking Public 1D Array Read

Out of Bounds Public Index, we have Label(e, γ) = public, γ(x) = (l, public const bty∗), (γ, σ, ∆, χ, bid, acc,

e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public,

1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ1(l1) = (ω1, publicbty , n,PermL(Freeable, public

bty , public, n)), (i < 0) ∨ (i ≥ n), and ReadOOB(i, n, l1, public bty , σ1) = (v, 1).

By definition 3.3.1, given c = rao, we have c 'L c′ if and only if c′ = rao.

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ′1, ∆′1, χ, bid, acc, v′) by rule Location-tracking Public 1D Array

Read Out of Bounds Public Index, we have Label(e, γ) = public, γ(x) = (l′, public const bty ′∗), (γ, σ, ∆, χ,

bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), σ′1(l′) = (ω′, public const bty ′∗, 1, PermL(Freeable, public const

bty ′∗, public, 1)), DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′1(l′1) = (ω′1, public bty , n′,

PermL(Freeable, public bty ′, public, n′)), (i′ < 0) ∨ (i′ ≥ n′), and ReadOOB(i′, n′, l′1, public bty ′, σ′1) = (v′,

1).

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and

n = n′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(public const bty ′∗, 1, ω′) = [1,
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[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore,

we have l1 = l′1.

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′1(l′1) = (ω′1, public bty , n′,

PermL(Freeable, public bty ′, public, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given ReadOOB(i, n, l1, public bty , σ1) = (v, 1), ReadOOB(i′, n′, l′1, public bty ′, σ′1) = (v′, 1), i = i′, n = n′,

l1 = l′1, bty = bty ′, and σ1 = σ′1, by Lemma 3.3.24 we have v = v′.

Therefore, we have γ = γ, σ1 = σ′1, ∆1 = ∆′1, χ = χ, bid = bid, acc = acc, v = v′, and, by definition 4.3.1, we

have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓t∗rao (γ, σ1, ∆1, χ, bid, acc, v)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1, ∆1, χ, bid, acc, v).

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao1 (γ, σ1, ∆1, χ, bid, acc, v)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1, ∆1, χ, bid, acc, v).

Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓t∗rao1 (γ, σ1, ∆1, χ, bid, acc, v)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x[e]) ⇓trao (γ, σ1, ∆1, χ, bid, acc, v).

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip) by rule Location-tracking

Public 1D Array Write Out of Bounds Public Index Public Value, we have Label(e1, γ) = Label(e2, γ) = public,

acc = 0, (γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2,

χ, bid, acc, v), v 6= skip, γ(x) = (l, public const bty∗), σ2(l) = (ω, public const bty∗, 1, PermL(Freeable,

public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, public bty ,

n,PermL(Freeable, public bty , public, n)), (i < 0) ∨ (i ≥ n), and WriteOOB(v, i, n, l1, public bty , σ2, ∆2, χ,

bid, acc) = (σ3, ∆3, 1).
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By definition 3.3.1, given c = wao, we have c 'L c′ if and only if c′ = wao.

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ′3, ∆′3, χ, bid, acc, skip) by rule Location-tracking Public

1D Array Write Out of Bounds Public Index Public Value, we have Label(e1, γ) = Label(e2, γ) = public, acc = 0,

(γ, σ, ∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid,

acc, v′), v′ 6= skip, γ(x) = (l′, public const bty ′∗), σ′2(l′) = (ω′, public const bty ′∗, 1, PermL(Freeable, public

const bty ′∗, public, 1)), DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′2(l′1) = (ω′1, public bty ′,

n′,PermL(Freeable, public bty ′, public, n′)), (i′ < 0) ∨ (i′ ≥ n′), and WriteOOB(v′, i′, n′, l′1, public bty ′, σ′2,

∆′2, χ, bid, acc) = (σ′3, ∆′3, 1).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, v′′), ∆1 = ∆′1, and σ1 = σ′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′2(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and

n = n′.

Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr( public const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore,

we have l1 = l′1.

Given σ2(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′2(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given WriteOOB(v, i, n, l1, public bty , σ2, ∆2, χ, bid, acc) = (σ3, ∆3, 1), WriteOOB(v′, i′, n′, l′1, public bty ′,

σ′2, ∆′2, χ, bid, acc) = (σ′3, ∆′31), v = v′, i = i′, n = n′, l1 = l′1, bty = bty ′, ∆2 = ∆′2, and σ2 = σ′2, by Lemma

3.3.25 we have σ3 = σ′3 and ∆3 = ∆′3.
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Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓t∗wao (γ, σ3, ∆3, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao2 (γ, σ3, ∆3, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓t∗wao2 (γ, σ3, ∆3, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao (γ, σ3, ∆3, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao1 (γ, σ3, ∆3, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao1 (γ, σ3, ∆3, χ, bid, acc, skip) by rule Location-tracking

Private 1D Array Write Public Value Out of Bounds Public Index, we have Label(e1, γ) = Label(e2, γ) = public,

(γ, σ, ∆, χ, bid, acc, e1) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i), (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid,

acc, v), v 6= skip, γ(x) = (l, private const bty∗), σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private

const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], σ2(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), (i < 0)∨ (i ≥ n), and WriteOOB(encrypt(v), i, n, l1, private bty , σ2,

∆2, χ, bid, acc) = (σ3, ∆3, 1).

By definition 3.3.1, given c = wao1 , we have c 'L c′ if and only if c′ = wao1 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao1 (γ, σ′3, ∆′3, χ, bid, acc, skip) by rule Location-tracking Private

1D Array Write Public Value Out of Bounds Public Index, we have Label(e1, γ) = Label(e2, γ) = public, (γ, σ,

∆, χ, bid, acc, e1) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, i′), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ, bid, acc, v′),

v′ 6= skip, γ(x) = (l′, private const bty ′∗), σ′2(l′) = (ω′, private const bty ′∗, 1, PermL(Freeable, private const

bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], σ′2(l′1) = (ω′1, private bty ′, n′,
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PermL(Freeable, private bty ′, private, n′)), (i′ < 0) ∨ (i′ ≥ n′), and WriteOOB(encrypt(v′), i′, n′, l′1, private

bty ′, σ′2, ∆′2, χ, bid, acc) = (σ′3, ∆′3, 1).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, i) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid,

acc, i′), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, i = i′, and c1 'L c′1.

Given (γ, σ1, ∆1, χ, bid, acc, e2) ⇓tc2 (γ, σ2, ∆2, χ, bid, acc, v), (γ, σ′1, ∆′1, χ, bid, acc, e2) ⇓tc′2 (γ, σ′2, ∆′2, χ,

bid, acc, v′′), ∆1 = ∆′1, and σ1 = σ′1, by the inductive hypothesis we have σ2 = σ′2, ∆2 = ∆′2, v = v′′, and c2 'L c′2.

Given γ(x) = (l, private const bty∗) and γ(x) = (l′, private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ2(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′2(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ2 = σ′2, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore

we have l1 = l′1.

Given σ2(l1) = (ω1, private bty , n,PermL(Freeable, private bty , private, n)), σ′2(l′1) = (ω′1, private bty ′,

n′,PermL(Freeable, private bty ′, private, n′)), σ2 = σ′2, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given v = v′, by Axiom 3.3.1 we have encrypt(v) = encrypt(v′).

Given WriteOOB(encrypt(v), i, n, l1, private bty , σ2, ∆2, χ, bid, acc) = (σ3, ∆3, 1), WriteOOB(encrypt(v′),

i′, n′, l′1, private bty ′, σ′2, ∆′2, χ, bid, acc) = (σ′3, ∆′3, 1), encrypt(v) = encrypt(v′), i = i′, n = n′, l1 = l′1,

bty = bty ′, ∆2 = ∆′2, and σ2 = σ′2, by Lemma 3.3.25 we have σ3 = σ′3 and ∆3 = ∆′3.

Therefore, we have γ = γ, σ3 = σ′3, ∆3 = ∆′3, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓t∗wao (γ, σ3, ∆3, χ, bid, acc, skip)

This case is similar to case Π . (γ, σ, ∆, χ, bid, acc, x[e1] = e2) ⇓twao1 (γ, σ3, ∆3, χ, bid, acc, skip).
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Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tra5 (γ, σ, ∆, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tra5 (γ, σ,∆, χ, bid, acc, [v0, ..., vn−1]) by rule Location-tracking Private 1D

Array Read Entire Array, we have γ(x) = (l, private const bty∗), (bty = int) ∨ (bty = float), σ(l) = (ω, private

const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const bty∗, 1, ω) = [1, [(l1,

0)], [1], 1], σ(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), and DecodeVal(private bty ,

n, ω1) = [v0, ..., vn−1].

By definition 3.3.1, given c = ra5 , we have c 'L c′ if and only if c′ = ra5 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x) ⇓tra5 (γ, σ, ∆, χ, bid, acc, [v′0, ..., v
′
n′−1]) by rule Location-tracking Private 1D

Array Read Entire Array, we have γ(x) = (l′, private const bty ′∗), (bty ′ = int)∨(bty ′ = float), σ(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), DecodePtr(private const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], σ(l′1) = (ω′1, private bty ′, n′,PermL(Freeable, private bty ′, private, n′)), and DecodeVal(private

bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1].

Given γ(x) = (l, private const bty∗) and γ(x) = (l′, private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore

we have l1 = l′1.

Given σ(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ(l′1) = (ω′1, private bty ′,

n′,PermL(Freeable, private bty ′, private, n′)), and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given DecodeVal(private bty , n, ω1) = [v0, ..., vn−1], DecodeVal(private bty ′, n′, ω′1) = [v′0, ..., v
′
n′−1], bty =

bty ′, n = n′, and ω1 = ω′1, by Lemma 3.3.4 we have [v0, ..., vn−1] = [v′0, ..., v
′
n′−1].

Therefore, we have γ = γ, σ = σ, ∆ = ∆, χ = χ, bid = bid, acc = acc, [v0, ..., vn−1] = [v′0, ..., v
′
n′−1], and, by
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definition 4.3.1, we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tra4 (γ, σ, ∆, χ, bid, acc, [v0, ..., vn−1])

This case is similar to case Π . (γ, σ, ∆, χ, bid, acc, x) ⇓tra5 (γ, σ, ∆, χ, bid, acc, [v0, ..., vn−1]).

Case Π . (γ, σ, ∆, χ, bid, acc, x = e1) ⇓twa5 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa5 (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Public

1D Array Write Entire Array, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid,

acc, [v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1]. vm 6= skip, γ(x) = (l, public const bty∗), σ1(l) = (ω, public const

bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

σ1(l1) = (ω1, public bty , n,PermL(Freeable, public bty , public, n)), ne = n, and T_UpdateVal(σ1, l1, [v0, ...,

vne−1], ∆1, χ, bid, acc, public bty) = (σ2, ∆2).

By definition 3.3.1, given c = wa5 , we have c 'L c′ if and only if c′ = wa5 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x = e) ⇓twa5 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Public 1D

Array Write Entire Array, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc, [v′0,

..., v′n′e−1]), ∀v′m ∈ [v′0, ..., v
′
n′e−1]. v′m 6= skip, γ(x) = (l′, public const bty ′∗), σ′1(l′) = (ω′, public const bty ′∗,

1, PermL(Freeable, public const bty ′∗, public, 1)), DecodePtr( public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

σ′1(l′1) = (ω′1, public bty ′, n′, PermL(Freeable, public bty ′, public, n′)), n′e = n′, and T_UpdateVal(σ′1, l
′
1, [v′0,

..., v′n′e−1], ∆, χ, bid, acc, public bty ′) = (σ′2, ∆′2).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [v0, ..., vne−1]) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1,

∆′1, χ, bid, acc, [v′0, ..., v
′
n′e−1]), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, [v0, ..., vne−1] = [v′0, ...,

v′n′e−1], and c1 'L c′1.

Given γ(x) = (l, public const bty∗) and γ(x) = (l′, public const bty ′∗), we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1)), σ′1(l′) = (ω′, public

const bty ′∗, 1, PermL(Freeable, public const bty ′∗, public, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.
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Given DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr( public const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore

we have l1 = l′1.

Given σ1(l1) = (ω1, public bty , n, PermL(Freeable, public bty , public, n)), σ′1(l′1) = (ω′1, public bty ′, n′,

PermL(Freeable, public bty ′, public, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given T_UpdateVal(σ1, l1, [v0, ..., vne−1], ∆1, χ, bid, acc, public bty) = (σ2, ∆2), T_UpdateVal(σ′1, l
′
1,

[v′0, ..., v
′
n′e−1], ∆′1, χ, bid, acc, public bty ′) = (σ′2, ∆′2), σ1 = σ′1, ∆1 = ∆′1, l1 = l′1, bty = bty ′, and [v0, ...,

vne−1] = [v′0, ..., v
′
n′e−1], by Lemma 3.3.12 we have σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

Case Π . (γ, σ, ∆, χ, bid, acc, x = e1) ⇓twa6 (γ, σ3, ∆3, χ, bid, acc, skip)

This case is similar to Case Π . (γ, σ, ∆, χ, bid, acc, x = e1) ⇓twa5 (γ, σ2, ∆2, χ, bid, acc, skip).

Case Π . (γ, σ, ∆, χ, bid, acc, x = e1) ⇓twa7 (γ, σ2, ∆2, χ, bid, acc, skip)

Given Π . (γ, σ, ∆, χ, bid, acc, x = e1) ⇓twa7 (γ, σ2, ∆2, χ, bid, acc, skip) by rule Location-tracking Private 1D

Array Write Entire Public Array, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc,

[v0, ..., vne−1]), ∀vm ∈ [v0, ..., vne−1]. vm 6= skip γ(x) = (l, private const bty∗), (bty = int) ∨ (bty = float),

σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), DecodePtr(private const

bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], ∀vm ∈ [v0, ..., vne−1]. v′m = encrypt(vm), σ1(l1) = (ω1, private bty , n,

PermL(Freeable, private bty , private, n)), ne = n, and T_UpdateVal(σ1, l1, [v′0, ..., v
′
ne−1], ∆1, χ, bid, acc,

private bty) = (σ2, ∆2).

By definition 3.3.1, given c = wa7 , we have c 'L c′ if and only if c′ = wa7 .

Given Σ . (γ, σ, ∆, χ, bid, acc, x = e1) ⇓twa7 (γ, σ′2, ∆′2, χ, bid, acc, skip) by rule Location-tracking Private 1D

Array Write Entire Public Array, we have Label(e, γ) = public, (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1, ∆′1, χ, bid, acc,

[v′′0 , ..., v
′′
n′e−1]), ∀v′′m ∈ [v′′0 , ..., v

′′
n′e−1]. vm 6= skip γ(x) = (l′, private const bty ′∗), (bty ′ = int) ∨ (bty ′ = float),
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σ′1(l′) = (ω′, private const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), DecodePtr(private const

bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′e−1]. v′′′m′ = encrypt(v′′m′), σ′1(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), n′e = n′, and T_UpdateVal(σ′1, l
′
1, [v′′′0 , ..., v

′′′
n′e−1], ∆′1, χ, bid, acc,

private bty ′) = (σ′2, ∆′2).

Given (γ, σ, ∆, χ, bid, acc, e) ⇓tc1 (γ, σ1, ∆1, χ, bid, acc, [v0, ..., vne−1]) and (γ, σ, ∆, χ, bid, acc, e) ⇓tc′1 (γ, σ′1,

∆′1, χ, bid, acc, [v′′0 , ..., v
′′
n′e−1]), by the inductive hypothesis we have σ1 = σ′1, ∆1 = ∆′1, [v0, ..., vne−1] = [v′′0 , ...,

v′′n′e−1], and c1 'L c′1.

Given [v0, ..., vne−1] = [v′′0 , ..., v
′′
n′e−1], we have ne = n′e.

Given γ(x) = (l, private const bty∗) and γ(x) = (l′, private const bty ′∗), we have l = l′ and bty = bty ′.

Given σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1)), σ′1(l′) = (ω′, private

const bty ′∗, 1, PermL(Freeable, private const bty ′∗, private, 1)), σ1 = σ′1, and l = l′, we have ω = ω′.

Given DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], DecodePtr(private const bty ′∗, 1, ω′) = [1,

[(l′1, 0)], [1], 1], bty = bty ′, and ω = ω′, by Lemma 3.3.6 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1]. Therefore

we have l1 = l′1.

Given ∀vm ∈ [v0, ..., vne−1]. v′m = encrypt(vm), ∀v′′m′ ∈ [v′′0 , ..., v
′′
n′e−1]. v′′′m′ = encrypt(v′′m′), ne = n′e, and

[v0, ..., vne−1] = [v′′0 , ..., v
′′
n′e−1], by Axiom 3.3.1 we have encrypt(vm) = encrypt(v′′m′) and therefore [v′0, ...,

v′ne−1] = [v′′′0 , ..., v
′′′
n′e−1].

Given σ1(l1) = (ω1, private bty , n, PermL(Freeable, private bty , private, n)), σ′1(l′1) = (ω′1, private bty ′, n′,

PermL(Freeable, private bty ′, private, n′)), σ1 = σ′1, and l1 = l′1, we have ω1 = ω′1 and n = n′.

Given T_UpdateVal(σ1, l1, [v′0, ..., v
′
ne−1], ∆, χ, bid, acc, private bty) = (σ2, ∆2), T_UpdateVal(σ′1, l

′
1,

[v′′′0 , ..., v
′′′
n′e−1], ∆, χ, bid, acc, private bty ′) = (σ′2, ∆′2), σ1 = σ′1, ∆1 = ∆′1, l1 = l′1, bty = bty ′, and [v′0, ...,

v′ne−1] = [v′′′0 , ..., v
′′′
n′e−1], by Lemma 3.3.12 we have σ2 = σ′2 and ∆2 = ∆′2.

Therefore, we have γ = γ, σ2 = σ′2, ∆2 = ∆′2, χ = χ, bid = bid, acc = acc, skip = skip, and, by definition 4.3.1,

we have Π 'L Σ.

567



5 Multiparty SMC2

In this Chapter, we present Multiparty SMC2, a formalization of a general-purpose SMC compiler with

explicit multiparty semantics and optimized conditional code block tracking. In both Basic SMC2 and

Location-tracking SMC2, we had formalized the multiparty operations implicitly, assuming that each party

would be doing the same thing and the portions that required communication would do so implicitly. However,

we noted that this left a gap in understanding between the formal semantics and how the model would actual

behave in a multiparty environment. We have resolved this gap within Multiparty SMC2, explicitly showing

the configurations of each party involved in the evaluation of a program, when multiparty operations will occur,

and what data each party supplies to these operations. Multiparty SMC2 also provides an enhanced ability

to substitute SMC protocols as newer, improved protocols are developed, with each SMC protocol being

called from within the semantics and shown separately as an algorithm. With this compartmentalization, the

main formal model and proofs will not need to be updated as protocols are substituted in; these substitutions

simply require updating the algorithms for the model and the proofs of the axioms for the given protocol to

ensure it upholds the properties required for the proofs.

Additionally, to be able to handle pointers and arrays correctly, we must use a location based tracking

instead of a variable based tracking, which we formalized in Location-tracking SMC2, discussed in Chapter 4.

However, as our Location-tracking SMC2 semantic have illustrated, this requires additional tracking structures

and dynamically checking to ensure that the locations modified during pointer dereference write statements

are tracked. We, thus, propose a small optimization to full location tracking in Multiparty SMC2, which

analyzes each top-level private-conditioned branching statement to see if it contains a pointer dereference

writes or array writes at public indices in the then or else clauses, as well as in any nested branching

statements present in those clauses. If no such writes occur, we are able to use simple variable tracking, as

shown in rule Private If Else Variable Tracking in Figure 5.16.

When any such write statement occurs in either branch, we switch to tracking by location, as shown

in rule Private If Else Location Tracking in Figure 5.16. For example, consider a program using a pointer

to iterate through and modify elements of an array. Allowing pointer dereference writes enables us to
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perform a different operation on the array depending on whether a private condition holds. For location based

conditional code block tracking, we create a map to store the original and then values for each location

that is modified within each branch, as well as a tag to indicate whether this location has a value stored for the

then branch. This tag ensures that even when a location is modified for the first time in the else branch, we

are still able to properly resolve the value for that location by using the original value stored at that location.

This corresponds to the rules and explanation given in subsection 5.1.2.

As with the conditional code block variable tracking scheme, first we find a list of all modified variables,

excluding those only used for pointer dereference writes or array writes at a public index. We exclude pointer

dereference writes as we will grab the location that is pointed to dynamically to ensure we are tracking the

modification at the correct location. We use this list to store the original values at the location referred to by

each of these variables before the execution of the then branch. Between branches, our restoration is similar

to that formalized for Basic SMC2, just by location. We iterate through our map, storing the current value

of each location as the then value, and restoring the value at the location as the original value. We set the

tag associated with each location to be 1, as we have added then values for each of these locations. When

executing the then and else branches, we check before the execution of a pointer dereference write to see

if the location we will modify is already being tracked. If it is not, we store the current value as the original

value for that location, and then continue to execute as normal; if it is already tracked, we proceed as we

do not need to store anything additional. We set the tag for each new location to 0, as we do not currently

have a then value stored for those locations. After the execution of the else branch, we proceed to resolve

similarly to Basic SMC2, just by location. For each location in the map, we securely compute whether to keep

the then value (or original value, if the tag is 0) stored in the map or the current value at that location

based on the private condition.

5.1 Formal Semantics

C ∈ Configuration ::= ε | (p, γ, σ,∆, acc, s) ‖ C
δ ∈ LocationMap ::= f : (l, µ)→(v, v, j, ty)

D ∈ PartyEvaluationCodeList ::= ε | (p, d) ‖ D
p, q ∈ PartyIdentifier ∈ N

Figure 5.1: Multiparty SMC2 configuration: party identifier p, environment γ, memory σ, location map ∆,
accumulator acc, and statement s.
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In this section, we will present the Multiparty SMC2 semantics with respect to the grammar (Fig-

ure 3.1). The semantic judgements in Multiparty SMC2 are defined over six-tuple configurations C =

(p, γ, σ,∆, acc, s), where each party has its own configuration and each rule is a reduction from a set of

party-wise configurations C1 ‖ ... ‖ Cq to a subsequent. We denote the party’s identifier as p; the environment

as γ; memory as σ; location map ∆; the level of nesting of private-conditioned branches as acc; and a big-step

evaluation of a statement s to a value v using ⇓. We annotate each evaluation with evaluation codes (i.e., ⇓d)

to facilitate reasoning over evaluation trees, and we annotate evaluations that are not well-aligned with a star

(i.e., ⇓∗d) to identify the rules that we cannot prove correctness over, as they produce unpredictable behavior.

The assertions in each semantic rule can be read in sequential order, from left to right and top to bottom.

When proving correctness for Multiparty SMC2, we will use the Multiparty Vanilla C semantics, shown

in the following section. We chose to develop an additional set of Vanilla C semantics which allows us to

show multiple parties evaluating at the same time in order to allow us to easily reason about the correctness

of Multiparty SMC2. In the Multiparty Vanilla C semantics, the parties do not communicate, they simply all

evaluate the same program at the same time, and we provide “synchronization” rules that require all parties

to be evaluating the same rule at the same time. These “synchronization” rules allow us to easily prove the

correctness of the interactive Multiparty SMC2 rules also requiring “synchronization” in order to evaluate the

multiparty protocols requiring communication. The Multiparty Vanilla C configuration mirrors the Multiparty

SMC2 configuration, replacing location map ∆ and accumulator acc each with �, as they are unused with

Multiparty Vanilla C.

In this semantics, we introduce party identifiers p and modifications to location map ∆ to better manage

tracking changes by location within private-conditioned branches. We will briefly discuss each here, and

more fully discuss their uses when we discuss the private-conditioned if else statement and its algorithms.

The party identifiers allow us to easily keep track of which configuration belongs to which party, and which

statement each party is currently evaluating. This is useful in both the “synchronization” rules, where we

view all parties at the same time as we are evaluating the rule, as well as in the single party rules, where we

need to keep track of which party is evaluating the rule to be able to properly add to our party-wise location

trace and our party-wise evaluation code trace.

We modify location map ∆, our list of maps δ, one for each level of nesting within the current private-

conditioned if else statement. Like in Location-tracking SMC2, at the start of a private-conditioned

if else statement, we append a new sublist to ∆ to constitute the current scope of changes within this
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specific private-conditioned if else statement. This sublist is removed from ∆ once we have completed

resolution and the changes are out of scope. Of course, it is not removed before changes are propagated to any

higher level of tracking when we are in a nested private-conditioned if else statement – this is discussed

in more detail when we discuss the private-conditioned if else statement and the algorithms used within it.

Each location map δ now maps memory block identifiers to a four-tuple of information – the original value

stored in the block, the value stored within the block by the end of the then branch, a public tag indicating

whether the value was modified within the then branch, and the type for the memory block. The public tag

is set to 0 upon a new mapping being added to ∆, and updated to 1 during the restoration phase between

branches, when we store the then value before restoring the original values. This removes the need to

track what branch we are in, if any, at all times, as we can use this tag during the resolution of true values to

tell us whether we have a then value stored or whether we need to use the original value as the value

from the evaluation of the then branch.

It is important to note here that the two values stored in each mapping will be of the type given by δ

(which is identical to the expected type of that memory block), and either a singular value, a list of values, or

a pointer data structure. These mappings are only accessed at specific times: (1) when we are initializing

known locations that will change before evaluation of either branch, (2) when we encounter a potentially

unknown location (i.e., a non-absolute location, such as from a pointer dereference write or array write at a

public index), (3) when we store the then values in between branches before restoring the original values,

and (4) when we resolve the true values after finishing evaluation of both branches. In this way, we attempt to

reduce the number of times we need to perform lookups within the location map, as all modifications for the

first level of pointers, for regular variables, and for updating an entire array or an array at a private index no

longer need to be tracked at every occurance.

5.1.1 Multiparty Vanilla C

In order to facilitate the correspondence between the Multiparty Vanilla C and Multiparty SMC2 semantics,

we continue to model our semantics using big-step evaluation judgements and define our Multiparty Vanilla

C semantics with respect to multiple non interacting parties that evaluate the same program. In Multiparty

Vanilla C, we use ̂ to distinguish elements in this semantics from those we use in the next section for

Multiparty SMC2 semantics, which may differ due to privacy labels and private data being encrypted. The

semantic judgements in Multiparty Vanilla C are defined over a six-tuple configuration Ĉ = (p, γ̂, σ̂,�,�, ŝ)
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where each party has its own configuration and each rule is a reduction from a set of party-wise configurations

Ĉ1 ‖ ... ‖ Ĉq, and each rule is a reduction from one configuration to a subsequent. We denote the party’s

identifier as p; the environment as γ̂; memory as σ̂; two placeholders as �,�; and a big-step evaluation of

a statement ŝ to a value v̂ using ⇓′. We use �,� in Multiparty Vanilla C as placeholders for the both the

location map ∆ and the level of nesting of private-conditioned branches acc in order to maintain the same

shape of configurations as that of Multiparty SMC2 used in the next section. We annotate each evaluation

with evaluation codes (i.e., ⇓′
d̂
) to facilitate reasoning over evaluation trees, and we annotate evaluations

that are not well-aligned with a star (i.e., ⇓′∗
d̂

) to identify the rules that we cannot prove correctness over,

as they produce unpredictable behavior in implementation. We do not show the semantic rules that are

not well-aligned in this chapter, as they are nearly identical to their corresponding rules and the proof of

noninterference over these rules are handled similarly to the cases of the corresponding rules. Such rules are

shown in the basic Vanilla C semantics for the interested reader. The assertions in each semantic rule can be

read in sequential order, from left to right and top to bottom.

In this section, we will present the Multiparty Vanilla C semantics with respect to the grammar (Figure 3.1).

These semantic rules follow standard C. Recall the Vanilla C semantics in Section 3.1.3 – the Multiparty

Vanilla C semantics are not significantly different, except in the configuration, which is discussed above. It is

worthwhile to note here that all permissions in Multiparty Vanilla C will be set to public, and all types will

be implicitly public, as there is no notion of privacy labels in standard C. We will store pointer data within

the pointer data structure to facilitate reasoning about pointers between Multiparty Vanilla C and Multiparty

SMC2, but the Multiparty Vanilla C pointers can only have a single location and will always have the single

tag in the tag list set to 1, as that is the only possible location for the pointer to refer to. It is worthwhile to

note again that we show the rules with multiple parties evaluating the same program to be able to reason about

the behavior and structure of the multiparty semantics to prove correctness, but the parties never interact with

each other in Multiparty Vanilla C.

Multiparty evaluation of rules are shown in Figures 5.2 and 5.3 only for Multiparty Vanilla C. Figure 5.2

gives the semantic rules for multiparty binary operations, multiparty if else statements, and multiparty

pre-increment float variables. Figure 5.3 gives the semantic rules multiparty pointer dereferences, multiparty

free, and multiparty array operations. All other figures give single party evaluation of statements. Figure 5.4

gives the semantic rules binary operations. Figure 5.5 gives the semantic rules for sequencing; obtaining

the size of a type or location of a variable; declarations, pre-incrementing, reading and writing to regular
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(non-pointer, non-array) variables; reading from a pointer; and loops. Figure 5.6 gives the semantic rules for

if else statements, function operations, and casting values. Figure 5.7 gives the semantic rules for input and

output of data, memory allocation and deallocation, and casting a location. Figure 5.8 gives the semantic

rules for pointer operations. Figure 5.9 gives the semantic rules for array operations. Figure 5.10 gives the

semantic rules for out-of-bounds array operations.
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Multiparty Binary Operation
((1, γ̂, σ̂, �,�, ê1) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1)) ⇓′D̂1

((1, γ̂, σ̂1, �,�, n̂1) ‖ ... ‖ (q, γ̂, σ̂1, �,�, n̂1))

((1, γ̂, σ̂1, �,�, ê2) ‖ ... ‖ (q, γ̂, σ̂1, �,�, ê2)) ⇓′D̂2
((1, γ̂, σ̂2, �,�, n̂2) ‖ ... ‖ (q, γ̂, σ̂2, �,�, n̂2))

n̂1bop n̂2 = n̂3 bop ∈ {·,+,−,÷}
((1, γ̂, σ̂,�,�, ê1bop ê2) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê1bop ê2)) ⇓′D̂1::D̂2::(ALL,[m̂pb])

((1, γ̂, σ̂2,�,�, n̂3) ‖ ... ‖ (q, γ̂, σ̂2,�,�, n̂3))

Multiparty Comparison True Operation
((1, γ̂, σ̂, �,�, ê1) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1)) ⇓′D̂1

((1, γ̂, σ̂1, �,�, n̂1) ‖ ... ‖ (q, γ̂, σ̂1, �,�, n̂1))

((1, γ̂, σ̂1, �,�, ê2) ‖ ... ‖ (q, γ̂, σ̂1, �,�, ê2)) ⇓′D̂2
((1, γ̂, σ̂2, �,�, n̂2) ‖ ... ‖ (q, γ̂, σ̂2, �,�, n̂2))

(n̂1bop n̂2) = 1 bop ∈ {==, ! =, <}
((1, γ̂, σ̂, �,�, ê1bop ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1bop ê2)) ⇓′D̂1::D̂2::(ALL,[m̂pcmpt])

((1, γ̂, σ̂2,�,�, 1) ‖ ... ‖ (q, γ̂, σ̂2,�,�, 1))

Multiparty Comparison False Operation
((1, γ̂, σ̂, �,�, ê1) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1)) ⇓′D̂1

((1, γ̂, σ̂1, �,�, n̂1) ‖ ... ‖ (q, γ̂, σ̂1, �,�, n̂1))

((1, γ̂, σ̂1, �,�, ê2) ‖ ... ‖ (q, γ̂, σ̂1, �,�, ê2)) ⇓′D̂2
((1, γ̂, σ̂2, �,�, n̂2) ‖ ... ‖ (q, γ̂, σ̂2, �,�, n̂2))

(n̂1bop n̂2) = 0 bop ∈ {==, ! =, <}
((1, γ̂, σ̂, �,�, ê1bop ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1bop ê2)) ⇓′D̂1::D̂2::(ALL,[m̂pcmpf ])

((1, γ̂, σ̂2,�,�, 0) ‖ ... ‖ (q, γ̂, σ̂2,�,�, 0))

Multiparty If Else False
((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′D̂1

((1, γ̂, σ̂1,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂)) n̂ = 0

((1, γ̂, σ̂1,�,�, ŝ1) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ1)) ⇓′D̂2
((1, γ̂1, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂1, σ̂2,�,�, skip))

((1, γ̂, σ̂1,�,�, ŝ2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ2)) ⇓′D̂3
((1, γ̂2, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂2, σ̂3,�,�, skip))

((1, γ̂, σ̂, �,�, if(ê) ŝ1 else ŝ2) ‖ ... ‖ (q, γ̂, σ̂, �,�, if(ê) ŝ1 else ŝ2)) ⇓′D̂1::D̂2::D̂3::(ALL,[m̂pief ])

((1, γ̂, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂3,�,�, skip))

Multiparty If Else True
((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′D̂1

((1, γ̂, σ̂1,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂)) n̂ 6= 0

((1, γ̂, σ̂1,�,�, ŝ1) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ1)) ⇓′D̂2
((1, γ̂1, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂1, σ̂2,�,�, skip))

((1, γ̂, σ̂1,�,�, ŝ2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ2)) ⇓′D̂3
((1, γ̂2, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂2, σ̂3,�,�, skip))

((1, γ̂, σ̂, �,�, if(ê) ŝ1 else ŝ2) ‖ ... ‖ (q, γ̂, σ̂, �,�, if(ê) ŝ1 else ŝ2)) ⇓′D̂1::D̂2::D̂3::(ALL,[m̂piet])

((1, γ̂, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�, skip))

Multiparty Pre-Increment Variable
γ̂(x̂) = (l̂, b̂ty) σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty , public, 1))

DecodeVal(b̂ty , ω̂) = n̂1 n̂2 = n̂1 + 1 UpdateVal(σ̂, l̂, n̂2, b̂ty) = σ̂1

((1, γ̂, σ̂, �,�,++ x̂) ‖ ... ‖ (q, γ̂, σ̂, �,�,++ x̂)) ⇓′
(ALL,[m̂ppin])

((1, γ̂, σ̂1,�,�, n̂2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂2))

Figure 5.2: Multiparty Vanilla C semantics for multiparty evaluation of binary operations, if else statements,
and pre-incrementing floats.
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Multiparty Pointer Dereference Write Value
((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′D̂ ((1, γ̂, σ̂1,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂))

γ̂(x̂) = (l̂, b̂ty∗) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] UpdateOffset(σ̂1, (l̂1, µ̂1), n̂, b̂ty) = (σ̂2, 1)

((1, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ∗x̂ = ê)) ⇓′D̂::(ALL,[m̂pwdp])

((1, γ̂, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�, skip))

Multiparty Pointer Dereference Write Value Higher Level Indirection
((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′D̂ ((1, γ̂, σ̂1,�,�, (l̂e, µ̂e)) ‖ ... ‖ (q, γ̂, σ̂1,�,�, (l̂e, µ̂e)))

γ̂(x̂) = (l̂, b̂ty∗) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î]

î > 1 UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1)

((1, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ∗x̂ = ê)) ⇓′D̂::(ALL,[ ̂mpwdp1 ])

((1, γ̂, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�, skip))

Multiparty Pointer Dereference
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (n̂, 1)

((1, γ̂, σ̂,�,�, ∗x̂) ‖ ... ‖ (q, γ̂, σ̂,�,�, ∗x̂)) ⇓′
(ALL,[m̂prdp])

((1, γ̂, σ̂,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂,�,�, n̂))

Multiparty Pointer Dereference Higher Level Indirection
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1)) î > 1

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 1)

((1, γ̂, σ̂,�,�, ∗x̂) ‖ ... ‖ (q, γ̂, σ̂,�,�, ∗x̂)) ⇓′
(ALL,[m̂prdp1 ])

((1, γ̂, σ̂,�,�, (l̂2, µ̂2)) ‖ ... ‖ (q, γ̂, σ̂,�,�, (l̂2, µ̂2)))

Multiparty Free
γ̂(x̂) = (l̂, b̂ty∗) σ(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], î] CheckFreeable(γ̂, [(l̂1, 0)], [1], σ̂) = 1 Free(σ̂, l̂1) = σ̂1

((1, γ̂, σ̂,�,�, free(x̂)) ‖ ... ‖ (q, γ̂, σ̂,�,�, free(x̂))) ⇓′
(ALL,[m̂pfre])

((1, γ̂, σ̂1,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂1,�,�, skip))

Multiparty Array Read
((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′D̂1

((1, γ̂, σ̂1,�,�, î) ‖ ... ‖ (q, γ̂, σ̂1,�,�, î))

γ̂(x̂) = (l̂, const b̂ty∗) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

0 ≤ î ≤ α̂− 1 DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂1(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂)) DecodeArr(b̂ty , î, ω̂1) = n̂î
((1, γ̂, σ̂,�,�, x̂[ê]) ‖ ... ‖ (q, γ̂, σ̂,�,�, x̂[ê])) ⇓′D̂1::(ALL,[m̂pra])

((1, γ̂, σ̂1,�,�, n̂î) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂î))

Multiparty Array Write
((1, γ̂, σ̂,�,�, ê1) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê1)) ⇓′D̂1

((1, γ̂, σ̂1,�,�, î) ‖ ... ‖ (q, γ̂, σ̂1,�,�, î))
((1, γ̂, σ̂1,�,�, ê2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ê2)) ⇓′D̂2

((1, γ̂, σ̂2,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂2,�,�, n̂))

γ̂(x̂) = (l̂, const b̂ty∗) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] 0 ≤ î ≤ α̂− 1

σ̂2(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂)) UpdateArr(σ̂2, (l̂1, î), n̂, b̂ty) = σ̂3

((1, γ̂, σ̂,�,�, x̂[ê1] = ê2) ‖ ... ‖ (q, γ̂, σ̂,�,�, x̂[ê1] = ê2)) ⇓′D̂1::D̂2::(ALL,[m̂pwa])

((1, γ̂, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂3,�,�, skip))

Figure 5.3: Multiparty Vanilla C semantics for multiparty evaluation of pointers, deallocation, and arrays.
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Equal To False
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) (n̂1 = n̂2) = 0

((p, γ̂, σ̂,�,�, ê1 == ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[êqf ])
((p, γ̂, σ̂2,�,�, 0) ‖ Ĉ2)

Equal To True
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) (n̂1 = n̂2) = 1

((p, γ̂, σ̂,�,�, ê1 == ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[êqt])
((p, γ̂, σ̂2,�,�, 1) ‖ Ĉ2)

Not Equal To True
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) (n̂1 6= n̂2) = 1

((p, γ̂, σ̂,�,�, ê1! = ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[n̂et])
((p, γ̂, σ̂2,�,�, 1) ‖ Ĉ2)

Not Equal To False
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) (n̂1 6= n̂2) = 0

((p, γ̂, σ̂,�,�, ê1! = ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[n̂ef ])
((p, γ̂, σ̂2,�,�, 0) ‖ Ĉ2)

Less Than False
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) (n̂1 < n̂2) = 0

((p, γ̂, σ̂,�,�, ê1 < ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[l̂tf ])
((p, γ̂, σ̂2,�,�, 0) ‖ Ĉ2)

Less Than True
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) (n̂1 < n̂2) = 1

((p, γ̂, σ̂, �,�, ê1 < ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[l̂tt])
((p, γ̂, σ̂2, �,�, 1) ‖ Ĉ2)

Subtraction
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) n̂1 − n̂2 = n̂3

((p, γ̂, σ̂,�,�, ê1 − ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[b̂s])
((p, γ̂, σ̂2,�,�, n̂3) ‖ Ĉ2)

Addition
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) n̂1 + n̂2 = n̂3

((p, γ̂, σ̂, �,�, ê1 + ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[b̂p])
((p, γ̂, σ̂2, �,�, n̂3) ‖ Ĉ2)

Multiplication
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�, �, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) n̂1 · n̂2 = n̂3

((p, γ̂, σ̂, �,�, ê1 · ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[b̂m])
((p, γ̂, σ̂2, �,�, n̂3) ‖ Ĉ2)

Division
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1, �,�, n̂1) ‖ Ĉ1)

((p, γ̂, σ̂1,�, �, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2, �,�, n̂2) ‖ Ĉ2) n̂1 ÷ n̂2 = n̂3

((p, γ̂, σ̂, �,�, ê1 ÷ ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[b̂d])
((p, γ̂, σ̂2, �,�, n̂3) ‖ Ĉ2)

Figure 5.4: Multiparty Vanilla C semantic rules for binary operations.
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Declaration Assignment Address Of
((p, γ̂, σ̂, �,�, t̂y x̂) ‖ Ĉ) ⇓′D̂1

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ1)

((p, γ̂1, σ̂1,�,�, x̂ = ê) ‖ Ĉ1) ⇓′D̂2
((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2)

((p, γ̂, σ̂,�,�, t̂y x̂ = ê) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[d̂s])
((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2)

γ̂(x̂) = (l̂, t̂y)

((p, γ̂, σ̂,�,�,&x̂) ‖ Ĉ) ⇓′
(p,[l̂oc])

((p, γ̂, σ̂,�,�, (l̂, 0)) ‖ Ĉ)

Write Size of type
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1)

γ̂(x̂) = (l̂, b̂ty) UpdateVal(σ̂1, l̂, n̂, b̂ty) = σ̂2

((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) ⇓′D̂1::(p,[ŵ ])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1)

n̂ = τ(t̂y)

((p, γ̂, σ̂,�,�, sizeof(t̂y)) ‖ Ĉ) ⇓′(p,[t̂y])
((p, γ̂, σ̂,�,�, n̂) ‖ Ĉ)

Declaration
l̂ = φ() ω̂ = EncodeVal(b̂ty ,NULL)

γ̂1 = γ̂[x̂→ (l̂, b̂ty)] σ̂1 = σ̂[l̂→ (ω̂, b̂ty , 1,PermL(Freeable, b̂ty ,public, 1))]

((p, γ̂, σ̂,�,�, b̂ty x̂) ‖ Ĉ) ⇓′
(p,[d̂v ])

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ)

Statement Sequencing
((p, γ̂, σ̂, �,�, ŝ1) ‖ Ĉ) ⇓′D̂1

((p, γ̂1, σ̂1,�,�, v̂1) ‖ Ĉ1)

((p, γ̂1, σ̂1,�,�, ŝ2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂2, σ̂2,�,�, v̂2) ‖ Ĉ2)

((p, γ̂, σ̂,�,�, ŝ1; ŝ2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[ŝs])
((p, γ̂2, σ̂2,�,�, v̂2) ‖ Ĉ2)

Parentheses Statement Block
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂ ((p, γ̂, σ̂1,�,�, v̂) ‖ Ĉ1)

((p, γ̂, σ̂,�,�, (ê)) ‖ Ĉ) ⇓′D̂::(p,[êp])

((p, γ̂, σ̂1,�,�, v̂) ‖ Ĉ1)

((p, γ̂, σ̂,�,�, ŝ) ‖ Ĉ) ⇓′D̂ ((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ1)

((p, γ̂, σ̂,�,�, {ŝ}) ‖ Ĉ) ⇓′D̂::(p,[ŝb])

((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ1)

Read Pointer Read Location
γ̂(x̂) = (l̂, b̂ty)

σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty , public, 1))

DecodeVal(b̂ty , ω̂) = n̂

((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) ⇓′(p,[r̂ ]) ((p, γ̂, σ̂,�,�, n̂) ‖ Ĉ)

γ̂(x̂) = (l̂, b̂ty∗)
σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î]

((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) ⇓′(p,[r̂p]) ((p, γ̂, σ̂,�,�, (l̂1, µ̂1)) ‖ Ĉ)

Pre-increment Variable
γ̂(x̂) = (l̂, b̂ty) σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty , public, 1))

DecodeVal(b̂ty , ω̂) = n̂1 n̂2 = n̂1 + 1 UpdateVal(σ̂, l̂, n̂2, b̂ty) = σ̂1

((p, γ̂, σ̂,�,�,++ x̂) ‖ Ĉ) ⇓′
(p,[p̂in])

((p, γ̂, σ̂1,�,�, n̂2) ‖ Ĉ)

While End
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂ ((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) n̂ = 0

((p, γ̂, σ̂,�,�,while(ê) ŝ) ‖ Ĉ) ⇓′D̂::(p,[ŵle])
((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ1)

While Continue
((p, γ̂, σ̂, �,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) n̂ 6= 0

((p, γ̂, σ̂1,�,�, ŝ) ‖ Ĉ1) ⇓′D̂2
((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2)

((p, γ̂, σ̂,�,�,while(ê) ŝ) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[ŵlc])
((p, γ̂, σ̂2,�,�,while(ê) ŝ) ‖ Ĉ2)

Figure 5.5: Additional Multiparty Vanilla C semantic rules within the scope of the grammar shown in Figure
3.1.
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If Else False
((p, γ̂, σ̂, �,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) n̂ = 0

((p, γ̂, σ̂1,�,�, ŝ2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2)

((p, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[îef ])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2)

If Else True
((p, γ̂, σ̂, �,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) n̂ 6= 0

((p, γ̂, σ̂1,�,�, ŝ1) ‖ Ĉ1) ⇓′D̂2
((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2)

((p, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[îet])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2)

Function Call
γ̂(x̂) = (l̂, t̂y → t̂y) σ̂(l̂) = (ω̂, t̂y → t̂y , 1,PermL_Fun(public)) DecodeFun(ω̂) = (ŝ,�, p̂)
GetFunParamAssign(p̂, ê) = ŝ1 ((p, γ̂, σ̂, �,�, ŝ1) ‖ Ĉ) ⇓′D̂1

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ1)

((p, γ̂1, σ̂1,�,�, ŝ) ‖ Ĉ1) ⇓′D̂2
((p, γ̂2, σ̂2,�,�, skip) ‖ Ĉ2)

((p, γ̂, σ̂,�,�, x̂(ê)) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[f̂c])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2)

Pre-Declared Function Definition Function Definition
x̂ ∈ γ̂ γ̂(x̂) = (l̂, t̂y → t̂y)

EncodeFun(ŝ,�, p̂) = ω̂

σ̂ = σ̂1[l̂→ (NULL, t̂y → t̂y , 1,PermL_Fun(public))]

σ̂2 = σ̂1[l̂→ (ω̂, t̂y → t̂y , 1,PermL_Fun(public))]

((p, γ̂, σ̂, �,�, t̂y x̂(p̂){ŝ}) ‖ Ĉ) ⇓′
(p,[f̂pd])

((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ)

x̂ /∈ γ̂ GetFunTypeList(p̂) = t̂y

l̂ = φ() γ̂1 = γ̂[x̂→ (l̂, t̂y → t̂y)]

EncodeFun(ŝ,�, p̂) = ω̂

σ̂1 = σ̂[l̂→ (ω̂, t̂y → t̂y , 1,PermL_Fun(public))]

((p, γ̂, σ̂, �,�, t̂y x̂(p̂){ŝ}) ‖ Ĉ) ⇓′
(p,[f̂d])

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ)

Function Declaration Cast Value
l̂ = φ() GetFunTypeList(p̂) = t̂y

γ̂1 = γ̂[x̂→ (l̂, t̂y → t̂y)]

σ̂1 = σ̂[l̂→ (NULL, t̂y → t̂y , 1,PermL_Fun(public))]

((p, γ̂, σ̂, �,�, t̂y x̂(p̂)) ‖ Ĉ) ⇓′
(p,[d̂f ])

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ)

((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1
((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1)

n̂1 = Cast(public, t̂y , n̂)

((p, γ̂, σ̂, �,�, (t̂y) ê) ‖ Ĉ) ⇓′D̂1::(p,[ĉv ])

((p, γ̂, σ̂1,�,�, n̂1) ‖ Ĉ1)

Figure 5.6: Multiparty Vanilla C semantic rules for branching, functions, and casting values.
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Input Value
γ̂(x̂) = (l̂, b̂ty) ((p, γ̂, σ̂, �,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1)

InputValue(x̂, n̂) = n̂1 ((p, γ̂, σ̂1,�,�, x̂ = n̂1) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2)

((p, γ̂, σ̂,�,�,mcinput(x̂, ê)) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[înp])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2)

Output Value
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) γ̂(x̂) = (l̂, b̂ty)

σ̂1(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty , public, 1)) DecodeVal(b̂ty , ω̂) = n̂1 OutputValue(x̂, n̂, n̂1)

((p, γ̂, σ̂,�,�,mcoutput(x̂, ê)) ‖ Ĉ) ⇓′D̂1::(p,[ôut])
((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ1)

Input Array
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) γ̂(x̂) = (l̂, const b̂ty∗)
((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2

((p, γ̂, σ̂2,�,�, α̂) ‖ Ĉ2) InputArray(x̂, n̂, α̂) = [m̂0, ..., m̂α̂]

((p, γ̂, σ̂2,�,�, x̂ = [m̂0, ..., m̂α̂]) ‖ Ĉ2) ⇓′D̂3
((p, γ̂, σ̂3,�,�, skip) ‖ Ĉ3)

((p, γ̂, σ̂,�,�,mcinput(x̂, ê1, ê2)) ‖ Ĉ) ⇓′D̂1::D̂2::D̂3::(p,[înp1 ])
((p, γ̂, σ̂3,�,�, skip) ‖ Ĉ3)

Output Array
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) γ̂(x̂) = (l̂, const b̂ty∗)
((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2

((p, γ̂, σ̂2,�,�, α̂) ‖ Ĉ2)

σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] σ̂2(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂))

∀i ∈ {0, ..., α̂− 1} DecodeArr(b̂ty , i, ω̂1) = m̂i OutputArray(x̂, n̂, α̂) = [m̂0, ..., m̂α̂−1]

((p, γ̂, σ̂,�,�,mcoutput(x̂, ê1, ê2)) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[ôut1 ])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2)

Free
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] CheckFreeable(γ̂, [(l̂1, 0)], [1], σ̂) = 1 Free(σ̂, l̂1) = σ̂1

((p, γ̂, σ̂,�,�, free(x̂)) ‖ Ĉ) ⇓′
(p,[f̂re])

((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ)

Malloc
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1)

l̂ = φ() σ̂2 = σ̂1

[
l̂→

(
NULL, void∗, n̂,PermL(Freeable, void∗,public, n̂)

)]
((p, γ̂, σ̂,�,�,malloc(ê)) ‖ Ĉ) ⇓′D̂1::(p,[m̂al])

((p, γ̂, σ̂2,�,�, (l̂, 0)) ‖ Ĉ1)

Cast Location
(t̂y = b̂ty∗) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, (l̂, 0)) ‖ Ĉ1)

σ̂1 = σ̂2

[
l̂→

(
ω̂, void∗, n̂,PermL(Freeable, void∗, public, n̂)

)]
σ̂3 = σ̂2

[
l̂→

(
ω̂, t̂y ,

n̂

τ(t̂y)
,PermL

(
Freeable, t̂y , public,

n̂

τ(t̂y)

))]
((p, γ̂, σ̂,�,�, (t̂y) ê) ‖ Ĉ) ⇓′D̂1::(p,[ĉl])

((p, γ̂, σ̂3,�,�, (l̂, 0)) ‖ Ĉ1)

Figure 5.7: Multiparty Vanilla C semantic rules for input and output, memory allocation and deallocation,
and casting locations.
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Pointer Declaration
(t̂y = b̂ty∗) GetIndirection(∗) = î l̂ = φ() γ̂1 = γ̂[x̂→ (l̂, t̂y)]

ω̂ = EncodePtr(t̂y∗, [1, [(l̂default , 0)], [1], î]) σ̂1 = σ̂[l̂→ (ω̂, t̂y , 0,PermL(Freeable, t̂y , public, 0))]

((p, γ̂, σ̂,�,�, t̂y x̂) ‖ Ĉ) ⇓′
(p,[d̂p])

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ)

Pointer Write Location
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, (l̂e, µ̂e)) ‖ Ĉ1)

γ̂(x̂) = (l̂, b̂ty∗) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] UpdatePtr(σ̂1, (l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) = (σ̂2, 1)

((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) ⇓′D̂1::(p,[ŵp])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1)

Pre-Increment Pointer
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1]

((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂) UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) = (σ̂1, 1)

((p, γ̂, σ̂,�,�,++ x̂) ‖ Ĉ) ⇓′
(p,[p̂in1 ])

((p, γ̂, σ̂1,�,�, (l̂2, µ̂2)) ‖ Ĉ)

Pre-Increment Pointer Higher Level Indirection
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1))

î > 1 DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î]

((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty∗), σ̂) UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], î], b̂ty∗) = (σ̂1, 1)

((p, γ̂, σ̂,�,�,++ x̂) ‖ Ĉ) ⇓′
(p,[p̂in2 ])

((p, γ̂, σ̂1,�,�, (l̂2, µ̂2)) ‖ Ĉ)

Pointer Dereference Write Value
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1)

γ̂(x̂) = (l̂, b̂ty∗) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] UpdateOffset(σ̂1, (l̂1, µ̂1), n̂, b̂ty) = (σ̂2, 1)

((p, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ Ĉ) ⇓′D̂1::(p,[ŵdp])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1)

Pointer Dereference Write Higher Level Indirection
γ̂(x̂) = (l̂, b̂ty∗) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, (l̂e, µ̂e)) ‖ Ĉ1)

î > 1 σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1)

((p, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ Ĉ) ⇓′D̂1::(p,[ŵdp1 ])
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1)

Pointer Dereference
γ̂(x̂) = (l̂, b̂ty∗) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (n̂, 1)

((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ) ⇓′
(p,[r̂dp])

((p, γ̂, σ̂,�,�, n̂) ‖ Ĉ)

Pointer Dereference Higher Level Indirection
γ̂(x̂) = (l̂, b̂ty∗) î > 1 σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗, public, 1))

DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î− 1], 1)

((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ) ⇓′
(p,[r̂dp1 ])

((p, γ̂, σ̂,�,�, (l̂2, µ̂2)) ‖ Ĉ)

Figure 5.8: Additional Multiparty Vanilla C semantic rules for pointers.

580



Array Declaration Assignment
((p, γ̂, σ̂,�,�, t̂y x̂[ê]) ‖ Ĉ) ⇓′D̂1

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ1)

((p, γ̂1, σ̂1,�,�, x̂ = ê) ‖ Ĉ1) ⇓′D̂2
((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2)

((p, γ̂, σ̂,�,�, t̂y x̂[ê] = ê) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[d̂as])
((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2)

Read Entire Array
γ̂(x̂) = (l̂, const b̂ty∗) σ̂(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, bty , public, α̂)) ∀̂i ∈ {0...α̂− 1}. DecodeArr(b̂ty , î, ω̂1) = n̂î

((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) ⇓′(p,[r̂ea]) ((p, γ̂, σ̂,�,�, [n̂0, ..., n̂α̂−1]) ‖ Ĉ)

Write Entire Array
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂ ((p, γ̂, σ̂1,�,�, [n̂0, ..., n̂α̂e−1]) ‖ Ĉ1)

γ̂(x̂) = (l̂, const b̂ty∗) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] σ̂1(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, bty ,public, α̂))

α̂e = α̂ ∀̂i ∈ {0...α̂− 1} UpdateArr(σ̂1+î, (l̂1, î), n̂î, b̂ty) = σ2+î

((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) ⇓′D̂::(p,[ŵea])
((p, γ̂, σ̂2+α̂−1,�,�, skip) ‖ Ĉ1)

Array Declaration
l̂ = φ() l̂1 = φ() ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, α̂) ‖ Ĉ1)

α̂ > 0 ω̂ = EncodePtr(const b̂ty∗, [1, [(l̂1, 0)], [1], 1])

γ̂1 = γ̂[x̂→ (l̂, const b̂ty∗)] σ̂2 = σ̂1[l̂→ (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))]

ω̂1 = EncodeArr(b̂ty , α̂,NULL) σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty , public, α̂))]

((p, γ̂, σ̂,�,�, b̂ty x̂[ê]) ‖ Ĉ) ⇓′D̂1::(p,[d̂a])
((p, γ̂1, σ̂3,�,�, skip) ‖ Ĉ1)

Array Read
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1)

γ̂(x̂) = (l̂, const b̂ty∗) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂1(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty , public, α̂))

0 ≤ î ≤ α̂− 1 DecodeArr(b̂ty , î, ω̂1) = n̂î

((p, γ̂, σ̂,�,�, x̂[ê]) ‖ Ĉ) ⇓′D̂1::(p,[r̂a])
((p, γ̂, σ̂1,�,�, n̂î) ‖ Ĉ1)

Array Write
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2,�,�, n̂) ‖ Ĉ2)

γ̂(x̂) = (l̂, const b̂ty∗) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂2(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty , public, α̂))

0 ≤ î ≤ α̂− 1 UpdateArr(σ̂2, (l̂1, î), n̂, b̂ty) = σ̂3

((p, γ̂, σ̂,�,�, x̂[ê1] = ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[ŵa])
((p, γ̂, σ̂3,�,�, skip) ‖ Ĉ2)

Figure 5.9: Multiparty Vanilla C semantic rules for arrays.
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Array Read Out of Bounds
((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1)

γ̂(x̂) = (l̂, const b̂ty∗) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂1(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty , public, α̂))

(̂i < 0) ∨ (̂i ≥ α̂) ReadOOB(̂i, α̂, l̂1, b̂ty , σ̂1) = (n̂, 1)

((p, γ̂, σ̂,�,�, x̂[ê]) ‖ Ĉ) ⇓′D̂1::(p,[r̂ao])
((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1)

Array Write Out of Bounds
((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′D̂1

((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1)

((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′D̂2
((p, γ̂, σ̂2,�,�, n̂) ‖ Ĉ2)

γ̂(x̂) = (l̂, const b̂ty∗) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗, public, 1))

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1]

σ̂2(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty , public, α̂))

(̂i < 0) ∨ (̂i ≥ α̂) WriteOOB(n̂, î, α̂, l̂1, b̂ty , σ̂2) = (σ̂3, 1)

((p, γ̂, σ̂,�,�, x̂[ê1] = ê2) ‖ Ĉ) ⇓′D̂1::D̂2::(p,[ŵao])
((p, γ̂, σ̂3,�,�, skip) ‖ Ĉ2)

Figure 5.10: Multiparty Vanilla C semantic rules for array out of bounds.
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5.1.2 Multiparty SMC2

In this section, we show the Multiparty SMC2 semantics with respect to the grammar (Figure 3.1). The

Multiparty SMC2 semantics are defined over multiple interacting parties, with the semantic judgements

defined over a four-tuple configuration C = (p, γ, σ,∆, acc, s) where each party has its own configuration

and each rule is a reduction from a set of party-wise configurations Ĉ1 ‖ ... ‖ Ĉq, and each rule is a reduction

from one configuration to a subsequent. We denote the party’s identifier as p; the environment as γ; memory

as σ; the location map for tracking changes within private-conditioned branches as ∆; the level of nesting

of private-conditioned branches as acc; and a big-step evaluation of a statement s to a value v using ⇓. We

annotate each evaluation with party-wise lists of the evaluation codes D of all rules that were used during the

execution of the rule (i.e., ⇓LD) in order to keep an accurate evaluation tree, and party-wise lists of locations

accessed L in order to show data-obliviousness (i.e., that given the same program and public data, we will

always access the same set of locations).

The Multiparty SMC2 semantics used to define the behavior of parties are mostly standard, with non-

interactive semantic rules identical to those of Vanilla C semantics aside from additional assertions over the

privacy labels of data and properly managing the private data. A few notable exceptions are interactive SMC

operations (and in general operations over private values) and the private-conditioned if else statement,

discussed in later in this section. To prevent leakage from within private-conditioned branches, we restrict all

public side effects (i.e., the use of functions with public side effects, allocation and deallocation of memory,

and any modifications to public variables). Additionally, in the case of pointer dereference write and array

write statements, we have an additional check for when this occurs within a private-conditioned branch, as

we need to perform additional analysis to ensure the location being written to is tracked properly due to

the potential for the pointer’s location being modified or an out-of-bounds array write. To enforce these

restrictions, we use the assertion acc = 0 within each restricted rule – as the accumulator acc is incremented

at each level of nesting of a private-conditioned branch, this will result in a runtime failure. We do not show

the semantic rules that are not well-aligned in this chapter, as they are nearly identical to their corresponding

rules and the proof of noninterference over these rules are handled similarly to the cases of the corresponding

rules. Such rules are shown in the Basic SMC2 semantics for the interested reader. The assertions in each

semantic rule can be read in sequential order, from left to right and top to bottom.

It is worthwhile to note here, before discussing the semantic rules, that the number of locations that a
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pointer will refer to and the level of indirection of a pointer is based on the program itself, and therefore must

be the same across all parties. Proving that the level of indirection is consistent across all parties is done

by induction over all rules, showing that it is assigned when a pointer is declared and never changed in any

other rules. Proving that the number of locations a pointer will refer to can be done by evaluating any of

the following: (1) Private If Else rules change the number of locations based on the statements from both

branches, or (2) Private Free changes the number of locations based on how many locations the pointer that is

being freed had, or (3) Private Pointer Write and Dereference Write assign a new number of locations to a

pointer based on the pointer that is being read from. All other rules do not modify the number of locations

that a pointer refers to.

Figure 5.11 gives the semantic rules for binary operations involving private data. Figure 5.12 gives the

semantic rules for reading from or writing to a private index of an array. Figure 5.13 gives the semantic rules

for private free with multiple locations and the pre-increment operation over private float values. Figure 5.14

gives the semantic rules for dereference writing multiple location to a private pointer of a higher level of

indirection. Figure 5.15 gives the semantic rules for private pointer dereference read with multiple locations

and dereference write with a public value. Figure 5.16 gives the semantic rules for the multiparty execution

of private-conditioned if else statements. Figure 5.17 gives the semantic rules for public branches and loops.

Figure 5.18 gives the semantic rules for pointer declarations and writing to a pointer. Figure 5.19 gives the

semantic rules for reading and dereferencing a pointer. Figure 5.20 gives the semantic rules for dereference

writing to a pointer.

Figure 5.21 gives the semantic rules for array declarations and reading from a public index of an array.

Figure 5.22 gives the semantic rules for writing to a public index of an array. Figure 5.23 gives the semantic

rules for reading from and writing to an entire array. Figure 5.24 gives the semantic rules for reading and

writing out of bounds for arrays. Figure 5.25 gives the semantic rules for pre-incrementing private int

variables and for private pointers. Figure 5.26 gives the semantic rules for pre-incrementing public variables.

Figure 5.27 gives the semantic rules for memory allocation and deallocation, casting, and finding the address

of a variable. Figure 5.28 gives the semantic rules for functions and finding the size of a type. Figure 5.29

gives the semantic rules for public binary operations. Figure 5.30 gives the semantic rules for declarations,

reading, and writing for regular (non-pointer, non-array) variables, as well as general sequencing rules.

Figures 5.31 and 5.32 give the semantic rules for inputting and outputting data, respectively.

First, we will consider the interactive semantic rules (i.e., those that require communication between
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Multiparty Binary Operation
{(e1, e2) ` γp}qp=1 bop ∈ {·,+,−,÷}
((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1

1) ‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, nq

1))

((1, γ1, σ1
1 ,∆

1
1, acc, e2) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, e2)) ⇓L2

D2
((1, γ1, σ1

2 ,∆
1
2, acc, n1

2) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

2))

MPCb(bop, [n1
1, ..., n

q
1], [n1

2, ..., n
q
2]) = (n1

3, ..., n
q
3)

((1, γ1, σ1,∆1, acc, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, acc, e1 bop e2)) ⇓L1::L2
D1 ::D2 ::(ALL,[mpb])

((1, γ1
2 , σ

1
2 ,∆

1
2, acc, n1

3) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

3))

Multiparty Comparison Operation
{(e1, e2) ` γp}qp=1 bop ∈ {==, ! =, <}
((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L1

D1
((1, γ1

1 , σ
1
1 ,∆

1
1, acc, n1

1) ‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, nq

1))

((1, γ1
1 , σ

1
1 ,∆

1
1, acc, e2) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, e2)) ⇓L2

D2
((1, γ1, σ1

2 ,∆
1
2, acc, n1

2) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

2))

MPCcmp(bop, [n1
1, ..., n

q
1], [n1

2, ..., n
q
2]) = (n1

3, ..., n
q
3)

((1, γ1, σ1,∆1, acc, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, acc, e1 bop e2)) ⇓L1::L2
D1 ::D2 ::(ALL,[mpcmp])

((1, γ1, σ1
2 ,∆

1
2, acc, n1

3) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

3))

Figure 5.11: Multiparty SMC2 semantics for reading from or writing to a private index of an array and binary
operations involving private data.

parties). To better illustrate the correspondence between Multiparty SMC2 and Multiparty Vanilla C, let

us first consider the Multiparty Binary Operation rule. Multiparty SMC2 rule Multiparty Binary Operation

asserts that one of the given binary operators (·,+,−,÷) is used and additionally that either expression

contains private data with relation to the environment. We use the notation (e1, e2) ` γ to show this

relation, and notation {...}qp=1 to show that all parties will ensure that property holds locally. We then use

the multiparty protocol MPCb , passing the given binary operator and the current values of np1 and np2 for

each party p. This protocol will dictate how communication occurs and what data is exchanged between

parties. We receive np3 as the result for each party, which we then return appropriately. We assume that the

protocol is implemented correctly (i.e. provided by the underlying SMC cryptographic library) and define

this assumption formally, its impact on our noninterferences proof, and how to reason if a library adheres to

our assumption later in Section 5.3.

Within the multiparty rules, each party maintains control of their own data, only sharing it with other

parties in the ways dictated by the multiparty protocols. We choose to show the execution of the entire

computational process here in order to emphasize what data is involved, and that each of the parties will take

part in this computation. The Multiparty Comparison Operation rule is nearly identical to the Multiparty

Binary Operation rule, only differing in which binary operations are accepted by the rule. We separate these

two rules because, when proving correctness of the rules, comparison operations and other binary operations

have differing behavior. Other binary operations will compute over the two values, returning the result of that

computation, and there is only one possible outcome for the rule. With comparison operations, we have two
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possible outcomes: either the comparison holds true, and we return 1, or the comparison is false, and we

return 0. In Multiparty Vanilla C, we have two rules: one for each possible result of the comparison (i.e., true

or false), and to prove correctness of Multiparty Comparison Operation, we must prove both subcases are

also correct.

Multiparty Array Read Private Index
{(e) ` γp}qp=1 {γp(x) = (lp, const a bty∗)}qp=1

((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1
D1

((1, γ1, σ1
1 ,∆

1
1, acc, i1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, iq))

{σp
1 (lp) = (ωp, a const bty∗, 1,PermL(Freeable, a const bty∗, a, 1))}qp=1

{DecodePtr(a const bty∗, 1, ωp) = [1, [(lp1 , 0)], [1], 1]}qp=1

{σp
1 (lp1) = (ωp

1 , a bty , α,PermL(Freeable, a bty , a, α))}qp=1

{∀j ∈ {0...α− 1} DecodeArr(a bty , j, ωp
1 ) = np

j }
q
p=1

MPCar ((i1, [n1
0, ..., n

1
α−1]), ..., (iq, [nq

0, ..., n
q
α−1])) = (n1, ..., nq) {(np) ` γp}qp=1

L2 = (1, [(l1, 0), (l11, 0), ..., (l11, α− 1)]) ‖ ... ‖ (q, [(lq, 0), (lq1 , 0), ..., (lq1 , α− 1)])

((1, γ1, σ1,∆1, acc, x[e]) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e])) ⇓L1::L2
D1 ::(ALL,[mpra])

((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq))

Multiparty Array Write Private Index
{(e1) ` γp}qp=1 {γp(x) = (lp, private const bty∗)}qp=1

((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L1
D1

((1, γ1, σ1
1 ,∆

1
1, acc, i1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, iq))

((1, γ1, σ1
1 ,∆

1
1, acc, e2) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1acc, e2)) ⇓L2

D2
((1, γ1, σ1

2 ,∆
1
2, acc, n1) ‖ ... ‖ (q, γq, σq

2 ,∆
q
2, acc, nq))

{σp
2 (lp) = (ωp, private const bty∗, 1,PermL(Freeable,private const bty∗, private, 1))}qp=1

{DecodePtr(private const bty∗, 1, ωp) = [1, [(lp1 , 0)], [1], 1]}qp=1

{σp
2 (lp1) = (ωp

1 ,private bty , α,PermL(Freeable, private bty , private, α))}qp=1

{∀j ∈ {0...α− 1} DecodeArr(private bty , j, ωp
1 ) = np

j }
q
p=1

MPCaw ((i1, n1, [n1
0, ..., n

1
α−1]), ..., (iq, nq, [nq

0, ..., n
q
α−1])) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1])

{∀j ∈ {0...α− 1} UpdateArr(σp
2+j , (lp1 , j), n

′p
j , private bty) = σp

3+j}
q
p=1

L3 = (1, [(l1, 0), (l11, 0), ..., (l11, α− 1)]) ‖ ... ‖ (q, [(lq, 0), (lq1 , 0), ..., (lq1 , α− 1)])

((1, γ1, σ1,∆1, acc, x[e1] = e2) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e1] = e2)) ⇓L1::L2::L3
D1 ::D2 ::(ALL,[mpwa])

((1, γ1, σ1
3+α−1,∆

1
2, acc, skip) ‖ ... ‖ (q, γq, σq

3+α−1,∆
q
2, acc, skip))

Figure 5.12: Multiparty SMC2 semantics for reading from or writing to a private index of an array and binary
operations involving private data.

In rule Multiparty Array Read Private Index, we are handling the case where we are reading from

private index in a public or private array; because we have a private index, we must obtain the value without

revealing which location we are taking the value from. We first assert that the expression must contain private

information in order to be a private index, and that this must hold for every party. Then, each party will look

up the variable to find that it is an array type, with the same basic type and privacy label for all parties. All

parties will then evaluate the expression to obtain their version of the private index (e.g., their share of the

private value when using a Shamir Secret Sharing implementation). Each party then proceeds to look up the

array pointer and then the array data in memory, decoding the byte representation for all indices to obtain

the entire array. We then use multiparty protocol MPCar , discussed later in Algorithm 108, to privately

obtain the value at the private index. We make the assertion that the values returned from multiparty protocol
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MPCar must be private, as they were based on a private index.

It is important to note here that even if the private index is beyond the bounds of the array, we do not

access beyond the elements within the array, as that would reveal information about the private index. An

example of how this protocol can be implemented is to iterate over all values stored in the array; at each

value, we encrypt the current index number m, privately compare it to i, and perform a bitwise and operation

over this and the encrypted value nm stored at index m. We perform a bitwise or operation over each such

value obtained from the array to attain our final encrypted value n, which is returned. The final assertion is

over what locations were accessed within this rule, to assist us in reasoning about data obliviousness within

our proof of noninterference. In this rule, for every party we have accessed the location of the array pointer

(i.e., location (lp, 0)) by looking it up in memory σp1 and then decoding what was stored there. We have

also accessed the location of each of the elements within the array (i.e., every element of the array data), by

looking the array data block up in memory and then proceeding to decode the value found at every index

within that block. We pass along the party-wise location lists obtained from the evaluation of the expression

and the evaluation of the rule concatenated together in the order that they were accessed.

The Multiparty SMC2 rule Multiparty Array Write Private Index is quite similar to In rule Multiparty

Array Read Private Index. We must also evaluate the second expression to find what we are storing at the

private index, which can be public or private. After we have looked up the array and obtained all values

stored within the array, we use multiparty protocol MPCaw , discussed later in Algorithm 109, to privately

obtain the new array data with the new value stored at the private index. Each party then places their new

array data back into memory for the array. Our final assertion is over which locations have been accessed

within this rule, which is, again, very similar to the previous rule. We will access every index within the array

block twice within this rule, as we are first reading it from memory and decoding it and then updating it in

memory at the end. It is important to note here that for both of these rules, we cannot go out-of-bounds of the

array data, as that would leak information about what the private index was.

When deallocating private memory, we provide the pfree builtin function to handle private pointers

potentially having multiple locations. In the case of a single location, we use rule Private Free Single Location,

and it behaves identically to rule Public Free; however, with multiple locations, we need to deterministically

free a single location (which may or may not be the true location that was intended to be freed) to maintain

data-obliviousness. We describe this case in more detail here. In rule Private Free Multiple Locations, we

assert that x is a private pointer of type int or float, we are not inside a private-conditioned branch (acc is 0, as
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Private Free Multiple Locations
{γp(x) = (lp, private bty∗)}qp=1 acc = 0 (bty = int) ∨ (bty = float)
{σp(lp) = (ωp, private bty∗, α,PermL(Freeable, private bty∗, private, α))}qp=1 {α > 1}qp=1

{[α, lp, jp, i] = DecodePtr(private bty∗, α, ωp)}qp=1

if(i > 1){ty = private bty∗} else {ty = private bty}
{CheckFreeable(γp, l

p
, j

p
, σp) = 1}qp=1

{∀(lpm, 0) ∈ lp. σp(lpm) = (ωp
m, ty , αm,PermL(Freeable, ty , private, αm))}qp=1

MPCfree([[ω1
0 , ..., ω

1
α−1], ..., [ωq

0 , ..., ω
q
α−1]], [j

1
, ...j

q
]) = ([[ω′10 , ..., ω

′1
α−1], ..., [ω′q0 , ..., ω

′q
α−1]], [j

′1
, ..., j

′q
])

{UpdateBytesFree(σp, l
p
, [ω′p0 , ..., ω

′p
α−1]) = σp

1}
q
p=1

{(σp
2 , l

p
1) = UpdatePointerLocations(σp

1 , l
p
[1 : α− 1], j

p
[1 : α− 1], l

p
[0], j

p
[0])}qp=1

((1, γ1, σ1,∆1, acc, pfree(x)) ‖ ... ‖ (q, γq, σq,∆q, acc, pfree(x))) ⇓(1,[(l
1,0)]::l

1
::l

1
1) ‖ ... ‖ (q,[(lq,0)]::l

q
::l

q
1)

(ALL,[mpfre])

((1, γ1, σ1
2 ,∆

1, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q, acc, skip))

Multiparty Pre-Increment Private Float Variable
{γp(x) = (lp, private float)}qp=1

{σp(lp) = (ωp, private float, 1,PermL(Freeable,private float, private, 1))}qp=1

{(x) ` γp}qp=1 {DecodeVal(private float, ωp) = np
1}

q
p=1

MPCu(++, n1
1, ..., n

q
1) = (n1

2, ..., n
q
2) {UpdateVal(σp, lp, np

2 , private float) = σp
1}

q
p=1

((1, γ1, σ1,∆1, acc,++ x) ‖ ... ‖ (q, γq, σq,∆q, acc,++ x)) ⇓(1,[(l
1,0)]) ‖ ... ‖ (q,[(lq,0)])

(ALL,[mppin])

((1, γ1, σ1
1 ,∆

1, acc, n1
2) ‖ ... ‖ (q, γq, σq

1 ,∆
q, acc, nq

2))

Figure 5.13: Multiparty SMC2 semantics for private free with multiple locations and the pre-increment
operation over private float values.

this rule causes public side effects), and that the number of locations the pointer refers to (α) is greater than 1

for all parties. We then assert that all locations referred to by x are freeable (i.e., they are all memory blocks

that were allocated via malloc) and proceed to retrieve the data that is stored for each of these locations. This

data and the tag lists are then passed to MPCfree , as this is what we will need in order to privately free a

location without revealing if it was the true location.

To accomplish this, we must free one location based on publicly available information, regardless of

the true location of the pointer. For that reason, and without loss of generality, we free the first location,

l0. Since l0 may not be the true location and may be in use by other pointers, we need to do additional

computation to maintain correctness without disclosing whether or not this was the true location. In particular,

if l0 is not the true location, we preserve the content of l0 by obliviously copying it to the pointer’s true

location prior to freeing. This behavior is defined in function MPCfree , and follows the strategy suggested

in [22]. MPCfree returns the modified bytes and tag lists. UpdateBytesFree then updates these in their

corresponding locations in memory and marks the permissions of l0 as None (i.e., this block has been freed).

The remaining step is to update other pointers that stored l0 on their lists to point to the updated location

instead of l0, which is accomplished by UpdatePointerLocations.

Multiparty Pre-Increment Private Float Variable handles the pre-increment operation over private float
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variables. Due to the way private float data is stored and distributed, it is necessary for all float operations,

including the pre-increment operation, to be performed in the interactive setting, whereas pre-incrementing a

private integer can be handled locally. This rule, however, is fairly straightforward – we first must look up the

value stored for the float variable at each party, then we use the multiparty protocol to perform the increment

operation, and finally update the incremented value in memory and return it.

Multiparty Private Pointer Dereference Write Value Higher Level Indirection
{γp(x) = (lp,private bty∗)}qp=1

((1, γ1, σ1, ∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e))

⇓L1
D1

((1, γ1, σ1
1 , ∆1

1, acc, (l1e , µ
1
e)) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, (lqe , µ

q
e)))

{σp
1 (lp) = (ωp, private bty∗, α, PermL(Freeable, private bty∗, private, α))}qp=1 α > 1

{DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, i]}qp=1 i > 1

{DynamicUpdate(∆p
1 , σ

p
1 , l

p
, acc,private bty∗) = (∆p

2 , l
p
1)}qp=1

{Retrieve_Values(α, l
p
, private bty∗, σp

1 ) = ([[α0, l
p
0 , j

p

0 , i− 1], ..., [αα−1, l
p
α−1, j

p

α−1, i− 1]], 1)}qp=1

MPCwdp([[[1, [(l1e , µ
1
e)], [1], i− 1], [α0, l

1
0, j

1

0, i− 1], ..., [αα−1, l
1
α−1, j

1

α−1, i− 1]], ...,

[[1, [(lqe , µ
q
e)], [1], i− 1], [α0, l

q
0, j

q

0, i− 1], ..., [αα−1, l
q
α−1, j

q

α−1, i− 1]]], [j
1
, ..., j

q
])

= [[[α′0, l
′1
0 , j

′1
0 , i− 1], ..., [α′α−1, l

′1
α−1, j

′1
α−1, i− 1]], ..., [[α′0, l

′q
0 , j

′q
0 , i− 1], ..., [α′α−1, l

′q
α−1, j

′q
α−1, i− 1]]]

{UpdateDerefVals(α, l
p
, [[α′0, l

′p
0 , j

′p
0 , i− 1], ..., [α′α−1, l

′p
α−1, j

′p
α−1, i− 1]],private bty∗, σp

1 ) = σp
2}

q
p=1

((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e)) ⇓L1::(1,(l
1,0)::l

1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1 ::l

q
)

D1 ::(ALL,[mpwdp2 ])

((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

Multiparty Private Pointer Dereference Write Multiple Locations Higher Level Indirection
{γp(x) = (lp, private bty∗)}qp=1

((1, γ1, σ1, ∆1, acc, e) ‖ .. ‖ (q, γq, σq,∆q, acc, e))

⇓L1
D1

((1, γ1, σ1
1 , ∆1

1, acc, [αe, l
1
e, j

1

e, i− 1]) ‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, [αe, l

q
e , j

q

e , i− 1])) αe > 1

{σp
1 (lp) = (ωp, private bty∗, α, PermL(Freeable, private bty∗, private, α))}qp=1 α > 1

{DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, i]}qp=1 i > 1

{DynamicUpdate(∆p
1 , σ

p
1 , l

p
, acc,private bty∗) = (∆p

2 , l
p
1)}qp=1

{Retrieve_Values(α, l
p
, private bty∗, σp

1 ) = ([[α0, l
p
0 , j

p

0 , i− 1], ..., [αα−1, l
p
α−1, j

p

α−1, i− 1]], 1)}qp=1

MPCwdp([[[αe, l
1
e, j

1

e, i− 1], [α0, l
1
0, j

1

0, i− 1], ..., [αα−1, l
1
α−1, j

1

α−1, i− 1]], ...,

[[αe, l
q
e , j

q

e , i− 1], [α0, l
q
0, j

q

0, i− 1], ..., [αα−1, l
q
α−1, j

q

α−1, i− 1]]], [j
1
, ..., j

q
])

= [[[α′0, l
′1
0 , j

′1
0 , i− 1], ..., [α′α−1, l

′1
α−1, j

′1
α−1, i− 1]], ..., [[α′0, l

′q
0 , j

′q
0 , i− 1], ..., [α′α−1, l

′q
α−1, j

′q
α−1, i− 1]]]

{UpdateDerefVals(α, l
p
, [[α′0, l

′p
0 , j

′p
0 , i− 1], ..., [α′α−1, l

′p
α−1, j

′p
α−1, i− 1]],private bty∗, σp

1 ) = σp
2}

q
p=1

((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e)) ⇓L1::(1,(l
1,0)::l

1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1 ::l

q
)

D1 ::(ALL,[mpwdp1 ])

((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

Figure 5.14: Multiparty SMC2 semantic rules for dereference writing multiple location to a private pointer of
a higher level of indirection.

The difference between rules Multiparty Private Pointer Dereference Write Value Higher Level Indirection

and Multiparty Private Pointer Dereference Write Multiple Locations Higher Level Indirection is the number

of locations that we are assigning to the dereferenced pointer (i.e., a single location and multiple locations,

respectively). In both rules, we assert that, for every party, the pointer is private, and then all parties evaluate

the expression to obtain the location(s) to assign to the dereferenced pointer. Each party can then look up the

pointer in memory. Given that we are assigning locations to the dereferenced pointer, we also must assert that
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this pointer has a level of indirection greater than 1.

We add in a call to Algorithm 120 here, which will ensure that the location we are modifying is properly

tracked when we are inside a private-conditioned branch. We then retrieve all of the pointer data structures

stored at each of the possible locations for this pointer we are dereference writing to (i.e., the top-level

pointer). These pointer data structures, along with the location (or pointer data structure) we are assigning

to the location and the tag list from the top-level pointer, are passed to the multiparty protocol MPCwdp ,

discussed in Algorithm 113. This protocol will handle (separately) merging the location lists and tag lists for

each of the locations with the location(s) obtained from the evaluation of the expression, and return a new

pointer data structure to be written into memory for each of the possible locations of the top-level pointer.

Additionally, we pass along all locations that were accessed within the evaluation of the expression and the

evaluation of this rule when we return from this rule, as shown by the annotation on the evaluation arrow ⇓.

The public if else rules, shown in appendix Figure 5.17, are nearly identical to the Multiparty Vanilla

C rules, with the added assertion that the guard of the conditional is public (i.e., does not contain private data):

(e) 0 γ. The private if else rules, shown in Figure 5.16, are more interesting. Our strategy for dealing

with private-conditioned branches involves executing both branches as a sequence of statements (with some

additional helper algorithms to aid in storing changes, restoration between branches, and resolution of true

values). We chose to use big-step semantics to facilitate the comparison of the Multiparty SMC2 semantics

with the Multiparty Vanilla C semantics, and for its proof of correctness that we will discuss in the next

Section. We use coloring throughout Figure 5.16 to highlight the corresponding sections of rule execution.

The starting and ending states of the Multiparty SMC2 Private If Else rules are essentially the same as the

starting and ending states of the corresponding Multiparty Vanilla C If Else rule; however, there are several

additional assertions that guarantee that both of the private-conditioned branches are executed. The assertions

of these semantic rules are listed sequentially, from top to bottom. We have two different styles of tracking

modifications within conditional code blocks that are used within these rules: variable tracking and location

tracking. Variable tracking is used when there are only single-level changes within the private-conditioned

branches, whereas location tracking is used when we have multi-level changes (i.e., a branch contains a

pointer dereference write) or potential out-of-bounds changes (i.e., array write at a public index).

The main idea of both styles is to first store the original value of each variable that is modified within either

branch; execute the then branch; save the resulting values from the then branch and restore all modified

variables to their original values; execute the else branch; and finally, to securely resolve which values
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should be kept – those from the then branch or those from the else branch. In the variable style of tracking,

we utilize temporary variables to keep track of all modifications made during either branch – initializing the

else temporary with the original value, storing the result of the then branch in the then temporary and

using the else temporary to restore the original value, and finally using the result of the private-conditional

and what is stored in each variable at the end of the else branch as well as it’s corresponding then temporary

to securely resolve what values to continue evaluating the program with.

This style of tracking is robust enough for many uses, however, there are two notable exceptions where

we run into issues, both involving the potential of the location we track not being the location that is actually

modified. The first exception involves pointer dereference writes – these alone are not an issue, but when

location the pointer refers to is modified and we also perform pointer dereference writes, it becomes clear

that variable tracking cannot easily find and handle these cases. The second exception involves array writes

at public indices – these become problematic due to the potential for writing out-of-bounds. As most array

indices are not hard-coded, it isn’t obvious that the write will be within bounds until execution, and to ensure

we catch all of these cases we must use a more robust style of tracking to catch out-of-bounds writes. We

stress here that array writes at private indices do not fall within this exception, as this operation will securely

update the array within its bounds (as updating beyond the bounds of the array would leak that this private

value is larger than the size of the array), and as such we can simply track the entire array properly using

variable tracking. It is possible to ensure that we find all of the locations that are modified in both of these

cases by dynamically adding these types of modifications as they are evaluated, which is the goal of the

location tracking. In the location style of tracking, we still follow a similar evaluation pattern as with variable

tracking, storing the original values for locations we know will be modified first, then restoring between

branches, and resolving at the end. As we evaluate each branch and come upon one of these special cases, we

will check to see if we have already marked that location for tracking, and if not we add that location and its

original value before the modification occurs. It is worthwhile to stress again the role of the accumulator

here with respect to other statements. We increment it when we evaluate the then and else statements, so

that if we attempt to evaluate a (sub)statement with public side effects or restricted operations, we have an

(oblivious) runtime failure. It also facilitates scoping of temporary variables within nested private-conditioned

if else statements. We proceed to further describe the different assertions and specifics of both styles next.
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Conditional Code Block Variable Tracking For this style of tracking, we first evaluate expression e over

environment γ, memory σ and accumulator acc to obtain some number n; the same environment, and a

potentially updated memory (e.g. in the case e = x+ +). We then extract the non-local variables that are

modified within either branch, and check whether multi-level modifications or array writes at a public index

occur. This is achieved with Algorithm Extract by iterating through both statement s1 and s2 and storing the

variable names in list listacc+1, as well as updating and returning a tag to indicate whether we have found

multi-level modifications (0 for false, 1 for true). Next we call Algorithm InitializeVariables, which stores

n as the value of a temporary variable resacc+1, using acc + 1 to denote the current level of nesting in the

upcoming then and else statements. The variable resacc+1 is later used in the resolution phase, to select

the result according to the branching condition. It then iterates through the list of variables, creating two

temporary versions of each variable, named x_then_acc and x_else_acc, and storing each in memory with

the initial value of what x has in the memory σ1. Next is the evaluation of the then statement, and afterwards

we must restore the original memory. To do this, we call RestoreVariables, which iterates through each

of the variables x contained within listacc+1, storing their current value into their then temporary (i.e.,

x_thenacc+1 = x) and restoring their original value from their else temporary (i.e., x = x_elseacc+1).

Once we have completed this, the evaluation of the else statement can occur.

Finally, we need to perform the resolution of all changes made to variables in either branch. To enable

this, we call Algorithm ResolveVariables_Retrieve to iterate through each of the variables within listacc+1

and grab their values accordingly, as well as retrieving the result of the private condition (whose value

we stored in resacc+1). We then use multiparty protocol MPCresolve to facilitate the resolution of the true

values, as these computations require communication between parties. For variables that are not array or

pointer variables, we perform a series of binary operations over the byte values of the private variables (e.g.,

c=(res·c_t)+((1-res)·c_e)). The process is similar for arrays, with some addition bookkeeping due to

their structure as a const pointer referring to the location with the array data. For pointers, we must handle

the different locations referred to from each branch, merging the two location lists and finding what the

true location is. The resolved values are then returned, and Algorithm ResolveVariables_Store stores all

each back into memory for its respective variable. Notice that, in the conclusion, we revert to the original

environment γ. In this way, all the temporary variables we used become out of scope and are discarded - in

particular, this prevents reusing the same temporary variable mapping if we have multiple (not nested) private

if else statements.
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Conditional Code Block Location Tracking Here we track modifications during private-conditioned

branches at the level of memory blocks and offsets, which ensures that we do not update any data in memory

inaccurately, as is shown in Figure 4.1a using variable tracking SMC techniques. To facilitate this, we use the

mapping structure ∆ to track changes to each location at each level of nesting. This structure maps locations

to a four-tuple of the original value, the then branch value, a tag to notate whether the then branch value

was updated during the restoration phase, and the type of value stored (i.e., (l, µ)→ (v1, v2, j, ty)). The tag

is used to allow us to add to ∆ as we encounter pointer dereference writes and array writes at public indices

without needing to track which branch we are in. It is always initialized as 0, and updated to 1 when we

enter the restoration phase and store a value into the then position. This way, if a location was added in

the else branch (i.e., was not modified in the then branch), we know to use the original value as the then

value when we resolve the true value of that location at the end.

The overall structure of the location tracking rule is similar to the variable tracking rule. We first evaluate

e to n, then call Extract to find variables that are modified during the execution of either branch and that

there are multi-level modifications within at least one branch. We then call Initialize, which stores the result

of the private conditional and uses the variables we found to create the initial mapping ∆. Next, we proceed

to evaluate the then branch, and call Restore to update ∆ with the ending then values for all locations that

are tracked and restore the original values back into memory. After, we evaluate the else branch and, once

complete, call Resolve_Retrieve to retrieve the result of the conditional and the then and else values for

each location. As with variable tracking, we use multiparty protocol MPCresolve to obtain the true values,

and then store them back into their respective locations using Algorithm Resolve_Store. It is important to

note that when we evaluate a pointer dereference write or array write at a public index inside a branch, we

check to see if the given location is in ∆[acc]. If it is not, we add a mapping to store the original data (i.e.,

(l, µ)→ (orig, NULL, 0, ty)). Notice that the data can either be a regular value (i.e., for a memory block

storing a private int) or a pointer data structure representing a private pointer (i.e., for a memory block storing

a private int*).

The remaining semantics rules are all non-interactive. These are mostly standard, and do not have major

differences from prior versions. In rules for pointer dereference write and writing to an array at a public index,

we insert calls to Algorithm 120 in order to ensure that the locations modified by these rules are properly

tracked within private-conditioned branches. When this algorithm is called from outside a private-conditioned

branch, it will return without having modified location map ∆.
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Reading from a private pointer that has multiple locations and assigning multiple locations to a pointer

are local operations. This is because we are simply reading from or writing to memory - we do not need to

know the true location for the pointer in these operations. All dereference operations over private pointers

with single locations are executed locally, as we easily read and write at the publicly known location that the

private pointer refers to. These operations have multiparty counterparts for when the private pointers refer

to multiple locations, as when we execute those versions we must have communication between parties to

privately evaluate what location’s data we are truly reading from or writing to.
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Multiparty Private Pointer Dereference Single Level Indirection
{(x) ` γp}qp=1 {γp(x) = (lp, private bty∗)}qp=1

{σp(lp) = (ωp, private bty∗, α, PermL(Freeable, private bty∗, private, α))}qp=1 α > 1

{DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, 1]}qp=1

{Retrieve_Values(α, l
p
,private bty , σp) = ([np

0 , ...n
p
α−1], 1)}qp=1

MPCdv ([[n1
0, ..., n

1
α−1], ..., [nq

0, ..., n
q
α−1]], [j

1
, ..., j

q
]) = (n1, ..., nq)

((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l
1,0)::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp])

((1, γ1, σ1,∆1, acc, n1) ‖ ... ‖ (q, γq, σq,∆q, acc, nq))

Multiparty Private Pointer Dereference Higher Level Indirection
{(x) ` γp}qp=1 {γp(x) = (lp, private bty∗)}qp=1

{σp(lp) = (ωp, private bty∗, α, PermL(Freeable, private bty∗, private, α))}qp=1 α > 1

{DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, i]}qp=1 i > 1

{Retrieve_Values(α, l
p
, private bty∗, σp) = ([[α0, l

p
0 , j

p

0 , i− 1], ..., [αα−1, l
p
α−1, j

p

α−1, i− 1]], 1)}qp=1

MPCdp([[[α0, l
1
0, j

1

0], ..., [αα−1, l
1
α−1, j

1

α−1]], ..., [[α0, l
q
0, j

q

0], ..., [αα−1, l
q
α−1, j

q

α−1]]], [j
1
, ..., j

q
])

= ([[αα, l
1
α, j

1

α], ..., [αα, l
q
α, j

q

α]])

((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l
1,0)::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp1 ])

((1, γ1, σ1,∆1, acc, [αα, l
1
α, j

1

α, i− 1]) ‖ ... ‖ (q, γq, σq,∆q, acc, [αα, l
q
α, j

q

α, i− 1]))

Multiparty Private Pointer Dereference Write Private Value
{(e) ` γp}qp=1 {γp(x) = (lp, private bty∗)}qp=1

((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1
D1

((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq))

{σp
1 (lp) = (ωp, private bty∗, α, PermL(Freeable, private bty∗, private, α))}qp=1 α > 1

{DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, 1]}qp=1

{DynamicUpdate(∆p
1 , σ

p
1 , l

p
, acc,private bty) = (∆p

2 , l
p
1)}qp=1

{Retrieve_Values(α, l
p
,private bty , σp

1 ) = ([np
0 , ...n

p
α−1], 1)}qp=1

MPCwdv ([[n1
0, ..., n

1
α−1], ..., [nq

0, ..., n
q
α−1]], [n1, ..., nq], [j

1
, ..., j

q
]) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1])

{UpdateDerefVals(α, l
p
, [n′p0 , ..., n

′p
α−1], private bty , σp

1 ) = σp
2}

q
p=1

((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq, ∆q, acc, ∗x = e)) ⇓L1::(1,(l
1,0)::l

1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1 ::l

q
)

D1 ::(ALL,[mpwdp3 ])

((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 , ∆q

2, acc, skip))

Multiparty Private Pointer Dereference Write Public Value
{(e) 0 γp}qp=1 {γp(x) = (lp, private bty∗)}qp=1

((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1
D1

((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq))

{σp
1 (lp) = (ωp, private bty∗, α, PermL(Freeable, private bty∗, private, α))}qp=1 α > 1

{DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, 1]}qp=1

{DynamicUpdate(∆p
1 , σ

p
1 , l

p
, acc,private bty) = (∆p

2 , l
p
1)}qp=1

{Retrieve_Values(α, l
p
,private bty , σp

1 ) = ([np
0 , ...n

p
α−1], 1)}qp=1

MPCwdv ([[n1
0, ..., n

1
α−1], ..., [nq

0, ..., n
q
α−1]], [encrypt(n1), ..., encrypt(nq)], [j

1
, ..., j

q
])

= ([n′10 , ..., n
′1
α−1], ..., [n′q0 , ..., n

′q
α−1])

{UpdateDerefVals(α, l
p
, [n′p0 , ..., n

′p
α−1], private bty , σp

1 ) = σp
2}

q
p=1

((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e)) ⇓L1::(1,(l
1,0)::l

1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1 ::l

q
)

D1 ::(ALL,[mpwdp])

((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

Figure 5.15: Multiparty SMC2 semantic rules for private pointer dereference read with multiple locations and
dereference write with a public value.

595



Private If Else (Variable Tracking)
((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e))

⇓L1
D1

((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)) {(e) ` γp}qp=1

{Extract(s1, s2, γ
p) = (x, 0)}qp=1

{InitializeVariables(x, γp, σp
1 , n

p, acc + 1) = (γp
1 , σ

p
2 , l

p
2)}qp=1

((1, γ1
1 , σ

1
2 ,∆

1
1, acc + 1, s1) ‖ ... ‖ (q, γq

1 , σ
q
2 ,∆

q
1, acc + 1, s1))

⇓L3
D2

((1, γ1
2 , σ

1
3 ,∆

1
2, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
2, acc + 1, skip))

{RestoreVariables(x, γp
1 , σ

p
3 , acc + 1) = (σp

4 , l
p
4)}qp=1

((1, γ1
1 , σ

1
4 ,∆

1
2, acc + 1, s2) ‖ ... ‖ (q, γq

1 , σ
q
4 ,∆

q
2, acc + 1, s2))

⇓L5
D3

((1, γ1
3 , σ

1
5 ,∆

1
3, acc + 1, skip) ‖ ... ‖ (q, γq

3 , σ
q
5 ,∆

q
3, acc + 1, skip))

{ResolveVariables_Retrieve(x, acc + 1, γp
1 , σ

p
5 ) = ([(vpt1, v

p
e1), ..., (vptm, v

p
em)], np, l

p
6)}qp=1

MPCresolve([n1, ..., nq], [[(v1t1, v
1
e1), ..., (v1tm, v

1
em)], ..., [(vqt1, v

q
e1), ..., (vqtm, v

q
em)]])= [[v11 , ..., v

1
m], ..., [vq1 , ..., v

q
m]]

{ResolveVariables_Store(x, acc + 1, γp
1 , σ

p
5 , [v

p
1 , ..., v

p
m]) = (σp

6 , l
p
7)}qp=1

L2 = (1, l
1
2) ‖ ... ‖ (q, l

q
2) L4 = (1, l

1
4) ‖ ... ‖ (q, l

q
4)

L6 = (1, l
1
6) ‖ ... ‖ (q, l

q
6) L7 = (1, l

1
7) ‖ ... ‖ (q, l

q
7)

((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2)) ⇓L1::L2::L3::L4::L5::L6::L7
D1 ::D2 ::D3 ::(p,[iep])

((1, γ1, σ1
6 ,∆

1
3, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
3, acc, skip))

Private If Else (Location Tracking)
((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e))

⇓L1
D1

((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)) {(e) ` γp}qp=1

{Extract(s1, s2, γ
p) = (x, 1)}qp=1

{Initialize(∆p
1 , x, γ

p, σp
1 , n

p, acc + 1) = (γp
1 , σ

p
2 ,∆

p
2 , l

p
2)}qp=1

((1, γ1
1 , σ

1
2 ,∆

1
2, acc + 1, s1) ‖ ... ‖ (q, γq

1 , σ
q
2 ,∆

q
2, acc + 1, s1))

⇓L3
D2

((1, γ1
2 , σ

1
3 ,∆

1
3, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
3, acc + 1, skip))

{Restore(σp
3 ,∆

p
3 , acc + 1) = (σp

4 ,∆
p
4 , l

p
4)}qp=1

((1, γ1
1 , σ

1
4 ,∆

1
4, acc + 1, s2) ‖ ... ‖ (q, γq

1 , σ
q
4 ,∆

q
4, acc + 1, s2))

⇓L5
D3

((1, γ1
3 , σ

1
5 ,∆

1
5, acc + 1, skip) ‖ ... ‖ (q, γq

3 , σ
q
5 ,∆

q
5, acc + 1, skip))

{Resolve_Retrieve(γp
1 , σ

p
5 ,∆

p
5 , acc + 1) = ([(vpt1, v

p
e1), ..., (vptm, v

p
em)], np, l

p
6)}qp=1

MPCresolve([n1, ..., nq], [[(v1t1, v
1
e1), ..., (v1tm, v

1
em)], ..., [(vqt1, v

q
e1), ..., (vqtm, v

q
em)]])= [[v11 , ..., v

1
m], ...[vq1 , ..., v

q
m]]

{Resolve_Store(∆p
5 , σ

p
5 , acc + 1, [vp1 , ..., v

p
m]) = (σp

6 ,∆
p
6 , l

p
7)}qp=1

L2 = (1, l
1
2) ‖ ... ‖ (q, l

q
2) L4 = (1, l

1
4) ‖ ... ‖ (q, l

q
4)

L6 = (1, l
1
6) ‖ ... ‖ (q, l

q
6) L7 = (1, l

1
7) ‖ ... ‖ (q, l

q
7)

((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2)) ⇓L1::L2::L3::L4::L5::L6::L7
D1 ::D2 ::D3 ::(ALL,[iepd])

((1, γ1, σ1
6 ,∆

1
6, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
6, acc, skip))

Figure 5.16: Multiparty SMC2 semantic rules for the multiparty execution of private-conditioned if else
statements.
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Public If Else True
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

n 6= 0 ((p, γ, σ1,∆1, acc, s1) ‖ C1) ⇓L2
D2

((p, γ1, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[iet]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Public If Else False
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

n = 0 ((p, γ, σ1,∆1, acc, s2) ‖ C1) ⇓L2
D2

((p, γ1, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[ief ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

While End
(e) 0 γ ((p, γ, σ,∆, acc, e) ‖ C) ⇓LD ((p, γ, σ1,∆1, acc, n) ‖ C1) n = 0

((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓LD::(p,[wle]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

While Continue
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

n 6= 0 ((p, γ, σ1,∆1, acc, s) ‖ C1) ⇓L2
D2

((p, γ1, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[wlc]) ((p, γ, σ2, ∆2, acc, while (e) s) ‖ C2)

Figure 5.17: Multiparty SMC2 semantic rules for public branches, loops, and sequencing.
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Public Pointer Declaration
(ty = public bty∗) acc = 0 l = φ()
GetIndirection(∗) = i ω = EncodePtr(public bty∗, [1, [(ldefault , 0)], [1], i])
γ1 = γ[x → (l, public bty∗)] σ1 = σ[l → (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1))]

((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])(p,[dp]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Private Pointer Declaration
l = φ() ((ty = bty∗) ∨ (ty = private bty∗)) ∧ ((bty = int) ∨ (bty = float))
GetIndirection(∗) = i ω = EncodePtr(private bty∗, [1, [(ldefault , 0)], [1], i])
γ1 = γ[x→ (l,private bty∗)] σ1 = σ[l→ (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1))]

((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])(p,[dp1 ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Public Pointer Write
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (le, µe)) ‖ C1)

γ(x) = (l, public bty∗) σ1(l) = (ω, public bty∗, 1,PermL(Freeable,public bty∗,public, 1))
acc = 0 DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], public bty∗) = (σ2, 1)

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[wp]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Private Pointer Write
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (le, µe)) ‖ C1)

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, α,PermL(Freeable,private bty∗,private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i]
UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], private bty∗) = (σ2, 1)

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Private Pointer Write Multiple Locations
(bty = int) ∨ (bty = float) ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, [αe, le, je, i]) ‖ C1)

γ(x) = (l,private bty∗) σ1(l) = (ω, private bty∗, α,PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i]

UpdatePtr(σ1, (l, 0), [αe, le, je, i], private bty∗) = (σ2, 1)

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[wp2 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Figure 5.18: Multiparty SMC2 semantic rules for pointer declarations and writing.
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Pointer Read Single Location
γ(x) = (l, a bty∗) σ(l) = (ω, a bty∗, 1, PermL(Freeable, a bty∗, a, 1))

DecodePtr(a bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])(p,[rp]) ((p, γ, σ, ∆, acc, (l1, µ1)) ‖ C)

Private Pointer Read Multiple Locations
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

(bty = int) ∨ (bty = float) DecodePtr(private bty∗, α, ω) = [α, l, j, i]

((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])(p,[rp1 ]) ((p, γ, σ, ∆, acc, [α, l, j, i]) ‖ C)

Pointer Dereference Single Location
γ(x) = (l, a bty∗) σ(l) = (ω, a bty∗, 1, PermL(Freeable, a bty∗, a, 1))
DecodePtr(a bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1] DerefPtr(σ, a bty , (l1, µ1)) = (n, 1)

((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])

(p,[rdp]) ((p, γ, σ, ∆, acc, n) ‖ C)

Pointer Dereference Single Location Higher Level Indirection
γ(x) = (l, a bty∗) σ(l) = (ω1, a bty∗, 1, PermL(Freeable, a bty∗, a, 1))
i > 1 DecodePtr(a bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

DerefPtrHLI(σ, a bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 1)

((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])

(p,[rdp1 ]) ((p, γ, σ, ∆, acc, (l2, µ2)) ‖ C)

Private Pointer Dereference Single Location Higher Level Indirection
γ(x) = (l, private bty∗) σ(l) = (ω1, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))
i > 1 DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

DerefPtrHLI(σ,private bty∗, (l1, µ1)) = ([α, l, j, i− 1], 1)

((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])

(p,[rdp2 ]) ((p, γ, σ, ∆, acc, [α, l, j, i− 1]) ‖ C)

Figure 5.19: Multiparty SMC2 semantic rules for reading from a pointer and dereferencing a pointer at a
single location.

599



Public Pointer Dereference Write Public Value
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1)

γ(x) = (l, public bty∗) σ1(l) = (ω, public bty∗, 1,PermL(Freeable, public bty∗,public, 1))
acc = 0 DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], public bty , 1]

UpdateOffset(σ1, (l1, µ1), n, public bty) = (σ2, 1)

((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,µ1)])

D1 ::(p,[wdp]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Private Pointer Dereference Write Single Location Private Value
(e) ` γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1)

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))
(bty = int) ∨ (bty = float) DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1]

DynamicUpdate(∆1, σ1, [(l1, µ1)], acc,private bty) = (∆2, l1)
UpdateOffset(σ1, (l1, µ1), n, private bty) = (σ2, 1)

((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])

D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

Private Pointer Dereference Write Single Location Public Value
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1)

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))
(bty = int) ∨ (bty = float) DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1]

DynamicUpdate(∆1, σ1, [(l1, µ1)], acc,private bty) = (∆2, l1)
UpdateOffset(σ1, (l1, µ1), encrypt(n), private bty) = (σ2, 1)

((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])

D1 ::(p,[wdp4 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

Public Pointer Dereference Write Higher Level Indirection
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (le, µe)) ‖ C1)

γ(x) = (l, public bty∗) σ1(l) = (ω, public bty∗, 1,PermL(Freeable, public bty∗, public, 1))
acc = 0 DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]
i > 1 UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1], public bty∗) = (σ2, 1)

((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::[(l1,µ1)])

D1 ::(p,[wdp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Private Pointer Dereference Write to Single Location Higher Level Indirection
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (le, µe)) ‖ C1)

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, 1,PermL(Freeable, private bty∗, private, 1))
DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

i > 1 DynamicUpdate(∆1, σ1, [(l1, µ1)], acc, private bty∗) = (∆2, l1)
UpdatePtr(σ1, (l1, µ1), [1, [(le, µe)], [1], i− 1], private bty∗) = (σ2, 1)

((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])

D1 ::(p,[wdp5 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

Private Pointer Dereference Write Multiple Locations to Single Location Higher Level Indirection
((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, [α, le, je, i− 1]) ‖ C1)

γ(x) = (l, private bty∗) σ1(l) = (ω, private bty∗, 1,PermL(Freeable,private bty∗,private, 1))
DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]

i > 1 DynamicUpdate(∆1, σ1, [(l1, µ1)], acc,private bty∗) = (∆2, l1)

UpdatePtr(σ1, (l1, µ1), [α, le, je, i− 1], private bty∗) = (σ2, 1)

((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])

D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

Figure 5.20: Multiparty SMC2 semantic rules for pointer dereference write.
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Public Array Declaration
acc = 0 (ty = public bty)

(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1
D1

((p, γ, σ1, ∆, acc, α) ‖ C1)

α > 0 ω = EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1])
l = φ() ω1 = EncodeArr(public bty , α,NULL)
l1 = φ() γ1 = γ[x → (l, public const bty∗)]

σ2 = σ1[l → (ω, public const bty∗, 1, PermL(Freeable, public const bty∗, public, 1))]
σ3 = σ2[l1 → (ω1, public bty , α, PermL(Freeable,public bty , public, α))]

((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])

D1 ::(p,[da]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1)

Private Array Declaration
(e) 0 γ ((ty = private bty) ∨ (ty = bty)) ∧ ((bty = int) ∨ (bty = float))

((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1
D1

((p, γ, σ1, ∆, acc, α) ‖ C1)

α > 0 ω = EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1])
l = φ() ω1 = EncodeArr(private bty , α,NULL)
l1 = φ() γ1 = γ[x → (l, private const bty∗)]

σ2 = σ1[l → (ω, private const bty∗, 1, PermL(Freeable, private const bty∗, private, 1))]
σ3 = σ2[l1 → (ω1, private bty , α, PermL(Freeable,private bty , private, α))]

((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])

D1 ::(p,[da1 ]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1)

Array Declaration Assignment
((p, γ, σ, ∆, acc, ty x[e1]) ‖ C) ⇓L1

D1
((p, γ1, σ1,∆1, acc, skip) ‖ C1)

((p, γ1, σ1,∆1, acc, x = e2) ‖ C1) ⇓L2
D2

((p, γ1, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, ty x[e1] = e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[das]) ((p, γ1, σ2, ∆2, acc, skip) ‖ C2)

Public Array Read Public Index
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1)

γ(x) = (l, public const bty∗) σ1(l) = (ω, public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, public bty , α,PermL(Freeable,public bty , public, α))

0 ≤ i ≤ α− 1 DecodeArr(public bty , i, ω1) = ni

((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])

D1 ::(p,[ra]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1)

Private Array Read Public Index
γ(x) = (l, private const bty∗) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1)

(e) 0 γ σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]

0 ≤ i ≤ α− 1 σ1(l1) = (ω1, private bty , α,PermL(Freeable, private bty , private, α))
DecodeArr(private bty , i, ω1) = ni

((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])

D1 ::(p,[ra1 ]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1)

Figure 5.21: Multiparty SMC2 semantic rules for array declarations and reading from a public index.

Aside from reading and writing to a private index, all array operations will occur locally. This is because

we are simply accessing data at or copying data to a known position in our local memory - we do not need to

know anything further about the data during these operations, therefore no communication between parties is

needed in these rules. With array evaluations, all evaluations that use a public index behave nearly identically

to those over public data. The difference is that we have an additional check within array writes at a public

index to see if we are in a private-conditioned branch; if so, we must ensure we properly track the modification
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Public Array Write Public Value Public Index
acc = 0 ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, i) ‖ C1)

(e1, e2) 0 γ ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2,∆2, acc, n) ‖ C2)

γ(x) = (l, public const bty∗) σ2(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗,public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, public bty , α,PermL(Freeable, public bty , public, α))

0 ≤ i ≤ α− 1 UpdateArr(σ2, (l1, i), n, public bty) = σ3

((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])

D1 ::D2 ::(p,[wa]) ((p, γ, σ3, ∆2, acc, skip) ‖ C2)

Private Array Write Private Value Public Index
γ(x) = (l, private const bty∗) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, i) ‖ C1)

(e1) 0 γ ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2,∆2, acc, n) ‖ C2)

(e2) ` γ σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , α,PermL(Freeable, private bty , private, α))

0 ≤ i ≤ α− 1 DynamicUpdate(∆2, σ2, [(l1, i)], acc, private bty) = ∆3

UpdateArr(σ2, (l1, i), n, private bty) = σ3

((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])

D1 ::D2 ::(p,[wa2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

Private Array Write Public Value Public Index
γ(x) = (l, private const bty∗) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1)

(e1, e2) 0 γ ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n) ‖ C2)

σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , α,PermL(Freeable,private bty , private, α))

0 ≤ i ≤ α− 1 DynamicUpdate(∆2, σ2, [(l1, i)], acc, private bty) = ∆3

UpdateArr(σ2, (l1, i), encrypt(n), private bty) = σ3

((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])

D1 ::D2 ::(p,[wa1 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

Figure 5.22: Multiparty SMC2 semantic rules for writing to an array.

made (this is because a public index that is not hard-coded could have lead to an out-of-bounds array write).
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Read Entire Array
γ(x) = (l, a const bty∗) σ(l) = (ω, a const bty∗, 1,PermL(Freeable, a const bty∗, a, 1))

DecodePtr(a const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ(l1) = (ω1, a bty , α,PermL(Freeable, a bty , a, α))
∀i ∈ {0...α− 1} DecodeArr(a bty , i, ω1) = ni

((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0),(l1,0),...,(l1,α−1)])

(p,[rea]) ((p, γ, σ, ∆, acc, [n0, ..., nα−1]) ‖ C)

Write Entire Public Array
γ(x) = (l, public const bty∗) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, [n0, ..., nαe−1]) ‖ C1)

acc = 0 σ1(l) = (ω, public const bty∗, 1,PermL(Freeable,public const bty∗, public, 1))
(e) 0 γ DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]

σ1(l1) = (ω1, public bty , α,PermL(Freeable, public bty , public, α))
αe = α ∀i ∈ {0...α− 1} UpdateArr(σ1+i, (l1, i), ni, public bty) = σ2+i

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])

D1 ::(p,[wea]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

Write Entire Private Array
γ(x) = (l, private const bty∗) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, [n0, ..., nαe−1]) ‖ C1)

(e) ` γ σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, private bty , α,PermL(Freeable, private bty ,private, α))

αe = α ∀i ∈ {0...α− 1} UpdateArr(σ1+i, (l1, i), ni, private bty) = σ2+i

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])

D1 ::(p,[wea1 ]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

Private Array Write Entire Public Array
γ(x) = (l, private const bty∗) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, [n0, ..., nαe−1]) ‖ C1)

(e) 0 γ σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, private bty , α,PermL(Freeable, private bty ,private, α))

αe = α ∀i ∈ {0...α− 1} UpdateArr(σ1+i, (l1, i), encrypt(ni), private bty) = σ2+i

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])

D1 ::(p,[wea2 ]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

Figure 5.23: Multiparty SMC2 semantic rules for reading and writing an entire array.
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Public Array Read Out of Bounds Public Index
γ(x) = (l, public const bty∗) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1)

(e) 0 γ σ1(l) = (ω, public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, public bty , α,PermL(Freeable, public bty , public, α))

(i < 0) ∨ (i ≥ α) ReadOOB(i, α, l1, public bty , σ1) = (n, 1, (l2, µ))

((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])

D1 ::(p,[rao]) ((p, γ, σ1, ∆1, acc, n) ‖ C1)

Private Array Read Out of Bounds Public Index
γ(x) = (l, private const bty∗) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1)

(e) 0 γ σ1(l) = (ω, private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ1(l1) = (ω1, private bty , α,PermL(Freeable, private bty , private, α))

(i < 0) ∨ (i ≥ α) ReadOOB(i, α, l1, private bty , σ1) = (n, 1, (l2, µ))

((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])

D1 ::(p,[rao1 ]) ((p, γ, σ1, ∆1, acc, n) ‖ C1)

Public Array Write Out of Bounds Public Index Public Value
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1)

acc = 0 ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n) ‖ C2)

γ(x) = (l,public const bty∗) σ2(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, public bty , α, PermL(Freeable, public bty , public, α))

(i < 0) ∨ (i ≥ α) WriteOOB(n, i, α, l1, public bty , σ2, acc) = (σ3, 1, (l2, µ))

((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])

D1 ::D2 ::(p,[wao]) ((p, γ, σ3, ∆2, acc, skip) ‖ C2)

Private Array Write Out of Bounds Public Index Private Value
γ(x) = (l,private const bty∗) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, i) ‖ C1)

(e1) 0 γ ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2,∆2, acc, n) ‖ C2)

(e2) ` γ σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , α, PermL(Freeable, private bty ,private, α))

(i < 0) ∨ (i ≥ α) WriteOOB(n, i, α, l1, private bty , σ2, ∆2, acc) = (σ3, ∆3, 1, (l2, µ))

((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])

D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

Private Array Write Public Value Out of Bounds Public Index
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1)

γ(x) = (l,private const bty∗) ((p, γ, σ1, ∆1, acc, e) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n) ‖ C2)

σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
σ2(l1) = (ω1, private bty , α, PermL(Freeable, private bty ,private, α))

(i < 0) ∨ (i ≥ α) WriteOOB(encrypt(n), i, α, l1, private bty , σ2, ∆2, acc) = (σ3,∆3, 1, (l2, µ))

((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])

D1 ::D2 ::(p,[wao1 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

Figure 5.24: Multiparty SMC2 semantic rules for reading and writing out of bounds for arrays.
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Pre-Increment Private Int Variable
γ(x) = (l,private int) σ(l) = (ω,private int, 1,PermL(Freeable,private int, private, 1))

DecodeVal(private int, ω) = n1

n2 = n1 + encrypt(1) UpdateVal(σ, l, n2, private int) = σ1

((p, γ, σ,∆, acc,++ x) ‖ C) ⇓(p,[(l,0)])(p,[pin3 ]) ((p, γ, σ1,∆, acc, n2) ‖ C)

Pre-Increment Private Pointer Multiple Locations
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, 1]

IncrementList(l, τ(private bty), σ) = (l1, 1)

UpdatePtr(σ, (l, 0), [α, l1, j, 1], private bty∗) = (σ1, 1)

((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])(p,[pin4 ]) ((p, γ, σ1, ∆, acc, [n, l1, j, 1]) ‖ C)

Pre-Increment Private Pointer Higher Level Indirection Multiple Locations
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α))

DecodePtr(private bty∗, α, ω) = [α, l, j, i]

IncrementList(l, τ(private bty∗), σ) = (l1, 1)

UpdatePtr(σ, (l, 0), [α, l1, j, i], private bty∗) = (σ1, 1)

((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])(p,[pin5 ]) ((p, γ, σ1, ∆, acc, [α, l1, j, i]) ‖ C)

Pre-Increment Private Pointer Single Location
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))

DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1]
((l2, µ2), 1) = GetLocation((l1, µ1), τ(private bty), σ)
UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], private bty∗) = (σ1, 1)

((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])(p,[pin6 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

Pre-Increment Private Pointer Higher Level Indirection Single Location
γ(x) = (l, private bty∗) σ(l) = (ω, private bty∗, 1, PermL(Freeable, private bty∗, private, 1))

DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]
i > 1 ((l2, µ2), 1) = GetLocation((l1, µ1), τ(private bty∗), σ)

UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], i], private bty) = (σ1, 1)

((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])(p,[pin7 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

Figure 5.25: Multiparty SMC2 pre-increment rules for private int variables and for private pointers.

Incrementing a private int value occurs locally. Incrementing the locations of pointers (public and private)

will always be local, as all locations pointed to by the pointer will be incremented by the appropriate amount,

regardless of which is the true location. This does not modify which is the true location, nor require knowing

which is the true location.

Memory allocation (public or private) occurs locally. When allocating private memory, we provide the

pmalloc builtin function to internally handle obtaining the size of the private type; the programmer to only

needs to know how many elements of the given type they desire to allocate. In rule Private Malloc, we assert

that the given type is either private int or private float, as this function only handles those types, and that the

accumulator acc is 0 (i.e., we are not inside an if else statement branching on private data, as this function

causes public side effects). Then we evaluate e to n and obtain the next open memory location l from φ. We
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Pre-Increment Public Variable
γ(x) = (l, public bty) σ(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1))
acc = 0 DecodeVal(public bty , ω) = n
n1 = n+ 1 UpdateVal(σ, l, n1, public bty) = σ1

((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])(p,[pin]) ((p, γ, σ1, ∆, acc, n1) ‖ C)

Pre-Increment Public Pointer Single Location
γ(x) = (l, public bty∗) σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1]
((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty), σ)
UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], public bty∗) = (σ1, 1)

((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])(p,[pin1 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

Pre-Increment Public Pointer Higher Level Indirection Single Location
γ(x) = (l, public bty∗) σ(l) = (ω, public bty∗, 1, PermL(Freeable, public bty∗, public, 1))

DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], i]
i > 1 ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty∗), σ)

UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], i], public bty) = (σ1, 1)

((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])(p,[pin2 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

Figure 5.26: Multiparty SMC2 semantic rules for the public pre-increment operator.

add to σ1 the new mapping from l to the tuple of a NULL set of bytes; the type ty ; the size n; and a list of

private, Freeable permissions. As with public malloc, we return the new location, (l, 0). Freeing allocated

memory from a pointer with a single location occurs locally, regardless of if the pointer is public or private.

This is because the true location of the pointer is publicly known.
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Public Malloc
acc = 0 (e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆, acc, n) ‖ C1)

l = φ() σ2 = σ1

[
l→

(
NULL, void∗, n,PermL(Freeable, void∗, public, n)

)]
((p, γ, σ, ∆, acc, malloc(e)) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[mal]) ((p, γ, σ2, ∆, acc, (l, 0)) ‖ C1)

Private Malloc
(e) 0 γ (ty = private bty∗) ∨ (ty = private bty)

acc = 0 ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1
D1

((p, γ, σ1, ∆, acc, n) ‖ C1)

l = φ() σ2 = σ1

[
l→

(
NULL, void∗, n · τ(ty), PermL(Freeable, void∗,private, n · τ(ty))

)]
((p, γ, σ, ∆, acc, pmalloc(e, ty)) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[malp]) ((p, γ, σ2, ∆, acc, (l, 0)) ‖ C1)

Public Free
γ(x) = (l, public bty∗) σ(l) = (ω,public bty∗, 1,PermL(Freeable, public bty∗, public, 1))
acc = 0 DecodePtr(public bty∗, 1, ω) = [1, [(l1, 0)], [1], 1]
CheckFreeable(γ, [(l1, 0)], [1], σ) = 1 Free(σ, l1) = (σ1, (l1, 0))

((p, γ, σ, ∆, acc, free(x)) ‖ C) ⇓(p,[(l,0),(l1,0)])(p,[fre]) ((p, γ, σ1, ∆, acc, skip) ‖ C)

Private Free Single Location
γ(x) = (l, private bty∗) σ(l) = (ω,private bty∗, 1,PermL(Freeable, private bty∗, private, 1))
acc = 0 DecodePtr(private bty∗, 1, ω) = [1, [(l1, 0)], [j], 1]
CheckFreeable(γ, [(l1, 0)], [j], σ) = 1 Free(σ, l1) = (σ1, (l1, 0))

((p, γ, σ, ∆, acc, pfree(x)) ‖ C) ⇓(p,[(l,0),(l1,0)])(p,[pfre]) ((p, γ, σ1, ∆, acc, skip) ‖ C)

Cast Private Location
(ty = private bty∗) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (l, 0)) ‖ C1)

σ1 = σ2

[
l→

(
ω, void∗, n, PermL(Freeable, void∗, private, n)

)]
σ3 = σ2

[
l→

(
ω, ty ,

n

τ(ty)
, PermL(Freeable, ty , private,

n

τ(ty)
)
)]

((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[cl1 ]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1)

Cast Public Location
(ty = public bty∗) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (l, 0)) ‖ C1)

acc = 0 σ1 = σ2

[
l→

(
ω, void∗, n, PermL(Freeable, void∗, public, n)

)]
σ3 = σ2

[
l→

(
ω, ty ,

n

τ(ty)
, PermL(Freeable, ty , public,

n

τ(ty)
)
)]

((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[cl]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1)

Cast Public Value
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1)

(ty = public bty) n1 = Cast(public, ty , n)

((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1
D1 ::(p,[cv ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1)

Cast Private Value
(e) ` γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1)

(ty = private bty) n1 = Cast(private, ty , n)

((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1
D1 ::(p,[cv1 ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1)

Address Of
γ(x) = (l, ty)

((p, γ, σ, ∆, acc, &x) ‖ C) ⇓ε(p,[loc]) ((p, γ, σ, ∆, acc, (l, 0)) ‖ C)

Figure 5.27: Multiparty SMC2 semantic rules for memory allocation and deallocation, casting, and finding
the address of a variable.
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Function Declaration
acc = 0 l = φ() GetFunTypeList(p) = ty
γ1 = γ[x→ (l, ty → ty)] ω = EncodeFun(NULL,−1, p)

σ1 = σ[l→ (ω, ty → ty , 1, PermL_Fun(public))]

((p, γ, σ, ∆, acc, ty x(p)) ‖ C) ⇓(p,[(l,0)])(p,[df ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Function Definition
acc = 0 GetFunTypeList(p) = ty CheckPublicEffects(s, x, γ, σ) = n
x /∈ γ EncodeFun(s, n, p) = ω
l = φ() γ1 = γ[x→ (l, ty → ty)] σ1 = σ[l→ (ω, ty → ty , 1, PermL_Fun(public))]

((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])(p,[fd]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Pre-Declared Function Definition
acc = 0 x ∈ γ CheckPublicEffects(s, x, γ, σ) = n
γ(x) = (l, ty → ty) σ = σ1[l→ (ω1, ty → ty , 1, PermL_Fun(public))]
DecodeFun(ω) = (NULL,−1, p)
EncodeFun(s, n, p) = ω σ2 = σ1[l→ (ω, ty → ty , 1, PermL_Fun(public))]

((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])(p,[fpd]) ((p, γ, σ2, ∆, acc, skip) ‖ C)

Function Call Without Public Side Effects
γ(x) = (l, ty → ty) σ(l) = (ω, ty → ty , 1, PermL_Fun(public))
DecodeFun(ω) = (s, n, p) GetFunParamAssign(p, e) = s1
n = 0 ((p, γ, σ, ∆, acc, s1) ‖ C) ⇓L1

D1
((p, γ1, σ1,∆1, acc, skip) ‖ C1)

((p, γ1, σ1,∆1, acc, s) ‖ C1) ⇓L2
D2

((p, γ2, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc1 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Function Call With Public Side Effects
γ(x) = (l, ty → ty) σ(l) = (ω, ty → ty , 1, PermL_Fun(public))
DecodeFun(ω) = (s, n, p) GetFunParamAssign(p, e) = s1
acc = 0 ((p, γ, σ, ∆, acc, s1) ‖ C) ⇓L1

D1
((p, γ1, σ1,∆1, acc, skip) ‖ C1)

n = 1 ((p, γ1, σ1,∆1, acc, s) ‖ C1) ⇓L2
D2

((p, γ2, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Size of Type
(ty) 0 γ n = τ(ty)

((p, γ, σ, ∆, acc, sizeof(ty)) ‖ C) ⇓ε(p,[ty]) ((p, γ, σ, ∆, acc, n) ‖ C)

Figure 5.28: Multiparty SMC2 semantic rules for functions and finding the size of a type.

At the top level (as shown within our function rules), functions do not need to be executed in a multiparty

setting. Given our model uses big-step semantics, we show the overall results of executing the statement(s)

for the function - any statements that require multiparty execution will be subsequently executed using

their respective multiparty rules, without requiring the top-level rules to be executed in a multiparty setting.

When functions are defined, we evaluate whether or not they have public side effects. This is necessary to

know which functions should not be allowed to execute within either branch of a private-conditioned if else

statement, as neither branch can have public side effects in order to prevent leakage of information about

which branch was intended to be executed (and therefore leakage about the private condition itself).
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Public Addition
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) n1 + n2 = n3

((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

Public Subtraction
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) n1 − n2 = n3

((p, γ, σ, ∆, acc, e1 − e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[bs]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

Public Multiplication
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) n1 · n2 = n3

((p, γ, σ, ∆, acc, e1 · e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[bm]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

Public Division
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) n1 ÷ n2 = n3

((p, γ, σ, ∆, acc, e1 ÷ e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[bd]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

Public Less Than True
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) (n1 < n2) = 1

((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2)

Public Less Than False
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) (n1 < n2) = 0

((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[ltf ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

Public Equal To True
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) (n1 = n2) = 1

((p, γ, σ, ∆, acc, e1 == e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[eqt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2)

Public Equal To False
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) (n1 = n2) = 0

((p, γ, σ, ∆, acc, e1 == e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[eqf ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

Public Not Equal To True
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) (n1 6= n2) = 1

((p, γ, σ, ∆, acc, e1! = e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[net]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2)

Public Not Equal To False
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, n2) ‖ C2) (n1 = 6= n2) = 0

((p, γ, σ, ∆, acc, e1! = e2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[nef ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

Figure 5.29: Multiparty SMC2 semantics for public binary operations.
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Public Declaration
(ty = public bty) acc = 0 l = φ() γ1 = γ[x → (l, ty)]

ω = EncodeVal(ty ,NULL) σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty , public, 1))]

((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])(p,[dv ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Private Declaration
((ty = bty) ∨ (ty = private bty)) ∧ ((bty = int) ∨ (bty = float)) l = φ()

ω = EncodeVal(ty ,NULL) γ1 = γ[x→ (l, ty)] σ1 = σ[l→ (ω, ty , 1,PermL(Freeable, ty , private, 1))]

((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])(p,[d1 ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Declaration Assignment
((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓L1

D1
((p, γ1, σ1,∆1, acc, skip) ‖ C1)

((p, γ1, σ1,∆1, acc, x = e) ‖ C1) ⇓L2
D2

((p, γ1, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, ty x = e) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[ds]) ((p, γ1, σ1, ∆1, acc, skip) ‖ C2)

Read Public Variable
γ(x) = (l, public bty) σ(l) = (ω, public bty , 1, PermL(Freeable, public bty , public, 1))

DecodeVal(public bty , ω) = n

((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])(p,[r ]) ((p, γ, σ, ∆, acc, n) ‖ C)

Read Private Variable
γ(x) = (l, private bty) σ(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1))

DecodeVal(private bty , ω) = n

((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])(p,[r1 ]) ((p, γ, σ, ∆, acc, n) ‖ C)

Write Public Variable
(e) 0 γ ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

γ(x) = (l, public bty) UpdateVal(σ1, l, n, public bty) = σ2

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[w ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Write Private Variable
(e) ` γ ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

γ(x) = (l, private bty) UpdateVal(σ1, l, n, private bty) = σ2

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[w1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Write Private Variable Public Value
(e) 0 γ ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

γ(x) = (l,private bty) UpdateVal(σ1, l, encrypt(n), private bty) = σ2

((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[w2 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Parentheses
((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, v) ‖ C1)

((p, γ, σ, ∆, acc, (e)) ‖ C) ⇓L1
D1 ::(p,[ep]) ((p, γ, σ1, ∆1, acc, v) ‖ C1)

Statement Sequencing
((p, γ, σ, ∆, acc, s1) ‖ C) ⇓L1

D1
((p, γ1, σ1,∆1, acc, v1) ‖ C1)

((p, γ1, σ1,∆1, acc, s2) ‖ C1) ⇓L2
D2

((p, γ2, σ2,∆2, acc, v2) ‖ C2)

((p, γ, σ, ∆, acc, s1; s2) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[ss]) ((p, γ2, σ2, ∆2, acc, v2) ‖ C2)

Statement Block
((p, γ, σ, ∆, acc, s) ‖ C) ⇓L1

D1
((p, γ1, σ1, ∆1, acc, v) ‖ C1)

((p, γ, σ, ∆, acc, {s}) ‖ C) ⇓L1
D1 ::(p,[sb]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

Figure 5.30: Multiparty SMC2 semantic rules for declarations, reading, writing, and sequencing.
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SMC Input Public Value
(e) 0 γ γ(x) = (l,public bty)

acc = 0 ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1
D1

((p, γ, σ1,∆1, acc, n) ‖ C1)

InputValue(x, n) = n1 ((p, γ, σ1,∆1, acc, x = n1) ‖ C1) ⇓L2
D2

((p, γ, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[inp]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

SMC Input Private Value
(e) 0 γ γ(x) = (l,private bty)

acc = 0 ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1
D1

((p, γ, σ1,∆1, acc, n) ‖ C1)

InputValue(x, n) = n1 ((p, γ, σ1,∆1, acc, x = n1) ‖ C1) ⇓L2
D2

((p, γ, σ2,∆2, acc, skip) ‖ C2)

((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2
D1 ::D2 ::(p,[inp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

SMC Input Public 1D Array
(e1, e2) 0 γ ((p, γ, σ,∆1, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1)

acc = 0 ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2, ∆2, acc, α) ‖ C2)

γ(x) = (l,public const bty∗) InputArray(x, n, α) = [m0, ...,mα]

((p, γ, σ2,∆2, acc, x = [m0, ...,mα]) ‖ C2) ⇓L3
D3

((p, γ, σ3, ∆3, acc, skip) ‖ C3)

((p, γ, σ, ∆, acc, smcinput(x, e1, e2)) ‖ C) ⇓L1::L2::L3
D1 ::D2 ::D3 ::(p,[inp1 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C3)

SMC Input Private 1D Array
(e1, e2) 0 γ ((p, γ, σ,∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

acc = 0 ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2,∆2, acc, α) ‖ C2)

γ(x) = (l,private const bty∗) InputArray(x, n, α) = [m0, ...,mα]

((p, γ, σ2,∆2, acc, x = [m0, ...,mα]) ‖ C2) ⇓L3
D3

((p, γ, σ3,∆3, acc, skip) ‖ C3)

((p, γ, σ, ∆, acc, smcinput(x, e1, e2)) ‖ C) ⇓L1::L2::L3
D1 ::D2 ::D3 ::(p,[inp3 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C3)

Figure 5.31: Multiparty SMC2 semantic rules for input.
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SMC Output Public Value
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1)

γ(x) = (l,public bty) σ1(l) = (ω, public bty , 1, PermL(Freeable, public bty ,public, 1))
DecodeVal(public bty , ω) = n1 OutputValue(x, n, n1)

((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[out]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

SMC Output Private Value
(e) 0 γ ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1)

γ(x) = (l, private bty) σ1(l) = (ω, private bty , 1, PermL(Freeable, private bty , private, 1))
DecodeVal(private bty , ω) = n1 OutputValue(x, n, n1)

((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])

D1 ::(p,[out2 ]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

SMC Output Public Array
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

γ(x) = (l,public const bty∗) ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2,∆2, acc, α) ‖ C2)

σ2(l) = (ω,public const bty∗, 1,PermL(Freeable, public const bty∗, public, 1))
DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], public bty , 1]
σ2(l1) = (ω1, public bty , α, PermL(Freeable, public bty , public, α))
∀i ∈ {0, ..., α− 1} DecodeArr(public bty , i, ω1) = mi

OutputArray(x, n, [m0, ..., mα−1])

((p, γ, σ, ∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])

D1 ::D2 ::(p,[out1 ])

((p, γ, σ2, ∆2, acc, skip) ‖ C2)

SMC Output Private Array
(e1, e2) 0 γ ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1)

γ(x) = (l,private const bty∗) ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2
D2

((p, γ, σ2,∆2, acc, α) ‖ C2)

σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗, private, 1))
DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], private bty , 1]
σ2(l1) = (ω1, private bty , α, PermL(Freeable, private bty , private, α))
∀i ∈ {0, ..., α− 1} DecodeArr(private bty , i, ω1) = mi

OutputArray(x, n, [m0, ..., mα−1])

((p, γ, σ, ∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])

D1 ::D2 ::(p,[out3 ])

((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Figure 5.32: Multiparty SMC2 semantic rules for output.
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5.1.3 Multiparty Vanilla C Algorithms

94 UpdateArr ::= f : (σ̂, (l̂, î), n̂, b̂ty)→ σ̂

95 EncodeArr ::= f : (t̂y , n̂, n̂)→ ω̂

96 DecodeArr ::= f : (b̂ty , î, ω̂)→ n̂

Algorithm 94 σ̂2 ← UpdateArr(σ̂, (l̂, î), v̂, b̂ty)

1: σ̂1[l̂→ (ω̂, t̂y , α̂, PermL(Freeable, t̂y , public, α̂))] = σ̂

2: µ̂ = î · sizeof(b̂ty)
3: ω̂1 = ω̂[0 : µ̂]

4: ω̂2 = EncodeVal(b̂ty , v̂)
5: ω̂3 = ω̂[µ̂+ µ̂ :]
6: ω̂4 = ω̂1 :: ω̂2 :: ω̂3

7: σ̂2 = σ̂1[l̂→ (ω̂4, t̂y , α̂, PermL(Freeable, t̂y ,public, α̂))]
8: return σ̂2

Algorithm 94 (UpdateArr) is used to update a value in memory at an index within an array. It takes as

input memory σ̂, the location (memory block identifier and offset) and we will be updating, the value to store

into memory, and the type to store the value as. Here, we first remove the mapping from memory (line 1),

then find where the offset we will be updating will be within the array data (line 2). Next, we separate out the

bytes before (line 3) and after (line 5) the data we will be replacing. We encode the new value based on the

specified type (line 4), then combine these byte data to obtain the updated array byte data (line 6). We then

place the new mapping with the updated data into memory (line 7) and return the updated memory. Here, we

would like to highlight that we only update the portion of memory associated with the given offset (array

index), which is public.

Algorithm 95 ω̂ ← EncodeArr(t̂y , α̂, v̂)

1: ω̂1 = EncodeVal(t̂y , v̂)
2: ω̂ = ω̂1

3: for all î ∈ {1...α̂− 1} do
4: ω̂ = ω̂ + ω̂1

5: end for
6: return ω̂

Algorithm 95 (EncodeArr) takes an value and creates byte data for an array of length α̂, with every

element initialized to the value. It is currently only used in the semantics when declaring an array, to initialize

the newly declared array as being filled with NULL elements. EncodeArr takes as input the type, number of

elements, and the value to be used to initialize the array. It will encode the given value as byte data based on

the type, and duplicate that α̂ times to get the byte data for the entire array initialized with that value. This
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full byte data is then returned.

Algorithm 96 v̂ ← DecodeArr(t̂y , î, ω̂)

1: µ̂ = î · sizeof(t̂y)
2: ω̂1 = ω̂[µ̂ : µ̂+ µ̂]
3: v̂ = DecodeVal(t̂y , ω̂1)
4: return v̂

Algorithm 96 (DecodeArr) takes byte data and returns the element of the given type at the specified

index from the byte data. It takes as input a type, an index, and bytes of data for an array. It then finds the

portion of bytes corresponding to that index, and calls Algorithm DecodeVal to obtain the value represented

by those bytes. This value is then returned.

5.1.4 Multiparty Protocols for Multiparty SMC2

97 MPCmult ::= f : (np, np)→ np

98 MPCb ::= f : (bop, [n1, ..., nq], [n1, ..., nq])→ (n1, ..., nq)

99 MPCcmp ::= f : (bop, [n1, ..., nq], [n1, ..., nq]) = (n1, ..., nq)

100 MPCu ::= f : (++, n1, ..., nq)→ (n1, ..., nq)

101 MPCsub ::= f : (np, np)→ np

102 MPCadd ::= f : (np, np)→ np

103 MPCdiv ::= f : (np, np)→ np

104 MPClt ::= f : (np, np)→ np

105 MPCneq ::= f : (np, np)→ np

106 MPCeq ::= f : (np, np)→ np

107 MPCplpl ::= f : (np)→ np

108 MPCar ::= f : ((i1, n1), ..., (iq, nq))→ (n1, ..., nq)

109 MPCaw ::= f : ((i1, n1, n1), ..., (iq, nq, nq))→ (n1, ..., nq)

110 MPCdv ::= f : ([n1, ..., nq], [j
1
, ..., j

q
])→ (n1, ..., nq)

111 MPCdp ::= f : ([[[α, l
1
, j

1
], ..., [α, l

1
, j

1
]], ..., [[α, l

q
, j

q
], ..., [α, l

q
, j

q
]]], [j

1
, ..., j

q
])

→ ([[α, l
1
, j

1
], ..., [α, l

q
, j

q
]])

112 MPCwdv ::= f : ([n1, ..., nq], [n1, ..., nq], [j
1
, ..., j

q
])→ (n1, ..., nq)

113 MPCwdp ::= f : ([ptr
1
, ..., ptr

q
], [j

1
, ..., j

q
])→ [ptr

1
, ..., ptr

q
]
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124 MPCresolve ::= f : ([n1, ..., nq], [[(v1, v1), ..., (v1, v1)], ..., [(vq, vq), ..., (vq, vq)]])→ [v1, ..., vq]

128 MPCfree ::= f : ([ω1, ..., ωq], [j
1
, ...j

q
])→ ([ω1, ..., ωq], [j

1
, ..., j

q
])

Here, we present the multiparty protocols used in SMC2. In our semantics, we leverage multiparty

protocols to compartmentalize the complexity of handling private data. In the formal treatment this corre-

sponds to using Axioms in our proofs to reason about protocols. These Axioms allow us to guarantee the

desired properties of correctness and noninterference for the overall model, to provide easy integration with

new, more efficient protocols as they become available, and to avoid re-proving the formal guarantees for

the entire model when new protocols are added. Proving that these Axioms hold is a responsibility of the

library implementor in order to have the system fully encompassed by our formal model. Secure multiparty

computation protocols that already come with guarantees of correctness and security are the only ones worth

considering, so the implementor would only need to ensure that these guarantees match our definitions of

correctness and noninterference.

For example, if private values are represented using Shamir secret sharing [1], Algorithm 97, MPCmult ,

represents a simple multiparty protocol for multiplying private values from [41]. In Algorithm 97, lines 2 and

3 define the protocol, while lines 1, 4, and 5 relate the protocol to our semantic representation.

Algorithm 97 np3 ← MPCmult(n
p
1 , n

p
2)

1: Let fa(p) = np
1 and fb(p) = np

1 .
2: Party p computes the value fa(p) · fb(p) and creates its shares by choosing a random polynomial hp(x) of degree t, such that
hp(0) = fa(p) · fb(p). Party p sends to each party i the value hp(i).

3: After receiving shares from all other parties, party p computes their share of a·b as the linear combinationH(p) =
∑q
i=1 λihi(p).

4: Let np
3 = H(p)

5: return np
3

When computation is performed by q parties, at most t of whom may collude (t < q/2), Shamir secret

sharing encodes a private integer a by choosing a polynomial f(x) of degree t with random coefficients

such that f(0) = a (all computation takes place over a finite field). Each participant obtains evaluation of

f on a unique non-zero point as their representation of private a; for example, party p obtains f(p). This

representation has the property that combining t or fewer shares reveals no information about a as all values

of a are equally likely; however, possession of t+1 or more shares permits recovering of f(x) via polynomial

interpolation and thus learning f(0) = a.

In several of these Multiparty Algorithms, the outer loop (whose condition is p ∈ {1...q}) indicates that
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the statements inside the loop would be run in parallel at each party. This notation facilitates showing that

all parties are working together to compute the true value for each element that was modified within either

branch.

Multiplication in Algorithm 97 corresponds to each party locally multiplying shares of inputs a and b,

which computes the product, but raises the polynomial degree to 2t. The parties consequently re-share their

private intermediate results to lower the polynomial degree to t and re-randomize the shares. Values λp refer

to interpolation coefficients which are derived from the computation setup and party p index.

In order to preserve the correctness and noninterference guarantees of our model when such an algorithm is

added, a library developer will need to guarantee that the implementation of this algorithm is correct, meaning

that it has the expected input output behavior, and it guarantees noninterference on what is observable.

Algorithm 98 (n13, ..., n
q
3)← MPCb(bop, [n11, ..., n

q
1], [n12, ..., n

q
2])

1: for all p ∈ {1...q} do
2: np

3 = NULL
3: if (bop = ·) then
4: np

3 = MPCmult(n
p
1 , n

p
2)

5: else if (bop = ÷) then
6: np

3 = MPCdiv (np
1 , n

p
2)

7: else if (bop = −) then
8: np

3 = MPCsub(np
1 , n

p
2)

9: else if (bop = +) then
10: np

3 = MPCadd(np
1 , n

p
2)

11: end if
12: end for
13: return (n1

3, ..., n
q
3)

Algorithm 99 (n13, ..., n
q
3)← MPCcmp([n11, ..., n

q
1], [n12, ..., n

q
2])

1: for all p ∈ {1...q} do
2: np

3 = NULL
3: if (bop = ==) then
4: np

3 = MPCeq(np
1 , n

p
2)

5: else if (bop = ! =) then
6: np

3 = MPCneq(np
1 , n

p
2)

7: else if (bop = <) then
8: np

3 = MPClt(n
p
1 , n

p
2)

9: end if
10: end for
11: return (n1

3, ..., n
q
3)

Algorithm 98, MPCb , is a selection control algorithm that directs the evaluation to the relevant multiparty

computation algorithm based on the given binary operation bop ∈ {·,÷,+,−}, and Algorithm 99, MPCb ,

is a selection control algorithm that directs the evaluation to the relevant multiparty computation algorithm

based on the given comparison operation bop ∈ {==, ! =, <}. Each of the given multiparty protocols
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in Algorithm 98 (i.e., MPCmult ,MPCsub ,MPCadd , MPCdiv ) and each of the given multiparty protocols

in Algorithm 99 (i.e., MPCeq ,MPCneq , MPClt ) must be defined using protocols that have been proven

to uphold the desired properties within our proofs (i.e., correctness and noninterference). We give an

example definition for MPCmult in Algorithm 97, but this definition can be swapped out with any protocol

for the secure multiparty computation of multiplication that maintains the properties of correctness and

noninterference. We defer the definition of all other SMC binary operations, rely on assertions that the

protocols chosen to be used with this model will maintain both correctness and noninterference in our

proofs. We chose this strategy as SMC implementations of such protocols will be proven to hold our desired

properties on their own, and this allows us to not only leverage those proofs, but to also improve the versatility

of our model by allowing such algorithms to be easily swapped out as newer, improved versions become

available.

Algorithm 100 (n12, ..., n
q
2)← MPCu(uop, [n11, ..., n

q
1])

1: if uop == ++ then
2: for all p ∈ {1...q} do
3: np

2 = MPCplpl(n
p
1)

4: end for
5: return (n1

2, ..., n
q
2)

6: end if

Algorithm 100, MPCu , is like MPCb in that it is a selection control algorithm for multiparty unary

operations. We only include the pre-increment operator here, as that is the only unary operation of this type

that is within the scope of our current grammar (i.e., pointer dereferencing with ∗ is handled separately, and

the address-of operator & is handled locally). Other types of operations that would be handled here are

pre-decrement, post-increment and post-decrement of values, as well as negation. We chose not to include

these elements in our grammar as they are trivial extensions of the current grammar.

The following Algorithms are given as placeholders for the SMC definitions of each function; for the

model to be complete, these placeholder Algorithms would need to reflect the chosen implementations of

each used within the system. Algorithm 101, MPCsub , is for the SMC implementation of subtraction. This

algorithm will securely compute whether np1 − n
p
2 for all parties p. Algorithm 102, MPCadd , is for the

SMC implementation of addition. This algorithm will securely compute whether np1 + np2 for all parties p.

Algorithm 103, MPCdiv , is for the SMC implementation of addition. This algorithm will securely compute

whether np1 ÷ n
p
2 for all parties p. Algorithm 106, MPCeq , is for the SMC implementation of equality.

This algorithm will securely compute whether np1 == np2 for all parties p. Algorithm 105, MPCneq , is
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for the SMC implementation of inequality. This algorithm will securely compute whether np1 ! = np2 for

all parties p. Algorithm 104, MPClt , is for the SMC implementation of the less than operation. This

algorithm will securely compute whether np1 < np2 for all parties p. Algorithm 107, MPCplpl , is for the SMC

implementation of the pre-increment operation on a value. This algorithm will securely compute np1 + 1 for

all parties p.

Algorithm 101 np3 ← MPCsub(np1 , n
p
2) Algorithm 102 np3 ← MPCadd (np1 , n

p
2)

Algorithm 103 np3 ← MPCdiv (np1 , n
p
2) Algorithm 104 np3 ← MPClt(n

p
1 , n

p
2)

Algorithm 105 np3 ← MPCneq(np1 , n
p
2) Algorithm 106 np3 ← MPCeq(np1 , n

p
2)

Algorithm 107 np2 ← MPCplpl (n
p
1)

The following Algorithms are given as placeholders for the SMC definitions of each function over arrays

and pointers; for the model to be complete, these placeholder Algorithms would need to reflect the chosen

implementations of each used within the system. We give a high level description for the idea behind each

here.

Algorithm 108 (n1, ..., nq)← MPCar ((i1, [n10, ..., n
1
α−1]), ..., (i

q, [nq0, ..., n
q
α−1]))

Algorithm 108 (MPCar ) is intended to privately read the value at the given private index within an

array. It takes as input the array data and the private index from each party, and returns each party’s

resulting private value. One example of implementing this algorithm is as we had defined it in Basic SMC2

(v =
∨n−1
m=0(i = encrypt(m))∧ (vm)) – for each value in the array, we take the bitwise and of the value and

the result of comparing the private index to the current index we are handling within the array, then taking the

bitwise or of all resulting values.

Algorithm 109
([n′10 , ..., n

′1
α−1], ..., [n

′q
0 , ..., n

′q
α−1])← MPCaw ((i1, n1, [n10, ..., n

1
α−1]), ..., (i

q, nq, [nq0, ..., n
q
α−1]))

Algorithm 109 (MPCaw ) is intended to privately replace the value at the given private index within

the array with a new value. It takes as input the private index, the new value to place at the private
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index, and the array data from each party, and returns each party’s resulting array data. One example of

implementing this algorithm is as we had defined it in Basic SMC2 (∀nm ∈ [n0, ..., nα−1]. n
′
m = ((i =

encrypt(m))∧n)∨ (¬(n = encrypt(m))∧nm)). For each value in the array, first find the private condition

of whether the private index is equal to the current index we are evaluating. Then perform a bitwise and over

the new value and this condition, and separately the logical negation of the private condition and the current

value. Finally, we perform a bitwise or over the result of the two bitwise and operations, giving us the new

value to store at this location.

Algorithm 110 (n1, ..., nq)← MPCdv ([[n10, ..., n
1
α−1], ..., [n

q
0, ..., n

q
α−1]], [j

1
, ..., j

q
])

Algorithm 110 (MPCdv ) is intended to privately evaluate which value is the true value when dereferencing

a pointer with multiple locations. It takes as input the list of values obtained from dereferencing each possible

location of the pointer and the pointer’s tag list that indicates which location was the true location. One

example of implementing this algorithm is how we defined it for Basic SMC2, and is fairly similar to what

we do when reading from a private index of an array . For each possible value, we take the bitwise and

of the value and the tag for the location it came from, then taking the bitwise or of all resulting values

(n =
∨α−1
m=0(jm) ∧ (nm)).

Algorithm 111
([[α, l

1
, j

1
], ..., [α, l

q
, j

q
]])← MPCdp([[[α, l

1
, j

1
], ..., [α, l

1
, j

1
]], ..., [[α, l

q
, j

q
], ..., [α, l

q
, j

q
]]], [j

1
, ..., j

q
])

Algorithm 111 (MPCdp) is intended to privately evaluate which location is the true value when deref-

erencing a pointer with multiple locations that is of a higher level of indirection. Here, we need to take all

possible locations and condense them into a single location list and corresponding tag list. In the simplest

case, where the higher level pointer has multiple locations but the dereference locations refer to only a single

location, we can simply create a location list of all of these locations, and the tag list for the higher level

pointer would correspond directly to this location list. However, it is possible that the lower level pointer

locations can also refer to multiple locations, potentially with overlap between pointers. In this case, we need

to take the location and tag lists for each of these pointers and privately combine them. The concept here

is very similar to what occurs within the resolution of pointer locations at the end of a private-conditioned

if else statement, and we can leverage the idea of Algorithm 78 here. This algorithm takes from each party

a list of the number of locations, location list, and tag list for each of the possible locations of the original
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pointer and the tag list of the original pointer as input, then returns each party’s resulting number of locations,

location list, and tag list.

Algorithm 112
([n′10 , ..., n

′1
α−1], ..., [n

′q
0 , ..., n

′q
α−1])← MPCwdv ([[n10, ..., n

1
α−1], ..., [n

q
0, ..., n

q
α−1]], [n

1, ..., nq], [j
1
, ..., j

q
])

Algorithm 112 (MPCwdv ) is intended to facilitate dereference writing a new value to a private pointer

that has multiple locations. It takes as input from each party the list of dereferenced values from each

possible location of the pointer, the new value to write into memory, and the list of tags for the pointer we are

dereference writing to. One example of implementing this algorithm is how we defined it for Basic SMC2,

and is fairly similar to what we do when writing to a private index of an array (∀nm ∈ [n0, ..., nα−1]. n
′
m =

(jm ∧ n) ∨ (¬(jm) ∧ nm)). For possible value, perform a bitwise and over the new value and the tag for the

location it came from, and separately the logical negation of the the tag for the location it came from and the

current value. Finally, we perform a bitwise or over the result of the two bitwise and operations, giving us

the new value to store at this location.

Algorithm 113 [ptr
1
, ..., ptr

q
]← MPCwdp([ptr

1
, ..., ptr

q
], [j

1
, ..., j

q
])

Algorithm 113 (MPCwdp) is intended to facilitate dereference writing a new location list to a private

pointer of a higher level of indirection that has multiple locations. It takes as input from each party the list of

pointer data structures, the first being what needs to be written into memory and the rest from each possible

location of the pointer, and also the list of tags for the pointer we are dereference writing to. The concept here

is very similar to what occurs within the resolution of pointer locations at the end of a private-conditioned

if else statement (i.e., separately combining the pointer data structure that needs to be stored into memory

with the pointer data structures that are currently there), and we can leverage the idea of Algorithm 78 here.

We return each party’s updated pointer data structures to store back into memory for all possible locations of

the pointer we are dereference writing to.

MPCresolve and MPCfree , though multiparty algorithms, are diverted from this subsection to be shown

in Algorithm 124 and 75, respectively, and discussed in conjunction with their corresponding algorithms.
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5.1.5 Multiparty SMC2 Algorithms

114 Extract ::= f : (s, s, γ) = (x, j)

115 InitializeVariables ::= f : (x, γ, σ, n, acc)→ (γ, σ, l)

116 RestoreVariables ::= f : (x, γ, σ, acc)→ (σ, l)

117 ResolveVariables_Retrieve ::= f : (x, acc, γ, σ)→ ([(v, v), ..., (v, v)], n, l)

118 ResolveVariables_Store ::= f : (x, acc, γ, σ, v)→ (σ, l)

119 Initialize ::= f : (∆, x, γ, σ, n, acc)→ (γ, σ,∆, l)

120 DynamicUpdate ::= f : (∆, σ, l, acc, ty)→ (∆, l)

121 Restore ::= f : (σ,∆, acc)→ (σ,∆, l)

122 Resolve_Retrieve ::= f : (γ, σ,∆, acc)→ ([(v, v), ..., (v, v)], n, l)

123 Resolve_Store ::= f : (∆, σ, acc, v)→ (σ,∆, l)

125 CondAssign ::= f : ([α, l, j], [α, l, j], n)→ [α, l, j]

126 Free ::= f : (σ, l)→ (σ, (l, µ))

127 CheckFreeable ::= f : (γ, l, j, σ)→ j

129 UpdatePointerLocations ::= f : (σ, l, j, (l, µ), j)→ (σ, l)

130 UpdateBytesFree ::= f : (σ, l, ω)→ σ

131 UpdateArr ::= f : (σ, (l, i), n, a bty)→ σ

132 EncodeArr ::= f : (a bty , α, n)→ ω

133 DecodeArr ::= f : (a bty , i, ω)→ n

134 UpdateDerefVals ::= f : (α, l, v, ty , σ)→ σ

135 Retrieve_Values ::= f : (α, l, ty , σ)→ (v, j)

136 ReadOOB ::= f : (i, α, l, a bty , σ)→ (n, j, (l, µ))

137 WriteOOB ::= f : (n, i, α, l, a bty , σ,∆, acc)→ (σ,∆, j, (l, µ))

138 φp ::= f : ({temp})→ l

139 L :: L ::= f : L :: L → L

140 D :: D ::= f : D :: D → D

141 L(p) ::= f : L(p)→ Lp

142 D(p) ::= f : D(p)→ Dp

621



143 (e) ` γ ::= f : (e) ` γ → j

144 (e) 0 γ ::= f : (e) 0 γ → j

Here, we will discuss the helper algorithms used when branching on private conditionals. First, we will

discuss extraction of what variables are modified and how we choose which strategy to use. Second, we will

discuss our variable-based tracking algorithms. Third, we will discuss our location-based tracking algorithms.

Finally, we will discuss our multiparty resolution algorithms.

Algorithm 114 (xmod , j)← Extract(s1, s2, γ)

1: j = 0
2: xlocal = [ ]
3: xmod = [ ]
4: for all s ∈ {s1; s2} do
5: if ((s = ty x) ∨ (s = ty x[e])) then
6: xlocal .append(x)
7: else if ((s = x = e) ∧ (¬xlocal .contains(x))) then
8: xmod = xmod ∪ [x]
9: for all e1 ∈ e do

10: if ((e1 = ++ x1) ∧ (¬xlocal .contains(x1))) then
11: xmod = xmod ∪ [x1]
12: end if
13: end for
14: else if ((s = x[e1] = e2) ∧ (¬xlocal .contains(x))) then
15: if (e1) ` γ then
16: xmod = xmod ∪ [x]
17: else
18: j = 1
19: end if
20: for all e ∈ {e1, e2} do
21: if ((e = ++ x1) ∧ (¬xlocal .contains(x1))) then
22: xmod = xmod ∪ [x1]
23: end if
24: end for
25: else if ((s = ++ x) ∧ (¬xlocal .contains(x))) then
26: xmod = xmod ∪ [x]
27: else if (s = ∗x = e) then
28: j = 1
29: for all e1 ∈ e do
30: if ((e1 = ++ x1) ∧ (¬xlocal .contains(x1))) then
31: xmod = xmod ∪ [x1]
32: end if
33: end for
34: end if
35: end for
36: return (xmod , j)

Algorithm 114, Extract, iterates over the statements contained in both branches, checking for which

variables are modified (i.e., pre-increment operations, assignment statements) and whether either branch

contains a pointer dereference write or array write at a public index. All variables that are modified through
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pre-increment operations and regular assignment statements are added to the variable list that is returned.

Pointer variables that are used in a pointer dereference write are not added to this list, as the data at the

location that is referred to is being modified (and not the data stored at the pointer’s location). This is also

true for arrays that are only updated at public indices. When a pointer dereference write or array write at a

public index is found, we update the tag to be 1 (i.e., true), otherwise the tag remains as 0. We later use this

tag to decide whether we can proceed with the standard, flat basic block tracking using temporary variables

(when no pointer dereference write operations or potential out of bounds writes occur), or whether we need

to use the dynamic basic block tracking using locations.

It is important to note that if a pointer dereference write occurs inside a private-conditioned branch,

we must proceed with location tracking at the level that it occurs as well as any outer levels of nesting of

private-conditioned branches; however, if a lower level of nesting does not contain any pointer dereference

writes, we can use variable tracking at that level. This algorithm will also filter out modifications made to any

local variables, as we do not need to track and propagate those modifications outside of this local scope.

It is also important to note here that, currently, when we find an array has been modified as a whole, we

simply add the array variable name to the list and track all locations. When an array has been modified at a

private index, we add the entire array to be tracked, as we will be modifying all indices within the array to

hide the true index that was updated. When an array has been modified at a specific public index, we trigger

location tracking. We do this because we cannot easily tell what the value of the index will be at execution

when we run Extract (unless the array index is hard-coded, but this is rare), and therefore we do not know if

the array access will be in bounds or not.

Algorithms 115 (InitializeVariables), 116 (RestoreVariables), 117 (ResolveVariables_Retrieve), and 118

(ResolveVariables_Store) are specific to the variable tracking style of conditional code block tracking, as

shown in rule Private If Else (Variable Tracking) in Figure 5.16.

First, Algorithm 115 stores the result of the conditional expression (n) in resacc (lines 1:4). It grabs a

new temporary variable location (line 1), adds the mapping to the environment (line 2), encodes the value

n into its byte-representation (line 3), then adds the mapping into memory (line 4). It is important to note

here that we pull new locations from the partition of memory designated for such temporary variables, as this

simplifies the mapping of memory between SMC2 and Vanilla C.

Then, for each variable x in xlist , we look up x in the environment and memory (line 7, 12), grab new

temporary variable locations (lines 8-9), and create then and else temporary variables initialized with the

623



Algorithm 115 (γ1, σ1, l)← InitializeVariables(xlist , γ, σ, n, acc)

1: lres = φ(temp)
2: γ1 = γ[res_acc→ (lres , private int)]
3: ωres = EncodeVal(private int, n)
4: σ1 = σ[lres → (ωres ,private int, 1,PermL(Freeable,private int, private, 1))]
5: l = [(lres , 0)]
6: for all x ∈ xlist do
7: (lx, ty) = γ(x)
8: lt = φ(temp)
9: le = φ(temp)

10: l = l :: [(lx, 0), (lt, 0), (le, 0)]
11: γ1 = γ1[x_t_acc→ (lt, ty)][x_e_acc→ (le, ty)]
12: (ωx, ty , α,PermL(Freeable, ty , private, α)) = σ1(lx)
13: if (ty = private const bty∗) then
14: lta = φ(temp)
15: lea = φ(temp)
16: [1, [(lxa, 0)], [1], 1] = DecodePtr(ty , 1, ωx)
17: (ωxa, private bty , α,PermL(Freeable, private bty , private, α)) = σ1(lxa)
18: σ1 = σ1[lta → (ωxa, private bty , α,PermL(Freeable,private bty , private, α))]
19: σ1 = σ1[lea → (ωxa,private bty , α,PermL(Freeable, private bty , private, α))]
20: ωt = EncodePtr(ty , [1, [(lt, 0)], [1], 1])
21: ωe = EncodePtr(ty , [1, [(le, 0)], [1], 1])
22: σ1 = σ1[lt → (ωt, ty , 1,PermL(Freeable, ty ,private, 1))]
23: σ1 = σ1[le → (ωe, ty , 1,PermL(Freeable, ty , private, 1))]
24: for all i ∈ {0...α− 1} do
25: l = l :: [(lxa, i), (lta, i), (lea, i)]
26: end for
27: else
28: σ1 = σ1[lt → (ωx, ty , α,PermL(Freeable, ty ,private, α))]
29: σ1 = σ1[le → (ωx, ty , α,PermL(Freeable, ty , private, α))]
30: end if
31: end for
32: return (γ1, σ1, l)

value of x. To do this, we first add the mapping of these temporaries to the environment (line 11). When x

refers to an entire array, we have the special case of needing to look up the array data from the pointer that

refers to it. To handle this, we have split out the behavior for arrays within the if branch in the algorithm, and

the else branch handles both pointers and regular variables appropriately, as these are single-level temporary

variables.

If the variable is an array type, we must grab new temporary variable locations for the array data of the

then and else variables (lines 14-15), look up the array data of x (lines 16-17), then add the mappings for

both the array data (lines 18-19) and the array pointer (lines 20-23) to memory. For other types of variables,

we can simply add the mappings for the then and else variables to memory directly using the data from x

(lines 28-29), as the data that will be changed within the branches for these variables is at this level. Lines 5,

10, and 24-26 facilitate our analysis of which locations have been accessed or modified, which allows us to

more easily reason about this within the rules as needed for our noninterference result.
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Algorithm 116 (σ4, l)← RestoreVariables(xlist , γ, σ, acc)

1: l = [ ]
2: for all x ∈ xlist do
3: (lx, ty) = γ(x)
4: (lt, ty) = γ(x_t_acc)
5: (le, ty) = γ(x_e_acc)
6: l = l :: [(lx, 0), (lt, 0), (le, 0)]
7: if (ty = private const bty∗) then
8: (ωxa, ty , 1,PermL(Freeable, ty ,private, 1)) = σ(lx)
9: (ωta, ty , 1,PermL(Freeable, ty , private, 1)) = σ(lt)

10: (ωea, ty , 1,PermL(Freeable, ty , private, 1)) = σ(le)
11: [1, [(lxa, 0)], [1], 1] = DecodePtr(ty , 1, ωxa)
12: [1, [(lta, 0)], [1], 1] = DecodePtr(ty , 1, ωta)
13: [1, [(lea, 0)], [1], 1] = DecodePtr(ty , 1, ωea)
14: σ1[lxa → (ωt, ty , α,PermL(Freeable, ty , private, α))] = σ
15: σ2[lta → (ωx, ty , α,PermL(Freeable, ty , private, α))] = σ1

16: σ3 = σ2[lta → (ωt, ty , α,PermL(Freeable, ty , private, α)]
17: (ωx, ty , α,PermL(Freeable, ty , private, α)) = σ3(lea)
18: σ4 = σ3[lxa → (ωx, ty , α,PermL(Freeable, ty , private, α)]
19: for all i ∈ {0...α− 1} do
20: l = l :: [(lxa, i), (lta, i), (lea, i)]
21: end for
22: else
23: σ1[lx → (ωt, ty , α,PermL(Freeable, ty , private, α))] = σ
24: σ2[lt → (ωx, ty , α,PermL(Freeable, ty , private, α)] = σ1

25: σ3 = σ2[lt → (ωt, ty , α,PermL(Freeable, ty , private, α)]
26: (ωx, ty , α,PermL(Freeable, ty , private, α)) = σ3(le)
27: σ4 = σ3[lx → (ωx, ty , α,PermL(Freeable, ty , private, α)]
28: end if
29: σ = σ4

30: end for
31: return (σ4, l)

In Algorithm 116, for each variable x within xlist , we must save the current value for the variable

and then restore it to other value it had before execution of the then branch. We first look up x and its

associated temporary variables within our environment. Then we proceed to restore based on the type (array

vs. non-array). For arrays, we first find where the array data is stored (lines 8-13), then proceed to pull out the

data for x and then from memory (lines 14-15). We then take the data that was in x, which is the resulting

data from the then branch, and store it back into memory as the updated mapping for the then temporary

(line 16). Finally, we look up the original data of x stored in the else temporary (line 17), and store it back

into memory as the data for x (line 18).

It is useful to note that within this rule, we explicitly show that x currently contains the value for the else

branch (ωt), which we proceed to store in the then variable, and the else variable contains the original

value for x (ωx), which we proceed to store back into x. When an entire array has been modified, we have

the special case of needing to look up the array data from the pointer that refers to it. To handle this, we have
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split out the behavior for arrays within the if branch in the algorithm, and the else branch handles both

pointers and regular variables appropriately, as these are single-level modifications (no pointer dereference

writes occurred).

The behavior of lines 23-27 corresponds to the behavior of lines 14-18, but for variables that are not

arrays. This is because the data that was modified for int, float, and pointer variables is at the first level lookup

within memory, but for arrays it is stored at one level of indirection due to the structure of array variables as

being a const pointer to the larger set of array data. In lines 6 and 19-21, we are facilitating the analysis of

which locations have been accessed or modified, which allows us to more easily reason about this within the

rules.

Algorithm 117 (v, nres , l)← ResolveVariables_Retrieve(xlist , acc, γ, σ)

1: v = [ ]
2: (lres ,private int) = γ(res_acc)
3: (ωres , private int, 1,PermL(Freeable, private int, private, 1)) = σ(lres)
4: nres = DecodeVal(private int, ωres)
5: l = [(lres , 0)]
6: for all x ∈ xlist do
7: (lx, ty) = γ(x)
8: (lt, ty) = γ(xt)
9: (ωx, ty , α,PermL(Freeable, ty ,private, α)) = σ(lx)

10: (ωt, ty , α,PermL(Freeable, ty ,private, α)) = σ(lt)
11: l = l :: [(lx, 0), (lt, 0)]
12: if (ty = private bty) then
13: vx = DecodeVal(private bty , ωx)
14: vt = DecodeVal(private bty , ωt)
15: v = v.append((vt, vx))
16: else if (ty = private const bty∗) then
17: [1, [(lxa, 0)], [1], 1] = DecodePtr(ty , 1, ωx)
18: [1, [(lta, 0)], [1], 1] = DecodePtr(ty , 1, ωt)
19: (ωxa, private bty , α,PermL(Freeable, private bty , private, α)) = σ(lxa)
20: (ωta, private bty , α,PermL(Freeable,private bty , private, α)) = σ(lta)
21: for all i ∈ {0...α− 1} do
22: vxi = DecodeArr(private bty , i, ωxa)
23: vti = DecodeArr(private bty , i, ωta)
24: v = v.append((vti, vxi))
25: l = l :: [(lxa, i), (lta, i)]
26: end for
27: else if (ty = private bty∗) then
28: [α, lx, jx, i] = DecodePtr(ty , α, ωx)
29: [α, lt, jt, i] = DecodePtr(ty , α, ωt)
30: v = v.append(([α, lt, jt, i], [α, lx, jx, i]))
31: end if
32: end for
33: return (v, nres , l)

In Algorithm 117, we retrieve all of the data needed to resolve what the true value for each modified

variable x within xlist should be. First, we retrieve the value for the result of the conditional expression (lines
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2-4), then we retrieve the values for each variable within xlist . We will retrieve the else value by looking

up the value currently stored in x, as we have just completed execution of the else branch (lines 7, 9 and

13/17,19,22/28 by type). We will retrieve the then value by looking up the value currently stored in the

temporary variable xt (lines 8,10, and 14/18,20,23/29 by type). We append a tuple of the then and else

values for each variable to the list of values (lines 15/24/30 by type). This list of values will then be used

within the multiparty resolve algorithm MPCresolve to obtain the true values for each variable. As with the

previous helper algorithms, we collect a list of which locations we have accessed in order to facilitate our

analysis of location accesses.

Algorithm 118 (σ1, l)← ResolveVariables_Store(xlist , acc, γ, σ, v)

1: l = [ ]
2: σ1 = σ
3: for all i ∈ {0...|v| − 1} do
4: x = xlist [i]
5: vx = v[i]
6: (lx, ty) = γ(x)
7: l = l.append((lx, 0))
8: if (ty = private bty) then
9: σ2 = UpdateVal(σ1, lx, vx, ty)

10: σ1 = σ2

11: else if (ty = private const bty∗) then
12: [1, [(lxa, 0)], [1], 1] = DecodePtr(ty , 1, ωx)
13: for all µ ∈ {0...α− 1} do
14: vµ = vx[µ]
15: σ2+µ = UpdateArr(σ1+µ, (lxa, µ), vµ, ty)
16: l = l.append((lxa, µ))
17: end for
18: σ1 = σ2+µ

19: else if (ty = private bty∗) then
20: σ2 = UpdatePtr(σ1, (lx, 0), vx, ty)
21: σ1 = σ2

22: end if
23: end for
24: return (σ1, l)

Once we have completed resolution of true values, we then use Algorithm 118 to store the true value

for each modified variable x within xlist back into memory. The list of values maintains its ordering during

resolution, so we simply iterate through the list of variables and values, updating each variable with its

corresponding value. As with the previous helper algorithms, we collect a list of which locations we have

accessed in order to facilitate our analysis of location accesses.

Algorithms 119 (Initialize), 120 (DynamicUpdate), 121 (Restore), 122 (Resolve_Retrieve), and 123

(Resolve_Store) are specific to the location tracking style of conditional code block tracking, as shown in

rule Private If Else (Location Tracking) in Figure 5.16.
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Algorithm 119 (γ1, σ1,∆1, l1)← Initialize(∆, xlist , γ, σ, acc)

1: lres = φ(temp)
2: γ1 = γ[res_acc→ (lres , private int)]
3: ωres = EncodeVal(private int, n)
4: σ1 = σ[lres → (ωres ,private int, 1,PermL(Freeable,private int, private, 1))]
5: l1 = [(lres , 0)]
6: for all x ∈ xlist do
7: (l, ty) = γ(x)
8: l1 = l1.append((l, 0))
9: if (ty == private bty) then

10: (ω,private bty , 1,PermL(Freeable, private bty ,private, 1)) = σ(l)
11: v = DecodeVal(private bty , ω)
12: ∆1 = ∆[acc].push(((l, 0)→ (v,NULL, 0, private bty)))
13: else if (ty == private bty∗) then
14: (ω, private bty∗, α, PermL(Freeable, private bty∗, private, α)) = σ(l)
15: [α, l, j, i] = DecodePtr(private bty∗, α, ω)]
16: ∆1 = ∆[acc].push(((l, 0)→ ([α, l, j, i],NULL, 0, private bty∗)))
17: else if (ty = private const bty∗) then
18: (ω, private const bty∗, 1, PermL(Freeable, private const bty∗,private, 1)) = σ(l)
19: [1, [(l1, 0)], [1], 1] = DecodePtr(private const bty∗, 1, ω)]
20: (ω1, private bty , α,PermL(Freeable, private bty , private, α)) = σ2(l1)
21: for all i ∈ {0...α− 1} do
22: l1 = l1.append((l1, i))
23: vi = DecodeArr(private bty , i, ω1)
24: ∆1 = ∆1[acc].push(((l1, i)→ (vi,NULL, 0,private bty)))
25: end for
26: end if
27: ∆ = ∆1

28: end for
29: return (γ1, σ1,∆1, l1)

It is worthwhile to start by noting the structure of ∆ for SMC2. ∆ is a list of lists, with the inner lists

storing the mapping of location to data for dynamic tracking at each level of nesting of private-conditioned

branches. Each mapping is structured as (l, µ) → (vorig , vthen , j, ty), where (l, µ) is the location that is

modified (stored as the memory block identifier and offset into the block), vorig is the original data stored in

a location, and vthen as the data stored in that location at the end of the execution of the then branch. The

public tag j is set to 0 when a new mapping is added to ∆, signifying that we have stored data into vorig , but

there is currently no data in vthen . During restoration between branches, we update j to 1 as we store the data

from that location into the map. This is needed due to dynamic tracking of pointer dereference writes and

potential out of bounds array accesses - we can see such a modification to a untracked location for the first

time in the else branch, and this allows us to add these new locations without needing to track which branch

we are currently in (i.e., for the current level of nesting and all outer levels, as this may be a new location for

all levels). Using this tag, we are able to resolve at all levels of nesting with ease, using the tag to indicate

whether we should use vorig or vthen as the then data in resolution. This tag does not need to be private, as
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it is visible to an observer whether or not the data at a given location was modified during the execution of

either branch.

Algorithm 119, Initialize, stores the result of the conditional and then iterates through all of the variables

within the variable list obtained from Extract, adding a new mapping for the location at which it is stored

and storing its current value into the orig portion, as well as initializing the tag j for that location as 0. As the

modification of the location where a variable is stored is not allowed, it is safe to add all of these locations

and their original values into ∆ before the execution of the then branch. This allows execution of the then

branch to proceed as normal, only incurring additional costs when a pointer dereference write or an array

write at a public index occurs. In this Algorithm, we have built in the tracking of which locations we are

accessing, adding them to the variable l1 and then returning this information to the rule from which it was

called.

Algorithm 120 (∆1, l1)← DynamicUpdate(∆, σ, l, acc, ty)

1: if (acc = 0) then
2: return (∆, [ ])
3: end if
4: l1 = [ ]
5: ∆1 = ∆
6: for (l, µ) ∈ l do
7: if ((l, µ) /∈ ∆1[acc]) then
8: l1 = l1 :: [(l, µ)]
9: σ1[l→ (ω, ty ′, α, PermL(Freeable, ty ′, private, α))] = σ

10: if (ty = ty ′ = private bty) ∧ (0 ≤ µ < α) then
11: v = DecodeArr(ty , µ, ω)
12: ∆1 = ∆1[acc].push(((l, µ)→ (v, NULL, 0, private bty)))
13: else if (ty = ty ′ = private bty∗) ∧ (µ = 0) then
14: [α, l1, j, i] = DecodePtr(private bty∗, α, ω)
15: ∆1 = ∆1[acc].push(((l, 0)→ ([α, l1, j, i],NULL, 0,private bty∗)))
16: else
17: v = GetBytes((l, µ), ty , σ)
18: ∆1 = ∆1[acc].push(((l, µ)→ (v, NULL, 0, ty)))
19: end if
20: if (acc > 0) then
21: ∆1 = DynamicUpdate(∆1, σ, [(l, µ)], acc− 1)
22: end if
23: end if
24: end for
25: return (∆1, l1)

Algorithm 120, DynamicUpdate, is used prior to performing a pointer dereference write, an array write

at a public index, and within Algorithm WriteOOB in order to ensure that we are correctly tracking all

locations that get modified. It takes the location that is about to be modified and ensures that this location is

either already being tracked by ∆ for the current level of nesting, or adds the location and its original value to

629



∆ for that level of nesting. If this location is not already in ∆ for the current level of nesting, and we are not

in the outer-most private-conditioned branch, it will recursively call itself for all outer levels of nesting. This

is to ensure that the location will be properly tracked at all levels. If the location is found to already be tracked

at an outer level, it will return. We chose to perform this more costly checking at this point of execution, as

we know whether or not the location is new to this level of nesting at this point, and can easily propagate

this information upward to the outer levels of nesting here. The most costly check, where this new location

needs to be added to all outer levels of nesting, can only occur once for each new location and will only

occur once as subsequent modifications will find that the location is already being tracked. This propagation

must happen at some point during execution, and would only require additional memory resources if it is

not performed at this point, as, in order to put off the propagation until later, it would be necessary to tag

this location as one that had been added during this level of nesting. Algorithm GetBytes is used within this

Algorithm when the location that is given and what is stored at that location do not match up perfectly, such

as the case when the given type and the type at that location do not match (in which case, we would need to

grab additional bytes from the next location in order to properly decode a value based on our expected type.

It is important to reiterate here that during an out of bounds array write, DynamicUpdate is called from

within WriteOOB in order to properly track the location being written to, since we are overshooting the

location containing the array data. For pointer dereference writes, we use this to ensure we are tracking the

most current location referred to by the pointer, since it is possible that it has changed during execution of

either branch. For array writes at public indices, we must track dynamically (whether out of bounds or in

bounds) due to the possibility of an out of bounds access.
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Algorithm 121 (σ2,∆3, l)← Restore(σ, ∆, acc)

1: ∆1 = ∆
2: l = [ ]
3: for all ((l, µ)→ (vorig ,NULL, 0, ty)) ∈ ∆[acc] do
4: vthen = NULL
5: if (µ = 0) then
6: if (ty = private bty) then
7: σ1[l→ (ω,private bty , 1,PermL(Freeable, private bty ,private, 1))] = σ
8: ω1 = EncodeVal(private bty , vorig)
9: σ2 = σ1[l→ (ω1, private bty , 1,PermL(Freeable, private bty ,private, 1))]

10: vthen = DecodeVal(private bty , ω)
11: else if (ty = private bty∗) then
12: [αorig , lorig , jorig , i] = vorig

13: σ1[l→ (ωthen , private bty∗, αthen ,PermL(Freeable, private bty∗, private, αthen))] = σ
14: ωorig = EncodePtr(ty , [αorig , lorig , jorig , i])
15: σ2 = σ1[l→ (ωorig ,private bty∗, αorig ,PermL(Freeable, private bty ,private, αorig))]
16: vthen = DecodePtr(private bty∗, αthen , ωthen)
17: end if
18: else
19: vthen = GetBytes((l, µ), ty , σ)
20: σ2 = SetBytes((l, µ), ty , vorig , σ)
21: end if
22: ∆2[acc][(l, 0)→ (vorig ,NULL, 0, ty)] = ∆1

23: ∆3 = ∆2[acc][(l, 0)→ (vorig , vthen , 1, ty)]
24: l = l.append(l, µ)
25: σ = σ2

26: ∆1 = ∆3

27: end for
28: return (σ2,∆3, l)

Algorithm 121, Restore, iterates through all locations in ∆ at the current level of nesting acc, storing the

current data for each location into the then portion of the mapping for the given location, and restoring the

original data to the location from the orig portion. Additionally, it will update the tag j to 1 for all locations.

This allows Resolve to know whether a new location was added during the execution of the else branch,

and to use the value stored in orig when such a location is found.
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Algorithm 122 (v, nres , l)← Resolve_Retrieve(γ, σ, ∆, acc)

1: v = [ ]
2: (lres ,private int) = γ(res_acc)
3: (ωres , private int, 1,PermL(Freeable, private int, private, 1)) = σ(lres)
4: nres = DecodeVal(private int, ωres)
5: l = [(lres , 0)]
6: for all ((l, µ)→ (vorig , vthen , j, ty)) ∈ ∆[acc] do
7: vt = NULL
8: if j = 0 then
9: vt = vorig

10: else
11: vt = vthen

12: end if
13: ve = NULL
14: if (µ = 0) then
15: (ω, ty , α,PermL(Freeable, ty ,private, α)) = σ(l)
16: if (ty = private bty) then
17: (ω,private bty , 1,PermL(Freeable,private bty , private, 1)) = σ(l)
18: ve = DecodeVal(private bty , ω)
19: else if (ty = private bty∗) then
20: (ω,private bty∗, α,PermL(Freeable, private bty∗, private, α)) = σ(l)
21: ve = DecodePtr(private bty∗, α, ω)
22: end if
23: else
24: ve = GetBytes((l, µ), ty , σ)
25: end if
26: v = v.append(vt , ve)
27: l = l.append((l, µ))
28: end for
29: return (v, nres , l)

Algorithm 122, Resolve_Retrieve, returns the result of the conditional, a list of tuples of the then and

else values for each location in ∆[acc], and a list of locations that it has accessed. To get values for each

branch, it iterates through all the locations in ∆[acc]. To get the then value, it uses the tag indicating whether

that location was modified in the then branch or not; if it is 0, it will use the stored original value from

before execution of either branch, if it is 1, it will use the stored then value. The data currently stored in each

location is used for the else data, as execution of the else branch has just completed.

Algorithm 123, Resolve_Store, stores all the true values back into memory. It iterates through all the

locations in ∆[acc], encoding the values as their expected type and writing this byte representation into

memory. Once all the changes have been stored into memory, it removes the list of mappings for this level of

private-conditioned branches using ∆.pop(), as it becomes out of scope once we leave this algorithm and

the Private If Else rule. This algorithm takes as input the location map, memory, the accumulator, and the

list of values to be stored back into memory (one for every location in the location map). When complete, it

returns the updated memory and location map, as well as the list of locations that were modified within this
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Algorithm 123 (σ1,∆1, l)← Resolve_Store(∆, σ, acc, v)

1: l = [ ]
2: σ1 = σ
3: for all i ∈ {0...|v| − 1} do
4: vf = v[i]
5: ((l, µ)→ (vorig , vthen , j, ty)) = ∆[acc][i]
6: if (µ = 0) then
7: if (ty = private bty) then
8: (ω, ty , α,PermL(Freeable, ty ,private, α)) = σ1(l)
9: if (α = 1) then

10: σ1 = UpdateVal(σ, l, vf , ty)
11: else
12: σ1 = UpdateArr(σ, (l, 0), vf , ty)
13: end if
14: else if (ty = private bty∗) then
15: σ1 = UpdatePtr(σ, (l, 0), vf , ty)
16: end if
17: else
18: σ1 = SetBytes((l, µ), ty , vf , σ)
19: end if
20: l = l.append((l, µ))
21: σ = σ1

22: end for
23: ∆1 = ∆.pop()
24: return (σ1,∆1, s, l)

algorithm.

Algorithm 124, (MPCresolve), is the multiparty algorithm for facilitating the secure resolution of the

values of which branch are the true values. We have already read the elements from memory, so each tuple

within the parties value list vp is either a pointer data structure or an int (or float) value. We proceed to find

the true value based upon what type of value we are currently viewing, leveraging Algorithm 125 to compute

the final pointer data structure for each pointer.

Algorithm 125 (CondAssign) is an algorithm that requires multiparty computation. Due to the complexity

of this algorithm, that it is always called by each party within a different multiparty algorithm, and that it

directly calls specific multiparty protocols that give the behavior for a single party, we show the behavior as it

would occur at a single party. CondAssign takes two pointer data structures with the associated number of

locations, lists of locations, and lists of tags as well as a flag nres . Its primary purpose is to merge two pointer

data structures during the execution of conditional statements with private conditions. Here, nres is a flag

that indicates whether the true pointer location should be taken from the first or the second data structure;

nres == 1 means that the true location is in the first data structure. For example, when executing code

if (priv) p1 = p2;, nres is the result of evaluating private condition priv, the first data structure

corresponds to p1’s data structure prior to executing this statement, and the second data structure corresponds
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Algorithm 124 (v1f , ..., v
q
f )← MPCresolve([n1res , ..., n

q
res ], [v1, ..., vq])

1: for all p ∈ {1...q} do
2: vpf = [ ]
3: for all i ∈ {0...|vp| − 1} do
4: (vpt , v

p
e ) = vp[i]

5: vpf = NULL

6: if ([αt, lt, jt, i] = vpt ) then
7: [αp

e , l
p
e , j

p

e , i] = vpe
8: [αp

f , l
p
f , j

p

f ] = CondAssign([αp
t , l

p
t , j

p

t ], [αp
e , l

p
e , j

p

e ], np
res)

9: vpf = [αp
f , l

p
f , j

p

f , i]
10: else
11: vpf = MPCadd(MPCmult(n

p
res , v

p
t ),MPCmult(MPCsub(1, np

res), vpe ))
12: end if
13: vpf .append(vpf )
14: end for
15: end for
16: return (v1f , ..., v

q
f )

Algorithm 125 [α3, l3, j3]← CondAssign([α1, l1, j1], [α2, l2, j2], nres)

1: l3 = l1 ∪ l2
2: α3 = |l3|
3: j3 = [ ]
4: for all (lm, µm) ∈ l3 do
5: pos1 = l1.find((lm, µm))
6: pos2 = l2.find((lm, µm))
7: if (pos1 ∧ pos2) then
8: j′′m = MPCadd(MPCmult(nres , j

′
pos2

),MPCmult(MPCsub(1, nres), jpos1
))

9: else if (¬ pos2) then
10: j′′m = MPCmult(MPCsub(nres), jpos1

)
11: else
12: j′′m = MPCmult(nres , j

′
pos2

)
13: end if
14: j3.append(j′′m)
15: end for
16: return [α3, l3, j3]

to p2’s data structure. The function first computes the union of the two lists of locations and then updates

their corresponding tags based on their tags at the time of calling this function and the value of nres . For

example, if a particular location lm is found on both lists, we retain its tag from the first list if nres is set and

otherwise retain its tag from the second list if nres is not set. When lm is found only in one of the lists, we use

a similar logic and conditionally retain its original tag based on the value of nres . If a tag is not retained, it is

reset to 0. This ensures that for any pointer data structure only one tag is set to 1 and all others are set to 0.

Algorithm 126 σ3 ← Free(σ1, l)

1: σ2[l→
(
ω, a bty , 1, PermL(Freeable, a bty , a, 1))] = σ1

2: σ3 = σ2

[
l→

(
ω, a bty , 1, PermL(None, a bty , a, 1))]

3: return (σ3, (l, 0))
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Algorithm 126 corresponds to conventional memory deallocation when we call free to deallocate memory

associated with some pointer. We simply set the permissions for this location to be None, indicating that it

has been freed and is no longer intended to be in use.

Algorithm 127 j ← CheckFreeable(γ, l, j, σ)

1: if (ldefault , 0) ∈ l then
2: return 0
3: end if
4: for all (lm, µm) ∈ l do
5: if µm 6= 0 then
6: return 0
7: end if
8: end for
9: if 1 /∈ j then

10: return 0
11: end if
12: for all x ∈ γ do
13: (lx, tyx) = γ(x)
14: if (lx, 0) ∈ l then
15: return 0
16: else if ty_x = a const bty∗ then
17: (ω, tyx, 1,PermL(Freeable, tyx, a, 1)) = σ(lx)
18: [1, [(l1, 0)], [1], 1] = DecodePtr(tyx, 1, ω)
19: if (l1, 0) ∈ l then
20: return 0
21: end if
22: end if
23: end for
24: return 1

Algorithm 127 (CheckFreeable) and ensures the behavior expected of free: if the location was properly

allocated via a call to malloc, it is deallocatable for the purpose of this function. In particular, the default

location ldefault that corresponds to uninitialized pointers is not deallocatable (and freeing such a pointer

has no effect); similarly memory associated with statically declared variables is not de-allocatable via this

mechanism (and freeing it here also has no effect). Thus, if CheckFreeable returns 1, we will proceed to

mark location l as unavailable within the rules this is called from, otherwise the freeing rules have no effect

on the state of memory.

Algorithm 128 (MPCfree ) corresponds to deallocating memory associated with a pointer to private data

which may be associated with multiple locations where the data may actually reside. The true location is

not publicly known and the location to be removed should be chosen based on public knowledge. For the

purposes of this functionality, and without loss of generality, we deallocate the first location on the list, l0.

Deallocation of l0 requires additional work because that location might not be the true location, and may still

be validly in use by other pointers. In other words, based on the fact that freeing a pointer has been called, we
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Algorithm 128
([[ω′10 , ..., ω

′1
n ], ..., [ω′q0 , ..., ω

′q
n ]], [j

′1
, ..., j

′q
])← MPCfree([[ω1

0, ..., ω
1
n], ..., [ωq

0 , ..., ω
q
n]], [j

1
, ..., j

q
])

1: for all p ∈ {1...q} do
2: ω′p0 = ωp

0

3: [jp0 , ..., j
p
n] = j

p

4: j′p0 = jp0
5: for all m ∈ {1...n} do
6: ω′pm = MPCadd(MPCmult(ω

p
m,MPCsub(1, jpm)),MPCmult(ω

p
0 , j

p
m))

7: ω′p0 = MPCadd(MPCmult(ω
′p
0 ,MPCsub(1, jpm)),MPCmult(ω

p
m, j

p
m))

8: j′p0 = MPCadd(j′p0 , j
p
m)

9: end for
10: j

′p
= [j′p0 , j

p
1 , ..., j

p
n]

11: end for
12: return ([[ω′10 , ..., ω

′1
n ], ..., [ω′q0 , ..., ω

′q
n ]], [j

′1
, ..., j

′q
])

know that the true location can be released, but it might not be safe to deallocate other locations associated

with the pointer.

For that reason, in Algorithm 128 we iterate through all locations l1 through lα−1 and swap the content of

the current location lm and l0 if lm is in fact the true location (i.e., flag jm is set). That is, ω′m corresponds to

the updated content of location lm: the content will remain unchanged if jm is not set, and otherwise, it will

be replaced with the content of location l0. Similarly, ω′0 corresponds to the updated content of location l0.

Note that it may be modified in at most one iteration of the loop, namely, when jm is set. All other iterations

will keep the value unchanged (and it will never be modified if none of the tags j1, . . . , jα−1 are set and j0

is). The function is written to be data-oblivious, i.e., to not reveal the true location associated with the pointer.

We additionally compute an update to the tag for l0, ensuring that if it was swapped with another location, we

will have two tags set to 1 to indicate the two locations whose data we swapped. This algorithm then returns

the updated set of bytes and tag list with the updated first tag.

In Algorithm 129 (UpdatePointerLocations), we are given location lr which is being removed and a

list of other locations l associated with the pointer in question. In the event that lr was not the true pointer

location, its content has been moved to another location, but it still may remain in the lists of other pointers,

which is what this function is to correct. In particular, the function iterates through other pointers in the

system and searches for location lr in their lists. If lr is present (i.e., lr ∈ lk), we need to remove it and

replace it with another location from l to which the data has been moved. However, because we do not know

which location in l is set and contains the relevant data, we are left with merging all locations in L with the

pointer’s current locations l
′
k after removing lr. This is done using Algorithm 125, CondAssign.

Notice that we are also merging two pointer data structures based on a condition. This time the condition
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Algorithm 129 (σ1, l1)← UpdatePointerLocations(σ, l, j, (lr, µr), jr)

1: σ1 = [ ]
2: l1 = [ ]
3: for all lk ∈ σ do
4: (ωk, ty , n, PermL(Freeable, ty , a, n)) = σ(lk)
5: if (ty = private bty∗) then
6: l1 = l1 :: [(lk, 0)]
7: [n, lk, jk, i] = DecodePtr(private bty∗, n, ω)
8: if (lr, µr) ∈ lk then
9: pos = lk.find((lr, µr))

10: j
′
k = jk \ jk[pos]

11: l
′
k = lk \ (lr, µr)

12: [αnew , lnew , jnew ] = CondAssign([|l|, l, j], [n− 1, l
′
k, j
′
k], jk[pos])

13: ω′k = EncodePtr(private bty∗, [αnew , lnew , jnew , i])
14: σ1 = σ1[lk → (ω′k, ty , n, PermL(Freeable, ty , a, n))]
15: else
16: σ1 = σ1[lk → (ωk, ty , n, PermL(Freeable, ty , a, n))]
17: end if
18: else
19: σ1 = σ1[lk → (ωk, ty , n, PermL(Freeable, ty , a, n))]
20: end if
21: end for
22: return (σ1, l1)

is jkpos , which indicates whether the true location is in the first or second list of locations. That is, if lr was

the true location of the pointer, the data has been moved and resides in one of the locations in l. Otherwise, if

lr was not the true location, the data resides at one of the remaining locations associated with the pointer on

its location list l
′
k. Thus, we merge the list of locations and update the corresponding tags in the same way

this is done during evaluation of conditional statements with private conditions.

Algorithm 130 σ2 ← UpdateBytesFree(σ, [(l0, 0), ..., (ln, 0)], [ω0, ..., ωn])

1: σ1[l0 → (ω′0, ty , α, PermL(Freeable, ty , private, α))] = σ
2: σ2 = σ1[l0 → (ω0, ty , α, PermL(Freeable, ty , private, α))]
3: for all m ∈ {1...n} do
4: σ3[lm → (ω′m, ty , αm, PermL(Freeable, ty , private, αm))] = σ2

5: σ4 = σ3[lm → (ωm, ty , αm, PermL(Freeable, ty , private, αm))]
6: σ2 = σ4

7: end for
8: return σ2

Algorithm 130 (UpdateBytesFree) if the final step of the rule for pfree when the pointer has multiple

locations. Here, we are modifying the permissions of the first location l0 to be None, indicating that this

location has been freed, and storing the updated set of bytes for this location into memory. We then iterate

through all other locations in the list, storing their modified byte representations into memory. Once this is

complete, we will have completed the swap of data if l0 was not the true location. Otherwise, we are simply

writing the original data into memory again.
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Algorithm 131 σ2 ← UpdateArr(σ, (l, i), v, a bty)

1: σ1[l→ (ω, ty , α, PermL(Freeable, ty , a, α))] = σ
2: µ = i · sizeof(a bty)
3: ω1 = ω[0 : µ]
4: ω2 = EncodeVal(a bty , v)
5: ω3 = ω[µ+ µ :]
6: ω4 = ω1 :: ω2 :: ω3

7: σ2 = σ1[l→ (ω4, ty , α, PermL(Freeable, ty , a, α))]
8: return σ2

Algorithm 131 (UpdateArr) is used to update a value in memory at an index within an array. It takes as

input memory σ, the location (memory block identifier and offset) and we will be updating, the value to store

into memory, and the type to store the value as. Here, we first remove the mapping from memory (line 1),

then find where the offset we will be updating will be within the array data (line 2). Next, we separate out the

bytes before (line 3) and after (line 5) the data we will be replacing. We encode the new value based on the

specified type (line 4), then combine these byte data to obtain the updated array byte data (line 6). We then

place the new mapping with the updated data into memory (line 7) and return the updated memory. Here, we

would like to highlight that we only update the portion of memory associated with the given offset (array

index), which is public.

Now, we will present the algorithms used for encoding and decoding bytes in memory for arrays in our

semantics. Again, it is important to note that we leave the specifics of encoding to bytes and decoding from

bytes up to the implementation, as this low-level function may vary based on the system and underlying

architecture.

Algorithm 132 ω ← EncodeArr(ty , α, v)

1: ωv = EncodeVal(ty , v)
2: ω = ωv
3: for all i ∈ {1...α− 1} do
4: ω = ω + ωv
5: end for
6: return ω

Algorithm 132 (EncodeArr) takes an value and creates byte data for an array of length α, with every

element initialized to the value. It is currently only used in the semantics when declaring an array, to initialize

the newly declared array as being filled with NULL elements. EncodeArr takes as input the type, number of

elements, and the value to be used to initialize the array. It will encode the given value as byte data based on

the type, and duplicate that α times to get the byte data for the entire array initialized with that value. This

full byte data is then returned.
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Algorithm 133 v ← DecodeArr(ty , i, ω)

1: µ = i · sizeof(ty)
2: ω1 = ω[µ : µ+ µ]
3: v = DecodeVal(ty , ω1)
4: return v

Algorithm 133 (DecodeArr) takes byte data and returns the element of the given type at the specified

index from the byte data. It takes as input a type, an index, and bytes of data for an array. It then finds the

portion of bytes corresponding to that index, and calls Algorithm DecodeVal to obtain the value represented

by those bytes. This value is then returned.

Algorithm 134 σf ← UpdateDerefVals(α, l, v, ty , σ)
σf = σ
for all (m ∈ {0...α− 1}) do

(l, µ) = l[m]
v = v[m]
σf = SetBytes((l, µ), ty , v, σf )

end for
return σf

Algorithm 134 (UpdateDerefVals) is designed to store values of the specified type back into memory

for every location within the location list. It is used within the multiparty private pointer dereference write

rules to store all of the possible values for the pointer back into memory after we have used the multiparty

protocol to find the replacement for the value at every location. With this, the value at the the true location,

when decrypted, is the only value that is different from what was originally stored there; however, given that

we need to hide the true location, the multiparty protocol obtained new values for all locations and now we

must update each in memory. This algorithm takes the number of locations, the location list, the value list,

the expected type, and the memory as input, and returns the updated memory. Given that we have already

assessed whether any of the locations are not well-aligned and we have already handled ensuring that each of

these locations are tracked if we are inside a private-conditioned branch, we simplify this algorithm and use

Algorithm 65 (SetBytes) to store the values back into memory at their corresponding location.

Algorithm 135 (Retrieve_Values) is designed to obtain values of the specified type from every location

within the location list. It is used within the multiparty private pointer dereference read and write rules to

obtain all of the possible values for the pointer before we use the multiparty protocol to find the true value

(i.e., during a dereference read) or replace the value at the true location (i.e., during a dereference write). It

takes as input the number of locations, the list of locations, the expected type of value to obtain from the

639



Algorithm 135 (v, j)← Retrieve_Values(α, l, ty , σ)

v = [ ]
j = 1
for all ((l, µ) ∈ l) do
v1 = NULL
(ω1, ty1, α1, PermL(Freeable, ty1, a1, α1) = σ(l1)
if (µ = 0) ∧ (ty1 = ty) ∧ (α1 = 1) then

if (ty = private bty) then
v1 = DecodeVal(private bty , 1, ω1)

else if (ty = private bty∗) then
v1 = DecodePtr(private bty∗, 1, ω1)

end if
else if (µ < α1) ∧ (ty1 = ty) ∧ (ty = private bty) then
v1 = DecodeArr(private bty , µ, ω1)

else
v1 = GetBytes((l, µ), ty , σ)
j = 0

end if
v = v.append(v1)

end for
return (v, j)

locations, and memory. When complete, it returns the final list of values corresponding to the locations and

the final tag indicating whether all values were obtained from well-aligned memory locations or not.

Algorithm 136 (ReadOOB) is designed to read a value of the given type from memory as though it was

at index i of the array in memory block l. It takes as input the out of bounds index i, the number of values in

the array n, the memory block of the array data l, the type of elements in the array a bty , and memory σ. It

then iterates through memory until it finds the bytes that would be at index i and decodes them as the expected

type bty to obtain value v. It is important to note here that index i will be public, as we do not overshoot the

bounds of an array when we have a private index. As the algorithm iterates through memory, if all locations

we iterate over are of the same type as the expected type, and the location we are reading the value from is

also the expected type, then it will return tag 1, indicating that our read was well-aligned. Otherwise, tag

0 will be returned. We currently only show the algorithm handling overshooting in the positive direction,

however, it can trivially extended to grab the previous blocks and iterate backwards through memory to

handle a negative index as well. This algorithm is nearly identical to Algorithm 57, with the addition of

returning the location (memory block and offset) from which we start performing the out-of-bounds read. To

do this, we initialize the location as NULL, then, the first time we begin to read bytes to form our value, we

set it with the current location and offset we are beginning to read from. We highlight the added functionality

using green text.

Algorithm 137 (WriteOOB) is designed to store a value of the given type from memory as though it was
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Algorithm 136 (v, j, (lf , µf ))← ReadOOB(i, n, l, a bty , σ)

1: nv = τ(a bty)
2: nb = (i− n) · nv
3: j = 1
4: ωv = [ ]
5: (lf , µf ) = (NULL,NULL)
6: while (nb > 0) ∨ (nv > 0) do
7: l = GetBlock(l)
8: (ω, ty1, α, PermL(Freeable, ty1, a1, α)) = σ(l)
9: if (ty1 6= a bty) then

10: j = 0
11: end if
12: if (nb < τ(ty1) · α) then
13: if (lf , µf ) = (NULL,NULL) then
14: (lf , µf ) = (l, nb)
15: end if
16: ωv = ωv :: ω[nb : min(nb + nv, τ(ty1) · α− 1)]
17: nv = nv − τ(ty1) · α+ nb
18: end if
19: nb = max (0, nb − τ(ty1) · α)
20: end while
21: v = DecodeVal(a bty , 1, ωv)
22: return (v, j, (lf , µf ))

at index i of the array in memory block l. It takes as input the value to write in memory v, the out of bounds

index i, the number of values in the array n, the memory block of the array data l, the type of elements in

the array a bty , and memory σ. It then iterates through memory until it finds the position that would be for

index i, encodes value v as the expected type, and places its byte representation into memory starting at that

position. It is important to note here that index i will be public, as we do not overshoot the bounds of an array

when we have a private index. As the algorithm iterates through memory, if all locations we iterate over are

of the same type as the expected type, and the location we are writing the value to is also the expected type,

then it will return tag 1, indicating that our read was well-aligned. Otherwise, tag 0 will be returned. We

currently only show the algorithm handling overshooting in the positive direction, however, it can trivially

extended to grab the previous blocks and iterate backwards through memory to handle a negative index as

well. This algorithm is nearly identical to Algorithm 58, with the addition of returning the location (memory

block and offset) from which we start performing the out-of-bounds write and ensuring that if we are within a

private-conditioned branch, we add the locations we are modifying and their original values to location map

∆ if they are not already tracked. We highlight the added functionality using green text.

Algorithm 138, (φ) defines how new memory block identifiers are obtained - each party will have a

counter that is monotonically increasing after each time φ is called, and a temp counter that is monotonically

decreasing after each time φ(temp) is called. The temp argument is optional, and it signifies when the temp
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Algorithm 137 (σ, ∆f , j, (lf , µf ))←WriteOOB(v, i, n, l, a bty , σ,∆, acc)

1: ωv = EncodeVal(a bty , v)
2: nb = (i− n) · τ(a bty)
3: j = 1
4: (lf , µf ) = (NULL,NULL)
5: while (nb > 0) ∨ (|ωv| > 0) do
6: l = GetBlock(l)
7: σ1[l→ (ω, ty1, α, PermL(Freeable, ty1, a1, α))] = σ
8: if (ty1 6= a bty) then
9: j = 0

10: end if
11: if (nb < τ(ty1) · α) then
12: if (|ωv| > τ(ty1) · α− nb) then
13: ω1 = ω[0 : nb] + ωv + ω[|ωv|+ nb :]
14: ωv = [ ]
15: else if (|ωv| = τ(ty1) · α− nb) then
16: ω1 = ω[0 : nb] + ωv
17: ωv = [ ]
18: else
19: ω1 = ω[0 : nb] + ωv[0 : τ(ty1) · α− nb − 1]
20: ωv = ωv[τ(ty1) · α− nb :]
21: end if
22: if ((lf , µf ) = (NULL,NULL)) then
23: (lf , µf ) = (l, nb)
24: end if
25: (∆f , [(l1, µ1)]) = DynamicUpdate(∆, σ, [(l, nb)], acc, a bty)
26: σ = σ1[l→ (ω1, ty1, α, PermL(Freeable, ty1, a1, α))]
27: end if
28: nb = max (0, nb − τ(ty1) · α)
29: end while
30: return (σ,∆f , j, (lf , µf ))

counter is to be used – that is, only during the allocation of temporary variables used within the Private If

Else rules. We separate these elements into their own partition of memory in order to easily show correctness

of the memory with regards to Vanilla C- it is possible to provide a more robust mapping scheme between

locations in Vanilla C and locations in SMC2, but this extension provides unnecessary complexity for our

proofs.

Algorithm 139 illustrates how two locations-touched data structures are merged. This merging maintains

the ordering of which locations were touched and how many times for each party.

Algorithm 140 illustrates how two evaluation code data structures are merged. This merging maintains

the ordering of when the evaluation was completed in respect to other evaluations completed by each party

(i.e., a local party evaluation ordering, not a total ordering). When a multiparty evaluation code is entered (i.e.,

D2 == (ALL, d)), we iterate through and add the code to the evaluation code lists of each of the parties.

Algorithm 141 illustrates the filtering of the locations touched in the memory of a single party from the

overall data structure showing the locations touched by each party in their respective memories.
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Algorithm 138 l← φp({temp})
1: next = ldefault

2: if temp then
3: next = p_global_location_temp_counter −−
4: else
5: next = p_global_location_counter ++
6: end if
7: return lnext

Algorithm 139 L3 ← L1 :: L2
1: L3 = L1

2: for all (p, l) ∈ L2 do
3: if (L3 = (p, l1) ‖ L4) then
4: L3 = (p, l1 :: l) ‖ L4

5: else
6: L3 = (p, l) ‖ L3

7: end if
8: end for
9: return L3

Algorithm 142 illustrates the filtering of the evaluation codes executed by a single party from the overall

data structure showing the evaluation codes executed by each party, respectively.

Algorithm 143 illustrates how (e) ` γ is evaluated, finding if there is at least one private element in the

expression list e. As we iterate through each expression in e, if we find an expression that is private, (e) ` γ

holds as true. Otherwise, if we have evaluated all expressions and found none are private, we return false. In

this case, as we show in Algorithm 144, (e) 0 γ holds as true, because all elements are public.

643



Algorithm 140 D3 ← D1 :: D2

1: if ((ALL, [d ]) == D2) then
2: D3 = ε
3: for all (p, d) ∈ D1 do
4: D3 = (p, d :: d) ‖ D3

5: end for
6: else
7: D3 = D1

8: for all (p, d) ∈ D2 do
9: if (D3 = (p, d1) ‖ D4) then

10: D3 = (p, d1 :: d) ‖ D4

11: else
12: D3 = (p, d) ‖ D3

13: end if
14: end for
15: end if
16: return D3

Algorithm 141 Lp ← L(p)

1: Lp = ε
2: if (((p, l) ‖ L1) == L) then
3: Lp = (p, l)
4: end if
5: return Lp

Algorithm 142 Dp ← D(p)

1: Dp = ε
2: if (((p, d) ‖ D1) == D) then
3: Dp = (p, d)
4: end if
5: return Dp
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Algorithm 143 j ← (e) ` γ
1: for all e ∈ e do
2: if (e = x(e)) ∧ ((l, ty → ty) = γ(x)) then
3: if ((ty = public bty∗) ∨ (ty = public bty)) then
4: return 0
5: end if
6: else if (e = uop var) ∨ (e = var) then
7: if (var = x) ∧ ((l, ty) = γ(x)) then
8: if (ty = public bty∗) ∨ (ty = public bty) then
9: return 0

10: end if
11: else if (var = x[e1]) ∧ ((l, ty) = γ(x)) then
12: if (ty = public const bty∗) ∧ ((e1) 0 γ) then
13: return 0
14: end if
15: end if
16: else if (e = e1 bop e2) ∧ ((e1, e2) 0 γ) then
17: return 0
18: else if (e = (e1)) ∧ ((e1) 0 γ) then
19: return 0
20: else if (e = (ty) e1) then
21: if (ty = public bty) ∨ (ty == public bty∗) ∨ ((e1) 0 γ) then
22: return 0
23: end if
24: else if (e = v) then
25: if (e = [v0, ..., vn]) ∧ ((v0, ..., vn) 0 γ) then
26: return 0
27: else if (e = n) ∧ (n 6= encrypt(n)) then
28: return 0
29: end if
30: else
31: return 0
32: end if
33: end for
34: return 1

Algorithm 144 j ← (e) 0 γ
1: if ((e) ` γ) then
2: return 0
3: else
4: return 1
5: end if

645



5.2 Correctness

In our semantics, we give each evaluation an identifying code as a shorthand way to refer to that specific

evaluation, as well as to allow us to quickly reason about the Multiparty Vanilla C and Multiparty SMC2

evaluations that are congruent to each other (i.e., a Multiparty Vanilla C rule and an identical one handling

only public data in Multiparty SMC2).

The list of Multiparty Vanilla C codes are as follows: MV anC = [mpb, mpcmpt , mpcmpf , mppin ,

mpra , mpwe, mpfre, mpiet , mpief , mprdp, mprdp1 , mpwdp, mpwdp1 , fls , ss , sb, ep, cv , cl , r , w , ds ,

dv , dp, da , wle, wlc, bp, bs , bm , bd , ltf , ltt , eqf , eqt , nef , net , mal , fre, wp, wdp, wdp1 , rp, rdp, rdp1 ,

ra , wa , rao, wao, rae, wae , loc, iet , ief , inp, inp1 , out , out1 , df , ty , fd , fpd , fc, pin , pin1 , pin2 ].

The list of Multiparty SMC2 codes are as follows: MSmcC = [mpb, mpcmp, mpra , mpwa , mppin ,

mpdp, mpdph , mpfre, mprdp, mprdp1 , mpwdp, mpwdp1 , mpwdp2 , mpwdp3 , iet , ief , iep, iepd , wle,

wlc, dp, dp1 , rp, rp1 , rdp, rdp1 , rdp2 , wp, wp1 , wp2 , wdp, wdp1 , wdp2 , wdp3 , wdp4 , wdp5 , da , da1 ,

das , ra , ra1 , rea , wa , wa1 , wa2 , wea , wea1 , wea2 , rao, rao1 , wao, wao1 , wao2 , pin , pin1 , pin2 , pin3 ,

pin4 , pin5 , pin6 , pin7 , mal , malp, fre, pfre, cv , cv1 , cl , cl1 , loc, ty , df , fd , fpd , fc, fc1 , bp, bs , bm ,

bd , ltf , ltt , eqf , eqt , nef , net , dv , d1 , r , r1 , w , w1 , w2 , ds , ss , sb, ep, inp, inp1 , inp2 , inp3 , out , out1 ,

out2 , out].

The list of Multiparty Vanilla C codes that would lead to differences with a Multiparty SMC2 evaluation

are as follows: MV anCX = [rao′∗, wao′∗, pin2′∗, pin3′∗] The list of Multiparty SMC2 codes that would

lead to differences with a Multiparty Vanilla C evaluation are as follows: MSmcCX = [rao∗, rao1∗, wao∗,

wao1∗, wao2∗, pin2∗, pin3∗, pin4∗, pin5∗, pin6∗, pin7∗]. In all of these rules, where the algorithms

return the tag 1 to indicate the access is well-aligned, the * versions of the rules would return 0. With

these rules, it is not possible to prove correctness, as they would return garbage values that no longer are

congruent between Multiparty SMC2 and Multiparty Vanilla C. We can prove all of these rules to maintain

noninterference - each case is similar to the corresponding non-* version, and therefore does not add anything

of interest to the proof, so we omit these cases from this document.

In this section we present the most challenging methatheoretic result of correctness. We will begin by

discussing how we leverage multiparty protocols, then proceed to discuss correctness. Once correctness is

proven, noninterference follows from a standard argument, with some adaptations needed to deal with the

fact that private data is encrypted and that we want to show indistinguishability of evaluation traces.
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MSmcC MV anC Equivalent Cases

⇓LD::(ALL,[mpcmp]) ⇓′D̂::(ALL,[m̂pcmpt])
⇓′D̂::(ALL,[m̂pcmpf ])

⇓LD::(p,[iep]) ⇓′D̂::(p,[m̂piet])
⇓′D̂::(p,[m̂pief ])

⇓LD::(p,[iepd]) ⇓′D̂::(p,[m̂piet])
⇓′D̂::(p,[m̂pief ])

⇓LD::(p,[malp]) ⇓′
d̂::[(p,[t̂y]),(p,[b̂m]),(p,[m̂al])]

Figure 5.33: Table of more complex Multiparty SMC2 evaluation codes and their congruent Multiparty
Vanilla C evaluation codes.

In our semantics, we leverage multiparty protocols to compartmentalize the complexity of handling

private data. In the formal treatment this corresponds to using Axioms in our proofs to reason about protocols.

These Axioms allow us to guarantee the desired properties of correctness and noninterference for the overall

model, to provide easy integration with new, more efficient protocols as they become available, and to avoid

re-proving the formal guarantees for the entire model when new protocols are added. Proving that these

Axioms hold is a responsibility of the library implementor in order to have the system fully encompassed by

our formal model. Secure multiparty computation protocols that already come with guarantees of correctness

and security are the only ones worth considering, so the implementor would only need to ensure that these

guarantees match our definitions of correctness and noninterference.

For example, if private values are represented using Shamir secret sharing [1], Algorithm 97, MPCmult ,

represents a simple multiparty protocol for multiplying private values from [41]. In Algorithm 97, lines 2 and

3 define the protocol, while lines 1, 4, and 5 relate the protocol to our semantic representation.

When computation is performed by q parties, at most t of whom may collude (t < q/2), Shamir secret

sharing encodes a private integer a by choosing a polynomial f(x) of degree t with random coefficients

such that f(0) = a (all computation takes place over a finite field). Each participant obtains evaluation of

f on a unique non-zero point as their representation of private a; for example, party p obtains f(p). This

representation has the property that combining t or fewer shares reveals no information about a as all values

of a are equally likely; however, possession of t+1 or more shares permits recovering of f(x) via polynomial

interpolation and thus learning f(0) = a.

Multiplication in Algorithm 97 corresponds to each party locally multiplying shares of inputs a and b,

which computes the product, but raises the polynomial degree to 2t. The parties consequently re-share their

private intermediate results to lower the polynomial degree to t and re-randomize the shares. Values λp refer

to interpolation coefficients which are derived from the computation setup and party p index.

In order to preserve the correctness and noninterference guarantees of our model when such an algorithm is
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MSmcC MV anC MSmcC MV anC MSmcC MV anC

⇓LD::(ALL,[mpra]) ⇓′D̂::(ALL,[m̂pra])
⇓LD::(p,[fc1 ]) ⇓′D̂::(p,[f̂c])

⇓LD::(p,[fc]) ⇓′D̂::(p,[f̂c])

⇓LD::(ALL,[mpwa]) ⇓′D̂::(ALL,[m̂pwa])
⇓L(p,[fpd]) ⇓′

(p,[f̂pd])
⇓L(p,[df ]) ⇓′

(p,[d̂f ])

⇓L(ALL,[mprdp]) ⇓′
(ALL,[m̂prdp])

⇓L(p,[pin]) ⇓′
(p,[p̂in])

⇓L(p,[fd]) ⇓′
(p,[f̂d])

⇓L(ALL,[mprdp1 ]) ⇓′
(ALL,[m̂prdp1 ])

⇓L(p,[pin3 ]) ⇓′
(p,[p̂in])

⇓LD::(p,[cl1 ]) ⇓′D̂::(p,[ĉl])

⇓LD::(ALL,[mpwdp2 ]) ⇓′D̂::(ALL,[ ̂mpwdp1 ])
⇓L(p,[pin1 ]) ⇓′

(p,[p̂in1 ])
⇓LD::(p,[cl]) ⇓′D̂::(p,[ĉl])

⇓LD::(ALL,[mpwdp1 ]) ⇓′D̂::(ALL,[ ̂mpwdp1 ])
⇓L(p,[pin2 ]) ⇓′

(p,[p̂in2 ])
⇓LD::(p,[cv1 ]) ⇓′D̂::(p,[ĉv ])

⇓LD::(ALL,[mpwdp3 ]) ⇓′D̂::(ALL,[m̂pwdp])
⇓L(p,[pin4 ]) ⇓′

(p,[p̂in1 ])
⇓LD::(p,[cv ]) ⇓′D̂::(p,[ĉv ])

⇓LD::(ALL,[mpwdp]) ⇓′D̂::(ALL,[m̂pwdp])
⇓L(p,[pin5 ]) ⇓′

(p,[p̂in2 ])
⇓LD::(p,[ltt]) ⇓′D̂::(p,[l̂tt])

⇓L(ALL,[mppin]) ⇓′
(ALL,[m̂ppin])

⇓L(p,[pin6 ]) ⇓′
(p,[p̂in1 ])

⇓LD::(p,[ltf ]) ⇓′D̂::(p,[l̂tf ])

⇓L(ALL,[mpfre]) ⇓′
(ALL,[m̂pfre])

⇓L(p,[pin7 ]) ⇓′
(p,[p̂in2 ])

⇓LD::(p,[eqt]) ⇓′D̂::(p,[êqt])

⇓LD::(ALL,[mpb]) ⇓′D̂::(ALL,[m̂pb])
⇓LD::(p,[eqf ]) ⇓′D̂::(p,[êqf ])

⇓LD::(p,[sb]) ⇓′D̂::(p,[ŝb])

⇓LD::(p,[wdp1 ]) ⇓′D̂::(p,[ŵdp1 ])
⇓LD::(p,[net]) ⇓′D̂::(p,[n̂et])

⇓L(p,[d1 ]) ⇓′
(p,[d̂v ])

⇓LD::(p,[wdp2 ]) ⇓′D̂::(p,[ŵdp1 ])
⇓LD::(p,[nef ]) ⇓′D̂::(p,[n̂ef ])

⇓L(p,[dv ]) ⇓′
(p,[d̂v ])

⇓LD::(p,[wdp]) ⇓′D̂::(p,[ŵdp])
⇓L(p,[fre]) ⇓′

(p,[f̂re])
⇓L(p,[pfre]) ⇓′

(p,[f̂re])

⇓LD::(p,[wdp3 ]) ⇓′D̂::(p,[ŵdp])
⇓LD::(p,[ief ]) ⇓′D̂::(p,[îef ])

⇓LD::(p,[iet]) ⇓′D̂::(p,[îet])

⇓LD::(p,[wdp4 ]) ⇓′D̂::(p,[ŵdp])
⇓LD::(p,[wle]) ⇓′D̂::(p,[ŵle])

⇓LD::(p,[wlc]) ⇓′D̂::(p,[ŵlc])

⇓LD::(p,[wdp4 ]) ⇓′D̂::(p,[ŵdp])
⇓LD::(p,[ss]) ⇓′D̂::(p,[ŝs])

⇓LD::(p,[ds]) ⇓′D̂::(p,[d̂s])

⇓LD::(p,[w ]) ⇓′D̂::(p,[ŵ ])
⇓LD::(p,[w1 ]) ⇓′D̂::(p,[ŵ ])

⇓LD::(p,[w2 ]) ⇓′D̂::(p,[ŵ ])

⇓L(p,[dp1 ]) ⇓′
(p,[d̂p])

⇓L(p,[dp]) ⇓′
(p,[d̂p])

⇓L(p,[rp]) ⇓′(p,[r̂p])

⇓LD::(p,[mal]) ⇓′D̂::(p,[m̂al])
⇓L(p,[rp1 ]) ⇓′(p,[r̂p]) ⇓LD::(p,[wp1 ]) ⇓′D̂::(p,[ŵp])

⇓L(p,[r ]) ⇓′(p,[r̂ ]) ⇓L(p,[r1 ]) ⇓′(p,[r̂ ]) ⇓LD::(p,[wp]) ⇓′D̂::(p,[ŵp])

⇓L(p,[ty]) ⇓′
(p,[t̂y])

⇓L(p,[loc]) ⇓′
(p,[l̂oc])

⇓L(p,[rdp2 ]) ⇓′
(p,[r̂dp2 ])

⇓L(p,[rdp1 ]) ⇓′
(p,[r̂dp1 ])

⇓L(p,[rdp]) ⇓′
(p,[r̂dp])

⇓LD::(p,[wp2 ]) ⇓′D̂::(p,[ŵp])

⇓LD::(p,[da]) ⇓′D̂::(p,[d̂a])
⇓LD::(p,[da1 ]) ⇓′D̂::(p,[d̂a])

⇓LD::(p,[das]) ⇓′D̂::(p,[d̂as])

⇓L(p,[rea]) ⇓′(p,[r̂ea]) ⇓LD::(p,[ra1 ]) ⇓′D̂::(p,[r̂a])
⇓LD::(p,[ra]) ⇓′D̂::(p,[r̂a])

⇓LD::(p,[wea2 ]) ⇓′D̂::(p,[ŵea])
⇓LD::(p,[wea1 ]) ⇓′D̂::(p,[ŵea])

⇓LD::(p,[wea]) ⇓′D̂::(p,[ŵea])

⇓LD::(p,[wa]) ⇓′D̂::(p,[ŵa])
⇓LD::(p,[wa1 ]) ⇓′D̂::(p,[ŵa])

⇓LD::(p,[wa2 ]) ⇓′D̂::(p,[ŵa])

⇓LD::(p,[rao1 ]) ⇓′D̂::(p,[r̂ao])
⇓LD::(p,[rao]) ⇓′D̂::(p,[r̂ao])

⇓LD::(p,[ep]) ⇓′D̂::(p,[êp])

⇓LD::(p,[wao2 ]) ⇓′D̂::(p,[ŵao])
⇓LD::(p,[wao1 ]) ⇓′D̂::(p,[ŵao])

⇓LD::(p,[wao]) ⇓′D̂::(p,[ŵao])

⇓LD::(p,[bd]) ⇓′D̂::(p,[b̂d])
⇓LD::(p,[bp]) ⇓′D̂::(p,[b̂p])

⇓LD::(p,[bs]) ⇓′D̂::(p,[b̂s])

⇓LD::(p,[inp3 ]) ⇓′D̂::(p,[înp1 ])
⇓LD::(p,[inp2 ]) ⇓′D̂::(p,[înp])

⇓LD::(p,[bm]) ⇓′D̂::(p,[b̂m])

⇓LD::(p,[inp1 ]) ⇓′D̂::(p,[înp1 ])
⇓LD::(p,[inp]) ⇓′D̂::(p,[înp])

⇓LD::(p,[out]) ⇓′D̂::(p,[ôut])

⇓LD::(p,[out3 ]) ⇓′D̂::(p,[ôut1 ])
⇓LD::(p,[out2 ]) ⇓′D̂::(p,[ôut])

⇓LD::(p,[out1 ]) ⇓′D̂::(p,[ôut1 ])

Figure 5.34: Table of Multiparty SMC2 evaluation codes in MSmcC and their congruent Multiparty Vanilla
C evaluation codes in MV anC.
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added, a library developer will need to guarantee that the implementation of this algorithm is correct, meaning

that it has the expected input output behavior, and it guarantees noninterference on what is observable.

We first show the correctness of the Multiparty SMC2 semantics with respect to the Multiparty Vanilla

C semantics. As usual we will do this by establishing a simulation relation between a Multiparty SMC2

program and a corresponding Multiparty Vanilla C program. To do so we face two main challenges.

First, we need to guarantee that the private operations in a Multiparty SMC2 program are reflected in

the corresponding Multiparty Vanilla C program and that the evaluation steps between the two programs

correspond. To address the former issue, we define an erasure function Erase which translates a Multiparty

SMC2 program into a Multiparty Vanilla C program by erasing all labels and replacing all functions

specific to Multiparty SMC2 with their public equivalents. This function also translates memory. As an

example, let us consider pmalloc; in this case, we have Erase(pmalloc(e, ty) = (malloc(Erase(e)·

sizeof(Erase(ty))))). That is, pmalloc is rewritten to use malloc, and since the given private type is

now public we can use the sizeof function to find the size we will need to allocate. To address the latter

issue, we have defined our operational semantics in terms of big-step evaluation judgments which allow the

evaluation trees of the two programs to have a corresponding structure. In particular, notice how we designed

the Private If Else (Variable Tracking) and Private If Else (Location Tracking) rules to perform multiple

operations in one step, guaranteeing that we have similar “synchronization points” in the two evaluation trees.

Second, we need to guarantee that at each evaluation step the memory used by a Multiparty SMC2

program corresponds to the one used by the Multiparty Vanilla C program. Given that we simulate multiparty

execution over q parties in Multiparty SMC2, we will also use q parties in Multiparty Vanilla C. This

allows us to easily reason about both local and global semantic rules, as each Multiparty SMC2 party has a

corresponding Multiparty Vanilla C party at an identical position in the evaluation trace. Unfortunately, just

applying the function Erase to the Multiparty SMC2 memories in the evaluation trace is not enough. In our

setting, with explicit memory management, manipulations of pointers, and array overshooting, guaranteeing

a correspondence between the memories becomes particularly challenging. To better understand the issue

here, let us consider the rule Private Free. Remember that our semantic model associates a pointer with a

list of locations, and the Private Free rule frees the first location in the list, and relocates the content of that

location if it is not the true location. Essentially, this rule may swap the content of two locations if the first

location in the list is not the location intended to be freed and make the Multiparty SMC2 memory and the

Multiparty Vanilla C memory look quite different. To address this challenge in the proof of correctness, we
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use a map, denoted ψ, to track the swaps that happen when the rule Private Free is used. The simulation uses

and modifies this map to guarantee that the two memories correspond. Another related challenge comes from

array overshooting. If, by overshooting an array, a program goes over or into memory blocks of different

types, we may end up in a situation where the locations in the Multiparty SMC2 memory are significantly

different from the ones in the Multiparty Vanilla C memory. This is mostly due to the size of private types

being larger than their public counterpart. One option to address this problem would be to keep a more

complex map between the two memories. However, this can result in a much more complex proof, for

capturing a behavior that is faulty, in principle. Instead, we prefer to focus on situations where overshooting

arrays are well-aligned, in the sense that they access only memory locations and blocks of the right type and

size. An illustration of this is given in Figure 3.4.

Before stating our correctness, we need to introduce some notation. We use party-wise lists of codes

D = (1, [d1, . . . , dn]) ‖ ... ‖ (q, [d1, . . . , dn]), D̂ = (1, [d̂1, . . . , d̂m]) ‖ ... ‖ (q, [d̂1, . . . , d̂m]) in evaluations

(i.e., ⇓D) to describe the rules of the semantics that are applied in order to derive the result. We write

D ∼= D̂ to state that the Multiparty SMC2 codes are in correspondence with the Multiparty Vanilla C

codes, Dp to denote the list of codes for a specific party p, and D1 :: D2 to denote concatenation of the

party-wise evaluation code lists. We write {...}qp=1 to show that an assertion holds for all parties. Almost

every Multiparty SMC2 rule is in one-to-one correspondence with a single Multiparty Vanilla C rule within

an execution trace (exceptions being private-conditioned branches, pmalloc, and multiparty comparison

operations).

We write s ∼= ŝ to state that the Multiparty Vanilla C configuration statement ŝ can be obtained by

applying the erasure function to the Multiparty SMC2 statement s. Similarly, we can extend this notation

to configuration by also using the map ψ. That is, we write (p, γ, σ, ∆, acc, s) ∼=ψ (p, γ̂, σ̂, �, �, ŝ) to

state that the Multiparty Vanilla C configuration (p, γ̂, σ̂, �, �, ŝ) can be obtained by applying the erasure

function to the Multiparty SMC2 configuration (p, γ, σ, ∆, acc, s), and memory σ̂ can be obtained from σ

by using the map ψ.

We state correctness in terms of evaluation trees, since we will use evaluation trees to prove a strong form

of noninterference in the next subsection. We use capital Greek letters Π,Σ to denote evaluation trees. In

the Multiparty SMC2 semantics, we write Π . ((1, γ1, σ1, ∆1, acc1, s1) ‖ ... ‖ (q, γq, σq, ∆q, accq, sq))

⇓LD ((1, γ11 , σ
1
1, ∆1

1, acc11, v
1) ‖ ... ‖ (q, γq1 , σ

q
1 , ∆q

1, accq1, v
q)), to stress that the evaluation tree Π proves as

conclusion that, for each party p, configuration (p, γp, σp, ∆p, accp, sp) evaluates to configuration (p, γp1 ,
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σp1 , ∆p
1 , accp1 , v

p) by means of the codes in Dp. Similarly, for the Multiparty Vanilla C semantics. We then

write Π ∼=ψ Σ for the extension to evaluation trees of the congruence relation with map ψ.

In order to properly reason about global multiparty rules, we must assert that all parties are executing

from the same original program with corresponding start states and input. To do this, we first show that the

non-determinism of the semantics will always bring all parties to the same outcome: given q parties with

corresponding start states, if we reach intermediate states that are not corresponding for one or more parties,

then there exists a set of steps that will bring all parties to corresponding states again. This is formalized

within Theorem 5.2.2, Confluence.

We can now state our correctness result showing that if an Multiparty SMC2 program s can be evaluated

to a value v, and the evaluation is well-aligned (it is an evaluation where all the overshooting of arrays are

well-aligned), then the Multiparty Vanilla C program ŝ obtained by applying the erasure function to s, i.e.,

s ∼= ŝ, can be evaluated to v̂ where v ∼= v̂. This property can be formalized in terms of congruence.

Axiom 5.2.1. For purposes of correctness, we assume all parties are executing a program s from initial state

(p, [ ], [ ], [ ], 0, s) with congruent input data. We assume that s does not contain hard-coded locations, has well-aligned

out-of-bounds memory accesses where private indices are not used and no out-of-bounds accesses where private indices

are used, and type-casts for private locations match the intended type that the location was allocated for.

Theorem 5.2.1 (Semantic Correctness).

For every configuration {(p, γp, σp, ∆p, accp, sp)}qp=1, {(p, γ̂p, σ̂p, �, �, ŝp)}qp=1 and map ψ

such that {(p, γp, σp, ∆p, accp, sp) ∼=ψ (p, γ̂p, σ̂p, �, �, ŝp)}qp=1,

if Π . ((1, γ1, σ1, ∆1, acc1, s1) ‖ ... ‖ (q, γq, σq, ∆q, accq, sq))

⇓LD ((1, γ1
1 , σ

1
1 , ∆1

1, acc1
1, v

1) ‖ ... ‖ (q, γq
1 , σ

q
1 , ∆q

1, accq
1, v

q))

for codes D ∈MSmcC, then there exists a derivation

Σ . ((1, γ̂1, σ̂1, �, �, ŝ1) ‖ ... ‖ (q, γ̂q, σ̂q, �, �, ŝq))

⇓
D̂

((1, γ̂1
1 , σ̂

1
1 , �, �, v̂

1) ‖ ... ‖ (q, γ̂q
1 , σ̂

q
1 , �, �, v̂

q))

for codes D̂ ∈MV anC and a map ψ1 such that

D ∼= D̂, {(p, γp
1 , σ

p
1 , ∆p

1 , accp
1 , v

p) ∼=ψ1 (p, γ̂p
1 , σ̂

p
1 , �, �, v̂

p)}qp=1, and Π ∼=ψ1 Σ.

Proof. Proof Sketch: By induction over all Multiparty SMC2 semantic rules.

The bulk of the complexity of this proof lies with rules pertaining to Private If Else, handling of pointers,

and freeing of memory. We first provide a brief overview of the intuition for the simpler cases and then dive

deeper into the details for the more complex cases. The full proof is available in Section 5.2.5, with this

theorem identical to Theorem 5.2.3.
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For the rules evaluating over public data, correctness follows simply as the Multiparty Vanilla C and

Multiparty SMC2 rules for public data are nearly identical. For all the semantic rules that use general helper

algorithms (i.e., algorithms in common to both Multiparty Vanilla C and Multiparty SMC2), we also reason

about the correctness of the helper algorithms, comparing the Multiparty Vanilla C version and the Multiparty

SMC2version. Correctness over such algorithms is easily proven, as these algorithms are nearly identical,

differing on privacy labels as we do not have private data in Multiparty Vanilla C.

For all Multiparty SMC2 multiparty semantic rules, we relate them to the multiparty versions of the Mul-

tiparty Vanilla C rules. To reason about the multiparty protocols, we leverage Axioms, such as Axiom 5.2.4,

to prove these rules correct. These Axioms should be proven correct by a library developer to ensure the

completeness of the formal model. The correctness of most multiparty semantic rules follows easily, with

Multiparty Private Free being an exception. For this rule, we also must reason about our helper algorithms

that are specific to the Multiparty SMC2 semantics (e.g., UpdateBytesFree, UpdatePointerLocations).

We leverage the correctness of the behavior of the multiparty protocol MPCfree , to show that correctness

of these algorithms follows due to the deterministic definitions of the algorithms. In this case, we must

also show that the locations that are swapped within this rule (which is done to hide the true location) are

deterministic based on our memory model definition. We use ψ to map the swapped locations, enabling us to

show that, if these swaps were reversed, we would once again have memories that are directly congruent.

This concept of locations being ψ-congruent is particularly necessary when reasoning about pointers in other

rule cases. For all the rules using private pointers, we will rely upon the pointer data structure containing a set

of locations and their associated tags, only one of which being the true location. With this proven to be the

case, it is then clear that the true location indicated within the private pointer’s data structure in Multiparty

SMC2 will be ψ-congruent with the location given by the pointer data structure in Multiparty Vanilla C. In

our proof, we make the assumption that locations are not hard-coded, as hard-coded locations would lead to

potentially differing results between Multiparty Vanilla C and Multiparty SMC2 execution due to the behavior

of pfree. Additionally, given the distributed nature of the Multiparty SMC2, it would not make sense to

allow hard-coded locations, as a single program will be executed on several different machines.

For rule Private Malloc, we must relate this rule to the sequence of Multiparty Vanilla C rules for Malloc,

Multiplication, and Size Of Type. This is due to the definition of pmalloc as a helper that allows the

user to write programs without knowing the size of private types. This case follows from the definition of

translating the Multiparty SMC2 program to a Multiparty Vanilla C program, Erase(pmalloc(e, ty) =
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(malloc(sizeof(Erase(ty)) ·Erase(e)))).

For the Private If Else rules, we must reason that our end results in memory after executing both branches

and resolving correctly match the end result of having only executed the intended branch. The cases for both

of these rules will have two subcases - one for the conditional being true, and the other for false. To obtain

correctness, we use multiparty versions of the if else true and false rules that execute both branches - this

allows us to reason that both branches will evaluate properly, and that we will obtain the correct ending state

once completed. For both rules, we must first show that Extract will correctly find all non-local variables that

are modified within both branches, including non-assignment modifications such as use of the pre-increment

operator + + x, and that all such modified variables will be added to the list (excluding pointers modified

exclusively by pointer dereference write statements). We must also show that it will correctly find and tag if a

pointer dereference write statement was found. These properties follow deterministically from the definition

of the algorithm.

For rule Private If Else Variable Tracking, we will leverage the correctness of Extract, and that if Extract

returns the tag 0, no pointer dereference writes were found. We then reason that InitializeVariables will

correctly create the assignment statements for our temporary variables, and that the original values for each

of the modified variables will be stored into the else temporary variables. The temporaries being stored

into memory correctly through the evaluation of these statements follows by induction. Next we have the

evaluation of the then branch, which will result in the values that are correct for if the condition had been

true - this holds by induction. We then proceed to reason that RestoreVariables will properly create the

statements to store the ending results of the then branch into the then temporary variables, and restore

all of the original values from the else variables (the original values being correctly stored follows from

InitializeVariables and the evaluation of it’s statements). The correct evaluation of the this set of statements

follows by induction. Next we have the evaluation of the else branch, which will result in the values

that are correct for if the condition had been false - this holds by induction and the values having been

restored to the original values properly. We will then reason about the correctness of the statements created

by ResolveVariables. These statements must be set up to correctly take the information from the then

temporary variable, the temporary variable for the condition for the branch, and the ending result for all

variables from the else branch. For the resolution of pointers, we insert a call for a resolution function

(resolve), because the resolution of pointer data is more involved. The evaluation of this function is shown in

rule Multiparty Resolve Pointer Locations. By proving that this rule will correctly resolve the true locations
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for pointers, we will then have that the statements created by ResolveVariables will appropriately resolve all

pointers.

For rule Private If Else Location Tracking, the structure of the case is similar to the rule for variable

tracking, but with a few differences we will discuss here. For this rule, we will need to reason about

DynamicUpdate, and that we will catch all modifications by pointer dereference writes and properly add

them to ∆ if the location being modified is not already tracked. If a new mapping is added, we store the

current value in vorig (as this location has not yet been modified) and the tag has to be set to 0. This behavior

will be used to ensure the correctness during resolution. For Initialize, we must reason that we correctly

initialize the map ∆ with all of the locations we found within Extract to be modified by means other than

pointer dereference writes and store their original values in vorig . Then we can evaluate the then branch,

which will result in the values that are correct for if the condition had been true - this holds by induction. For

Restore, we reason that we properly store the results of the then branch, and update the tag for the location

to signify that we should use vthen instead of vorig . We will then restore the original values, leveraging

the correctness of Initialize to prove this will happen correctly. Then we can evaluate the else branch,

which will result in the values that are correct for if the condition had been false - this holds by induction.

For Resolve, we reason that we will create the appropriate resolution statements to be executed. For the

then result, these statements must use the value stored in vorig if the tag is set to 0 (this occurs if the

first modification to the location was a pointer dereference write within the else branch), and the value

stored in vthen if the tag is set to 1. We prove this to be the correct then result through the correctness of

DynamicUpdate and Restore. The else result must use the current value for that location in memory,

which is proven to be the correct else result through the correctness of Initialize and Resolve. In this way,

we can prove the correctness the contents of the statements created by Resolve, and then the correctness

of the evaluation of the statements created by Restore will hold as we discussed for with those created by

ResolveVariables for Private If Else Variable tracking.

The full erasure function is shown in Section 3.2.1, Figure 3.31. The only difference is the update to

the erasure function over configurations, replacing subfigure 3.31a with subfigure 5.35a. Figure 5.35 shows

erasure over an entire Multiparty SMC2 configuration, calling Erase on the four-tuple of the environment,

memory, and two empty maps needed as the base for the Vanilla C environment and memory; removing the

accumulator (i.e., replacing it with �); and calling Erase on the statement.
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Erase(C) =
| C1 ‖ C2 => Erase(C1) ‖ Erase(C2)
| (p, γ, σ, ∆, acc, s) => (p, Erase(γ, σ, [ ], [ ]), ���, ���, Erase(s))

(a) Erasure function over configurations.

Figure 5.35: The Erasure function from Multiparty SMC2 configurations to Multiparty Vanilla C configura-
tions.

Algorithm 145 j ← (l) 0 σ
1: j = 0

2: (ω, ty , n,PermL(perm, ty , a, n)) = σ(l)

3: if a = public then

4: j = 1

5: end if

6: return j

Algorithm 146 j ← (l) ` σ
1: j = 0

2: (ω, ty , n,PermL(perm, ty , a, n)) = σ(l)

3: if a = private then

4: j = 1

5: end if

6: return j

5.2.1 Definitions

Definition 5.2.1 (ψ). A map ψ is defined as a list of lists of locations, in symbols ψ = [ ] | ψ[l], that is formed by

tracking which locations are privately switched during the execution of the statement pfree(x) in a SMC2 program s to

enable comparison with the congruent Vanilla C program ŝ.

Definition 5.2.2 (aligned memory location). A memory location (l, µ), (l̂, µ̂) is aligned

if and only if the location refers to either the beginning of a memory block (µ = µ̂ = 0)

or the beginning of an element inside an array.

Definition 5.2.3 (well-aligned memory access). An overshooting memory access by an array is well-aligned if

and only if:

• the initial memory location is aligned and of the expected type,

• the ending memory location is aligned and of the expected type, and

• all memory blocks or elements iterated over are of the expected type.

Definition 5.2.4 (j ∼= ĵ). A SMC2 alignment indicator and a Vanilla C alignment indicator are congruent, in symbols

j ∼= ĵ,
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if and only if either j = 1 and ĵ = 1

or j = 0 and (ĵ = 0) ∨ (ĵ = 1).

Definition 5.2.5 (aligned location list). A location list is aligned if and only if for all locations (li, µi) in the list:

• all memory block identifiers li are of the expected type,

• all memory block identifiers li are of the same size, and

• all offsets µi are equal.

Definition 5.2.6 (well-aligned pointer access). An overshooting memory access by a pointer is well-aligned if and

only if:

• the initial location list li is aligned,

• the final location list lf is aligned, and

• for each location in the initial location list, all memory blocks or elements iterated over to get to the corresponding

location in the final location list are of the expected type.

Definition 5.2.7 (ty ∼= t̂y). A SMC2 type and a Vanilla C type are congruent, in symbols ty ∼= t̂y ,

if and only if Erase(ty) = t̂y .

Definition 5.2.8 (ty ∼=ψ t̂y). A SMC2 type and a Vanilla C type are ψ-congruent, in symbols ty ∼=ψ t̂y ,

if and only if ty ∼= t̂y .

Definition 5.2.9 (ty ∼= t̂y). A SMC2 type list and a Vanilla C type list are congruent, in symbols ty ∼= t̂y , if and

only if Erase(ty) = t̂y .

Definition 5.2.10 (e ∼= ê). A SMC2 expression list and a Vanilla C expression list are congruent, in symbols e ∼= ê,

if and only if Erase(e) = ê.

Definition 5.2.11 (p ∼= p̂). A SMC2 parameter list and a Vanilla C parameter list are congruent, in symbols p ∼= p̂, if

and only if Erase(p) = p̂.

Definition 5.2.12. A SMC2 statement and a Vanilla C statement are congruent, in symbols s ∼= ŝ, if and only if

Erase(s) = ŝ.

Definition 5.2.13 (l ∼=ψ l̂). A SMC2 memory block identifier and a Vanilla C memory block identifier are ψ-

congruent, in symbols l ∼=ψ l̂, given map ψ,

if and only if CheckIDCongruence(ψ, l, l̂) = 1.
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Definition 5.2.14 ((l, µ) ∼=ψ (l̂, µ̂)). A SMC2 location and a Vanilla C location are ψ-congruent, in symbols

(l, µ) ∼=ψ (l̂, µ̂), given SMC2 type ty correlating to (l, µ) and Vanilla C type t̂y correlating to (l̂, µ̂),

if and only if ty ∼= t̂y , l ∼=ψ l̂, and

either ty is a public type and µ = µ̂,

or ty is a private type and (µ) ·
( τ(t̂y)
τ(ty)

)
= µ̂.

Definition 5.2.15 (ptr ∼=ψ ptr ). A SMC2 pointer data structure for a pointer of type ty ∈ {a const bty∗, a bty∗}

and a Vanilla C pointer data structure for a pointer of type t̂y ∈ {const b̂ty∗, b̂ty∗} are ψ-congruent, in symbols

[α, l, j, i] ∼=ψ [1, [(l̂, µ̂)], [1], î], given map ψ,

if ty ∼= t̂y , i = î and

either a = public, α = 1, l = (l, µ) such that (l, µ) ∼=ψ (l̂, µ̂) and j = [1]

or a = private and DeclassifyPtr([α, l, j, i], private bty∗) = (l, µ) such that (l, µ) ∼=ψ (l̂, µ̂).

Definition 5.2.16 ((γ, σ) ∼=ψ (γ̂, σ̂)). A SMC2 environment and memory pair and a Vanilla C environment and

memory pair are ψ-congruent, in symbols (γ, σ) ∼=ψ (γ̂, σ̂),

if and only if Erase(γ, σ, [ ], [ ]) = (γ̂, σ̂′) and SwapMemory(σ̂′, ψ) = σ̂.

Definition 5.2.17 (ω ∼=ψ ω̂). A SMC2 byte-wise representation ω of a given type ty and size n and a Vanilla C

byte-wise representation ω̂ are ψ-congruent, in symbols ω ∼=ψ ω̂,

if and only if either ty 6= private bty∗ and Erase(ω, ty , n) = ω̂

or ty = private bty∗ and Erase(ω, ty , n) = ω̂1 such that the pointer data structure stored in ω and the pointer data

structure stored in ω̂ are ψ-congruent by Definition 5.2.15.

Definition 5.2.18 (v ∼= v̂). A SMC2 value and Vanilla C value are congruent, in symbols v ∼= v̂, if and only if

Erase(v) = v̂.

Definition 5.2.19 (v ∼=ψ v̂). A SMC2 value and Vanilla C value are ψ-congruent, in symbols v ∼=ψ v̂,

if and only if either v 6= (l, µ), v̂ 6= (l̂, µ̂) and v ∼= v̂,

or v = (l, µ), v̂ = (l̂, µ̂) and (l, µ) ∼=ψ (l̂, µ̂).

Definition 5.2.20 (s ∼=ψ ŝ). A SMC2 statement and Vanilla C statement are ψ-congruent, in symbols s ∼=ψ ŝ, if and

only if for all vi ∈ s, v̂i ∈ ŝ such that vi ∼=ψ v̂i and otherwise s ∼= ŝ.

Definition 5.2.21 (e ∼=ψ ê). A SMC2 expression list and a Vanilla C expression list are ψ-congruent, in symbols

e ∼=ψ ê, given a map ψ, if and only if ∀e 6= (l, µ) ∈ e, Erase(e) = ê and ∀e = (l, µ) ∈ e, e ∼=ψ ê by Definition 5.2.20.

Definition 5.2.22 ({(p, γp, σp, ∆p, accp, sp) ∼=ψ (p, γ̂p, σ̂p,�,�, ŝp)}qp=1). A SMC2 configuration and a

Vanilla C configuration are ψ-congruent, in symbols {(p, γp, σp, ∆p, accp, sp) ∼=ψ (p, γ̂p, σ̂p,�,�, ŝp)}qp=1 or

C ∼=ψ Ĉ, if and only if {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and {sp ∼=ψ ŝ
p}qp=1.
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Definition 5.2.23 (d ∼= d̂). We define congruence over SMC2 codes d ∈ SmcC and d̂ ∈ V anC, in symbols d ∼= d̂,

by cases as follows:

if d = d̂, then d ∼= d̂,

if d = iep ⊕ iepd , then d̂ = m̂piet ⊕ m̂pief and d ∼= d̂,

if d = mpcmp, then d̂ = m̂pcmpt ⊕ m̂pcmpf and d ∼= d̂,

otherwise we have [malp] ∼= [t̂y , b̂m, m̂al ], fc1 ∼= f̂c, pin3 ∼= p̂in , cl1 ∼= ĉl , mpwdp2 ∼= m̂pwdp1 , cv1 ∼= ĉv ,

mpwdp ∼= m̂pwdp, pin4 ∼= p̂in1 , pin5 ∼= p̂in2 , mpwdp3 ∼= m̂pwdp, pin6 ∼= p̂in1 , pin7 ∼= p̂in2 , r1 ∼= r̂ , w1 ∼= ŵ ,

w2 ∼= ŵ , d1 ∼= d̂ , wdp2 ∼= ŵdp1 , dp1 ∼= d̂p, wdp3 ∼= ŵdp, rp1 ∼= r̂p, wdp4 ∼= ŵdp, wp1 ∼= ŵp, rdp1 ∼= r̂dp1 ,

wp2 ∼= ŵp, da1 ∼= d̂a , ra1 ∼= r̂a , wea2 ∼= ŵea , wea1 ∼= ŵea , rao1 ∼= r̂ao, wa1 ∼= ŵa , wa2 ∼= ŵa , wa1p ∼= ŵa ,

wa2p ∼= ŵa , wao2 ∼= ŵao, wao1 ∼= ŵao, inp3 ∼= ̂inp1 , inp2 ∼= înp, out3 ∼= ôut1 , and out2 ∼= ôut .

Definition 5.2.24 (d ∼= d̂). A SMC2 evaluation code trace for a single party and a Vanilla C evaluation code trace for

a single party are congruent, in symbols d ∼= d̂, if and only if CheckCodeCongruence(d, d̂) = 1 by Algorithm 83.

Definition 5.2.25 ((p, d) ∼= (p, d̂)). A party-wise SMC2 code trace (p, d) and a party-wise Vanilla C code trace

(p, d̂) are congruent, in symbols (p, d) ∼= (p, d̂), if and only if d ∼= d̂.

Definition 5.2.26 (Π ∼=ψ Σ). Two derivations and ψ-congruent, in symbols Π ∼=ψ Σ, if and only if

Π . ((1, γ1, σ1, ∆1, acc1, s1) ‖ ... ‖ (q, γq, σq, ∆q, accq, sq))

⇓LD ((1, γ1
1 , σ

1
1 , ∆1

1, acc1
1, v

1) ‖ ... ‖ (q, γq
1 , σ

q
1 , ∆q

1, accq
1, v

q)) and

Σ . ((1, γ̂1, σ̂1, �, �, ŝ1) ‖ ... ‖ (q, γ̂q, σ̂q, �, �, ŝq)) ⇓
D̂

((1, γ̂1
1 , σ̂

1
1 , �, �, v̂

1) ‖ ... ‖ (q, γ̂q
1 , σ̂

q
1 , �, �, v̂

q)) such

that {(p, γp, σp, ∆p, accp, sp) ∼=ψ1 (p, γ̂p, σ̂p, �, �, ŝp)}qp=1, D ∼= D̂, and {(p, γp
1 , σ

p
1 , ∆p

1 , accp
1 , v

p) ∼=ψ (p, γ̂p
1 ,

σ̂p
1 , �, �, v̂

p)}qp=1 such that ψ was derived from ψ1 and the derivation Π.

Definition 5.2.27. Two input files are congruent, in symbols inp ∼= ˆinp, if and only if for all mappings of variables

to number values x = v ∈ inp and x̂ = v̂ ∈ ˆinp, x = x̂ and v ∼= v̂ by Definition 5.2.12.

Definition 5.2.28. Two output files are congruent, in symbols out ∼= ˆout , if and only if for all mappings of variables

to number values x = v ∈ out and x̂ = v̂ ∈ ˆout , x = x̂ and v ∼= v̂ by Definition 5.2.12.

Definition 5.2.29 (non-constant location). A statement s is considered to update a non-constant location

if the location that is being updated by such a statement can be modified (such as that which a pointer refers to) or

overshot (such as that of a public index into an array).

Definition 5.2.30 (constant location). A statement s is considered to update a constant location

if the location that is being updated by such a statement cannot be modified (such l when γ(x) = (l, ty)) or overshot

(such as that of a private index into an array).
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Definition 5.2.31 (∆ complete). The given nesting level of a location map ∆[acc] is considered to be complete

if all non-local locations that have been updated within the evaluation of the Private If Else statement have mappings

within ∆[acc] such that the value in vorig is the original value.

Definition 5.2.32 (∆ then-complete). The given nesting level of a location map ∆[acc] is considered to be then-

complete if ∆[acc] is complete and

either the location was updated in the then branch and therefore has a value stored for vthen and tag set to 1,

or the location was not updated in the then branch.

Definition 5.2.33 (∆ else-complete). The given nesting level of a location map ∆[acc] is considered to be else-

complete if ∆[acc] was then-complete after the evaluation of restoration and ∆[acc] is complete after evaluation after

the else branch.

Definition 5.2.34 ((γ, σ) |= (x ≡ v)). Variable x is equivalent to value v in the environment and memory pair

(γ, σ), in symbols (γ, σ) |= (x ≡ v), if and only if there is a valid mapping for x in the environment γ(x) = (l, ty) and

a corresponding mapping in memory σ(l) = (ω, ty , α,PermL(perm, ty , a, α)) such that the byte representation ω can

be decoded by the given type ty to obtain value v.

Definition 5.2.35 ((σ) |=l ((l, µ) ≡ty v)). The bytes at location (l, µ) interpreted as type ty in the given memory

σ are equivalent to the given value v, in symbols (σ) |=l ((l, µ) ≡ty v), if and only if there is a valid mapping for l

in memory σ(l) = (ω, ty1, α,PermL(perm, ty1, a, α)) such that the byte representation ω from the offset µ can be

decoded by the given type ty to obtain value v.

5.2.2 Lemmas

Axiom 5.2.2. Given a SMC2 program of statement s and a ψ-congruent Vanilla C program of statement ŝ, in symbols

s ∼=ψ ŝ, any time a new memory block identifier is obtained from the available pool in the SMC2 program such that

l = φ(), an identical memory block identifier is obtained from the available pool in the Vanilla C program such that

l̂ = φ() and l = l̂ and (l, 0) ∼=ψ (l̂, 0).

Axiom 5.2.3. Given a SMC2 private pointer data structure [α, l, j, i] stored at memory block l and ψ-congruent

Vanilla C pointer data structure [1, [(l̂1, µ̂1)], [1], î] stored at ψ-congruent memory block l̂, we consider l, l̂ to be equally

freeable if either:

• both CheckFreeable(γ, l, j) = 1 and CheckFreeable(γ̂, [(l̂1, µ̂1)], [1]) = 1, or

• both CheckFreeable(γ, l, j) = 0 and CheckFreeable(γ̂, [(l̂1, µ̂1)], [1]) = 0.

Lemma 5.2.1. Given ∗, ∗ if GetIndirection(∗) = i and |∗| = | ∗ |, then GetIndirection(∗) = î such that i = î.
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Proof. Proof Sketch:

By definition of function Erase, when two types are congruent, their levels of indirection will be the same. Therefore,

when we evaluate the level of indirection from the number of ∗, we will get the same number in both SMC2 and Vanilla

C.

Lemma 5.2.2. Given parameter list p, p̂ and ψ, if GetFunTypeList(p) = ty and p ∼=ψ p̂,

then GetFunTypeList(p̂) = t̂y such that ty ∼=ψ t̂y .

Proof. Proof Sketch:

By the definition of Algorithm GetFunTypeList, GetFunTypeList, and function Erase.

Lemma 5.2.3. Given parameter list p, p̂ and expression list e, ê, if GetFunParamAssign(p, e) = s1, p ∼= p̂, and

e ∼= ê, then GetFunParamAssign(p̂, ê) = ŝ1 where s1
∼=ψ ŝ1.

Proof. By definition of GetFunParamAssign.

Lemma 5.2.4. Given map ψ, pointer type ty ∈ {a const bty∗, a bty∗}, t̂y ∈ {const b̂ty∗, b̂ty∗}, and pointer data

structure [1, [(l, µ)], [1], i], [1, [(l̂, µ̂)], [1], î], if EncodePtr(ty , [1, [(l, µ)], [1], i]) = ω, ty ∼= t̂y , (l, µ) ∼=ψ (l̂, µ̂), then

EncodePtr(t̂y , [1, [(l̂, µ̂)], [1], î]) = ω̂ such that ω ∼=ψ ω̂.

Proof. By definition of Algorithm EncodePtr, EncodePtr, and function Erase.

Lemma 5.2.5. Given map ψ, type ty ∈ {a bty}, b̂ty , and value n, n̂, if EncodeVal(ty , n) = ω, n ∼= n̂, ty ∼= b̂ty ,

then EncodeVal(b̂ty , n̂) = ω̂ such that ω ∼=ψ ω̂.

Proof. By definition of Algorithm EncodeVal, EncodeVal, and definition of function Erase.

Lemma 5.2.6. Given map ψ, type ty ∈ {a bty}, b̂ty , value n, n̂, i1, i2, î1, î2, if EncodeArr(ty , i1, i2, n) = ω,

n ∼=ψ n̂ i1 = î1, i2 = î2, and ty ∼=ψ b̂ty , then EncodeArr(b̂ty , î1, î2, v) = ω̂ such that ω ∼=ψ ω̂.

Proof. By definition of Algorithm EncodeArr, EncodeArr, and the definition of function Erase.

Lemma 5.2.7. Given map ψ, statement s, ŝ, value n, and parameter list p, p̂, if EncodeFun(s, n, p) = ω, s ∼=ψ ŝ,

and p ∼=ψ p̂, then EncodeFun(ŝ,�, p̂) = ω̂ such that ω ∼=ψ ω̂.

Proof. By definition of Algorithm EncodeFun, EncodeFun, and the definition of Erase.

Lemma 5.2.8. Given map ψ, type a bty , b̂ty , and byte representation ω, ω̂, if DecodeVal(a bty , ω) = n, a bty ∼= b̂ty

and ω ∼=ψ ω̂, then DecodeVal(b̂ty , ω̂) = n̂ and n ∼=ψ n̂.

Proof. By case analysis of the semantics, Lemma 5.2.5, definition of Algorithm DecodeVal, DecodeVal and function

Erase.

660



Lemma 5.2.9. Given map ψ, type a bty , b̂ty , index i, î, and byte representation ω, ω̂, if DecodeArr(a bty , i ω) = n,

a bty ∼= b̂ty , i ∼=ψ î, and ω ∼=ψ ω̂, then DecodeArr(b̂ty , î, ω̂) = n̂ and n ∼=ψ n̂.

Proof. By case analysis of the semantics, Lemma 5.2.6, definition of Algorithm DecodeArr, DecodeArr and function

Erase.

Lemma 5.2.10. Given map ψ, type a bty , b̂ty , index i ∈ {0...α − 1}, î ∈ {0...α̂ − 1}, and byte representation

ω, ω̂, if ∀i ∈ {0...α − 1} DecodeArr(a bty , i ω) = ni, a bty ∼= b̂ty , α = α̂, and ω ∼=ψ ω̂, then ∀̂i ∈ {0...α̂ − 1}

DecodeArr(b̂ty , î, ω̂) = n̂î such that ∀i ∈ {0...α− 1} ni ∼=ψ n̂i.

Proof. By case analysis of the semantics, Lemma 5.2.6, definition of Algorithm DecodeArr, DecodeArr and function

Erase.

Lemma 5.2.11. Given map ψ, type a bty∗, b̂ty∗, number of locations α, 1, and byte representation ω, ω̂,

if DecodePtr(a bty∗, α ω) = [α, l, j, i], a bty∗ ∼= b̂ty∗, and ω ∼=ψ ω̂, then DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂, µ̂)], [1],

î] such that [α, l, j, i] ∼=ψ [1, [(l̂, µ̂)], [1], î].

Proof. By case analysis of the semantics, Lemma 5.2.4, definition of Algorithm DecodePtr, DecodePtr and function

Erase.

Lemma 5.2.12. Given map ψ, type a const bty∗, const b̂ty∗, number of locations α, 1, and byte represen-

tation ω, ω̂, if DecodePtr(a const bty∗, α ω) = [α, l, j, i], a const bty∗ ∼= const b̂ty∗, and ω ∼=ψ ω̂, then

DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂, 0)], [1], î] such that [1, [(l, 0)], [1], i] ∼=ψ [1, [(l̂, 0)], [1], î] and l = l̂.

Proof. By case analysis of the semantics, Lemma 5.2.4, definition of Algorithm DecodePtr, DecodePtr and function

Erase.

We obtain that l = l̂ for a constant pointer (array) type by case analysis of the semantics, showing that the location

that a constant pointer cannot be changed after it is declared.

Lemma 5.2.13. Given map ψ and byte representation ω, ω̂, if DecodeFun(ω) = (s, n, p), and ω ∼=ψ ω, then

DecodeFun(ω̂) = (ŝ,�, p̂), s ∼=ψ ŝ and p ∼=ψ p̂.

Proof. By case analysis of the semantics, Lemma 5.2.7, definition of Algorithm DecodeFun and DecodeFun, and

definition of function Erase.

Lemma 5.2.14. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, value n, n̂, and type

a bty , b̂ty , if UpdateVal(σ1, l, n, a bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l ∼=ψ l̂, n ∼=ψ n̂, and a bty ∼= b̂ty , then

UpdateVal(σ̂1, l̂, n̂, b̂ty) = σ̂2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Proof. By definition of Algorithms UpdateVal, UpdateVal, and Erase.
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Lemma 5.2.15. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, value n, n̂, index

i, î ∈ {0...α − 1}, and type a bty , b̂ty , if UpdateArr(σ1, (l, i), n, a bty) = σ2, (γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, i = î,

n ∼=ψ n̂, and a bty ∼=ψ b̂ty , then UpdateArr(σ̂1, (l̂, î), n̂, b̂ty) = σ2 such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Proof. By definition of Algorithms UpdateArr, UpdateArr, and Erase.

Lemma 5.2.16. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, list of values [n0, ...,

nα−1], [n̂0, ..., n̂α̂−1], and type a bty , b̂ty , if ∀i ∈ {0...α − 1} UpdateArr(σ1+i, (l, i), ni, a bty) = σ2+i,

(γ, σ1) ∼=ψ (γ̂, σ̂1), l = l̂, α = α̂, [n0, ..., nα−1] ∼=ψ [n̂0, ..., n̂α̂−1], and a bty ∼=ψ b̂ty , then ∀̂i ∈ {0...α̂ − 1}

UpdateArr(σ̂1+î, (l̂, î), n̂î, b̂ty) = σ2+î such that (γ, σ2+i) ∼=ψ (γ̂, σ̂2+î).

Proof. By definition of Algorithms UpdateArr, UpdateArr, and Erase, and Lemma 5.2.15.

Lemma 5.2.15 gives us that this holds when updating a single value within an array. Given that we have α values

and are updating each of them sequentially, we have that each intermediate step i maintains (γ, σ2+i) ∼=ψ (γ̂, σ̂2+i),

and therefore the final memory maintains (γ, σ2+α−1) ∼=ψ (γ̂, σ̂2+α−1).

Lemma 5.2.17. Given map ψ, environment γ, γ̂, memory σ, σ̂, location (l, µ), (l̂, µ̂), pointer data structure [α, l, j, i],

[1, [(l̂1, µ̂1)], [1], î], and type a bty∗, b̂ty∗, if UpdatePtr(σ, (l, µ), [α, l, j, i], a bty∗) = (σ1, j), a bty∗ ∼= b̂ty∗,

(γ, σ) ∼=ψ (γ̂, σ̂), (l, µ) ∼=ψ (l̂, µ̂), and [α, l, j, i] ∼=ψ [1, [(l̂1, µ̂1)], [1], î], then UpdatePtr(σ̂, (l̂, µ̂), [1, [(l̂1, µ̂1)], [1],

i], b̂ty∗) = (σ̂1, ĵ) such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and j = ĵ.

Proof. By definition of UpdatePtr, UpdatePtr, and Erase, as well as Definition 5.2.15, 5.2.14, and 5.2.4.

Lemma 5.2.18. Given map ψ, environment γ, γ̂, memory σ, σ̂, memory block identifier l, l̂, type a bty , b̂ty , and array

index i, î and size n, n̂, if ReadOOB(i, n, l, a bty , σ) = (n, j, (l1, µ)), (γ, σ) ∼=ψ (γ̂, σ̂), i = î, n = n̂, l = l̂, and

a bty ∼= b̂ty , then ReadOOB(̂i, n̂, l̂, b̂ty , σ̂) = (v̂, ĵ) such that n ∼=ψ n̂ and j = ĵ.

Proof. By definition of ReadOOB, if the number returned with the updated memory is 1, then the out of bounds

access was well-aligned by Definition 5.2.3. Therefore, when we iterate over the ψ-congruent Vanilla C memory, the

resulting out of bounds access will also be well-aligned. We use the definition of ReadOOB, ReadOOB, and Erase to

help prove this.

Lemma 5.2.19. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type a bty , b̂ty , value

n, n̂, array index i, î and size α, α̂, if WriteOOB(n, i, α, l, a bty , σ1) = (σ2, j, (l2, µ)), n ∼=ψ n̂, i = î, α = α̂, l = l̂,

a bty ∼=ψ b̂ty , and (γ, σ1) ∼=ψ (γ̂, σ̂1), then WriteOOB(n̂, î, α̂, l̂, b̂ty , σ̂1) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2)

and j ∼= ĵ.

Proof. Proof Idea:

By definition of WriteOOB, if the number returned with the updated memory is 1, then the out of bounds access was
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well-aligned by Definition 5.2.3. Therefore, when we iterate over the ψ-congruent Vanilla C memory, the resulting out

of bounds access will also be well-aligned. We use the definition of WriteOOB, WriteOOB, and Erase to help prove

this.

Lemma 5.2.20. Given map ψ, location (l1, µ1), (l̂1, µ̂1), type ty , t̂y , number n, n̂, environment γ, γ̂, and memory

σ, σ̂, if GetLocation((l1, µ1), n, σ) = ((l2, µ2), j), (l1, µ1) ∼=ψ (l̂1, µ̂1), ty ∼= t̂y , τ(ty) = n, τ(t̂y) = n̂, and

(γ, σ) ∼=ψ (γ̂, σ̂), then GetLocation((l̂1, µ̂1), n̂, σ̂) = ((l̂2, µ̂2), ĵ) such that (l2, µ2) ∼=ψ (l̂2, µ̂2) and j ∼= ĵ.

Proof. By definition of algorithms GetLocation and Erase and Definition 5.2.14.

Lemma 5.2.21. Given location list l, location (l̂, µ̂), type ty , t̂y , number n, n̂, map ψ, environment γ, γ̂, and memory

σ, σ̂, if IncrementList(l, n, σ) = (l
′
, j), DeclassifyPtr([α, l, j, i], ty) = (l1, µ1) such that (l1, µ1) ∼=ψ (l̂1, µ̂1),

(γ, σ) ∼=ψ (γ̂, σ̂), ty ∼= t̂y , τ(ty) = n, τ(t̂y) = n̂, and DeclassifyPtr([α, l
′
, j, i], private bty∗) = (l2, µ2), then

GetLocation((l̂1, µ̂1), n̂, σ̂) = ((l̂2, µ̂2), ĵ) such that (l2, µ2) ∼=ψ (l̂2, µ̂2) and j ∼= ĵ.

Proof. By definition of algorithms IncrementList, GetLocation, and Erase and Definitions 5.2.14 and 5.2.15.

Lemma 5.2.22. Given map ψ, memory σ, σ̂ and environment γ, γ̂ such that (γ, σ) ∼=ψ (γ̂, σ̂), and memory block

identifier l, l̂, if Free(σ, l, γ) = σ1 and l ∼=ψ l̂, then Free(σ̂, l̂, γ̂) = σ̂1 such that (γ, σ1) ∼=ψ (γ̂, σ̂1).

Proof. By definition of Free, the ψ-congruent location will be marked as deallocated.

Lemma 5.2.23. Given type ty , t̂y and value n, n̂, if n1 = Cast(public, ty , n), ty ∼=ψ t̂y , and n = n̂ then

n̂1 = Cast(public, t̂y , n̂) such that n1 = n̂1.

Proof. By definition of algorithm Cast and Cast.

Lemma 5.2.24. Given map ψ, type ty , t̂y and number n, n̂, if n1 = Cast(private, ty , n), ty ∼=ψ t̂y , and n ∼=ψ n̂

then n̂1 = Cast(public, t̂y , n̂) such that n1
∼=ψ n̂1.

Proof. By definition of algorithms Cast and Cast and function Erase.

Lemma 5.2.25. Given map ψ, environment γ, γ̂, memory σ, σ̂, type a bty , b̂ty , and location (l1, µ1), (l̂1, µ̂1), if

DerefPtr(σ, a bty , (l1, µ1)) = (n, j), (γ, σ) ∼=ψ (γ̂, σ̂), a bty ∼= b̂ty , and (l1, µ1) ∼=ψ (l̂1, µ̂1), then (n̂, ĵ) =

DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) such that n ∼=ψ n̂ and j ∼= ĵ.

Proof. By definition of Algorithms DerefPtr, DerefPtr, and Erase.

Lemma 5.2.26. Given map ψ, environment γ, γ̂, memory σ, σ̂, type public bty∗, b̂ty∗, and location (l1, µ1), (l̂1, µ̂1),

if DerefPtrHLI(σ, a bty∗, (l1, µ1)) = ([α, l, j, i− 1], j), (γ, σ) ∼=ψ (γ̂, σ̂), a bty∗ ∼= b̂ty∗, and (l1, µ1) ∼=ψ (l̂1, µ̂1),

then ([1, [(l̂2, µ̂2)], [1], î−1], ĵ) = DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) such that [α, l, j, i−1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î−1]

and j ∼= ĵ.
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Proof. By definition of Algorithms DerefPtrHLI, DerefPtrHLI, and Erase.

Lemma 5.2.27. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, location (l, µ), (l̂, µ̂), value n, n̂, and type

a bty , b̂ty , if UpdateOffset(σ1, (l, µ), n, a bty) = (σ2, j), (γ, σ1) ∼=ψ (γ̂, σ̂1), (l, µ) ∼=ψ (l̂, µ̂), n ∼=ψ n̂, and

a bty ∼=ψ b̂ty , then UpdateOffset(σ̂1, (l̂, µ̂), n̂, b̂ty) = (σ̂2, ĵ) such that (γ, σ2) ∼=ψ (γ̂, σ̂2) and j ∼= j′.

Proof. By definition of Algorithm UpdateOffset, UpdateOffset, and Erase, as well as Definition 5.2.14 and 5.2.4.

Lemma 5.2.28. Given map ψ, memory {σp
1}

q
p=1, σ̂1, environment {γp

1}
q
p=1, γ̂1, variable list xlist , value {np}qp=1,

and accumulator acc, if {InitializeVariables(xlist , γ
p
1 , σ

p
1 , n

p, acc + 1) = (γp
2 , σ

p
2 , l

p

2)}qp=1 and {(γp
1 , σ

p
1 ) ∼=ψ

(γ̂1, σ̂1)}qp=1, then {γp
2 = γp

1 :: γp
temp}

q
p=1, {σp

2 = σp
1 :: σp

temp}
q
p=1, and {(γp

2 , σ
p
2 ) ∼=ψ (γ̂1, σ̂1)}qp=1.

Proof. By analysis of Algorithm InitializeVariables, we can see that we do not modify any elements currently in the

environment of memory, we only add new mappings for our temporary variables used to for tracking and resolution.

Given this, that the original SMC2 environment and memory pairs were ψ-congruent to the Vanilla C pair, and the

definition of Algorithm Erase, we have that the updated SMC2 environment and memory pair that is returned from

Algorithm InitializeVariables is still ψ-congruent to the Vanilla C pair.

Lemma 5.2.29. Given statements s, if s1 ∈ s modifies memory at a constant location, then that location is dictated

by a given variable x.

Proof. Proof by case analysis of the semantics and Definitions 5.2.30 and 5.2.29, we can show that all modifications

to memory that are at a constant location are able to be found and tracked using the variable x that refers to that

location.

Lemma 5.2.30. Given statement s, if there exists a possible evaluation of s that results an update to memory that at a

non-constant location, then s is found by a case in Algorithm Extract and the tag j returned by Algorithm Extract is

returned as 1.

Proof. By Definition 5.2.29 and case analysis of our semantics, we have statements ∗x = e and x[e1] = e2 where

(e1) 0 γ as the only statements that could possibly lead to updating memory at a non-constant location.

By definition of Algorithm Extract, we can see that such statements will always be found and result in the tag

being set to 1. We can also show that once the tag is set to 1, it cannot be set back to 0, and therefore will be returned as

1.

Lemma 5.2.31. Given statement s, if any possible evaluation of s1 ∈ s results in an update to memory, then s1 is

found by a case in Algorithm Extract and either
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• s1 results in an update to a non-constant location and so the tag is set as 1,

• s1 results in an update to a constant location dictated by x that is local, or

• s1 results in an update to a constant location dictated by x and x is added to the variable list xlist .

Proof. Proof by contradiction showing there does not exist a statement that can be evaluated via any of our rules and

result in a modification in memory that is not found by one of the cases in Algorithm Extract.

By Lemma 5.2.30, we have bullet 1. By Lemma 5.2.29 and analysis of Algorithm Extract, we have bullets 2 and

3.

Lemma 5.2.32. Given statements s1, s2, and environment γ, if {Extract(s1, s2, γ
p) = (xlist , 0)}qp=1 then the

evaluation of s1 and s2 can only result in updates to memory at constant locations, each dictated by variable x such

that x ∈ xlist .

Proof. By Lemma 5.2.31, we can see that as long as the tag is not returned as 1, this holds and therefore there are no

updates in memory to non-local variables that will occur in either branch that cannot be caught by variable tracking.

Lemma 5.2.33. Given variable list xlist , environment {γp
1}

q
p=1, memory {σp

1}
q
p=1, value {np}qp=1, and accumulator

acc, if all updates to memory in either branch will be caught by variables x ∈ xlist and {InitializeVariables(xlist , γ
p
1 ,

σp
1 , n

p, acc) = (γp
2 , σ

p
2 , l

p
)}qp=1, then {∀x ∈ xlist , (γp

1 , σ
p
1 ) |= (x ≡ v_x_origp)}qp=1 and {∀x ∈ xlist (γp

2 , σ
p
2 )

|= (x_else_acc ≡ v_x_origp)}qp=1.

Proof. By Lemma 5.2.32 we have all updates to memory in either branch will be caught by variables x ∈ xlist . By

Definition 5.2.34 and given when Algorithm InitializeVariables is called, the current values of each x will be the

original values for the variable. By definition of Algorithm InitializeVariables, we have that original values of x are

stored in the temporary else variable corresponding to x.

Lemma 5.2.34. Given evaluation ((1, γ1
1 , σ

1
start ,∆

1
1, acc + 1, s) ‖ ... ‖ (q, γq

1 , σ
q
start , ∆q

1, acc + 1, s)) ⇓LD
((1, γ1

2 , σ
1
end , ∆1

2, acc + 1, skip) ‖ ... ‖ (q, γq
2 , σ

q
end ,∆

q
2, acc + 1, skip)), if {σp

start = σp
1 :: σp

temp}
q
p=1 such that

{σp
temp}

q
p=1 is the portion containing the temporary variables for this level of nesting designated by acc, then

{σp
end = σp

2 :: σ′ptemp}
q
p=1 such that {σ′ptemp = σp

temp}
q
p=1.

Proof. Using case analysis of the semantics, it is clear that the temporary variables given used by the Private If Else

rules can only be modified during execution of a Private If Else rule. It is also clear that each level of nesting will

increase the accumulator acc, and given this is appended to each of the temporary variables, it is clear that there

can be no overlap of temporary variable names between levels of nesting, and so the only rule that can modify the

temporary variables is the one of the level at which they were created. Therefore, we have that given the execution of

one of the branches, the temporary variables used for tracking remain unchanged in the execution of that branch, or

{σp
end = σp

2 :: σp
temp}

q
p=1 such that {σp

temp}
q
p=1 remains unchanged.
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Lemma 5.2.35. Given environment {γp
1}

q
p=1, γ̂, then branch memory {σp

1}
q
p=1, σ̂1, original memory {σp

orig}
q
p=1,

σ̂orig , variable list xlist , and accumulator acc, if all updates to memory in either branch will be caught by vari-

ables x ∈ xlist , {RestoreVariables(xlist , γ
p
1 , σ

p
1 , acc) = (σp

2 , l
p
)}qp=1, {∀x ∈ xlist , (γp

1 , σ
p
1 ) |= (x_else_acc ≡

v_x_origp)}qp=1, (γp
1 , σ

p
1 ) ∼=ψ (γ̂, σ̂1), and (γp

1 , σ
p
orig) ∼=ψ (γ̂, σ̂orig),

then {∀x ∈ xlist , (γp
1 , σ

p
1 ) |= (x ≡ v_x_thenp)}qp=1, {∀x ∈ xlist (γp

2 , σ
p
2 ) |= (x_then_acc ≡ v_x_thenp)}qp=1

and {∀x ∈ xlist , (γp
2 , σ

p
2 ) |= (x ≡ v_x_origp)}qp=1 such that {σp

2 = σp
orig :: σp

temp}
q
p=1 and {(γp

1 , σ
p
2 ) ∼=ψ

(γ̂, σ̂orig)}qp=1.

Proof. By Lemma 5.2.32 we have that all variables x that will be modified are contained in the variable list xlist . By

Lemma 5.2.33, we have that all variables x within variable list xlist will have a then and else temporary created,

and the else temporary stores the original value of x. By Lemma 5.2.34, we have that the temporary variables will

remain unchanged throughout the execution of the then branch statement, and therefore the else temporary still

stores the original values. Given (γp
1 , σ

p
orig) ∼=ψ (γ̂, σ̂), we have that the original memories are ψ-congruent.

By Definition 5.2.34 and given when Algorithm RestoreVariables is called, the current values of each x will be

the then values for the variable. By definition of Algorithm RestoreVariables, we will store the then values into

the then temporaries, and then restore the original values (stored in the else temporaries) back into memory for x.

We will then have the resulting memory as the original memory plus our temporaries ({σp
2 = σp

orig :: σp
temp}

q
p=1). By

definition of Algorithm Erase, we will therefore have the resulting SMC2 environment and memory pair ψ-congruent

to the original Vanilla C environment and memory pair.

Lemma 5.2.36. Given the evaluation of a Private If Else rule, if ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e))

⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)), {ResolveVariables_Retrieve(xlist , acc + 1, γp

1 , σ
p
5 )

= ([(vp
t1, v

p
e1), ..., (vp

tm, v
p
em)], n′p, l

p

6)}qp=1, and {np ∼= n̂}qp=1 then {np = n′p}qp=1 such that {n′p ∼= n̂}qp=1.

Proof. By definition of Algorithm InitializeVariables, the results {np}qp=1 from the evaluation of the private con-

ditional e will be stored in temporary variables based on the level of nesting indicated by the accumulator acc. By

Lemma 5.2.34, we have that these temporaries cannot be modified by the evaluation of either branch statements

s1, s2. By definition of Algorithm RestoreVariables, we have that these temporaries cannot be modified during

the evaluation of Algorithm RestoreVariables. Therefore, when we retrieve these values from memory using Al-

gorithm ResolveVariables_Retrieve, they will be identical to the values we stored into memory using Algorithm

InitializeVariables.

Lemma 5.2.37. Given environment {γp}qp=1, else branch memory {σp}qp=1, variable list xlist , and accumulator

acc, if all updates to memory in either branch will be caught by variables x ∈ xlist and

{ResolveVariables_Retrieve(xlist , acc + 1, γp, σp) = ([(vp
t1, v

p
e1), ..., (vp

tm, v
p
em)], np, l

p
)}qp=1, and ∀x ∈ xlist ,p ∈
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{1...q}, (γp, σp) |= (x_then_acc ≡ v_x_thenp), then {∀xi ∈ xlist , (γp, σp) |= (xi ≡ vp
ei)}

q
p=1, and {∀xi ∈ xlist ,

(γp, σp) |= (xi_then_acc ≡ vp
ti)}

q
p=1.

Proof. Given ∀x ∈ xlist ,p ∈ {1...q}, (γp
1 , σ

p
5 ) |= (x_then_acc ≡ v_x_thenp) by Lemma 5.2.34, we have that

all of the then temporary variables currently store the result of the then branch. By definition of Algorithm

ResolveVariables_Retrieve, this is what is returned for each variable xi in value vp
ti.

Given that we are executing Algorithm ResolveVariables_Retrieve with the resulting memory from the else

branch, by definition of Algorithm ResolveVariables_Retrieve this is what is returned for each variable xi in value

vp
ei.

Lemma 5.2.38. Given variable list xlist , accumulator acc, environment {γp}qp=1, γ̂, else branch memory {σp
e}

q
p=1,

σ̂e, and values {[vp
f1, ..., v

p
fm], [vp

e1, ..., v
p
em]}qp=1, if all updates to memory in either branch will be caught by variables

x ∈ xlist , {ResolveVariables_Store(xlist , acc, γp, σp
e , [vp

f1, ..., v
p
fm]) = (σp

f , l
p
)}qp=1, {(γp, σp

e ) ∼=ψ (γ̂, σ̂e)}qp=1,

{∀xi ∈ xlist , (γp, σp
e ) |= (xi ≡ vp

ei)}
q
p=1, and {∀i ∈ {1...m}, vp

fi = vp
ei)}

q
p=1, then {∀x ∈ xlist , (γp, σp

f ) |= (x ≡

vp
ei)}

q
p=1 and {(γp, σp

f ) ∼=ψ (γ̂, σ̂e)}qp=1.

Proof. Given that all changes were caught by variables in the variable list and that the final list of values given matches

the else values, by definition of Algorithm ResolveVariables_Store we will iterate through the list and properly store

all final values into memory for their respective variables.

Given the else environment and memory pairs we ψ-congruent, and that we are placing the else values into

memory, we will have the resulting SMC2 memory ψ-congruent to the else Vanilla C memory.

Lemma 5.2.39. Given variable list xlist , accumulator acc, environment {γp}qp=1, γ̂, else branch memory {σp
e}

q
p=1

then branch memory {σp
t }

q
p=1, σ̂t, and values {[vp

f1, ..., v
p
fm], [vp

t1, ..., v
p
tm]}qp=1, if all updates to memory in

either branch will be caught by variables x ∈ xlist and {ResolveVariables_Store(xlist , acc, γp, σp
e , [vp

f1, ..., v
p
fm])

= (σp
f , l

p
)}qp=1, {(γp, σp

t ) ∼=ψ (γ̂, σ̂t)}qp=1, {∀xi ∈ xlist , (γp, σp
t ) |= (xi ≡ vp

ti)}
q
p=1 and {∀i ∈ {1...m}, vp

fi =

vp
ti)}

q
p=1, then {∀x ∈ xlist , (γp, σp

f ) |= (x ≡ vp
ti)}

q
p=1 and {(γp, σp

f ) ∼=ψ (γ̂, σ̂t)}qp=1.

Proof. Given that all changes were caught by variables in the variable list and that the final list of values given matches

the then values, by definition of Algorithm ResolveVariables_Store we will iterate through the list and properly store

all final values into memory for their respective variables.

Given the then environment and memory pairs we ψ-congruent, and that we are placing the then values into

memory, we will have the resulting SMC2 memory ψ-congruent to the then Vanilla C memory.

Lemma 5.2.40. Given statement s1, s2, environment {γp
1}

q
p=1, memory {σp

1}
q
p=1, value {np}qp=1, location map

{∆p
1}

q
p=1, and accumulator acc, if {Extract(s1, s2, γ

p
1 ) = (xlist , 1)}qp=1 and {Initialize(∆p

1 , xlist , γ
p
1 , σ

p
1 , n

p, acc)
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= (γp
2 , σ

p
2 ,∆

p
2 , l

p
)}qp=1, then all updates to a constant location dictated by variable x will have their original value

stored within location map ∆, {(γp
2 , σ

p
2 ) |= (res_acc ≡ np)}qp=1, and {σp

2 = σp
1 :: σp

temp1}
q
p=1.

Proof. By Definition 5.2.29 and case analysis of our semantics, we have statements ∗x = e and x[e1] = e2 where

(e1) 0 γ as the only statements that could possibly lead to updating memory at a non-constant location. By Defini-

tion 5.2.30, Lemma 5.2.29, Lemma 5.2.31, and the definition of Algorithm Extract, we can see that all updates made

in other semantic rules would be dictated by a variable x and added to xlist . By definition of Algorithm Initialize, we

can see that all variables in xlist will have initial mappings of their location, original value, and type stored into location

map {∆p
1 [acc]}qp=1, as well as added the mappings to store the result of the private condition within the temporary

variable res_acc.

Lemma 5.2.41. Given variable list xlist , location map {∆p
1}

q
p=1, environment {γp

1}
q
p=1, γ̂, memory {σp

1}
q
p=1,

σ̂, value {np}qp=1, and accumulator acc, if {Initialize(∆p
1 , xlist , γ

p
1 , σ

p
1 , n

p, acc) = (γp
2 , σ

p
2 ,∆

p
2 , l

p
)}qp=1 and

{(γp
1 , σ

p
1 ) ∼=ψ (γ̂, σ̂)}qp=1, then {(γp

2 , σ
p
2 ) ∼=ψ (γ̂, σ̂)}qp=1.

Proof. By definition of Algorithm Initialize and Erase. Initialize adds a mapping for a temporary variable to store

the result of the private condition, and therefore maintains ψ-congruency with the Vanilla C environment and memory

pair.

Lemma 5.2.42. Given configuration ((p, γ, σ,∆, acc, s) ‖ C), if an update is made at a non-constant location

(l, µ) during the execution of a statement s within a private-conditioned branch, then (l, µ) ∈ ∆[acc] such that

∆[acc](l, µ) = (vorig , vthen , j, ty) and ∆[acc] is complete.

Proof. By Definition 5.2.29 and case analysis of our semantics, we have statements ∗x = e and x[e1] = e2 where

(e1) 0 γ as the only statements that could possibly lead to updating memory at a non-constant location. In each

such rule, either DynamicUpdate is called before the update or WriteOOB is called to perform the update, and will

perform the appropriate checks and add to ∆ if necessary before performing the update in memory. By definitions of

Algorithms DynamicUpdate and WriteOOB, we can see that we have the following cases:

• acc = 0, and we are not inside a private-conditioned branch and therefore do not need to track anything,

• the location already exists in ∆[acc], and therefore already has the initial value stored and no modification of the

entry will occur within ∆, or

• the location does not exist in ∆[acc], and we add it with its current value as the initial value, a null then value,

tag 0, and it’s expected type, then proceed to ensure it is also tracked in outer levels of nesting (if applicable).

Given these three cases, we can see that while inside a private-conditioned branch, we are either already tracking the

location or we will initialize a mapping for the location, and therefore the modification will be properly tracked within

∆. By Definition 5.2.31, we have that ∆[acc] is complete.
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Lemma 5.2.43. Given environment {γp
1}

q
p=1, γ̂, then branch memory {σp

1}
q
p=1, σ̂1, original memory {σp

orig}
q
p=1,

σ̂orig , location map ∆1, and accumulator acc, if {∆p
1 [acc + 1]}qp=1 is complete, {Restore(σp

1 ,∆
p
1 , acc) = (σp

2 ,∆
p
2 ,

l
p
)}qp=1, (γp

1 , σ
p
1 ) ∼=ψ (γ̂, σ̂1), and (γp

1 , σ
p
orig) ∼=ψ (γ̂, σ̂orig), then {∆p

2 [acc + 1]}qp=1 is then-complete and {(γp
1 , σ

p
2 )

∼=ψ (γ̂, σ̂orig)}qp=1.

Proof. Given {∆p
1}

q
p=1 is complete, we can see that by Definition 5.2.31 and definition of Algorithm Restore, we

will iterate through all non-local locations that were modified within then branch, storing the then value from the

then branch memory and resetting the value in memory to be that of the original. We will set the tag to be 1 as we

store each then value in {∆p
2 [acc + 1]}qp=1, indicating that these locations were modified within the then branch

and ensuring that all non-local locations will be able to be properly resolved after evaluation of the else branch. By

Definition 5.2.32, we have that {∆p
2 [acc + 1]}qp=1 is then-complete.

Lemma 5.2.44. Given the evaluation of a Private If Else rule, if ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e))

⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)), {Extract(s1, s2, γ

p) = (xlist , 1)}qp=1, {Initialize(∆p
1 ,

xlist , γ
p, σp

1 , n
p, acc + 1) = (γp

1 , σ
p
2 ,∆

p
2 , l

p

2)}qp=1, ((1, γ1
1 , σ

1
2 ,∆

1
2, acc + 1, s1) ‖ ... ‖ (q, γq

1 , σ
q
2 ,∆

q
2, acc +

1, s1)) ⇓L3

D2
((1, γ1

2 , σ
1
3 ,∆

1
3, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
3, acc + 1, skip)), {Restore(σp

3 ,∆
p
3 , acc + 1) =

(σp
4 ,∆

p
4 , l

p

4)}qp=1 ((1, γ1
1 , σ

1
4 ,∆

1
4, acc + 1, s2) ‖ ... ‖ (q, γq

1 , σ
q
4 ,∆

q
4, acc + 1, s2)) ⇓L5

D3
((1, γ1

3 , σ
1
5 ,∆

1
5, acc + 1, skip)

‖ ... ‖ (q, γq
3 , σ

q
5 ,∆

q
5, acc + 1, skip)), {Resolve_Retrieve(γp

1 , σ
p
5 ,∆

p
5 , acc + 1) = ([(vp

t1, v
p
e1), ..., (vp

tm, v
p
em)],

n′p, l
p

6)}qp=1, and {np ∼=ψ n̂}qp=1 then {np = n′p}qp=1 such that {n′p ∼= n̂}qp=1.

Proof. By definition of Algorithm Initialize, the results {np}qp=1 from the evaluation of the private conditional e will

be stored in a temporary variable based on the level of nesting indicated by the accumulator acc. By definition of

Algorithm Restore, this temporary does not get modified. By Lemma 5.2.34, we have that this temporary cannot be

modified by the evaluation of either branch statements s1, s2. Therefore, when we retrieve these values from memory

using Algorithm Resolve_Retrieve, they will be identical to the values we stored into memory using Algorithm

Initialize, and therefore maintain ψ-congruency with the Vanilla C value. By Definition 5.2.19, given these values are

not locations, we have that they are congruent, {n′p ∼= n̂}qp=1.

Lemma 5.2.45. Given environment {γp
1}

q
p=1, statement s, memory {σp

1}
q
p=1, accumulator acc, and location map

{∆p
1}

q
p=1, if {∆p

1 [acc + 1]}qp=1 is then-complete, ((1, γ1
1 , σ

1
1 ,∆

1
2, acc + 1, s) ‖ ... ‖ (q, γq

1 , σ
q
1 ,∆

q
2, acc + 1, s))

⇓LD ((1, γ1
2 , σ

1
2 ,∆

1
2, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
2 ,∆

q
2, acc + 1, skip)), and {∆p

2 [acc + 1]}qp=1 is complete, then

{∆p
2 [acc + 1]}qp=1 is else-complete

Proof. This holds by Definition 5.2.33.

Lemma 5.2.46. Given environment {γp}qp=1, location map {∆p}qp=1, accumulator acc, then memory {σp
t }

q
p=1,

and else memory {σp
e}

q
p=1, if {∆p[acc]}qp=1 is else-complete and {Resolve_Retrieve(γp, σp

e ,∆
p, acc) = ([(vp

t1,
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vp
e1), ..., (vp

tm, v
p
em)], np, l

p
)}qp=1, then {∀(li, µi) = (vp

oi , v
p
ti, 1, ty i) ∈ ∆p[acc], (σp

t ) |=l ((li, µi) ≡ty vp
ti)}

q
p=1,

{∀(li, µi) = (vp
ti, NULL, 0, ty i) ∈ ∆p[acc], (σp

t ) |=l ((li, µi) ≡tyi v
p
ti)}

q
p=1, and {∀(li, µi) = (vp

oi, v
p
ti, j, ty i) ∈

∆p[acc], (σp
e ) |=l ((li, µi) ≡tyi v

p
ei)}

q
p=1.

Proof. By definition of Algorithm Resolve_Retrieve, we can see that we pull the then value from the location

map at nesting level acc based on the tag, and the else value from the given else memory. Given {∆p[acc]}qp=1

is else-complete, we have that all original and then values have been properly added into {∆p[acc]}qp=1. By

Definitions 5.2.35 and 5.2.33, this gives us {∀(li, µi) = (vp
oi , v

p
ti, 1, ty i) ∈ ∆p[acc], (σp

t ) |=l ((li, µi) ≡ty v
p
ti)}

q
p=1

and {∀(li, µi) = (vp
ti,NULL, 0, ty i) ∈ ∆p[acc], (σp

t ) |=l ((li, µi) ≡tyi v
p
ti)}

q
p=1. Given we are pulling the else

value from the given else memory, we have {∀(li, µi) = (vp
oi, v

p
ti, j, ty i) ∈ ∆p[acc], (σp

e ) |=l ((li, µi) ≡tyi v
p
ei)}

q
p=1.

This gives us that the all of our then values are those from the end of the then branch, and all of our else values are

those from the end of the else branch.

Lemma 5.2.47. Given location map {∆p
1}

q
p=1, accumulator acc, environment {γp}qp=1, γ̂, else branch memory

{σp
e}

q
p=1, σ̂e, and values {[vp

f1, ..., v
p
fm], [vp

e1, ..., v
p
em]}qp=1, if {∆p

1 [acc]}qp=1 is else-complete, {Resolve_Store(∆p
1 ,

σp
e , acc, [vp

f1, ..., v
p
fm]) = (σp

f ,∆
p
2 , l

p
)}qp=1, {(γp, σp

e ) ∼=ψ (γ̂, σ̂e)}qp=1, {∀(li, µi) = (vp
oi, v

p
ti, j, ty i) ∈ ∆p

1 [acc], (σp
e )

|=l ((li, µi) ≡tyi v
p
ei)}

q
p=1, and {∀i ∈ {1...m}, vp

fi = vp
ei)}

q
p=1, then {(γp, σp

f ) ∼=ψ (γ̂, σ̂e)}qp=1 and {∀(li, µi) =

(vp
oi, v

p
ti, j, ty i) ∈ ∆p

1 [acc], (σp
f ) |=l ((li, µi) ≡tyi v

p
ei)}

q
p=1.

Proof. Given that {∆p
1 [acc]}qp=1 is else-complete, by definition of Algorithm ResolveVariables_Store we will iterate

through the list of locations and properly store all final values into memory at their respective locations.

Given the else environment and memory pairs we ψ-congruent, and that we are placing the else values into

memory, we will have the resulting SMC2 memory ψ-congruent to the else Vanilla C memory.

Lemma 5.2.48. Given location map {∆p
1}

q
p=1, accumulator acc, environment {γp}qp=1, γ̂, else branch memory

{σp
e}

q
p=1 then branch memory {σp

t }
q
p=1, σ̂t, and values {[vp

f1, ..., v
p
fm], [vp

t1, ..., v
p
tm]}qp=1, if {∆p

1 [acc]}qp=1 is else-

complete, {Resolve_Store(∆p
1 , σ

p
e , acc, [vp

f1, ..., v
p
fm]) = (σp

f ,∆
p
2 , l

p
)}qp=1, {(γp, σp

t ) ∼=ψ (γ̂, σ̂t)}qp=1, {∀(li, µi) =

(vp
oi , v

p
ti, 1, ty i) ∈ ∆p

5 [acc], (σp
3 ) |=l ((li, µi) ≡ty vp

ti)}
q
p=1, {∀(li, µi) = (vp

ti,NULL, 0, ty i) ∈ ∆p
1 [acc], (σp

t ) |=l

((li, µi) ≡tyi v
p
ti)}

q
p=1, and {∀i ∈ {1...m}, vp

fi = vp
ti)}

q
p=1, then {(γp, σp

f ) ∼=ψ (γ̂, σ̂t)}qp=1 and {∀(li, µi) =

(vp
oi, v

p
ti, 1, ty i) ∈ ∆p

1 [acc], (σp
f ) |=l ((li, µi) ≡tyi v

p
ti)}

q
p=1 and {∀(li, µi) = (vp

ti,NULL, 0, ty i) ∈ ∆p
1 [acc], (σp

f ) |=l

((li, µi) ≡tyi v
p
ti)}

q
p=1.

Proof. Given that {∆p
1 [acc]}qp=1 is else-complete, by definition of Algorithm ResolveVariables_Store we will iterate

through the list of locations and properly store all final values into memory at their respective locations.

Given the then environment and memory pairs we ψ-congruent, and that we are placing the then values into

memory, we will have the resulting SMC2 memory ψ-congruent to the then Vanilla C memory.
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Lemma 5.2.49. Given configuration ((p, γ, σ, ∆, acc, s) ‖ C), if ((p, γ, σ, ∆, acc, s) ‖ C) ⇓LD ((p, γ, σ1, ∆1,

acc, n) ‖ C), then (l, µ) /∈ s.

Proof. By case analysis of the semantics, we can see that there is no rule that will evaluate a statement containing

(l, µ) to a value n.

Lemma 5.2.50. Given map ψ, configuration ((p, γ, σ, ∆, acc, s) ‖ C), environment γ̂, memory σ̂, statement ŝ, and

configuration Ĉ, if (γ, σ) ∼=ψ (γ̂, σ̂), s ∼=ψ ŝ, and C ∼=ψ Ĉ, then ((p, γ̂, σ̂,�,�, ŝ) ‖ Ĉ) such that ((p, γ, σ,∆, acc, s)-

‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ŝ) ‖ Ĉ).

Proof. By Definitions 5.2.20 and 5.2.22.

Lemma 5.2.51. Given values v, v̂ and environment γ, if v ∼=ψ v̂ and (v) 0 γ, then v = v̂.

Proof. By Definitions 5.2.19, 5.2.18, and the definition of the erasure function Erase. Case analysis on Erase(v) = v̂

gives us that v = v̂ when v is public.

Lemma 5.2.52. Given expression e and configuration ((p, γ, σ, ∆, acc, e) ‖C) such that ((p, γ, σ, ∆, acc, e) ‖C)

⇓L1

D1
((p, γ, σ1, ∆, acc, v) ‖ C1), if (e) 0 γ, then (v) 0 γ.

Proof. By definition of Algorithm 144, we have that all elements in e must be public. By case analysis on rules where

((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆, acc, v) ‖ C1) and (e) 0 γ, we find that (v) 0 γ is true.

Lemma 5.2.53. Given map ψ and statement s, ŝ, if s ∼=ψ ŝ and (l, µ) /∈ s, then s ∼= ŝ.

Proof. Given that s does not contain (l, µ), by Definition 5.2.12 we have s ∼= ŝ.

This follows directly from the definition of function Erase, and can be proven by case analysis of all statements

that are not locations.

Lemma 5.2.54. Given map ψ and statement s, ŝ, if s ∼= ŝ and (l, µ) /∈ s, then s ∼=ψ ŝ.

Proof. Given that s does not contain (l, µ), by Definition 5.2.20 we have s ∼=ψ ŝ.

This follows directly from the definition of function Erase, and can be proven by case analysis of all statements

that are not locations.

Lemma 5.2.55. Given map ψ1, ψ2 and statement s, ŝ, if s ∼=ψ1
ŝ and (l, µ) /∈ s, then s ∼=ψ2

ŝ.

Proof. Given that s does not contain a hard-coded location (l, µ), by Lemma 5.2.53 we have that s ∼= ŝ.

Given s ∼= ŝ and s does not contain a hard-coded location (l, µ), by Lemma 5.2.54, we have s ∼=ψ2 ŝ.

This follows directly from the definition of function Erase, and can be proven by case analysis of all statements

that are not locations – a statement not containing a location will maintain congruency and in turn ψ-congruency for

any given map ψ.
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Lemma 5.2.56. Given an initial map ψ, environment γ, memory σ, accumulator acc, and expression e, if ((p, γ, σ,

∆, acc, e) ‖ C) ⇓LD ((p, γ, σ1, ∆1, acc, v) ‖ C) such that v 6= skip, then pfree(e1) /∈ e and the ending map ψ1 is

equivalent to ψ.

Proof. By definition of SMC2 rule pfree, skip is returned from the evaluation of pfree(e1). Therefore, by case analysis

of the rules, if v 6= skip, then pfree(e1) /∈ e. By Definition 5.2.1, ψ is only modified after the execution of function

pfree; therefore we have that ψ1 == ψ.

Lemma 5.2.57. Given ψ and ((p, γ, σ,∆, acc, s) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ŝ) ‖ Ĉ), if ((p, γ, σ,∆, acc, s) ‖ C) ⇓LD
((p, γ1, σ1,∆, acc, v) ‖ C1) and ((p, γ̂, σ̂,�,�, ŝ) ‖ Ĉ) ⇓′

D̂
((γ̂1, σ̂1,�, v̂) ‖ Ĉ) such that ((p, γ1, σ1,∆, acc, v)

‖ C1) ∼=ψ1
((p, γ̂1, σ̂1,�,�, v̂) ‖ Ĉ1), then (γ, σ1) ∼=ψ (γ̂, σ̂1).

Proof. Proof Sketch: Proof by induction over congruent evaluations.

Using the definition of function Erase, we show that with every rule that adds to γ or adds to or modifies σ maintains

both (γ1, σ1) ∼=ψ (γ̂1, σ̂1) and (γ, σ1) ∼=ψ (γ̂, σ̂1) by Definition 5.2.16.

Lemma 5.2.58 (D1 :: D2
∼= D̂1 :: D̂2). Given party-wise code lists D1,D2, D̂1, D̂2 if D1

∼= D̂1 and D2
∼= D̂2

then D1 :: D2
∼= D̂1 :: D̂2.

Proof. By definition of Algorithm 140, the :: operation is deterministic and maintains party-wise ordering.

Lemma 5.2.59. Given map ψ, environment γ, γ̂, memory σ, σ̂, and variable name x, x̂, if x /∈ γ, x = x̂, and

(γ, σ) ∼=ψ (γ̂, σ̂), then x̂ /∈ γ̂.

Proof. By Definition 5.2.16.

Lemma 5.2.60. Given map ψ, environment γ, γ̂, memory σ, σ̂, variable name x, x̂, memory block identifier l, l̂, and

type ty , t̂y , if γ1 = γ[x → (l, ty)], x = x̂, l = l̂, ty ∼= t̂y , and (γ, σ) ∼=ψ (γ̂, σ̂), then γ̂1 = γ̂[x̂ → (l̂, t̂y)] such

that (γ1, σ) ∼=ψ (γ̂1, σ̂).

Proof. By Definition 5.2.16 and the structure of the environment.

Lemma 5.2.61. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type ty ∈ {a bty , a

const bty∗, a bty∗}, t̂y , byte representation ω, ω̂, number n, n̂, and permission perm, ˆperm , if σ2 = σ1[l → (ω, ty , n,

PermL(perm, ty , a, n))], (γ, σ1) ∼=ψ (γ̂, σ̂1), l ∼=ψ l̂, ω ∼=ψ ω̂, n
τ(ty) = n̂

τ(t̂y)
, and ty ∼= t̂y , then σ̂2 = σ̂1[l̂ →

(ω, ty , n̂, PermL(perm, t̂y ,public, n̂))] such that (γ, σ2) ∼=ψ (γ̂, σ̂2).

Proof. By Definition 5.2.16 and the structure of memory.

Lemma 5.2.62. Given ψ, (γ, σ) ∼=ψ (γ̂, σ̂), and x = x̂ such that x ∈ γ and x̂ ∈ γ̂, if γ(x) = (l, ty) then

γ̂(x̂) = (l̂, t̂y), where l = l̂, (l, 0) ∼=ψ (l̂, 0), and ty ∼= t̂y .
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Proof. This holds by Definition 5.2.16 and the definition of function Erase.

Lemma 5.2.63. Given ψ, {(γ, σ) ∼=ψ (γ̂, σ̂)}, and l ∼=ψ l̂ such that l ∈ σ and l̂ ∈ σ̂, if σ(l) = (ω, ty , n,

PermL(perm, ty , a, n)) and ty 6= private bty∗, then σ̂(l̂) = (ω̂, t̂y , n̂,PermL(perm, t̂y ,public, n̂)), where ω ∼=ψ ω̂,

ty ∼= t̂y , n = n̂, and perm = perm .

Proof. This holds by Definition 5.2.16 and the definition of function Erase.

Lemma 5.2.64. Given ψ, (γ, σ) ∼=ψ (γ̂, σ̂), and l ∼=ψ l̂ such that l ∈ σ and l̂ ∈ σ̂, if σ(l) = (ω,private bty∗,

n, PermL(perm,private bty∗,private, n)) then σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(perm, b̂ty∗,public, 1)), where ω ∼=ψ ω̂,

ty ∼= t̂y , and perm = perm .

Proof. This holds by Definition 5.2.16 and the definition of function Erase.

Lemma 5.2.65 ((l) 0 σ =⇒ l = l̂). Given map ψ, environment γ, γ̂, memory σ, σ̂, memory block identifier l, l̂, if

(l) 0 σ, (γ, σ) ∼=ψ (γ̂, σ̂), and l ∼=ψ l̂, then l = l̂.

Proof. Using case analysis over the semantics, we can see that public memory blocks are never swapped around (the

only rule that triggers locations being swapped is Multiparty Free, which only ever operates over private memory

blocks).

Lemma 5.2.66. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type ty ∈ {a bty , a

const bty∗, public bty∗}, t̂y , byte representation ω, ω̂, number n, n̂, and permission perm, ˆperm , if σ1 = σ2[l →

(ω, ty , n, PermL(perm, ty , a, n))], (γ, σ1) ∼=ψ (γ̂, σ̂1), and l ∼=ψ l̂, then σ̂1 = σ̂2[l̂ → (ω̂, t̂y , n̂, PermL(perm, t̂y ,

public, n̂))] such that (γ, σ2) ∼=ψ (γ̂, σ̂2), ω ∼=ψ ω̂, n = n̂, ty ∼= t̂y , and perm = perm .

Proof. Using Definition 5.2.16 and the structure of memory, we can perform case analysis of the semantics to show that,

for all types except void∗ and private bty∗, this holds. The interesting rules for this proof would be those modifying or

adding to memory, showing that when they are first stored into memory this holds, and that there isn’t anything that will

break this property when memory is updated.

Lemma 5.2.67. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, type ty ∈ {private

bty∗}, t̂y ∈ {b̂ty∗}, byte representation ω, ω̂, number n, n̂, and permission perm, ˆperm , if σ1 = σ2[l → (ω, ty , n,

PermL(perm, ty ,private, n))], (γ, σ1) ∼=ψ (γ̂, σ̂1), and l ∼=ψ l̂, then σ̂1 = σ̂2[l̂ → (ω̂, t̂y , 1, PermL(perm, t̂y ,

public, 1))] such that (γ, σ2) ∼=ψ (γ̂, σ̂2), ω ∼=ψ ω̂, ty ∼= t̂y , and perm = perm .

Proof. Using Definition 5.2.16 and the structure of memory, we can perform case analysis of the semantics to show

that this holds for all private pointers. The interesting rules for this proof would be those modifying or adding to

memory of private pointers, showing that when they are first stored into memory this holds, and that there isn’t anything

that will break this property when memory is updated.
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Lemma 5.2.68. Given map ψ, environment γ, γ̂, memory σ, σ̂, memory block identifier l, l̂, and size n, n̂, if σ1 =

σ
[
l→ (ω, void∗, n, PermL(Freeable, void∗,public, n))], (γ, σ)∼=ψ (γ̂, σ̂), and l = l̂, then σ̂1 = σ̂[l̂→ (ω̂, void∗,

n̂, PermL(Freeable, void∗,public, n̂))] such that (γ, σ1) ∼=ψ (γ̂, σ̂1) and n = n̂.

Proof. Using Definition 5.2.16 and the structure of memory, we can perform case analysis of the semantics to show

that this holds for all uncast public memory locations. The interesting rules for this proof would be those operating over

uncast public memory (i.e., malloc and cast public location), showing that when they are first stored into memory this

holds, and that there isn’t anything that will break this property.

Lemma 5.2.69. Given map ψ, environment γ, γ̂, memory σ, σ̂, memory block identifier l, l̂, type ty , t̂y , and size

n, n̂, if σ1 = σ
[
l →

(
ω, void∗, n, PermL(Freeable, void∗,private, n)

]
, (γ, σ) ∼=ψ (γ̂, σ̂), and l ∼=ψ l̂, then

σ̂1 = σ̂[l̂→ (ω̂, void∗, n̂, PermL(Freeable, void∗,public, n̂))] such that (γ, σ1) ∼=ψ (γ̂, σ̂1), and ∃ty , t̂y such that

ty ∼= t̂y and n
τ(ty) = n̂

τ(t̂y)
.

Proof. Using Definition 5.2.16 and the structure of memory, we can perform case analysis of the semantics to show

that this holds for all uncast private memory locations. The interesting rules for this proof would be those operating over

uncast private memory (i.e., pmalloc and cast private location), showing that when they are first stored into memory this

holds, and that there isn’t anything that will break this property.

Lemma 5.2.70. Given map ψ and type ty ∈ {public bty ,public bty∗}, t̂y , if ty ∼=ψ t̂y then τ(ty) = τ(t̂y).

Proof. By definition of τ .

Lemma 5.2.71. Given map ψ, variable name x, x̂ and input party number n, n̂ such that the corresponding input

files inp_n, ˆinp_n̂ are congruent, if InputValue(x, n) = n1, x = x̂, and n = n̂, then InputValue(x̂, n̂) = n̂1 such

that n1
∼=ψ n̂1.

Proof. By definition of algorithm InputValue and by Definition 5.2.27.

Lemma 5.2.72. Given map ψ, variable name x, x̂, input party number n, n̂ such that the corresponding input files

inp_n, ˆinp_n̂ are congruent, and array length n1, n̂1, if InputArray(x, n, n1) = [m0, ..., mn1 ], x = x̂, n = n̂, and

n1 = n̂1, then InputArray(x̂, n̂, n̂1) = [m̂0, ..., m̂n̂1
] such that [m0, ..., mn1

] ∼=ψ [m̂0, ..., m̂n̂1
].

Proof. By definition of algorithm InputArray and by Definition 5.2.27.

Lemma 5.2.73. Given map ψ, variable name x, x̂ and input party number n, n̂ such that the corresponding input

files outn , ˆout n̂ are congruent, if OutputValue(x, n, n1), x = x̂, n = n̂, and n1
∼=ψ n̂1, then OutputValue(x̂, n̂, n̂1)

such that outn ∼= ˆout n̂ .

Proof. By definition of algorithm OutputArray and by Definition 5.2.28.
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Lemma 5.2.74. Given map ψ, variable name x, x̂, input party number n, n̂ such that the corresponding input files

outn , ˆout n̂ are congruent, and array [m0, ..., mn1
], [m̂0, ..., m̂n̂1

], if OutputArray(x, n, [m0, ..., mn1
]), x = x̂,

n = n̂, and [m0, ..., mn1 ] ∼=ψ [m̂0, ..., m̂n̂1
], then OutputArray(x̂, n̂, [m̂0, ..., m̂n̂1

]) such that outn ∼= ˆout n̂ .

Proof. By definition of algorithm OutputArray and by Definition 5.2.28.

Lemma 5.2.75. Given map ψ, pointer variable being read or dereferenced x, x̂, and pointer data structure [α, l, j,

i], [1, [(l̂1, µ̂1)], [1], î], if x refers to [α, l, j, i], x̂ refers to [1, [(l̂1, µ̂1)], [1], î], and x = x̂, then [α, l, j, i] ∼=ψ (l̂1, µ̂1)

as a resulting value.

Proof. By case analysis over the semantics, we can see that for every SMC2 rule that returns multiple locations or

accepts multiple locations as a result from an evaluation, there is a congruent Vanilla C rule that has corresponding

behavior over a single location, leading to the formation of congruent trees.

Lemma 5.2.76. Given map ψ and configuration ((1, γ1, σ1, ∆1, acc, s) ‖ ... ‖ (q, γq, σq, ∆q, acc, s)), envi-

ronment γ̂, memory σ̂, and statement ŝ, if {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1 and s ∼=ψ ŝ, then ((1, γ̂, σ̂,�,�, ŝ) ‖ ... ‖

(q, γ̂, σ̂,�,�, ŝ)) such that ((1, γ1, σ1, ∆1, acc, s) ‖ ... ‖ (q, γq, σq, ∆q, acc, s)) ∼=ψ ((1, γ̂, σ̂,�,�, ŝ) ‖ ... ‖

(q, γ̂, σ̂,�,�, ŝ)).

Proof. By Definitions 3.2.18 and 3.2.20.

Lemma 5.2.77. Given map ψ, environment {γp}qp=1, γ̂, memory {σp}qp=1, σ̂, variable x, x̂ such that {x ∈ γp}qp=1

and x̂ ∈ γ̂, if {γp(x) = (lp, ty)}qp=1, x̂ = x, and {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, then γ̂(x̂) = (l̂, t̂y), where {lp = l̂}qp=1,

{(lp, 0) ∼=ψ (l̂, 0)}qp=1, and ty ∼= t̂y .

Proof. This holds by Definition 3.2.15 and the definition of function Erase.

Lemma 5.2.78. Given map ψ, environment {γp}qp=1, γ̂, memory {σp}qp=1, σ̂, and memory block identifier {lp}qp=1,

l̂ such that {lp ∈ σp}qp=1 and l̂ ∈ σ̂, if {σp(lp) = (ωp, ty , n, PermL(perm, ty , a, n)) such that ty 6= private bty∗,

{(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, {lp = l̂}qp=1, then σ̂(l̂) = (ω̂, t̂y , n̂,PermL(perm, t̂y ,public, n̂)), where {ωp ∼=ψ ω̂}qp=1,

ty ∼= t̂y , n = n̂, and perm = perm .

Proof. This holds by Definition 3.2.15 and the definition of function Erase.

Lemma 5.2.79. Given map ψ, environment {γp}qp=1, γ̂, memory {σp}qp=1, σ̂, and memory block identifier {lp}qp=1,

l̂ such that {lp ∈ σp}qp=1 and l̂ ∈ σ̂, if {σp(lp) = (ωp, private bty∗, n, PermL(perm,private bty∗, a, n)),

{(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, {lp = l̂}qp=1, then σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(perm, b̂ty∗,public, 1)), where {ωp ∼=ψ

ω̂}qp=1, private bty∗ ∼= b̂ty∗, and perm = perm .

Proof. This holds by Definition 3.2.15 and the definition of function Erase.
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Lemma 5.2.80. Given map ψ, environment γ, γ̂, memory σ1, σ̂1, memory block identifier l, l̂, list of values [n0, ...,

nα−1], [n̂0, ..., n̂α̂−1], and type a bty , b̂ty , if {∀i ∈ {0...α−1}UpdateArr(σp
1+i, (l

p
1 , i), n

p
i , private bty) = σp

2+i}
q
p=1

(γ, σ1) ∼=ψ (γ̂, σ̂1), {lp = l̂}qp=1, α = α̂, {ωp ∼=ψ ω̂}qp=1, {∀i ∈ {0...α − 1} DecodeArr(private bty , i, ωp)

= np
i }

q
p=1, {n′p

î
∼=ψ2

n̂}qp=1, {∀j 6= î ∈ {0...α− 1}np
j = n′pj }

q
p=1, and a bty ∼=ψ b̂ty , then UpdateArr(σ̂1, (l̂, î), n̂,

b̂ty) = σ2 such that (γ, σ2+α−1) ∼=ψ (γ̂, σ̂2).

Proof. Given a bty ∼=ψ b̂ty , {ωp ∼=ψ ω̂}qp=1 and {∀i ∈ {0...α − 1} DecodeArr(private bty , i, ωp) = np
i }

q
p=1, by

Definition 3.2.16 and Lemma 5.2.9, we have that these SMC2 values read from memory are ψ-congruent to the values

stored in the array for Vanilla C.

Given updated list of values {[n′p0 , ..., n
′p
α−1]}qp=1 such that {n′p

î
∼=ψ2 n̂}

q
p=1 and {∀j 6= î ∈ {0...α − 1}np

j =

n′pj }
q
p=1, we have that only the value at index î is modified in the updated list of values. Given this, we are only storing

an updated value in memory once, all other values will simply be overwritten with the same value.

By Lemma 5.2.15, we have that the environment and memory pair maintains ψ-congruency when updating the

value that changed within the array for a single party, which in turn holds for all parties.

Given the above, we have the ending environment and memory pairs ψ-congruent, or (γ, σ2+α−1) ∼=ψ (γ̂, σ̂2).

Lemma 5.2.81. Given map ψ, type private bty , b̂ty , pointer data structure {[α, lp, jp
, 1]}qp=1, [1, [(l̂1, µ̂1)], [1], 1],

environment {γp}qp=1, γ̂, and memory {σp}qp=1, σ̂,

if {Retrieve_vals(α, l
p
,private bty , σp) = ([np

0 , ...n
p
α−1], 1)}qp=1 MPCdv ([[n1

0, ..., n
1
α−1], ..., [nq

0, ..., n
q
α−1]], [j

1
, ...,

j
q
]) = (n1, ..., nq), {[α, lp, jp

, 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]}qp=1, private bty ∼=ψ b̂ty , and {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1,

then DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (n̂, 1) such that {np ∼= n̂}qp=1.

Proof. By definition of Retrieve_vals, we have {[np
0 , ...n

p
α−1]}qp=1 such that each value np

j is the value stored at

location j in l
p

. Therefore, by Axiom 5.2.11 we have that {np}qp=1 is the value stored in the true location referred to by

the private pointer.

Given {[α, lp, jp
, 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]}qp=1, private bty ∼=ψ b̂ty , and {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, we have

the Vanilla C call DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (n̂, 1) such that {np ∼= n̂}qp=1.

Lemma 5.2.82. Given map ψ, type private bty∗, b̂ty∗, pointer data structure {[α, lp, jp
, 1]}qp=1, [1, [(l̂1, µ̂1)], [1],

1], environment {γp}qp=1, γ̂, and memory {σp}qp=1, σ̂,

if {Retrieve_vals(α, l
p
, private bty∗, σp) = ([[α0, l

p

0 , j
p
0 , i− 1], ..., [αα−1, l

p

α−1, j
p
α−1, i− 1]], 1)}qp=1,

MPCdp([[[α0, l
1

0, j
1
0], ..., [αα−1, l

1

α−1, j
1
α−1]], ..., [[α0, l

q

0, j
q
0], ..., [αα−1, l

q

α−1, j
q
α−1]]], [j

1
, ..., j

q
]) = ([[αα, l

1

α,

j
1
α], ..., [αα, l

q

α, j
q
α]]), {[α, lp, jp

, 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]}qp=1, private bty∗ ∼=ψ b̂ty∗, and {(γp, σp) ∼=ψ

(γ̂, σ̂)}qp=1,

then DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î − 1], 1) such that {[αα, l
q

α, j
q
α, î − 1] ∼=ψ [1, [(l̂2, µ̂2)],

[1], î− 1]}qp=1.
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Proof. By definition of Retrieve_vals, we have {∀j ∈ {0...α− 1}[αj , l
p

j , j
p
j , i− 1]}qp=1 such that each pointer data

structure [αj , l
p

j , j
p
j , i− 1] is stored at location j in l

p
. Therefore, by Axiom 5.2.12 we have that {[αα, l

1

α, j
1
α]}qp=1

properly indicates the true location of the lower level private pointer that is the true location referred to by the higher

level private pointer.

Given {[α, lp, jp
, 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]}qp=1, private bty∗ ∼=ψ b̂ty∗, and {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, we

have the Vanilla C call DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î − 1], 1) such that {[αα, l
q

α, j
q
α, î − 1]

∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1]}qp=1.

Lemma 5.2.83. Given map ψ, type private bty , b̂ty , pointer data structure {[α, lp, jp
, 1]}qp=1, [1, [(l̂, µ̂)], [1], 1],

values {np}qp=1, n̂, environment {γp}qp=1, γ̂, and memory {σp
1}

q
p=1, σ̂1,

if {Retrieve_vals(α, l
p
,private bty , σp

1 ) = ([np
0 , ...n

p
α−1], 1)}qp=1, MPCwdv ([[n1

0, ..., n
1
α−1], ..., [nq

0, ..., n
q
α−1]], [n1,

..., nq], [j
1
, ..., j

q
]) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]), and {UpdateDerefVals(α, l

p
, [n′p0 , ..., n

′p
α−1],private bty ,

σp
1 ) = σp

2}
q
p=1, {[α, lp, jp

, 1] ∼=ψ [1, [(l̂, µ̂)], [1], 1]}qp=1, {np ∼=ψ n̂}qp=1, private bty ∼=ψ b̂ty , and {(γp, σp
1 )

∼=ψ (γ̂, σ̂1)}qp=1,

then UpdateOffset(σ̂1, (l̂, µ̂), n̂, b̂ty) = (σ̂2, 1) such that {(γp, σp
2 ) ∼=ψ1 (γ̂, σ̂2)}qp=1.

Proof. By definition of Retrieve_vals, we have {[np
0 , ...n

p
α−1]}qp=1 such that each value np

j is the value stored at

location j in l
p
. Therefore, by Axiom 5.2.13 we have that {n′pj = np}qp=1 and {∀i 6= j ∈ {0...α− 1} n′pi = np

i }
q
p=1.

Given {[α, lp, jp
, 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]}qp=1, private bty ∼=ψ b̂ty , and {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, we have

the Vanilla C call UpdateOffset(σ̂1, (l̂, µ̂), n̂, b̂ty) = (σ̂2, 1) such that {(γp, σp
2 ) ∼=ψ1 (γ̂, σ̂2)}qp=1.

Lemma 5.2.84. Given map ψ, type private bty∗, b̂ty∗, pointer data structure {[α, lp, jp
, 1]}qp=1, [1, [(l̂1, µ̂1)], [1],

1], location {(lpe , µp
e)}qp=1, (l̂e, µ̂e) environment {γp}qp=1, γ̂, and memory {σp

1}
q
p=1, σ̂1,

if {Retrieve_vals(α, l
p
, private bty∗, σp

1 ) = ([[α0, l
p

0 , j
p
0 , i− 1], ..., [αα−1, l

p

α−1, j
p
α−1, i− 1]], 1)}qp=1,

MPCwdp([[[1, [(l1e , µ
1
e)], [1], i − 1], [α0, l

1

0, j
1
0, i − 1], ..., [αα−1, l

1

α−1, j
1
α−1, i − 1]], ..., [[1, [(lqe , µ

q
e)], [1], i − 1],

[α0, l
q

0, j
q
0, i−1], ..., [αα−1, l

q

α−1, j
q
α−1, i−1]]], [j

1
, ..., j

q
]) = [[[α′0, l

′1
0 , j

′1
0 , i−1], ..., [α′α−1, l

′1
α−1, j

′1
α−1, i−1]], ...,

[[α′0, l
′q
0 , j

′q
0 , i − 1], ..., [α′α−1, l

′q
α−1, j

′q
α−1, i − 1]]], {UpdateDerefVals(α, l

p
, [[α′0, l

′p
0 , j

′p
0 , i − 1], ..., [α′α−1, l

′p
α−1,

j
′p
α−1, i − 1]],private bty∗, σp

1 ) = σp
2}

q
p=1, {[α, lp, jp

, 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]}qp=1, {(lpe , µp
e) ∼=ψ1

(l̂e, µ̂e)}qp=1,

private bty∗ ∼=ψ b̂ty∗, and {(γp, σp
1 ) ∼=ψ (γ̂, σ̂1)}qp=1,

then UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1) such that {(γp, σp
2 ) ∼=ψ (γ̂, σ̂2)}qp=1.

Proof. By definition of Retrieve_vals, we have {∀j ∈ {0...α− 1}[αj , l
p

j , j
p
j , i− 1]}qp=1 such that each pointer data

structure [αj , l
p

j , j
p
j , i − 1] is stored at location j in l

p
. Therefore, by Axiom 5.2.14 we have that [αj , l

p

j , j
p
j ] has

the true location set as (lpe , µ
p
e) and ∀i 6= j ∈ {0...α − 1}[αi, l

p

i , j
p
i ], the true location remains the same as what it

originally was.
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Given {[α, lp, jp
, 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]}qp=1, private bty∗ ∼=ψ b̂ty∗, {(lpe , µp

e) ∼=ψ1
(l̂e, µ̂e)}qp=1 and

{(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, by definition of UpdatePtr, we have the Vanilla C call UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e,

µ̂e)], [1], î− 1], b̂ty∗) = (σ̂2, 1) such that {(γp, σp
2 ) ∼=ψ (γ̂, σ̂2)}qp=1.

Lemma 5.2.85. Given map ψ, pointer data structure {[α, lp, jp
, 1]}qp=1, [1, [(l̂1, µ̂1)], [1], 1], environment {γp}qp=1,

γ̂, and memory {σp
1}

q
p=1, σ̂1,

if {∀(lpm, 0) ∈ lp. σp(lpm) = (ωp
m, ty , n, PermL(Freeable, ty ,private, n))}qp=1, MPCfree([[ω1

0 , ..., ω
1
α−1], ..., [ωq

0 , ...,

ωq
α−1]], [j

1
, ...j

q
]) = ([[ω′10 , ..., ω

′1
α−1], ..., [ω′q0 , ..., ω

′q
α−1]], [j

′1
, ..., j

′q
]), {UpdateBytesFree(σp, l

p
, [ω′p0 , ..., ω

′p
α−1])

= σp
1}

q
p=1, {σp

2 = UpdatePointerLocations(σp
1 , l

p
[1 : α − 1], j

p
[1 : α − 1], l

p
[0], j

p
[0])}qp=1, {[α, lp jp

, i] ∼=ψ

[1, [(l̂1, 0)], [1], î]}qp=1, and {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1,

then Free(σ̂, l̂1) = σ̂1 and ψ1 such that {(γp, σp
2 ) ∼=ψ1

(γ̂, σ̂1)}qp=1.

Proof. Proof Sketch:

Given {∀(lpm, 0) ∈ l. σp(lpm) = (ωp
m, ty , n, PermL(Freeable, ty ,private, n))}qp=1, we have pulled all the byte

representations for each location within l
p
.

Given MPCfree([[ω1
0 , ..., ω

1
α−1], ..., [ωq

0 , ..., ω
q
α−1]], [j

1
, ...j

q
]) = ([[ω′10 , ..., ω

′1
α−1], ..., [ω′q0 , ..., ω

′q
α−1]], [j

′1
, ...,

j
′q

]), we have that either tag 0 was not the true location and therefore the byte representation for a location j was

swapped with the byte representation for 0 and all others remain the same, or 0 was the true location and all byte

representations remain constant.

If the locations were swapped, we obtain ψ1 by add a mapping to ψ indicating that location 0 was swapped with

location j. If the locations were not swapped, ψ1 = ψ.

Given {UpdateBytesFree(σp, l
p
, [ω′p0 , ..., ω

′p
α−1]) = σp

1}
q
p=1, by definition of UpdateBytesFree, we have that

each of the updated byte representations are placed into memory at their corresponding locations, with the permissions

at the first location marked as Freeable.

Given {σp
2 = UpdatePointerLocations(σp

1 , l
p
[1 : α − 1], j

p
[1 : α − 1], l

p
[0], j

p
[0])}qp=1, by definition of

UpdatePointerLocations we will iterate through and find all private pointers. If the private pointer had location 0 in

its location list, we will appropriately update the location list to store the union of what it was and what the location list

of the pointer we just freed was, merging the lists and updating the tags so that, if the location we freed was it’s true

location and we swapped the byte data to a new location, the pointer will now refer it’s true location to the location j

that we swapped the data to.

Once we have ensured all pointers that could have been affected by the swapping of locations are properly updated,

we obtain {(γp, σp
2 ) ∼=ψ1 (γ̂, σ̂1)}qp=1.
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5.2.3 Multiparty Computation Axioms

Axiom 5.2.4 (MPCb). Given bop ∈ {+,−, ·,÷}, values {np
1 , n

p
2 , n̂1, n̂2}qp=1 ∈ N,

if MPCb(bop, [n1
1, ..., n

q
1], [n1

2, ..., n
q
2]) = (n1

3, ..., n
q
3), {np

1
∼= n̂1}qp=1, and {np

2
∼= n̂2}qp=1,

then {np
3
∼= n̂p

3}
q
p=1 such that n̂1 bop n̂2 = n̂3.

Axiom 5.2.5 (MPCcmp). Given bop ∈ {==, ! =, <}, values {np
1 , n

p
2 , n̂1, n̂2}qp=1 ∈ N,

if MPCcmp(bop, [n1
1, ..., n

q
1], [n1

2, ..., n
q
2]) = (n1

3, ..., n
q
3), {np

1
∼= n̂1}qp=1, and {np

2
∼= n̂2}qp=1,

then {np
3
∼= n̂3}qp=1 such that n̂1 bop n̂2 = n̂3.

Axiom 5.2.6 (MPCresolve False Conditional). Given conditional result values {np}qp=1 and branch result values

{[(vp
t1, v

p
e1), ..., (vp

tm, v
p
em)]}qp=1,

if MPCresolve([n1, ..., nq], [[(v1
t1, v

1
e1), ..., (v1

tm, v
1
em)], ..., [(vq

t1, v
q
e1), ..., (vq

tm, v
q
em)]]) = [[v1

1 , ..., v
1
m], ..., [vq

1 , ...,

vq
m]], and {np ∼= n̂}qp=1 such that n̂ = 0, then {∀i ∈ {1...m}, vp

i = vp
ei}

q
p=1.

Axiom 5.2.7 (MPCresolve True Conditional). Given conditional result values {np}qp=1 and branch result values

{[(vp
t1, v

p
e1), ..., (vp

tm, v
p
em)]}qp=1,

if MPCresolve([n1, ..., nq], [[(v1
t1, v

1
e1), ..., (v1

tm, v
1
em)], ..., [(vq

t1, v
q
e1), ..., (vq

tm, v
q
em)]]) = [[v1

1 , ..., v
1
m], ..., [vq

1 , ...,

vq
m]], and {np ∼= n̂}qp=1 such that n̂ 6= 0,

then {∀i ∈ {1...m}, vp
i = vp

ti}
q
p=1.

Axiom 5.2.8 (MPCar ). Given array size α, α̂, values {[np
0 , ..., n

p
α−1]}qp=1, n̂î, and indices {ip}qp=1, î,

if MPCar ((i1, [n1
0, ..., n

1
α−1]), ..., (iq, [nq

0, ..., n
q
α−1])) = (n1, ..., nq), 0 ≤ î < α̂, α = α̂, {ip ∼= î}qp=1, and {np

î
∼=

n̂î}
q
p=1, then {np ∼= n̂î}

q
p=1.

Axiom 5.2.9 (MPCaw ). Given array size α, α̂, values {[np
0 , ..., n

p
α−1]}qp=1, n̂î, and indices {ip}qp=1, î,

if MPCaw ((i1, n1, [n1
0, ..., n

1
α−1]), ..., (iq, nq, [nq

0, ..., n
q
α−1])) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]), 0 ≤ î < α̂,

α = α̂, {ip ∼= î}qp=1, and {np

î
∼= n̂î}

q
p=1,

then {n′p
î
∼= n̂î}

q
p=1 and {∀j 6= î ∈ {0...α− 1}np

j = n′pj }
q
p=1 .

Axiom 5.2.10 (MPCu ). Given array size α, α̂, unary operator uop ∈ {++}, and values {np
1}

q
p=1, n̂1,

if MPCu(++, n1
1, ..., n

q
1) = (n1

2, ..., n
q
2) and {np

1
∼= n̂1}qp=1,

then {np
2
∼= n̂2}qp=1 such that n̂2 = n̂1 + 1.

Axiom 5.2.11 (MPCdv ). Given map ψ, tag lists {jp}qp=1, and values stored at each location referred to by the given

private pointer {[np
0 , ..., n

p
α−1]}qp=1,

if MPCdv ([[n1
0, ..., n

1
α−1], ..., [nq

0, ..., n
q
α−1]], [j

1
, ..., j

q
]) = (n1, ..., nq),

then {np}qp=1 is the value stored in the true location referred to by the private pointer.
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Axiom 5.2.12 (MPCdp). Given map ψ, number of location α, tag lists {jp}qp=1, and pointer data structures stored

at each of the α location referred to by the given higher level private pointer {[αj , l
p

j , j
p
j , i− 1]}qp=1,

if MPCdp([[[α0, l
1

0, j
1
0], ..., [αα−1, l

1

α−1, j
1
α−1]], ..., [[α0, l

q

0, j
q
0], ..., [αα−1, l

q

α−1, j
q
α−1]]], [j

1
, ..., j

q
]) = ([[αα, l

1

α,

j
1
α], ..., [αα, l

q

α, j
q
α]]),

then {[αα, l
p

α, j
p
α]}qp=1 properly indicates the true location of the lower level private pointer that is the true location

referred to by the higher level private pointer.

Axiom 5.2.13 (MPCwdv ). Given map ψ, tag lists {jp}qp=1, and values stored at each location referred to by the

given private pointer {[np
0 , ..., n

p
α−1]}qp=1,

if MPCwdv ([[n1
0, ..., n

1
α−1], ..., [nq

0, ..., n
q
α−1]], [n1, ..., nq], [j

1
, ..., j

q
]) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]) and

{jp
[j] = encrypt(1)}qp=1, then {n′pj = np}qp=1 and {∀i 6= j ∈ {0...α− 1} n′pi = np

i }
q
p=1.

Axiom 5.2.14 (MPCwdp). Given map ψ, number of location α, tag lists {jp}qp=1, and pointer data structures stored

at each of the α location referred to by the given higher level private pointer {[αj , l
p

j , j
p
j , i− 1]}qp=1,

if MPCwdp([[1, [(l1e , µ
1
e)], [1], i − 1], [α0, l

1

0, j
1
0, i − 1], ..., [αα−1, l

1

α−1, j
1
α−1, i − 1]], ..., [[1, [(lqe , µ

q
e)], [1], i − 1],

[α0, l
q

0, j
q
0, i−1], ..., [αα−1, l

q

α−1, j
q
α−1, i−1]], [j

1
, ..., j

q
]) = [[[α′0, l

′1
0 , j

′1
0 , i−1], ..., [α′α−1, l

′1
α−1, j

′1
α−1, i−1]], ...,

[α′0, l
′q
0 , j

′q
0 , i− 1], ..., [α′α−1, l

′q
α−1, j

′q
α−1, i− 1]] and {jp

[j] = encrypt(1)}qp=1,

then [αj , l
p

j , j
p
j ] has the true location set as (lpe , µ

p
e) and ∀i 6= j ∈ {0...α− 1}[αi, l

p

i , j
p
i ], the true location remains

the same as what it originally was.

Axiom 5.2.15 (MPCfree). Given map ψ, byte representations {[ωp
0 , ..., ω

p
α−1]}qp=1 and tag lists {jp}qp=1 such that

MPCfree([[ω1
0 , ..., ω

1
α−1], ..., [ωq

0 , ..., ω
q
α−1]], [j

1
, ...j

q
]) = ([[ω′10 , ..., ω

′1
α−1], ..., [ω′q0 , ..., ω

′q
α−1]], [j

′1
, ..., j

′q
]),

if {j′p[0] = encrypt(1)}qp=1, {j′p[j] = encrypt(1)}qp=1 and {∀i 6= j ∈ {1...α− 1}j′p[i] = encrypt(0)}qp=1

then {ωp
0 = ω′pj }

q
p=1, {ωp

j = ω′p0 }
q
p=1, and {∀i 6= j ∈ {1...α− 1}, ωp

i = ω′pi }
q
p=1

otherwise if {j′p[0] = encrypt(1)}qp=1 and {∀i ∈ {1...α− 1}j′p[i] = encrypt(0)}qp=1

then {∀i ∈ {0...α− 1}, ωp
i = ω′pi }

q
p=1.

5.2.4 Confluence

Definition 5.2.36 (v1 ∼ v2). Two values are corresponding, in symbols v1 ∼ v2, if and only if either both v1, v2

are public (including locations) and v1 = v2, or v1, v2 are private and Erase(v1) = Erase(v2).

Definition 5.2.37 (γ1 ∼ γ2). Two environments are corresponding, in symbols γ1 ∼ γ2, if and only if γ1 = γ2.

Definition 5.2.38 (ω1 ∼ ω2). Two bytes are corresponding, in symbols ω1 ∼ ω2, if and only if they are of the same

type, and when decoded to values, v1 ∼ v2.
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Definition 5.2.39 (σ1 ∼ σ2). Two memories are corresponding, in symbols σ1 ∼ σ2, if and only if ∀l1 /∈ σ1, l1 /∈ σ2,

and ∀l ∈ σ1 such that σ1(l) = (ω1, ty1, α1,PermL1), l ∈ σ2 such that σ2(l) = (ω2, ty2, α2,PermL2) and ω1 ∼ ω2,

ty1 = ty2, α1 = α2, and PermL1 = PermL2.

Definition 5.2.40 (∆1 ∼ ∆2). Two location maps are corresponding, in symbols ∆1 ∼ ∆2, if and only if

∀(l1, µ1) /∈ ∆1, (l1, µ1) /∈ ∆2, and ∀(l, µ) ∈ ∆1 such that (l, µ) → (v1
1 , v

1
2 , j

1, ty1), (l, µ) ∈ ∆2 such that (l, µ) →

(v2
1 , v

2
2 , j

2, ty2) and v1
1 ∼ v2

1 , v1
2 ∼ v2

2 , j1 ∼ j2, and ty1 ∼ ty2.

Definition 5.2.41 (acc1 ∼ acc2). Two accumulators are corresponding, in symbols acc1 ∼ acc2, if and only if

acc1 = acc2.

Definition 5.2.42 (C1 ∼ C2). Two configurations are corresponding, in symbols C1 ∼ C2 or (1, γ1, σ1,∆1, acc1,

s1) ∼ (2, γ2, σ2,∆2, acc2, s2), if and only if γ1 = γ2, σ1 ∼ σ2, ∆1 ∼ ∆2, acc1 = acc2, and s1 = s2.

Lemma 5.2.86 (C1 ∼ C2 =⇒ C1 ∼=ψ Ĉ ∧ C2 ∼=ψ Ĉ). Given two configurations C1, C2 such that C1 =

(1, γ1, σ1,∆1, acc1, s1) and C2 = (2, γ2, σ2,∆2, acc2, s2) and ψ, if C1 ∼ C2 then {Cp ∼=ψ (p, γ̂, σ̂,�,�, s)}2p=1.

Proof.

Proof Sketch:

Using the definition of Erase and Definition 5.2.42, there is only one possible Vanilla C configuration Ĉ (modulo party

ID) that can be obtained from both Erase(C1) and Erase(C2).

Lemma 5.2.87 (Unique party-wise transitions). Given ((p, γ, σ,∆, acc, s) ‖ C) if ((p, γ, σ,∆, acc, s) ‖ C) ⇓LD
((p, γ1, σ1,∆1, acc, v) ‖ C1) then there exists no other rule by which (p, γ, σ,∆, acc, s) can step.

Proof.

Proof Sketch:

By induction on (p, γ, σ,∆, acc, s). We verify that for every configuration, given s, acc, and stored type information,

there is only one corresponding semantic rule.

Theorem 5.2.2 (Confluence). Given C1 ‖ ... ‖ Cq such that {C1 ∼ Cp}qp=1

if (C1 ‖ ... ‖ Cq) ⇓L1

D1
(C1

1 ‖ ... ‖ C
q
1 ) such that ∃p ∈ {1...q}C1

1 6∼ C
p
1 ,

then ∃ (C1
1 ‖ ... ‖ C

q
1 ) ⇓L2

D2
(C1

2 ‖ ... ‖ C
q
2 )

such that {C1
2 ∼ C

p
2 }

q
p=1, {(L1

1 :: L1
2) = (Lp

1 :: Lp
2)}qp=1, and {(D1

1 :: D1
2) = (Dp

1 :: Dp
2 )}qp=1.

Proof.

Proof Sketch:

By Lemma 5.2.87, we have that there is only one possible execution trace for any given party based on the starting

configuration.
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By definition of {C1 ∼ Cp}qp=1, we have that the starting states of all parties are corresponding, with identical

statements.

Therefore, all parties must follow the same execution trace and will eventually reach another set of corresponding

states.

5.2.5 Proof of Correctness

Theorem 5.2.3 (Semantic Correctness).

For every configuration {(p, γp, σp, ∆p, accp, sp)}qp=1, {(p, γ̂p, σ̂p, �, �, ŝp)}qp=1 and map ψ

such that {(p, γp, σp, ∆p, accp, sp) ∼=ψ (p, γ̂p, σ̂p, �, �, ŝp)}qp=1,

if Π . ((1, γ1, σ1, ∆1, acc1, s1) ‖ ... ‖ (q, γq, σq, ∆q, accq, sq))

⇓LD ((1, γ1
1 , σ

1
1 , ∆1

1, acc1
1, v

1) ‖ ... ‖ (q, γq
1 , σ

q
1 , ∆q

1, accq
1, v

q))

for codes D ∈ SmcC, then there exists a derivation

Σ . ((1, γ̂1, σ̂1, �, �, ŝ1) ‖ ... ‖ (q, γ̂q, σ̂q, �, �, ŝq))

⇓
D̂

((1, γ̂1
1 , σ̂

1
1 , �, �, v̂

1) ‖ ... ‖ (q, γ̂q
1 , σ̂

q
1 , �, �, v̂

q))

for codes D̂ ∈ V anC and a map ψ1 such that

D ∼= D̂, {(p, γp
1 , σ

p
1 , ∆p

1 , accp
1 , v

p) ∼=ψ1
(p, γ̂p

1 , σ̂
p
1 , �, �, v̂

p)}qp=1, and Π ∼=ψ1
Σ.

Proof.

Case Π . ((1, γ1, σ1,∆1, acc, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, acc, e1 bop e2)) ⇓L1::L2

D1 ::D2 ::(ALL,[mpb])

((1, γ1, σ1
2 ,∆

1
2, acc, n1

3) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

3))

Given (A) Π . ((1, γ1, σ1,∆1, acc, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, acc, e1 bop e2)) ⇓L1::L2

D1 ::D2 ::(ALL,[mpb])

((1, γ1, σ1
2 ,∆

1
2, acc, n1

3) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

3)), by SMC2 rule Multiparty Binary Operation we have {(e1,

e2) ` γp}qp=1, (B) ((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1

1) ‖ ... ‖

(q, γq, σq
1 ,∆

q
1, acc, nq

1)), (C) ((1, γ1, σ1
1 ,∆

1
1, acc, e2) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, e2)) ⇓L2

D2
((1, γ1, σ1

2 ,∆
1
2, acc, n1

2)

‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

2)), (D) MPCb(bop, [n1
1, ..., n

q
1], [n1

2, ..., n
q
2]) = (n1

3, ..., n
q
3), and (E) bop ∈ {·,+,−,÷}.

Given (A), ((1, γ̂1, σ̂1, �,�, ê1bop ê2) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, ê1bop ê2)) and ψ such that {(p, γp, σp,∆p, acc,

e1 bop e2) ∼=ψ (p, γ̂p, σ̂p, �,�, ê1bop ê2)}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and (F)

e1bop e2
∼=ψ ê1bop ê2. By Definition 5.2.20 we have bop = bop, (G) e1

∼=ψ ê1 and (H) e2
∼=ψ ê2.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc, e1 bop e2) ∼ (p, γp, σp,∆p, acc, e1 bop e2)}qp=1.

By Lemma 5.2.86, we have {(p, γp, σp,∆p, acc, e1 bop e2) ∼=ψ (p, γ̂, σ̂, �,�, ê1bop ê2)}qp=1. and therefore (I)

((1, γ̂, σ̂, �,�, ê1bop ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1bop ê2)). By Definition 5.2.22 we have (J) {(γp, σp) ∼=ψ
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(γ̂, σ̂)}qp=1.

Given (B), (J), (G), and ψ, by Lemma 5.2.76 we have ((1, γ̂, σ̂, �,�, ê1) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1)) such that

{(p, γp, σp,∆p, acc, e1) ∼=ψ (p, γ̂, σ̂, �,�, ê1)}qp=1. By the inductive hypothesis, we have (K) ((1, γ̂, σ̂, �,�, ê1)

‖ ... ‖ (q, γ̂, σ̂, �,�, ê1)) ⇓′
D̂1

((1, γ̂, σ̂1, �,�, n̂1) ‖ ... ‖ (q, γ̂, σ̂1, �,�, n̂1)) and ψ1 such that {(p, γp, σp
1 ,∆

p
1 ,

acc, np
1) ∼=ψ1

(p, γ̂, σ̂1, �,�, n̂1)}qp=1 and D1
∼= D̂1. By Definition 5.2.22 we have (L) {(γp, σp

1) ∼=ψ1
(γ̂, σ̂1)}qp=1

and {np
1
∼=ψ1

n̂1}qp=1. By Definition 5.2.19 we have (M) {np
1
∼= n̂1}qp=1.

Given Axiom 5.2.1, we have (l, µ) /∈ e2. Given (H), by Lemma 5.2.55 we have e2
∼=ψ1

ê2. Therefore, given (C), (L), and

ψ1, by Lemma 5.2.76 we have ((1, γ̂, σ̂1, �,�, ê2) ‖ ... ‖ (q, γ̂, σ̂1, �,�, ê2)) such that {(p, γp, σp
1 ,∆

p
1 , acc, e2)

∼=ψ1
(p, γ̂, σ̂1, �,�, ê2)}qp=1. By the inductive hypothesis, we have (N) ((1, γ̂, σ̂1, �,�, ê2) ‖ ... ‖ (q, γ̂, σ̂1, �,�,

ê2)) ⇓′
D̂2

((1, γ̂, σ̂2, �,�, n̂2) ‖ ... ‖ (q, γ̂, σ̂2, �,�, n̂2)) and ψ2 such that {(p, γp, σp
2 ,∆

p
2 , acc, np

2) ∼=ψ2

(p, γ̂, σ̂2, �,�, n̂2)}qp=1 and D2
∼= D̂2. By Definition 5.2.22 we have (O) {(γp, σp

2) ∼=ψ2
(γ̂, σ̂2)}qp=1 and

{np
2
∼=ψ2

n̂2}qp=1. By Definition 5.2.19 we have (P) {np
2
∼= n̂2}qp=1.

Given (D), (M), and (P), by Axiom 5.2.4 we have (Q) {np
3
∼= n̂3}qp=1 such that (R) n̂1 bop n̂2 = n̂3.

Given (I), (K), (N), (R), (E) and bop = bop, we have Σ. ((1, γ̂, σ̂, �,�, ê1 bop ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1 bop ê2))

⇓′
D̂1::D̂2::[(ALL,[m̂pb])]

((1, γ̂, σ̂2, �,�, n̂3) ‖ ... ‖ (q, γ̂, σ̂2, �,�, n̂3)) by Vanilla C rule Multiparty Binary

Operation.

Given (O) and (Q), by Definition 5.2.22 we have {(p, γp, σp
2 ,∆

p
2 , acc, np

3) ∼=ψ2 (p, γ̂, σ̂2, �,�, n̂3)}qp=1.

By Definition 5.2.23 we have mpb ∼= m̂pb. Given D1
∼= D̂1, D2

∼= D̂2, D1 :: D2 :: (ALL, [mpb]) and

D̂1 :: D̂2 :: [(ALL, [m̂pb])] by Lemma 5.2.58 we have D1 :: D2 :: (ALL, [mpb]) ∼= D̂1 :: D̂2 :: [(ALL, [m̂pb])].

Therefore, by Definition 5.2.26 we have Π ∼=ψ2 Σ.

Case Π . ((1, γ1, σ1,∆1, acc1, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, accq, e1 bop e2)) ⇓L1::L2

D1 ::D2 ::(ALL,[mpcmp])

((1, γ1, σ1
2 ,∆

1
2, acc1, n1

3) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, accq, nq

3))

Given (A) Π.((1, γ1, σ1,∆1, acc1, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, accq, e1 bop e2)) ⇓L1::L2

D1 ::D2 ::(ALL,[mpcmp]) ((1, γ1,

σ1
2 , ∆1

2, acc1, n1
3) ‖ ... ‖ (q, γq, σq

2 ,∆
q
2, accq, nq

3)) by SMC2 rule Multiparty Comparison Operation, we have
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{(e1, e2) ` γp}qp=1, (B) ((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1

1) ‖ ...

‖ (q, γq, σq
1 ,∆

q
1, acc, nq

1)), (C) ((1, γ1, σ1
1 ,∆

1
1, acc, e2) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, e2)) ⇓L2

D2
((1, γ1, σ1

2 ,∆
1
2, acc, n1

2)

‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

2)), (D) MPCcmp(bop, [n1
1, ..., n

q
1], [n1

2, ..., n
q
2]) = (n1

3, ..., n
q
3), and (E) bop ∈ {==

, ! =, <}.

Given (A), ((1, γ̂1, σ̂1, �,�, ê1bop ê2) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, ê1bop ê2)) and ψ such that {(p, γp, σp,∆p, acc,

e1 bop e2) ∼=ψ (p, γ̂p, σ̂p, �,�, ê1bop ê2)}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and (F)

e1bop e2
∼=ψ ê1bop ê2. Given (F), by Definition 5.2.20 we have (G) e1

∼=ψ ê1, (H) e2
∼=ψ ê2, and bop = bop.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc, e1 bop e2) ∼ (p, γp, σp,∆p, acc, e1 bop e2)}qp=1.

By Lemma 5.2.86, we have {(p, γp, σp,∆p, acc, e1 bop e2) ∼=ψ (p, γ̂, σ̂, �,�, ê1bop ê2)}qp=1 and therefore (I)

((1, γ̂, σ̂, �,�, ê1bop ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1bop ê2)). By Definition 5.2.22 we have (J) {(γp, σp) ∼=ψ

(γ̂, σ̂)}qp=1.

Given (B), (J), (G), and ψ, by Lemma 5.2.76 we have ((1, γ̂, σ̂, �,�, ê1) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1)) such that

{(p, γp, σp,∆p, acc, e1) ∼=ψ (p, γ̂, σ̂, �,�, ê1)}qp=1. By the inductive hypothesis, we have (K) ((1, γ̂, σ̂, �,�, ê1)

‖ ... ‖ (q, γ̂, σ̂, �,�, ê1)) ⇓′
D̂1

((1, γ̂, σ̂1, �,�, n̂1) ‖ ... ‖ (q, γ̂, σ̂1, �,�, n̂1)) and ψ1 such that {(p, γp, σp
1 ,∆

p
1 ,

acc, np
1) ∼=ψ1

(p, γ̂, σ̂1, �,�, n̂1)}qp=1 and D1
∼= D̂1. By Definition 5.2.22 we have (L) {(γp, σp

1) ∼=ψ1
(γ̂, σ̂1)}qp=1

and {np
1
∼=ψ1

n̂1}qp=1. By Definition 5.2.19 we have (M) {np
1
∼= n̂1}qp=1.

Given Axiom 5.2.1, we have (l, µ) /∈ e2. Given (H), by Lemma 5.2.55 we have e2
∼=ψ1

ê2. Therefore, given

(C), (E), (L), and ψ1, by Lemma 5.2.76 we have ((1, γ̂, σ̂1, �,�, ê2) ‖ ... ‖ (q, γ̂, σ̂1, �,�, ê2)) such that

{(p, γp, σp
1 ,∆

p
1 , acc, e2)∼=ψ (p, γ̂, σ̂1, �,�, ê2)}qp=1. By the inductive hypothesis, we have (N) ((1, γ̂, σ̂1, �,�, ê2)

‖ ... ‖ (q, γ̂, σ̂1, �,�, ê2)) ⇓′
D̂2

((1, γ̂, σ̂2, �,�, n̂2) ‖ ... ‖ (q, γ̂, σ̂2, �,�, n̂2)) and ψ2 such that {(p, γp, σp
2 ,∆

p
2 ,

acc, np
2) ∼=ψ2

(p, γ̂, σ̂2, �,�, n̂2)}qp=1 and D2
∼= D̂2. By Definition 5.2.22 we have (O) {(γp, σp

2) ∼=ψ2
(γ̂, σ̂2)}qp=1

and {np
2
∼=ψ2

n̂2}qp=1. By Definition 5.2.19 we have (P) {np
2
∼= n̂2}qp=1.

Given (D), (M), and (P), by Axiom 5.2.5 we have (Q) {np
3
∼= n̂3}qp=1 such that (R) (n̂1 bop n̂2) = n̂3.

Subcase (S1) n̂3 = 1

Given (I), (K), (N), (R), (S1), (E), and bop = bop, we have Σ. ((1, γ̂, σ̂, �,�, ê1 bop ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1

bop ê2)) ⇓′
D̂1::D̂2::[(ALL,[m̂pcmpt])]

((1, γ̂, σ̂2, �,�, n̂3) ‖ ... ‖ (q, γ̂, σ̂2, �,�, n̂3)) by Vanilla C rule Multiparty
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Comparison True Operation.

Given (O) and (Q), by Definition 5.2.22 we have {(p, γp, σp
2 ,∆

p
2 , acc, np

3) ∼=ψ (p, γ̂, σ̂2, �,�, n̂3)}qp=1.

By Definition 5.2.23 we have mpcmp ∼= ˆmpcmpt .

Given D1
∼= D̂1, D2

∼= D̂2, D1 :: D2 :: (ALL, [mpcmp]) and D̂1 :: D̂2 :: [(ALL, [m̂pcmpt ])] by Lemma 5.2.58 we

have D1 :: D2 :: (ALL, [mpcmp]) ∼= D̂1 :: D̂2 :: [(ALL, [m̂pcmpt ])].

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Subcase (S2) n̂3 = 0

Given (I), (K), (N), (R), (S2), (E), and bop = bop, we have Σ. ((1, γ̂, σ̂, �,�, ê1 bop ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1

bop ê2)) ⇓′
D̂1::D̂2::[(ALL,[m̂pcmpf ])]

((1, γ̂, σ̂2, �,�, n̂3) ‖ ... ‖ (q, γ̂, σ̂2, �,�, n̂3)) by Vanilla C rule Multiparty

Comparison False Operation.

Given (O) and (Q), by Definition 5.2.22 we have {(p, γp, σp
2 ,∆

p
2 , acc, np

3) ∼=ψ (p, γ̂, σ̂2, �,�, n̂3)}qp=1.

By Definition 5.2.23 we have mpcmp ∼= ˆmpcmpf .

Given D1
∼= D̂1, D2

∼= D̂2, D1 :: D2 :: (ALL, [mpcmp]) and D̂1 :: D̂2 :: [(ALL, [m̂pcmpf ])] by Lemma 5.2.58 we

have D1 :: D2 :: (ALL, [mpcmp]) ∼= D̂1 :: D̂2 :: [(ALL, [m̂pcmpf ])].

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[iet]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Given Π . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[iet]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2) by SMC2 rule

Public If Else True, we have (e) 0 γ, (A) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1), (B) n 6= 0,

and (C) ((p, γ, σ1, ∆1, acc, s1) ‖ C1) ⇓L2

D2
((p, γ1, σ2, ∆2, acc, skip) ‖ C2).

Given (�, γ̂, σ̂, �, �, if(ê) ŝ1 else ŝ2) and ψ such that ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,

if(ê) ŝ1 else ŝ2) ‖ Ĉ), by Definition 5.2.22 we have (D) (γ, σ) ∼=ψ (γ̂, σ̂) and if (e) s1 else s2
∼=ψ if (ê) ŝ1 else ŝ2

and (E) C ∼=ψ Ĉ. By Definition 5.2.20, we have (F) e ∼=ψ ê, (G) s1
∼=ψ ŝ1, and (H) s2

∼=ψ ŝ2.

Given (D), ψ, (E), and (F), by Lemma 5.2.50 we have ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂, �, �, ê) ‖ Ĉ). Given
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(A), by the inductive hypothesis we have (I) ((p, γ̂, σ̂, �, �, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1, �, �, n̂) ‖ Ĉ1) and ψ1 such that

((p, γ, σ1, ∆1, acc, n) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1, �, �, n̂) ‖ Ĉ1) and (J) D1

∼= D̂1. By Definition 5.2.22 we have (K)

(γ, σ1) ∼=ψ1 (γ̂, σ̂1), (L) C1
∼=ψ1 Ĉ1, and n ∼=ψ1 n̂. By Definition 5.2.19 we have n ∼= n̂.

Given (e) 0 γ, we have (n) 0 γ and therefore n = n̂. Given (B), we have (M) n̂ 6= 0.

Given Axiom 5.2.1, we have (l, µ) /∈ s1. Given (G), by Lemma 5.2.55 we have s1
∼=ψ1

ŝ1. Therefore, given (K), ψ1,

and (L), by Lemma 5.2.50 we have ((p, γ, σ1, ∆1, acc, s1) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1, �, �, ŝ1) ‖ Ĉ1). Given (C), by

the inductive hypothesis, we have (N) ((p, γ̂, σ̂1, �, �, ŝ1) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂1, σ̂2, �, �, skip) ‖ Ĉ2) and ψ2 such that

((p, γ1, σ2, ∆2, acc, skip) ‖ C2) ∼=ψ2 ((p, γ̂1, σ̂2, �, �, skip) ‖ Ĉ2) and (O) D2
∼= D̂2. By Definition 5.2.22, we

have (γ1, σ2) ∼=ψ2
(γ̂1, σ̂2) and (P) C2

∼=ψ2
Ĉ2. By Lemma 5.2.57, we have (Q) (γ, σ2) ∼=ψ2

(γ̂, σ̂2).

Given ((p, γ̂, σ̂, �, �, if(ê) ŝ1 else ŝ2) ‖ Ĉ) and (I), (M), and (N), we have Σ . ((p, γ̂, σ̂, �, �, if(ê) ŝ1 else ŝ2) ‖ Ĉ)

⇓′
D̂1::D̂2::(p,[îet])

((p, γ̂, σ̂2, �, �, skip) ‖ Ĉ2) by Vanilla C rule If Else True.

Given (P) and (Q), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, skip) ‖ C2) ∼=ψ2
((p, γ̂, σ̂2, �, �, skip) ‖ Ĉ2).

By Definition 5.2.23 we have iet ∼= ˆiet . Given (J), (O), D1 :: D2 :: (p, [iet ]) and

D̂1 :: D̂2 :: (p, [îet ]) by Lemma 5.2.58 we have D1 :: D2 :: (p, [iet ]) ∼= D̂1 :: D̂2 :: (p, [îet ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ief ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[iet]) ((p, γ, σ2, ∆2, acc,

skip) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓LD::(p,[wle]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

Given Π . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓LD::(p,[wle]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1) by SMC2 rule While

End, we have (e) 0 γ, (A) ((p, γ, σ,∆, acc, e) ‖ C), ⇓LD ((p, γ, σ1,∆1, acc, n) ‖ C1), (B) n == 0.

Given ((p, γ̂, σ̂,�,�,while(ê) ŝ) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,
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while(ê) ŝ) ‖ Ĉ), by Definition 5.2.22 we have (C) (γ, σ) ∼=ψ (γ̂, σ̂), (D) C ∼=ψ Ĉ and while (e) s ∼=ψ while (ê) ŝ.

By Definition 5.2.20 we have (E) e ∼=ψ ê and s ∼=ψ ŝ

Given (C), (D), (E), and ψ, by Lemma 5.2.50 we have ((p, γ, σ,∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ). By the

inductive hypothesis, we have (F) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ) such that ((p, γ, σ1,∆1, acc, n)-

‖ C1) ∼=ψ1
((�, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and (G) D ∼= D̂.

By Definition 5.2.22 we have (H) (γ, σ1) ∼=ψ1 (γ̂, σ̂1) and n ∼=ψ1 n̂. By Definition 5.2.19 we have n ∼= n̂. Given

(e) 0 γ, we have (n) 0 γ and therefore (I) n = n̂.

Given (B) and (I), we have (J) n̂ = 0.

Given ((p, γ̂, σ̂,�,�,while(ê) ŝ) ‖ Ĉ), (F), and (J), we have Σ . ((p, γ̂, σ̂,�,�,while(ê) ŝ) ‖ Ĉ) ⇓′
D̂::(p,[ŵle])

((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ1) by Vanilla C rule While End.

Given (H), by Definition 5.2.22 we have ((p, γ, σ1, ∆1, acc, skip) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1, �, �, skip) ‖ Ĉ1).

By Definition 5.2.23 we have wle ∼= ŵle . Given (G), D1 :: (p, [wle]) and

D̂1 :: (p, [ŵle]) by Lemma 5.2.58 we have D1 :: (p, [wle]) ∼= D̂1 :: (p, [ŵle]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[wlc]) ((p, γ, σ2, ∆2, acc, while (e) s) ‖ C2)

Given Π . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[wlc]) ((p, γ, σ2, ∆2, acc, while (e) s) ‖ C2) by SMC2

rule While Continue, we have (e) 0 γ, (A) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1), (B)

n 6= 0, and (C) ((p, γ, σ1, ∆1, acc, s) ‖ C1) ⇓L2

D2
((p, γ1, σ2, ∆2, acc, skip) ‖ C2).

Given (D) ((p, γ̂, σ̂,�,�,while(ê) ŝ) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,

while(ê) ŝ) ‖ Ĉ), by Definition 5.2.22 we have (E) (γ, σ) ∼=ψ (γ̂, σ̂), C ∼=ψ Ĉ, and (F) while (e) s ∼=ψ while (ê) ŝ.

By Definition 5.2.20 we have (G) e ∼=ψ ê and (H) s ∼=ψ ŝ.

Given (D), ψ, (E), C ∼=ψ Ĉ, and (H), by Lemma 5.2.50 we have ((p, γ, σ,∆, acc, e) ‖ C)∼=ψ ((p, γ̂, σ̂,�, �, ê) ‖ Ĉ).

Given (A), by the inductive hypothesis we have (I) ((p, γ̂, σ̂, �, �, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1, �, �, n̂) ‖ Ĉ1) and ψ1
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such that ((p, γ, σ1, ∆1, acc, n) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1, �, �, n̂) ‖ Ĉ1) and (J) D1

∼= D̂1.

By Definition 5.2.22 we have (K) C1
∼=ψ1 Ĉ1, (L) (γ, σ1) ∼=ψ1 (γ̂, σ̂1) and n ∼=ψ1 n̂. By Definition 5.2.19 we have

n ∼= n̂. Given (e) 0 γ, we have (n) 0 γ and therefore (M) n = n̂.

Given (B) and (M), we have (N) n̂ 6= 0.

Given Axiom 5.2.1, we have (l, µ) /∈ s. Given (H), by Lemma 5.2.55 we have s ∼=ψ1 ŝ. Therefore, given (L), ψ1,

and (K), by Lemma 5.2.50 we have ((p, γ, σ1, ∆1, acc, s) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1, �, �, ŝ) ‖ Ĉ1). Given (C), by the

inductive hypothesis, we have (O) ((p, γ̂, σ̂1, �, �, ŝ) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂1, σ̂2, �, �, skip) ‖ Ĉ2) and ψ2 such that

((p, γ1, σ2, ∆2, acc, skip) ‖ C2) ∼=ψ2
((p, γ̂1, σ̂2, �, �, skip) ‖ Ĉ2) and (P) D2

∼= D̂2. By Definition 5.2.22, we

have (γ1, σ2) ∼=ψ2
(γ̂1, σ̂2) and (Q) C2

∼=ψ2
Ĉ2. By Lemma 5.2.57, we have (R) (γ, σ2) ∼=ψ2

(γ̂, σ̂2).

Given (D), (I), (N), and (O), we have Σ . ((p, γ̂, σ̂,�,�,while(ê)ŝ) ‖ Ĉ)

⇓′
D̂1::D̂2::(p,[ŵlc])

((p, γ̂, σ̂2,�,�,while(ê)ŝ) ‖ Ĉ2) by Vanilla C rule While Continue.

Given Axiom 5.2.1, we have (l, µ) /∈ while (e) s. Therefore, given (F), by Lemma 5.2.55 we have (S) while (e) s ∼=ψ2

while (ê) ŝ.

Given (S), (R), and (Q), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, while (e) s) ‖ C2) ∼=ψ2 ((p, γ̂, σ̂2, �, �,

while (ê) ŝ) ‖ Ĉ2).

By Definition 5.2.23 we have wlc ∼= ŵlc. Given (J) and (O), D1 :: D2 :: (p, [wlc]) and

D̂1 :: D̂2 :: (p, [ŵlc]) by Lemma 5.2.58 we have D1 :: D2 :: (p, [wlc]) ∼= D̂1 :: D̂2 :: (p, [ŵlc]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dp]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Given Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dp]) ((p, γ1, σ1, ∆, acc, skip) ‖ C) by SMC2 rule Public Pointer

Declaration, we have (A) (ty = public bty∗), acc = 0, (B) l = φ(), (C) GetIndirection(∗) = i, (D) ω =

EncodePtr(public bty∗, [1, [(ldefault , 0)], [1], i]), (E) γ1 = γ[x → (l, public bty∗)], and (F) σ1 = σ[l →

(ω, public bty∗, 1, PermL(Freeable, public bty∗,public, 1))].
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Given (G) ((p, γ̂, σ̂,�,�, t̂y x̂) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, ty x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, t̂y x̂) ‖ Ĉ),

by Definition 5.2.22 we have (H) (γ, σ) ∼=ψ (γ̂, σ̂), C ∼=ψ Ĉ, and (I) ty x ∼=ψ t̂y x̂. By Definition 5.2.20 we have (J)

ty ∼=ψ t̂y such that (K) ∗ = ∗ and x ∼=ψ x̂. Therefore, we have (L) x = x̂.

Given (C) and (K), by Lemma 5.2.1 we have (M) GetIndirection(∗) = î such that (N) i = î.

Given (B), by Axiom 5.2.2 we have (O) l̂ = φ() and (P) l = l̂.

Given (D), (J), (N), and [1, [(ldefault , 0)], [1], i] ∼=ψ [1, [(l̂default , 0)], [1], î] by Definition 5.2.15, by Lemma 5.2.4 we

have (Q) ω̂ = EncodePtr(b̂ty∗, [1, [(l̂default , 0)], [1], î]) such that (R) ω ∼=ψ ω̂.

Given (E), (L), (P), (H), (A), and (I), by Lemma 5.2.60 we have (S) γ̂1 = γ̂[x̂ → (l̂, t̂y)] such that (T) (γ1, σ) ∼=ψ

(γ̂1, σ̂).

Given (F), (T), (P), (R), and (J), by Lemma 5.2.61 we have (U) σ̂1 = σ̂[l̂→ (ω̂, t̂y , 1,PermL(Freeable, t̂y ,public, 1))]

such that (V) (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (A) and (J), by Definition 5.2.8 we have (W) (t̂y = b̂ty∗).

Given (G), (M), (O), (Q), (S), (U), and (W) we have Σ. ((p, γ̂, σ̂,�,�, t̂y x̂) ‖ Ĉ) ⇓′
(p,[d̂p])

((p, γ̂1, σ̂1,�,�, skip)

‖ Ĉ) by Vanilla C rule Pointer Declaration.

Given (U) and C ∼=ψ Ĉ, by Definition 5.2.22 we have ((p, γ1, σ1, ∆, acc, skip) ‖ C) ∼=ψ ((p, γ̂1, σ̂1, �, �, skip)

‖ Ĉ).

By Definition 5.2.23 we have dp ∼= d̂p and by Definition 5.2.25 we have (p, [dp]) ∼= (p, [d̂p]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dp1 ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dp]) ((p, γ1, σ1, ∆, acc, skip) ‖ C).
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Case Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

Given Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2) by SMC2 rule Public

Addition, we have (A) (e1, e2) 0 γ, (B) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1), (C)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2, ∆2, acc, n2) ‖ C2), and (D) n1 + n2 = n3.

Given ((p, γ̂, σ̂,�,�, ê1 + ê2) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê1 + ê2)-

‖ Ĉ), by Definition 5.2.22 we have (E) (γ, σ) ∼=ψ (γ̂, σ̂) and (F) C ∼=ψ Ĉ. e1 + e2
∼=ψ ê1 + ê2. By Definition 5.2.20

we have (G) e1
∼=ψ ê1 and (H) e2

∼=ψ ê2.

Given (E), ψ, (F), and (G), by Lemma 5.2.50 we have ((p, γ, σ, ∆, acc, e1) ‖ C) ∼=ψ ((p, γ̂, σ̂, �, �, ê1) ‖ Ĉ). Given

(B), by the inductive hypothesis we have (I) ((p, γ̂, σ̂,�,�, ê1) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂1) ‖ Ĉ1) and ψ1 such that

((p, γ, σ1, ∆1, acc, n1) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1, �, �, n̂1) ‖ Ĉ1) and (J) D1

∼= D̂1. By Definition 5.2.22 we have (K)

(γ, σ1) ∼=ψ1
(γ̂, σ̂1), n1

∼=ψ1
n̂1, and (L) C1

∼=ψ1
Ĉ1. Given (A), we have (n1) 0 γ and therefore by Definition 5.2.19

(M) n1 = n̂1.

Given Axiom 5.2.1, we have (l, µ) /∈ e2. Given (H), by Lemma 5.2.55 we have e2
∼=ψ1 ê2. Therefore, given (K),

ψ1, and (L), by Lemma 5.2.50 we have ((p, γ, σ1, ∆, acc, e2) ‖ C) ∼=ψ ((p, γ̂, σ̂1, �, �, ê2) ‖ Ĉ). Given (C), by

the inductive hypothesis we have (N) ((p, γ̂, σ̂1, �, �, ê2) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂, σ̂2, �, �, n̂2) ‖ Ĉ2) and ψ2 such that

((p, γ, σ2, ∆2, acc, n2) ‖ C2) ∼=ψ2 ((p, γ̂, σ̂2, �, �, n̂2) ‖ Ĉ2) and (O) D2
∼= D̂2. By Definition 5.2.22 we have (P)

(γ, σ2) ∼=ψ2
(γ̂, σ̂2), (Q) C2

∼=ψ2
Ĉ2 and n2

∼=ψ2
n̂2. Given (A), we have (n2) 0 γ and therefore by Definition 5.2.19

(R) n2 = n̂2.

Given (D), (M), and (R), we have (S) n̂1 + n̂2 = n̂3 such that n3 = n̂3 and therefore by Definition 5.2.19 (T) n3
∼=ψ2 n̂3.

Given ((p, γ̂, σ̂,�,�, ê1 + ê2) ‖ Ĉ), (I), (N), and (S), by Vanilla C rule Addition we have Σ. ((p, γ̂, σ̂, �,�, ê1 + ê2)

‖ Ĉ) ⇓′
D̂1::D̂2::(p,[b̂p])

((p, γ̂, σ̂2, �,�, n̂3) ‖ Ĉ2).

Given (P), (Q), and (T), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, n3) ‖ C2)∼=ψ2 ((p, γ̂, σ̂2,�,�, n̂3) ‖ Ĉ2).

By Definition 5.2.23 we have bp ∼= b̂p. Given (J), (O), D1 :: D2 :: (p, [bp]) and

D̂1 :: D̂2 :: (p, [b̂p]) by Lemma 5.2.58 we have D1 :: D2 :: (p, [bp]) ∼= D̂1 :: D̂2 :: (p, [b̂p]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.
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Case Π . ((p, γ, σ, ∆, acc, e1 − e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bs]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 · e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bm]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 ÷ e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bd]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2)

Given Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2) by SMC2 rule Public

Less Than True, we have (A) (e1, e2) 0 γ, (B) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1), (C)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2, ∆2, acc, n2) ‖ C2), and (D) (n1 < n2) = 1.

Given ((p, γ̂, σ̂,�,�, ê1 < ê2) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê1 < ê2)

‖ Ĉ), by Definition 5.2.22 we have (E) (γ, σ) ∼=ψ (γ̂, σ̂), (F) C ∼=ψ Ĉ and e1 < e2
∼=ψ ê1 < ê2. By Definition 5.2.20

we have (G) e1
∼=ψ ê1 and (H) e2

∼=ψ ê2.

Given (E), ψ, (F), and (G), by Lemma 5.2.50 we have ((p, γ, σ, ∆, acc, e1) ‖ C) ∼=ψ ((p, γ̂, σ̂, �, �, ê1) ‖ Ĉ). Given

(B), by the inductive hypothesis we have (I) ((p, γ̂, σ̂, �, �, ê1) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1, �, �, n̂1) ‖ Ĉ1) and ψ1 such

that ((p, γ, σ1, ∆1, acc, n1) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1, �, �, n̂1) ‖ Ĉ1) and (J) D1
∼= D̂1. (K) (γ, σ1) ∼=ψ1 (γ̂, σ̂1), (L)

C1
∼=ψ1

Ĉ1, and n1
∼=ψ n̂1. Given (A), we have (n1) 0 γ and therefore by Definition 5.2.19 we have (M) n1 = n̂1.

Given Axiom 5.2.1, we have (l, µ) /∈ e2. Given (H), by Lemma 5.2.55 we have e2
∼=ψ1 ê2. Therefore, given (K),

ψ, and (L), by Lemma 5.2.50 we have ((p, γ, σ1, ∆, acc, e2) ‖ C) ∼=ψ ((p, γ̂, σ̂1, �, �, ê2) ‖ Ĉ). Given (C), by
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the inductive hypothesis we have (N) ((p, γ̂, σ̂1, �, �, ê2) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂, σ̂2, �, �, n̂2) ‖ Ĉ2) and ψ2 such that

((p, γ, σ2, ∆2, acc, n2) ‖ C2) ∼=ψ2
((p, γ̂, σ̂2, �, �, n̂2) ‖ Ĉ2) and (O) D2

∼= D̂2. By Definition 5.2.22 we have (P)

(γ, σ2) ∼=ψ2 (γ̂, σ̂2), (Q) C2
∼=ψ2 Ĉ2, and n2

∼=ψ2 n̂2. Given (A), we have (n2) 0 γ and therefore by Definition 5.2.19

we have (R) n2 = n̂2.

Given (D), (M), and (R), we have (S) (n̂1 < n̂2) = 1.

Given ((p, γ̂, σ̂,�,�, ê1 < ê2) ‖ Ĉ), (I), (N), and (S), by Vanilla C rule Less Than True we have Σ. ((p, γ̂, σ̂, �,�,

ê1 < ê2) ‖ Ĉ) ⇓′
D̂1::D̂2::(p,[l̂tt])

((p, γ̂, σ̂2, �,�, 1) ‖ Ĉ2).

Given (P), (Q), and 1 = 1, by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, 1) ‖ C2) ∼=ψ ((p, γ̂, σ̂2, �, �, 1) ‖ Ĉ2).

By Definition 5.2.23 we have ltt ∼= ˆltt . Given (J), (O), D1 :: D2 :: (p, [ltt ]) and

D̂1 :: D̂2 :: (p, [l̂tt ]) by Lemma 5.2.58 we have D1 :: D2 :: (p, [ltt ]) ∼= D̂1 :: D̂2 :: (p, [l̂tt ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltf ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 == e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[eqt]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 == e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[eqf ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1! = e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[net]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)
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This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1! = e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[nef ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π. ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fd]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, ty x(p){s}) ‖C) ⇓(p,[(l,0)])
(p,[fd]) ((p, γ1, σ1, ∆, acc, skip) ‖C) by SMC2 rule Function

Definition, we have acc = 0, (B) x /∈ γ, (C) l = φ(), (D) GetFunTypeList(p) = ty , (E) γ1 = γ[x → (l, ty →

ty)], (F) CheckPublicEffects(s, x, γ, σ) = n, (G) EncodeFun(s, n, p) = ω, and (H) σ1 = σ[l → (ω, ty →

ty , 1, PermL_Fun(public))].

Given (I) ((p, γ̂, σ̂,�,�, t̂y x̂(p̂){ŝ}) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ∼=ψ ((p, γ̂, σ̂, �, �,

t̂y x̂(p̂){ŝ}) ‖ Ĉ), by Definition 5.2.22 we have (J) (γ, σ) ∼=ψ (γ̂, σ̂), (K) C ∼=ψ Ĉ and ty x(p){s} ∼=ψ t̂y x̂(p̂){ŝ}.

By Definition 5.2.20 we have (L) ty ∼=ψ t̂y , x ∼=ψ x̂ and therefore (M) x = x̂, (N) p ∼=ψ p̂, and (O) s ∼=ψ ŝ.

Given (B), (M), and (J), by Lemma 5.2.59 we have (P) x̂ /∈ γ̂.

Given (C) by Axiom 5.2.2 we have (Q) l̂ = φ() such that (R) l = l̂.

Given (D) and (N), by Lemma 5.2.2 we have (S) GetFunTypeList(p̂) = t̂y such that (T) ty ∼=ψ t̂y . Given (L) and (T),

by Definition 5.2.7 we have (U) ty → ty ∼=ψ t̂y → t̂y .

Given (E), (J), (M), (R), and (U), by Lemma 5.2.60 we have (V) γ̂1 = γ̂[x̂→ (l̂, t̂y → t̂y)] such that (W) (γ1, σ) ∼=ψ

(γ̂1, σ̂).

Given (G), (N), and (O), by Lemma 5.2.7 we have (X) EncodeFun(ŝ,�, p̂) = ω̂ such that (Y) ω ∼=ψ ω̂.

Given (H), (W), (R), (Y), and (U), by Lemma 5.2.61 we have (Z) σ̂1 = σ̂[l̂→ (ω̂, t̂y → t̂y , 1,PermL_Fun(public))]

such that (A1) (γ1, σ1) ∼=ψ (γ̂1, σ̂1).
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Given (I), (P), (Q), (S), (V), (X), and (Z), by Vanilla C rule Function Definition we have ((p, γ̂, σ̂,�,�, t̂y x̂(p̂){ŝ})

‖ Ĉ) ⇓′
(p,[f̂d])

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ).

Given (A1) and (K), by Definition 5.2.22 we have ((p, γ1, σ1, ∆, acc, skip) ‖ C) ∼=ψ ((p, γ̂1, σ̂1,�,�, skip) ‖ C).

By Definition 5.2.23 we have fd ∼= f̂d . Given (p, [fd ]) and (p, [f̂d ]), by Definition 5.2.25 we have (p, [fd ]) ∼= (p, [f̂d ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, ty x(p)) ‖ C) ⇓(p,[(l,0)])
(p,[df ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fd]) ((p, γ1, σ1, ∆, acc, skip) ‖ C). The

main difference is that we are creating the function data as a NULL placeholder, to be defined later.

Case Π. ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fpd]) ((p, γ, σ2, ∆, acc, skip) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fd]) ((p, γ1, σ1, ∆, acc, skip) ‖ C). The

main difference is that we taking out the NULL placeholder data and replacing it with the function data.

Case Π. ((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Given (A) Π. ((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2) by SMC2 rule

Function Call With Public Side Effects, we have (B) γ(x) = (l, ty → ty), (C) σ(l) = (ω, ty → ty , 1,

PermL_Fun(public)), (D) DecodeFun(ω) = (s, n, p), (E) GetFunParamAssign(p, e) = s1, (F) acc = 0, (G)

((p, γ, σ, ∆, acc, s1) ‖ C) ⇓L1

D1
((p, γ1, σ1,∆1, acc, skip) ‖ C1), (H) n = 1, and (I) ((p, γ1, σ1,∆1, acc, s) ‖ C1)

⇓L2

D2
((p, γ2, σ2,∆2, acc, skip) ‖ C2).

Given (J) ((p, γ̂, σ̂,�,�, x̂(ê)) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x(e)) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂(ê)) ‖ Ĉ),

by Definition 5.2.22 we have (K) (γ, σ) ∼=ψ (γ̂, σ̂), (L) C ∼=ψ Ĉ, and (M) x(e) ∼=ψ x̂(ê). By Definition 5.2.20 we

have (N) e ∼=ψ ê and x ∼=ψ x̂. Therefore we have (O) x = x̂.
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Given (B), (K), and (O), by Lemma 5.2.62 we have (P) γ̂(x̂) = (l̂, t̂y → t̂y) such that (Q) ty → ty ∼=ψ t̂y → t̂y and

(R) l = l̂.

Given (C), (K), and (R), by Lemma 5.2.63 we have (S) σ̂(l̂) = (ω̂, t̂y → t̂y , 1,PermL_Fun(public)) such that (T)

ω ∼=ψ ω̂.

Given (D) and (T), by Lemma 5.2.13 we have (U) DecodeFun(ω̂) = (ŝ,�, p̂) such that (V) s ∼=ψ ŝ and (W) p ∼=ψ p̂.

Given (E), (W), and (N), by Lemma 5.2.3 we have (X) GetFunParamAssign(p̂, ê) = ŝ1 such that (Y) s1
∼=ψ ŝ1.

Given (G), (K), (L), and (Y), by Lemma 5.2.50 we have (Z) ((p, γ, σ, ∆, acc, s1) ‖ C) ∼=ψ ((p, γ̂, σ̂, �,�, ŝ1) ‖ Ĉ).

Given (Z), by the inductive hypothesis we have (A1) ((p, γ̂, σ̂, �,�, ŝ1) ‖ Ĉ) ⇓′
D̂1

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ1) and

ψ1 such that (B1) ((p, γ1, σ1,∆1, acc, skip) ‖ C1) ∼=ψ1
((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ1) and (C1) D1

∼= D̂1. Given (B1),

by Definition 5.2.22 we have (D1) (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1) and (E1) C1

∼=ψ1
Ĉ1.

Given Axiom 5.2.1, we have (l, µ) /∈ s. Therefore, given (V), by Lemma 5.2.55 we have (F1) s ∼=ψ2
ŝ.

Given (I), (D1), (E1), and (F1), by Lemma 5.2.50 we have (G1) ((p, γ1, σ1,∆1, acc, s) ‖ C1) ∼=ψ1
((p, γ̂1, σ̂1,�,�,

ŝ) ‖ Ĉ1). Given (G1), by the inductive hypothesis we have (H1) ((p, γ̂1, σ̂1,�,�, ŝ) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂2, σ̂2,�,

�, skip) ‖ Ĉ2) and ψ2 such that (I1) ((p, γ2, σ2,∆2, acc, skip) ‖ C2) ∼=ψ2
((p, γ̂2, σ̂2,�,�, skip) ‖ Ĉ2) and (J1)

D2
∼= D̂2. Given (I1), by Definition 5.2.22 we have (K1) (γ2, σ2) ∼=ψ2

(γ̂2, σ̂2) and (L1) C2
∼=ψ2

Ĉ2.

Given (J1), by Lemma 5.2.57, we have (M1) (γ, σ2) ∼=ψ2
(γ̂, σ̂2).

Given (J), (P), (S), (U), (X), (A1), and (H1), by Vanilla C rule Function Call we have ((p, γ̂, σ̂,�,�, x̂(ê)) ‖ Ĉ)

⇓′
D̂1::D̂2::(p,[f̂c])

((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2).

Given (M1) and (L1), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, skip) ‖ C2) ∼=ψ2
((p, γ̂, σ̂2, �, �, skip)-

‖ Ĉ2).

By Definition 5.2.23 we have fc ∼= f̂c. Given (E1) and (J1), D1 :: D2 :: (p, [fc]) and

D̂1 :: D̂2 :: (p, [f̂c]) by Lemma 5.2.58 we have D1 :: D2 :: (p, [fc]) ∼= D̂1 :: D̂2 :: (p, [f̂c]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.
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Case Π. ((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc1 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2).

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1) by SMC2 rule

Write Public Variable, we have (B) (e) 0 γ, (C) ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1), (D)

γ(x) = (l, public bty), and (E) UpdateVal(σ1, l, n, public bty) = σ2.

Given (F) ((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x = e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂ = ê)

‖ Ĉ), by Definition 5.2.22 we have (G) (γ, σ) ∼=ψ (γ̂, σ̂), (H) C ∼=ψ Ĉ, and (I) x = e ∼=ψ x̂ = ê. Given (I), by

Definition 5.2.20 we have (J) e ∼=ψ ê and x ∼=ψ x̂. Therefore we have (K) x = x̂.

Given (C), (G), (H), by Lemma 5.2.50 we have (L) ((p, γ, σ,∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) Given (L),

by the inductive hypothesis we have (M) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and ψ1 such that (N)

((p, γ, σ1,∆1, acc, n) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and (O) D1

∼= D̂1. Given (N), by Definition 5.2.22 we

have (P) (γ, σ1) ∼=ψ1 (γ̂, σ̂1), (Q) n ∼=ψ1 n̂ and (R) C1
∼=ψ1 Ĉ1.

Given (B), (C) and (Q), by Definition 5.2.19 we have (S) n = n̂.

Given (D), (P), and (K), by Lemma 5.2.62 we have (T) γ̂(x̂) = (l̂, b̂ty) such that (U) public bty ∼=ψ1
b̂ty and (V) l = l̂.

Given (E), (P), (V), (Q), and (U), by Lemma 5.2.14 we have (W) UpdateVal(σ̂1, l̂, n̂, b̂ty) = σ̂2 such that (X)

(γ, σ2) ∼=ψ1 (γ̂, σ̂2).

Given (F), (M), (T), and (W), by Vanilla C rule Write we have ((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) ⇓′
D̂1::(p,[ŵ ])

((p, γ̂, σ̂2, �,

�, skip) ‖ Ĉ1).

Given (X) and (R), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, skip) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂2, �, �, skip) ‖ Ĉ1).

By Definition 5.2.23 we have w ∼= ŵ .
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Given (O), D1 :: (p, [w ]) and D̂1 :: (p, [ŵ ]) by Lemma 5.2.58 we have D1 :: (p, [w ]) ∼= D̂1 :: (p, [ŵ ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1).

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w2 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w2 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1) by SMC2 rule Write

Private Variable Public Value, we have (B) (e) 0 γ, (C) ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1),

(D) γ(x) = (l, private bty), and (E) UpdateVal(σ1, l, encrypt(n), private bty) = σ2.

Given (F) ((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x = e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂ = ê)

‖ Ĉ), by Definition 5.2.22 we have (G) (γ, σ) ∼=ψ (γ̂, σ̂), (H) C ∼=ψ Ĉ, and (I) x = e ∼=ψ x̂ = ê. Given (I), by

Definition 5.2.20 we have (J) e ∼=ψ ê and x ∼=ψ x̂. Therefore we have (K) x = x̂.

Given (C), (G), and (H), by Lemma 5.2.50 we have (L) ((p, γ, σ,∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) Given (C)

and (L), by the inductive hypothesis we have (M) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and ψ1 such

that (N) ((p, γ, σ1,∆1, acc, n) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and (O)D1
∼= D̂1. Given (N), by Definition 5.2.22

we have (P) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (Q) n ∼=ψ1

n̂ and (R) C1
∼=ψ1

Ĉ1.

Given (B), (C) and (Q), by Definition 5.2.19 we have n = n̂ and therefore (S) encrypt(n) ∼=ψ1 n̂.

Given (D), (P), and (K), by Lemma 5.2.62 we have (T) γ̂(x̂) = (l̂, b̂ty) such that (U) private bty ∼=ψ1 b̂ty and (V)

l = l̂.

Given (E), (P), (V), (S), and (U), by Lemma 5.2.14 we have (W) UpdateVal(σ̂1, l̂, n̂, b̂ty) = σ̂2 such that (X)

(γ, σ2) ∼=ψ1
(γ̂, σ̂2).

Given (F), (M), (T), and (W), by Vanilla C rule Write we have ((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) ⇓′
D̂1::(p,[ŵ ])

((p, γ̂, σ̂2, �,

697



�, skip) ‖ Ĉ1).

Given (X) and (R), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, skip) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂2, �, �, skip) ‖ Ĉ1).

By Definition 5.2.23 we have w2 ∼= ŵ .

Given (O), D1 :: (p, [w2 ]) and D̂1 :: (p, [ŵ ]) by Lemma 5.2.58 we have D1 :: (p, [w2 ]) ∼= D̂1 :: (p, [ŵ ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[r1 ]) ((p, γ, σ, ∆, acc, n) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[r1 ]) ((p, γ, σ, ∆, acc, n) ‖ C) by SMC2 rule Read Private Variable,

we have (B) γ(x) = (l, private bty), (C) σ(l) = (ω, private bty , 1, PermL(Freeable,private bty ,private, 1)), and

(D) DecodeVal(private bty , ω) = n.

Given (E) ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) by

Definition 5.2.22 we have (F) (γ, σ) ∼=ψ (γ̂, σ̂), (G) C ∼=ψ Ĉ, and (H) x ∼=ψ x̂. Given (H), by Definition 5.2.20 we

have (I) x = x̂.

Given (B), (F), and (I), by Lemma 5.2.62 we have (J) γ̂(x̂) = (l̂, b̂ty) such that (K) private bty ∼=ψ1
b̂ty and (L) l = l̂.

Given (C), (F), and (L), by Lemma 5.2.63 we have (M) σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty ,public, 1)) such that

(N) ω ∼=ψ ω̂.

Given (D), (K), and (N), by Lemma 5.2.8 we have (O) DecodeVal(b̂ty , ω̂) = n̂ such that (P) n ∼=ψ n̂.

Given (E), (J), (M), and (O), by Vanilla C rule Read we have ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) ⇓′(p,[r̂ ]) ((p, γ̂, σ̂,�,�, n̂) ‖ Ĉ).

Given (F), (G), and (P), by Definition 5.2.22 we have ((p, γ, σ, ∆, acc, n) ‖ C) ∼=ψ ((p, γ̂, σ̂, �, �, n̂) ‖ Ĉ).

By Definition 5.2.23 we have r1 ∼= r̂ , and by Definition 5.2.25 we have (p, [r1 ]) ∼= (p, [r̂ ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[r ]) ((p, γ, σ, ∆, acc, n) ‖ C)
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This case is similar to Case Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[r1 ]) ((p, γ, σ, ∆, acc, n) ‖ C).

Case Π. ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dv ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dv ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C) by SMC2 rule Public Declara-

tion, we have (B) (ty = public bty), acc = 0, (C) l = φ(), (D) γ1 = γ[x → (l, ty)], (E) ω = EncodeVal(ty ,NULL),

and (F) σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty ,public, 1))].

Given (G) ((p, γ̂, σ̂,�,�, b̂ty x̂) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, ty x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, b̂ty x̂) ‖ Ĉ),

by Definition 5.2.22 we have (H) (γ, σ) ∼=ψ (γ̂, σ̂) and (I) ty x ∼=ψ b̂ty x̂. Given (B) and (I), by Definition 5.2.20 we

have (J) public bty ∼=ψ b̂ty such that (K) bty = b̂ty and x ∼=ψ x̂ such that (L) x = x̂.

Given (C), by Axiom 5.2.2 we have (M) l̂ = φ() and (N) l = l̂.

Given (D), (H), (L), (N), and (I), by Lemma 5.2.60 we have (O) γ̂1 = γ̂[x̂→ (l̂, b̂ty)] such that (P) (γ1, σ) ∼=ψ (γ̂1, σ̂).

Given (E) and (I), by Lemma 5.2.5 we have (Q) ω̂ = EncodeVal(b̂ty ,NULL) such that (R) ω ∼=ψ ω̂.

Given (F), (N), (R), (I), and (P), by Lemma 5.2.61 we have (S) σ̂1 = σ̂[l̂→ (ω̂, b̂ty , 1,PermL(Freeable, b̂ty ,public, 1))]

such that (T) (γ1, σ1) ∼=ψ (γ̂1, σ̂1).

Given (G), (M), (O), (Q), and (S), by Vanilla C rule Declaration we have Σ. ((p, γ̂, σ̂,�,�, b̂ty x̂) ‖ Ĉ) ⇓′
(p,[d̂v ])

((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ).

Given (T), by Definition 5.2.22 we have ((p, γ1, σ1, ∆, acc, skip) ‖ C) ∼=ψ ((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ).

By Definition 5.2.23 we have dv ∼= d̂v , and by Definition 5.2.25 we have (p, [dv ]) ∼= (p, [d̂v ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[d1 ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)
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This case is similar to Case Π. ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dv ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C).

Case Π. ((p, γ, σ, ∆, acc, s1; s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ss]) ((p, γ2, σ2, ∆2, acc, v) ‖ C2)

Given (A) Π. ((p, γ, σ, ∆, acc, s1; s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ss]) ((p, γ2, σ2, ∆2, acc, v) ‖ C2) by SMC2 rule

Statement Sequencing, we have (B) ((p, γ, σ, ∆, acc, s1) ‖ C) ⇓L1

D1
((p, γ1, σ1, ∆1, acc, v1) ‖ C1) and (C)

((p, γ1, σ1, ∆1, acc, s2) ‖ C1) ⇓L2

D2
((p, γ2, σ2, ∆2, acc, v2) ‖ C2).

Given (D) ((p, γ̂, σ̂,�,�, ŝ1; ŝ2) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, s1; s2) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ŝ1; ŝ2)-

‖ Ĉ), by Definition 5.2.22 we have (E) (γ, σ) ∼=ψ (γ̂, σ̂), (F) C ∼=ψ Ĉ and (G) s1; s2
∼=ψ ŝ1; ŝ2. By Definition 5.2.12

we have (H) s1
∼=ψ ŝ1 and (I) s2

∼=ψ ŝ2.

Given ψ, (E), (F), and (H), by Lemma 5.2.50 we have (J) ((p, γ, σ, ∆, acc, s1) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ŝ1) ‖ Ĉ).

Given (B) and (J), by the inductive hypothesis we have (K) ((p, γ̂, σ̂,�,�, ŝ1) ‖ Ĉ) ⇓′
D̂1

((p, γ̂1, σ̂1,�,�, v̂1) ‖ Ĉ1)

and ψ1 such that (L) ((p, γ1, σ1, ∆1, acc, v1) ‖ C1) ∼=ψ1
((p, γ̂1, σ̂1,�,�, v̂1) ‖ Ĉ1) and (M) D1

∼= D̂1.

Given (L), by Definition 5.2.22 we have (N) (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1), (O) v1

∼=ψ1
v̂1, and (P) C1

∼=ψ1
Ĉ1.

Given Axiom 5.2.1, we have (l, µ) /∈ s2. Therefore, given (I), by Lemma 5.2.55 we have (Q) s2
∼=ψ1 ŝ2.

Given ψ1, (N), (P), and (Q), by Lemma 5.2.50 we have (R) ((p, γ1, σ1, ∆1, acc, s2) ‖ C1)∼=ψ1 ((p, γ̂1, σ̂1,�,�, ŝ2)-

‖ Ĉ1). Given (C) and (R), by the inductive hypothesis we have (S) ((p, γ̂1, σ̂1,�,�, ŝ2) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂2, σ̂2,�,�, v̂2)

‖ Ĉ2) and ψ2 such that (T) ((p, γ2, σ2, ∆2, acc, v2) ‖ C2) ∼=ψ2
((p, γ̂2, σ̂2,�,�, v̂2) ‖ Ĉ2) and (U) D2

∼= D̂2.

Given (T), by Definition 5.2.22 we have (V) (γ2, σ2) ∼=ψ2
(γ̂2, σ̂2), (W) v2

∼=ψ2
v̂2, and (X) C2

∼=ψ2
Ĉ2.

Given (D), (K), and (S), by Vanilla C rule Statement Sequencing we have Σ. ((p, γ̂, σ̂,�,�, ŝ1; ŝ2) ‖ Ĉ)

⇓′
D̂1::D̂2::(p,[ŝs])

((p, γ̂2, σ̂2,�,�, v̂2) ‖ Ĉ2).

Given (V), (W), and (X), by Definition 5.2.22 we have ((p, γ2, σ2, ∆2, acc, v2) ‖ C2) ∼=ψ2
((p, γ̂2, σ̂2,�,�, v̂2)-

‖ Ĉ2).

By Definition 5.2.23 we have ss ∼= ŝs . Given (M), (U), D1 :: D2 :: (p, [ss]) and D̂1 :: D̂2 :: (p, [ŝs]), by Lemma 5.2.58
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we have D1 :: D2 :: (p, [ss]) ∼= D̂1 :: D̂2 :: (p, [ŝs]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ2
Σ.

Case Π. ((p, γ, σ, ∆, acc, {s}) ‖ C) ⇓L1

D1 ::(p,[sb]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, {s}) ‖ C) ⇓L1

D1 ::(p,[sb]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1) by SMC2 rule Statement

Block, we have (B) ((p, γ, σ, ∆, acc, s) ‖ C) ⇓L1

D1
((p, γ1, σ1, ∆1, acc, v) ‖ C1).

Given (C) ((p, γ̂, σ̂,�,�, ŝ1; ŝ2) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, {s}) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, {ŝ}) ‖ Ĉ),

by Definition 5.2.22 we have (D) (γ, σ) ∼=ψ (γ̂, σ̂), (E) C ∼=ψ Ĉ and (F) {s} ∼=ψ {ŝ}. Given (F), by Definition 5.2.20

we have (G) s ∼=ψ ŝ.

Given ψ, (D), (E), and (G), by Lemma 5.2.50 we have (H) ((p, γ, σ, ∆, acc, s) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ŝ) ‖ Ĉ).

Given (B) and (H), by the inductive hypothesis we have (I) ((p, γ̂, σ̂,�,�, ŝ) ‖ Ĉ) ⇓′
D̂1

((p, γ̂1, σ̂1,�,�, v̂) ‖ Ĉ1) and

ψ1 such that (J) ((p, γ1, σ1, ∆1, acc, v) ‖ C1) ∼=ψ1
((p, γ̂1, σ̂1,�,�, v̂) ‖ Ĉ1) and (K) D1

∼= D̂1.

Given (J), by Definition 5.2.22 we have (L) (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1), (M) v ∼=ψ1

v̂, and (N) C1
∼=ψ1

Ĉ1.

Given (B), (I), and (J), by Lemma 5.2.57 we have (O) (γ, σ1) ∼=ψ1 (γ̂, σ̂1)

Given (C) and (I), by Vanilla C rule Statement Block we have Σ. ((p, γ̂, σ̂,�,�, {ŝ}) ‖ Ĉ) ⇓′
D̂1::(p,[ŝb])

((p, γ̂, σ̂1, �,

�, skip) ‖ Ĉ1).

Given (O) and (N), by Definition 5.2.22 we have ((p, γ, σ1, ∆1, acc, skip) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ1).

By Definition 5.2.23 we have sb ∼= ŝb. Given (K), D1 :: (p, [sb]) and D̂1 :: (p, [ŝb]), by Lemma 5.2.58 we have

D1 :: (p, [sb]) ∼= D̂1 :: (p, [ŝb]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, (e)) ‖ C) ⇓L1

D1 ::(p,[ep]) ((p, γ, σ1, ∆1, acc, v) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, (e)) ‖ C) ⇓L1

D1 ::(p,[ep]) ((p, γ, σ1, ∆1, acc, v) ‖ C1) by SMC2 rule Parentheses, we
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have (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, v) ‖ C1).

Given (C) ((p, γ̂, σ̂,�,�, (ê)) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, (e)) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, (ê)) ‖ Ĉ), by

Definition 5.2.22 we have (D) (γ, σ) ∼=ψ (γ̂, σ̂), (E) C ∼=ψ Ĉ and (F) (e) ∼=ψ (ê). Given (F), by Definition 5.2.20 we

have (G) e ∼= ê.

Given ψ, (D), (E), and (G), by Lemma 5.2.50 we have (H) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ).

Given (B) and (H), by the inductive hypothesis we have (I) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, v̂) ‖ Ĉ1) and

ψ1 such that (J) ((p, γ, σ1, ∆1, acc, v) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, v̂) ‖ Ĉ1) and (K) D1

∼= D̂1.

Given (J), by Definition 5.2.22 we have (L) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (M) v ∼=ψ1

v̂, and (N) C1
∼=ψ1

Ĉ1.

Given (C) and (I), by Vanilla C rule Parentheses we have Σ. ((p, γ̂, σ̂,�,�, (ê)) ‖ Ĉ) ⇓′
D̂1::(p,[êp])

((p, γ̂, σ̂1, �, �,

v̂) ‖ Ĉ1).

Given (L), (M), and (N), by Definition 5.2.22 we have ((p, γ, σ1, ∆1, acc, v) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, v̂) ‖ Ĉ1).

By Definition 5.2.23 we have ep ∼= êp. Given (L), D1 :: (p, [ep]) and D̂1 :: (p, [êp]), by Lemma 5.2.58 we have

D1 :: (p, [ep]) ∼= D̂1 :: (p, [êp]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, ty x = e) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ds]) ((p, γ1, σ1, ∆1, acc, skip) ‖ C2)

Given (A) Π. ((p, γ, σ, ∆, acc, ty x = e) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ds]) ((p, γ1, σ1, ∆1, acc, skip) ‖ C2) by SMC2 rule

Declaration Assignment, we have (B) ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓L1

D1
((p, γ1, σ1, ∆1, acc, skip) ‖ C1) and (C)

((p, γ1, σ1, ∆1, acc, x = e) ‖ C1) ⇓L2

D2
((p, γ1, σ2, ∆2, acc, skip) ‖ C2).

Given (D) ((p, γ̂, σ̂,�,�, t̂y x̂ = ê) ‖ Ĉ) andψ such that ((p, γ, σ, ∆, acc, ty x = e) ‖C)∼=ψ ((p, γ̂, σ̂,�,�, t̂y x̂ =

ê) ‖ Ĉ), by Definition 5.2.22 we have (E) (γ, σ) ∼=ψ (γ̂, σ̂), (F) C ∼=ψ Ĉ and (G) ty x = e ∼=ψ t̂y x̂ = ê. By Defini-

tion 5.2.20 we have (H) ty ∼=ψ t̂y , (I) x ∼=ψ x̂, such that (J) x = x̂, and (K) e ∼=ψ ê.

Given (H) and (J), by Definition 5.2.20 we have (L) ty x ∼=ψ t̂y x̂.
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Given ψ, (E), (F), and (L), by Lemma 5.2.50 we have (M) ((p, γ, σ, ∆, acc, ty x) ‖ C)∼=ψ ((p, γ̂, σ̂,�,�, t̂y x) ‖ Ĉ).

Given (B) and (M), by the inductive hypothesis we have (N) ((p, γ̂, σ̂,�,�, t̂y x) ‖ Ĉ) ⇓′
D̂1

((p, γ̂1, σ̂1,�,�, skip)

‖ Ĉ1) and ψ1 such that (O) ((p, γ1, σ1, ∆1, acc, skip) ‖ C1) ∼=ψ1 ((p, γ̂1, σ̂1,�,�, skip) ‖ Ĉ1) and (P) D1
∼= D̂1.

Given (O), by Definition 5.2.22 we have (Q) (γ1, σ1) ∼=ψ1 (γ̂1, σ̂1), and (R) C1
∼=ψ1 Ĉ1.

Given Axiom 5.2.1, we have (l, µ) /∈ e. Therefore, given (K), by Lemma 5.2.55 we have (S) e ∼=ψ1
ê.

Given (J) and (S), by Definition 5.2.20 we have (T) x = e ∼=ψ1
x̂ = ê.

Given ψ1, (Q), (T), and (R), by Lemma 5.2.50 we have (U) ((p, γ1, σ1, ∆1, acc, x = e) ‖ C1) ∼=ψ1
((p, γ̂1, σ̂1, �,

�, x̂ = ê) ‖ Ĉ1). Given (C) and (U), by the inductive hypothesis we have (V) ((p, γ̂1, σ̂1,�,�, x̂ = ê) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2) and ψ2 such that (W) ((p, γ1, σ2, ∆2, acc, skip) ‖ C2) ∼=ψ2
((p, γ̂1, σ̂2,�,�, skip)

‖ Ĉ2) and (X) D2
∼= D̂2.

Given (W), by Definition 5.2.22 we have (Y) (γ1, σ2) ∼=ψ2
(γ̂1, σ̂2) and (Z) C2

∼=ψ2
Ĉ2.

Given (D), (N), and (V), by Vanilla C rule Declaration Assignment we have Σ. ((p, γ̂, σ̂,�,�, t̂y x̂ = ê) ‖ Ĉ)

⇓′
D̂1::D̂2::(p,[d̂s])

((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2).

Given (Y) and (Z), by Definition 5.2.22 we have ((p, γ1, σ2, ∆2, acc, skip) ‖ C2)∼=ψ2
((p, γ̂1, σ̂2,�,�, skip) ‖ Ĉ2).

By Definition 5.2.23 we have ds ∼= d̂s . Given (P), (X), D1 :: D2 :: (p, [ds]) and D̂1 :: D̂2 :: (p, [d̂s]), by Lemma 5.2.58

we have D1 :: D2 :: (p, [ds]) ∼= D̂1 :: D̂2 :: (p, [d̂s]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ2
Σ.

Case Π. ((p, γ, σ, ∆, acc, ty x[e1] = e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[das]) ((p, γ1, σ1, ∆1, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ty x = e) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ds]) ((p, γ1, σ1, ∆1, acc, skip) ‖ C2).

Case Π. ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])
D1 ::(p,[da1 ]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1)
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Given (A) Π. ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])
D1 ::(p,[da1 ]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1) by SMC2 rule

Private Array Declaration, we have (B) (e) 0 γ, (C) ((ty = private bty)∨ (ty = bty))∧ ((bty = int)∨ (bty = float)),

(D) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆, acc, α) ‖ C1), (E) α > 0, (F) l = φ(), (G) l1 = φ(), (H)

γ1 = γ[x → (l, private const bty∗)], (I) ω = EncodePtr(private const bty∗, [1, [(l1, 0)], [1], 1]), (J) ω1 =

EncodeArr(private bty , 0, α,NULL), (K) σ2 = σ1[l → (ω, private const bty∗, 1, PermL(Freeable, private

const bty∗,private, 1))], and (L) σ3 = σ2[l1 → (ω1, private bty , α, PermL(Freeable, private bty ,private, α))].

Given (M) ((p, γ̂, σ̂,�,�, b̂ty x̂[ê]) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, b̂ty

x̂[ê]) ‖ Ĉ), by Definition 5.2.22 we have (N) (γ, σ) ∼=ψ (γ̂, σ̂), (O) C ∼=ψ Ĉ and (P) ty x[e] ∼=ψ b̂ty x̂[ê].

Given (P), by Definition 5.2.20 we have (Q) ty ∼=ψ b̂ty , (R) x ∼=ψ x̂ such that (S) x = x̂ and (T) e ∼=ψ ê. Given (C)

and (Q), by Definition 5.2.8 we have (U) bty = b̂ty .

Given ψ, (N), (O), and (T), by Lemma 5.2.50 we have (V) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ).

Given (D) and (V), by the inductive hypothesis we have (W) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, α̂) ‖ Ĉ1)

and ψ1 such that (X) ((p, γ, σ1, ∆, acc, α) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, α̂) ‖ Ĉ1) and (Y) D1

∼= D̂1.

Given (X), by Definition 5.2.22 we have (Z) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (A1) α ∼=ψ1

α̂, and (B1) C1
∼=ψ1

Ĉ1.

Given (F) and (G), by Axiom 5.2.2 we have (C1) l̂ = φ(), (D1) l = l̂, (E1) l̂1 = φ(), and (F1) l1 = l̂1.

Given (C), (Q), and (U), by Definition 5.2.8 we have (G1) private const bty∗ ∼=ψ const b̂ty∗ Given (H), (Z), (D1),

and (G1), by Lemma 5.2.60 we have (H1) γ̂1 = γ̂[x̂→ (l̂, const b̂ty∗)] such that (I1) (γ1, σ1) ∼=ψ1
(γ̂1, σ̂1).

Given (F1), by Definition 5.2.15 we have (J1) [1, [(l1, 0)], [1], 1] ∼=ψ1
[1, [(l̂1, 0)], [1], 1]. Given (I), (G1), and (J1), by

Lemma 5.2.4 we have (K1) ω̂ = EncodePtr(const b̂ty∗, [1, [(l̂1, 0)], [1], 1]) such that (L1) ω ∼=ψ1
ω̂.

Given (C), (Q), and (U), by Definition 5.2.8 we have (M1) private bty ∼=ψ b̂ty Given (J), (M1), and (A1), by

Lemma 5.2.6 we have (N1) ω̂1 = EncodeArr(b̂ty , 0, α̂,NULL) such that (O1) ω1
∼=ψ1 ω̂1.

Given (A1) and (B), by Lemma 5.2.51 we have (P1) α = α̂. Given (E) and (P1), we have (Q1) α̂ > 0.

Given (K), (I1), (C1), (K1), and (G1), by Lemma 5.2.61 we have (R1) σ̂2 = σ̂1[l̂→ (ω̂, const b̂ty∗, 1,
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PermL(Freeable, const b̂ty∗,public, 1))] such that (S1) (γ1, σ2) ∼=ψ1
(γ̂1, σ̂2).

Given (L), (S1), (F1), (O1), (P1), and (M1), by Lemma 5.2.61 we have (T1) σ̂3 = σ̂2[l̂1 → (ω̂1, b̂ty , α,PermL(Freeable,

b̂ty ,public, α))] such that (U1) (γ1, σ3) ∼=ψ1
(γ̂1, σ̂3).

Given (M), (W), (C1), (E1), (H1), (K1), (N1), (Q1), (R1), and (T1), by Vanilla C rule Array Declaration we have Σ.

((p, γ̂, σ̂,�,�, b̂ty x̂[ê]) ‖ Ĉ) ⇓′
D̂1::(p,[d̂a])

((p, γ̂1, σ̂3,�,�, skip) ‖ Ĉ1).

Given (U1) and (B1), by Definition 5.2.22 we have ((p, γ1, σ3, ∆, acc, skip) ‖C1)∼=ψ ((p, γ̂1, σ̂3,�,�, skip) ‖ Ĉ1).

By Definition 5.2.23 we have da1 ∼= d̂a . Given (Y), D1 :: (p, [da1 ]) and D̂1 :: (p, [d̂a]), by Lemma 5.2.58 we have

D1 :: (p, [da1 ]) ∼= D̂1 :: (p, [d̂a]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])
D1 ::(p,[da]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])
D1 ::(p,[da1 ]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1).

Case Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1) by SMC2 rule Public

Array Read Public Index, we have (B) (e) 0 γ, (C) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1),

(D) γ(x) = (l, public const bty∗), (E) σ1(l) = (ω, public const bty∗, 1, PermL(Freeable,public const bty∗,

public, 1)), (F) DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (G) σ1(l1) = (ω1,public bty , α,

PermL(Freeable,public bty ,public, α)), (H) 0 ≤ i ≤ α− 1, and (I) DecodeArr(public bty , i, ω1) = ni.

Given (J) ((p, γ̂, σ̂,�,�, x̂[ê]) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x[e]) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂[ê]) ‖ Ĉ), by

Definition 5.2.22 we have (K) (γ, σ) ∼=ψ (γ̂, σ̂), (L) x[e] ∼=ψ x̂[ê], and (M) C ∼=ψ Ĉ. Given (L), by Definition 5.2.20

we have (N) e ∼=ψ ê and x ∼=ψ x̂ such that (O) x = x̂.

Given ψ, (K), (N), and (M), by Lemma 5.2.50 we have (P) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ).

Given (C) and (P), by the inductive hypothesis we have (Q) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1)
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and ψ1 such that ((p, γ, σ1, ∆1, acc, i) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1). By Definition 5.2.22 we have (R)

(γ, σ1) ∼=ψ1
(γ̂, σ̂1) (S) i ∼=ψ1

î, (T) C1
∼=ψ1

Ĉ1, and (U) D1
∼= D̂1.

Given (D), (R), and (O), by Lemma 5.2.62 we have (V) γ̂(x̂) = (l̂, const b̂ty∗) such that (W) public const bty∗ ∼=ψ1

const b̂ty∗ and (X) l = l̂.

Given (E), (R), and (X), by Lemma 5.2.63 we have (Y) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,

public, 1)) such that (Z) ω ∼=ψ1 ω̂.

Given (F), (W), and (Z), by Lemma 5.2.12 we have (A1) DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] such that

(B1) l1 = l̂1.

Given (G), (R), and (B1), by Lemma 5.2.63 we have (C1) σ̂1(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂))

such that (D1) ω1
∼=ψ1

ω̂1, (E1) α = α̂, and (F1) public bty ∼=ψ1
b̂ty .

Given (S) and (B), by Lemma 5.2.51 we have (G1) i = î. Given (H), (G1), and (E1), we have (H1) 0 ≤ î ≤ α̂− 1.

Given (I), (F1), (G1), and (D1), by Lemma 5.2.9 we have (I1) DecodeArr(b̂ty , î, ω̂1) = n̂î such that (J1) ni ∼=ψ1
n̂î.

Given (J), (Q), (V), (Y), (A1), (C1), (H1), and (I1), by Vanilla C rule Array Read we have Σ. ((p, γ̂, σ̂,�,�, x̂[ê]) ‖ Ĉ)

⇓′
D̂1::(p,[r̂a])

((p, γ̂, σ̂1,�,�, n̂î) ‖ Ĉ1).

Given (R), (J1), and (T), by Definition 5.2.22 we have ((p, γ, σ1, ∆1, acc, ni) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, n̂î) ‖ Ĉ1).

By Definition 5.2.23 we have ra ∼= r̂a . Given (U), D1 :: (p, [ra]), and D̂1 :: (p, [r̂a]), by Lemma 5.2.58 we have

D1 :: (p, [ra]) ∼= D̂1 :: (p, [r̂a]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra1 ]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1).
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Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

Given (A) Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2) by SMC2

rule Private Array Write Private Value Public Index, we have (B) (e1) 0 γ, (C) (e2) ` γ, (D) ((p, γ, σ, ∆, acc, e1) -

‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, i) ‖ C1), (E) ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2,∆2, acc, n) ‖ C2), (F) γ(x) =

(l, private const bty∗), (G) σ2(l) = (ω,private const bty∗, 1,PermL(Freeable,private const bty∗,private, 1)),

(H) DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (I) σ2(l1) = (ω1, private bty , α,

PermL(Freeable, private bty ,private, α)), (J) 0 ≤ i ≤ α− 1, (K) DynamicUpdate(∆2, σ2, [(l1, i)], acc,private

bty) = ∆3, and (L) UpdateArr(σ2, (l1, i), n, private bty) = σ3.

Given (M) ((p, γ̂, σ̂,�,�, x̂[ê1] = ê2) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,

x̂[ê1] = ê2) ‖ Ĉ), by Definition 5.2.22 we have (N) (γ, σ) ∼=ψ (γ̂, σ̂), (O) x[e1] = e2
∼=ψ x̂[ê1] = ê2, and (P)

C ∼=ψ Ĉ. By Definition 5.2.20 we have (Q) e1
∼=ψ ê1, (R) e2

∼=ψ ê2, and x ∼=ψ x̂ such that (S) x = x̂.

Given ψ, (N), (Q), and (P), by Lemma 5.2.50 we have (T) ((p, γ, σ, ∆, acc, e1) ‖ C) ∼=ψ ((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ)

Given (D) and (T), by the inductive hypothesis we have (U) ((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1)

and ψ1 such that (V) ((p, γ, σ1, ∆1, acc, i) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1). Given (V), by Definition 5.2.22 we

have (W) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (X) i ∼=ψ1

î, (Y) C1
∼=ψ1

Ĉ1, and (Z) D1
∼= D̂1.

Given (B) and (X), by Lemma 5.2.51 we have (A1) i = î.

Given Axiom 5.2.1, we have (l, µ) /∈ e2. Given (R), by Lemma 5.2.55 we have (B1) e2
∼=ψ1 ê2.

Given ψ1, (W), (B1), and (Y), by Lemma 5.2.50 we have (C1) ((p, γ, σ1,∆1, acc, e2) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, ê2)

‖ Ĉ1). Given (E) and (C1), by the inductive hypothesis we have (D1) ((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂, σ̂2,�,

�, n̂) ‖ Ĉ2) and ψ2 such that (E1) ((p, γ, σ2,∆2, acc, n) ‖ C2) ∼=ψ2
((p, γ̂, σ̂2,�,�, n̂) ‖ Ĉ2). Given (E1), by

Definition 5.2.22 we have (F1) (γ, σ2) ∼=ψ2 (γ̂, σ̂2), (G1) n ∼=ψ2 n̂, and (H1) C2
∼=ψ2 Ĉ2, and (I1) D2

∼= D̂2.

Given (F), (F1), and (S), by Lemma 5.2.62 we have (J1) γ̂(x̂) = (l̂, const b̂ty∗) such that (K1) l = l̂ and (L1)

private const bty∗ ∼=ψ2
const b̂ty∗. Given (L1), by Definition 5.2.8 we have (M1) private bty ∼=ψ2

b̂ty .

Given (G), (F1), and (K1), by Lemma 5.2.63 we have (N1) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,

public, 1)) such that (O1) ω ∼=ψ2
ω̂.
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Given (H), (L1), and (O1), by Lemma 5.2.12 we have (P1) DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] such

that (Q1) l1 = l̂1.

Given (I), (Q1), and (F1), by Lemma 5.2.63 we have (R1) σ̂2(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂))

such that (S1) ω1
∼=ψ2

ω̂1, (T1) α = α̂.

Given (J), (A1), and (T1), we have (U1) 0 ≤ î ≤ α̂− 1.

Given (L), (E1), (O1), (Z), (R1), and (K1), by Lemma 5.2.15 we have (V1) UpdateArr(σ̂2, (l̂1, î), n̂, b̂ty) = σ̂3 such

that (W1) (γ, σ3) ∼=ψ2
(γ̂, σ̂3).

Given (M), (U), (D1), (J1), (N1), (P1), (R1), (U1), and (V1), by Vanilla C rule Array Write we have Σ. ((p, γ̂, σ̂,�,�,

x̂[ê1] = ê2) ‖ Ĉ) ⇓′
D̂1::D̂2::(p,[ŵa])

((p, γ̂, σ̂3,�,�, skip) ‖ Ĉ2).

Given (W1) and (H1), by Definition 5.2.22 we have ((p, γ, σ3,∆3, acc, skip) ‖ C2) ∼=ψ2
((p, γ̂, σ̂3,�,�, skip) -

‖ Ĉ2).

By Definition 5.2.23 we have wa2 ∼= ŵa . Given (Z), (I1), D1 :: D2 :: (p, [wa2 ]) and D̂1 :: D̂2 :: (p, [ŵa]), by

Lemma 5.2.58 we have D1 :: D2 :: (p, [wa2 ]) ∼= D̂1 :: D̂2 :: (p, [ŵa]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ2 Σ.

Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa1 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa2 ]) ((p, γ, σ3, ∆3, acc, skip)

‖ C2). Given n = n̂, we use Definition 5.2.19 to prove that encrypt(n) ∼= n̂.

Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa]) ((p, γ, σ3, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa2 ]) ((p, γ, σ3, ∆3, acc, skip)

‖ C2).
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Case Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0),(l1,0),...,(l1,α−1)])
(p,[rea]) ((p, γ, σ, ∆, acc, [n0, ..., nα−1]) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0),(l1,0),...,(l1,α−1)])
(p,[rea]) ((p, γ, σ, ∆, acc, [n0, ..., nα−1]) ‖ C) by SMC2

rule Read Entire Array, we have (B) γ(x) = (l, a const bty∗), (C) σ(l) = (ω, a const bty∗, 1,PermL(Freeable,

a const bty∗, a, 1)), (D) DecodePtr(a const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (E) σ(l1) = (ω1, a bty , α,

PermL(Freeable, a bty , a, α)), and (F) ∀i ∈ {0...α− 1} DecodeArr(a bty , i, ω1) = ni.

Given (G) ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ), by

Definition 5.2.22 we have (H) (γ, σ) ∼=ψ (γ̂, σ̂), (I) x ∼=ψ x̂, and (J) C ∼=ψ Ĉ. Given (I), by Definition 5.2.20 we have

(K) x = x̂.

Given (B), (H), and (K), by Lemma 5.2.62 we have (L) γ̂(x̂) = (l̂, const b̂ty∗) such that (M) l = l̂ and (N)

a const bty∗ ∼=ψ const b̂ty∗.

Given (C), (H), and (M), by Lemma 5.2.63 we have (O) σ̂(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,

public, 1)) such that (P) ω ∼=ψ ω̂.

Given (D), (N), and (P), by Lemma 5.2.12 we have (Q) DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] such that

(R) l1 = l̂1.

Given (E), (H), (R), by Lemma 5.2.63 we have (T) σ̂(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, bty ,public, α̂)) such that

(U) ω1
∼=ψ ω̂1, (V) bty ∼=ψ b̂ty , and (W) α = α̂.

Given (F) and (W), we have (X) i = î. Given (F), (X), (W), (V), and (U), by Lemma 5.2.10 we have (Y) ∀̂i ∈ {0...α̂−1}

DecodeArr(b̂ty , î, ω̂1) = n̂î such that (Z) ∀i ∈ {0...α− 1} ni ∼=ψ n̂i.

Given (G), (L), (O), (Q), (T), and (Y), by Vanilla C rule Read Entire Array we have Σ. ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) ⇓′(p,[r̂ea])

((p, γ̂, σ̂,�,�, [n̂0, ..., n̂α̂−1]) ‖ Ĉ).

Given (H), (J), (W), and (Z), by Definition 5.2.22 we have ((p, γ, σ, ∆, acc, [n0, ..., nα−1]) ‖ C) ∼=ψ ((p, γ̂, σ̂, �,

�, [n̂0, ..., n̂α̂−1]) ‖ Ĉ).

By Definition 5.2.23 we have rea ∼= ˆrea , and by Definition 5.2.25 we have (p, [rea]) ∼= (p, [r̂ea]).
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Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea1 ]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea1 ]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

by SMC2 rule Write Entire Private Array, we have (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, [n0, ...,

nαe−1]) ‖ C1), (C) γ(x) = (l, private const bty∗), (D) (e) ` γ, (E) σ1(l) = (ω,private const bty∗, 1,

PermL(Freeable, private const bty∗,private, 1)), (F) DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

(G) σ1(l1) = (ω1,private bty , α, PermL(Freeable,private bty ,private, α)), (H) αe = α, and (I) ∀i ∈ {0...α − 1}

UpdateArr(σ1+i, (l1, i), ni, private bty) = σ2+i.

Given (J) ((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x = e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂ = ê)-

‖ Ĉ), by Definition 5.2.22 we have (K) (γ, σ) ∼=ψ (γ̂, σ̂), (L) C ∼=ψ Ĉ, and (M) x = e ∼=ψ x̂ = ê. Given (M), by

Definition 5.2.20 we have (N) e ∼=ψ ê and x ∼=ψ x̂ such that (O) x = x̂.

Given ψ, (K), (L), and (N), by Lemma 5.2.50 we have (P) ((p, γ, σ, ∆, acc, e) ‖ C)∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) Given

(B) and (P), by the inductive hypothesis we have (Q) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂

((p, γ̂, σ̂1,�,�, [n̂0, ..., n̂α̂e−1]) ‖ Ĉ1)

and ψ1 such that (R) ((p, γ, σ1,∆1, acc, [n0, ..., nαe−1]) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, [n̂0, ..., n̂α̂e−1]) ‖ Ĉ1) and (S)

D1
∼= D̂1. Given (R), by Definition 5.2.22 we have (T) (γ, σ1) ∼=ψ1 (γ̂, σ̂1), (U) [n0, ..., nαe−1] ∼=ψ1 [n̂0, ..., n̂α̂e−1],

and (V) C1
∼=ψ1

Ĉ1.

Given (C), (T), and (O), by Lemma 5.2.62 we have (W) γ̂(x̂) = (l̂, const b̂ty∗) such that (X) l = l̂ and (Y)

private const bty∗ ∼=ψ1
const b̂ty∗. By Definition 5.2.8 we have (Z) bty = b̂ty .

Given (E), (T), and (X), by Lemma 5.2.63 we have (A1) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,

public, 1)) such that (B1) ω ∼=ψ1 ω̂.

Given (F), (Y), and (B1), by Lemma 5.2.12 we have (C1) DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] such that

(D1) l1 = l̂1.

Given (G), (T), and (D1), by Lemma 5.2.63 we have (E1) σ̂1(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, bty ,public, α̂))

such that (F1) ω1
∼=ψ1

ω̂1 and (G1) α = α̂.
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Given (U), by Definition 5.2.20 we have (H1) αe = α̂e. Given (H), (H1), and (G1), we have (I1) α̂e = α̂.

Given (I) and (G1), we have (J1) i = î ∈ {0...α−1}. Given (I), (T), (D1), (U), (Z), (I1), (G1), and (J1), by Lemma 5.2.16

we have (K1) ∀̂i ∈ {0...α̂− 1} UpdateArr(σ̂1+î, (l̂1, î), n̂î, b̂ty) = σ2+î such that (L1) (γ, σ2+i) ∼=ψ (γ̂, σ̂2+î).

Given (J), (Q), (W), (A1), (C1), (E1), (H1), and (K1), by Vanilla C rule Write Entire Array we have Σ. ((p, γ̂, σ̂,�,�,

x̂ = ê) ‖ Ĉ) ⇓′
D̂::(p,[ŵea])

((p, γ̂, σ̂2+α̂−1,�,�, skip) ‖ Ĉ1).

Given (L1) and (V), by Definition 5.2.22 we have ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂2+α̂−1,�,�,

skip) ‖ Ĉ1).

By Definition 5.2.23 we have wea1 ∼= ˆwea . Given (S), D1 :: (p, [wea1 ]) and D̂1 :: (p, [ŵea]), by Lemma 5.2.58 we

have D1 :: (p, [wea1 ]) ∼= D̂1 :: (p, [ŵea]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea2 ]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea1 ]) ((p, γ, σ2+α−1, ∆1,

acc, skip) ‖ C1). Given n = n̂, we use Definition 5.2.18 to prove that encrypt(n) ∼= n̂.

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea1 ]) ((p, γ, σ2+α−1, ∆1,

acc, skip) ‖ C1).

Case Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])
D1 ::(p,[rao]) ((p, γ, σ1, ∆1, acc, n) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])
D1 ::(p,[rao]) ((p, γ, σ1, ∆1, acc, n) ‖ C1) by SMC2 rule Public

Array Read Out of Bounds Public Index, we have (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1),

(C) γ(x) = (l, public const bty∗), (D) (e) 0 γ, (E) σ1(l) = (ω, public const bty∗, 1, PermL(Freeable,public
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const bty∗,public, 1)), (F) DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (G) σ1(l1) = (ω1,public

bty , α, PermL(Freeable,public bty ,public, α)), (H) (i < 0)∨(i ≥ α), and (I) ReadOOB(i, α, l1,public bty , σ1) =

(n, 1, (l2, µ)).

Given (J) ((p, γ̂, σ̂,�,�, x̂[ê]) ‖ Ĉ) and ψ such that ((p, γ, σ, ∆, acc, x[e]) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂[ê]) ‖ Ĉ), by

Definition 5.2.22 we have (K) (γ, σ) ∼=ψ (γ̂, σ̂), (L) C ∼=ψ Ĉ, and (M) x[e] ∼=ψ x̂[ê]. Given (M), by Definition 5.2.20

we have (N) e ∼=ψ ê and x ∼=ψ x̂ such that (O) x = x̂.

Given ψ, (K), (N), and (L), by Lemma 5.2.50 we have (P) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ).

Given (B) and (P), by the inductive hypothesis we have (Q) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1) and

ψ1 such that (R) ((p, γ, σ1, ∆1, acc, i) ‖ C1) ∼=ψ1
(p, γ̂, σ̂1,�,�, î) ‖ Ĉ1) and (S) D1

∼= D̂1.

Given (R), by Definition 5.2.22 we have (T) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (U) i ∼=ψ1

î, and (V) C1
∼=ψ1

Ĉ1. Given (D) and (U)

by Lemmas 5.2.52 and 5.2.51, we have (W) i = î.

Given (C), (T), and (O), by Lemma 5.2.62 we have (X) γ̂(x̂) = (l̂, const b̂ty∗) such that (Y) l = l̂ and (Z)

public const bty∗ ∼=ψ1 const b̂ty∗. Given (Z), by Definition 5.2.8 we have (A1) public bty ∼=ψ1 b̂ty .

Given (E), (T), and (Y), by Lemma 5.2.63 we have (B1) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,

public, 1)) such that (C1) ω ∼=ψ1 ω̂.

Given (F), (Z), and (C1), by Lemma 5.2.12 we have (D1) DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] such that

(E1) l1 = l̂1.

Given (G), (T), and (E1), by Lemma 5.2.63 we have (F1) σ̂1(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂)) such

that (G1) ω1
∼=ψ1

b̂ty1, and (H1) α = α̂.

Given (H), (W), and (H1), we have (I1) (̂i < 0) ∨ (̂i ≥ α̂).

Given (I), (W), (H1), (E1), (A1), and (T), by Lemma 5.2.18 we have (J1) ReadOOB(̂i, α̂, l̂1, b̂ty , σ̂1) = (n̂, 1) such

that (K1) n ∼=ψ1
n̂.

Given (J), (Q), (X), (B1), (D1), (F1), (I1), and (J1), by Vanilla C rule Array Read Out of Bounds we have Σ.
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((p, γ̂, σ̂,�,�, x̂[ê]) ‖ Ĉ) ⇓′
D̂1::(p,[r̂ao])

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1).

Given (T), (K1), and (V), by Definition 5.2.22 we have ((p, γ, σ1, ∆1, acc, n) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1).

By Definition 5.2.23 we have rao ∼= ˆrao. Given (S), D1 :: (p, [rao]) and D̂1 :: (p, [r̂ao]), by Lemma 5.2.58 we have

D1 :: (p, [rao]) ∼= D̂1 :: (p, [r̂ao]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])
D1 ::(p,[rao1 ]) ((p, γ, σ1, ∆1, acc, n) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])
D1 ::(p,[rao]) ((p, γ, σ1, ∆1, acc, n) ‖ C1).

Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

Given (A) Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2) by

SMC2 rule Private Array Write Out of Bounds Public Index Private Value, we have (B) (e1) 0 γ, (C) (e2) ` γ, (D)

((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, i) ‖ C1), (E) ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2,∆2,

acc, n) ‖ C2), (F) γ(x) = (l,private const bty∗), (G) σ2(l) = (ω,private const bty∗, 1, PermL(Freeable, private

const bty∗,private, 1)), (H) DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (I) σ2(l1) = (ω1, private

bty , α, PermL(Freeable, private bty ,private, α)), (J) (i < 0)∨(i ≥ α), and (K) WriteOOB(n, i, α, l1, private bty ,

σ2, ∆2, acc) = (σ3, ∆3, 1, (l2, µ)).

Given (L) ((p, γ̂, σ̂,�,�, x̂[ê1] = ê2) ‖ Ĉ) and ψ such that (M) ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ∼=ψ ((p, γ̂, σ̂,

�, �, x̂[ê1] = ê2) ‖ Ĉ), by Definition 5.2.22 we have (N) (γ, σ) ∼=ψ (γ̂, σ̂), (O) x[e1] = e2
∼=ψ x̂[ê1] = ê2, and (P)

C ∼=ψ Ĉ. By Definition 5.2.20 we have (Q) e1
∼=ψ ê1, (R) e2

∼=ψ ê2, and x ∼=ψ x̂ such that (S) x = x̂.

Given ψ, (N), (Q), and (P), by Lemma 5.2.50 we have (T) ((p, γ, σ, ∆, acc, e1) ‖ C) ∼=ψ ((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ)

Given (D) and (T), by the inductive hypothesis we have (U) ((p, γ̂, σ̂, �,�, ê1) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1)

and ψ1 such that (V) ((p, γ, σ1, ∆1, acc, i) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, î) ‖ Ĉ1). Given (V), by Definition 5.2.22 we

have (W) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (X) i ∼=ψ1

î, (Y) C1
∼=ψ1

Ĉ1, and (Z) D1
∼= D̂1.

Given (B) and (X), by Lemma 5.2.51 we have (A1) i = î.
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Given Axiom 5.2.1, we have (l, µ) /∈ e2. Given (R), by Lemma 5.2.55 we have (B1) e2
∼=ψ1

ê2.

Given ψ1, (W), (B1), and (Y), by Lemma 5.2.50 we have (C1) ((p, γ, σ1,∆1, acc, e2) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, ê2)

‖ Ĉ1). Given (E) and (C1), by the inductive hypothesis we have (D1) ((p, γ̂, σ̂1,�,�, ê2) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂, σ̂2,�,�,

n̂) ‖ Ĉ2) and ψ2 such that (E1) ((p, γ, σ2,∆2, acc, n) ‖ C2) ∼=ψ2
((p, γ̂, σ̂2,�,�, n̂) ‖ Ĉ2). Given (E1), by Defini-

tion 5.2.22 we have (F1) (γ, σ2) ∼=ψ2
(γ̂, σ̂2), (G1) n ∼=ψ2

n̂, and (H1) C2
∼=ψ2

Ĉ2, and (I1) D2
∼= D̂2.

Given (F), (F1), and (S), by Lemma 5.2.62 we have (J1) γ̂(x̂) = (l̂, const b̂ty∗) (K1) l = l̂ and (L1) private const bty∗
∼=ψ2 const b̂ty∗. Given (L1), by Definition 5.2.8 we have (M1) private bty ∼=ψ2 b̂ty .

Given (G), (F1), and (K1), by Lemma 5.2.63 we have (N1) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,

public, 1)) such that (O1) ω ∼=ψ2 ω̂.

Given (H), (L1), and (O1), by Lemma 5.2.12 we have (P1) DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] (Q1)

l1 = l̂1.

Given (I), (Q1), and (F1), by Lemma 5.2.63 we have (R1) σ̂2(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂))

such that (S1) ω1
∼=ψ2

ω̂1, (T1) α = α̂.

Given (J), (A1), and (T1), we have (U1) (̂i < 0) ∨ (̂i ≥ α̂).

Given (K), (G1), (A1), (T1), (Q1), (M1), and (F1), by Lemma 5.2.19 we have (V1) WriteOOB(n̂, î, α̂, l̂1, b̂ty , σ̂2) =

(σ̂3, 1) such that (W1) (γ, σ3) ∼=ψ2
(γ̂, σ̂3).

Given (L), (U), (D1), (J1), (N1), (P1), (R1), (U1), and (V1), by Vanilla C rule Array Write Out of Bounds we have Σ.

((p, γ̂, σ̂,�,�, x̂[ê1] = ê2) ‖ Ĉ) ⇓′
D̂1::D̂2::(p,[ŵao])

((p, γ̂, σ̂3,�,�, skip) ‖ Ĉ2).

Given (W1) and (H1), by Definition 5.2.22 we have ((p, γ, σ3, ∆3, acc, skip) ‖ C2) ∼=ψ2 ((p, γ̂, σ̂3,�,�, skip)-

‖ Ĉ2).

By Definition 5.2.23 we have wao2 ∼= ˆwao. Given (Z), (I1), D1 :: D2 :: (p, [wao2 ]) and D̂1 :: D̂2 :: (p, [ŵao]), by

Lemma 5.2.58 we have D1 :: D2 :: (p, [wao2 ]) ∼= D̂1 :: D̂2 :: (p, [ŵao]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ2
Σ.
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Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao]) ((p, γ, σ3, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc,

skip) ‖ C2).

Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao1 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc,

skip) ‖ C2).

Case Π. ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2)) ⇓L1::L2::L3::L4::L5::L6::L7

D1 ::D2 ::D3 ::(p,[iep])

((1, γ1, σ1
6 ,∆

1
3, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
3, acc, skip))

Given (A) Π. ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2))

⇓L1::L2::L3::L4::L5::L6::L7

D1 ::D2 ::D3 ::(p,[iep]) ((1, γ1, σ1
6 ,∆

1
3, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
3, acc, skip)) by SMC2 rule Private If Else

(Variable Tracking), we have (B) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1)

‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, nq)), (C) {(e) ` γp}qp=1, (D) {Extract(s1, s2, γ

p) = (xlist , 0)}qp=1,

(E) {InitializeVariables(xlist , γ
p, σp

1 , n
p, acc+1) = (γp

1 , σ
p
2 , l

p

2)}qp=1, (F) ((1, γ1
1 , σ

1
2 ,∆

1
1, acc+1, s1) ‖ ... ‖ (q, γq

1 ,

σq
2 , ∆q

1, acc + 1, s1)) ⇓L3

D2
((1, γ1

2 , σ
1
3 ,∆

1
2, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
2, acc + 1, skip)),

(G) {RestoreVariables(xlist , γ
p
1 , σ

p
3 , acc + 1) = (σp

4 , l
p

4)}qp=1, (H) ((1, γ1
1 , σ

1
4 , ∆1

2, acc + 1, s2) ‖ ... ‖ (q, γq
1 , σ

q
4 ,

∆q
2, acc + 1, s2)) ⇓L5

D3
((1, γ1

3 , σ
1
5 , ∆1

3, acc + 1, skip) ‖ ... ‖ (q, γq
3 , σ

q
5 ,∆

q
3, acc + 1, skip))

(I) {ResolveVariables_Retrieve(xlist , acc + 1, γp
1 , σ

p
5 ) = ([(vp

t1, v
p
e1), ..., (vp

tm, v
p
em)], np, l

p

6)}qp=1,

(J) MPCresolve([n1, ..., nq], [[(v1
t1, v

1
e1), ..., (v1

tm, v
1
em)], ..., [(vq

t1, v
q
e1), ..., (vq

tm, v
q
em)]]) = [[v1

1 , ..., v
1
m], ..., [vq

1 , ...,

vq
m]], (K) {ResolveVariables_Store(xlist , acc + 1, γp

1 , σ
p
5 , [vp

1 , ..., v
p
m]) = (σp

6 , l
p

7)}qp=1, L2 = (1, l
1

2) ‖ ... ‖ (q, l
q

2),

L4 = (1, l
1

4) ‖ ... ‖ (q, l
q

4), L6 = (1, l
1

6) ‖ ... ‖ (q, l
q

6), and L7 = (1, l
1

7) ‖ ... ‖ (q, l
q

7).

Given Axiom 5.2.1, by Theorem 5.2.2 we have (L) {(1, γ1, σ1,∆1, acc, if (e) s1 else s2)∼ (p, γp, σp,∆p, acc, if (e) s1

else s2)}qp=1.
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Given (L), (M) ((1, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2) ‖ ... ‖ (q, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2)) and ψ such that (N) ((1, γ1, σ1,

∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2)) ∼=ψ ((1, γ̂1, σ̂1,�,�, if(ê) ŝ1 else ŝ2) ‖

... ‖ (q, γ̂q, σ̂q,�,�, if(ê) ŝ1 else ŝ2)), by Lemma 5.2.86, we have (O) {(p, γp, σp,∆p, acc, if (e) s1 else s2) ∼=ψ

(p, γ̂, σ̂, �,�, if(ê) ŝ1 else ŝ2)}qp=1. and therefore (P) ((1, γ̂, σ̂, �,�, if(ê) ŝ1 else ŝ2) ‖ ... ‖ (q, γ̂, σ̂, �,�, if(ê)

ŝ1 else ŝ2)).

Given (O), by Definition 5.2.22 we have (Q) {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, and (R) if (e) s1 else s2
∼=ψ if(ê) ŝ1 else ŝ2.

Given (R), by Definition 5.2.20 we have (S) e ∼=ψ ê such that (T) s1
∼=ψ ŝ1 and (U) s2

∼=ψ ŝ2.

Given ψ, (Q), and (S), by Lemma 5.2.50 we have (V) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ∼=ψ

((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)). Given (B) and (V), by the inductive hypothesis we have (W) ((1, γ̂, σ̂,

�, �, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′
D̂1

((1, γ̂, σ̂1,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂)) and ψ1 such that (X)

((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)) ∼=ψ1

((1, γ̂, σ̂1,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂)) and

(Y) D1
∼= D̂1.

Given (X), by Definition 5.2.22 we have (Z) {(γp, σp
1 ) ∼=ψ1

(γ̂, σ̂1)}qp=1 and (A1) {np ∼=ψ1
n̂}qp=1.

Given Axiom 5.2.1, we have (l, µ) /∈ s1. Given (T), by Lemma 5.2.55 we have (B1) s1
∼=ψ1

ŝ1.

Given (D), by Lemma 5.2.32 we have (C1) that all updates to memory in either branch will be caught by variables

x ∈ xlist .

Given (E) and (C1), by Lemma 5.2.33 we have (D1) ∀xi ∈ xlist ,p ∈ {1...q}, (γp
1 , σ

p
2 ) |= (xi_else_acc ≡ v_origp

i ).

Given (E) and (Z), by Lemma 5.2.28 we have (E1) {(γp
1 , σ

p
2 ) ∼=ψ1

(γ̂, σ̂1)}qp=1 such that (F1) {σp
2 = σp

1 :: σp
temp1}

q
p=1.

Given (E1) and (B1), by Lemma 5.2.50 we have (G1) ((1, γ1
1 , σ

1
2 ,∆

1
1, acc + 1, s1) ‖ ... ‖ (q, γq

1 , σ
q
2 , ∆q

1, acc + 1, s1))

∼=ψ1
((1, γ̂, σ̂1,�,�, ŝ1) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ1)). Given (F) and (G1), by the inductive hypothesis we have (H1)

((1, γ̂, σ̂1,�,�, ŝ1) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ1)) ⇓′
D̂2

((1, γ̂1, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂1, σ̂2,�,�, skip)) and ψ2

such that (I1) ((1, γ1
2 , σ

1
3 ,∆

1
2, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
2, acc + 1, skip))∼=ψ2

((1, γ̂1, σ̂2,�,�, skip) ‖ ... ‖

(q, γ̂1, σ̂2,�,�, skip)) and (J1) D2
∼= D̂2.

Given (I1), by Definition 5.2.22 we have (K1) {(γp
2 , σ

p
3 ) ∼=ψ2

(γ̂1, σ̂2)}qp=1.
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Given (K1), (E1), (F), and (H1), by Lemma 5.2.57 we have (L1) {(γp
1 , σ

p
3 ) ∼=ψ2

(γ̂, σ̂2)}qp=1.

Given (F) and (F1), by Lemma 5.2.34 we have (M1) {σp
3 = σ′p3 :: σ′ptemp1}

q
p=1 such that (N1) {σ′ptemp1 = σp

temp1}
q
p=1.

Given (F1), (M1), (N1), and (D1), we have (O1) ∀xi ∈ xlist ,p ∈ {1...q}, (γp
1 , σ

p
3 ) |= (xi_else_acc ≡ v_origp

i ).

Given (G), (C1), (O1), (E1), (L1), and (F1), by Lemma 5.2.35 we have (P1) {∀xi ∈ xlist , (γp
1 , σ

p
3 ) |= (xi ≡ vp

ti)}
q
p=1,

(Q1) {∀xi ∈ xlist (γp
1 , σ

p
4 ) |= (xi_then_acc ≡ vp

ti)}
q
p=1, (R1) {σp

4 = σp
1 :: σp

temp2}
q
p=1, and (S1) {(γp

1 , σ
p
4 ) ∼=ψ2

(γ̂, σ̂1)}qp=1.

Given Axiom 5.2.1, we have (l, µ) /∈ s2. Given (U), by Lemma 5.2.55 we have (T1) s2
∼=ψ2

ŝ2.

Given (S1) and (T1), by Lemma 5.2.50 we have (U1) ((1, γ1
1 , σ

1
4 ,∆

1
2, acc + 1, s2) ‖ ... ‖ (q, γq

1 , σ
q
4 ,∆

q
2, acc + 1, s2))

∼=ψ2
((1, γ̂, σ̂1,�,�, ŝ2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ2)). Given (H) and (U1), by the inductive hypothesis we have (V1)

((1, γ̂, σ̂1,�,�, ŝ2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ2)) ⇓′
D̂3

((1, γ̂2, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂2, σ̂3,�,�, skip)) and ψ3 such

that (W1) ((1, γ1
3 , σ

1
5 , ∆1

3, acc + 1, skip) ‖ ... ‖ (q, γq
3 , σ

q
5 ,∆

q
3, acc + 1, skip)) ∼=ψ3

((1, γ̂2, σ̂3,�,�, skip) ‖ ... ‖

(q, γ̂2, σ̂3,�,�, skip)) and (X1) D3
∼= D̂3.

Given (W1), by Definition 5.2.22 we have (Y1) {(γp
3 , σ

p
5 ) ∼=ψ3

(γ̂2, σ̂3)}qp=1.

Given (Y1), (S1), (H), and (V1), by Lemma 5.2.57 we have (Z1) {(γp
1 , σ

p
5 ) ∼=ψ3

(γ̂, σ̂3)}qp=1.

Given (A1), (B), and (I), by Definition 5.2.19 and Lemma 5.2.36 we have (A2) {np ∼= n̂}qp=1.

Given (H) and (R1), by Lemma 5.2.34 we have (B2) {σp
5 = σ′p5 :: σ′ptemp2}

q
p=1 such that (C2) {σ′ptemp2 = σp

temp2}
q
p=1.

Given (R1), (B2), (C2), and (Q1), we have (D2) ∀xi ∈ xlist ,p ∈ {1...q}, (γp
1 , σ

p
5 ) |= (xi_then_acc ≡ vp

ti).

Given (I), (H), (A2), (Z1), (C1), and (D2), by Lemma 5.2.37 (E2) {∀xi ∈ xlist , (γp
1 , σ

p
5 ) |= (xi ≡ vp

ei)}
q
p=1, and (F2)

{∀xi ∈ xlist , (γp
1 , σ

p
5 ) |= (xi_then_acc ≡ vp

ti)}
q
p=1.

Subcase (G2) n̂ = 0

Given (J), (A2), (E2), (F2), and (G2), by Axiom 5.2.6 we have (H2) {∀i ∈ {1...m}, vp
i = vp

ei}
q
p=1.
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Given (K), (H2), (C1), (E2), and (Z1), by Lemma 5.2.38 we have (I2) {∀x ∈ xlist , (γp, σp
f ) |= (x ≡ vp

ei)}
q
p=1 and (J2)

{(γp
1 , σ

p
6 ) ∼=ψ3 (γ̂, σ̂3)}qp=1.

Given (J2) and (Q), by Lemma 5.2.57 we have (K2) {(γp, σp
6 ) ∼=ψ3 (γ̂, σ̂3)}qp=1.

Given (P), (W), (H1), (V1), and (G2), by Vanilla C rule Multiparty If Else False we have Σ. ((1, γ̂, σ̂,�,�, if(ê) ŝ1

else ŝ2) ‖ ... ‖ (q, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2)) ⇓′
D̂1::D̂2::D̂3::(p,[m̂pief ])

((1, γ̂, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂3,�,�,

skip)).

Given (K2), by Definition 5.2.22 we have ((1, γ1, σ1
6 ,∆

1
3, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
3, acc, skip))∼=ψ3

((1, γ̂, σ̂3,�,

�, skip) ‖ ... ‖ (q, γ̂, σ̂3,�,�, skip)).

By Definition 5.2.23 we have iep ∼= ˆmpief .

Given (Y), (J1), (X1), D1 :: D2 :: D3 :: (p, [iep]) and D̂1 :: D̂2 :: D̂3 :: (p, [m̂pief ]), by Lemma 5.2.58 we have

D1 :: D2 :: D3 :: (p, [iep]) ∼= D̂1 :: D̂2 :: D̂3 :: (p, [m̂pief ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ3
Σ.

Subcase (G3) n̂ 6= 0

Given (J), (A2), (E2), (F2), and (G3), by Axiom 5.2.7 we have (H3) {∀i ∈ {1...m}, vp
i = vp

ti}
q
p=1.

Given (K), (C1), (H3), (L1), and (P1), by Lemma 5.2.39 we have (I3) {∀x ∈ xlist , (γp, σp
f ) |= (x ≡ vp

ti)}
q
p=1 and (J3)

{(γp
1 , σ

p
6 ) ∼=ψ3

(γ̂, σ̂2)}qp=1.

Given (J3) and (Q), by Lemma 5.2.57 we have (K3) {(γp, σp
6 ) ∼=ψ3

(γ̂, σ̂2)}qp=1.

Given (P), (W), (H1), (V1), and (G3), by Vanilla C rule Multiparty If Else True we have Σ. ((1, γ̂, σ̂,�,�, if(ê) ŝ1

else ŝ2) ‖ ... ‖ (q, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2)) ⇓′
D̂1::D̂2::D̂3::(p,[m̂piet])

((1, γ̂, σ̂2,�, �, skip) ‖ ... ‖ (q, γ̂, σ̂2,�, �,

skip)).

Given (K3), by Definition 5.2.22 we have ((1, γ1, σ1
6 ,∆

1
3, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
3, acc, skip)) ∼=ψ3

((1, γ̂, σ̂2,

�, �, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�, skip)).

By Definition 5.2.23 we have iep ∼= ˆmpiet .
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Given (Y), (J1), (X1), D1 :: D2 :: D3 :: (p, [iep]) and D̂1 :: D̂2 :: D̂3 :: (p, [m̂piet ]), by Lemma 5.2.58 we have

D1 :: D2 :: D3 :: (p, [iep]) ∼= D̂1 :: D̂2 :: D̂3 :: (p, [m̂piet ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ3 Σ.

Case Π. ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2)) ⇓L1::L2::L3::L4::L5::L6::L7

D1 ::D2 ::D3 ::(p,[iepd])

((1, γ1, σ1
6 ,∆

1
6, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
6, acc, skip))

Given (A) Π. ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2))

⇓L1::L2::L3::L4::L5::L6::L7

D1 ::D2 ::D3 ::(p,[iepd]) ((1, γ1, σ1
6 ,∆

1
6, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
6, acc, skip)) by SMC2 rule Private If Else

(Location Tracking), we have (B) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1)

‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, nq)), (C) {(e) ` γp}qp=1, (D) {Extract(s1, s2, γ

p) = (xlist , 1)}qp=1, (E) {Initialize(∆p
1 ,

xlist , γ
p, σp

1 , n
p, acc + 1) = (γp

1 , σ
p
2 ,∆

p
2 , l

p

2)}qp=1, (F) ((1, γ1
1 , σ

1
2 ,∆

1
2, acc + 1, s1) ‖ ... ‖ (q, γq

1 , σ
q
2 ,∆

q
2, acc +

1, s1)) ⇓L3

D2
((1, γ1

2 , σ
1
3 ,∆

1
3, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
3, acc + 1, skip)), (G) {Restore(σp

3 ,∆
p
3 , acc + 1)

= (σp
4 ,∆

p
4 , l

p

4)}qp=1, (H) ((1, γ1
1 , σ

1
4 ,∆

1
4, acc + 1, s2) ‖ ... ‖ (q, γq

1 , σ
q
4 ,∆

q
4, acc + 1, s2)) ⇓L5

D3
((1, γ1

3 , σ
1
5 ,∆

1
5, acc +

1, skip) ‖ ... ‖ (q, γq
3 , σ

q
5 ,∆

q
5, acc + 1, skip)), (I) {Resolve_Retrieve(γp

1 , σ
p
5 ,∆

p
5 , acc + 1) = ([(vp

t1, v
p
e1), ..., (vp

tm,

vp
em)], np, l

p

6)}qp=1, (J) MPCresolve([n1, ..., nq], [[(v1
t1, v

1
e1), ..., (v1

tm, v
1
em)], ..., [(vq

t1, v
q
e1), ..., (vq

tm, v
q
em)]]) = [[v1

1 ,

..., v1
m], ...[vq

1 , ..., v
q
m]], (K) {Resolve_Store(∆p

5 , σ
p
5 , acc + 1, [vp

1 , ..., v
p
m]) = (σp

6 ,∆
p
6 , l

p

7)}qp=1, L2 = (1, l
1

2) ‖ ... ‖

(q, l
q

2), L4 = (1, l
1

4) ‖ ... ‖ (q, l
q

4), L6 = (1, l
1

6) ‖ ... ‖ (q, l
q

6), and L7 = (1, l
1

7) ‖ ... ‖ (q, l
q

7).

Given Axiom 5.2.1, by Theorem 5.2.2 we have (L) {(1, γ1, σ1,∆1, acc, if (e) s1 else s2) ∼ (p, γp, σp,∆p, acc, if (e)

s1 else s2)}qp=1.

Given (L), (M) ((1, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2) ‖ ... ‖ (q, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2)) and ψ such that (N) ((1, γ1, σ1,

∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2)) ∼=ψ ((1, γ̂1, σ̂1,�,�, if(ê) ŝ1 else ŝ2) ‖

... ‖ (q, γ̂q, σ̂q,�,�, if(ê) ŝ1 else ŝ2)), by Lemma 5.2.86, we have (O) {(p, γp, σp,∆p, acc, if (e) s1 else s2) ∼=ψ

(p, γ̂, σ̂, �,�, if(ê) ŝ1 else ŝ2)}qp=1. and therefore (P) ((1, γ̂, σ̂, �,�, if(ê) ŝ1 else ŝ2) ‖ ... ‖ (q, γ̂, σ̂, �,�, if(ê)

ŝ1 else ŝ2)).

Given (O), by Definition 5.2.22 we have (Q) {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1, and (R) if (e) s1 else s2
∼=ψ if(ê) ŝ1 else ŝ2.

Given (R), by Definition 5.2.20 we have (S) e ∼=ψ ê such that (T) s1
∼=ψ ŝ1 and (U) s2

∼=ψ ŝ2.

Given ψ, (Q), and (S), by Lemma 5.2.50 we have (V) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ∼=ψ
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((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)). Given (B) and (V), by the inductive hypothesis we have (W) ((1, γ̂, σ̂,

�, �, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′
D̂1

((1, γ̂, σ̂1,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂)) and ψ1 such that (X)

((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)) ∼=ψ1 ((1, γ̂, σ̂1,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂)) and

(Y) D1
∼= D̂1.

Given (X), by Definition 5.2.22 we have (Z) {(γp, σp
1 ) ∼=ψ1

(γ̂, σ̂1)}qp=1 and (A1) {np ∼=ψ1
n̂}qp=1.

Given Axiom 5.2.1, we have (l, µ) /∈ s1. Given (T), by Lemma 5.2.55 we have (B1) s1
∼=ψ1 ŝ1.

Given (E) and (Z), by Lemma 5.2.41 we have (C1) {(γp
1 , σ

p
2 ) ∼=ψ (γ̂, σ̂1)}qp=1.

Given (D), (E), by Lemma 5.2.40 we have (D1) all updates to a constant location dictated by variable x will have

their original value stored within {∆p
2 [acc + 1]}qp=1 and (E1) {(γp

1 , σ
p
2 ) |= (res_acc ≡ np)}qp=1 and (F1) {σp

2 = σp
1 ::

σp
temp1}

q
p=1.

Given (C1) and (B1), by Lemma 5.2.50 we have (G1) ((1, γ1
1 , σ

1
2 ,∆

1
1, acc + 1, s1) ‖ ... ‖ (q, γq

1 , σ
q
2 , ∆q

1, acc + 1, s1))

∼=ψ1 ((1, γ̂, σ̂1,�,�, ŝ1) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ1)). Given (F) and (G1), by the inductive hypothesis we have (H1)

((1, γ̂, σ̂1,�,�, ŝ1) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ1)) ⇓′
D̂2

((1, γ̂1, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂1, σ̂2,�,�, skip)) and ψ2

such that (I1) ((1, γ1
2 , σ

1
3 ,∆

1
2, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
2, acc + 1, skip))∼=ψ2

((1, γ̂1, σ̂2,�,�, skip) ‖ ... ‖

(q, γ̂1, σ̂2,�,�, skip)) and (J1) D2
∼= D̂2.

Given (I1), by Definition 5.2.22 we have (K1) {(γp
2 , σ

p
3 ) ∼=ψ2 (γ̂1, σ̂2)}qp=1.

Given (K1), (C1), (F), and (H1), by Lemma 5.2.57 we have (L1) {(γp
1 , σ

p
3 ) ∼=ψ2

(γ̂, σ̂2)}qp=1.

Given (F), by Lemma 5.2.42 we have (M1) {∆p
3 [acc + 1]}qp=1 is complete.

Given (G), (M1), (L1), and (C1), by Lemma 5.2.43 we have (N1) {∆p
4 [acc + 1]}qp=1 is then-complete, and (O1)

{(γp
1 , σ

p
4 ) ∼=ψ (γ̂, σ̂1)}qp=1.

Given Axiom 5.2.1, we have (P1) (l, µ) /∈ s2. Given (U) and (P1), by Lemma 5.2.55 we have (Q1) s2
∼=ψ2

ŝ2.

Given (O1) and (Q1), by Lemma 5.2.50 we have (R1) ((1, γ1
1 , σ

1
4 ,∆

1
2, acc + 1, s2) ‖ ... ‖ (q, γq

1 , σ
q
4 ,∆

q
2, acc + 1, s2))
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∼=ψ2
((1, γ̂, σ̂1,�,�, ŝ2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ2)). Given (H) and (R1), by the inductive hypothesis we have (S1)

((1, γ̂, σ̂1,�,�, ŝ2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ŝ2)) ⇓′
D̂3

((1, γ̂2, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂2, σ̂3,�,�, skip)) and ψ3

such that (T1) ((1, γ1
3 , σ

1
5 ,∆

1
3, acc+1, skip) ‖ ... ‖ (q, γq

3 , σ
q
5 ,∆

q
3, acc+1, skip))∼=ψ3 ((1, γ̂2, σ̂3,�,�, skip) ‖ ... ‖

(q, γ̂2, σ̂3,�,�, skip)) and (U1) D3
∼= D̂3.

Given (T1), by Definition 5.2.22 we have (V1) {(γp
3 , σ

p
5 ) ∼=ψ3

(γ̂2, σ̂3)}qp=1.

Given (V1), (O1), (H), and (S1), by Lemma 5.2.57 we have (W1) {(γp
1 , σ

p
5 ) ∼=ψ3 (γ̂, σ̂3)}qp=1.

Given (A1), (B), (D), (E), (F), (G), (H), and (I), by Definition 5.2.19 and Lemma 5.2.44 we have (X1) {np ∼= n̂}qp=1.

Given (H), by Lemma 5.2.42 we have (Y1) {∆p
5 [acc+1]}qp=1 is complete. Given (N1), (H), and (Y1), by Lemma 5.2.45

we have that (Z1) {∆p
5 [acc + 1]}qp=1 is else-complete.

Given (Z1), (F), (H), and (I), by Lemma 5.2.46 we have (A2) {∀(li, µi) = (vp
oi , v

p
ti, 1, ty i) ∈ ∆p

5 [acc], (σp
3 ) |=l

((li, µi) ≡ty vp
ti)}

q
p=1, (B2) {∀(li, µi) = (vp

ti,NULL, 0, ty i) ∈ ∆p
5 [acc], (σp

3 ) |=l ((li, µi) ≡tyi v
p
ti)}

q
p=1, and (C2)

{∀(li, µi) = (vp
oi, v

p
ti, j, ty i) ∈ ∆p

5 [acc], (σp
5 ) |=l ((li, µi) ≡tyi v

p
ei)}

q
p=1.

Subcase (D2) n̂ = 0

Given (J), (X1), (A2), (B2), (D2), and (C2), by Axiom 5.2.6 we have (E2) {∀i ∈ {1...m}, vp
i = vp

ei}
q
p=1.

Given (K), (W1), (Z1), (C2), and (E2), by Lemma 5.2.47 we have (F2) {(γp
1 , σ

p
6 ) ∼=ψ3

(γ̂, σ̂3)}qp=1 (G2) {∀(li, µi)

= (vp
oi, v

p
ti, j, ty i) ∈ ∆p

1 [acc], (σp
f ) |=l ((li, µi) ≡tyi v

p
ei)}

q
p=1.

Given (F2) and (Q), by Lemma 5.2.57 we have (H2) {(γp, σp
6 ) ∼=ψ3

(γ̂, σ̂3)}qp=1.

Given (P), (W), (H1), (S1), and (D2), by Vanilla C rule Multiparty If Else False we have Σ. ((1, γ̂, σ̂,�,�, if(ê) ŝ1

else ŝ2) ‖ ... ‖ (q, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2)) ⇓′
D̂1::D̂2::D̂3::(p,[m̂pief ])

((1, γ̂, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂3,�,�,

skip)).

Given (H2), by Definition 5.2.22 we have ((1, γ1, σ1
6 ,∆

1
6, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
6, acc, skip)) ∼=ψ3 ((1, γ̂, σ̂3,

�, �, skip) ‖ ... ‖ (q, γ̂, σ̂3,�,�, skip)).
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By Definition 5.2.23 we have iepd ∼= ˆmpief .

Given (Y), (J1), (U1), D1 :: D2 :: D3 :: (p, [iepd ]) and D̂1 :: D̂2 :: D̂3 :: (p, [m̂pief ]), by Lemma 5.2.58 we have

D1 :: D2 :: D3 :: (p, [iepd ]) ∼= D̂1 :: D̂2 :: D̂3 :: (p, [m̂pief ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ3
Σ.

Subcase (D3) n̂ 6= 0

Given (J), (X1), (A2), (B2), (D3), and (C2), by Axiom 5.2.7 we have (E3) {∀i ∈ {1...m}, vp
i = vp

ti}
q
p=1.

Given (K), (L1), (Z1), (A2), (B2), and (E3), by Lemma 5.2.48 we have (F3) {(γp
1 , σ

p
6 ) ∼=ψ3 (γ̂, σ̂2)}qp=1 (G3)

{∀(li, µi) = (vp
oi, v

p
ti, 1, ty i) ∈ ∆p

5 [acc], (σp
6 ) |=l ((li, µi) ≡tyi v

p
ti)}

q
p=1 and (H3) {∀(li, µi) = (vp

ti,NULL, 0, ty i) ∈

∆p
5 [acc], (σp

6 ) |=l ((li, µi) ≡tyi v
p
ti)}

q
p=1.

Given (F3) and (Q), by Lemma 5.2.57 we have (I3) {(γp, σp
6 ) ∼=ψ3

(γ̂, σ̂2)}qp=1.

Given (P), (W), (H1), (S1), and (D3), by Vanilla C rule Multiparty If Else True we have Σ. ((1, γ̂, σ̂,�,�, if(ê) ŝ1

else ŝ2) ‖ ... ‖ (q, γ̂, σ̂,�,�, if(ê) ŝ1 else ŝ2)) ⇓′
D̂1::D̂2::D̂3::(p,[m̂piet])

((1, γ̂, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�,

skip)).

Given (I3), by Definition 5.2.22 we have ((1, γ1, σ1
6 ,∆

1
6, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
6, acc, skip)) ∼=ψ3 ((1, γ̂, σ̂2,

�, �, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�, skip)).

By Definition 5.2.23 we have iepd ∼= ˆmpiet .

Given (Y), (J1), (U1), D1 :: D2 :: D3 :: (p, [iepd ]) and D̂1 :: D̂2 :: D̂3 :: (p, [m̂piet ]), by Lemma 5.2.58 we have

D1 :: D2 :: D3 :: (p, [iepd ]) ∼= D̂1 :: D̂2 :: D̂3 :: (p, [m̂piet ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ3 Σ.

Case Π. ((p, γ, σ,∆, acc,++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin3 ]) ((p, γ, σ1,∆, acc, n2) ‖ C)

Given (A) Π. ((p, γ, σ,∆, acc,++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin3 ]) ((p, γ, σ1,∆, acc, n2) ‖ C) by SMC2 rule Pre-Increment

Private Int Variable, we have (B) γ(x) = (l,private int), (C) σ(l) = (ω,private int, 1,PermL(Freeable,private int,

private, 1)), (D) DecodeVal(private int, ω) = n1, (E) n2 = n1 + encrypt(1), and (F) UpdateVal(σ, l, n2,private

int) = σ1.
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Given (G) ((p, γ̂, σ̂,�,�,++ x̂) ‖ Ĉ) and ψ such that (H) ((p, γ, σ,∆, acc,++ x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,++ x̂)

‖ Ĉ) by Definition 5.2.22 we have (I) (γ, σ) ∼=ψ (γ̂, σ̂), (J) C ∼=ψ Ĉ, and (K) ++ x ∼=ψ++ x̂. Given (K), by

Definition 5.2.20 we have (L) x = x̂.

Given (B), (I), and (L), by Lemma 5.2.62 we have (M) γ̂(x̂) = (l̂, b̂ty) such that (N) l = l̂ and (O) private int ∼=ψ b̂ty .

Given (C), (I), and (N), by Lemma 5.2.63 we have (P) σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty ,public, 1)) such that

(Q) ω ∼=ψ ω̂.

Given (D), (O), and (Q), by Lemma 5.2.8 we have (R) DecodeVal(b̂ty , ω̂) = n̂1 such that (S) n1
∼=ψ n̂1.

Given (E), by Definition 5.2.19 we have (T) encrypt(1) ∼=ψ 1. Given (E) and (T), we have (U) n̂2 = n̂1 + 1 such that

(V) n2
∼=ψ n̂2.

Given (F), (I), (N), (V), and (O), by Lemma 5.2.14 we have (W) UpdateVal(σ̂, l̂, n̂2, b̂ty) = σ̂1 such that (X)

(γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (G), (M), (P), (R), (U), and (W), by Vanilla C rule Pre-Increment Variable we have Σ. ((p, γ̂, σ̂,�,�, ++ x̂)

‖ Ĉ) ⇓′
(p,[p̂in])

((p, γ̂, σ̂1,�,�, n̂2) ‖ Ĉ).

Given (X), (V), and (J), by Definition 5.2.22 we have ((p, γ, σ1,∆, acc, n2) ‖ C) ∼=ψ ((p, γ̂, σ̂1,�,�, n̂2) ‖ Ĉ).

By Definition 5.2.23 we have pin3 ∼= ˆpin , and by Definition 5.2.25 we have (p, [pin3 ]) ∼= (p, [p̂in]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin]) ((p, γ, σ1, ∆, acc, n1) ‖ C)

This case is similar to Case Π. ((p, γ, σ,∆, acc,++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin3 ]) ((p, γ, σ1,∆, acc, n2) ‖ C). The main

difference is the value of x is equal instead of congruent, and we add 1 without encryption.

Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin1 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)
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Given (A) Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin1 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C) by SMC2 rule Pre-

Increment Public Pointer Single Location, we have (B) γ(x) = (l, public bty∗), (C) σ(l) = (ω, public bty∗, 1,

PermL(Freeable,public bty∗,public, 1)), (D) DecodePtr(public bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], (E) ((l2, µ2),

1) = GetLocation((l1, µ1), τ(public bty), σ), and (F) UpdatePtr(σ, (l, 0), [1, [(l2, µ2)], [1], 1], public bty∗)

= (σ1, 1).

Given (G) ((p, γ̂, σ̂,�,�,++ x̂) ‖ Ĉ) and ψ such that (H) ((p, γ, σ, ∆, acc, ++ x) ‖ C)∼=ψ ((p, γ̂, σ̂,�,�,++ x̂)

‖ Ĉ), by Definition 5.2.22 we have (I) (γ, σ) ∼=ψ (γ̂, σ̂), (J) C ∼=ψ Ĉ, and (K) ++ x ∼=ψ++ x̂. Given (K), by

Definition 5.2.20 we have (L) x = x̂.

Given (B), (I), and (L), by Lemma 5.2.62 we have (M) γ̂(x̂) = (l̂, b̂ty∗) such that (N) l = l̂ and (O) public bty∗ ∼=ψ

b̂ty∗.

Given (C), (I), and (N), by Lemma 5.2.63 we have (P) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such that

(Q) ω ∼=ψ ω̂.

Given (D), (O), and (Q) by Lemma 5.2.11 we have (R) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] (S) [1, [(l1, µ1)],

[1], 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]. Given (S), by Definition 5.2.15 we have (T) (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given (O), by Definition 5.2.8 we have (U) public bty ∼=ψ b̂ty .

Given (E), (T), (U), and (I), by Lemma 5.2.20 we have (V) ((l̂2, µ̂2), 1) = GetLocation((l̂1, µ̂1), τ(b̂ty), σ̂) such that

(W) (l2, µ2) ∼=ψ (l̂2, µ̂2).

Given (F), (I), (N), (W), and (O), by Lemma 5.2.17 we have (X) UpdatePtr(σ̂, (l̂, 0), [1, [(l̂2, µ̂2)], [1], 1], b̂ty∗) =

(σ̂1, 1) such that (Y) (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (G), (M), (P), (R), (V), and (X), by Vanilla C rule Pre-Increment Pointer we have Σ. ((p, γ̂, σ̂,�,�, ++ x̂)

‖ Ĉ) ⇓′
(p,[p̂in1 ])

((p, γ̂, σ̂1,�,�, (l̂2, µ̂2)) ‖ Ĉ).

Given (Y), (W), and (J), by Definition 5.2.22 we have ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)∼=ψ ((p, γ̂, σ̂1,�,�, (l̂2, µ̂2))

‖ Ĉ).
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By Definition 5.2.23 we have pin1 ∼= ˆpin1 , by Definition 5.2.25 we have (p, [pin1 ]) ∼= (p, [p̂in1 ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin2 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin1 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C).

Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin6 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin1 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C).

Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin7 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin1 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C).

Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin5 ]) ((p, γ, σ1, ∆, acc, [α, l1, j, i]) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin1 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C). We

use Lemma 5.2.21 in place of Lemma 5.2.20 to reason about the use of IncrementList to increment every location,

whereas GetLocation increments the single location. As for the resulting location that is returned, we reason about the

true location of the pointer being ψ-congruent to the Vanilla C location that is returned.

Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin4 ]) ((p, γ, σ1, ∆, acc, [n, l1, j, 1]) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin5 ]) ((p, γ, σ1, ∆, acc, [α, l1, j, i]) ‖ C).

Case Π. ((p, γ, σ, ∆, acc, malloc(e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[mal]) ((p, γ, σ2, ∆, acc, (l, 0)) ‖ C1)
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Given (A) Π. ((p, γ, σ, ∆, acc, malloc(e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[mal]) ((p, γ, σ2, ∆, acc, (l, 0)) ‖ C1) by SMC2 rule

Public Malloc, we have (B) acc = 0, (C) (e) 0 γ, (D) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆, acc, n) ‖ C1),

(E) l = φ(), and (F) σ2 = σ1

[
l→

(
NULL, void∗, n,PermL(Freeable, void∗,public, n)

)]
.

Given (G) ((p, γ̂, σ̂,�,�,malloc(ê)) ‖ Ĉ) andψ such that (H) ((p, γ, σ, ∆, acc, malloc(e)) ‖C)∼=ψ ((p, γ̂, σ̂,�,�,

malloc(ê)) ‖ Ĉ), by Definition 5.2.22 we have (I) (γ, σ) ∼=ψ (γ̂, σ̂), (J) C ∼=ψ Ĉ, and (K) malloc(e) ∼=ψ malloc(ê).

Given (K), by Definition 5.2.20 we have (L) e ∼=ψ ê.

Given (D), (I), (L), and (J), by Lemma 5.2.50 we have (M) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ).

Given (M), by the inductive hypothesis we have (N) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and ψ1 such

that (O) ((p, γ, σ1, ∆, acc, n) ‖C1)∼=ψ1
((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and (P)D1

∼= D̂1. Given (O), by Definition 5.2.22

we have (Q) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (R) n ∼=ψ1

n̂, and (S) C1
∼=ψ1

Ĉ1.

Given (E), by Axiom 5.2.2 we have (T) l̂ = φ() and (U) l = l̂.

Given (D), (C), and (R), by Lemmas 5.2.52 and 5.2.51 we have (V) n = n̂.

Given (F), (Q), (U), and (V), by Lemma 5.2.61 we have (W) σ̂2 = σ̂1

[
l̂→

(
NULL, void∗, n̂, PermL(Freeable, void∗,

public, n̂)
)]

such that (X) (γ, σ2) ∼=ψ1 (γ̂, σ̂2).

Given (G), (N), (T), and (W), by Vanilla C rule Malloc we have Σ. ((p, γ̂, σ̂,�,�,malloc(ê)) ‖ Ĉ) ⇓′
D̂1::(p,[m̂al])

((p, γ̂, σ̂2,�,�, (l̂, 0)) ‖ Ĉ1).

Given (X), (U), and (S), by Definition 5.2.22 we have ((p, γ, σ2, ∆, acc, (l, 0)) ‖ C1) ∼=ψ1
((p, γ̂, σ̂2,�,�, (l̂, 0))

‖ Ĉ1).

By Definition 5.2.23 we have mal ∼= m̂al . Given (P), D1 :: (p, [mal ]) and D̂1 :: (p, [m̂al ]), by Lemma 5.2.58 we have

D1 :: (p, [mal ]) ∼= D̂1 :: (p, [m̂al ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1 Σ.

Case Π. ((p, γ, σ, ∆, acc, pmalloc(e, ty)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[malp]) ((p, γ, σ2, ∆, acc, (l, 0)) ‖ C1)
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Given (A) Π. ((p, γ, σ, ∆, acc, pmalloc(e, ty)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[malp]) ((p, γ, σ2, ∆, acc, (l, 0)) ‖ C1) by SMC2

rule Private Malloc, we have (B) (e) 0 γ, (C) (ty = private bty∗) ∨ (ty = private bty), (D) acc = 0, (E)

((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆, acc, n) ‖ C1), (F) l = φ(), and (G) σ2 = σ1

[
l →

(
NULL, void∗,

n · τ(ty), PermL(Freeable, void∗,private, n · τ(ty))
)]

.

Given (H) ((p, γ̂, σ̂,�,�,malloc(ê · sizeof(t̂y))) ‖ Ĉ) and ψ such that (I) ((p, γ, σ, ∆, acc, pmalloc(e, ty)) ‖ C)

∼=ψ ((p, γ̂, σ̂,�,�,malloc(ê · sizeof(t̂y))) ‖ Ĉ), by Definition 5.2.22 we have (J) (γ, σ) ∼=ψ (γ̂, σ̂), (K) C ∼=ψ Ĉ,

and (L) pmalloc(e, ty) ∼=ψ malloc(ê · sizeof(t̂y)). Given (L), by Definition 5.2.20 we have (M) e ∼=ψ ê and (N)

ty ∼=ψ t̂y .

Given (H), we have (O) ((p, γ̂, σ̂,�,�, ê · sizeof(t̂y)) ‖ Ĉ).

Given (J), (K), and (M), by Lemma 5.2.50 we have (P) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ). Given

(E) and (P), by the inductive hypothesis we have (Q) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and ψ1 such

that (N) ((p, γ, σ1,∆1, acc, n) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and (O)D1
∼= D̂1. Given (N), by Definition 5.2.22

we have (P) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (Q) n ∼=ψ1

n̂ and (R) C1
∼=ψ1

Ĉ1.

Given (O) and (Q), we have (S) ((p, γ̂, σ̂1,�,�, sizeof(t̂y)) ‖ Ĉ1).

Given t̂y , by Algorithm τ we have (T) n̂1 = τ(t̂y).

Given (S), (T), by Vanilla C rule Size of Type we have (U) ((p, γ̂, σ̂1,�,�, sizeof(t̂y)) ‖ Ĉ1) ⇓′
(p,[t̂y])

((p, γ̂, σ̂1, �,

�, n̂1) ‖ Ĉ1).

Given (Q) and (U), we have (V) n̂ ∗ n̂1 = n̂2.

Given (O), (Q), (U), and (V), by Vanilla C rule Multiplication we have (W) ((p, γ̂, σ̂,�,�, ê · sizeof(t̂y)) ‖ Ĉ)

⇓′
D̂1::(p,[t̂y])::(p,[b̂m])

((p, γ̂, σ̂1,�,�, n̂2) ‖ Ĉ1).

Given (F), by Axiom 5.2.2 we have (X) l̂ = φ() and (Y) l = l̂.

Given (B) and (Q), by (Z) n = n̂.
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Given (G), (Y), (P), (V), (T), and (Z) by Lemma 5.2.69 we have (A1) σ̂2 = σ̂1[l̂ → (NULL, void∗, n̂2,

PermL(Freeable, void∗,public, n̂2))] such that (B1) (γ, σ2) ∼=ψ (γ̂, σ̂2).

Given (H), (W), (X), and (A1), by Vanilla C rule Malloc we have Σ. ((p, γ̂, σ̂,�,�,malloc(ê · sizeof(t̂y))) ‖ Ĉ)

⇓′
D̂1::(p,[t̂y,b̂m])::(p,[m̂al])

((p, γ̂, σ̂2,�,�, (l̂, 0)) ‖ Ĉ1).

Given (B1), (Y), and (R), by Definition 5.2.22 we have ((p, γ, σ2, ∆, acc, (l, 0)) ‖ C1) ∼=ψ1
((p, γ̂, σ̂2,�,�, (l̂, 0))

‖ Ĉ1).

By Definition 5.2.23 we have malp ∼= [t̂y , b̂m, m̂al ].

Given (O), D1 :: (p, [malp]) and D̂1 :: (p, [t̂y , b̂m]) :: (p, [m̂al ]), by Lemma 5.2.58 we have D1 :: (p, [malp]) ∼=

D̂1 :: (p, [t̂y , b̂m, m̂al ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, free(x)) ‖ C) ⇓(p,[(l,0),(l1,0)])
(p,[fre]) ((p, γ, σ1, ∆, acc, skip) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, free(x)) ‖ C) ⇓(p,[(l,0),(l1,0)])
(p,[fre]) ((p, γ, σ1, ∆, acc, skip) ‖ C) by SMC2 rule Public

Free, we have (B) γ(x) = (l, public bty∗), (C) σ(l) = (ω,public bty∗, 1,PermL(Freeable,public bty∗,public, 1)),

(D) acc = 0, (E) DecodePtr(public bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (F) CheckFreeable(γ, [(l1, 0)], [1], σ) = 1,

and (G) Free(σ, l1) = (σ1, (l1, 0)).

Given (H) ((p, γ̂, σ̂,�,�, free(x̂)) ‖ Ĉ) and ψ such that (I) ((p, γ, σ, ∆, acc, free(x)) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,

free(x̂)) ‖ Ĉ), by Definition 5.2.22 we have (J) (γ, σ) ∼=ψ (γ̂, σ̂), (K) C ∼=ψ Ĉ, and (L) free(x) ∼=ψ free(x̂). Given

(L), by Definition 5.2.20 we have (M) x = x̂.

Given (B), (J), and (M), by Lemma 5.2.62 we have (N) γ̂(x̂) = (l̂, b̂ty∗) such that (O) l = l̂ and (P) public bty∗ ∼=ψ

b̂ty∗.

Given (C), (J), and (O), by Lemma 5.2.63 we have (Q) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (R) ω ∼=ψ ω̂.

Given (E), (P), and (R), by Lemma 5.2.11 we have (S) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] such that (T)

[1, [(l1, 0)], [1], 1] ∼=ψ [1, [(l̂1, 0)], [1], 1]. Given (T), by Definition 5.2.15 we have (U) l1 ∼=ψ l̂1.
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Given (F), (J), and (U), by Axiom 5.2.3 we have (V) CheckFreeable(γ̂, [(l̂1, 0)], [1], σ̂) = 1.

Given (G), (J), and (U), by Lemma 5.2.22 we have (W) Free(σ̂, l̂1) = σ̂1 such that (X) (γ, σ1) ∼=ψ (γ̂, σ̂1).

Given (H), (N), (Q), (S), (V), and (W), by Vanilla C rule Free we have Σ. ((p, γ̂, σ̂,�,�, free(x̂)) ‖ Ĉ) ⇓′
(p,[f̂re])

((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ).

Given (X) and (K), by Definition 5.2.22 we have ((p, γ, σ1, ∆, acc, skip) ‖ C) ∼=ψ ((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ).

By Definition 5.2.23 we have fre ∼= ˆfre, and by Definition 5.2.25 we have (p, [fre]) ∼= (p, [f̂re]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, pfree(x)) ‖ C) ⇓(p,[(l,0),(l1,0)])
(p,[pfre]) ((p, γ, σ1, ∆, acc, skip) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, free(x)) ‖ C) ⇓(p,[(l,0),(l1,0)])
(p,[fre]) ((p, γ, σ1, ∆, acc, skip) ‖ C).

Case Π. ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[cl1 ]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[cl1 ]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1) by SMC2 rule Cast

Private Location, we have (B) (ty = private bty∗), (C) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (l, 0))-

‖ C1), (D) σ1 = σ2

[
l→

(
ω, void∗, n, PermL(Freeable, void∗,private, n)

)]
, and (E) σ3 = σ2

[
l→

(
ω, ty , n

τ(ty) ,

PermL(Freeable, ty ,private, n
τ(ty) )

)]
.

Given (F) ((p, γ̂, σ̂,�,�, (t̂y) ê) ‖ Ĉ) and ψ such that (G) ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, (t̂y) ê)

‖ Ĉ), by Definition 5.2.22 we have (H) (γ, σ) ∼=ψ (γ̂, σ̂), (I) C ∼=ψ Ĉ, and (J) (ty) e ∼=ψ (t̂y) ê. Given (J), by

Definition 5.2.20 we have (K) ty ∼=ψ t̂y and (L) e ∼=ψ ê.

Given (B) and (K), by Definition 5.2.8 we have (M) (t̂y = b̂ty∗).

Given (H), (L), and (I), by Lemma 5.2.50 we have (N) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) Given

(C) and (N), by the inductive hypothesis we have (O) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, (l̂, 0)) ‖ Ĉ1) and
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ψ1 such that (P) ((p, γ, σ1, ∆1, acc, (l, 0)) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, (l̂, 0)) ‖ Ĉ1) (Q) D1

∼= D̂1. Given (P), by

Definition 5.2.22 we have (R) (γ, σ1) ∼=ψ (γ̂, σ̂1), (S) C1
∼=ψ Ĉ1, and (T) (l, 0) ∼=ψ1

(l̂, 0).

Given (D), (R), and (T), by Lemma 5.2.69 we have (U) σ̂1 = σ̂2[l̂→ (ω̂, void, n̂,PermL(Freeable, void,public, n̂))]

(V) (γ, σ2) ∼=ψ (γ̂, σ̂2), and (W) ∃ty1, t̂y1 such that ty1
∼= t̂y1 and n

τ(ty1) = n̂
τ(t̂y1)

.

Given Axiom 5.2.1, (W), and (K), we have (X) n
τ(ty) = n̂

τ(t̂y)
.

Given (E), (V), (T), (K), and (X), by Lemma 5.2.61 we have (Y) σ̂3 = σ̂2[l̂ → (ω̂, t̂y , n̂
τ(t̂y)

, PermL(Freeable, t̂y ,

public, n̂
τ(t̂y)

))] such that (Z) (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (F), (M), (O), (U), and (Y), by Vanilla C rule Cast Location we have Σ. ((p, γ̂, σ̂,�,�, (t̂y) ê) ‖ Ĉ) ⇓′
D̂1::(p,[ĉl])

((p, γ̂, σ̂3,�,�, (l̂, 0)) ‖ Ĉ1).

Given (Z), (T), and (S), by Definition 5.2.22 we have ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂3,�,�, (l̂, 0))

‖ Ĉ1).

By Definition 5.2.23 we have cl1 ∼= ĉl . Given (Q), D1 :: (p, [cl1 ]) and D̂1 :: (p, [ĉl ]), by Lemma 5.2.58 we have

D1 :: (p, [cl1 ]) ∼= D̂1 :: (p, [ĉl ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[cl]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[cl]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1) by SMC2 rule Cast

Public Location, we have acc = 0, (B) (ty = public bty∗), (C) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc,

(l, 0)) ‖ C1), (D) σ1 = σ2

[
l →

(
ω, void∗, n, PermL(Freeable, void∗,public, n)

)]
, and (E) σ3 = σ2

[
l →(

ω, ty , n
τ(ty) , PermL(Freeable, ty ,public, n

τ(ty) )
)]

.

Given (F) ((p, γ̂, σ̂,�,�, (t̂y) ê) ‖ Ĉ) and ψ such that (G) ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, (t̂y) ê)

‖ Ĉ), by Definition 5.2.22 we have (H) (γ, σ) ∼=ψ (γ̂, σ̂), (I) C ∼=ψ Ĉ, and (J) (ty) e ∼=ψ (t̂y) ê. Given (J), by

Definition 5.2.20 we have (K) ty ∼=ψ t̂y and (L) e ∼=ψ ê.

Given (B) and (K), by Definition 5.2.8 we have (M) (t̂y = b̂ty∗).

730



Given (H), (L), and (I), by Lemma 5.2.50 we have (N) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) Given

(C) and (N), by the inductive hypothesis we have (O) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, (l̂, 0)) ‖ Ĉ1) and

ψ1 such that (P) ((p, γ, σ1, ∆1, acc, (l, 0)) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, (l̂, 0)) ‖ Ĉ1) (Q) D1

∼= D̂1. Given (P), by

Definition 5.2.22 we have (R) (γ, σ1) ∼=ψ (γ̂, σ̂1), (S) C1
∼=ψ Ĉ1, and (T) (l, 0) ∼=ψ1 (l̂, 0).

Given (T), by Lemma 5.2.65 we have (U) l = l̂.

Given (D), (R), and (U), by Lemma 5.2.68 we have (V) σ̂1 = σ̂2[l̂ → (ω̂, void∗, n̂,PermL(Freeable, void∗,public,

n̂))] such that (W) (γ, σ2) ∼=ψ (γ̂, σ̂2) and (X) n = n̂.

Given (B) and (K), by Lemma 5.2.70 we have (Y) τ(ty) = τ(t̂y).

Given (E), (X), (Y), (U), and (W) by Lemma 5.2.61 we have (Z) σ̂3 = σ̂2[l̂ → (ω̂, t̂y , n̂
τ(t̂y)

, PermL(Freeable, t̂y ,

public, n̂
τ(t̂y)

))] such that (A1) (γ, σ3) ∼=ψ (γ̂, σ̂3).

Given (F), (M), (O), (U), and (Z), by Vanilla C rule Cast Location we have Σ. ((p, γ̂, σ̂,�,�, (t̂y) ê) ‖ Ĉ) ⇓′
D̂1::(p,[ĉl])

((p, γ̂, σ̂3,�,�, (l̂, 0)) ‖ Ĉ1).

Given (A1), (T), and (S), by Definition 5.2.22 we have ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂3,�,�, (l̂, 0))

‖ Ĉ1).

By Definition 5.2.23 we have cl ∼= ĉl . Given (Q), D1 :: (p, [cl ]) and D̂1 :: (p, [ĉl ]), by Lemma 5.2.58 we have

D1 :: (p, [cl ]) ∼= D̂1 :: (p, [ĉl ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1

D1 ::(p,[cv ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1

D1 ::(p,[cv ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1) by SMC2 rule Cast Public

Value, we have (B) (e) 0 γ, (C) ((p, γ, σ, ∆, acc, e) ‖C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖C1), (D) (ty = public bty),

and (E) n1 = Cast(public, ty , n).

Given (F) ((p, γ̂, σ̂, �,�, (t̂y) ê) ‖ Ĉ) and ψ such that (G) ((p, γ, σ, ∆, acc, (ty) e) ‖ C)∼=ψ ((p, γ̂, σ̂, �,�, (t̂y) ê)
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‖ Ĉ), by Definition 5.2.22 we have (H) (γ, σ) ∼=ψ (γ̂, σ̂), (I) C ∼=ψ Ĉ, and (J) (ty) e ∼=ψ (t̂y) ê. Given (J), by

Definition 5.2.20 we have (K) ty ∼=ψ t̂y (L) e ∼=ψ ê.

Given (H), (L), and (I), by Lemma 5.2.50 we have (M) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ). Given

(M), by the inductive hypothesis we have (N) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and ψ1 such that

(O) ((p, γ, σ1, ∆1, acc, n) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and (P) D1

∼= D̂1. Given (O), by Definition 5.2.22

we have (Q) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (R) n ∼=ψ1

n̂ and (S) C1
∼=ψ1

Ĉ1.

Given (B), (C), and (R), by Lemmas 5.2.52 and 5.2.51 we have (T) n = n̂.

Given (E), (K), and (T), by Lemma 5.2.23 we have (U) n̂1 = Cast(public, t̂y , n̂) such that (V) n1
∼=ψ1

n̂1.

Given (F), (M), and (U), by Vanilla C rule Cast Value we have Σ. ((p, γ̂, σ̂, �,�, (t̂y) ê) ‖ Ĉ) ⇓′
D̂1::(p,[ĉv ])

((p, γ̂, σ̂1,

�, �, n̂1) ‖ Ĉ1).

Given (Q), (V), and (S), by Definition 5.2.22 we have ((p, γ, σ1, ∆1, acc, n1) ‖ C1)∼=ψ1
((p, γ̂, σ̂1,�,�, n̂1) ‖ Ĉ1).

By Definition 5.2.23 we have cv ∼= ĉv . Given (P), D1 :: (p, [cv ]) and D̂1 :: (p, [ĉv ]), by Lemma 5.2.58 we have

D1 :: (p, [cv ]) ∼= D̂1 :: (p, [ĉv ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1

D1 ::(p,[cv1 ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1)

This case is similar to Case Π. ((p, γ, σ,∆, acc, (ty) e) ‖ C) ⇓L1

D1 ::(p,[cv ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1). The main

difference is using Lemma 5.2.24 in place of Lemma 5.2.23, as we are reasoning about private values that are congruent,

whereas the previous case has public values that are equivalent.

Case Π. ((p, γ, σ, ∆, acc, &x) ‖ C) ⇓ε(p,[loc]) ((p, γ, σ, ∆, acc, (l, 0)) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, &x) ‖ C) ⇓ε(p,[loc]) ((p, γ, σ, ∆, acc, (l, 0)) ‖ C) by SMC2 rule Address Of, we

have (B) γ(x) = (l, ty).
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Given (C) ((p, γ̂, σ̂,�,�,&x̂) ‖ Ĉ) and ψ such that (D) ((p, γ, σ, ∆, acc, &x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,&x̂) ‖ Ĉ),

by Definition 5.2.22 we have (E) (γ, σ) ∼=ψ (γ̂, σ̂), (F) C ∼=ψ Ĉ, and (G) &x ∼=ψ &x̂. Given (G), by Definition 5.2.20

we have (H) x = x̂.

Given (B), (E), and (H), by Lemma 5.2.62 we have (I) γ̂(x̂) = (l̂, t̂y) such that (J) l = l̂ and (K) ty ∼=ψ t̂y .

Given (C) and (I), by Vanilla C rule Address Of we have Σ. ((p, γ̂, σ̂,�,�,&x̂) ‖ Ĉ) ⇓′
(p,[l̂oc])

((p, γ̂, σ̂,�,�, (l̂, 0))

‖ Ĉ).

Given (E), (J), and (F), by Definition 5.2.22 we have ((p, γ, σ, ∆, acc, (l, 0)) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, (l̂, 0)) ‖ Ĉ).

By Definition 5.2.23 we have loc ∼= ˆloc, and by Definition 5.2.25 we have (p, [loc]) ∼= (p, [l̂oc]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, sizeof(ty)) ‖ C) ⇓ε(p,[ty]) ((p, γ, σ, ∆, acc, n) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, sizeof(ty)) ‖ C) ⇓ε(p,[ty]) ((p, γ, σ, ∆, acc, n) ‖ C) by SMC2 rule Size of Type,

we have (B) (ty) 0 γ and (C) n = τ(ty).

Given (D) ((p, γ̂, σ̂,�,�, sizeof(t̂y)) ‖ Ĉ) and ψ such that (E) ((p, γ, σ, ∆, acc, sizeof(ty)) ‖C)∼=ψ ((p, γ̂, σ̂,�,�,

sizeof(t̂y)) ‖ Ĉ), by Definition 5.2.22 we have (F) (γ, σ) ∼=ψ (γ̂, σ̂), (G) C ∼=ψ Ĉ, and (H) sizeof(ty) ∼=ψ sizeof(t̂y).

Given (H), by Definition 5.2.20 we have (I) ty ∼=ψ t̂y .

Given (B), (C), and (I), by Lemma 5.2.70 we have (J) n̂ = τ(t̂y) and (K) n = n̂.

Given (D) and (J), by Vanilla C rule Size of Type we have Σ. ((p, γ̂, σ̂,�,�, sizeof(t̂y)) ‖ Ĉ) ⇓′
(p,[t̂y])

((p, γ̂, σ̂,�,

�, n̂) ‖ Ĉ).

Given (F), (K), and (G), by Definition 5.2.22 we have ((p, γ, σ, ∆, acc, n) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, n̂) ‖ Ĉ).

By Definition 5.2.23 we have ty ∼= t̂y , and by Definition 5.2.25 we have (p, [ty ]) ∼= (p, [t̂y ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.
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Case Π. ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Given (A) Π. ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2) by SMC2

rule SMC Input Public Value, we have (B) (e) 0 γ, (C) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1),

(D) γ(x) = (l,public bty), (E) acc = 0, (F) InputValue(x, n) = n1, and (G) ((p, γ, σ1,∆1, acc, x = n1) ‖ C1)

⇓L2

D2
((p, γ, σ2,∆2, acc, skip) ‖ C2).

Given (H) ((p, γ̂, σ̂,�,�,mcinput(x̂, ê)) ‖ Ĉ) and ψ such that (I) ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ∼=ψ

((p, γ̂, σ̂,�,�,mcinput(x̂, ê)) ‖ Ĉ), by Definition 5.2.22 we have (J) (γ, σ) ∼=ψ (γ̂, σ̂), (K) smcinput(x, e) ∼=ψ

mcinput(x̂, ê), and (L) C ∼=ψ Ĉ. Given (K), by Definition 5.2.20 we have (M) e ∼=ψ ê and x ∼=ψ x̂ such that (N)

x = x̂.

Given (J), (L), and (M), by Lemma 5.2.50 we have (O) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂, �,�, ê) ‖ Ĉ).

Given (C) and (O), by the inductive hypothesis we have (P) ((p, γ̂, σ̂, �,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1)

and ψ1 such that (Q) ((p, γ, σ1,∆1, acc, n) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1). (R) D1
∼= D̂1. Given (Q), by

Definition 5.2.22 we have (S) (γ, σ1) ∼=ψ1
(γ̂, σ̂1) (T) n ∼=ψ1

n̂, and (U) C1
∼=ψ1

Ĉ1.

Given (T) and (B), by Lemmas 5.2.52 and 5.2.51 we have (V) n = n̂.

Given (D), (J), and (N), by Lemma 5.2.62 we have (W) γ̂(x̂) = (l̂, b̂ty) such that (X) l = l̂ and (Y) public bty ∼=ψ1 b̂ty .

Given (F), (N), and (V), by Lemma 5.2.71 we have (Z) InputValue(x̂, n̂) = n̂1 such that (A1) n1
∼=ψ1 n̂1.

Given (A1) and (N), by Definition 5.2.20 we have (B1) x = n1
∼=ψ1 x̂ = n̂1.

Given (S), (B1), and (U), by Lemma 5.2.50 we have (C1) ((p, γ, σ1,∆1, acc, x = n1) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�,

x̂ = n̂1) ‖ Ĉ1). Given (G) and (C1), by the inductive hypothesis we have (D1) ((p, γ̂, σ̂1,�,�, x̂ = n̂1) ‖ Ĉ1) ⇓′
D̂2

((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2) and ψ2 such that (E1) ((p, γ, σ2,∆2, acc, skip) ‖ C2) ∼=ψ2
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2).

Given (E1), by Definition 5.2.22 we have (F1) (γ, σ2) ∼=ψ2 (γ̂, σ̂2) (G1) C2
∼=ψ2 Ĉ2, and (H1) D2

∼= D̂2.

Given (H), (P), (W), (Z), and (D1), by Vanilla C rule Input Value we have Σ. ((p, γ̂, σ̂,�,�,mcinput(x̂, ê)) ‖ Ĉ)

⇓′
D̂1::D̂2::(p,[înp])

((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ2).
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Given (F1) and (G1), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, skip) ‖ C2) ∼=ψ2
((p, γ̂, σ̂2,�,�, skip)-

‖ Ĉ2).

By Definition 5.2.23 we have inp ∼= ˆinp. Given (R), (H1), D1 :: D2 :: (p, [inp]) and D̂1 :: D̂2 :: (p, [înp]), by

Lemma 5.2.58 we have D1 :: D2 :: (p, [inp]) ∼= D̂1 :: D̂2 :: (p, [înp]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ2 Σ.

Case Π. ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp]) ((p, γ, σ2, ∆2, acc,

skip) ‖ C2).

Case Π. ((p, γ, σ, ∆, acc, smcinput(x, e1, e2)) ‖ C) ⇓L1::L2::L3

D1 ::D2 ::D3 ::(p,[inp1 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C3)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp]) ((p, γ, σ2, ∆2, acc,

skip) ‖ C2). The difference is an additional use of the inductive hypothesis to evaluate e2, which contains the length of

the array to be read in, and Lemma 5.2.72 to reason about the use of InputArray in place of Lemma 5.2.71 to reason

about the use of InputValue.

Case Π. ((p, γ, σ, ∆, acc, smcinput(x, e1, e2)) ‖ C) ⇓L1::L2::L3

D1 ::D2 ::D3 ::(p,[inp3 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C3)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, smcinput(x, e1, e2)) ‖ C) ⇓L1::L2::L3

D1 ::D2 ::D3 ::(p,[inp1 ]) ((p, γ, σ3,

∆3, acc, skip) ‖ C3).

Case Π. ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out2 ]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out2 ]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1) by SMC2

rule SMC Output Private Value, we have (B) (e) 0 γ, (C) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n)

‖ C1), (D) γ(x) = (l, private bty), (E) σ1(l) = (ω, private bty , 1, PermL(Freeable,private bty ,private, 1)), (F)

DecodeVal(private bty , ω) = n1, and (G) OutputValue(x, n, n1).

Given (H) ((p, γ̂, σ̂,�,�,mcoutput(x̂, ê)) ‖ Ĉ) and ψ such that (I) ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ∼=ψ

((p, γ̂, σ̂,�,�,mcoutput(x̂, ê)) ‖ Ĉ), by Definition 5.2.22 we have (J) (γ, σ) ∼=ψ (γ̂, σ̂), (K) smcoutput(x, e) ∼=ψ
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mcoutput(x̂, ê), and (L) C ∼=ψ Ĉ. Given (K), by Definition 5.2.20 we have (M) e ∼=ψ ê and x ∼=ψ x̂ such that (N)

x = x̂.

Given (J), (M), and (L), by Lemma 5.2.50 we have (O) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ). Given

(C) and (O), by the inductive hypothesis we have (P) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and

ψ1 such that (Q) ((p, γ, σ1, ∆1, acc, n) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and (R) D1

∼= D̂1. Given (Q), by

Definition 5.2.22 we have (S) (γ, σ1) ∼=ψ1
(γ̂, σ̂1) (T) n ∼=ψ1

n̂, and (U) C1
∼=ψ1

Ĉ1.

Given (D), (S), and (N), by Lemma 5.2.62 we have (V) γ̂(x̂) = (l̂, b̂ty) such that (W) l = l̂ and (X) private bty ∼=ψ1
b̂ty .

Given (E), (S), and (W), by Lemma 5.2.63 we have (Y) σ̂1(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty ,public, 1)) such that

(Z) ω ∼=ψ1
ω̂.

Given (F), (X), and (Z), by Lemma 5.2.8 we have (A1) DecodeVal(b̂ty , ω̂) = n̂1 such that (B1) n1
∼=ψ1

n̂1.

Given (B), (C), and (T), by Lemmas 5.2.52 and 5.2.51 we have (C1) n = n̂.

Given (G), (N), (C1), and (B1), by Lemma 5.2.73 we have (D1) OutputValue(x̂, n̂, n̂1) such that we have congruent

output files.

Given (H), (P), (V), (Y), (A1), and (D1), by Vanilla C rule Output Value we have Σ. ((p, γ̂, σ̂,�,�,mcoutput(x̂, ê))

‖ Ĉ) ⇓′
D̂1::(p,[ôut])

((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ1).

Given (S) and (U), by Definition 5.2.22 we have ((p, γ, σ1, ∆1, acc, skip) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1,�,�, skip) ‖ Ĉ1).

By Definition 5.2.23 we have out2 ∼= ˆout . Given (R), D1 :: (p, [out2 ]) and D̂1 :: (p, [ôut ]), by Lemma 5.2.58 we have

D1 :: (p, [out2 ]) ∼= D̂1 :: (p, [ôut ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1 Σ.

Case Π. ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out2 ]) ((p, γ, σ1, ∆1, acc,

skip) ‖ C1).
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Case Π. ((p, γ, σ,∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::D2 ::(p,[out1 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out2 ]) ((p, γ, σ1, ∆1, acc,

skip) ‖ C1). The difference is an additional use of the inductive hypothesis to evaluate e2, which contains the length

of the array to be output, additional handling of the constant pointer to the array data and reading the entire array,

and Lemma 5.2.74 to reason about the use of OutputArray in place of Lemma 5.2.73 to reason about the use of

OutputValue. The handling of reading the array is similar to what is shown in Case Π. ((p, γ, σ, ∆, acc, x[e]) ‖ C)

⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1).

Case Π. ((p, γ, σ,∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::D2 ::(p,[out3 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C2)

This case is similar to Case Π. ((p, γ, σ,∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::D2 ::(p,[out1 ]) ((p, γ,

σ2, ∆2, acc, skip) ‖ C2).

Case Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[rp]) ((p, γ, σ, ∆, acc, (l1, µ1)) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[rp]) ((p, γ, σ, ∆, acc, (l1, µ1)) ‖ C) by SMC2 rule Pointer Read

Single Location, we have (B) γ(x) = (l, a bty∗), (C) σ(l) = (ω, a bty∗, 1, PermL(Freeable, a bty∗, a, 1)), and (D)

DecodePtr(a bty∗, 1, ω) = [1, [(l1, µ1)], [1], i].

Given (E) ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) and ψ such that (F) ((p, γ, σ, ∆, acc, x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ), by

Definition 5.2.22 we have (G) (γ, σ) ∼=ψ (γ̂, σ̂), (H) C ∼=ψ Ĉ, and (I) x ∼=ψ x̂. Given (I), by Definition 5.2.20 we

have (J) x = x̂.

Given (B), (G), and (J), by Lemma 5.2.62 we have (K) γ̂(x̂) = (l̂, b̂ty∗) such that (L) l = l̂ and (M) a bty∗ ∼=ψ b̂ty∗.

Given (C), (G), and (L), by Lemma 5.2.64 we have (N) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such
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that (O) ω ∼=ψ ω̂.

Given (D), (M), and (O), by Lemma 5.2.11 we have (P) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (Q)

[1, [(l1, µ1)], [1], i] ∼=ψ [1, [(l̂1, µ̂1)], [1], î]. Given (Q), by Definition 5.2.15 we have (R) (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given (E), (K), (N), and (P), by Vanilla C rule Pointer Read Location we have Σ. ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) ⇓′(p,[r̂p])

((p, γ̂, σ̂,�,�, (l̂1, µ̂1)) ‖ Ĉ).

Given (G), (R), and (H), by Definition 5.2.22 we have ((p, γ, σ, ∆, acc, (l1, µ1)) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, (l̂1, µ̂1))

‖ Ĉ).

By Definition 5.2.23 we have rp ∼= r̂p, and by Definition 5.2.25 we have (p, [rp]) ∼= (p, [r̂p]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[rp1 ]) ((p, γ, σ, ∆, acc, [α, l, j, i]) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[rp1 ]) ((p, γ, σ, ∆, acc, [α, l, j, i]) ‖ C) by SMC2 rule Pri-

vate Pointer Read Multiple Locations, we have (B) γ(x) = (l, private bty∗), (C) σ(l) = (ω, private bty∗, α,

PermL(Freeable,private bty∗,private, α)), (D) (bty = int) ∨ (bty = float), and (E) DecodePtr(private bty∗,

α, ω) = [α, l, j, i].

Given (F) ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) and ψ such that (G) ((p, γ, σ, ∆, acc, x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ), by

Definition 5.2.22 we have (H) (γ, σ) ∼=ψ (γ̂, σ̂), (I) C ∼=ψ Ĉ, and (J) x ∼=ψ x̂. Given (J), by Definition 5.2.20 we have

(K) x = x̂.

Given (B), (H), and (K), by Lemma 5.2.62 we have (L) γ̂(x̂) = (l̂, b̂ty∗) such that (M) l = l̂ and (N) private bty∗ ∼=ψ

b̂ty∗.

Given (C), (H), and (M), by Lemma 5.2.64 we have (O) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (P) ω ∼=ψ ω̂.

Given (D), (N), and (P), by Lemma 5.2.11 we have (Q) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (R)

[α, l, j, i] ∼=ψ [1, [(l̂1, µ̂1)], [1], î]. Given (R), by Lemma 5.2.75 we have (S) [α, l, j, i] ∼=ψ (l̂1, µ̂1).
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Given (F), (L), (O), and (Q), by Vanilla C rule Pointer Read Location we have Σ. ((p, γ̂, σ̂,�,�, x̂) ‖ Ĉ) ⇓′(p,[r̂p])

((p, γ̂, σ̂,�,�, (l̂1, µ̂1)) ‖ Ĉ).

Given (H), (S), and (I), by Lemma 5.2.75 we have ((p, γ, σ, ∆, acc, [α, l, j, i]) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, (l̂1, µ̂1))

‖ Ĉ).

By Definition 5.2.23 we have rp1 ∼= r̂p, and by Definition 5.2.25 we have (p, [rp1 ]) ∼= (p, [r̂p]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp]) ((p, γ, σ, ∆, acc, n) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp]) ((p, γ, σ, ∆, acc, n) ‖ C) by SMC2 rule Pointer Deref-

erence Single Location, we have (B) γ(x) = (l, a bty∗), (C) σ(l) = (ω, a bty∗, 1, PermL(Freeable, a bty∗, a, 1)),

(D) DecodePtr(a bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], and (E) DerefPtr(σ, a bty , (l1, µ1)) = (n, 1).

Given (F) ((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ) and ψ such that (G) ((p, γ, σ, ∆, acc, ∗x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ), by

Definition 5.2.22 we have (H) (γ, σ) ∼=ψ (γ̂, σ̂), (I) C ∼=ψ Ĉ, and (J) ∗x ∼=ψ ∗x̂. Given (J), by Definition 5.2.20 we

have (K) x = x̂.

Given (B), (H), and (K), by Lemma 5.2.62 we have (L) γ̂(x̂) = (l̂, b̂ty∗) such that (M) l = l̂ and (N) a bty∗ ∼=ψ b̂ty∗.

Given (C), (H), and (M), by Lemma 5.2.63 we have (O) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (P) ω ∼=ψ ω̂.

Given (D), (N), and (P), by Lemma 5.2.11 we have (Q) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] (R) [1, [(l1, µ1)],

[1], 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]. Given (R), by Definition 5.2.15 we have (S) (l1, µ1) ∼=ψ (l̂1, µ̂1).

Given (E), (H), (N), and (S), by Lemma 5.2.25 we have (T) DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (n̂, 1) such that (U) n ∼=ψ n̂.

Given (F), (L), (O), (Q), and (T), by Vanilla C rule Pointer Dereference we have Σ. ((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ) ⇓′
(p,[r̂dp])

((p, γ̂, σ̂,�,�, n̂) ‖ Ĉ).

739



Given (H), (U), and (I), by Definition 5.2.22 we have ((p, γ, σ, ∆, acc, n) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, n̂) ‖ Ĉ).

By Definition 5.2.23 we have rdp ∼= ˆrdp, and by Definition 5.2.25 we have (p, [rdp]) ∼= (p, [r̂dp]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp1 ]) ((p, γ, σ, ∆, acc, (l2, µ2)) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp1 ]) ((p, γ, σ, ∆, acc, (l2, µ2)) ‖ C) by SMC2 rule Pointer

Dereference Single Location Higher Level Indirection, we have (B) γ(x) = (l, a bty∗), (C) σ(l) = (ω1, a bty∗, 1,

PermL(Freeable, a bty∗, a, 1)), (D) DecodePtr(a bty∗, 1, ω) = [1, [(l1, µ1)], [1], i], (E) DerefPtrHLI(σ, a

bty∗, (l1, µ1)) = ([1, [(l2, µ2)], [1], i− 1], 1), and (F) i > 1.

Given (G) ((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ) and ψ such that (H) ((p, γ, σ, ∆, acc, ∗x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ), by

Definition 5.2.22 we have (I) (γ, σ) ∼=ψ (γ̂, σ̂), (J) C ∼=ψ Ĉ, and (K) ∗x ∼=ψ ∗x̂. Given (K), by Definition 5.2.20 we

have (L) x = x̂.

Given (B), (I), and (L), by Lemma 5.2.62 we have (M) γ̂(x̂) = (l̂, b̂ty∗) such that (N) l = l̂ and (O) a bty∗ ∼=ψ b̂ty∗.

Given (C), (I), and (N), by Lemma 5.2.63 we have (P) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such that

(Q) ω ∼=ψ ω̂.

Given (D), (O), and (Q), by Lemma 5.2.11 we have (R) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (S)

[1, [(l1, µ1)], [1], i] ∼=ψ [1, [(l̂1, µ̂1)], [1], î]. Given (S), by Definition 5.2.15 we have (T) (l1, µ1) ∼=ψ (l̂1, µ̂1) and (U)

i = î.

Given (F) and (U), we have (V) î > 1.

Given (E), (I), (O), and (T), by Lemma 5.2.26 we have (W) DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î−

1], 1) such that (X) [1, [(l2, µ2)], [1], i− 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1]. Given (X), by Definition 5.2.15 we have (Y)

(l2, µ2) ∼=ψ (l̂2, µ̂2).

Given (G), (M), (P), (R), (V), and (W), by Vanilla C rule Pointer Dereference Higher Level Indirection we have Σ.

((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ) ⇓′
(p,[r̂dp1 ])

((p, γ̂, σ̂,�,�, (l̂2, µ̂2)) ‖ Ĉ).
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Given (I), (Y), and (J), by Definition 5.2.22 we have ((p, γ, σ, ∆, acc, (l2, µ2)) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, (l̂2, µ̂2))-

‖ Ĉ).

By Definition 5.2.23 we have rdp1 ∼= ˆrdp1 , and by Definition 5.2.25 we have (p, [rdp1 ]) ∼= (p, [r̂dp1 ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp2 ]) ((p, γ, σ, ∆, acc, [α, l, j, i− 1]) ‖ C)

Given (A) Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp2 ]) ((p, γ, σ, ∆, acc, [α, l, j, i − 1]) ‖ C) by SMC2

rule Pointer Dereference Single Location Higher Level Indirection, we have (B) γ(x) = (l, private bty∗), (C)

σ(l) = (ω1, private bty∗, 1, PermL(Freeable,private bty∗,private, 1)), (D) DecodePtr(private bty∗, 1, ω) =

[1, [(l1, µ1)], [1], i], (E) DerefPtrHLI(σ, private bty∗, (l1, µ1)) = ([α, l, j, i− 1], 1), and (F) i > 1.

Given (G) ((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ) and ψ such that (H) ((p, γ, σ, ∆, acc, ∗x) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ), by

Definition 5.2.22 we have (I) (γ, σ) ∼=ψ (γ̂, σ̂), (J) C ∼=ψ Ĉ, and (K) ∗x ∼=ψ ∗x̂. Given (K), by Definition 5.2.20 we

have (L) x = x̂.

Given (B), (I), and (L), by Lemma 5.2.62 we have (M) γ̂(x̂) = (l̂, b̂ty∗) such that (N) l = l̂ and (O) private bty∗ ∼=ψ

b̂ty∗.

Given (C), (I), and (N), by Lemma 5.2.63 we have (P) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such that

(Q) ω ∼=ψ ω̂.

Given (D), (O), and (Q), by Lemma 5.2.11 we have (R) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (S)

[1, [(l1, µ1)], [1], i] ∼=ψ [1, [(l̂1, µ̂1)], [1], î]. Given (S), by Definition 5.2.15 we have (T) (l1, µ1) ∼=ψ (l̂1, µ̂1) and (U)

i = î.

Given (F) and (U), we have (V) î > 1.

Given (E), (I), (O), and (T), by Lemma 5.2.26 we have (W) DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1], î−

1], 1) such that (X) [α, l, j, i− 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1]. Given (X), by Lemma 5.2.75 we have (Y) [α, l, j, i−

1] ∼=ψ (l̂2, µ̂2).
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Given (G), (M), (P), (R), (V), and (W), by Vanilla C rule Pointer Dereference Higher Level Indirection we have Σ .

((p, γ̂, σ̂,�,�, ∗x̂) ‖ Ĉ) ⇓′
(p,[r̂dp1 ])

((p, γ̂, σ̂,�,�, (l̂2, µ̂2)) ‖ Ĉ).

Given (I), (Y), and (J), by Definition 5.2.22 we have ((p, γ, σ, ∆, acc, [α, l, j, i− 1]) ‖ C) ∼=ψ ((p, γ̂, σ̂,�, �, (l̂2,

µ̂2)) ‖ Ĉ).

By Definition 5.2.23 we have rdp2 ∼= ˆrdp1 , and by Definition 5.2.25 we have (p, [rdp2 ]) ∼= (p, [r̂dp1 ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1) by SMC2 rule Private

Pointer Write, we have (B) (e) 0 γ, (C) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (le, µe)) ‖ C1),

(D) γ(x) = (l, private bty∗), (E) σ1(l) = (ω, private bty∗, α,PermL(Freeable,private bty∗,private, α)), (F)

DecodePtr(private bty∗, α, ω) = [α, l, j, i], and (G) UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], private bty∗)

= (σ2, 1).

Given (H) ((p, γ̂, σ̂,�,�, x̂ = ê) ‖ Ĉ) and ψ such that (I) ((p, γ, σ, ∆, acc, x = e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, x̂ = ê)

‖ Ĉ), by Definition 5.2.22 we have (J) (γ, σ) ∼=ψ (γ̂, σ̂), (K) C ∼=ψ Ĉ, and (L) x = e ∼=ψ x̂ = ê. Given (M), by

Definition 5.2.20 we have (M) e ∼=ψ ê and (N) x = x̂.

Given (J), (M), and (K), by Lemma 5.2.50 we have (O) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ). Given

(C) and (O), by the inductive hypothesis we have (P) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, (l̂e, µ̂e)) ‖ Ĉ1) and

ψ1 such that (Q) ((p, γ, σ1, ∆1, acc, (le, µe)) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, (l̂e, µ̂e)) ‖ Ĉ1) and (R) D1

∼= D̂1. Given

(Q), by Definition 5.2.22 we have (S) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (T) (le, µe) ∼=ψ1

(l̂e, µ̂e), and (U) C1
∼=ψ1

Ĉ1.

Given (D), (S), and (N), by Lemma 5.2.62 we have (V) γ̂(x̂) = (l̂, b̂ty∗) such that (W) l = l̂ and (X) private bty∗ ∼=ψ1

b̂ty∗.

Given (E), (S), and (W), by Lemma 5.2.63 we have (Y) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (Z) ω ∼=ψ1 ω̂.
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Given (F), (X), and (Z), by Lemma 5.2.11 we have (A1) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (B1)

[α, l, j, i] ∼=ψ1
[1, [(l̂1, µ̂1)], [1], î]. Given (B1), by Definition 5.2.15 we have (C1) i = î. Given (T) and (C1), by

Definition 5.2.15 we have (D1) [1, [(le, µe)], [1], i] ∼=ψ1 1, [(l̂e, µ̂e)], [1], î].

Given (G), (S), (W), (D1), and (X), by Lemma 5.2.17 we have (E1) UpdatePtr(σ̂1, (l̂, 0), [1, [(l̂e, µ̂e)], [1], î], b̂ty∗) =

(σ̂2, 1) such that (F1) (γ, σ2) ∼=ψ1
(γ̂, σ̂2).

Given (H), (P), (V), (Y), (A1), and (E1), by Vanilla C rule Pointer Write Location we have Σ. ((p, γ̂, σ̂,�,�, x̂ = ê)

‖ Ĉ) ⇓′
D̂1::(p,[ŵp])

((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1).

Given (F1) and (U), by Definition 5.2.22 we have ((p, γ, σ2, ∆1, acc, skip) ‖ C1) ∼=ψ1
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1).

By Definition 5.2.23 we have wp1 ∼= ŵp. Given (R), D1 :: (p, [wp1 ]) and D̂1 :: (p, [ŵp]), by Lemma 5.2.58 we have

D1 :: (p, [wp1 ]) ∼= D̂1 :: (p, [ŵp]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1).

Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp2 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1).

Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1) by SMC2

rule Private Pointer Dereference Write Single Location Private Value, we have (B) (e) ` γ, (C) ((p, γ, σ, ∆, acc, e)-

‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1), (D) γ(x) = (l, private bty∗), (E) σ1(l) = (ω, private bty∗, 1,

PermL(Freeable,private bty∗,private, 1)), (F) (bty = int) ∨ (bty = float), (G) DecodePtr(private bty∗, 1, ω) =

[1, [(l1, µ1)], [1], 1], (H) DynamicUpdate(∆1, σ1, [(l1, µ1)], acc, private bty) = (∆2, l1), and (I) UpdateOffset(σ1,
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(l1, µ1), n,private bty) = (σ2, 1).

Given (J) ((p, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ Ĉ) and ψ such that (K) ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,

∗x̂ = ê) ‖ Ĉ) by Definition 5.2.22 we have (L) (γ, σ) ∼=ψ (γ̂, σ̂), (M) C ∼=ψ Ĉ, and (N) ∗x = e ∼=ψ ∗x̂ = ê. Given

(N), by Definition 5.2.20 we have (O) e ∼=ψ ê and (P) x = x̂.

Given (L), (O), and (M), by Lemma 5.2.50 we have (Q) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ).

Given (C) and (Q), by the inductive hypothesis we have (R) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1)

and ψ1 such that (S) ((p, γ, σ1, ∆1, acc, n) ‖ C1) ∼=ψ1
((p, γ̂, σ̂1,�,�, n̂) ‖ Ĉ1) and (T) D1

∼= D̂1. Given (S), by

Definition 5.2.22 we have (U) (γ, σ1) ∼=ψ1 (γ̂, σ̂1), (V) n ∼=ψ1 n̂ and (W) C1
∼=ψ1 Ĉ1.

Given (D), (U), and (P), by Lemma 5.2.62 we have (X) γ̂(x̂) = (l̂, b̂ty∗) such that (Y) l = l̂ and (Z) private bty∗ ∼=ψ1

b̂ty∗.

Given (E), (U), and (Y), by Lemma 5.2.63 we have (A1) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (B1) ω ∼=ψ1
ω̂.

Given (G), (Z), and (B1), by Lemma 5.2.11 we have (C1) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (D1)

[1, [(l1, µ1)], [1], 1] ∼=ψ1
[1, [(l̂1, µ̂1)], [1], 1]. Given (D1), by Definition 5.2.15 we have (E1) (l1, µ1) ∼=ψ1

(l̂1, µ̂1).

Given (Z), by Definition 5.2.8 we have (F1) private bty ∼=ψ1
b̂ty .

Given (I), (U), (E1), (V), and (F1), by Lemma 5.2.27 we have (G1) UpdateOffset(σ̂1, (l̂1, µ̂1), n̂, b̂ty) = (σ̂2, 1) such

that (H1) (γ, σ2) ∼=ψ1
(γ̂, σ̂2).

Given (J), (R), (X), (A1), (C1), and (G1), by Vanilla C rule Pointer Dereference Write Value we have Σ. ((p, γ̂, σ̂,�,�,

∗x̂ = ê) ‖ Ĉ) ⇓′
D̂1::(p,[ŵdp])

((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1).

Given (H1) and (W), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, skip) ‖ C1)∼=ψ1 ((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1).

By Definition 5.2.23 we have wdp3 ∼= ˆwdp. Given (T), D1 :: (p, [wdp3 ]) and D̂1 :: (p, [ŵdp]), by Lemma 5.2.58 we

have D1 :: (p, [wdp3 ]) ∼= D̂1 :: (p, [ŵdp]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1 Σ.
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Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,µ1)])
D1 ::(p,[wdp]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C1)

Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp4 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1).

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C1). Given n = n̂, we use Definition 5.2.19 to prove that encrypt(n) ∼= n̂.

Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

Given (A) Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1) by SMC2

rule Private Pointer Dereference Write Multiple Locations to Single Location Higher Level Indirection, we have

(B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, [α, le, je, i − 1]) ‖ C1), (C) γ(x) = (l, private bty∗),

(D) σ1(l) = (ω, private bty∗, 1,PermL(Freeable,private bty∗,private, 1)), (E) DecodePtr(private bty∗, 1, ω)

= [1, [(l1, µ1)], [1], i], (F) i > 1, (G) DynamicUpdate(∆1, σ1, [(l1, µ1)], acc,private bty∗) = (∆2, l1), and (H)

UpdatePtr(σ1, (l1, µ1), [α, le, je, i− 1],private bty∗) = (σ2, 1).

Given (I) ((p, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ Ĉ) and ψ such that (J) ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�,

∗x̂ = ê) ‖ Ĉ) by Definition 5.2.22 we have (K) (γ, σ) ∼=ψ (γ̂, σ̂), (L) C ∼=ψ Ĉ, and (M) ∗x = e ∼=ψ ∗x̂ = ê. Given

(M), by Definition 5.2.20 we have (N) e ∼=ψ ê and (O) x = x̂.

Given (K), (N), and (L), by Lemma 5.2.50 we have (P) ((p, γ, σ, ∆, acc, e) ‖ C) ∼=ψ ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) Given

(B) and (P), by the inductive hypothesis we have (Q) ((p, γ̂, σ̂,�,�, ê) ‖ Ĉ) ⇓′
D̂1

((p, γ̂, σ̂1,�,�, (l̂e, µ̂e)) ‖ Ĉ1) and

ψ1 such that (R) ((p, γ, σ1, ∆1, acc, [α, le, je, i− 1]) ‖ C1) ∼=ψ1 ((p, γ̂, σ̂1,�,�, (l̂e, µ̂e)) ‖ Ĉ1) and (S) D1
∼= D̂1.

Given (R), by Definition 5.2.22 we have (T) (γ, σ1) ∼=ψ1
(γ̂, σ̂1), (U) [α, le, je, i− 1] ∼=ψ1

(l̂e, µ̂e) and (V) C1
∼=ψ1

Ĉ1.

Given (U), by Definition 5.2.15 we have (W) [α, le, je, i− 1] ∼=ψ1
[1, [(l̂e, µ̂e)], [1], î− 1]

Given (C), (T), and (O), by Lemma 5.2.62 we have (X) γ̂(x̂) = (l̂, b̂ty∗) such that (Y) l = l̂ and (Z) private bty∗ ∼=ψ1

745



b̂ty∗.

Given (D), (T), and (Y), by Lemma 5.2.63 we have (A1) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (B1) ω ∼=ψ1
ω̂.

Given (E), (Z), and (B1), by Lemma 5.2.11 we have (C1) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (D1)

[1, [(l1, µ1)], [1], i] ∼=ψ1
[1, [(l̂1, µ̂1)], [1], î]. Given (D1), by Definition 5.2.15 we have (E1) (l1, µ1) ∼=ψ1

(l̂1, µ̂1) and

(F1) i = î.

Given (F) and (F1), by (G1) î > 1.

Given (H), (T), (E1), (W), and (Z), by Lemma 5.2.17 we have (H1) UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î −

1], b̂ty∗) = (σ̂2, 1) such that (I1) (γ, σ2) ∼=ψ1
(γ̂, σ̂2).

Given (I), (Q), (X), (A1), (C1), (G1), and (H1), by Vanilla C rule Pointer Dereference Write Higher Level Indirection

we have Σ. ((p, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ Ĉ) ⇓′
D̂1::(p,[ŵdp1 ])

((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1).

Given (I1) and (V), by Definition 5.2.22 we have ((p, γ, σ2, ∆2, acc, skip) ‖ C1) ∼=ψ1
((p, γ̂, σ̂2,�,�, skip) ‖ Ĉ1).

By Definition 5.2.23 we have wdp2 ∼= ˆwdp1 . Given (S), D1 :: (p, [wdp2 ]) and D̂1 :: (p, [ŵdp1 ]), by Lemma 5.2.58

we have D1 :: (p, [wdp2 ]) ∼= D̂1 :: (p, [ŵdp1 ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp5 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C1).

Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,µ1)])
D1 ::(p,[wdp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C1).
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Case Π. ((1, γ1, σ1,∆1, acc, x[e]) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e])) ⇓L1::L2

D1 ::(ALL,[mpra]) ((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖

... ‖ (q, γq, σq
1 ,∆

q
1, acc, nq))

Given (A) Π. ((1, γ1, σ1,∆1, acc, x[e]) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e])) ⇓L1::L2

D1 ::(ALL,[mpra]) ((1, γ1, σ1
1 ,∆

1
1, acc, n1)

‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, nq)) by SMC2 rule Multiparty Array Read Private Index, we have (B) {(e) ` γp}qp=1,

(C) {(np) ` γp}qp=1, (D) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, i1) ‖ ... ‖

(q, γq, σq
1 ,∆

q
1, acc, iq)), (E) {γp(x) = (lp, const a bty∗)}qp=1, (F) {σp

1 (lp) = (ωp, a const bty∗, 1,

PermL(Freeable, a const bty∗, a, 1))}qp=1, (G) {DecodePtr(a const bty∗, 1, ωp) = [1, [(lp1 , 0)], [1], 1]}qp=1, (H)

{σp
1 (lp1) = (ωp

1 , a bty , α, PermL(Freeable, a bty , a, α))}qp=1, (I) {∀i ∈ {0...α − 1}DecodeArr(a bty , i, ωp
1 ) =

np
i }

q
p=1, (J) MPCar ((i1, [n1

0, ..., n
1
α−1]), ..., (iq, [nq

0, ..., n
q
α−1])) = (n1, ..., nq), and L2 = (1, [(l1, 0), (l11, 0), ..., (l11,

α− 1)]) ‖ ... ‖ (q, [(lq, 0), (lq1 , 0), ..., (lq1 , α− 1)]).

Given (A), ((1, γ̂1, σ̂1, �,�, x̂[ê]) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, x̂[ê])) and ψ such that {(p, γp, σp,∆p, acc, x[e]) ∼=ψ

(p, γ̂p, σ̂p, �,�, x̂[ê])}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and (K) x[e] ∼=ψ x̂[ê]. By

Definition 5.2.20 we have x ∼=ψ x̂ such that (L) x = x̂ and (M) e ∼=ψ ê.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc, x[e]) ∼ (p, γp, σp,∆p, acc, x[e])}qp=1. By

Lemma 5.2.86, we have {(p, γp, σp,∆p, acc, x[e]) ∼=ψ (p, γ̂, σ̂, �,�, x̂[ê])}qp=1. and therefore (N) ((1, γ̂, σ̂, �,�,

x̂[ê]) ‖ ... ‖ (q, γ̂, σ̂, �,�, x̂[ê])). By Definition 5.2.22 we have (O) {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1.

Given (D), (M), (O), and ψ, by Lemma 5.2.76 we have (P) ((1, γ̂, σ̂, �,�, ê) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê)) such that

(Q) {(p, γp, σp,∆p, acc, e) ∼=ψ (p, γ̂, σ̂, �,�, ê)}qp=1. Given (P) and (Q), by the inductive hypothesis, we have (R)

((1, γ̂, σ̂, �,�, ê) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê)) ⇓′
D̂1

((1, γ̂, σ̂1, �,�, î) ‖ ... ‖ (q, γ̂, σ̂1, �,�, î)) and ψ1 such that

(S) {(p, γp, σp
1 ,∆

p
1 , acc, ip) ∼=ψ1

(p, γ̂, σ̂1, �,�, î)}qp=1 and (T) D1
∼= D̂1. Given (S), by Definition 5.2.22 we have

(U) {(γp, σp
1 ) ∼=ψ1 (γ̂, σ̂1)}qp=1 and (V) {ip ∼=ψ1 î}

q
p=1.

Given (E), (U), and (L), by Lemma 5.2.77 we have (W) γ̂(x̂) = (l̂, const b̂ty∗) such that (X) {lp = l̂}qp=1 and (Y) a

const bty∗ ∼=ψ const b̂ty∗. By Definition 5.2.8 we have bty = b̂ty and therefore (Z) abty ∼=ψ b̂ty .

Given (F), (U), and (X), by Lemma 5.2.78 we have (A1) σ̂1(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,

public, 1)) such that (B1) {ωp ∼=ψ 1ω̂}qp=1.
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Given (G), (Y), and (B1), by Lemma 5.2.12 we have (C1) DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] such that

(D1) {lp1 = l̂1}qp=1.

Given (H), (U), and (D1), by Lemma 5.2.78 we have (E1) σ̂1(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂))

such that (F1) {ωp
1
∼=ψ 1ω̂1}qp=1 and (G1) α = α̂.

Given (V), and (G1), by Axiom 5.2.1 we have (H1) 0 ≤ î ≤ α̂− 1.

Given (I), (Z), (V), and (F1), by Lemma 5.2.9 we have (I1) DecodeArr(b̂ty , î, ω̂1) = n̂î such that (J1) {np
i
∼=ψ1

n̂î}
q
p=1.

Given (J), (J1), (H1), (G1), and (V), by Axiom 5.2.8 we have (K1) {np ∼=ψ1
n̂î}

q
p=1.

Given (N), (R), (W), (A1), (C1), (E1), (H1), and (I1), by Vanilla C rule Multiparty Array Read we have Σ. ((1, γ̂, σ̂,

�, �, x̂[ê]) ‖ ... ‖ (q, γ̂, σ̂,�,�, x̂[ê])) ⇓′
D̂1::(ALL,[m̂pra])

((1, γ̂, σ̂1,�,�, n̂î) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂î)).

Given (U) and (K1), by Definition 5.2.22 we have ((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)) ∼=ψ1

((1, γ̂, σ̂1,�,�, n̂î) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂î)).

By Definition 5.2.23 we have mpra ∼= m̂pra .

Given (T), D1 :: (ALL, [mpra]) and D̂1 :: (ALL, [m̂pra]), by Lemma 5.2.58 we have

D1 :: (ALL, [mpra]) ∼= D̂1 :: (ALL, [m̂pra]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

Case Π. ((1, γ1, σ1,∆1, acc, x[e1] = e2) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e1] = e2)) ⇓L1::L2::L3

D1 ::D2 ::(ALL,[mpwa]) ((1, γ1,

σ1
3+α−1, ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
3+α−1, ∆q

2, acc, skip))

Given (A) Π. ((1, γ1, σ1,∆1, acc, x[e1] = e2) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e1] = e2)) ⇓L1::L2::L3

D1 ::D2 ::(ALL,[mpwa])

((1, γ1, σ1
3+α−1,∆

1
2, acc, skip) ‖ ... ‖ (q, γq, σq

3+α−1,∆
q
2, acc, skip)) by SMC2 rule Multiparty Array Write Private

Index, we have (B) {(e1) ` γp}qp=1, (C) ((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1,

acc, i1) ‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, iq)), (D) ((1, γ1, σ1

1 ,∆
1
1, acc, e2) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1acc, e2)) ⇓L2

D2
((1, γ1, σ1

2 ,

∆1
2, acc, n1) ‖ ... ‖ (q, γq, σq

2 ,∆
q
2, acc, nq)), (E) {γp(x) = (lp,private const bty∗)}qp=1, (F) {σp

2 (lp) = (ωp,
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private const bty∗, 1, PermL(Freeable,private const bty∗,private, 1))}qp=1, (G) {DecodePtr(private const bty∗,

1, ωp) = [1, [(lp1 , 0)], [1], 1]}qp=1, (H) {σp
2 (lp1) = (ωp

1 ,private bty , α, PermL(Freeable, private bty , private,

α))}qp=1, (I) {∀j ∈ {0...α − 1} DecodeArr(private bty , j, ωp
1 ) = np

j }
q
p=1, (J) MPCaw ((i1, n1, [n1

0, ..., n
1
α−1]), ...,

(iq, nq, [nq
0, ..., n

q
α−1])) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]), (K) {∀j ∈ {0...α − 1} UpdateArr(σp

2+j , (lp1 , j),

n′pj , private bty) = σp
3+j}

q
p=1, and L3 = (1, [(lp, 0), (lp1 , 0), ..., (lp1 , α − 1)]) ‖ ... ‖ (q, [(lp, 0), (lp1 , 0), ..., (lp1 ,

α− 1)]).

Given (A), ((1, γ̂1, σ̂1, �,�, x̂[ê1] = ê2) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, x̂[ê1] = ê2)) and ψ such that {(p, γp, σp,∆p, acc,

x[e1] = e2) ∼=ψ (p, γ̂p, σ̂p, �,�, x̂[ê1] = ê2)}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and

(L) x[e1] = e2
∼=ψ x̂[ê1] = ê2. By Definition 5.2.20 we have x ∼=ψ x̂ such that (M) x = x̂, (N) e1

∼=ψ ê1, and (O)

e2
∼=ψ ê2.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc, x[e1] = e2) ∼ (p, γp, σp,∆p, acc, x[e1] =

e2)}qp=1. By Lemma 5.2.86, we have {(p, γp, σp,∆p, acc, x[e1] = e2) ∼=ψ (p, γ̂, σ̂, �,�, x̂[ê1] = ê2)}qp=1. and

therefore (P) ((1, γ̂, σ̂, �,�, x̂[ê1] = ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, x̂[ê1] = ê2)). By Definition 5.2.22 we have (Q)

{(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1.

Given (C), (Q), (N), and ψ, by Lemma 5.2.76 we have (R) ((1, γ̂, σ̂, �,�, ê1) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê1)) such that

(S) {(p, γp, σp,∆p, acc, e1) ∼=ψ (p, γ̂, σ̂, �,�, ê1)}qp=1. Given (R) and (S), by the inductive hypothesis, we have (T)

((1, γ̂, σ̂,�,�, ê1) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê1)) ⇓′
D̂1

((1, γ̂, σ̂1,�,�, î) ‖ ... ‖ (q, γ̂, σ̂1,�,�, î)) and ψ1 such that (U)

{(p, γp, σp
1 ,∆

p
1 , acc, ip) ∼=ψ1

(p, γ̂, σ̂1, �,�, î)}qp=1 and (V) D1
∼= D̂1. Given (U), by Definition 5.2.22 we have

(W) {(γp, σp
1 ) ∼=ψ1 (γ̂, σ̂1)}qp=1 and (X) {ip ∼=ψ1 î}

q
p=1.

Given Axiom 5.2.1, we have (l, µ) /∈ e2. Given (O), by Lemma 5.2.55 we have (Y) e2
∼=ψ1

ê2.

Given (D), (W), (Y), and ψ1, by Lemma 5.2.76 we have (Z) ((1, γ̂, σ̂, �,�, ê2) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê2)) such that

(A1) {(p, γp, σp,∆p, acc, e2) ∼=ψ1 (p, γ̂, σ̂, �,�, ê2)}qp=1. Given (Z) and (A1), by the inductive hypothesis, we have

(B1) ((1, γ̂, σ̂1,�,�, ê2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, ê2)) ⇓′
D̂2

((1, γ̂, σ̂2,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂2,�,�, n̂)) and ψ2 such

that (C1) {(p, γp, σp
2 ,∆

p
2 , acc, np)∼=ψ2 (p, γ̂, σ̂2, �,�, n̂)}qp=1 and (D1)D2

∼= D̂2. Given (C1), by Definition 5.2.22

we have (E1) {(γp, σp
2 ) ∼=ψ2

(γ̂, σ̂2)}qp=1 and (F1) {np ∼=ψ2
n̂}qp=1.

Given (E), (E1), and (M), by Lemma 5.2.77 we have (G1) γ̂(x̂) = (l̂, const b̂ty∗) such that (H1) {lp = l̂}qp=1 and (I1)

private const bty∗ ∼=ψ2
const b̂ty∗. By Definition 5.2.8 we have (J1) private bty ∼=ψ2

b̂ty .
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Given (F), (E1), and (H1), by Lemma 5.2.78 we have (K1) σ̂2(l̂) = (ω̂, const b̂ty∗, 1,PermL(Freeable, const b̂ty∗,

public, 1)) such that (L1) {ωp ∼=ψ2 ω̂}
q
p=1.

Given (G), (I1), and (L1), by Lemma 5.2.12 we have (M1) DecodePtr(const b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], 1] such that

(N1) {lp1 = l̂1}qp=1.

Given (H), (E1), and (N1), by Lemma 5.2.78 we have (O1) σ̂2(l̂1) = (ω̂1, b̂ty , α̂,PermL(Freeable, b̂ty ,public, α̂))

such that (P1) {ωp
1
∼=ψ2

ω̂1}qp=1 and (Q1) α = α̂.

Given (C) and (H), by Axiom 5.2.1, we have (R1) {0 ≤ ip ≤ α− 1}qp=1.

Given (R1), (X), and (Q1), we have (S1) 0 ≤ î ≤ α̂− 1.

Given (J), (S1), (Q1), (X), and (F1), by Axiom 5.2.9 we have (T1) {n′p
î
∼=ψ2 n̂}

q
p=1 and (U1) {∀j 6= î ∈ {0...α−1}np

j =

n′pj }
q
p=1.

Given (K), (E1), (N1), (Q1), (P1), (I), (T1), (U1), and (J1), by Lemma 5.2.80 we have (V1) UpdateArr(σ̂2, (l̂1, î), n̂,

b̂ty) = σ̂3 such that (W1) {σp
3+α−1

∼=ψ2
σ̂3}qp=1

Given (P), (T), (B1), (G1), (K1), (M1), (O1), (S1), and (V1), by Vanilla C rule Multiparty Array Write we have Σ.

((1, γ̂, σ̂,�,�, x̂[ê1] = ê2) ‖ ... ‖ (q, γ̂, σ̂,�,�, x̂[ê1] = ê2)) ⇓′
D̂1::D̂2::(ALL,[m̂pwa])

((1, γ̂, σ̂3,�,�, skip) ‖ ... ‖

(q, γ̂, σ̂3,�,�, skip)).

Given (W1), by Definition 5.2.22 we have ((1, γ1, σ1
3+α−1, ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
3+α−1, ∆q

2, acc, skip))

∼=ψ2
((1, γ̂, σ̂3,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂3,�,�, skip)).

By Definition 5.2.23 we have mpwa ∼= m̂pwa .

Given (V), (D1), D1 :: D2 :: (ALL, [mpwa]) and D̂1 :: D̂2 :: (ALL, [m̂pwa]), by Lemma 5.2.58 we have

D1 :: D2 :: (ALL, [mpwa]) ∼= D̂1 :: D̂2 :: (ALL, [m̂pwa]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ2
Σ.

Case Π. ((1, γ1, σ1,∆1, acc,++ x) ‖ ... ‖ (q, γq, σq,∆q, acc,++ x)) ⇓(1,[(l1,0)]) ‖ ... ‖ (q,[(lq,0)])
(ALL,[mppin]) ((1, γ1, σ1

1 , ∆1,
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acc, n1
2) ‖ ... ‖ (q, γq, σq

1 ,∆
q, acc, nq

2))

Given (A) Π. ((1, γ1, σ1,∆1, acc,++ x) ‖ ... ‖ (q, γq, σq,∆q, acc,++ x)) ⇓(1,[(l1,0)]) ‖ ... ‖ (q,[(lq,0)])
(ALL,[mppin]) ((1, γ1, σ1

1 ,

∆1, acc, n1
2) ‖ ... ‖ (q, γq, σq

1 ,∆
q, acc, nq

2)) by SMC2 rule Multiparty Pre-Increment Private Float Variable, we

have (B) {γp(x) = (lp,private float)}qp=1, (C) {σp(lp) = (ωp,private float, 1, PermL(Freeable,private float,

private, 1))}qp=1, (D) {(x) ` γp}qp=1, (E) {DecodeVal(private float, ωp) = np
1}

q
p=1, (F) MPCu(++, n1

1, ..., n
q
1) =

(n1
2, ..., n

q
2), and (G) {UpdateVal(σp, lp, np

2 ,private float) = σp
1}

q
p=1.

Given (A), ((1, γ̂1, σ̂1, �,�, ++ x̂) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, ++ x̂)) and ψ such that {(p, γp, σp,∆p, acc,

++ x) ∼=ψ (p, γ̂p, σ̂p, �,�, ++ x̂)}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and (H)

++ x ∼=ψ++ x̂. By Definition 5.2.20 we have x ∼=ψ x̂ such that (I) x = x̂.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc,++ x) ∼ (p, γp, σp,∆p, acc,++ x)}qp=1. By

Lemma 5.2.86, we have {(p, γp, σp,∆p, acc,++ x) ∼=ψ (p, γ̂, σ̂, �,�, ++ x̂)}qp=1. and therefore (J) ((1, γ̂, σ̂, �,

�, ++ x̂) ‖ ... ‖ (q, γ̂, σ̂, �,�, ++ x̂)). By Definition 5.2.22 we have (K) {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1.

Given (B), (K), and (I), by Lemma 5.2.77 we have (L) γ̂(x̂) = (l̂, b̂ty) such that (M) {lp ∼=ψ l̂}qp=1 and (N)

private float ∼=ψ b̂ty .

Given (C), (K), and (M), by Lemma 5.2.78 we have (O) σ̂(l̂) = (ω̂, b̂ty , 1,PermL(Freeable, b̂ty ,public, 1)) such that

(P) {ωp ∼=ψ ω̂}qp=1.

Given (E), (N), and (P), by Lemma 5.2.8 we have (Q) DecodeVal(b̂ty , ω̂) = n̂1 such that (R) {np
1
∼=ψ n̂1}qp=1.

Given (F) and (R), by Axiom 5.2.10 we have (S) n̂2 = n̂1 + 1 such that (T) {np
2
∼= n̂2}qp=1.

Given (G), (K), (M), (T), and (N), by Lemma 5.2.14 we have (U) UpdateVal(σ̂, l̂, n̂2, b̂ty) = σ̂1 such that (V)

{(γp, σp
1 ) ∼=ψ (γ̂, σ̂1)}qp=1.

Given (J), (L), (O), (Q), (S), and (U), by Vanilla C rule Multiparty Pre-Increment Variable we have Σ. ((1, γ̂, σ̂, �, �,

++ x̂) ‖ ... ‖ (q, γ̂, σ̂, �,�,++ x̂)) ⇓′
(ALL,[m̂ppin])

((1, γ̂, σ̂1,�,�, n̂2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂2)).

Given (V) and (T), by Definition 5.2.22 we have ((1, γ1, σ1
1 ,∆

1, acc, n1
2) ‖ ... ‖ (q, γq, σq

1 ,∆
q, acc, nq

2)) ∼=ψ
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((1, γ̂, σ̂1,�,�, n̂2) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂2)).

By Definition 5.2.23 we have mppin ∼= m̂ppin . by Definition 5.2.25 we have (ALL, [mppin]) ∼= (ALL, [m̂ppin]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l1,0)::l
1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp]) ((1, γ1, σ1,∆1, acc,

n1) ‖ ... ‖ (q, γq, σq,∆q, acc, nq))

Given (A) Π. ((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l1,0)::l
1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp]) ((1, γ1, σ1,∆1,

acc, n1) ‖ ... ‖ (q, γq, σq,∆q, acc, nq)) by SMC2 rule Multiparty Private Pointer Dereference Single Level Indi-

rection, we have (B) {(x) ` γp}qp=1, (C) {γp(x) = (lp,private bty∗)}qp=1, (D) {σp(lp) = (ωp, private bty∗, α,

PermL(Freeable,private bty∗,private, α))}qp=1, (E) α > 1, (F) {DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
,

1]}qp=1, (G) {Retrieve_vals(α, l
p
,private bty , σp) = ([np

0 , ...n
p
α−1], 1)}qp=1, and (H) MPCdv ([[n1

0, ..., n
1
α−1], ...,

[nq
0, ..., n

q
α−1]], [j

1
, ..., j

q
]) = (n1, ..., nq).

Given (A), ((1, γ̂1, σ̂1, �,�, ∗x̂) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, ∗x̂)) and ψ such that {(p, γp, σp,∆p, acc, ∗x) ∼=ψ

(p, γ̂p, σ̂p, �,�, ∗x̂)}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and (I) ∗x ∼=ψ ∗x̂. By

Definition 5.2.20 we have x ∼=ψ x̂ such that (J) x = x̂.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc, ∗x) ∼ (p, γp, σp,∆p, acc, ∗x)}qp=1. By Lemma

5.2.86, we have {(p, γp, σp,∆p, acc, ∗x)∼=ψ (p, γ̂, σ̂, �,�, ∗x̂)}qp=1. and therefore (K) ((1, γ̂, σ̂, �,�, ∗x̂) ‖ ... ‖

(q, γ̂, σ̂, �,�, ∗x̂)). By Definition 5.2.22 we have (L) {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1.

Given (C), (L), and (J), by Lemma 5.2.77 we have (M) γ̂(x̂) = (l̂, b̂ty∗) such that (N) {lp = l̂}qp=1 and (O)

private bty∗ ∼=ψ b̂ty∗.

Given (D), (L), and (N), by Lemma 5.2.78 we have (P) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (Q) {ωp ∼=ψ ω̂}qp=1.

Given (F), (O), and (Q), by Lemma 5.2.11 we have (R) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (S) {[α,

l
p
, j

p
, 1] ∼=ψ [1, [(l̂1, µ̂1)], [1], 1]}qp=1.

Given (O), by Definition 5.2.8 we have (T) private bty ∼=ψ b̂ty .
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Given (G), (H), (S), (T), and (L), by Lemma 5.2.81 we have (U) DerefPtr(σ̂, b̂ty , (l̂1, µ̂1)) = (n̂, 1) such that (V)

{np ∼= n̂}qp=1.

Given (K), (M), (P), (R), and (U), by Vanilla C rule Multiparty Pointer Dereference we have Σ. ((1, γ̂, σ̂, �, �,

∗x̂) ‖ ... ‖ (q, γ̂, σ̂,�,�, ∗x̂)) ⇓′
(ALL,[m̂prdp])

((1, γ̂, σ̂,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂,�,�, n̂)).

Given (L) and (V), by Definition 5.2.22 we have ((1, γ1, σ1,∆1, acc, n1) ‖ ... ‖ (q, γq, σq,∆q, acc, nq))∼=ψ ((1, γ̂, σ̂,

�, �, n̂) ‖ ... ‖ (q, γ̂, σ̂,�,�, n̂)).

By Definition 5.2.23 we have mprdp ∼= m̂prdp. by Definition 5.2.25 we have (ALL, [mprdp]) ∼= (ALL, [m̂prdp]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l1,0)::l
1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp1 ]) ((1, γ1, σ1,∆1, acc,

[αα, l
1

α, j
1
α, i− 1]) ‖ ... ‖ (q, γq, σq,∆q, acc, [αα, l

q

α, j
q
α, i− 1]))

Given (A) Π. ((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l1,0)::l
1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp1 ]) ((1, γ1, σ1, ∆1,

acc, [αα, l
1

α, j
1
α, i − 1]) ‖ ... ‖ (q, γq, σq,∆q, acc, [αα, l

q

α, j
q
α, i − 1])) by SMC2 rule Multiparty Private Pointer

Dereference Higher Level Indirection, we have (B) {(x) ` γp}qp=1, (C) {γp(x) = (lp,private bty∗)}qp=1, (D)

{σp(lp) = (ωp, private bty∗, α, PermL(Freeable,private bty∗,private, α))}qp=1, (E) α > 1,

(F) {DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, i]}qp=1, (G) i > 1, (H) {Retrieve_vals(α, l

p
, private bty∗, σp)

= ([[α0, l
p

0 , j
p
0 , i−1], ..., [αα−1, l

p

α−1, j
p
α−1, i−1]], 1)}qp=1, and (I) MPCdp([[[α0, l

1

0, j
1
0], ..., [αα−1, l

1

α−1, j
1
α−1]], ...,

[[α0, l
q

0, j
q
0], ..., [αα−1, l

q

α−1, j
q
α−1]]], [j

1
, ..., j

q
]) = ([[αα, l

1

α, j
1
α], ..., [αα, l

q

α, j
q
α]]).

Given (A), ((1, γ̂1, σ̂1, �,�, ∗x̂) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, ∗x̂)) and ψ such that {(p, γp, σp,∆p, acc, ∗x) ∼=ψ

(p, γ̂p, σ̂p, �,�, ∗x̂)}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and (J) ∗x ∼=ψ ∗x̂. By

Definition 5.2.20 we have x ∼=ψ x̂ such that (K) x = x̂.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc, ∗x) ∼ (p, γp, σp,∆p, acc, ∗x)}qp=1. By Lemma

5.2.86, we have {(p, γp, σp,∆p, acc, ∗x) ∼=ψ (p, γ̂, σ̂, �,�, ∗x̂)}qp=1, and therefore (L) ((1, γ̂, σ̂, �,�, ∗x̂) ‖ ... ‖

(q, γ̂, σ̂, �,�, ∗x̂)). By Definition 5.2.22 we have (M) {(γp, σp) ∼=ψ (γ̂, σ̂)}qp=1.

Given (C), (M), and (K), by Lemma 5.2.77 we have (N) γ̂(x̂) = (l̂, b̂ty∗) such that (O) {lp = l̂}qp=1 and (P)
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private bty∗ ∼=ψ b̂ty∗.

Given (D), (M), and (O), by Lemma 5.2.78 we have (Q) σ̂(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (R) {ωp ∼=ψ ω̂}qp=1.

Given (F), (P), and (R), by Lemma 5.2.11 we have (S) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (T)

{[α, lp, jp
, i] ∼=ψ [1, [(l̂1, µ̂1)], [1], î]}qp=1. Given (T), by Definition 5.2.15 we have (U) i = î.

Given (G) and (U), we have (V) î > 1.

Given (H), (I), (T), (P), and (M), by Lemma 5.2.82 we have (W) DerefPtrHLI(σ̂, b̂ty∗, (l̂1, µ̂1)) = ([1, [(l̂2, µ̂2)], [1],

î− 1], 1) such that (X) {[αα, l
q

α, j
q
α, î− 1] ∼=ψ [1, [(l̂2, µ̂2)], [1], î− 1]}qp=1.

Given (X), by Lemma 5.2.75 we have (Y) {[αα, l
q

α, j
q
α, î− 1] ∼=ψ (l̂2, µ̂2).

Given (L), (N), (Q), (S), (V), and (W), by Vanilla C rule Multiparty Pointer Dereference Higher Level Indirec-

tion we have Σ. ((1, γ̂, σ̂,�,�, ∗x̂) ‖ ... ‖ (q, γ̂, σ̂,�,�, ∗x̂)) ⇓′
(ALL,[m̂prdp1 ])

((1, γ̂, σ̂,�,�, (l̂2, µ̂2)) ‖ ... ‖

(q, γ̂, σ̂,�,�, (l̂2, µ̂2))).

Given (M) and (Y), by Definition 5.2.22 we have ((1, γ1, σ1,∆1, acc, [αα, l
1

α, j
1
α, i− 1]) ‖ ... ‖ (q, γq, σq,∆q, acc,

[αα, l
q

α, j
q
α, i− 1])) ∼=ψ ((1, γ̂, σ̂,�,�, (l̂2, µ̂2)) ‖ ... ‖ (q, γ̂, σ̂,�,�, (l̂2, µ̂2))).

By Definition 5.2.23 we have mprdp1 ∼= m̂prdp1 . by Definition 5.2.25 we have (ALL, [mprdp1 ])∼= (ALL, [m̂prdp1 ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ Σ.

Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq, ∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp3 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 , ∆q

2, acc, skip))

Given (A) Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq, ∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp3 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 , ∆q

2, acc, skip)) by SMC2

rule Multiparty Private Pointer Dereference Write Private Value, we have (B) {(e) ` γp}qp=1, (C) ((1, γ1, σ1, ∆1,

acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)), (D) {γp(x) =

(lp,private bty∗)}qp=1, (E) {σp
1 (lp) = (ωp, private bty∗, α, PermL(Freeable,private bty∗,private, α))}qp=1, (F)
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α > 1, (G) {DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, 1]}qp=1, (H) {DynamicUpdate(∆p

1 , σ
p
1 , l

p
, acc, private

bty) = (∆p
2 , l

p

1)}qp=1, (I) {Retrieve_vals(α, l
p
,private bty , σp

1 ) = ([np
0 , ...n

p
α−1], 1)}qp=1, (J) MPCwdv ([[n1

0, ...,

n1
α−1], ..., [nq

0, ..., n
q
α−1]], [n1, ..., nq], [j

1
, ..., j

q
]) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]), and

(K) {UpdateDerefVals(α, l
p
, [n′p0 , ..., n

′p
α−1],private bty , σp

1 ) = σp
2}

q
p=1.

Given (A), ((1, γ̂1, σ̂1, �,�, ∗x̂ = ê) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, ∗x̂ = ê)) and ψ such that {(p, γp, σp,∆p, acc,

∗x = e) ∼=ψ (p, γ̂p, σ̂p, �,�, ∗x̂ = ê)}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and (L)

∗x = e ∼=ψ ∗x̂ = ê. By Definition 5.2.20 we have x ∼=ψ x̂ such that (M) x = x̂ and (N) e ∼=ψ ê.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc, ∗x = e) ∼ (p, γp, σp,∆p, acc, ∗x = e)}qp=1.

By Lemma 5.2.86, we have {(p, γp, σp,∆p, acc, ∗x = e) ∼=ψ (p, γ̂, σ̂, �,�, ∗x̂ = ê)}qp=1. and therefore (O)

((1, γ̂, σ̂, �,�, ∗x̂ = ê) ‖ ... ‖ (q, γ̂, σ̂, �,�, ∗x̂ = ê)). By Definition 5.2.22 we have (P) {(γp, σp) ∼=ψ

(γ̂, σ̂)}qp=1.

Given (C), (P), (N), and ψ, by Lemma 5.2.76 we have (Q) ((1, γ̂, σ̂, �,�, ê) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê)) such that

(R) {(p, γp, σp,∆p, acc, e) ∼=ψ (p, γ̂, σ̂, �,�, ê)}qp=1. Given (Q) and (R), by the inductive hypothesis, we have (S)

((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′
D̂

((1, γ̂, σ̂1,�,�, n̂) ‖ ... ‖ (q, γ̂, σ̂1,�,�, n̂)) and ψ1 such that (T)

{(p, γp, σp
1 ,∆

p
1 , acc, np) ∼=ψ1

(p, γ̂, σ̂1, �,�, n̂)}qp=1 and (U) D1
∼= D̂1. Given (T), by Definition 5.2.22 we have

(V) {(γp, σp
1 ) ∼=ψ1

(γ̂, σ̂1)}qp=1 and (W) {np ∼=ψ1
n̂}qp=1.

Given (D), (V), and (M), by Lemma 5.2.77 we have (X) γ̂(x̂) = (l̂, b̂ty∗) such that (Y) {lp = l̂}qp=1 and (Z)

private bty∗ ∼=ψ1 b̂ty∗. By Definition 5.2.8 we have (A1) private bty ∼=ψ1 b̂ty .

Given (E), (V), and (Y), by Lemma 5.2.78 we have (B1) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (C1) {ωp ∼=ψ1
ω̂}qp=1.

Given (G), (Z), and (C1), by Lemma 5.2.11 we have (D1) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], 1] such that (E1)

{[α, lp, jp
, 1] ∼=ψ1

[1, [(l̂1, µ̂1)], [1], 1]}qp=1.

Given (I), (J), (K), (E1), (W), (A1), and (V), by Lemma 5.2.83 we have (F1) UpdateOffset(σ̂1, (l̂1, µ̂1), n̂, b̂ty) =

(σ̂2, 1) such that (G1) {(γp, σp
2 ) ∼=ψ1

(γ̂, σ̂2)}qp=1.

Given (O), (S), (X), (B1), (D1), and (F1), by Vanilla C rule Multiparty Pointer Dereference Write Value we have Σ.
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((1, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ∗x̂ = ê)) ⇓′
D̂::(ALL,[m̂pwdp])

((1, γ̂, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,

�, skip)).

Given (G1), by Definition 5.2.22 we have ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 , ∆q

2, acc, skip)) ∼=ψ1

((1, γ̂, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�, skip)).

By Definition 5.2.23 we have mpwdp3 ∼= m̂pwdp. Given (U), D1 :: (ALL, [mpwdp3 ]) and D̂1 :: (ALL, [m̂pwdp]),

by Lemma 5.2.58 we have D1 :: (ALL, [mpwdp3 ]) ∼= D̂1 :: (ALL, [m̂pwdp]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1 Σ.

Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

This case is similar to Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp3 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip)). Given {np =

n̂}qp=1, we use Definition 5.2.19 to prove that {encrypt(np) ∼= n̂}qp=1.

Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp2 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

Given (A) Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp2 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip)) by SMC2 rule

Multiparty Private Pointer Dereference Write Value Higher Level Indirection, we have (B) ((1, γ1, σ1, ∆1, acc, e)-

‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1
((1, γ1, σ1

1 , ∆1
1, acc, (l1e , µ

1
e)) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, (lqe , µ

q
e))),

(C) {γp(x) = (lp,private bty∗)}qp=1, (D) {σp
1 (lp) = (ωp, private bty∗, α, PermL(Freeable,private bty∗, private,

α))}qp=1, (E) α > 1, (F) {DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, i]}qp=1, (G) i > 1,

(H) {DynamicUpdate(∆p
1 , σ

p
1 , l

p
, acc, private bty∗) = (∆p

2 , l
p

1)}qp=1, (I) {Retrieve_vals(α, l
p
, private bty∗, sσp

1 )

= ([[α0, l
p

0 , j
p
0 , i − 1], ..., [αα−1, l

p

α−1, j
p
α−1, i − 1]], 1)}qp=1, (J) MPCwdp([[[1, [(l1e , µ

1
e)], [1], i − 1], [α0, l

1

0, j
1
0,

i− 1], ..., [αα−1, l
1

α−1, j
1
α−1, i− 1]], ..., [[1, [(lqe , µ

q
e)], [1], i− 1], [α0, l

q

0, j
q
0, i− 1], ..., [αα−1, l

q

α−1, j
q
α−1, i− 1]]],

[j
1
, ..., j

q
]) = [[[α′0, l

′1
0 , j

′1
0 , i − 1], ..., [α′α−1, l

′1
α−1, j

′1
α−1, i − 1]], ..., [[α′0, l

′q
0 , j

′q
0 , i − 1], ..., [α′α−1, l

′q
α−1, j

′q
α−1,

i−1]]], (K) {UpdateDerefVals(α, l
p
, [[α′0, l

′p
0 , j

′p
0 , i−1], ..., [α′α−1, l

′p
α−1, j

′p
α−1, i−1]],private bty∗, σp

1 ) = σp
2}

q
p=1.
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Given (A), ((1, γ̂1, σ̂1, �,�, ∗x̂ = ê) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, ∗x̂ = ê)) and ψ such that {(p, γp, σp,∆p, acc,

∗x = e) ∼=ψ (p, γ̂p, σ̂p, �,�, ∗x̂ = ê)}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and (L)

∗x = e ∼=ψ ∗x̂ = ê. By Definition 5.2.20 we have x ∼=ψ x̂ such that (M) x = x̂ and (N) e ∼=ψ ê.

Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc, ∗x = e) ∼ (p, γp, σp,∆p, acc, ∗x = e)}qp=1.

By Lemma 5.2.86, we have {(p, γp, σp,∆p, acc, ∗x = e) ∼=ψ (p, γ̂, σ̂, �,�, ∗x̂ = ê)}qp=1. and therefore (O)

((1, γ̂, σ̂, �,�, ∗x̂ = ê) ‖ ... ‖ (q, γ̂, σ̂, �,�, ∗x̂ = ê)). By Definition 5.2.22 we have (P) {(γp, σp) ∼=ψ

(γ̂, σ̂)}qp=1.

Given (B), (P), (N), and ψ, by Lemma 5.2.76 we have (Q) ((1, γ̂, σ̂, �,�, ê) ‖ ... ‖ (q, γ̂, σ̂, �,�, ê)) such that

(R) {(p, γp, σp,∆p, acc, e) ∼=ψ (p, γ̂, σ̂, �,�, ê)}qp=1. Given (Q) and (R), by the inductive hypothesis, we have

(S) ((1, γ̂, σ̂,�,�, ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ê)) ⇓′
D̂

((1, γ̂, σ̂1,�,�, (l̂e, µ̂e)) ‖ ... ‖ (q, γ̂, σ̂1,�,�, (l̂e, µ̂e))) and ψ1

such that (T) {(p, γp, σp
1 ,∆

p
1 , acc, (lpe , µ

p
e)) ∼=ψ1

(p, γ̂, σ̂1, �,�, (l̂e, µ̂e))}qp=1 and (U) D1
∼= D̂1. Given (T), by

Definition 5.2.22 we have (V) {(γp, σp
1 ) ∼=ψ1

(γ̂, σ̂1)}qp=1 and (W) {(lpe , µp
e) ∼=ψ1

(l̂e, µ̂e)}qp=1.

Given (C), (V), and (M), by Lemma 5.2.77 we have (X) γ̂(x̂) = (l̂, b̂ty∗) such that (Y) {lp = l̂}qp=1 and (Z)

private bty∗ ∼=ψ1 b̂ty∗.

Given (D), (V), and (Y), by Lemma 5.2.78 we have (A1) σ̂1(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (B1) {ωp ∼=ψ1 ω̂}
q
p=1.

Given (F), (Z), and (B1), by Lemma 5.2.11 we have (C1) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, µ̂1)], [1], î] such that (D1)

[α, l
p
, j

p
, i] ∼=ψ1

[1, [(l̂1, µ̂1)], [1], î]. Given (D1) by Definition 5.2.15 we have (E1) i = î.

Given (G) and (E1), we have (F1) î > 1.

Given (I), (J), (K), (D1), (W), (Z), and (V), by Lemma 5.2.84 we have (G1) UpdatePtr(σ̂1, (l̂1, µ̂1), [1, [(l̂e, µ̂e)], [1], î−

1], b̂ty∗) = (σ̂2, 1) such that (H1) {(γp, σp
2 ) ∼=ψ1

(γ̂, σ̂2)}qp=1.

Given (O), (S), (X), (A1), (C1), (F1), and (G1), by Vanilla C rule Multiparty Pointer Dereference Write Value

Higher Level Indirection we have Σ. ((1, γ̂, σ̂,�,�, ∗x̂ = ê) ‖ ... ‖ (q, γ̂, σ̂,�,�, ∗x̂ = ê)) ⇓′
D̂::(ALL,[ ̂mpwdp1 ])

((1, γ̂, σ̂2,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�, skip)).
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Given (H1), by Definition 5.2.22 we have ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip)) ∼=ψ1

((1, γ̂, σ̂2,�, �, skip) ‖ ... ‖ (q, γ̂, σ̂2,�,�, skip)).

By Definition 5.2.23 we have mpwdp2 ∼= m̂pwdp1 . Given (U), D1 :: (ALL, [mpwdp2 ]) and D̂1 :: (ALL, [m̂pwdp1 ]),

by Lemma 5.2.58 we have D1 :: (ALL, [mpwdp2 ]) ∼= D̂1 :: (ALL, [m̂pwdp1 ]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1 Σ.

Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e)) ⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp1 ])

((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

This case is similar to Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp2 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip)). The main

difference between the two is that mpwdp1 uses reasoning about evaluating an expression to multiple locations, similar

to that in Case Π. ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1).

Case Π. ((1, γ1, σ1,∆1, acc,pfree(x)) ‖ ... ‖ (q, γq, σq,∆q, acc,pfree(x)))

⇓(1,[(l1,0)]::l
1
::l

1
1) ‖ ... ‖ (q,[(lq,0)]::l

q
::l

q
1)

(ALL,[mpfre]) ((1, γ1, σ1
2 , ∆1, acc, skip) ‖ ... ‖ (q, γq, σq

2 ,∆
q, acc, skip))

Given (A) Π. ((1, γ1, σ1,∆1, acc,pfree(x)) ‖ ... ‖ (q, γq, σq,∆q, acc,pfree(x)))

⇓(1,[(l1,0)]::l
1
::l

1
1) ‖ ... ‖ (q,[(lq,0)]::l

q
::l

q
1)

(ALL,[mpfre]) ((1, γ1, σ1
2 , ∆1, acc, skip) ‖ ... ‖ (q, γq, σq

2 ,∆
q, acc, skip)) by SMC2 rule

Private Free Multiple Locations, we have (B) {γp(x) = (lp, private bty∗)}qp=1, (C) acc = 0, (D) (bty = int)∨(bty =

float), (E) {σp(lp) = (ωp,private bty∗, α, PermL(Freeable,private bty∗,private, α))}qp=1, (F) {α > 1}qp=1, (G)

{[α, lp, jp
, i] = DecodePtr(private bty∗, α, ωp)}qp=1, (H) if(i > 1){ty = private bty∗} else {ty = private bty},

(I) {CheckFreeable(γp, l
p
, j

p
, σp) = 1}qp=1, (J) {∀(lpm, 0) ∈ lp. σp(lpm) = (ωp

m, ty , αm,

PermL(Freeable, ty ,private, αm))}qp=1, (K) MPCfree([[ω1
0 , ..., ω

1
α−1], ..., [ωq

0 , ..., ω
q
α−1]], [j

1
, ...j

q
]) = ([[ω′10 , ...,

ω′1α−1], ..., [ω′q0 , ..., ω
′q
α−1]], [j

′1
, ..., j

′q
]), (L) {UpdateBytesFree(σp, l

p
, [ω′p0 , ..., ω

′p
α−1]) = σp

1}
q
p=1, and

(M) {σp
2 = UpdatePointerLocations(σp

1 , l
p
[1 : α− 1], j

p
[1 : α− 1], l

p
[0], j

p
[0])}qp=1.

Given (A), ((1, γ̂1, σ̂1, �,�, free(x̂)) ‖ ... ‖ (q, γ̂q, σ̂q, �,�, free(x̂))) and ψ such that {(p, γp, σp,∆p, acc,

pfree(x)) ∼=ψ (p, γ̂p, σ̂p, �,�, free(x̂))}qp=1, by Definition 5.2.22 we have {(γp, σp) ∼=ψ (γ̂p, σ̂p)}qp=1 and

(N) pfree(x) ∼=ψ free(x̂). By Definition 5.2.20 we have x ∼=ψ x̂ such that (O) x = x̂.
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Given Axiom 5.2.1, by Theorem 5.2.2 we have {(1, γ1, σ1,∆1, acc,pfree(x)) ∼ (p, γp, σp,∆p, acc,pfree(x))}qp=1.

By Lemma 5.2.86, we have {(p, γp, σp,∆p, acc,pfree(x)) ∼=ψ (p, γ̂, σ̂, �,�, free(x̂))}qp=1. and therefore (P)

((1, γ̂, σ̂, �,�, free(x̂)) ‖ ... ‖ (q, γ̂, σ̂, �,�, free(x̂))). By Definition 5.2.22 we have (Q) {(γp, σp) ∼=ψ

(γ̂, σ̂)}qp=1.

Given (B), (Q), and (O), by Lemma 5.2.77 we have (R) γ̂(x̂) = (l̂, b̂ty∗) such that (S) {lp = l̂}qp=1 and (T)

private bty∗ ∼=ψ b̂ty∗.

Given (E), (Q), and (S), by Lemma 5.2.78 we have (U) σ(l̂) = (ω̂, b̂ty∗, 1,PermL(Freeable, b̂ty∗,public, 1)) such

that (V) {ωp ∼=ψ ω̂}qp=1.

Given (G), (T), and (V), by Lemma 5.2.11 we have (W) DecodePtr(b̂ty∗, 1, ω̂) = [1, [(l̂1, 0)], [1], î] such that (X)

{[α, lp jp
, i] ∼=ψ [1, [(l̂1, 0)], [1], î]}qp=1.

Given (I), (Q), and (X), by Axiom 5.2.3 we have (Y) CheckFreeable(γ̂, [(l̂1, 0)], [1], σ̂) = 1.

Given (J), (K), (L), (M), (X), and (Q), by Lemma 5.2.85 we have (Z) Free(σ̂, l̂1) = σ̂1 and ψ1 such that (A1)

{(γp, σp
2 ) ∼=ψ1

(γ̂, σ̂1)}qp=1.

Given (P), (R), (U), (W), (Y), and (Z), by Vanilla C rule Multiparty Free we have Σ. ((1, γ̂, σ̂,�,�, free(x̂)) ‖ ... ‖

(q, γ̂, σ̂,�,�, free(x̂))) ⇓′
(ALL,[m̂pfre])

((1, γ̂, σ̂1,�,�, skip) ‖ ... ‖ (q, γ̂, σ̂1,�,�, skip)).

Given (A1), by Definition 5.2.22 we have ((1, γ1, σ1
2 ,∆

1, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q, acc, skip)) ∼=ψ1
((1, γ̂, σ̂1,

�, �, skip) ‖ ... ‖ (q, γ̂, σ̂1,�,�, skip)).

By Definition 5.2.23 we have mpfre ∼= m̂pfre . by Definition 5.2.25 we have (ALL, [mpfre]) ∼= (ALL, [m̂pfre]).

Therefore, by Definition 5.2.26 we have Π ∼=ψ1
Σ.

5.3 Noninterference

Multiparty SMC2 satisfies a strong form of noninterference guaranteeing that two execution traces are

indistinguishable up to differences in private values. This stronger version entails data-obliviousness. Instead

of using execution traces, we will work directly with evaluation trees in the Multiparty SMC2 semantics –
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equivalence of evaluation trees up to private values implies equivalence of execution traces based on the

Multiparty SMC2 semantics. This guarantee is provided at the semantics level, we do not consider here

compiler optimizations.

For noninterference, it is convenient to introduce a notion of equivalence requiring that the two memories

agree on publicly observable values. Because we assume that private data in memories are encrypted, and so

their encrypted value is publicly observable, it is sufficient to consider syntactic equality of memories. Notice

that if σ1 = σ2 we can still have σ1` 6= σ2`, i.e., two executions starting from the same configuration can

actually differ with respect to private data. We can now state our main noninterference result.

Theorem 5.3.1 (Multiparty Noninterference). For every environment {γp, γp
1 , γ

′p
1 }

q
p=1; memory {σp, σp

1 , σ′p1 }
q
p=1

∈ Mem; location map{∆p, ∆p
1 , ∆′p1 }

q
p=1; accumulator {accp, accp

1 , acc′p1 }
q
p=1 ∈ N; statement s, values {vp, v′p}qp=1;

step evaluation code lists D,D′ and their corresponding lists of locations accessed L,L′, party p ∈ {1...q};

if Π . ((1, γ1, σ1, ∆1, acc1, s) ‖ ... ‖ (q, γq, σq, ∆q, accq, s))

⇓LD ((1, γ1
1 , σ

1
1 , ∆1

1, acc1
1, v

1) ‖ ... ‖ (q, γq
1 , σ

q
1 , ∆q

1, accq
1, v

q))

and Σ . ((1, γ1, σ1, ∆1, acc1, s) ‖ ... ‖ (q, γq, σq, ∆q, accq, s))

⇓L′D′ ((1, γ′11 , σ
′1
1 , ∆′11 , acc′11 , v

′1) ‖ ... ‖ (q, γ′q1 , σ
′q
1 , ∆′q1 , acc′q1 , v

′q))

then {γp
1 = γ′p1 }

q
p=1, {σp

1 = σ′p1 }
q
p=1, {∆p

1 = ∆′p1 }
q
p=1, {accp

1 = acc′p1 }
q
p=1, {vp = v′p}qp=1, D = D′, L = L′,

Π 'L Σ.

Proof. Proof Sketch: By induction over all SMC2 semantic rules. Notice that low-equivalence of evaluation

trees already implies the equivalence of the resulting configurations. We repeated them to make the meaning

of the theorem clearer. This also proves data-obliviousness over memory accesses: in any two executions

of the same program with the same public data, which locations in memory are accessed will be based on

public data, and therefore identical between the two executions. As we proceed to prove Theorem 5.3.2, we

leverage our Axioms reasoning about noninterference of the multiparty protocols.

We make the assumption that both evaluation traces are over the same program (this is given by having

the same s in the starting states) and all public data will remain the same, including data read as input during

the evaluation of the program. A portion of the complexity of this proof is within ensuring that memory

accesses within our semantics remain data oblivious. Several rules follow fairly simply and leverage similar

ideas, which we will discuss first, and then we will provide further intuition behind the more complex cases.

The full proof is available in Section 5.3.4, with this theorem identical to Theorem 5.3.2.
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For all rules leveraging helper algorithms, we must reason about the helper algorithms, and that they

behave deterministically by definition and have data-oblivious memory accesses. Given this and that these

helper algorithms do no modify the private data, we maintain the properties of noninterference of this

theorem. First we reason that our helper algorithms to translate values into their byte representation will do

so deterministically, and therefore maintain indistinguishability between the value and byte representation.

We can then reason that our helper algorithms that take these byte values and store them into memory will

also do so deterministically, so that when we later access the data in memory we will obtain the same

indistinguishable values we had stored.

It is also important to take note here our functions to help us retrieve data from memory, particularly in

cases such as when reading out of bounds of an array. When proving these cases to maintain noninterference,

we leverage our definition of how memory blocks are assigned in a monotonically increasing fashion, and

how the algorithms for choosing which memory block to read into after the current one are deterministic.

This, as well as our original assumptions of having identical public input, allows us to reason that if we access

out of bounds (including accessing data at a non-aligned position, such as a chunk of bytes in the middle of a

memory block), we will be pulling from the same set of bytes each time, and therefore we will end up with

the same interpretation of the data as we continue to evaluate the remainder of the program. It is important to

note again here that by definition, our semantics will always interpret bytes of data as the type it is expected

to be, not the type it actually is (i.e., reading bytes of data that marked private in memory by overshooting a

public array will not decrypt the bytes of data, but instead give you back a garbage public value). To reiterate

this point, even when reading out of bounds, we will not reveal anything about private data, as the results of

these helper algorithms will be indistinguishable.

To reason about the multiparty protocols, we leverage Axioms, such as Axiom 5.3.7, to reason that the

protocols will maintain our definition of noninterference. With each of these Axioms, we ensure that over two

different evaluations, if the values of the first run (vp1 , v
p
2 ) are not distinguishable from those of the second

(v′p1 , v
′p
2 ), then the resulting values are also not distinguishable (vp3 = v′p3 ). These Axioms should be proven

by a library developer to ensure the completeness of the formal model.

For private pointers, it is important to note that the obtaining multiple locations is deterministic based

upon the program that is being evaluated. A pointer can initially gain multiple locations through the evaluation

of a private if else. Once there exists a pointer that has obtained multiple locations in such a way, it can

be assigned to another pointer to give that pointer multiple locations. The other case for a pointer to gain
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multiple location is through the use of pfree on a pointer with multiple locations (i.e., the case where a

pointer has locations l1, l2, l3 and we free l1) - when this occurs, if another pointer had referred to only l1, it

will now gain locations in order to mask whether we had to move the true location or not. When reasoning

about pointers with multiple locations, we maintain that given the tags for which location is the true location

are indistinguishable, then it is not possible to distinguish between them by their usage as defined in the

rules or helper algorithms using them. Additionally, to reason about pfree, we leverage that the definitions

of the helper algorithms are deterministic, and that (wlog), we will be freeing the same location. We will

then leverage our Axiom about the multiparty protocol MPCfree . After the evaluation of MPCfree , it will

deterministically update memory and all other pointers as we mentioned in the brief example above.

For both Private If Else rules, the most important element we must leverage is how values are resolved,

showing that given our resolution style, we are not able to distinguish between the ending values. In order to

do this, we also must reason about the entirety of the rule, including all of if else helper algorithms. First, we

note that the evaluation of the then branches follows by induction, as does the evaluation of the else branch

once we have reasoned through the restoration phase. For variable tracking, it is clear from the definitions of

Extract, InitializeVariables, and RestoreVariables that the behavior of these algorithms is deterministic

and given the same program, we will be extracting, initializing, and restoring the same set variables every time

we evaluate the program. For location tracking, Initialize is also immediately clear that it will be initializing

the same locations each time. We must then reason about DynamicUpdate, and how given a program, we

will deterministically find the pointer dereference writes and array writes at public indices at corresponding

positions in memory and add them to our tracking structure ∆. Then we can reason that the behavior of

Restore will deterministically perform the same updates, because ∆ will contain the same information in

every evaluation. Now, we are able to move on to reasoning about resolution, and show that given all of this

and the definitions of the resolution helper algorithms and rule, we are not able to distinguish between the

ending values.

One of the main complexities of this proof revolves around ensuring data-oblivious memory accesses (i.e.

that we always access locations deliberately based on public information), particularly when handling arrays

and pointers. Within the proof, we must consider all helper algorithms, and what locations are accessed

within the algorithms as well as within the rules. What locations are accessed within the algorithms follows

deterministically from the definition of the algorithms, and we return from the algorithms which locations

were accessed in order to properly reason about the entire evaluation trace of the program. Our semantics
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are designed in such a way that we give the multiparty protocols all of the information they need, with all

memory accesses being completed within the rule itself or our helper algorithms. This also helps show that

memory accesses are purely local, not distributed operations. Within the array rules, the main concern is

in reading from and writing at a private index. We currently handle this complexity within our rules by

accessing all locations within the array in rules Multiparty Array Read Private Index and Multiparty Array

Write Private Index. In Multiparty Array Read Private Index, we clearly read data from every index of the

array ({∀i ∈ {0...α − 1} DecodeArr(a bty , i, ωp
1 ) = npi }

q
p=1), then that data is passed to the multiparty

protocol. Similarly, in Multiparty Array Write Private Index, we read data from every index of the array,

pass it to the multiparty protocol, then proceed to update every index of the array with what was returned

from the protocol. Within the multiparty protocols used in these two rules, we will ensure the usage of the

data is data-oblivious within the main noninterference proof in the following subsection. All other array

rules use public indices, and in turn only access that publicly known location. Within the pointer rules, our

main concern is that we access all locations that are referred to by a private pointer when we have multiple

locations. For this, we will reason about the contents of the rules and the helper algorithms used by the

pointer rules, which can be shown to deterministically do so.

5.3.1 Supporting Metatheory

Definition 5.3.1 (φ). We define the function φ to return a single unused memory block identifier in a monotonically

increasing fashion.
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Definition 5.3.2 (Π 'L Σ). Two SMC2 evaluation trees Π and Σ are low-equivalent, in symbols Π 'L Σ, if and

only if Π and Σ have the same structure as trees, and for each node in

Π proving ((1, γ1, σ1, ∆1, acc1, s) ‖ ... ‖ (q, γq, σq, ∆q, accq, s))

⇓LD ((1, γ1
1 , σ

1
1 , ∆1

1, acc1
1, v

1) ‖ ... ‖ (q, γq
1 , σ

q
1 , ∆q

1, accq
1, v

q)), the corresponding node in

Σ proves ((1, γ1, σ1, ∆1, acc1, s) ‖ ... ‖ (q, γq, σq, ∆q, accq, s))

⇓L′D′ ((1, γ1
1 , σ

1
1 , ∆1

1, acc1
1, v

1) ‖ ... ‖ (q, γq
1 , σ

q
1 , ∆q

1, accq
1, v

q)) and both D = D′ and L = L′.

Definition 5.3.3 (γ = γ′). Two environments are equivalent, in symbols γ = γ′, if and only if (x → (l, ty)) ∈ γ

⇐⇒ (x→ (l, ty)) ∈ γ′.

Definition 5.3.4 (σ = σ′). Two memories are equivalent, in symbols σ = σ′, if and only if (l → (ω, ty , α,

PermL(perm, ty , a, α))) ∈ σ ⇐⇒ (l→ (ω, ty , α,PermL(perm, ty , a, α))) ∈ σ′.

Definition 5.3.5 (∆ = ∆′). Two location maps are equivalent, in symbols ∆ = ∆′, if and only if δ ∈ ∆ ⇐⇒ δ′ ∈

∆′ such that δ = δ′.

Definition 5.3.6 (δ = δ′). Two nested location maps are equivalent, in symbols δ = δ′, if and only if ((l, µ) →

(v1, v2, j, ty)) ∈ δ ⇐⇒ ((l, µ)→ (v1, v2, j, ty)) ∈ δ′.

Definition 5.3.7 (Input Equality). Given input files input1, input2, input1 = input2 if and only if

• for every public variable x, if {x = n} ∈ input1 then {x = n} ∈ input2,

• for every public array x, if {x = n0, ..., nm} ∈ input1 then {x = n0, ..., nm} ∈ input2,

• for every private variable x, if {x = n} ∈ input1 then {x = n′} ∈ input2 such that n = n′ by Axiom 5.3.1,

and

• for every private array x, if {x = n0, ..., nm} ∈ input1 then {x = n′0, ..., n
′
m} ∈ input2 such that for every

index i in 0...m, ni = n′i by Axiom 5.3.1.

Axiom 5.3.1 (encrypt). Given the use of an encryption scheme that ensures encrypted numbers are indistinguishable,

we assume that given any two numbers n1, n2, their respective encrypted values encrypt(n1), encrypt(n2) can be

viewed as equivalent.

Axiom 5.3.2 (InputValue). Given two input files input1, input2 and variable x corresponding to a program of

statement s, if and only if input1 = input2 by Definition 5.3.7 then InputValue(x, input1) = n and InputValue(x,

input2) = n′ such that n = n′.

Axiom 5.3.3 (InputArray). Given two input files input1, input2 and array x of length m corresponding to a

program of statement s, if and only if input1 = input2 by Definition 5.3.7 then InputArray(x, input1, m) =

[n0, ..., nm−1] and InputArray(x, input2, m) = [n′0, ..., n
′
m−1] such that for every index i in 0...m, ni = n′i.
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Axiom 5.3.4 (φ). Given a program of statement s, during any two executions Π,Σ over s such that Π 'L Σ by

Definition 5.3.2, if φ returns memory block identifier l at step d in Π, then by definition 5.3.1 φ will also return l at step

d in Σ.

Lemma 5.3.1 (OutputValue). Given variable x, x′, values n, n1, n
′, n′1 such that OutputValue(x, n, n1) and

OutputValue(x′, n′, n′1), if x = x′, n = n′, and n1 = n′1, then OutputValue will give identical output to the same

parties.

Proof. By definition of Algorithm OutputValue, the content of the output and the parties it is given to by OutputValue

is deterministic based on the given input.

Lemma 5.3.2 (OutputArray). Given variable x, x′, values n, n′, α, α′, [m0, ..., mα−1], [m′0, ..., m
′
α′−1]) such

that OutputArray(x, n, [m0, ..., mα−1]) and OutputArray(x′, n′, [m′0, ..., m
′
α′−1]), if x = x′, n = n′, α = α′,

and [m0, ..., mα−1] = [m′0, ..., m
′
α′−1]), then OutputArray will give identical output to the same parties.

Proof. By definition of Algorithm OutputArray, the content of the output and the parties it is given to by algorithm

OutputArray is deterministic based on the given input.

Lemma 5.3.3 (GetFunTypeList). Given parameter list p, p′, such that GetFunTypeList(p) = ty and

GetFunTypeList(p′) = ty
′, if p = p′ then ty = ty

′.

Proof. By definition of Algorithm GetFunTypeList, the type list returned by GetFunTypeList is deterministic based

on the given input.

Lemma 5.3.4 (GetFunParamAssign). Given parameter list p = p′ and expression list e = e′ such that

GetFunParamAssign(p, e) = s and GetFunParamAssign(p′, e′) = s′ if p = p′, and e = e′, then s = s′.

Proof. By definition of Algorithm GetFunParamAssign, the statement returned by GetFunParamAssign is deter-

ministic based on the given input.

Lemma 5.3.5 (CheckPublicEffects). Given statement s, s′, variable x, x′, environment γ, γ′, and memory σ, σ′

such that CheckPublicEffects(s, x, γ, σ) = n and CheckPublicEffects(s′, x′, γ′, σ′) = n′ if s = s′, x = x′,

γ = γ′, and σ = σ′, then n = n′.

Proof. By definition of Algorithm CheckPublicEffects, the value returned by CheckPublicEffects is deterministic

based on the given input.

Lemma 5.3.6 (τ ). Given type ty , ty ′ such that τ(ty) = n and τ(ty ′) = n′ if ty = ty ′ then n = n′.

Proof. By definition of Algorithm τ , the value returned by τ is deterministic based on the given input.
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Lemma 5.3.7 (Cast). Given type ty , ty ′, privacy label a, a′, and value n1, n
′
1 such that n2 = Cast(a, ty , n1) and

n′2 = Cast(a′, ty ′, n′1) if ty = ty ′, a = a′, and n1 = n′1, then n2 = n′2.

Proof. By definition of Algorithm Cast, the value returned by Cast is deterministic based on the given input.

Lemma 5.3.8 (Free). Given memory σ, σ′ and memory block identifier l, l′ such that Free(σ, l) = (σ1, (l, 0)) and

Free(σ′, l′) = (σ′1, (l
′, 0)) if σ = σ′ and l = l′, then σ1 = σ′1.

Proof. By definition of Algorithm Free, the memory returned by Free is deterministic based on the given input.

Lemma 5.3.9 (IncrementList). Given location list l1, l
′
1, type private bty∗,private bty ′∗, and memory σ, σ′

such that IncrementList(l1, τ(private bty∗), σ) = (l2, j) and IncrementList(l
′
1, τ(private bty ′∗), σ) = (l

′
2, j
′) if

l1 = l
′
1, bty = bty ′, and σ = σ′, then l2 = l

′
2 and j = j′.

Proof. By definition of Algorithm IncrementList, the location list and tag returned by IncrementList is deterministic

based on the given input.

Lemma 5.3.10 (GetLocation). Given locations (l1, µ1), (l′1, µ
′
1), type a bty∗, a bty ′∗, and memory σ, σ′ such that

((l2, µ2), j) = GetLocation((l1, µ1), τ(a bty ′∗), σ) and ((l′2, µ
′
2), j′) = GetLocation((l′1, µ

′
1), τ(a′ bty ′∗), σ′) if

l1 = l′1, µ1 = µ′1, a bty = a′ bty ′, and σ = σ′, then l2 = l′2, µ2 = µ′2, and j = j′.

Proof. By definition of Algorithm GetLocation, the location and tag returned by GetLocation is deterministic based

on the given input.

Lemma 5.3.11 (ReadOOB). Given index i, i′, number α, α′, location l1, l′1, type ty , ty ′ ∈ {a bty}, and memory

σ, σ′ such that ReadOOB(i, α, l1, ty , σ) = (n, j, (l2, µ)) and ReadOOB(i′, α′, l′1, ty
′, σ′) = (n′, j′, (l′2, µ

′)), if i = i′,

α = α′, l1 = l′1, ty = ty ′, and σ = σ′, then n = n′, j = j′, and (l2, µ) = (l′2, µ
′).

Proof. By definition of Algorithm ReadOOB, the value, tag, and location returned by ReadOOB is deterministic

based on the given input.

Lemma 5.3.12 (WriteOOB). Given index i, i′, number α, α′, n, n′, location l1, l′1, type ty , ty ′ ∈ {a bty}, and

memory σ1, σ
′
1, location map ∆1,∆

′
1, and accumulator acc, acc′ such that WriteOOB(n, i, α, l1, ty , σ1, ∆1,

acc) = (σ2, ∆2, j, (l2, µ)) and WriteOOB(n′, i′, α′, l′1, ty ′, σ′1, ∆′1, acc′) = (σ′2, ∆′2, j
′, (l′2, µ

′)), if i = i′,

n = n′, α = α′, l1 = l′1, ty = ty ′, σ1 = σ′1, ∆1 = ∆′1, and acc = acc′, then σ2 = σ′2, ∆2 = ∆′2, j = j′, and

(l2, µ) = (l′2, µ
′).

Proof. By definition of Algorithm WriteOOB, the memory, location map, tag, and location returned by WriteOOB

is deterministic based on the given input.
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Lemma 5.3.13 (GetIndirection). Given ∗, ∗′ such that GetIndirection(∗) = i and GetIndirection(∗′) = i′, if

| ∗ | = | ∗′ | then i = i′.

Proof. By definition of Algorithm GetIndirection, the level of indirection returned by GetIndirection is deterministic

based on the given input, as GetIndirection counts and returns the number of * to allow for any level of indirection for

pointers within our semantics.

Lemma 5.3.14 (DerefPtr). Given memory σ, σ′, type ty , ty ′, and location (l1, µ1), (l′1, µ
′
1) such that DerefPtr(σ,

ty , (l1, µ1)) = (n, j) and DerefPtr(σ′, ty ′, (l′1, µ
′
1)) = (n′, j′), if σ = σ′, ty = ty ′, and (l1, µ1) = (l′1, µ

′
1), then

n = n′ and j = j′.

Proof. By definition of Algorithm DerefPtr, the value and tag (which indicates whether the access is aligned) that are

returned by DerefPtr is deterministic based on the given input, and if all elements of the input are equivalent, then the

output will also be equivalent.

Lemma 5.3.15 (DerefPtrHLI). Given memory σ, σ′, type ty , ty ′, and location (l1, µ1), (l′1, µ
′
1) such that

DerefPtrHLI(σ, ty , (l1, µ1)) = ([α, l, j, i], j) and DerefPtrHLI(σ′, ty ′, (l′1, µ
′
1)) = ([α′, l

′
, j
′
, i′], j′), if σ = σ′,

ty = ty ′, and (l1, µ1) = (l′1, µ
′
1), then [α, l, j, i] = [α′, l

′
, j
′
, i′] and j = j′.

Proof. By definition of Algorithm DerefPtrHLI, the value and tag (which indicates whether the access is aligned) that

are returned by DerefPtrHLI is deterministic based on the given input, and if all elements of the input are equivalent,

then the output will also be equivalent.

Lemma 5.3.16 (Extract). Given statement s1, s2, s
′
1, s
′
2 such that Extract(s1, s2) = (xlist , j) and Extract(s′1, s

′
2)

= (x′list , j
′) if s1 = s′1 and s2 = s′2, then xlist = x′list and j = j′.

Proof. By definition of Algorithm Extract, the variable list and tag returned by Extract is deterministic based on the

given input.

Lemma 5.3.17 (InitializeVariables). Given variable list xlist , x
′
list , environment γ1, γ

′
1, memory σ1, σ

′
1, value

n, n′ and accumulator acc, acc′ such that InitializeVariables(xlist , γ1, σ1, n, acc) = (γ2, σ2, l) and

InitializeVariables(x′list , γ
′
1, σ
′
1, n
′, acc′) = (γ′2, σ

′
2, l
′
) if xlist = x′list , γ1 = γ′1, σ1 = σ′1, n = n′, and acc = acc′,

then γ2 = γ′2, σ2 = σ′2, and l = l
′
.

Proof. By definition of Algorithm InitializeVariables, the environment, memory, and location list returned by

InitializeVariables are deterministic based on the given input.

Lemma 5.3.18 (RestoreVariables). Given variable list xlist , x
′
list , environment γ, γ′, memory σ1, σ

′
1, and accu-

mulator acc, acc′ such that RestoreVariables(xlist , γ, σ1, acc) = (σ2, l) and RestoreVariables(x′list , γ
′, σ′1, acc′) =

(σ′2, l
′
) if xlist = x′list , γ = γ′, σ1 = σ′1, and acc = acc′, then σ2 = σ′2 and l = l

′
.
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Proof. By definition of Algorithm RestoreVariables, the memory and location list returned by

RestoreVariables are deterministic based on the given input.

Lemma 5.3.19 (ResolveVariables_Retrieve). Given variable list xlist , x
′
list , accumulator acc, acc′, environment

γ, γ′, and memory σ, σ′, such that

ResolveVariables_Retrieve(xlist , acc, γ, σ) = ([(vt1, ve1), ..., (vtm, vem)], n, l) and

ResolveVariables_Retrieve(x′list , acc′, γ′, σ′) = ([(v′t1, v
′
e1), ..., (v′tm, v

′
em)], n′, l

′
) if xlist = x′list and acc = acc′,

then [(vt1, ve1), ..., (vtm, vem)] = [(v′t1, v
′
e1), ..., (v′tm, v

′
em)] n = n′, and l = l

′
.

Proof. By definition of Algorithm ResolveVariables_Retrieve, the value list, number, and location list returned by

ResolveVariables_Retrieve are deterministic based on the given input.

Lemma 5.3.20 (ResolveVariables_Store). Given variable list xlist , x
′
list , accumulator acc, acc′, environment

γ, γ′, memory σ1, σ
′
1, and value list [v1, ..., vm], [v′1, ..., v

′
m], such that

ResolveVariables_Store(xlist , acc, γ, σ1, [v1, ..., vm]) = (σ2, l) and

ResolveVariables_Store(x′list , acc′, γ′, σ′1, [v
′
1, ..., v

′
m]) = (σ′2, l

′
) if xlist = x′list , acc = acc′, γ = γ′, σ1 = σ′1, and

[v1, ..., vm] = [v′1, ..., v
′
m] then σ2 = σ′2 and l = l

′
.

Proof. By definition of Algorithm ResolveVariables_Store, the memory and location list returned by

ResolveVariables_Store are deterministic based on the given input.

Lemma 5.3.21 (Initialize). Given location map ∆1,∆
′
1, variable list xlist , x

′
list , environment γ1, γ

′
1, memory

σ1, σ
′
1, value n, n′, and accumulator acc, acc′, such that Initialize(∆1, xlist , γ1, σ1, n, acc) = (γ2, σ2,∆2, l) and

Initialize(∆′1, x
′
list , γ

′
1, σ
′
1, n
′, acc) = (γ′2, σ

′
2,∆

′
2, l
′
) if ∆1 = ∆′1, xlist = x′list , γ1 = γ′1, σ1 = σ′1, n = n′ and

acc = acc′ then γ2 = γ′2, σ2 = σ′2, ∆2 = ∆′2 and l = l
′
.

Proof. By definition of Algorithm Initialize, the environment, memory, location map, and location list returned by

Initialize is deterministic based on the given input.

Lemma 5.3.22 (Restore). Given memory σ1, σ
′
1, location map ∆1,∆

′
1, and accumulator acc, acc′, such that

Restore(σ1, ∆1, acc) = (σ2,∆2, l) and Restore(σ′1,∆
′
1, acc′) = (σ′2,∆

′
2, l
′
) if σ1 = σ′1, ∆1 = ∆′1, and acc = acc′

then σ2 = σ′2, ∆2 = ∆′2, and l = l
′
.

Proof. By definition of Algorithm Restore, the memory, location map, and location list returned by Restore is

deterministic based on the given input.

Lemma 5.3.23 (Resolve_Retrieve). Given environment γ, γ′, memory σ, σ′, location map ∆,∆′, and accumulator

acc, acc′, such that Resolve_Retrieve(γ, σ,∆, acc) = ([(vt1, ve1), ..., (vtm, vem)], n, l) and
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Resolve_Retrieve(γ′, σ′,∆′, acc′) = ([(v′t1, v
′
e1), ..., (v′tm, v

′
em)], n′, l

′
) if γ = γ′, σ = σ′, ∆ = ∆′, and acc = acc′,

then [(vt1, ve1), ..., (vtm, vem)] = [(v′t1, v
′
e1), ..., (v′tm, v

′
em)], n = n′, and l = l

′
.

Proof. By definition of Algorithm Resolve_Retrieve, the value list, value, and location list returned by

Resolve_Retrieve is deterministic based on the given input.

Lemma 5.3.24 (Resolve_Store). Given memory σ1, σ
′
1, location map ∆1,∆

′
1, accumulator acc, acc′, and values

[v1, ..., vm], [v′1, ..., v
′
m], such that Resolve_Store(∆1, σ1, acc, [v1, ..., vm]) = (σ2,∆2, l) and

Resolve_Store(∆′1, σ
′
1, acc′, [v′1, ..., v

′
m]) = (σ′2,∆

′
2, l
′
) if σ1 = σ′1, ∆1 = ∆′1, acc = acc′, and [v1, ..., vm] =

[v′1, ..., v
′
m] then σ2 = σ′2, ∆2 = ∆′2, and l = l

′

Proof. By definition of Algorithm Resolve_Store, the memory, location map, and location list returned by

Resolve_Store is deterministic based on the given input.

Lemma 5.3.25 (DynamicUpdate). Given memory σ, σ′, location map ∆1,∆
′
1, location list l1, l

′
1, and type

ty , ty ′ ∈ {private a bty , private a bty∗}, such that DynamicUpdate(∆1, σ, l1, acc, ty) = (∆2, l2) and

DynamicUpdate(∆′1, σ
′, l
′
1, acc, ty ′) = (∆′2, l

′
2) if σ = σ′, ∆1 = ∆′1, l1 = l

′
1, acc = acc′, and ty = ty ′, then

∆2 = ∆′2, and l2 = l
′
2.

Proof. By definition of Algorithm DynamicUpdate, the location map and location list returned by DynamicUpdate

is deterministic based on the given input.

Lemma 5.3.26 (DecodePtr). Given type ty , ty ′, value α, α′, and bytes ω, ω′ such that DecodePtr(ty , α, ω)

= [α, l, j, i] and DecodePtr(ty ′, α′, ω′) = [α′, l
′
, j
′
, i′], if ty = ty ′, α = α′, and ω = ω′, then l = l

′
, j = j

′
, and

i = i′.

Proof. By definition of Algorithm DecodePtr, the pointer data structure returned by DecodePtr is deterministic

based on the given input.

Lemma 5.3.27 (DecodeArr). Given type a bty , a′ bty ′, index i, i′, and bytes ω, ω′ such that DecodeArr(a bty , i,

ω) = n and DecodeArr(a′ bty ′, i′, ω′) = n′ if a = a′, bty = bty ′, i = i′, and ω = ω′, then n = n′.

Proof. By definition of Algorithm DecodeArr, the value returned by DecodeArr is deterministic based on the given

input.

Lemma 5.3.28 (DecodeFun). Given bytes ω, ω′ such that DecodeFun(ω) = (s, n, p) and DecodeFun(ω′) =

(s′, n′, p′) if ω = ω′, then s = s′, n = n′, and p = p′.

Proof. By definition of Algorithm DecodeFun, the statement, tag, and parameter list returned by DecodeFun is

deterministic based on the given input.
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Lemma 5.3.29 (DecodeVal). Given type a bty , a′ bty ′ and bytes ω, ω′ such that DecodeVal(a bty , ω) = n and

DecodeVal(a′ bty ′, ω′) = n′ if a = a′, bty = bty ′, and ω = ω′, then n = n′.

Proof. By definition of Algorithm DecodeVal, the value returned by DecodeVal is deterministic based on the given

input.

Lemma 5.3.30 (EncodeVal). Given type ty , ty ′ ∈ {a bty} and value v, v′ ∈ {n,NULL} such that

ω = EncodeVal(ty , v) and ω′ = EncodeVal(ty ′, v′) if ty = ty ′ and v = v′ then ω = ω′.

Proof. By definition of Algorithm EncodeVal, the byte representation returned by EncodeVal is deterministic based

on the given input.

Lemma 5.3.31 (EncodeArr). Given type ty , ty ′ ∈ {a bty}, index i, i′, number α, α′, and value v, v′ ∈ {n,NULL}

such that ω = EncodeArr(ty , i, α, v) and ω′ = EncodeArr(ty ′, i′, α′, v′) if ty = ty ′, i = i′, α = α′, and v = v′,

then ω = ω′.

Proof. By definition of Algorithm EncodeArr, the byte representation returned by EncodeArr is deterministic based

on the given input.

Lemma 5.3.32 (EncodePtr). Given type ty , ty ′ ∈ {a bty∗, a const bty∗}, number of locations α, α′, loca-

tion list l, l
′
, tag list j, j

′
, and level of indirection i, i′ such that ω = EncodePtr(ty , [α, l, j, i]) and ω′ =

EncodePtr(ty ′, [α′, l
′
, j
′
, i′]) if ty = ty ′, α = α′, l = l

′
, j = j

′
, and i = i′, then ω = ω′.

Proof. By definition of Algorithm EncodePtr, the byte representation returned by EncodePtr is deterministic based

on the given input.

Lemma 5.3.33 (EncodeFun). Given statement s, s′, value n, n′, and parameter list p, p′ such that EncodeFun(s,

n, p) = ω and EncodeFun(s′, n′, p′) = ω′, if s = s′, n = n′, and p = p′, then ω = ω′.

Proof. By definition of Algorithm EncodeFun, the byte representation returned by EncodeFun is deterministic based

on the given input.

Lemma 5.3.34 (UpdateVal). Given memory σ1, σ
′
1, memory block identifier l, l′, value n, n′, and type a bty ,

a′ bty ′ such that UpdateVal(σ1, l, n, a bty) = σ2 and UpdateVal(σ′1, l
′, n′, a′ bty ′) = σ′2 if σ1 = σ′1, l = l′,

n = n′, a = a′, and bty = bty ′, then σ2 = σ′2.

Proof. By definition of Algorithm UpdateVal, the memory returned by UpdateVal is deterministic based on the

given input.
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Lemma 5.3.35 (UpdateArr). Given memory σ1, σ
′
1, memory block identifier l, l′, index i, i′, value n, n′, and type

a bty , a′ bty ′ such that UpdateArr(σ1, (l, i), n, a bty) = σ2 and UpdateArr(σ′1, (l′, i′), n′, a′ bty ′) = σ′2 if

σ1 = σ′1, l = l′, i = i′, n = n′, a = a′, and bty = bty ′, then σ2 = σ′2.

Proof. By definition of Algorithm UpdateArr, the memory returned by UpdateArr is deterministic based on the

given input.

Lemma 5.3.36 (UpdatePtr). Given memory σ1, σ
′
1, location (l, µ), (l′, µ′), pointer data structure [α, l, j, i],

[α′, l
′
, j
′
, i′], and type a bty∗, a′ bty ′∗ such that UpdatePtr(σ1, (l, µ), [α, l, j, i], a bty∗) = (σ2, j) and

UpdatePtr(σ′1, (l′, µ′), [α′, l
′
, j
′
, i′], a′ bty ′∗) = (σ′2, j

′) if σ1 = σ′1, l = l′, µ = µ′ α = α′, a = a′, bty = bty ′,

l = l
′
, j = j

′
, and i = i′, then σ2 = σ′2 and j = j′.

Proof. By definition of Algorithm UpdatePtr, the memory and tag returned by UpdatePtr is deterministic based on

the given input.

Lemma 5.3.37 (UpdateOffset). Given memory σ1, σ
′
1, location (l, µ), (l′, µ′), number n, n′ and type a bty , a′ bty ′

such that UpdateOffset(σ1, (l, µ), n, a bty) = (σ2, j) and UpdateOffset(σ′1, (l′, µ′), n′, a bty ′) = (σ′2, j
′) if

σ1 = σ′1, l = l′, µ = µ′ n = n′, a = a′, and bty = bty ′, then σ2 = σ′2 and j = j′.

Proof. By definition of Algorithm UpdateOffset, the memory and tag returned by UpdateOffset is deterministic

based on the given input.

Lemma 5.3.38 (D1 :: D2 = D′1 :: D′2). Given D1 :: D2, D′1 :: D′2, if D1 = D′1 and D′2 = D′2 then D1 :: D2 =

D′1 :: D′2.

Proof. By definition of Algorithm 140, the result of adding party-wise evaluation code lists is deterministic based on

the content and ordering of the party-wise evaluation code lists.

Lemma 5.3.39. Given number α, α′, location list {lp, l′p}qp=1, type ty , ty ′, and memory {σp, σ′p}qp=1 such that

{Retrieve_vals(α, l
p
, ty , σp) = ([vp

0 , ..., v
p
α−1], jp)}qp=1 and {Retrieve_vals(α′, l

′p
, ty ′, σ′p) = ([v′p0 , ..., v

′p
α′−1],

j′p)}qp=1, if α = α′, {lp = l
′p}qp=1, ty = ty ′, and {σp = σ′p}qp=1, then {∀i ∈ {0...α − 1}, vp

i = v′pi }
q
p=1 and

{jp = j′p}qp=1.

Proof. By definition of Algorithm Retrieve_vals, the values returned by Retrieve_vals are deterministic based on the

given input.

Lemma 5.3.40. Given environment {γp, γ′p}qp=1, location list {lp, l′p}qp=1, tag list {jp
, j
′p}qp=1, and memory

{σp, σ′p}qp=1 such that {CheckFreeable(γp, l
p
, j

p
, σp) = j}qp=1 and {CheckFreeable(γ′p, l

′p
, j
′p
, σ′p) = j′}qp=1 if

{γp = γ′p}qp=1, {lp = l
′p}qp=1, {jp

= j
′p}qp=1, and {σp = σ′p}qp=1 then j = j′.

771



Proof. By definition of Algorithm CheckFreeable, the tag returned by CheckFreeable is deterministic based on the

input.

Lemma 5.3.41. Given memory {σp
1 , σ
′p
1 }

q
p=1, number α, α′, location list {lp, l′p}qp=1, and byte representations

{[ωp
0 , ..., ω

p
α−1]}qp=1, {[ω′p0 , ..., ω

′p
α′−1]}qp=1 such that {UpdateBytesFree(σp

1 , l
p
, [ωp

0 , ..., ω
p
α−1]) = σp

2}
q
p=1 and

{UpdateBytesFree(σp
1 , l
′p
, [ω′p0 , ..., ω

′p
α′−1]) = σ′p2 }

q
p=1, if {σp

1 = σ′p1 }
q
p=1, {lp = l

′p}qp=1, α = α′, and {[ωp
0 , ...,

ωp
α−1] = [ω′p0 , ..., ω

′p
α′−1]}qp=1, then {σp

2 = σ′p2 }
q
p=1.

Proof. By definition of Algorithm UpdateBytesFree, the memory returned by UpdateBytesFree is deterministic

based on the input.

Lemma 5.3.42. Given memory {σp
1 , σ
′p
1 }

q
p=1, location list {lp, l′p}qp=1, and tag list {jp

, j
′p}qp=1 such that

{UpdatePointerLocations(σp
1 , l

p

1 [1 : α− 1], j
p
[1 : α− 1], l

p

1 [0], j
p
[0]) = (σp

2 , l
p

2)}qp=1 and

{UpdatePointerLocations(σ′p1 , l
′p
1 [1 : α′ − 1], j

′p
[1 : α′ − 1], l

′p
1 [0], j

′p
[0]) = (σ′p2 , l

′p
2 )}qp=1, if {σp

1 = σ′p1 }
q
p=1,

{lp1 = l
′p
1 }

q
p=1, and {jp

= j
′p}qp=1, then {σp

2 = σ′p2 }
q
p=1 and {lp2 = l

′p
2 }

q
p=1.

Proof. By definition of Algorithm UpdatePointerLocations, the memory and location list returned by

UpdatePointerLocations is deterministic based on the input.

Lemma 5.3.43. Given number α, α′, location list {lp, l′p}qp=1, type ty , ty ′, values {[vp
0 , ..., v

p
α−1], [v′p0 , ...,

v′pα′−1]}qp=1, and memory {σp
1 , σ
′p
1 }

q
p=1 such that {UpdateDerefVals(α, l

p
, [vp

0 , ..., v
p
α−1], ty , σp

1 ) = σp
2}

q
p=1 and

{UpdateDerefVals(α′, l
′p
, [v′p0 , ..., v

′p
α′−1], ty ′, σ′p1 ) = σ′p2 }

q
p=1, if α = α′, {lp = l

′p}qp=1, ty = ty ′, {[vp
0 , ...,

vp
α−1] = [v′p0 , ..., v

′p
α′−1]}qp=1, and {σp

1 = σ′p1 }
q
p=1, then {σp

2 = σ′p2 }
q
p=1.

Proof. By definition of Algorithm UpdateDerefVals, the memory returned by UpdateDerefVals is deterministic

based on the input.

5.3.2 Multiparty Computation Axioms

Axiom 5.3.5 (MPCar ). Given indices {ip, i′p}qp=1, arrays {[np
0 , ..., n

p
α−1], [n′p0 , ..., n

′p
α′−1]}qp=1,

if MPCar ((i1, [n1
0, ..., n

1
α−1]), ..., (iq, [nq

0, ..., n
q
α−1])) = (n1, ..., nq),

MPCar ((i′1, [n′10 , ..., n
′1
α′−1]), ..., (i′q, [n′q0 , ..., n

′q
α′−1])) = (n′1, ..., n′q),

{ip = i′p}qp=1, and {[np
0 , ..., n

p
α−1] = [n′p0 , ..., n

′p
α′−1]}qp=1

then {np = n′p}qp=1.

Axiom 5.3.6 (MPCaw ). Given indices {ip, i′p}qp=1, arrays {[np
0 , ..., n

p
α−1], [n′′p0 , ..., n′′pα′−1]}qp=1, and values

{np, n′p}qp=1,

if MPCaw ((i1, n1, [n1
0, ..., n

1
α−1]), ..., (iq, nq, [nq

0, ..., n
q
α−1])) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]),
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MPCaw ((i′1, n′1, [n′′10 , ..., n′′1α′−1]), ..., (i′q, n′q, [n′′q0 , ..., n′′qα′−1])) = ([n′′′10 , ..., n′′′1α′−1], ..., [n′′′q0 , ..., n′′′qα′−1]),

{ip = i′p}qp=1, {np = n′p}qp=1 and {[np
0 , ..., n

p
α−1] = [n′′p0 , ..., n′′pα′−1]}qp=1

then {[n′p0 , ..., n
′p
α−1] = [n′′′p0 , ..., n′′′pα′−1]}qp=1.

Axiom 5.3.7 (MPCb). Given values {vp
1 , v

p
2 , v

p
3 , v
′p
1 , v

′p
2 , v

′p
3 }

q
p=1 and binary operation bop ∈ {·,+,−,÷},

if MPCb(bop, v1
1 , v

1
2 , ..., v

q
1 , v

q
2) = (v1

3 , ..., v
q
3),

MPCb(bop, v′11 , v
′1
2 , ..., v

′q
1 , v

′q
2 ) = (v′13 , ..., v

′q
3 ), {vp

1 = v′p1 }
q
p=1, and {vp

2 = v′p2 }
q
p=1

then {vp
3 = v′p3 }

q
p=1.

Axiom 5.3.8 (MPCcmp). Given values {vp
1 , v

p
2 , v

p
3 , v
′p
1 , v

′p
2 , v

′p
3 }

q
p=1 and binary operation bop ∈ {==, ! =, <},

if MPCcmp(bop, v1
1 , v

1
2 , ..., v

q
1 , v

q
2) = (v1

3 , ..., v
q
3),

MPCcmp(bop, v′11 , v
′1
2 , ..., v

′q
1 , v

′q
2 ) = (v′13 , ..., v

′q
3 ), {vp

1 = v′p1 }
q
p=1, and {vp

2 = v′p2 }
q
p=1

then {vp
3 = v′p3 }

q
p=1.

Axiom 5.3.9 (MPCu ). Given values {np
1 , n
′p
1 }

q
p=1 and binary operation uop ∈ {++},

if MPCu(uop, n1
1, ..., n

q
1) = (n1

2, ..., n
q
2),

MPCu(uop, n′11 , ..., n
′q
1 ) = (n′12 , ..., n

′q
2 ), and {np

1 = n′p1 }
q
p=1,

then {np
2 = n′p2 }

q
p=1.

Axiom 5.3.10 (MPCresolve ). Given values {n1, n′p, [(vp
t1, v

p
e1), ..., (vp

tm, v
p
em)], [(v′1t1, v

′1
e1), ..., (v′1tm, v

′1
em)]}qp=1,

if MPCresolve([n1, ..., nq], [[(v1
t1, v

1
e1), ..., (v1

tm, v
1
em)], ..., [(vq

t1, v
q
e1), ..., (vq

tm, v
q
em)]])

= [[v1
1 , ..., v

1
m], ..., [vq

1 , ..., v
q
m]]

MPCresolve([n′1, ..., n′q], [[(v′1t1, v
′1
e1), ..., (v′1tm, v

′1
em)], ..., [(v′qt1, v

′q
e1), ..., (v′qtm, v

′q
em)]])

= [[v′11 , ..., v
′1
m], ..., [v′q1 , ..., v

′q
m]],

{np = n′p}qp=1 and {[(vp
t1, v

p
e1), ..., (vp

tm, v
p
em)] = [(v′pt1, v

′p
e1), ..., (v′ptm, v

′p
em)]}qp=1,

then {[vp
1 , ..., v

p
m] = [vp

1 , ..., v
p
m]}qp=1.

Axiom 5.3.11 (MPCdv ). Given values {[np
0 , ..., n

p
α−1]}qp=1, and tag lists {jp

, j
′p}qp=1,

if MPCdv ([[n1
0, ..., n

1
α−1], ..., [nq

0, ..., n
q
α−1]], [j

1
, ..., j

q
]) = (n1, ..., nq),

MPCdv ([[n′10 , ..., n
′1
α′−1], ..., [n′q0 , ..., n

′q
α′−1]], [j

′1
, ..., j

′q
]) = (n′1, ..., n′q),

{[np
0 , ..., n

p
α−1] = [n′p0 , ..., n

′p
α′−1]}qp=1, and {jp

= j
′p}qp=1

then {np = n′p}qp=1.

Axiom 5.3.12 (MPCdp). Given values {∀i ∈ {0...α−1}[αi, l
p

i , j
p
i , i]}

q
p=1, {∀j ∈ {0...α′−1}[α′j , l

′p
j , j

′p
j , i
′]}qp=1

and tag lists {jp
, j
′p}qp=1,

if MPCdp([[[α0, l
1

0, j
1
0], ..., [αα−1, l

1

α−1, j
1
α−1]], ..., [[α0, l

q

0, j
q
0], ..., [αα−1, l

q

α−1, j
q
α−1]]], [j

1
, ..., j

q
]) = ([[αα, l

1

α,

j
1
α], ..., [αα, l

q

α, j
q
α]]),
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MPCdp([[[α′0, l
′1
0 , j

′1
0 ], ..., [α′α′−1, l

′1
α′−1, j

′1
α′−1]], ..., [[α′0, l

′q
0 , j

′q
0 ], ..., [α′α′−1, l

′q
α′−1, j

′q
α′−1]]], [j

′1
, ..., j

′q
]) =

([[α′α′ , l
′1
α′ , j

′1
α′ ], ..., [α′α′ , l

′q
α′ , j

′q
α′ ]]),

α = α′, i = i′, {∀i ∈ {0...α− 1}, [αi, l
p

i , j
p
i ] = [α′i, l

′p
i , j

′p
i ]}qp=1, and {jp

= j
′p}qp=1

then {[αα, l
p

α, j
p
α] = [α′α′ , l

′p
α′ , j

′p
α′ ]}

q
p=1.

Axiom 5.3.13 (MPCfree). Given number α, α′, bytes {[ωp
0 , ..., ω

p
α−1]}qp=1, {[ω′′p0 , ..., ω′′pα′−1]}qp=1, and tag lists

{jp
, j
′′p}qp=1,

if MPCfree([[ω1
0 , ..., ω

1
α−1], ..., [ωq

0 , ..., ω
q
α−1]], [j

1
, ...j

q
]) = ([[ω′10 , ..., ω

′1
α−1], ..., [ω′q0 , ..., ω

′q
α−1]], [j

′1
, ..., j

′q
]),

MPCfree([[ω′′10 , ..., ω′′1α′−1], ..., [ω′′q0 , ..., ω′′qα′−1]], [j
′′1
, ...j

′′q
]) = ([[ω′′′10 , ..., ω′′′1α′−1], ..., [ω′′′q0 , ..., ω′′′qα′−1]], [j

′′′1
, ...,

j
′′′q

]), α = α′, {[ωp
0 , ..., ω

p
α−1] = [ω′′p0 , ..., ω′′pα′−1]]}qp=1, and {jp

= j
′′p}qp=1

then {[ω′p0 , ..., ω
′p
α−1] = [ω′′′p0 , ..., ω′′′pα′−1]]}qp=1 and {j′p = j

′′′p}qp=1.

Axiom 5.3.14 (MPCwdv ). Given list of values {[np
0 , ..., n

p
α−1]}qp=1, {[n′′p0 , ..., n′′pα′−1]}qp=1, number α, α′, {np,

n′p}qp=1, and tag list {jp
, j
′p}qp=1,

if MPCwdv ([[n1
0, ..., n

1
α−1], ..., [nq

0, ..., n
q
α−1]], [n1, ..., nq], [j

1
, ..., j

q
]) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]),

MPCwdv ([[n′′10 , ..., n′′1α′−1], ..., [n′′q0 , ..., n′′qα′−1]], [n′1, ..., n′q], [j
′1
, ..., j

′q
]) = ([n′′′10 , ..., n′′′1α′−1], ..., [n′′′q0 , ..., n′′′qα′−1]),

{[np
0 , ..., n

p
α−1] = [n′′p0 , ..., n′′pα′−1]}qp=1, α = α′, {np = n′p}qp=1 and {jp

= j
′p}qp=1

then {[n′p0 , ..., n
′p
α−1] = [n′′′p0 , ..., n′′′pα′−1]}qp=1.

Axiom 5.3.15 (MPCwdp). Given location list {[αe, l
p

e , j
p
e , i], [α′e, l

′p
e , j

′p
e , i
′]}qp=1, {∀m ∈ {0...α − 1}, [αm, l

p

m,

j
p
m, i]}

q
p=1, {∀m′ ∈ {0...α′′ − 1}, [α′′m′ , l

′′p
m′ , j

′′p
m′ , i

′]}qp=1, and tag list {jp
, j
′p}qp=1,

if MPCwdp([[[αe, l
1

e, j
1
e, i], [α0, l

1

0, j
1
0, i], ..., [αα−1, l

1

α−1, j
1
α−1, i]], ..., [[αe, l

q

e , j
q
e , i], [α0, l

q

0, j
q
0, i], ..., [αα−1,

l
q

α−1, j
q
α−1, i]]], [j

1
, ..., j

q
]) = [[[α′0, l

′1
0 , j

′1
0 , i], ..., [α′α−1, l

′1
α−1, j

′1
α−1, i]], ..., [[α′0, l

′q
0 , j

′q
0 , i], ..., [α′α−1, l

′q
α−1,

j
′q
α−1, i]]],

MPCwdp([[[α′e, l
′1
e , j
′1
e , i
′], [α′′0 , l

′′1
0 , j

′′1
0 , i′], ..., [α′′α′′−1, l

′′1
α′′−1, j

′′1
α′′−1, i

′]], ..., [[α′e, l
′q
e , j

′q
e , i
′], [α′′0 , l

′′q
0 , j

′′q
0 , i′], ...,

[α′′α′′−1, l
′′q
α′′−1, j

′′q
α′′−1, i

′]]], [j
′1
, ..., j

′q
]) = [[[α′′′0 , l

′′′1
0 , j

′′′1
0 , i′], ..., [α′′′α′′−1, l

′′′1
α′′−1, j

′′′1
α′′−1, i

′]], ..., [[α′′′0 , l
′′′q
0 , j

′′′q
0 ,

i′], ..., [α′′′α′′−1, l
′′′q
α′′−1, j

′′′q
α′′−1, i

′]]],

α = α′′, {[αe, l
p

e , j
p
e , i] = [α′e, l

′p
e , j

′p
e , i

′]}qp=1, {∀m ∈ {0...α− 1}, [αm, l
p

m, j
p
m, i] = [α′′m′ , l

′′p
m′ , j

′′p
m′ , i

′]}qp=1, and

{jp
= j
′p}qp=1

then {∀m ∈ {0...α− 1}, [α′m, l
′p
m, j

′p
m, i] = [α′′′m′ , l

′′′p
m′ , j

′′′p
m′ , i

′]}qp=1.

5.3.3 Location Access Tracking Supporting Metatheory

Definition 5.3.8 (Location Access). A location in memory (l, µ) is defined to have been accessed if we look up

memory block identifier l in memory σ and obtain or modify the data that is stored at offset µ from within memory

block.
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Definition 5.3.9 (l = l
′
). Two location lists are equivalent, in symbols l = l

′
, if and only if (l, µ) ∈ l ⇐⇒ (l, µ) ∈

l
′
.

Definition 5.3.10 (L = L′). Two party-wise location lists are equivalent, in symbols L = L′, if and only if

(p, l) ∈ L ⇐⇒ (p, l) ∈ L′.

Lemma 5.3.44 (L1,L2). Given two party-wise location lists L1,L2, if L1 was accessed first and L2 accessed second,

then we have L1 :: L2.

Proof. By the definition of Algorithm 139 and analysis of all rule cases.

Lemma 5.3.45 ((p, l1) :: (p, l1)). Given two party-wise location lists (p, l1), (p, l2),

if (p, l1) :: (p, l2), then (p, l1 :: l2).

Proof. By the definition of Algorithm 139.

Lemma 5.3.46 ({(p, lp1)}qp=1 :: {(p, lp2)}qp=1). Given {(p, lp1)}qp=1 and {(p, lp2)}qp=1

if {(p, lp1)}qp=1 :: {(p, lp2)}qp=1 then (1, l
1

1 :: l
1

2) ‖ ... ‖ (q, l
q

1 :: l
q

2).

Proof. By the definition of Algorithm 139.

Lemma 5.3.47 (L1 :: L2 = L′1 :: L′2). Given L1 :: L2, L′1 :: L′2,

if L1 = L′1 and L′2 = L′2 then L1 :: L2 = L′1 :: L′2.

Proof. By Definition 5.3.10.

Lemma 5.3.48 (Free Location Access). Given memory σ and memory block identifier l,

if Free(σ, l) = (σ1, (l, 0)) then (l, 0) has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm Free.

Lemma 5.3.49 (ReadOOB Location Access). Given index i, number of elements α, type ty , memory σ and

memory block identifier l1, if ReadOOB(i, α, l1, ty , σ) = (n, 1, (l2, µ)) then (l2, µ) has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm ReadOOB.

Lemma 5.3.50 (WriteOOB Location Access). Given index i, numbers n, α, type ty , memory σ1, location map

∆1, and memory block identifier l1, if WriteOOB(n, i, α, l1, ty , σ1, ∆1, acc) = (σ2, ∆2, j, (l2, µ)) then (l2, µ)

has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm WriteOOB.
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Lemma 5.3.51 (Memory Addition Location Access). Given memory σ, memory block identifier l, bytes ω, number

α, type ty and privacy label a, and permission perm , if σ1 = σ[l → (ω, ty , α, PermL(perm, ty , a, α))] then the

location (l, 0) has been accessed.

Proof. By Definition 5.3.8.

Lemma 5.3.52 (Memory Modification Location Access). Given memory σ, memory block identifier l, bytes ω, ω′,

number α, type ty and privacy label a, and permission perm , if σ = σ1[l → (ω, ty , α, PermL(perm, ty , a, α))]

and σ2 = σ1[l → (ω′, ty , α, PermL(perm, ty , a, α))] then the location (l, 0) has been accessed.

Proof. By Definition 5.3.8.

Lemma 5.3.53 (InitializeVariables Location Access). Given variable list xlist , environment γ1, memory σ1,

value n, and accumulator acc, if InitializeVariables(xlist , γ1, σ1, n, acc) = (γ2, σ2, l) then the locations l have

been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm InitializeVariables.

Lemma 5.3.54 (RestoreVariables Location Access). Given environment γ, memory σ1, variable list xlist , and

accumulator acc, if RestoreVariables(xlist , γ, σ1, acc) = (σ2, l) then the locations l have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm RestoreVariables.

Lemma 5.3.55 (ResolveVariables_Retrieve Location Access). Given environment γ, memory σ, variable list

xlist , and accumulator acc, if ResolveVariables_Retrieve(xlist , acc, γ, σ) = ([(vt1, ve1), ..., (vtm, vem)], n, l) then

the locations l have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm ResolveVariables_Retrieve.

Lemma 5.3.56 (ResolveVariables_Store Location Access). Given environment γ, memory σ1, variable list xlist ,

values [v1, ..., vm], and accumulator acc, if ResolveVariables_Store(xlist , acc, γ, σ1, [v1, ..., vn]) = (σ2, l) then the

locations l have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm ResolveVariables_Store.

Lemma 5.3.57 (Initialize Location Access). Given location map ∆1, variable list xlist , environment γ1, memory

σ1, value n, and accumulator acc, if Initialize(∆1, xlist , γ1, σ1, n, acc) = (γ2, σ2,∆2, l) then the locations l have

been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm Initialize.
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Lemma 5.3.58 (Restore Location Access). Given memory σ1, location map ∆1, and accumulator acc,

if Restore(σ1,∆1, acc) = (σ2,∆2, l) then the locations l have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm Restore.

Lemma 5.3.59 (Resolve_Retrieve Location Access). Given environment γ, memory σ, location map ∆, and

accumulator acc, if Resolve_Retrieve(γ, σ,∆, acc) = ([(vt1, ve1), ..., (vtm, vem)], n, l) then the locations l have

been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm Resolve_Retrieve.

Lemma 5.3.60 (Resolve_Store Location Access). Given memory σ1, location map ∆1, values [v1, ..., vm], and

accumulator acc, if Resolve_Store(∆1, σ1, acc, [v1, ..., vm]) = (σ2,∆2, l) then the locations l have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm Resolve_Store.

Lemma 5.3.61 (DynamicUpdate Location Access). Given memory σ, location map ∆1, location list l1, and

type ty ∈ {private a bty , private a bty∗}, if DynamicUpdate(∆1, σ, l1, acc, ty) = (∆2, l2) then the locations l2

have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm DynamicUpdate.

Lemma 5.3.62 (Pointer Data Location Access). Given memory σ, memory block identifier l, and ty ∈ {a bty∗,

const a bty∗}, if σ(l) = (ω, ty , α, PermL(Freeable ty , a, α)) and DecodePtr(ty , α, ω) = [α, l, j, i], then the

location (l, 0) has been accessed.

Proof. By Definition 5.3.8.

Lemma 5.3.63 (Array Data Location Access). Given memory σ and memory block identifier l, if σ(l) = (ω, a

bty , α, PermL(Freeable a bty , a, α)) and DecodeArr(a bty , i, ω) = n, then the location (l, i) has been accessed.

Proof. By Definition 5.3.8.

Lemma 5.3.64 (Data Location Access). Given memory σ and memory block identifier l, if σ(l) = (ω, a bty , 1,

PermL(Freeable a bty , a, 1)) and DecodeVal(a bty , ω) = n, then the location (l, 0) has been accessed.

Proof. By Definition 5.3.8.

Lemma 5.3.65 (Function Data Location Access). Given memory σ and memory block identifier l, if σ(l) =

(ω, ty → ty , 1, PermL_Fun(public)) and DecodeFun(ω) = (s, n, p), then the location (l, 0) has been accessed.

Proof. By Definition 5.3.8.
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Lemma 5.3.66 (UpdateVal Location Access). Given memory σ1, memory block identifier l, value n, and type

a bty , if UpdateVal(σ1, l, n, a bty) = σ2, then the location (l, 0) has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm UpdateVal.

Lemma 5.3.67 (UpdateArr Location Access). Given memory σ1, memory block identifier l, index i, value n, and

type a bty , if UpdateArr(σ1, (l, i), n, a bty) = σ2 then the location (l, i) has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm UpdateArr.

Lemma 5.3.68 (UpdatePtr Location Access). Given memory σ1, location (l, µ), pointer data structure [α, l, j,

i], and type a bty∗,

if UpdatePtr(σ1, (l, µ), [α, l, j, i], a bty∗) = (σ2, j) then the location (l, µ) has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm UpdatePtr.

Lemma 5.3.69 (UpdateOffset Location Access). Given memory σ1, location (l, µ), number n and type a bty , if

UpdateOffset(σ1, (l, µ), n, a bty) = (σ2, j) then the location (l, µ) has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm UpdateOffset.

Lemma 5.3.70 (DerefPtr Location Access). Given memory σ, location (l, µ), and type ty ,

if DerefPtr(σ, ty , (l, µ)) = (n, j) then the location (l, µ) has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm DerefPtr.

Lemma 5.3.71 (DerefPtrHLI Location Access). Given memory σ, location (l, µ), and type ty ,

if DerefPtrHLI(σ, ty , (l, µ)) = ([α, l, j, i], j) then the location (l, µ) has been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm DerefPtrHLI.

Lemma 5.3.72 (Retrieve_vals Location Access). Given number α, location list l, type ty , and memory σ,

if Retrieve_vals(α, l, ty , σ) = ([v0, ...vα′−1], j) then all locations in l have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm Retrieve_vals.

Lemma 5.3.73 (CheckFreeable Location Access). Given environment γ, location list l, tag list j, and memory σ,

if CheckFreeable(γ, l, j, σ) = j then all locations in l have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm CheckFreeable.

Lemma 5.3.74 (UpdateBytesFree Location Access). Given location list l, byte representations [ω0, ..., ωα−1],

and memory σ1, if UpdateBytesFree(σ1, l, [ω0, ..., ωα−1]) = σ2 then all locations in l have been accessed.
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Proof. By Definition 5.3.8 and the definition of Algorithm UpdateBytesFree.

Lemma 5.3.75 (UpdatePointerLocations Location Access). Given location list l, tag list j, and memory σ1

if UpdatePointerLocations(σ1, l[1 : α − 1], j[1 : α − 1], l[0], j[0]) = (σ2, l1), then all locations in l1 have been

accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm UpdatePointerLocations.

Lemma 5.3.76 (UpdateDerefVals Location Access). Given number α, location list l, list of values [v0, ..., vα−1],

type ty , and memory σ1,

if UpdateDerefVals(α, l, [v0, ..., vα−1], ty , σ1) = σ2 then all locations in l have been accessed.

Proof. By Definition 5.3.8 and the definition of Algorithm UpdateDerefVals.

5.3.4 Proof of Noninterference

Theorem 5.3.2 (Multiparty Noninterference). For every environment {γp, γp
1 , γ

′p
1 }

q
p=1; memory {σp, σp

1 , σ′p1 }
q
p=1

∈ Mem; location map{∆p, ∆p
1 , ∆′p1 }

q
p=1; accumulator {accp, accp

1 , acc′p1 }
q
p=1 ∈ N; statement s, values {vp, v′p}qp=1;

step evaluation code lists D,D′ and their corresponding lists of locations accessed L,L′, party p ∈ {1...q};

if Π . ((1, γ1, σ1, ∆1, acc1, s) ‖ ... ‖ (q, γq, σq, ∆q, accq, s))

⇓LD ((1, γ1
1 , σ

1
1 , ∆1

1, acc1
1, v

1) ‖ ... ‖ (q, γq
1 , σ

q
1 , ∆q

1, accq
1, v

q))

and Σ . ((1, γ1, σ1, ∆1, acc1, s) ‖ ... ‖ (q, γq, σq, ∆q, accq, s))

⇓L′D′ ((1, γ′11 , σ
′1
1 , ∆′11 , acc′11 , v

′1) ‖ ... ‖ (q, γ′q1 , σ
′q
1 , ∆′q1 , acc′q1 , v

′q))

then {γp
1 = γ′p1 }

q
p=1, {σp

1 = σ′p1 }
q
p=1, {∆p

1 = ∆′p1 }
q
p=1, {accp

1 = acc′p1 }
q
p=1, {vp = v′p}qp=1, D = D′, L = L′,

Π 'L Σ.

Proof.

Case Π . ((1, γ1, σ1,∆1, acc, x[e]) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e])) ⇓L1::L2

D1 ::(ALL,[mpra]) ((1, γ1, σ1
1 ,∆

1
1, acc, n1) ‖ ...

‖ (q, γq, σq
1 ,∆

q
1, acc, nq))

Given (A) Π . ((1, γ1, σ1, ∆1, acc1, x[e]) ‖ ... ‖ (q, γq, σq, ∆q, accq, x[e])) ⇓L1::L2

D1 ::(ALL,[mpra]) ((1, γ1, σ1
1 ,∆

1
1, acc,

n1) ‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, nq)), by rule Multiparty Array Read Private Index we have {(e) ` γp}qp=1, {(np) `

γp}qp=1, (B) {γp(x) = (lp, const a bty∗)}qp=1, (C) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1

((1, γ1, σ1
1 ,∆

1
1, acc, i1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, iq)), (D) {σp

1 (lp) = (ωp, a const bty∗, 1, PermL(Freeable, a

const bty∗, a, 1))}qp=1, (E) {DecodePtr(a const bty∗, 1, ωp) = [1, [(lp1 , 0)], [1], 1]}qp=1, (F) {σp
1 (lp1) = (ωp

1 , a bty ,

α, PermL(Freeable, a bty , a, α))}qp=1, (G) {∀i ∈ {0...α−1} DecodeArr(a bty , i, ωp
1 ) = np

i }
q
p=1, (H) MPCar ((i1,
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[n1
0, ..., n

1
α−1]), ..., (iq, [nq

0, ..., n
q
α−1])) = (n1, ..., nq), and (I) L2 = (1, [(l1, 0), (l11, 0), ..., (l11, α− 1)]) ‖ ... ‖ (q, [(lq,

0), (lq1 , 0), ..., (lq1 , α− 1)]).

Given (J) Σ . ((1, γ1, σ1, ∆1, acc1, x[e]) ‖ ... ‖ (q, γq, σq, ∆q, accq, x[e])) ⇓L
′
1::L′2
D′1 ::D′2 ::(ALL,[d]) ((1, γ′12 , σ

′1
2 , ∆′12 ,

acc1, v′1) ‖ ... ‖ (q, γ′q2 , σ
′q
2 , ∆′q2 , accq, v′q)) and (A), by Lemma 5.2.87 we have (K) d = mpra .

Given (J) and (K), by SMC2 rule Multiparty Array Read Private Index we have {(e) ` γp}qp=1, {(n′p) ` γp}qp=1, (L)

{γp(x) = (l′p, const a′ bty ′∗)}qp=1, (M) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L
′
1

D′1
((1, γ1, σ′11 ,∆

′1
1 ,

acc, i′1) ‖ ... ‖ (q, γq, σ′q1 ,∆
′q
1 , acc, i′q)), (N) {σ′p1 (l′p) = (ω′p, a′ const bty ′∗, 1, PermL(Freeable, a′ const bty ′∗,

a′, 1))}qp=1, (O) {DecodePtr(a′ const bty ′∗, 1, ω′p) = [1, [(l′p1 , 0)], [1], 1]}qp=1, (P) {σ′p1 (l′p1 ) = (ω′p1 , a
′ bty ′,

α′, PermL(Freeable, a′ bty ′, a′, α′))}qp=1, (Q) {∀i′ ∈ {0...α′ − 1} DecodeArr(a′ bty ′, i′, ω′p1 ) = n′pi′ }
q
p=1, (R)

MPCar ((i′1, [n′10 , ..., n
′1
α′−1]), ..., (i′q, [n′q0 , ..., n

′q
α′−1])) = (n′1, ..., n′q), and (S) L′2 = (1, [(l′1, 0), (l′11 , 0), ..., (l′11 ,

α′ − 1)]) ‖ ... ‖ (q, [(l′q, 0), (l′q1 , 0), ..., (l′q1 , α
′ − 1)]).

Given (B) and (L), by Definition 5.3.3 we have (T) {lp = l′p}qp=1, (U) a = a′, and (V) bty = bty ′.

Given (C) and (M), by the inductive hypothesis we have (W) {σp
1 = σ′p1 }

q
p=1, (X) {∆p

1 = ∆′p1 }
q
p=1, (Y) {ip = i′p}qp=1,

(Z) L1 = L′1, and (A1) D1 = D′1.

Given (D), (N), (W), and (T), by Definition 5.3.4 we have (B1) {ωp = ω′p}qp=1.

Given (E), (O), (U), (V), and (B1), by Lemma 5.3.26 we have (C1) {lp1 = l′p1 }
q
p=1.

Given (F), (P), (W), and (C1), by Definition 5.3.4 we have (D1) {ωp
1 = ω′p1 }

q
p=1 and (E1) α = α′.

Given (G), (Q), and (E1), we have i = i′. Given (U), (V), and (D1), by Lemma 5.3.27 we have (F1) ∀i ∈ {0...α −

1}{np
i = n′pi }

q
p=1.

Given (H), (R), (Y), and (F1), by Axiom 5.3.5 we have (G1) {np = n′p}qp=1.

Given (D) and (E), by Lemma 5.3.62 we have accessed locations (H1) {(p, [(lp, 0)])}qp=1. Given (F) and (G), by

Lemma 5.3.63 we have accessed locations (I1) {(p, [(lp1 , 0), ..., (lp1 , α − 1)])}qp=1. Given (H1) and (I1), by Lem-

mas 5.3.44 and 5.3.46 we have (I).
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Given (N) and (O), by Lemma 5.3.62 we have accessed locations (J1) {(p, [(lp, 0)])}qp=1. Given (P) and (Q), by

Lemma 5.3.63 we have accessed locations (K1) {(p, [(l′11 , 0), ..., (l′11 , α
′ − 1)])}qp=1. Given (J1) and (K1), by Lem-

mas 5.3.44 and 5.3.46 we have (S).

Given (T), (C1), (E1), (I), and (S), by Definition 5.3.10 we have (L1) L2 = L′2. Given (Z) and (L1), by Lemma 5.3.47

we have (M1) L1 :: L2 = L′1 :: L′2.

Given (A1) and (ALL, [mpra]), by Lemma 5.3.38 we have (N1) D1 :: (ALL, [mpra]) = D′1 :: (ALL, [mpra]).

Given (W), (X), (G1), (M1), and (N1), by Definition 5.3.2, we have Π 'L Σ.

Case Π. ((1, γ1, σ1,∆1, acc, x[e1] = e2) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e1] = e2)) ⇓L1::L2::L3

D1 ::D2 ::(ALL,[mpwa]) ((1, γ1,

σ1
3+α−1, ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
3+α−1, ∆q

2, acc, skip))

Given (A) Π. ((1, γ1, σ1,∆1, acc, x[e1] = e2) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e1] = e2)) ⇓L1::L2::L3

D1 ::D2 ::(ALL,[mpwa])

((1, γ1, σ1
3+α−1,∆

1
2, acc, skip) ‖ ... ‖ (q, γq, σq

3+α−1,∆
q
2, acc, skip)) by SMC2 rule Multiparty Array Write Private

Index, we have (B) {(e1) ` γp}qp=1, (C) ((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1,

acc, i1) ‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, iq)), (D) ((1, γ1, σ1

1 ,∆
1
1, acc, e2) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1acc, e2)) ⇓L2

D2
((1, γ1, σ1

2 ,

∆1
2, acc, n1) ‖ ... ‖ (q, γq, σq

2 ,∆
q
2, acc, nq)), (E) {γp(x) = (lp,private const bty∗)}qp=1, (F) {σp

2 (lp) = (ωp, private

const bty∗, 1, PermL(Freeable,private const bty∗,private, 1))}qp=1, (G) {DecodePtr(private const bty∗, 1, ωp)

= [1, [(lp1 , 0)], [1], 1]}qp=1, (H) {σp
2 (lp1) = (ωp

1 ,private bty , α, PermL(Freeable, private bty , private, α))}qp=1, (I)

{∀j ∈ {0...α−1}DecodeArr(private bty , j, ωp
1 ) = np

j }
q
p=1, (J) MPCaw ((i1, n1, [n1

0, ..., n
1
α−1]), ..., (iq, nq, [nq

0, ...,

nq
α−1])) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]), (K) {∀j ∈ {0...α − 1} UpdateArr(σp

2+j , (lp1 , j), n
′p
j , private bty)

= σp
3+j}

q
p=1, and (L) L3 = (1, [(lp, 0), (lp1 , 0), ..., (lp1 , α− 1)]) ‖ ... ‖ (q, [(lp, 0), (lp1 , 0), ..., (lp1 , α− 1)]).

Given (M) Π. ((1, γ1, σ1,∆1, acc, x[e1] = e2) ‖ ... ‖ (q, γq, σq,∆q, acc, x[e1] = e2)) ⇓L
′
1::L′2::L′3
D′1 ::D′2 ::(ALL,[d]) ((1, γ1,

σ′13+α−1, ∆′12 , acc, skip) ‖ ... ‖ (q, γq, σ′q3+α−1,∆
′q
2 , acc, skip)) and (A), by Lemma 5.2.87 we have (N) d = mpwa .

Given (M) and (N), by SMC2 rule Multiparty Array Write Private Index, we have (O) {(e1) ` γp}qp=1, (P) ((1, γ1, σ1,

∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L
′
1

D′1
((1, γ1, σ′11 ,∆

′1
1 , acc, i′1) ‖ ... ‖ (q, γq, σ′q1 ,∆

′q
1 , acc, i′q)), (Q)

((1, γ1, σ′11 ,∆
′1
1 , acc, e2) ‖ ... ‖ (q, γq, σ′q1 ,∆

′q
1 acc, e2)) ⇓L

′
2

D′2
((1, γ1, σ′12 ,∆

′1
2 , acc, n′1) ‖ ... ‖ (q, γq, σ′q2 , ∆′q2 ,
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acc, n′q)), (R) {γp(x) = (l′p, private const bty ′∗)}qp=1, (S) {σ′p2 (l′p) = (ω′p, private const bty ′∗,

1, PermL(Freeable, private const bty ′∗,private, 1))}qp=1, (T) {DecodePtr(private const bty ′∗, 1, ω′p) = [1,

[(l′p1 , 0)], [1], 1]}qp=1, (U) {σ′p2 (l′p1 ) = (ω′p1 ,private bty ′, α′, PermL(Freeable, private bty ′, private, α′))}qp=1,

(V) {∀j′ ∈ {0...α′ − 1} DecodeArr(private bty ′, j′, ω′p1 ) = n′′pj }
q
p=1, (W) MPCaw ((i′1, n′1, [n′′10 , ..., n′′1α′−1]), ...,

(i′q, n′q, [n′′q0 , ..., n′′qα′−1])) = ([n′′′10 , ..., n′′′1α′−1], ..., [n′′′q0 , ..., n′′′qα′−1]), (X) {∀j′ ∈ {0...α′ − 1} UpdateArr(σ′p2+j′ ,

(l′p1 , j
′), n′′′pj′ , private bty ′) = σ′p3+j′}

q
p=1, and (Y) L′3 = (1, [(l′p, 0), (l′p1 , 0), ..., (l′p1 , α

′ − 1)]) ‖ ... ‖ (q, [(l′p, 0),

(l′p1 , 0), ..., (l′p1 , α
′ − 1)]).

Given (C) and (P), by the inductive hypothesis we have (Z) {σp
1 = σ′p1 }

q
p=1, (A1) {∆p

1 = ∆′p1 }
q
p=1, (B1) {ip = i′p}qp=1,

(C1) L1 = L′1, and (D1) D1 = D′1.

Given (D), (Q), (Z), and (A1), by the inductive hypothesis we have (E1) {σp
2 = σ′p2 }

q
p=1, (F1) {∆p

2 = ∆′p2 }
q
p=1, (G1)

{np = n′p}qp=1, (H1) L2 = L′2, and (I1) D2 = D′2.

Given (E) and (R), by Definition 5.3.3 we have (J1) {lp = l′p}qp=1 and (K1) bty = bty ′.

Given (F), (S), (E1) and (J1), by Definition 5.3.4 we have (L1) {ωp = ω′p}qp=1.

Given (G), (T), (K1), and (L1), by Lemma 5.3.26 we have (M1) {lp1 = l′p1 }
q
p=1.

Given (H), (U), (E1), and (M1), by Definition 5.3.4 we have (N1) {ωp
1 = ω′p1 }

q
p=1 and (O1) α = α′.

Given (I), (V), (O1), we have (P1) j = j′. Given (I), (V), (K1), (O1), (P1), and (N1), by Lemma 5.3.27 we have (Q1)

∀j ∈ {0...α− 1}{np
j = n′′pj }

q
p=1.

Given (J), (W), (B1), (G1), and (Q1), by Axiom 5.3.6 we have (R1) {n′p = n′′′p}qp=1.

Given (K), (X), (P1), (O1), (M1), (E1), (L1), and (R1), by Lemma 5.3.35 we have (S1) ∀j, j′ ∈ {0...α− 1} such that

j = j′, σ2+j = σ′2+j′ and (T1) σ3+j = σ′3+j′ .

Given (F) and (G), by Lemma 5.3.62 we have accessed locations (U1) {(p, [(lp, 0)])}qp=1. Given (H) and (I), by

Lemma 5.3.63 we have accessed locations (V1) {(p, [(lp1 , 0), ..., (lp1 , α− 1)])}qp=1. Given (K), by Lemma 5.3.67 we

have accessed locations (W1) {(p, [(lp1 , 0), ..., (lp1 , α − 1)])}qp=1. Given (U1), (V1), and (W1), by Lemmas 5.3.44
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and 5.3.46 we have (L).

Given (S) and (T), by Lemma 5.3.62 we have accessed locations (X1) {(p, [(l′p, 0)])}qp=1. Given (U) and (V), by

Lemma 5.3.63 we have accessed locations (Y1) {(p, [(l′p1 , 0), ..., (l′p1 , α
′ − 1)])}qp=1. Given (X), by Lemma 5.3.67

we have accessed locations (Z1) {(p, [(l′p1 , 0), ..., (l′p1 , α
′ − 1)])}qp=1. Given (X1), (Y1), and (Z1), by Lemmas 5.3.44

and 5.3.46 we have (Y).

Given (J1), (M1), (O1), (L), and (Y), by Definition 5.3.10 we have (A2) L3 = L′3. Given (C1), (H1), and (A2), by

Lemma 5.3.47 we have (B2) L1 :: L2 :: L3 = L′1 :: L′2 :: L′3.

Given (D1), (I1), and (ALL, [mpwa]), by Lemma 5.3.38 we have (C2) D1 :: D2 :: (ALL, [mpwa]) = D′1 :: D′2 ::

(ALL, [mpwa]).

Given (T1), (F1), (C2), and (B2), by Definition 5.3.2, we have Π 'L Σ.

Case Π . ((1, γ1, σ1,∆1, acc, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, acc, e1 bop e2)) ⇓L1::L2

D1 ::D2 ::(ALL,[mpb])

((1, γ1
2 , σ

1
2 ,∆

1
2, acc, n1

3) ‖ ... ‖ (q, γq
2 , σ

q
2 ,∆

q
2, acc, nq

3))

Given (A) Π . ((1, γ1, σ1,∆1, acc, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, acc, e1 bop e2)) ⇓L1::L2

D1 ::D2 ::(ALL,[mpb])

((1, γ1, σ1
2 ,∆

1
2, acc, n1

3) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

3)), by SMC2 rule Multiparty Binary Operation we have {(e1,

e2) ` γp}qp=1, bop ∈ {·,+,−,÷}, (B) ((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L1

D1
((1, γ1, σ1

1 ,

∆1
1, acc, n1

1) ‖ ... ‖ (q, γq, σq
1 ,∆

q
1, acc, nq

1)), (C) ((1, γ1, σ1
1 ,∆

1
1, acc, e2) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, e2)) ⇓L2

D2

((1, γ1, σ1
2 ,∆

1
2, acc, n1

2) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, nq

2)), and (D) MPCb(bop, [n1
1, ..., n

q
1], [n1

2, ..., n
q
2]) = (n1

3, ..., n
q
3).

Given (E) Σ . ((1, γ1, σ1,∆1, acc, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, acc, e1 bop e2)) ⇓L
′
1::L′2
D′1 ::D′2 ::(ALL,[d]) ((1, γ1, σ′12 ,

∆′12 , acc, n′13 ) ‖ ... ‖ (q, γq, σ′q2 ,∆
′q
2 , acc, n′q3 )) and (A), by Lemma 5.2.87 we have (F) d = mpb.

Given (E) and (F), by SMC2 rule Multiparty Binary Operation we have {(e1, e2) ` γp}qp=1, bop ∈ {·,+,−,÷},

(G) ((1, γ1, σ1,∆1, acc, e1) ‖ ... ‖ (q, γq, σq,∆q, acc, e1)) ⇓L
′
1

D′1
((1, γ1, σ′11 ,∆

′1
1 , acc, n′11 ) ‖ ... ‖ (q, γq, σ′q1 ,∆

′q
1 ,

acc, n′q1 )),

(H) ((1, γ1, σ′11 ,∆
′1
1 , acc, e2) ‖ ... ‖ (q, γq, σ′q1 ,∆

′q
1 , acc, e2)) ⇓L2

D2
((1, γ1, σ′12 ,∆

′1
2 , acc, n′12 ) ‖ ... ‖ (q, γq, σ′q2 ,∆

′q
2 ,

acc, n′q2 )), and (I) MPCb(bop, [n′11 , ..., n
′q
1 ], [n′12 , ..., n

′q
2 ]) = (n′13 , ..., n

′q
3 ).
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Given (B) and (G), by the inductive hypothesis we have (J) {σp
1 = σ′p1 }

q
p=1, (K) {∆p

1 = ∆′p1 }
q
p=1, (L) {np

1 = n′p1 }
q
p=1,

(M) D1 = D′1, (N) L1 = L′1.

Given (C), (H), (J), and (K), by the inductive hypothesis we have (O) {σp
2 = σ′p2 }

q
p=1, (P) {∆p

2 = ∆′p2 }
q
p=1, (Q)

{np
2 = n′p2 }

q
p=1, (R) D2 = D′2, (S) L2 = L′2.

Given (D), (I), (L), and (Q), by Axiom 5.3.7 we have (T) {np
3 = n′p3 }

q
p=1.

Given (M), (R), and (ALL, [mpb]), by Lemma 5.3.38 we have (U) D1 :: D2 :: (ALL, [mpb]) = D′1 :: D′2 ::

(ALL, [mpb]).

Given (N) and (S), by Lemma 5.3.47 we have (V) L1 :: L2 = L′1 :: L′2.

Given (O), (P), (T), (U), and (V), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((1, γ1, σ1,∆1, acc1, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, accq, e1 bop e2)) ⇓L1::L2

D1 ::D2 ::(ALL,[mpcmp])

((1, γ1
2 , σ

1
2 ,∆

1
2, acc1, n1

3) ‖ ... ‖ (q, γq
2 , σ

q
2 ,∆

q
2, accq, nq

3))

This case is similar to Case Π . ((1, γ1, σ1,∆1, acc, e1 bop e2) ‖ ... ‖ (q, γq, σq,∆q, acc, e1 bop e2))

⇓L1::L2

D1 ::D2 ::(ALL,[mpb]) ((1, γ1
2 , σ

1
2 ,∆

1
2, acc, n1

3) ‖ ... ‖ (q, γq
2 , σ

q
2 ,∆

q
2, acc, nq

3)). The main difference is using Ax-

iom 5.3.8 in place of Axiom 5.3.7.

Case Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

Given (A) Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2) by SMC2 rule

Public Addition, we have (e1, e2) 0 γ, (B) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1), (C)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2, ∆2, acc, n2) ‖ C2), and (D) n1 + n2 = n3.

Given (E) Σ . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L
′
1::L′2
D′1 ::D′2 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc, n′3) ‖ C ′2) and (A), by

Lemma 5.2.87 we have (F) d = bp.
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Given (E) and (F), by SMC2 rule Public Addition, we have (e1, e2) 0 γ, (G) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L
′
1

D′1

((p, γ, σ′1, ∆′1, acc, n′1) ‖ C ′1), (H) ((p, γ, σ′1, ∆′1, acc, e′2) ‖ C ′1) ⇓L
′
2

D′2
((p, γ, σ′2, ∆′2, acc, n′2) ‖ C ′2), and (I)

n′1 + n′2 = n′3.

Given (B) and (G), by the inductive hypothesis we have (J) σ1 = σ′1, (K) ∆1 = ∆′1, (L) n1 = n′1, (M) D1 = D′1, (N)

L1 = L′1, and (O) C1 = C ′1.

Given (C), (H), (J), (K), and (O), by the inductive hypothesis we have (P) σ2 = σ′2, (Q) ∆2 = ∆′2, (R) n2 = n′2, (S)

D2 = D′2, (T) L2 = L′2, and (U) C2 = C ′2.

Given (D), (I), (L), and (R), we have (V) n3 = n′3.

Given (M), (S), and (p, [bp]), by Lemma 5.3.38 we have (W) D1 :: D2 :: (p, [bp]) = D′1 :: D′2 :: (p, [bp]).

Given (N) and (T), by Lemma 5.3.47 we have (X) L1 :: L2 = L′1 :: L′2.

Given (P), (Q), (U), (V), (W), and (X), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, e1 · e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bm]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 − e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bs]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 ÷ e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bd]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2)
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This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 + e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[bp]) ((p, γ, σ2, ∆2, acc, n3) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2)

Given (A) Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2) by SMC2 rule Public

Less Than True, we have (e1, e2) 0 γ, (B) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n1) ‖ C1), (C)

((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2, ∆2, acc, n2) ‖ C2), and (D) (n1 < n2) = 1.

Given (E) Σ.((p, γ, σ, ∆, acc, e1 < e2) ‖C) ⇓L
′
1::L′2
D′1 ::D′2 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc, 1) ‖C ′2) and (A), by Lemma 5.2.87

we have (F) d = ltt .

Given (E) and (F), by SMC2 rule Public Less Than True we have (e1, e2) 0 γ, (G) ((p, γ, σ, ∆, acc, e1) ‖ C)

⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, n′1) ‖ C ′1), (H) ((p, γ, σ′1, ∆′1, acc, e2) ‖ C ′1) ⇓L

′
2

D′2
((p, γ, σ′2, ∆2, acc, n′2) ‖ C ′2), and

(I) (n′1 < n′2) = 1.

Given (B) and (G), by the inductive hypothesis we have (J) σ1 = σ′1, (K) ∆1 = ∆′1, (L) n1 = n′1, (M) D1 = D′1, (N)

L1 = L′1, and (O) C1 = C ′1.

Given (C), (H), (J), (K), and (O), by the inductive hypothesis we have (P) σ2 = σ′2, (Q) ∆2 = ∆′2, (R) n2 = n′2, (S)

D2 = D′2, (T) L2 = L′2, and (U) C2 = C ′2.

Given (D), (I), (L), and (R), we have (V) (n1 < n2) = (n′1 < n′2) = 1.

Given (M), (S), and (p, [ltt ]), by Lemma 5.3.38 we have (W) D1 :: D2 :: (p, [ltt ]) = D′1 :: D′2 :: (p, [ltt ]).

Given (N) and (T), by Lemma 5.3.47 we have (X) L1 :: L2 = L′1 :: L′2.

Given (P), (Q), (U), (V), (W), and (X), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltf ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)
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This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 == e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[eqt]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1 == e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[eqf ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1! = e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[net]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, e1! = e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[nef ]) ((p, γ, σ2, ∆2, acc, 0) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, e1 < e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ltt]) ((p, γ, σ2, ∆2, acc, 1) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dv ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dv ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C) by SMC2 rule Public Decla-

ration, we have (ty = public bty), acc = 0 (B) l = φ(), (C) γ1 = γ[x → (l, ty)], (D) ω = EncodeVal(ty ,NULL),

and (E) σ1 = σ[l → (ω, ty , 1, PermL(Freeable, ty ,public, 1))].

Given (F) Σ . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dv ]) ((p, γ′1, σ

′
1, ∆, acc, skip) ‖ C) and (A), by Lemma 5.2.87

we have (G) d = dv .

Given (F) and (G), by SMC2 rule Public Declaration, we have (ty = public bty), acc = 0 (H) l′ = φ(), (I)
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γ′1 = γ[x → (l′, ty)], (J) ω′ = EncodeVal(ty ,NULL), and (K) σ′1 = σ[l′ → (ω′, ty , 1, PermL(Freeable, ty ,

public, 1))].

Given (B) and (H), by Axiom 5.3.4 we have (L) l = l′.

Given (C), (I), and (L), by Definition 5.3.3 we have (M) γ1 = γ′1.

Given (D) and (J), by Lemma 5.3.30 we have (N) ω = ω′.

Given (E), (K), (L), and (N), by Definition 5.3.4 we have (O) σ1 = σ′1.

Given (E), by Lemma 5.3.51 we have accessed (P) (p, [(l, 0)]). Given (K), by Lemma 5.3.51 we have accessed (Q)

(p, [(l′, 0)]). Given (P), (Q), and (L), we have (R) (p, [(l, 0)]) = (p, [(l′, 0)]).

Given (A), (F), and (G) we have (S) (p, [dv ]) = (p, [dv ]).

Given (M), (O), (R), and (S), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[d1 ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dv ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C).

Case Π . ((p, γ, σ, ∆, acc, s1; s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ss]) ((p, γ2, σ2, ∆2, acc, v2) ‖ C2)

Given (A) Π . ((p, γ, σ, ∆, acc, s1; s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ss]) ((p, γ2, σ2, ∆2, acc, v2) ‖ C2) by SMC2 rule

Statement Sequencing, we have (B) ((p, γ, σ, ∆, acc, s1) ‖ C) ⇓L1

D1
((p, γ1, σ1, ∆1, acc, v1) ‖ C1), and (C)

((p, γ1, σ1, ∆1, acc, s2) ‖ C1) ⇓L2

D2
((p, γ2, σ2, ∆2, acc, v2) ‖ C2).

Given (D) Σ . ((p, γ, σ, ∆, acc, s1; s2) ‖ C) ⇓L
′
1::L′2
D′1 ::D′2 ::(p,[ss]) ((p, γ′2, σ

′
2, ∆′2, acc, v′2) ‖ C ′2) and (A), by

Lemma 5.2.87 we have (E) d = ss .
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Given (D) and (E) by SMC2 rule Statement Sequencing, we have (F) ((p, γ, σ, ∆, acc, s1) ‖ C) ⇓L
′
1

D′1
((p, γ′1, σ

′
1, ∆′1,

acc, v′1) ‖ C ′1), and (G) ((p, γ′1, σ
′
1, ∆′1, acc, s2) ‖ C ′1) ⇓L

′
2

D′2
((p, γ′2, σ

′
2, ∆′2, acc, v′2) ‖ C ′2).

Given (B) and (F), by the inductive hypothesis we have (H) γ1 = γ′1, (I) σ1 = σ′1, (J) ∆1 = ∆′1, (K) v1 = v′1, (L)

D1 = D′1, (M) L1 = L′1, and (N) C1 = C ′1.

Given (C), (G), (H), (I), (J), and (N), by the inductive hypothesis we have (O) γ2 = γ′2, (P) σ2 = σ′2, (Q) ∆2 = ∆′2, (R)

v2 = v′2, (S) D2 = D′2, (T) L2 = L′2, and (U) C2 = C ′2.

Given (L), (S), and (p, [ss]), by Lemma 5.3.38 we have (V) D1 :: D2 :: (p, [ss]) = D′1 :: D′2 :: (p, [ss]).

Given (M) and (T), by Lemma 5.3.47 we have (W) L1 :: L2 = L′1 :: L′2.

Given (O), (P), (Q), (R), (U), (V), and (W), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, {s}) ‖ C) ⇓L1

D1 ::(p,[sb]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, {s}) ‖ C) ⇓L1

D1 ::(p,[sb]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1) by SMC2 rule Statement

Block, we have (B) ((p, γ, σ, ∆, acc, s) ‖ C) ⇓L1

D1
((p, γ1, σ1, ∆1, acc, v) ‖ C1).

Given (C) Σ . ((p, γ, σ, ∆, acc, {s}) ‖ C) ⇓L
′
1

D′1 ::(p,[d]) ((p, γ, σ′1, ∆′1, acc, skip) ‖ C ′1) and (A), by Lemma 5.2.87

we have (D) d = sb.

Given (C) and (D), by SMC2 rule Statement Block, we have (E) ((p, γ, σ, ∆, acc, s) ‖ C) ⇓L
′
1

D′1
((p, γ′1, σ

′
1, ∆′1, acc,

v′) ‖ C ′1).

Given (B) and (E), by the inductive hypothesis we have (F) γ1 = γ′1, (G) σ1 = σ′1, (H) ∆1 = ∆′1, (I) v1 = v′1, (J)

D1 = D′1, (K) L1 = L′1, and (L) C1 = C ′1.

Given (J) and (p, [sb]), by Lemma 5.3.38 we have (M) D1 :: (p, [sb]) = D′1 :: (p, [sb]).
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Given (G), (H), (L), (K), and (M), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, (e)) ‖ C) ⇓L1

D1 ::(p,[ep]) ((p, γ, σ1, ∆1, acc, v) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, (e)) ‖ C) ⇓L1

D1 ::(p,[ep]) ((p, γ, σ1, ∆1, acc, v) ‖ C1) by SMC2 rule Parentheses,

we have (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, v) ‖ C1).

Given (C) Σ . ((p, γ, σ, ∆, acc, (e)) ‖ C) ⇓L
′
1

D′1 ::(p,[d]) ((p, γ, σ′1, ∆′1, acc, v′) ‖ C ′1) and (A), by Lemma 5.2.87 we

have (D) d = ep.

Given (C) and (D), by SMC2 rule Parentheses, we have (E) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, v′)

‖ C ′1).

Given (B) and (E), by the inductive hypothesis we have (F) σ1 = σ′1, (G) ∆1 = ∆′1, (H) v = v′, (I) D1 = D′1, (J)

L1 = L′1, and (K) C1 = C ′1.

Given (I) and (p, [ep]), by Lemma 5.3.38 we have (L) D1 :: (p, [ep]) = D′1 :: (p, [ep]).

Given (F), (G), (H), (J), (K), and (L), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x = e) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ds]) ((p, γ1, σ1, ∆1, acc, skip) ‖ C2)

Given (A) Π . ((p, γ, σ, ∆, acc, ty x = e) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ds]) ((p, γ1, σ1, ∆1, acc, skip) ‖ C2) by SMC2 rule

Declaration Assignment, we have (B) ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓L1

D1
((p, γ1, σ1, ∆1, acc, skip) ‖ C1), and (C)

((p, γ1, σ1, ∆1, acc, x = e) ‖ C1) ⇓L2

D2
((p, γ1, σ2, ∆2, acc, skip) ‖ C2).

Given (D) Σ . ((p, γ, σ, ∆, acc, ty x = e) ‖ C) ⇓L
′
1::L′2
D′1 ::D′2 ::(p,[d]) ((p, γ′1, σ

′
1, ∆′1, acc, skip) ‖ C ′2) and (A), by

Lemma 5.2.87 we have (E) d = ds .

Given (D) and (E) by SMC2 rule Declaration Assignment, we have (F) ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓L
′
1

D′1
((p, γ′1, σ

′
1,

∆1, acc, skip) ‖ C ′1), and (G) ((p, γ′1, σ
′
1, ∆′1, acc, x = e) ‖ C ′1) ⇓L

′
2

D′2
((p, γ′1, σ

′
2, ∆′2, acc, skip) ‖ C ′2).
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Given (B) and (F), by the inductive hypothesis we have (H) γ1 = γ′1, (I) σ1 = σ′1, (J) ∆1 = ∆′1, (K) D1 = D′1, (L)

L1 = L′1, and (M) C1 = C ′1.

Given (C), (G), (H), (I), (J), and (N), by the inductive hypothesis we have (N) σ2 = σ′2, (O) ∆2 = ∆′2, (P) D2 = D′2,

(Q) L2 = L′2, and (R) C2 = C ′2.

Given (K), (P), and (p, [ds]), by Lemma 5.3.38 we have (S) D1 :: D2 :: (p, [ds]) = D′1 :: D′2 :: (p, [ds]).

Given (L) and (Q), by Lemma 5.3.47 we have (T) L1 :: L2 = L′1 :: L′2.

Given (H), (N), (O), (S), and (T), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x[e1] = e2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[das]) ((p, γ1, σ2, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ty x = e) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ds]) ((p, γ1, σ1, ∆1, acc, skip) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[r ]) ((p, γ, σ, ∆, acc, v) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[r ]) ((p, γ, σ, ∆, acc, v) ‖ C) by SMC2 rule Read Public Variable,

we have (B) γ(x) = (l, public bty), (C) σ(l) = (ω, public bty , 1, PermL(Freeable, public bty ,public, 1)), and

(D) DecodeVal(public bty , ω) = v.

Given (E) Σ . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l′,0)])
(p,[d]) ((p, γ, σ, ∆, acc, v′) ‖ C) and (A), by Lemma 5.2.87 we have

(F) d = r .

Given (E) and (F), by SMC2 rule Read Public Variable, we have (G) γ(x) = (l′, public bty ′), (H) σ(l′) =

(ω′, public bty ′, 1, PermL(Freeable, public bty ′,public, 1)), and (I) DecodeVal(public bty ′, ω′) = v′.

Given (B) and (G), by Definition 5.3.3 we have (J) l = l′, and (K) bty = bty ′.
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Given (C), (H), and (J), by Definition 5.3.4 we have (L) ω = ω′.

Given (D), (I), (K), and (L), by Lemma 5.3.29 we have (M) v = v′.

Given (C) and (D), by Lemma 5.3.64 we have accessed location (p, [(l, 0)]). Given (H) and (I), by Lemma 5.3.64 we

have accessed location (p, [(l′, 0)]). Given (J), we have (N) (p, [(l, 0)]) = (p, [(l′, 0)]).

Given (A), (E), (F), (M), and (N), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[r1 ]) ((p, γ, σ, ∆, acc, v) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[r ]) ((p, γ, σ, ∆, acc, v) ‖ C).

Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1) by SMC2 rule

Write Public Variable, we have (e) 0 γ, (B) ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1), (C) γ(x) =

(l, public bty), and (D) UpdateVal(σ1, l, n, public bty) = σ2.

Given (E) Σ . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L
′
1::(p,[(l′,0)])

D′1 ::(p,[d]) ((p, γ, σ′2, ∆1, acc, skip) ‖ C ′1) and (A), by

Lemma 5.2.87 we have (F) d = w .

Given (E) and (F), by SMC2 rule Write Public Variable, we have (e) 0 γ, (G) ((p, γ, σ,∆, acc, e) ‖ C) ⇓L
′
1

D′1

((p, γ, σ′1,∆
′
1, acc, n′) ‖ C ′1), (H) γ(x) = (l′, public bty ′), and (I) UpdateVal(σ′1, l

′, n′, public bty ′) = σ′2.

Given (B) and (G), by the inductive hypothesis we have (J) σ1 = σ′1, (K) ∆1 = ∆′1, (L) n = n′, (M) D1 = D′1, (N)

L1 = L′1, and (O) C1 = C ′1.

Given (C) and (H), by Definition 5.3.3 we have (P) l = l′ and (Q) bty = bty ′.

Given (D), (I), (J), (P), (L), and (Q), by Lemma 5.3.34 we have (R) σ2 = σ′2.
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Given (M) and (p, [w ]), by Lemma 5.3.38 we have (S) D1 :: (p, [w ]) = D′1 :: (p, [w ]).

Given (D), by Lemma 5.3.66 we have accessed location (p, [(l, 0)]). Given (I), by Lemma 5.3.66 we have accessed

location (p, [(l′, 0)]). Given (P), we have (T) (p, [(l, 0)]) = (p, [(l′, 0)]). Given (N) and (T), by Lemma 5.3.47 we have

(U) L1 :: (p, [(l, 0)]) = L′1 :: (p, [(l′, 0)]).

Given (R), (K), (O), (S), and (U), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w2 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[w2 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1) by SMC2 rule Write

Private Variable Public Value, we have (e) 0 γ, (B) ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1), (C)

γ(x) = (l, public bty), and (D) UpdateVal(σ1, l, encrypt(n), public bty) = σ2.

Given (E) Σ . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L
′
1::(p,[(l′,0)])

D′1 ::(p,[d]) ((p, γ, σ′2, ∆2, acc, skip) ‖ C ′1) and (A), by

Lemma 5.2.87 we have (F) d = w2 .

Given (E) and (F), by SMC2 rule Write Private Variable Public Value, we have (e) 0 γ, (G) ((p, γ, σ,∆, acc, e) ‖ C)

⇓L
′
1

D′1
((p, γ, σ′1,∆

′
1, acc, n′) ‖ C ′1), (H) γ(x) = (l′, public bty ′), and (I) UpdateVal(σ′1, l

′, encrypt(n′), public

bty ′) = σ′2.

Given (B) and (G), by the inductive hypothesis we have (J) σ1 = σ′1, (K) ∆1 = ∆′1, (L) n = n′, (M) D1 = D′1, (N)

L1 = L′1, and (O) C1 = C ′1.

Given (C) and (H), by Definition 5.3.3 we have (P) l = l′ and (Q) bty = bty ′.
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Given (L) and encrypt(n) and encrypt(n′), by Axiom 5.3.1 we have (R) encrypt(n) = encrypt(n′).

Given (D), (I), (J), (P), (R), and (Q), by Lemma 5.3.34 we have (S) σ2 = σ′2.

Given (M) and (p, [w ]), by Lemma 5.3.38 we have (T) D1 :: (p, [w ]) = D′1 :: (p, [w ]).

Given (D), by Lemma 5.3.66 we have accessed location (p, [(l, 0)]). Given (I), by Lemma 5.3.66 we have accessed

location (p, [(l′, 0)]). Given (P), we have (U) (p, [(l, 0)]) = (p, [(l′, 0)]). Given (N) and (U), by Lemma 5.3.47 we have

(V) L1 :: (p, [(l, 0)]) = L′1 :: (p, [(l′, 0)]).

Given (S), (K), (O), (T), and (V), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Given (A) Π. ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2) by SMC2

rule SMC Input Public Value, we have (e) 0 γ, acc = 0, (B) ((p, γ, σ,∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1,∆1, acc,

n) ‖ C1), (C) γ(x) = (l,public bty), (D) InputValue(x, n) = n1, (E) ((p, γ, σ1,∆1, acc, x = n1) ‖ C1) ⇓L2

D2

((p, γ, σ2,∆2, acc, skip) ‖ C2).

Given (F) Σ . ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L
′
1::L′2
D′1 ::D′2 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc, skip) ‖ C ′2) and (A), by

Lemma 5.2.87 we have (G) d = inp.

Given (F) and (G), by SMC2 rule SMC Input Public Value, we have (e) 0 γ, acc = 0, (H) ((p, γ, σ,∆, acc, e) ‖ C)

⇓L
′
1

D′1
((p, γ, σ′1,∆

′
1, acc, n′) ‖ C ′1), (I) γ(x) = (l′,public bty ′), (J) InputValue(x, n′) = n′1, (K) ((p, γ, σ′1,∆

′
1, acc,

x = n′1) ‖ C ′1) ⇓L
′
2

D′2
((p, γ, σ′2,∆

′
2, acc, skip) ‖ C ′2).

Given (B) and (H), by the inductive hypothesis we have (L) σ1 = σ′1, (M) ∆1 = ∆′1, (N) n = n′, (O) D1 = D′1, (P)

L1 = L′1, and (Q) C1 = C ′1.

Given (C) and (I), by Definition 5.3.3 we have (R) l = l′, and (S) bty = bty ′.

Given (D), (J), and (N), by Axiom 5.3.2 we have (T) n1 = n′1.
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Given (E), (K), (L), (M), (Q), and (T), by the inductive hypothesis we have (U) σ2 = σ′2, (V) ∆2 = ∆′2, (W) D2 = D′2,

(X) L2 = L′2, and (Y) C2 = C ′2.

Given (O), (W), and (p, [inp]), by Lemma 5.3.38 we have (Z) D1 :: D2 :: (p, [inp]) = D′1 :: D′2 :: (p, [inp]).

Given (P) and (X), by Lemma 5.3.47 we have (A1) L1 :: L2 = L′1 :: L′2.

Given (U), (V), (Y), (Z), and (A1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, smcinput(x, e)) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[inp]) ((p, γ, σ2, ∆2, acc, skip)

‖ C2).

Case Π . ((p, γ, σ, ∆, acc, smcinput(x, e1, e1)) ‖ C) ⇓L1::L2::L3

D1 ::D2 ::D3 ::(p,[inp3 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C3)

Given (A) Π . ((p, γ, σ, ∆, acc, smcinput(x, e1, e1)) ‖ C) ⇓L1::L2::L3

D1 ::D2 ::D3 ::(p,[inp3 ]) ((p, γ, σ3, ∆3, acc, skip)

‖ C3) by SMC2 rule SMC Input Private Array, we have (e1, e2) 0 γ, acc = 0, (B) ((p, γ, σ,∆, acc, e1) ‖ C)

⇓L1

D1
((p, γ, σ1,∆1, acc, n) ‖ C1), (C) ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2,∆2, acc, α) ‖ C2), (D) γ(x) =

(l,private const bty∗), (E) InputArray(x, n, α) = [m0, ...,mα], and (F) ((p, γ, σ2,∆2, acc, x = [m0, ...,mα]) ‖ C2)

⇓L3

D3
((p, γ, σ3,∆3, acc, skip) ‖ C3).

Given (G) Σ . ((p, γ, σ, ∆, acc, smcinput(x, e1, e1)) ‖ C) ⇓L
′
1::L′2::L′3
D′1 ::D′2 ::D′3 ::(p,[d]) ((p, γ, σ′3, ∆′3, acc, skip) ‖ C ′3)

and (A), by Lemma 5.2.87 we have (H) d = inp3 .

Given (G) and (H), by SMC2 rule SMC Input Private Array, we have (e1, e2) 0 γ, acc = 0, (I) ((p, γ, σ,∆, acc, e1)

‖ C) ⇓L
′
1

D′1
((p, γ, σ′1,∆

′
1, acc, n′) ‖ C ′1), (J) ((p, γ, σ′1,∆

′
1, acc, e2) ‖ C ′1) ⇓L

′
2

D′2
((p, γ, σ′2,∆

′
2, acc, α′) ‖ C ′2), (K)

γ(x) = (l′,private const bty ′∗), (L) InputArray(x, n′, α′) = [m′0, ...,m
′
α′ ], and (M) ((p, γ, σ′2,∆

′
2, acc, x = [m′0,

..., m′α′ ]) ‖ C ′2) ⇓L
′
3

D′3
((p, γ, σ′3,∆

′
3, acc, skip) ‖ C ′3).
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Given (B) and (I), by the inductive hypothesis we have (N) σ1 = σ′1, (O) ∆1 = ∆′1, (P) n = n′, (Q) D1 = D′1, (R)

L1 = L′1, and (S) C1 = C ′1.

Given (C), (J), (N), (O), and (S), by the inductive hypothesis we have (T) σ2 = σ′2, (U) ∆2 = ∆′2, (V) α = α′, (W)

D2 = D′2, (X) L2 = L′2, and (Y) C2 = C ′2.

Given (D) and (K), by Definition 5.3.3 we have (Z) l = l′, and (A1) bty = bty ′.

Given (E), (L), (P), and (V), by Axiom 5.3.3 we have (B1) [m0, ...,mn1
] = [m′0, ...,m

′
n′1

].

Given (F), (M), (T), (U), (Y), and (B1), by the inductive hypothesis we have (C1) σ3 = σ′3, (D1) ∆3 = ∆′3, (E1)

D3 = D′3, (F1) L3 = L′3, and (G1) C3 = C ′3.

Given (O), (W), (E1) and (p, [inp3 ]), by Lemma 5.3.38 we have (H1) D1 :: D2 :: D3 :: (p, [inp3 ]) = D′1 :: D′2 :: D′3 ::

(p, [inp3 ]).

Given (R), (X), and (F1), by Lemma 5.3.47 we have (I1) L1 :: L2 :: L3 = L′1 :: L′2 :: L′3.

Given (C1), (D1), (G1), (H1), and (I1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, smcinput(x, e1, e2)) ‖ C) ⇓L1::L2::L3

D1 ::D2 ::D3 ::(p,[inp1 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C3)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, smcinput(x, e1, e1)) ‖ C) ⇓L1::L2::L3

D1 ::D2 ::D3 ::(p,[inp3 ]) ((p, γ, σ3, ∆3,

acc, skip) ‖ C3).

Case Π . ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1) by SMC2

rule SMC Output Public Value, we have (e) 0 γ, (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n)

‖ C1), (C) γ(x) = (l,public bty), (D) σ1(l) = (ω, public bty , 1, PermL(Freeable, public bty ,public, 1)), (E)

DecodeVal(public bty , ω) = n1, and (F) OutputValue(x, n, n1).
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Given (G) Σ . ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L
′
1::(p,[(l′,0)])

D′1 ::(p,[d]) ((p, γ, σ′1, ∆′1, acc, skip) ‖ C ′1) and (A),

by Lemma 5.2.87 we have (H) d = out .

Given (G) and (H), by SMC2 rule SMC Output Public Value, we have (e) 0 γ, (I) ((p, γ, σ, ∆, acc, e) ‖ C)

⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, n′) ‖C ′1), (J) γ(x) = (l′,public bty ′), (K) σ′1(l′) = (ω′, public bty ′, 1, PermL(Freeable,

public bty ′,public, 1)), (L) DecodeVal(public bty ′, ω′) = n′1, and (M) OutputValue(x, n′, n′1).

Given (B) and (I), by the inductive hypothesis we have (N) σ1 = σ′1, (O) ∆1 = ∆′1, (P) n = n′, (Q) D1 = D′1, (R)

L1 = L′1, and (S) C1 = C ′1.

Given (C) and (J), by Definition 5.3.3 we have (T) l = l′, and (U) bty = bty ′.

Given (D), (K), (N), and (T), by Definition 5.3.4 we have (V) ω = ω′.

Given (E), (L), (U), and (V), by Lemma 5.3.29 we have (W) n1 = n′1.

Given (F), (M), (P), and (W), by Lemma 5.3.1 we have identical output going to the same parties.

Given (Q) and (p, [out ]), by Lemma 5.3.38 we have (X) D1 :: (p, [out ]) = D′1 :: (p, [out ]).

Given (D) and (E), by Lemma 5.3.64 we have accessed location (p, [(l, 0)]). Given (K) and (L), by Lemma 5.3.64

we have accessed location (p, [(l′, 0)]). Given (R) and (T), by Lemma 5.3.47 we have (Y) L1 :: (p, [(l, 0)]) = L′1 ::

(p, [(l′, 0)]).

Given (N), (O), (S), (X), and (Y), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out2 ]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, smcoutput(x, e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[out]) ((p, γ, σ1, ∆1, acc, skip)

‖ C1).
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Case Π.((p, γ, σ, ∆, acc, smcoutput(x, e1, e2)) ‖C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::D2 ::(p,[out3 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C2)

Given (A) Π . ((p, γ, σ, ∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::D2 ::(p,[out3 ]) ((p, γ, σ2, ∆2,

acc, skip) ‖ C2) by SMC2 rule SMC Output Private Array, we have (e1, e2) 0 γ, (B) ((p, γ, σ, ∆, acc, e1) ‖ C)

⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1), (C) ((p, γ, σ1,∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2,∆2, acc, α) ‖ C2), (D) γ(x) =

(l,private const bty∗), (E) σ2(l) = (ω,private const bty∗, 1,PermL(Freeable, private const bty∗,private, 1)), (F)

DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], private bty , 1], (G) σ2(l1) = (ω1, private bty , α,

PermL(Freeable, private bty ,private, α)), (H) ∀i ∈ {0, ..., α− 1} DecodeArr(private bty , i, ω1) = mi, and (I)

OutputArray(x, n, [m0, ..., mα−1]).

Given (J) Σ. ((p, γ, σ, ∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L
′
1::L′2::(p,[(l′,0),(l′1,0),...,(l′1,α−1)])

D′1 ::D′2 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc,

skip) ‖ C ′2) and (A), by Lemma 5.2.87 we have (K) d = out3 .

Given (J) and (K), by SMC2 rule SMC Output Private Array, we have (e1, e2) 0 γ, (L) ((p, γ, σ, ∆, acc, e1)-

‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, n′) ‖ C ′1), (M) ((p, γ, σ′1,∆

′
1, acc, e2) ‖ C ′1) ⇓L

′
2

D′2
((p, γ, σ′2,∆

′
2, acc, α′) ‖ C ′2), (N)

γ(x) = (l′,private const bty ′∗), (O) σ′2(l′) = (ω′, private const bty ′∗, 1, PermL(Freeable, private const bty ′∗,

private, 1)), (P) DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], private bty ′, 1], (Q) σ′2(l′1) = (ω′1,

private bty ′, α′, PermL(Freeable, private bty ′,private, α′)), (R) ∀i′ ∈ {0, ..., α′ − 1} DecodeArr(private bty ′,

i′, ω′1) = m′i′ , and (S) OutputArray(x, n′, [m′0, ..., m
′
α′−1]).

Given (B) and (L), by the inductive hypothesis we have (T) σ1 = σ′1, (U) ∆1 = ∆′1, (V) n = n′, (W) D1 = D′1, (X)

L1 = L′1, and (Y) C1 = C ′1.

Given (C) and (M), by the inductive hypothesis we have (Z) σ2 = σ′2, (A1) ∆2 = ∆′2, (B1) α = α′, (C1) D2 = D′2,

(D1) L2 = L′2, and (E1) C2 = C ′2.

Given (D) and (N), by Definition 5.3.3 we have (F1) l = l′, and (G1) bty = bty ′.

Given (E), (O), (Z), and (F1), by Definition 5.3.4 we have (H1) ω = ω′.

Given (F), (P), (G1), and (H1), by Lemma 5.3.26 we have (I1) l1 = l′1.
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Given (G), (Q), (Z), and (I1), by Definition 5.3.4 we have (J1) ω1 = ω′1 and (K1) α = α′.

Given (R), (H), (K1), we have i = i′. Given (G1) and (J1), by Lemma 5.3.27 we have (L1) ∀i ∈ {0...α− 1}mi = m′i.

Given (I), (S), (V), (K1), and (L1), by Lemma 5.3.2 we have identical output going to the same parties.

Given (W), (C1) and (p, [out3 ]), by Lemma 5.3.38 we have (M1) D1 :: D2 :: (p, [out3 ]) = D′1 :: D′2 :: (p, [out3 ]).

Given (E) and (F), by Lemma 5.3.62 we have accessed locations (N1) (p, [(l, 0)]). Given (G) and (H), by Lemma 5.3.63

we have accessed locations (O1) (p, [(l1, 0), ..., (l1, α− 1)]). Given (N1) and (O1), by Lemmas 5.3.44 and 5.3.45 we

have (P1) (p, [(l, 0), (l1, 0), ..., (l1, α − 1)]) Given (O) and (P), by Lemma 5.3.62 we have accessed locations (Q1)

(p, [(l′, 0)]). Given (Q) and (R), by Lemma 5.3.63 we have accessed locations (R1) (p, [(l′1, 0), ..., (l′1, α
′ − 1)]). Given

(Q1) and (R1), by Lemmas 5.3.44 and 5.3.45 we have (S1) (p, [(l′, 0), (l′1, 0), ..., (l′1, α
′ − 1)]).

Given (X), (D1), (F1), (I1), (P1), and (S1) by Lemma 5.3.47 we have (T1) L1 :: L2 :: (p, [(l, 0), (l1, 0), ..., (l1, α −

1)]) = L′1 :: L′2 :: (p, [(l′, 0), (l′1, 0), ..., (l′1, α
′ − 1)]).

Given (Z), (A1), (E1), (M1), and (T1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::D2 ::(p,[out1 ]) ((p, γ, σ2, ∆2, acc,

skip) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, smcoutput(x, e1, e2)) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::D2 ::(p,[out3 ])

((p, γ, σ2, ∆2, acc, skip) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fpd]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fpd]) ((p, γ1, σ1, ∆, acc, skip) ‖ C) by SMC2 rule

Function Definition, we have acc = 0, x /∈ γ, (B) l = φ(), (C) GetFunTypeList(p) = ty , (D) γ1 = γ[x→ (l, ty →

ty)], (E) CheckPublicEffects(s, x, γ, σ) = n, (F) EncodeFun(s, n, p) = ω, and (G) σ1 = σ[l → (ω, ty →
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ty , 1, PermL_Fun(public))].

Given (H) Σ . ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l′,0)])
(p,[d]) ((p, γ′1, σ

′
1, ∆, acc, skip) ‖ C) and (A), by

Lemma 5.2.87 we have (I) d = fpd .

Given (H) and (I), by SMC2 rule Function Definition, we have acc = 0, x /∈ γ, (J) l′ = φ(), (K) GetFunTypeList(p) =

ty
′, (L) γ′1 = γ[x → (l′, ty

′ → ty)], (M) CheckPublicEffects(s, x, γ, σ) = n′, (N) EncodeFun(s, n′, p) = ω′,

and (O) σ′1 = σ[l′ → (ω′, ty
′ → ty , 1, PermL_Fun(public))].

Given (B) and (J), by Axiom 5.3.4 we have (P) l = l′.

Given (C) and (K), by Lemma 5.3.3 we have (Q) ty = ty
′.

Given (D), (L), (P), and (Q), by Definition 5.3.3 we have (R) γ1 = γ′1.

Given (E) and (M), by Lemma 5.3.5 we have (S) n = n′.

Given (F), (N), and (S), by Lemma 5.3.33 we have (T) ω = ω′.

Given (G), (O), (P), (Q), and (T), by Definition 5.3.4 we have (U) σ1 = σ′1.

Given (G), by Lemma 5.3.51 we have accessed (V) (p, [(l, 0)]). Given (O), by Lemma 5.3.51 we have accessed (W)

(p, [(l′, 0)]). Given (V), (W), and (P), we have (X) (p, [(l, 0)]) = (p, [(l′, 0)]).

Given (A), (H), and (I) we have (Y) (p, [fpd ]) = (p, [fpd ]).

Given (R), (U), (X), and (Y), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x(p)) ‖ C) ⇓(p,[(l,0)])
(p,[df ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fpd]) ((p, γ1, σ1, ∆, acc, skip) ‖ C).

800



Case Π . ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fd]) ((p, γ, σ2, ∆, acc, skip) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l,0)])
(p,[fd]) ((p, γ, σ2, ∆, acc, skip) ‖ C) by SMC2 rule Pre-

Declared Function Definition, we have acc = 0, x ∈ γ, (B) γ(x) = (l, ty → ty), (C) CheckPublicEffects(s, x, γ,

σ) = n, (D) σ = σ1[l → (NULL, ty → ty , 1, PermL_Fun(public))], (E) EncodeFun(s, n, p) = ω, and (F)

σ2 = σ1[l→ (ω, ty → ty , 1, PermL_Fun(public))].

Given (G) Σ . ((p, γ, σ, ∆, acc, ty x(p){s}) ‖ C) ⇓(p,[(l′,0)])
(p,[d]) ((p, γ, σ′2, ∆, acc, skip) ‖ C) and (A), by

Lemma 5.2.87 we have (H) d = fd .

Given (G) and (H), by SMC2 rule Pre-Declared Function Definition, we have acc = 0, x ∈ γ, (I) γ(x) = (l′, ty
′ → ty),

(J) CheckPublicEffects(s, x, γ, σ) = n′,

(K) σ = σ′1[l′ → (NULL, ty
′ → ty , 1, PermL_Fun(public))], (L) EncodeFun(s, n′, p) = ω′, and (M) σ′2 =

σ′1[l′ → (ω′, ty
′ → ty , 1, PermL_Fun(public))].

Given (B) and (I), by Definition 5.3.3 we have (N) l = l′ and (O) ty = ty
′.

Given (C) and (J), by Lemma 5.3.5 we have (P) n = n′.

Given (D), (K), (N), and (O), by Definition 5.3.4 we have (Q) σ1 = σ′1.

Given (E), (L), and (P), by Lemma 5.3.33 we have (R) ω = ω′.

Given (F), (M), (N), (O), (Q), and (R), by Definition 5.3.4 we have (S) σ2 = σ′2.

Given (D) and (F), by Lemma 5.3.52 we have accessed (T) (p, [(l, 0)]). Given (K) and (M), by Lemma 5.3.52 we have

accessed (U) (p, [(l′, 0)]). Given (T), (U), and (N), we have (V) (p, [(l, 0)]) = (p, [(l′, 0)]).

Given (A), (G), and (H) we have (W) (p, [fd ]) = (p, [fd ]).

Given (S), (V), and (W), by Definition 5.3.2 we have Π 'L Σ.
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Case Π . ((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc1 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Given (A) Π.((p, γ, σ, ∆, acc, x(e)) ‖C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc1 ]) ((p, γ, σ2, ∆2, acc, skip) ‖C2) by SMC2 rule Function

Call Without Public Side Effects, we have (B) γ(x) = (l, ty → ty), (C) σ(l) = (ω, ty → ty , 1, PermL_Fun(public)),

(D) DecodeFun(ω) = (s, n, p), (E) GetFunParamAssign(p, e) = s1, (F) ((p, γ, σ, ∆, acc, s1) ‖ C) ⇓L1

D1

((p, γ1, σ1, ∆1, acc, skip) ‖C1), (G) n = 0, and (H) ((p, γ1, σ1,∆1, acc, s) ‖C1) ⇓L2

D2
((p, γ2, σ2,∆2, acc, skip)-

‖ C2).

Given (I) Σ . ((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l′,0)])::L′1::L′2
D′1 ::D′2 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc, skip) ‖ C ′2) and (A), by

Lemma 5.2.87 we have (J) d = fc1 .

Given (I) and (J), by SMC2 rule Function Call Without Public Side Effects, we have (K) γ(x) = (l′, ty
′ → ty ′), (L)

σ(l′) = (ω′, ty
′ → ty ′, 1, PermL_Fun(public)), (M) DecodeFun(ω′) = (s′, n′, p′),

(N) GetFunParamAssign(p′, e) = s′1, (O) ((p, γ, σ, ∆, acc, s′1) ‖ C) ⇓L
′
1

D′1
((p, γ′1, σ

′
1, ∆′1, acc, skip) ‖ C ′1), (P)

n′ = 0, and (Q) ((p, γ′1, σ
′
1, ∆′1, acc, s) ‖ C ′1) ⇓L

′
2

D′2
((p, γ′2, σ

′
2, ∆′2, acc, skip) ‖ C ′2).

Given (B) and (K), by Definition 5.3.3 we have (R) l = l′, (S) ty = ty
′, and (T) ty = ty ′.

Given (C), (L), and (R), by Definition 5.3.4 we have (U) ω = ω′.

Given (D), (M), and (U), by Lemma 5.3.28 we have (V) s = s′, (W) n = n′, and (X) p = p′.

Given (E), (N), and (X), by Lemma 5.3.4 we have (Y) s1 = s′1.

Given (F), (O), and (Y), by the inductive hypothesis we have (Z) γ1 = γ′1, (A1) σ1 = σ′1, (B1) ∆1 = ∆′1, (C1)

D1 = D′1, (D1) L1 = L′1, and (E1) C1 = C ′1.

Given (H), (Q), (Z), (A1), (B1), (E1), by the inductive hypothesis we have (F1) γ2 = γ′2, (G1) σ2 = σ′2, (H1) ∆2 = ∆′2,

(I1) D2 = D′2, (J1) L2 = L′2, and (K1) C2 = C ′2.

Given (C1), (I1), and (p, [fc1 ]), by Lemma 5.3.38 we have (L1) D1 :: D2 :: (p, [fc1 ]) = D′1 :: D′2 :: (p, [fc1 ]).
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Given (C) and (D), by Lemma 5.3.65 we have accessed (M1) (p, [(l, 0)]). Given (L) and (M), by Lemma 5.3.65 we

have accessed (N1) (p, [(l′, 0)]). Given (M1), (N1), and (R), we have (O1) (p, [(l, 0)]) = (p, [(l′, 0)]). Given (D1), (J1),

and (O1), by Lemma 5.3.47 we have (P1) L1 :: L2 :: (p, [(l, 0)]) = L′1 :: L′2 :: (p, [(l′, 0)]).

Given (G1), (H1), (K1), (L1), and (P1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x(e)) ‖ C) ⇓(p,[(l,0)])::L1::L2

D1 ::D2 ::(p,[fc1 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, sizeof(ty)) ‖ C) ⇓ε(p,[ty]) ((p, γ, σ, ∆, acc, n) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, sizeof(ty)) ‖ C) ⇓ε(p,[ty]) ((p, γ, σ, ∆, acc, n) ‖ C) by SMC2 rule Size of Type,

we have (B) n = τ(ty) and (ty) 0 γ.

Given (C) Σ . ((p, γ, σ, ∆, acc, sizeof(ty)) ‖ C) ⇓ε(p,[d]) ((p, γ, σ, ∆, acc, n′) ‖ C) and (A), by Lemma 5.2.87 we

have (D) d = ty .

Given (C) and (D), by SMC2 rule Size of Type, we have (E) n′ = τ(ty) and (ty) 0 γ.

Given (B) and (E), by Lemma 5.3.6 we have (F) n = n′.

Given (A), (C), and (D), we have (G) (p, [ty ]) = (p, [ty ]).

Given (F) and (G), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, &x) ‖ C) ⇓ε(p,[loc]) ((p, γ, σ, ∆, acc, (l, 0)) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, &x) ‖ C) ⇓ε(p,[loc]) ((p, γ, σ, ∆, acc, (l, 0)) ‖ C) by SMC2 rule Address Of, we

have (B) γ(x) = (l, ty).
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Given (C) Σ . ((p, γ, σ, ∆, acc, &x) ‖ C) ⇓ε(p,[d]) ((p, γ, σ, ∆, acc, (l′, 0)) ‖ C) and (A), by Lemma 5.2.87 we

have (D) d = loc.

Given (C) and (D), by SMC2 rule Address Of, we have (E) γ(x) = (l′, ty ′).

Given (B) and (E), by Definition 5.3.3 we have (F) l = l′ and ty = ty ′.

Given (A), (C), and (D), we have (G) (p, [loc]) = (p, [loc]).

Given (F) and (G), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1

D1 ::(p,[cv ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1

D1 ::(p,[cv ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1) by SMC2 rule Cast Public

Value, we have (e) 0 γ, (ty = public bty), (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1), and

(C) n1 = Cast(public, ty , n).

Given (D) Σ . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L
′
1

D′1 ::(p,[d]) ((p, γ, σ′1, ∆′1, acc, n′1) ‖ C ′1) and (A), by Lemma 5.2.87

we have (E) d = cv .

Given (D) and (E), by SMC2 rule Cast Public Value, we have (e) 0 γ, (ty = public bty), (F) ((p, γ, σ, ∆, acc, e)

‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, n′) ‖ C ′1), and (G) n′1 = Cast(public, ty , n′).

Given (B) and (F), by the inductive hypothesis we have (H) σ1 = σ′1, (I) ∆1 = ∆′1, (J) n = n′, (K) D1 = D′1, (L)

L1 = L′1, and (M) C1 = C ′1.

Given (C), (G), and (J), by Lemma 5.3.7 we have (N) n1 = n′1.

Given (K) and (p, [cv ]), by Lemma 5.3.38 we have (O) D1 :: (p, [cv ]) = D′1 :: (p, [cv ]).

Given (H), (I), (N), (M), (L), and (O), by Definition 5.3.2 we have Π 'L Σ.

804



Case Π . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1

D1 ::(p,[cv1 ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1

D1 ::(p,[cv ]) ((p, γ, σ1, ∆1, acc, n1) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[cl1 ]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[cl1 ]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1) by SMC2 rule Cast

Private Location, we have (ty = private bty∗), (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (l, 0))

‖ C1), (C) σ1 = σ2

[
l →

(
ω, void, n, PermL(Freeable, ty ,private, n)

)]
, and (D) σ3 = σ2

[
l →

(
ω, ty , n

τ(ty) ,

PermL(Freeable, ty ,private, n
τ(ty) )

)]
.

Given (E) Σ . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L
′
1::(p,[(l′,0)])

D′1 ::(p,[d]) ((p, γ, σ′3, ∆′1, acc, (l′, 0)) ‖ C ′1) and (A), by

Lemma 5.2.87 we have (F) d = cl1 .

Given (E) and (F), by SMC2 rule Cast Private Location, we have (ty = private bty∗), (G) ((p, γ, σ, ∆, acc, e) ‖ C)

⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, (l′, 0)) ‖ C ′1), (H) σ′1 = σ′2

[
l′ →

(
ω′, void, n′, PermL(Freeable, void,private, n′)

)]
,

and (I) σ′3 = σ′2
[
l′ →

(
ω′, ty , n′

τ(ty) , PermL(Freeable, ty ,private, n′

τ(ty) )
)]

.

Given (B) and (G), by the inductive hypothesis we have (J) σ1 = σ′1, (K) ∆1 = ∆′1, (L) l = l′, (M) D1 = D′1, (N)

L1 = L′1, and (O) C1 = C ′1.

Given (C), (H), (J), and (L), by Definition 5.3.4 we have (P) σ2 = σ′2, (Q) ω = ω′, and (R) n = n′.

Given (D), (I), (P), (L), (Q), and (R), by Definition 5.3.4 we have (S) σ3 = σ′3.

Given (C) and (D), by Lemma 5.3.52 we have accessed (T) (p, [(l, 0)]). Given (H) and (I), by Lemma 5.3.52 we have

accessed (U) (p, [(l′, 0)]). Given (T), (U), and (L), we have (V) (p, [(l, 0)]) = (p, [(l′, 0)]). Given (N) and (V), by

Lemma 5.3.47 we have (W) L1 :: (p, [(l, 0)]) = L′1 :: (p, [(l′, 0)]).

Given (A), (E), (F), and (M), we have (X) D1 :: (p, [cl1 ]) = D′1 :: (p, [cl1 ]).
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Given (S), (K), (L), (O), (W), and (X), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[cl]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, (ty) e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[cl1 ]) ((p, γ, σ3, ∆1, acc, (l, 0)) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, free(e)) ‖ C) ⇓(p,[(l,0),(l1,0)])
(p,[fre]) ((p, γ, σ1, ∆, acc, skip) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, free(e)) ‖ C) ⇓(p,[(l,0),(l1,0)])
(p,[fre]) ((p, γ, σ1, ∆, acc, skip) ‖ C) by SMC2 rule Single

Location Free, we have acc = 0, (B) γ(x) = (l, public bty∗), (C) σ(l) = (ω,public bty∗, 1,PermL(Freeable,public

bty∗,public, 1)), (D) DecodePtr(public bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (E) CheckFreeable(γ, [(l1, 0)], [1], σ) =

1, and (F) Free(σ, l1) = (σ1, (l1, 0)).

Given (G) Σ . ((p, γ, σ, ∆, acc, free(e)) ‖ C) ⇓(p,[(l′,0),(l′1,0)])

(p,[d]) ((p, γ, σ′1, ∆, acc, skip) ‖ C) and (A), by

Lemma 5.2.87 we have (H) d = fre .

Given (G) and (H), by SMC2 rule Single Location Free, we have acc = 0, (I) γ(x) = (l′, public bty ′∗), (J)

σ(l′) = (ω′,public bty ′∗, 1,PermL(Freeable,public bty ′∗,public, 1)), (K) DecodePtr(public bty ′∗, 1, ω′) =

[1, [(l′1, 0)], [1], 1], (L) CheckFreeable(γ, [(l′1, 0)], [1], σ) = 1, and (M) Free(σ, l′1) = (σ′1, (l
′
1, 0)).

Given (B) and (I), by Definition 5.3.3 we have (N) l = l′ and (O) bty = bty ′.

Given (C), (J), and (N), by Definition 5.3.4 we have (P) ω = ω′.

Given (D), (K), (O), (P), by Lemma 5.3.26 we have (Q) l1 = l′1.

Given (F), (M), and (Q), by Lemma 5.3.8 we have (R) σ1 = σ′1.

Given (C) and (D), by Lemma 5.3.62 we have accessed (S) (p, [(l, 0)]). Given (F), by Lemma 5.3.48 we have accessed

location (T) (p, [(l1, 0)] Given (J) and (K), by Lemma 5.3.62 we have accessed (U) (p, [(l′, 0)]). Given (M), by
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Lemma 5.3.48 we have accessed location (V) (p, [(l′1, 0)]

Given (S), (T), (U), and (V), by Lemmas 5.3.44 and 5.3.45 we have (W) (p, [(l, 0), (l1, 0)]) and (X) (p, [(l′, 0), (l′1, 0)]).

Given (W), (X), (N), and (Q) by Definition 5.3.10 we have (Y) (p, [(l, 0), (l1, 0)]) = (p, [(l′, 0), (l′1, 0)]).

Given (A), (G), and (H), we have (Z) (p, [fre]) = (p, [fre]).

Given (R), (Y), and (Z), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, pfree(x)) ‖ C) ⇓(p,[(l,0),(l1,0)])
(p,[pfre]) ((p, γ, σ1, ∆, acc, skip) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, free(e)) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])])
D1 ::(p,[fre]) ((p, γ, σ2, ∆, acc, skip) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, pmalloc(e, ty)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[malp]) ((p, γ, σ2, ∆1, acc, (l, 0)) ‖ C1)

Given (A) Π.((p, γ, σ, ∆, acc, pmalloc(e, ty)) ‖C) ⇓L1::(p,[(l,0)])
D1 ::(p,[malp]) ((p, γ, σ2, ∆1, acc, (l, 0)) ‖C1) by SMC2 rule

Private Malloc, we have (e) 0 γ, acc = 0, (ty = private bty∗) ∨ (ty = private bty), (B) ((p, γ, σ, ∆, acc, e) ‖ C)

⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1), (C) l = φ(), and (D) σ2 = σ1

[
l→

(
NULL, void∗, n · τ(ty), PermL(Freeable,

void∗,private, n · τ(ty))
)]

.

Given (E) Π . ((p, γ, σ, ∆, acc, pmalloc(e, ty)) ‖ C) ⇓L
′
1::(p,[(l′,0)])

D′1 ::(p,[d]) ((p, γ, σ′2, ∆′1, acc, (l′, 0)) ‖ C ′1) by

Lemma 5.2.87 we have (F) d = malp.

Given (E) and (F), by SMC2 rule Private Malloc, we have (e) 0 γ, acc = 0, (ty = private bty∗) ∨ (ty =

private bty), (G) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆1, acc, n′) ‖ C ′1), (H) l′ = φ(), and (I) σ′2 =

σ′1
[
l′ →

(
NULL, void∗, n′ · τ(ty), PermL(Freeable, void∗,private, n′ · τ(ty))

)]
.

Given (B) and (G), by the inductive hypothesis we have (J) σ1 = σ′1, (K) ∆1 = ∆′1, (L) n = n′, (M) D1 = D′1, (N)

L1 = L′1, and (O) C1 = C ′1.

Given (C) and (H), by Axiom 5.3.4 we have (P) l = l′.
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Given (D), (I), (J), (P), and (L), by Definition 5.3.4 we have (Q) σ2 = σ′2.

Given (D), by Lemma 5.3.51 we have accessed location (R) (p, [(l, 0)]). Given (I), by Lemma 5.3.51 we have accessed

location (S) (p, [(l′, 0)]). Given (N), (P), (R), and (S), by Lemma 5.3.47 we have (T) L1 :: (p, [(l, 0)]) = L′1 ::

(p, [(l′, 0)]).

Given (O) and (p, [malp]), by Lemma 5.3.38 we have (U) D1 :: (p, [malp]) = D′1 :: (p, [malp]).

Given (Q), (K), (P), (T), (U) and (O), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, malloc(e)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[mal]) ((p, γ, σ2, ∆1, acc, (l, 0)) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, pmalloc(e, ty)) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[malp]) ((p, γ, σ2, ∆1, acc, (l,

0)) ‖ C1).

Case Π . ((p, γ, σ,∆, acc,++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin3 ]) ((p, γ, σ1,∆, acc, n2) ‖ C)

Given (A) Π . ((p, γ, σ,∆, acc,++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin3 ]) ((p, γ, σ1,∆, acc, n2) ‖ C), by SMC2 rule Pre-Increment

Private Int Variable, we have (B) γ(x) = (l,private int), (C) σ(l) = (ω,private int, 1,PermL(Freeable,private int,

private, 1)), (D) DecodeVal(private int, ω) = n1, (E) n2 = n1+encrypt(1), and (F) UpdateVal(σ, l, n2,private int)

= σ1.

Given (G) Σ. ((p, γ, σ,∆, acc,++ x) ‖ C) ⇓(p,[(l′,0)])
(p,[d]) ((p, γ, σ′1,∆, acc, v′2) ‖ C) and (A), by Lemma 5.2.87 we have

(H) d = pin3 .

Given (G) and (H), by SMC2 rule Pre-Increment Private Int Variable, we have (I) γ(x) = (l′,private int), (J)

σ(l′) = (ω′,private int, 1,PermL(Freeable,private int,private, 1)), (K) DecodeVal(private int, ω′) = n′1, (L)

n′2 = n′1 + encrypt(1), and (M) UpdateVal(σ, l′, n′2,private int) = σ′1.

Given (B) and (I), by Definition 5.3.3 we have (N) l = l′.
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Given (C), (J), and (N), by Definition 5.3.4 we have (O) ω = ω′.

Given (D), (K), and (O), by Lemma 5.3.29 we have (P) n1 = n′1.

By Axiom 5.3.1, we have (Q) encrypt(1) = encrypt(1). Given (E), (L), (P), and (Q), we have (R) n2 = n′2.

Given (F), (M), (N), and (R), by Lemma 5.3.34 we have (S) σ1 = σ′1.

Given (A), (G), and (H), we have (T) (p, [pin3 ]) = (p, [pin3 ]).

Given (C) and (D), by Lemma 5.3.64 and Lemma 5.3.66 we have accessed location (U) (p, [(l, 0)]). Given (J) and (K),

by Lemma 5.3.64 and Lemma 5.3.66 we have accessed location (V) (p, [(l′, 0)]). Given (U), (V), and (N), we have (W)

(p, [(l, 0)]) = (p, [(l′, 0)]).

Given (S), (R), (T), and (W) by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin]) ((p, γ, σ1, ∆, acc, n1) ‖ C)

This case is similar to Case Π . ((p, γ, σ,∆, acc,++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin3 ]) ((p, γ, σ1,∆, acc, n2) ‖ C).

Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin5 ]) ((p, γ, σ1, ∆, acc, [α, l1, j, i]) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin5 ]) ((p, γ, σ1, ∆, acc, [α, l1, j, i]) ‖ C) by SMC2 rule Pre-

Increment Private Pointer Multiple Locations, we have (B) γ(x) = (l, private bty∗), (C) σ(l) = (ω, private bty∗, α,

PermL(Freeable,private bty∗,private, α)), (D) DecodePtr(private bty∗, α, ω) = [α, l, j, i],

(E) IncrementList(l, τ(private bty∗), σ) = (l1, 1), and (F) UpdatePtr(σ, (l, 0), [α, l1, j, i], private bty∗) =

(σ1, 1).

Given (G) Σ . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l′,0)])
(p,[d]) ((p, γ, σ′1, ∆, acc, [α′, l

′
1, j

′
, i′]) ‖ C) and (A), by

Lemma 5.2.87 we have (H) d = pin5 .
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Given (G) and (H), by SMC2 rule Pre-Increment Private Pointer Multiple Locations, we have (I) γ(x) = (l′, private

bty ′∗), (J) σ(l′) = (ω′, private bty ′∗, α′, PermL(Freeable,private bty ′∗,private, α′)),

(K) DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], (L) IncrementList(l

′
, τ(private bty ′∗), σ) = (l

′
1, 1), and

(M) UpdatePtr(σ, (l′, 0), [α′, l
′
1, j

′
, i′], private bty ′∗) = (σ′1, 1).

Given (B) and (I), by Definition 5.3.3 we have (N) l = l′ and (O) bty = bty ′.

Given (C), (J), and (N), by Definition 5.3.4 we have (P) ω = ω′ and (Q) α = α′.

Given (D), (K), (O), (P), and (Q), by Lemma 5.3.26 we have (R) l = l
′
, (S) j = j

′
, and (T) i = i′.

Given (E), (L), (R), and (O), by Lemma 5.3.9 we have (U) l1 = l
′
1.

Given (F), (M), (N), (O), (Q), (S), (T), and (U), by Lemma 5.3.36 we have (V) σ1 = σ′1.

Given (A), (G), and (H), we have (W) (p, [pin5 ]) = (p, [pin5 ]).

Given (C) and (D), by Lemma 5.3.62 we have accessed location (X) (p, [(l, 0)]). Given (J) and (K), by Lemma 5.3.62

we have accessed location (Y) (p, [(l′, 0)]). Given (X), (Y), and (N), we have (Z) (p, [(l, 0)]) = (p, [(l′, 0)]).

Given (V), (Q), (U), (S), (T), (W) and (Z) by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin4 ]) ((p, γ, σ1, ∆, acc, [n, l1, j, 1]) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin5 ]) ((p, γ, σ1, ∆, acc, [α, l1, j, i]) ‖ C).

Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin2 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin2 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C) by SMC2 rule Pre-

Increment Public Pointer Higher Level Indirection Single Location, we have i > 1, (B) γ(x) = (l, public bty∗),
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(C) σ(l) = (ω, public bty∗, 1, PermL(Freeable,public bty∗,public, 1)), (D) DecodePtr(public bty∗, 1, ω) =

[1, [(l1, µ1)], [1], i], (E) ((l2, µ2), 1) = GetLocation((l1, µ1), τ(public bty∗), σ), and (F) UpdatePtr(σ, (l, 0), [1,

[(l2, µ2)], [1], i], public bty) = (σ1, 1).

Given (G) Σ.((p, γ, σ, ∆, acc, ++ x) ‖C) ⇓(p,[(l′,0)])
(p,[d]) ((p, γ, σ′1, ∆, acc, (l′2, µ

′
2)) ‖C) and (A), by Lemma 5.2.87

we have (H) d = pin2 .

Given (G) and (H), by SMC2 rule Pre-Increment Public Pointer Higher Level Indirection Single Location, we have

i′ > 1, (I) γ(x) = (l′, public bty ′∗), (J) σ(l′) = (ω′, public bty ′∗, 1, PermL(Freeable,public bty ′∗,public, 1)),

(K) DecodePtr(public bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′], (L) ((l′2, µ

′
2), 1) = GetLocation((l′1, µ

′
1), τ(public

bty ′∗), σ), and (M) UpdatePtr(σ, (l′, 0), [1, [(l′2, µ
′
2)], [1], i′], public bty ′) = (σ′1, 1).

Given (B) and (I), by Definition 5.3.3 we have (N) l = l′ and (O) bty = bty ′.

Given (C), (J), and (N), by Definition 5.3.4 we have (P) ω = ω′.

Given (D), (K), (O), and (P), by Lemma 5.3.26 we have (Q) l1 = l′1, (R) µ1 = µ′1, and (S) i = i′.

Given (E), (L), (O), (Q), and (R), by Lemma 5.3.10 we have (T) l2 = l′2 and (U) µ2 = µ′2.

Given (F), (M), (N), (O), (S), (T), and (U), by Lemma 5.3.36 we have (V) σ1 = σ′1.

Given (A), (G), and (H), we have (W) (p, [pin2 ]) = (p, [pin2 ]).

Given (C) and (D), by Lemma 5.3.62 we have accessed location (X) (p, [(l, 0)]). Given (J) and (K), by Lemma 5.3.62

we have accessed location (Y) (p, [(l′, 0)]). Given (X), (Y), and (N), we have (Z) (p, [(l, 0)]) = (p, [(l′, 0)]).

Given (V), (T), (U), (W) and (Z) by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin1 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

811



This case is similar to Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin2 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C).

Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin6 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin2 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C).

Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin7 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ++ x) ‖ C) ⇓(p,[(l,0)])
(p,[pin2 ]) ((p, γ, σ1, ∆, acc, (l2, µ2)) ‖ C).

Case Π . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[iet]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

Given (A) Π . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[iet]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2) by SMC2

rule Public If Else True, we have (e) 0 γ, n 6= 0, (B)((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1),

and (C) ((p, γ, σ1, ∆1, acc, s1) ‖ C1) ⇓L2

D2
((p, γ1, σ2, ∆2, acc, skip) ‖ C2).

Given (D) Σ . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L
′
1::L′2
D′1 ::D′2 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc, skip) ‖ C ′2) and (A), by

Lemma 5.2.87 we have (E) d = iet .

Given (D) and (E), by SMC2 rule Public If Else True, we have (e) 0 γ, n′ 6= 0 (F)((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1

((p, γ, σ′1, ∆′1, acc, n′) ‖ C ′1), and (G) ((p, γ, σ′1, ∆′1, acc, s′1) ‖ C ′1) ⇓L
′
2

D′2
((p, γ′1, σ

′
2, ∆′2, acc, skip) ‖ C ′2).

Given (B) and (F), by the inductive hypothesis we have (H) σ1 = σ′1, (I) ∆1 = ∆′1, (J) n = n′, (K) D1 = D′1, (L)

L1 = L′1, and (M) C1 = C ′1.

Given (C), (G), (H), (I), and (M), by the inductive hypothesis we have (N) γ2 = γ′2, (O) σ2 = σ′2, (P) ∆2 = ∆′2, (Q)

D2 = D′2, (R) L2 = L′2, and (S) C2 = C ′2.

Given (K), (Q), and (p, [iet ]), by Lemma 5.3.38 we have (T) D1 :: D2 :: (p, [iet ]) = D′1 :: D′2 :: (p, [iet ]).
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Given (L) and (R), by Lemma 5.3.47 we have (U) L1 :: L2 = L′1 :: L′2.

Given (O), (P), (S), (T), and (U), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[ief ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, if (e) s1 else s2) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[iet]) ((p, γ, σ2, ∆2, acc, skip)

‖ C2).

Case Π . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓LD::(p,[wle]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓LD::(p,[wle]) ((p, γ, σ1, ∆1, acc, skip) ‖ C1) by SMC2 rule

While End, we have (e) 0 γ, n = 0, and (B) ((p, γ, σ,∆, acc, e) ‖ C) ⇓LD ((p, γ, σ1,∆1, acc, n) ‖ C1).

Given (C) Σ . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓L′D′::(p,[d]) ((p, γ, σ′1, ∆′1, acc, skip) ‖ C ′1) and (A), by

Lemma 5.2.87 we have (D) d = wle .

Given (C) and (D), by SMC2 rule While End, we have (e) 0 γ, n′ = 0, and (E) ((p, γ, σ,∆, acc, e) ‖ C) ⇓L′D′

((p, γ, σ′1,∆
′
1, acc, n′) ‖ C ′1).

Given (B) and (E), by the inductive hypothesis we have (F) σ1 = σ′1, (G) ∆1 = ∆′1, (H) n = n′, (I) D = D′, (J)

L = L′, and (K) C1 = C ′1.

Given (I) and (p, [wle]), by Lemma 5.3.38 we have (L) D :: (p, [wle]) = D′ :: (p, [wle]).

Given (F), (G), (J), (L), and (K), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓L1::L2

D1 ::D2 ::(p,[wlc]) ((p, γ, σ2, ∆2, acc, while (e) s) ‖ C2)

Given (A) Π.((p, γ, σ, ∆, acc, while (e) s) ‖C) ⇓L1::L2

D1 ::D2 ::(p,[wlc]) ((p, γ, σ2, ∆2, acc, while (e) s) ‖C2) by SMC2
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rule While Continue, we have (e) 0 γ, n 6= 0, (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1),

and (C) ((p, γ, σ1, ∆1, acc, s) ‖ C1) ⇓L2

D2
((p, γ1, σ2, ∆2, acc, skip) ‖ C2).

Given (D) Σ . ((p, γ, σ, ∆, acc, while (e) s) ‖ C) ⇓L
′
1::L′2
D′1 ::D′2 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc, while (e) s) ‖ C ′2) and (A),

by Lemma 5.2.87 we have (E) d = wlc.

Given (D) and (E), by SMC2 rule While Continue, we have (e) 0 γ, n 6= 0, (F) ((p, γ, σ, ∆, acc, e) ‖ C)

⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, n′) ‖ C ′1), and (G) ((p, γ, σ′1, ∆′1, acc, s) ‖ C ′1) ⇓L

′
2

D′2
((p, γ′1, σ

′
2, ∆′2, acc, skip) ‖ C ′2).

Given (B) and (F), by the inductive hypothesis we have (H) σ1 = σ′1, (I) ∆1 = ∆′1, (J) n = n′, (K) D1 = D′1, (L)

L1 = L′1, and (M) C1 = C ′1.

Given (C), (G), (H), (I), and (M), by the inductive hypothesis we have (N) γ1 = γ′1, (O) σ2 = σ′2, (P) ∆2 = ∆′2, (Q)

D2 = D′2, (R) L2 = L′2, and (S) C2 = C ′2.

Given (K), (Q), and (p, [wlc]), by Lemma 5.3.38 we have (T) D1 :: D2 :: (p, [wlc]) = D′1 :: D′2 :: (p, [wlc]).

Given (L) and (R), by Lemma 5.3.47 we have (U) L1 :: L2 = L′1 :: L′2.

Given (O), (P), (S), (T), and (U), by Definition 5.3.2 we have Π 'L Σ.

Case Π. ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2)) ⇓L1::L2::L3::L4::L5::L6::L7

D1 ::D2 ::D3 ::(p,[iep])

((1, γ1, σ1
6 ,∆

1
3, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
3, acc, skip))

Given (A) Π. ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2))

⇓L1::L2::L3::L4::L5::L6::L7

D1 ::D2 ::D3 ::(p,[iep]) ((1, γ1, σ1
6 ,∆

1
3, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
3, acc, skip)) by SMC2 rule Private If Else

(Variable Tracking), we have {(e) ` γp}qp=1, (B) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1
((1, γ1, σ1

1 ,

∆1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)), (C) {Extract(s1, s2, γ

p) = (xlist , 0)}qp=1,

(D) {InitializeVariables(xlist , γ
p, σp

1 , n
p, acc + 1) = (γp

1 , σ
p
2 , l

p

2)}qp=1, (E) ((1, γ1
1 , σ

1
2 ,∆

1
1, acc + 1, s1) ‖ ... ‖

(q, γq
1 , σ

q
2 ,∆

q
1, acc + 1, s1)) ⇓L3

D2
((1, γ1

2 , σ
1
3 ,∆

1
2, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
2, acc + 1, skip)),

(F) {RestoreVariables(xlist , γ
p
1 , σ

p
3 , acc+1) = (σp

4 , l
p

4)}qp=1, (G) ((1, γ1
1 , σ

1
4 ,∆

1
2, acc+1, s2) ‖ ... ‖ (q, γq

1 , σ
q
4 ,∆

q
2,

acc + 1, s2)) ⇓L5

D3
((1, γ1

3 , σ
1
5 ,∆

1
3, acc + 1, skip) ‖ ... ‖ (q, γq

3 , σ
q
5 ,∆

q
3, acc + 1, skip)),
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(H) {ResolveVariables_Retrieve(xlist , acc + 1, γp
1 , σ

p
5 ) = ([(vp

t1, v
p
e1), ..., (vp

tm, v
p
em)], np

1 , l
p

6)}qp=1,

(I) MPCresolve([n1
1, ..., n

q
1], [[(v1

t1, v
1
e1), ..., (v1

tm, v
1
em)], ..., [(vq

t1, v
q
e1), ..., (vq

tm, v
q
em)]]) = [[v1

1 , ..., v
1
m], ..., [vq

1 , ...,

vq
m]] (J) {ResolveVariables_Store(xlist , acc + 1, γp

1 , σ
p
5 , [vp

1 , ..., v
p
m]) = (σp

6 , l
p

7)}qp=1, (K) L2 = (1, l
1

2) ‖ ...

‖ (q, l
q

2), (L) L4 = (1, l
1

4) ‖ ... ‖ (q, l
q

4), (M) L6 = (1, l
1

6) ‖ ... ‖ (q, l
q

6), and (N) L7 = (1, l
1

7) ‖ ... ‖ (q, l
q

7).

Given (O) Σ . ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2))

⇓L
′
1::L′2::L′3::L′4::L′5::L′6::L′7
D′1 ::D′2 ::D′3 ::(p,[d]) ((1, γ1, σ′16 ,∆

′1
3 , acc, skip) ‖ ... ‖ (q, γq, σ′q6 ,∆

′q
3 , acc, skip)) and (A), by Lemma 5.2.87 we

have (P) d = iep.

Given (O) and (P), by SMC2 rule Private If Else (Variable Tracking), we have {(e) ` γp}qp=1, (Q) ((1, γ1, σ1,∆1, acc,

e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L
′
1

D′1
((1, γ1, σ′11 ,∆

′1
1 , acc, n′1) ‖ ... ‖ (q, γq, σ′q1 ,∆

′q
1 , acc, n′q)), (R) {Extract(s1,

s2, γ
p) = (x′list , 0)}qp=1, (S) {InitializeVariables(x′list , γ

p, σ′p1 , n
′p, acc+1) = (γ′p1 , σ

′p
2 , l
′p
2 )}qp=1, (T) ((1, γ′11 , σ

′1
2 ,

∆′11 , acc + 1, s1) ‖ ... ‖ (q, γ′q1 , σ
′q
2 ,∆

′q
1 , acc + 1, s1)) ⇓L

′
3

D′2
((1, γ′12 , σ

′1
3 ,∆

′1
2 , acc + 1, skip) ‖ ... ‖ (q, γ′q2 , σ

′q
3 ,∆

′q
2 ,

acc + 1, skip)), (U) {RestoreVariables(x′list , γ
′p
1 , σ

′p
3 , acc + 1) = (σ′p4 , l

′p
4 )}qp=1, (V) ((1, γ′11 , σ

′1
4 ,∆

′1
2 , acc +

1, s2) ‖ ... ‖ (q, γ′q1 , σ
′q
4 ,∆

′q
2 , acc + 1, s2)) ⇓L

′
5

D′3
((1, γ′13 , σ

′1
5 ,∆

′1
3 , acc + 1, skip) ‖ ... ‖ (q, γ′q3 , σ

′q
5 ,∆

′q
3 , acc +

1, skip)), (W) {ResolveVariables_Retrieve(x′list , acc + 1, γ′p1 , σ
′p
5 ) = ([(v′pt1, v

′p
e1), ..., (v′ptm, v

′p
em)], n′p1 , l

′p
6 )}qp=1,

(X) MPCresolve([n′11 , ..., n
′q
1 ], [[(v′1t1, v

′1
e1), ..., (v′1tm, v

′1
em)], ..., [(v′qt1, v

′q
e1), ..., (v′qtm, v

′q
em)]]) = [[v′11 , ..., v

′1
m], ..., [v′q1 ,

..., v′qm]] (Y) {ResolveVariables_Store(x′list , acc + 1, γ′p1 , σ
′p
5 , [v′p1 , ..., v

′p
m]) = (σ′p6 , l

′p
7 )}qp=1, (Z) L′2 = (1, l

′1
2 ) ‖ ...

‖ (q, l
′q
2 ), (A1) L′4 = (1, l

′1
4 ) ‖ ... ‖ (q, l

′q
4 ), (B1) L′6 = (1, l

′1
6 ) ‖ ... ‖ (q, l

′q
6 ), and (C1) L′7 = (1, l

′1
7 ) ‖ ... ‖ (q, l

′q
7 ).

Given (B) and (Q), by the inductive hypothesis we have (D1) {σp
1 = σ′p1 }

q
p=1, (E1) {∆p

1 = ∆′p1 }
q
p=1, (F1) {np =

n′p}qp=1, (G1) D1 = D′1, and (H1) L1 = L′1.

Given (C) and (R), by Lemma 5.3.16 we have (I1) xlist = x′list .

Given (D), (S), (D1), and (F1), by Lemma 5.3.17 and we have (J1) {γp
1 = γ′p1 }

q
p=1, (K1) {σp

2 = σ′p2 }
q
p=1, and (L1)

{lp2 = l
′p
2 }

q
p=1.

Given (L1), (K), and (Z), by Lemma 5.3.53 and Definition 5.3.10 we have (M1) L2 = L′2.

Given (E), (T), (J1), (K1), and (E1), by the inductive hypothesis we have (N1) {γp
2 = γ′p2 }

q
p=1, (O1) {σp

3 = σ′p3 }
q
p=1,

(P1) {∆p
2 = ∆′p2 }

q
p=1, (Q1) D2 = D′2, and (R1) L3 = L′3.
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Given (F), (U), (I1), (J1), and (O1), by Lemma 5.3.18 we have (S1) {σp
4 = σ′p4 }

q
p=1, and (T1) {lp4 = l

′p
4 }

q
p=1.

Given (T1), (L), and (A1), by Lemma 5.3.54 and Definition 5.3.10 we have (U1) L4 = L′4.

Given (G), (V), (J1), (S1), and (P1), by the inductive hypothesis we have (V1) {γp
3 = γ′p3 }

q
p=1, (W1) {σp

5 = σ′p5 }
q
p=1,

(X1) {∆p
3 = ∆′p3 }

q
p=1, (Y1) D3 = D′3, and (Z1) L5 = L′5.

Given (H), (W), (J1), (W1), (F1), and (I1), by Lemma 5.3.19 we have (A2) {[(vp
t1, v

p
e1), ..., (vp

tm, v
p
em)] = [(v′pt1, v

′p
e1),

..., (v′ptm, v
′p
em)]}qp=1, (B2) {np

1 = n′p1 }
q
p=1, and (C2) {lp6 = l

′p
6 }

q
p=1.

Given (M), (B1), and (C2), by Lemma 5.3.55 and Definition 5.3.10 we have (D2) L6 = L′6.

Given (I), (X), (B2), and (A2), by Axiom 5.3.10 we have [[v1
1 , ..., v

1
m], ..., [vq

1 , ..., v
q
m]] = [[v′11 , ..., v

′1
m], ..., [v′q1 , ..., v

′q
m]]

and therefore (E2) {[vp
1 , ..., v

p
m] = [v′p1 , ..., v

′p
m]}qp=1.

Given (J), (Y), (I1), (J1), (W1), and (E2), by Lemma 5.3.20 we have (F2) {σp
6 = σ′p6 }

q
p=1, and (G2) {lp7 = l

′p
7 }

q
p=1.

Given (N), (C1), and (G2), by Lemma 5.3.56 and Definition 5.3.10 we have (H2) L7 = L′7.

Given (G1), (Q1), (Y1), and (P), by Lemma 5.3.38 we have (I2) D1 :: D2 :: D3 :: (p, [iep]) = D1 :: D′2 :: D′3(p, [iep]).

Given (H1), (M1), (R1), (U1), (Z1), (D2), and (H2), by Lemma 5.3.47 we have (J2)L1 :: L2 :: L3 :: L4 :: L5 :: L6 :: L7

= L′1 :: L′2 :: L′3 :: L′4 :: L′5 :: L′6 :: L′7.

Given (F2), (X1), (J2), and (I2), by Definition 5.3.2, we have Π 'L Σ.

Case Π. ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2)) ⇓L1::L2::L3::L4::L5::L6::L7

D1 ::D2 ::D3 ::(p,[iepd])

((1, γ1, σ1
6 ,∆

1
6, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
6, acc, skip))

Given (A) Π. ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2))

⇓L1::L2::L3::L4::L5::L6::L7

D1 ::D2 ::D3 ::(p,[iepd]) ((1, γ1, σ1
6 ,∆

1
6, acc, skip) ‖ ... ‖ (q, γq, σq

6 ,∆
q
6, acc, skip)) by SMC2 rule Private If Else (Lo-

cation Tracking), we have {(e) ` γp}qp=1, (B) ((1, γ1, σ1,∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1
((1, γ1, σ1

1 ,
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∆1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)), (C) {Extract(s1, s2, γ

p) = (xlist , 1)}qp=1,

(D) {Initialize(∆p
1 , xlist , γ

p, σp
1 , n

p, acc + 1) = (γp
1 , σ

p
2 ,∆

p
2 , l

p

2)}qp=1, (E) ((1, γ1
1 , σ

1
2 ,∆

1
2, acc + 1, s1) ‖ ... ‖

(q, γq
1 , σ

q
2 ,∆

q
2, acc + 1, s1)) ⇓L3

D2
((1, γ1

2 , σ
1
3 ,∆

1
3, acc + 1, skip) ‖ ... ‖ (q, γq

2 , σ
q
3 ,∆

q
3, acc + 1, skip)),

(F) {Restore(σp
3 , ∆p

3 , acc+1) = (σp
4 ,∆

p
4 , l

p

4)}qp=1, (G) ((1, γ1
1 , σ

1
4 ,∆

1
4, acc+1, s2) ‖ ... ‖ (q, γq

1 , σ
q
4 ,∆

q
4, acc+1, s2))

⇓L5

D3
((1, γ1

3 , σ
1
5 ,∆

1
5, acc + 1, skip) ‖ ... ‖ (q, γq

3 , σ
q
5 ,∆

q
5, acc + 1, skip)),

(H) {Resolve_Retrieve(γp
1 , σ

p
5 ,∆

p
5 , acc + 1) = ([(vp

t1, v
p
e1), ..., (vp

tm, v
p
em)], np

1 , l
p

6)}qp=1,

(I) MPCresolve([n1
1, ..., n

q
1], [[(v1

t1, v
1
e1), ..., (v1

tm, v
1
em)], ..., [(vq

t1, v
q
e1), ..., (vq

tm, v
q
em)]]) = [[v1

1 , ..., v
1
m], ..., [vq

1 , ...,

vq
m]] (J) {Resolve_Store(∆p

5 , σ
p
5 , acc + 1, [vp

1 , ..., v
p
m]) = (σp

6 ,∆
p
6 , l

p

7)}qp=1, (K) L2 = (1, l
1

2) ‖ ... ‖ (q, l
q

2), (L)

L4 = (1, l
1

4) ‖ ... ‖ (q, l
q

4), (M) L6 = (1, l
1

6) ‖ ... ‖ (q, l
q

6), and (N) L7 = (1, l
1

7) ‖ ... ‖ (q, l
q

7).

Given (O) Σ . ((1, γ1, σ1,∆1, acc, if (e) s1 else s2) ‖ ... ‖ (q, γq, σq,∆q, acc, if (e) s1 else s2))

⇓L
′
1::L′2::L′3::L′4::L′5::L′6::L′7
D′1 ::D′2 ::D′3 ::(p,[d]) ((1, γ1, σ′16 ,∆

′1
6 , acc, skip) ‖ ... ‖ (q, γq, σ′q6 ,∆

′q
6 , acc, skip)) and (A), by Lemma 5.2.87 we

have (P) d = iepd .

Given (O) and (P), by SMC2 rule Private If Else (Location Tracking), we have {(e) ` γp}qp=1, (Q) ((1, γ1, σ1,∆1,

acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L
′
1

D′1
((1, γ1, σ′11 ,∆

′1
1 , acc, n′1) ‖ ... ‖ (q, γq, σ′q1 ,∆

′q
1 , acc, n′q)),

(R) {Extract(s1, s2, γ
p) = (x′list , 1)}qp=1, (S) {Initialize(∆′p1 , x

′
list , γ

′p, σ′p1 , n
′p, acc + 1) = (γ′p1 , σ

′p
2 ,∆

′p
2 ,

l
′p
2 )}qp=1, (T) ((1, γ′11 , σ

′1
2 ,∆

′1
2 , acc + 1, s1) ‖ ... ‖ (q, γ′q1 , σ

′q
2 ,∆

′q
2 , acc + 1, s1)) ⇓L

′
3

D′2
((1, γ′12 , σ

′1
3 ,∆

′1
3 , acc + 1, skip)

‖ ... ‖ (q, γ′q2 , σ
′q
3 ,∆

′q
3 , acc + 1, skip)), (U) {Restore(σ′p3 , ∆′p3 , acc + 1) = (σ′p4 ,∆

′p
4 , l
′p
4 )}qp=1, (V) ((1, γ′11 , σ

′1
4 ,

∆′14 , acc + 1, s2) ‖ ... ‖ (q, γ′q1 , σ
′q
4 ,∆

′q
4 , acc + 1, s2)) ⇓L

′
5

D′3
((1, γ′13 , σ

′1
5 ,∆

′1
5 , acc + 1, skip) ‖ ... ‖ (q, γ′q3 , σ

′q
5 ,∆

′q
5 ,

acc + 1, skip)), (W) {Resolve_Retrieve(γ′p1 , σ
′p
5 ,∆

′p
5 , acc + 1) = ([(v′pt1, v

′p
e1), ..., (v′ptm, v

′p
em)], n′p1 , l

′p
6 )}qp=1,

(X) MPCresolve([n′11 , ..., n
′q
1 ], [[(v′1t1, v

′1
e1), ..., (v′1tm, v

′1
em)], ..., [(v′qt1, v

′q
e1), ..., (v′qtm, v

′q
em)]]) = [[v′11 , ..., v

′1
m], ..., [v′q1 ,

..., v′qm]]

(Y) {Resolve_Store(∆′p5 , σ
′p
5 , acc + 1, [v′p1 , ..., v

′p
m]) = (σ′p6 ,∆

′p
6 , l
′p
7 )}qp=1, (Z) L′2 = (1, l

′1
2 ) ‖ ... ‖ (q, l

′q
2 ),

(A1) L′4 = (1, l
′1
4 ) ‖ ... ‖ (q, l

′q
4 ), (B1) L′6 = (1, l

′1
6 ) ‖ ... ‖ (q, l

′q
6 ), and (C1) L′7 = (1, l

′1
7 ) ‖ ... ‖ (q, l

′q
7 ).

Given (B) and (Q), by the inductive hypothesis we have (D1) {σp
1 = σ′p1 }

q
p=1, (E1) {∆p

1 = ∆′p1 }
q
p=1, (F1) {np =

n′p}qp=1, (G1) D1 = D′1, and (H1) L1 = L′1.

Given (C) and (R), by Lemma 5.3.16 we have (I1) xlist = x′list .

Given (D), (S), (D1), (E1), and (F1), by Lemma 5.3.21 we have (J1) {γp
1 = γ′p1 }

q
p=1, (K1) {σp

2 = σ′p2 }
q
p=1, (L1)

{∆p
2 = ∆′p2 }

q
p=1, and (M1) {lp2 = l

′p
2 }

q
p=1.
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Given (M1), (K), and (Z), by Lemma 5.3.57 and Definition 5.3.10 we have (N1) L2 = L′2.

Given (E), (T), (J1), (K1), and (L1), by the inductive hypothesis we have {γp
2 = γ′p2 }

q
p=1, (O1) {σp

3 = σ′p3 }
q
p=1, (P1)

{∆p
3 = ∆′p3 }

q
p=1, (Q1) D2 = D′2, and (R1) L3 = L′3.

Given (F), (U), (P1), and (O1), by Lemma 5.3.22 we have (S1) {σp
4 = σ′p4 }

q
p=1, (T1) {∆p

4 = ∆′p4 }
q
p=1, and (U1)

{lp4 = l
′p
4 }

q
p=1.

Given (U1), (L), and (A1), by Lemma 5.3.58 and Definition 5.3.10 we have (V1) L4 = L′4.

Given (G), (V), (J1), (S1), and (T1), by the inductive hypothesis we have {γp
3 = γ′p3 }

q
p=1, (W1) {σp

5 = σ′p5 }
q
p=1, (X1)

{∆p
5 = ∆′p5 }

q
p=1, (Y1) D3 = D′3, and (Z1) L5 = L′5.

Given (H), (W), (J1), (W1), and (X1), by Lemma 5.3.23 we have (A2) {[(vp
t1, v

p
e1), ..., (vp

tm, v
p
em)] = [(v′pt1, v

′p
e1), ...,

(v′ptm, v
′p
em)]}qp=1, (B2) {np

1 = n′p1 }
q
p=1, and (C2) {lp6 = l

′p
6 }

q
p=1.

Given (M), (B1), and (C2), by Lemma 5.3.59 and Definition 5.3.10 we have (D2) L6 = L′6.

Given (I), (X), (B2), and (A2), by Axiom 5.3.10 we have [[v1
1 , ..., v

1
m], ..., [vq

1 , ..., v
q
m]] = [[v′11 , ..., v

′1
m], ..., [v′q1 , ..., v

′q
m]]

and therefore (E2) {[vp
1 , ..., v

p
m] = [v′p1 , ..., v

′p
m]}qp=1.

Given (J), (Y), (X1), (W1), and (E2), by Lemma 5.3.24 we have (F2) {σp
6 = σ′p6 }

q
p=1, (G2) {∆p

6 = ∆′p6 }
q
p=1, and (H2)

{lp7 = l
′p
7 }

q
p=1.

Given (N), (C1), and (H2), by Lemma 5.3.60 and Definition 5.3.10 we have (I2) L7 = L′7.

Given (G1), (Q1), (Y1), and (P), by Lemma 5.3.38 we have (J2) D1 :: D2 :: D3 :: (p, [iepd ]) = D1 :: D′2 ::

D′3(p, [iepd ]).

Given (H1), (N1), (R1), (V1), (Z1), (D2), and (I2), by Lemma 5.3.47 we have (K2) L1 :: L2 :: L3 :: L4 :: L5 :: L6 :: L7

= L′1 :: L′2 :: L′3 :: L′4 :: L′5 :: L′6 :: L′7.
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Given (F2), (G2), (J2), and (K2), by Definition 5.3.2, we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])
D1 ::(p,[da]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])
D1 ::(p,[da]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1) by SMC2 rule

Public Array Declaration we have ((ty = public bty) ∧ ((bty = float) ∨ (bty = char) ∨ (bty = int))) ∨ (ty =

char), (e) 0 γ, α > 0, acc = 0, (B) ((p, γ, σ, ∆, acc, e) ‖ C), ⇓L1

D1
((p, γ, σ1, ∆, acc, α) ‖ C1), (C)

l = φ(), (D) l1 = φ(), (E) ω1 = EncodeArr(public bty , 0, α,NULL), (F) γ1 = γ[x → (l, public const bty∗)],

(G) ω = EncodePtr(public const bty∗, [1, [(l1, 0)], [1], 1]), (H) σ2 = σ1[l → (ω, public const bty∗, 1,

PermL(Freeable,public const bty∗,public, 1))], and (I) σ3 = σ2[l1 → (ω1, public bty , α, PermL(Freeable,

public bty ,public, α))].

Given (J) Σ . ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L
′
1::(p,[(l′,0),(l′1,0)])

D′1 ::(p,[d]) ((p, γ′1, σ
′
3, ∆, acc, skip) ‖ C ′1) and (A), by

Lemma 5.2.87 we have (K) d = da .

Given (J) and (K), by SMC2 rule Public Array Declaration we have ((ty = public bty) ∧ ((bty = float) ∨

(bty = char) ∨ (bty = int))) ∨ (ty = char), (e) 0 γ, α′ > 0, acc = 0, (L) ((p, γ, σ, ∆, acc, e) ‖ C),

⇓L
′
1

D′1
((p, γ, σ′1, ∆, acc, α′) ‖ C ′1), (M) l′ = φ(), (N) l′1 = φ(), (O) ω′1 = EncodeArr(public bty , 0, α′,NULL),

(P) γ′1 = γ[x → (l′, public const bty∗)], (Q) ω′ = EncodePtr(public const bty∗, [1, [(l′1, 0)], [1], 1]), (R)

σ′2 = σ′1[l′ → (ω′, public const bty∗, 1, PermL(Freeable,public const bty∗,public, 1))], and (S) σ′3 = σ′2[l′1 →

(ω′1, public bty , α′, PermL(Freeable,public bty ,public, α′))].

Given (B) and (L), by the inductive hypothesis we have (T) σ1 = σ′1, (U) α = α′, (V) D1 = D′1, (W) L1 = L′1, and (X)

C1 = C ′1.

Given (C), (D), (M), and (N), by Axiom 5.3.4 we have (Y) l = l′ and (Z) l1 = l′1.

Given (E) , (O), and (U), by Lemma 5.3.31 we have (A1) ω1 = ω′1.

Given (F), (P), and (Y), by Definition 5.3.3 we have (B1) γ1 = γ′1.

Given (G), (Q), and (Z), by Lemma 5.3.32 we have (C1) ω = ω′.
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Given (H), (R), (T), (Y), and (C1), by Definition 5.3.4 we have (D1) σ2 = σ′2.

Given (I), (S), (D1), (Z), and (A1), by Definition 5.3.4 we have (E1) σ3 = σ′3.

Given (X) and (p, [da]), by Lemma 5.3.38 we have (F1) D1 :: (p, [da]) = D′1 :: (p, [da]).

Given (H) and (I), by Lemma 5.3.51 we have accessed (G1) (p, [(l, 0)]) and (H1) (p, [(l1, 0)]). Given (G1) and

(H1), by Lemmas 5.3.44 and 5.3.45 we have (I1) (p, [(l, 0), (l1, 0)]). Given (R) and (S), by Lemma 5.3.51 we have

accessed (J1) (p, [(l′, 0)]) and (K1) (p, [(l′1, 0)]). Given (J1) and (K1), by Lemmas 5.3.44 and 5.3.45 we have (L1)

(p, [(l′, 0), (l′1, 0)]). Given (I1), (L1), (Y), (Z), and (W), by Lemma 5.3.47 we have (M1) L1 :: (p, [(l, 0), (l1, 0)]) =

L′1 :: (p, [(l′, 0), (l′1, 0)]).

Given (B1), (E1), (X), (F1), and (M1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])
D1 ::(p,[da1 ]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ty x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,0)])
D1 ::(p,[da]) ((p, γ1, σ3, ∆, acc, skip) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra1 ]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra1 ]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1) by SMC2 rule Private

Array Read Public Index we have 0 ≤ i ≤ α− 1, (e) 0 γ, (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i)

‖ C1), (C) γ(x) = (l, private const bty∗), (D) σ1(l) = (ω, private const bty∗, 1, PermL(Freeable, private const

bty∗,private, 1)), (E) DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (F) σ1(l1) = (ω1, private bty , α,

PermL(Freeable,private bty ,private, α)), and (G) DecodeArr(private bty , i, ω1) = ni.

Given (H) Σ . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L
′
1::(p,[(l′,0),(l′1,i

′)])

D′1 ::(p,[d]) ((p, γ, σ′1, ∆′1, acc, n′i′) ‖ C ′1) and (A), by

Lemma 5.2.87 we have (I) d = ra1 .

Given (H) and (I), by SMC2 rule Private Array Read Public Index we have 0 ≤ i′ ≤ α′ − 1, (e) 0 γ, (J)
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((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, i′) ‖ C ′1), (K) γ(x) = (l′, private const bty ′∗), (L) σ′1(l′) =

(ω′, private const bty ′∗, 1,PermL(Freeable,private const bty ′∗,private, 1)), (M) DecodePtr(private const bty ′∗,

1, ω′) = [1, [(l′1, 0)], [1], 1], (N) σ′1(l′1) = (ω′1,private bty ′, α′, PermL(Freeable,private bty ′,private, α′)), and

(O) DecodeArr(private bty ′, i′, ω′1) = n′i′ .

Given (B) and (J), by the inductive hypothesis we have (P) σ1 = σ′1, (Q) ∆1 = ∆′1, (R) i = i′, (S) D1 = D′1, (T)

L1 = L′1, and (U) C1 = C ′1.

Given (C) and (K), by Definition 5.3.3 we have (V) l = l′ and (W) bty = bty ′.

Given (D), (L), (P), and (V), by Definition 5.3.4 we have (X) ω = ω′.

Given (E), (M), (W), and (X), by Lemma 5.3.26 we have (Y) l1 = l′1.

Given (F), (N), (P), and (Y), by Definition 5.3.4 we have (Z) ω1 = ω′1 and (A1) α = α′.

Given (G), (O), (W), (R), and (Z), by Lemma 5.3.27 we have (B1) ni = n′i′ .

Given (S) and (p, [ra1 ]), by Lemma 5.3.38 we have (C1) D1 :: (p, [ra1 ]) = D′1 :: (p, [ra1 ]).

Given (D) and (E), by Lemma 5.3.62 we have accessed location (D1) (p, [(l, 0)]). Given (F) and (G), by Lemma 5.3.63

we have accessed location (E1) (p, [(l1, i)]). Given (D1) and (E1), by Lemmas 5.3.44 and 5.3.45 we have (F1)

(p, [(l, 0), (l1, i)]).

Given (L) and (M), by Lemma 5.3.62 we have accessed location (G1) (p, [(l′, 0)]). Given (N) and (O), by Lemma 5.3.63

we have accessed location (H1) (p, [(l′1, i
′)]). Given (D1) and (E1), by Lemmas 5.3.44 and 5.3.45 we have (I1)

(p, [(l′, 0), (l′1, i
′)]).

Given (F1), (I1), (V), (Y), (R), and (T), by Lemma 5.3.47 we have

(J1) L1 :: (p, [(l, 0), (l1, i)]) = L′1 :: (p, [(l′, 0), (l′1, i
′)]).

Given (P), (Q), (B1), (U), (C1), and (J1), by Definition 5.3.2 we have Π 'L Σ.
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Case Π . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l1,i)])
D1 ::(p,[ra1 ]) ((p, γ, σ1, ∆1, acc, ni) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])
D1 ::(p,[rao]) ((p, γ, σ1, ∆1, acc, n) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])
D1 ::(p,[rao]) ((p, γ, σ1, ∆1, acc, n) ‖ C1) by SMC2 rule

Public Array Read Out of Bounds Public Index we have (e) 0 γ, (i < 0) ∨ (i ≥ α), (B) ((p, γ, σ, ∆, acc, e)

‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1), (C) γ(x) = (l, public const bty∗), (D) σ1(l) = (ω, public const bty∗, 1,

PermL(Freeable,public const bty∗,public, 1)), (E) DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

(F) σ1(l1) = (ω1,public bty , α, PermL(Freeable,public bty ,public, α)), (G) ReadOOB(i, α, l1,public bty , σ1)

= (n, 1, (l2, µ)).

Given (H) Σ . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L
′
1::(p,[(l′,0),(l′2,µ

′)])

D′1 ::(p,[d]) ((p, γ, σ′1, ∆′1, acc, n′) ‖ C ′1) and (A), by

Lemma 5.2.87 we have (I) d = rao.

Given (H) and (I), by SMC2 rule Public Array Read Out of Bounds Public Index we have (e) 0 γ, (i < 0) ∨ (i ≥ α),

(J) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, i′) ‖ C ′1), (K) γ(x) = (l′, public const bty ′∗), (L)

σ′1(l′) = (ω′, public const bty ′∗, 1, PermL(Freeable,public const bty ′∗,public, 1)), (M) DecodePtr(public const

bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], (N) σ′1(l′1) = (ω′1,public bty ′, α′, PermL(Freeable,public bty ′,public, α′)),

(O) ReadOOB(i′, α′, l′1,public bty ′, σ′1) = (n′, 1, (l′2, µ
′)).

Given (B) and (J), by the inductive hypothesis we have (P) σ1 = σ′1, (Q) ∆1 = ∆′1, (R) i = i′, (S) D1 = D′1, (T)

L1 = L′1, and (U) C1 = C ′1.

Given (C) and (K), by Definition 5.3.3 we have (V) l = l′ and (W) bty = bty ′.

Given (D), (L), (P), and (V), by Definition 5.3.4 we have (X) ω = ω′.

Given (E), (M), (W), and (X), by Lemma 5.3.26 we have (Y) l1 = l′1.
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Given (F), (N), (P), and (Y), by Definition 5.3.4 we have (Z) ω1 = ω′1 and (A1) α = α′.

Given (G), (O), (R), (A1), (Y), (X), and (P), by Lemma 5.3.11 we have (B1) n = n′ and (C1) (l2, µ) = (l′2, µ
′).

Given (S) and (p, [rao]), by Lemma 5.3.38 we have (D1) D1 :: (p, [rao]) = D′1 :: (p, [rao]).

Given (D) and (E) by Lemma 5.3.62 we have accessed location (E1) (p, [(l, 0)]). Given (G), by Lemma 5.3.49

we have accessed location (F1) (p, [(l2, µ)]). Given (E1) and (F1), by Lemmas 5.3.44 and 5.3.45 we have (G1)

(p, [(l, 0), (l2, µ)]).

Given (L) and (M) by Lemma 5.3.62 we have accessed location (H1) (p, [(l′, 0)]). Given (O), by Lemma 5.3.49

we have accessed location (I1) (p, [(l′2, µ
′)]). Given (H1) and (I1), by Lemmas 5.3.44 and 5.3.45 we have (J1)

(p, [(l′, 0), (l′2, µ
′)]).

Given (G1), (J1), (T), (V), and (C1), by Lemma 5.3.47 we have

(K1) L1 :: (p, [(l, 0), (l2, µ)]) = L′1 :: (p, [(l′, 0), (l′2, µ
′)]).

Given (P), (Q), (B1), (U), (D1), and (K1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])
D1 ::(p,[rao1 ]) ((p, γ, σ1, ∆1, acc, n) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x[e]) ‖ C) ⇓L1::(p,[(l,0),(l2,µ)])
D1 ::(p,[rao]) ((p, γ, σ1, ∆1, acc, n) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

Given (A) Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2) by

SMC2 rule Private Array Write Out of Bounds Public Index Private Value we have (e1) 0 γ, (e2) ` γ, (i <

0)∨ (i ≥ α) (B) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1), (C) ((p, γ, σ1, ∆1, acc, e2) ‖ C1)

⇓L2

D2
((p, γ, σ2, ∆2, acc, n) ‖ C2), (D) γ(x) = (l,private const bty∗), (E) σ2(l) = (ω,private const bty∗, 1,

PermL(Freeable,private const bty∗,private, 1)), (F) DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

(G) σ2(l1) = (ω1, private bty , α, PermL(Freeable,private bty ,private, α)), and (H) WriteOOB(n, i, α, l1,
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private bty , σ2, ∆2, acc) = (σ3, ∆3, 1, (l2, µ)).

Given (I) Σ . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L
′
1::L′2::(p,[(l′,0),(l′2,µ

′)])

D′1 ::D′2 ::(p,[wao2 ]) ((p, γ, σ′3, ∆′3, acc, skip) ‖ C ′2) and (A),

by Lemma 5.2.87 we have (J) d = wao2 .

Given (I) and (J), by SMC2 rule Private Array Write Out of Bounds Public Index Private Value we have (e1) 0 γ,

(e2) ` γ, (i′ < 0) ∨ (i′ ≥ α′), (K) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, i′) ‖ C ′1),

(L) ((p, γ, σ′1, ∆′1, acc, e′2) ‖ C ′1) ⇓L
′
2

D′2
((p, γ, σ′2, ∆′2, acc, n′) ‖ C ′2), (M) γ(x) = (l′,private const bty ′∗),

(N) σ′2(l′) = (ω′,private const bty ′∗, 1, PermL(Freeable,private const bty ′∗,private, 1)),

(O) DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

(P) σ′2(l′1) = (ω′1, private bty ′, α′, PermL(Freeable,private bty ′,private, α′)), and

(Q) WriteOOB(n′, i′, α′, l′1, private bty ′, σ′2, ∆′2, acc) = (σ′3, ∆′3, 1, (l
′
2, µ
′)).

Given (B) and (K), by the inductive hypothesis we have (R) σ1 = σ′1, (S) ∆1 = ∆′1, (T) i = i′, (U) D1 = D′1, (V)

L1 = L′1, and (W) C1 = C ′1.

Given (C), (L), (R), (S), and (W), by the inductive hypothesis we have (X) σ2 = σ′2, (Y) ∆2 = ∆′2, (Z) n = n′, (A1)

D2 = D′2, (B1) L2 = L′2, and (C1) C2 = C ′2.

Given (D) and (M), by Definition 5.3.3 we have (D1) l = l′ and (E1) bty = bty ′.

Given (E), (N), (X), and (D1), by Definition 5.3.4 we have (F1) ω = ω′.

Given (F), (O), (E1), and (F1), by Lemma 5.3.26 we have (G1) l1 = l′1.

Given (G), (P), (X), and (G1), by Definition 5.3.4 we have (H1) ω1 = ω′1 and (I1) α = α′.

Given (H), (Q), (Z), (T), (I1), (G1), (E1), (X), and (Y), by Lemma 5.3.12 we have (J1) σ3 = σ′3, (K1) ∆3 = ∆′3, and

(L1) (l2, µ) = (l′2, µ
′).

Given (U), (A1), and (p, [wao2 ]), by Lemma 5.3.38 we have (M1) D1 :: D2 :: (p, [wao2 ]) = D′1 :: D′2 :: (p, [wao2 ]).

Given (E) and (F) by Lemma 5.3.62 we have accessed location (N1) (p, [(l, 0)]). Given (H), by Lemma 5.3.50
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we have accessed location (O1) (p, [(l2, µ)]). Given (N1) and (O1), by Lemmas 5.3.44 and 5.3.45 we have (P1)

(p, [(l, 0), (l2, µ)]).

Given (N) and (O) by Lemma 5.3.62 we have accessed location (Q1) (p, [(l′, 0)]). Given (Q), by Lemma 5.3.50

we have accessed location (R1) (p, [(l′2, µ
′)]). Given (Q1) and (R1), by Lemmas 5.3.44 and 5.3.45 we have (S1)

(p, [(l′, 0), (l′2, µ
′)]).

Given (P1), (S1), (V), (B1), (D1), and (L1), by Lemma 5.3.47 we have (T1) L1 :: L2 :: (p, [(l, 0), (l2, µ)]) = L′1 ::

L′2 :: (p, [(l′, 0), (l′2, µ
′)]).

Given (J1), (K1), (C1), (M1), and (T1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc,

skip) ‖ C2).

Case Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao1 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l2,µ)])
D1 ::D2 ::(p,[wao2 ]) ((p, γ, σ3, ∆3, acc,

skip) ‖ C2). We use Axiom 5.3.1 to prove that encrypt(n) = encrypt(n′).

Case Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0),(l1,0),...,(l1,α−1)])
(p,[rea]) ((p, γ, σ, ∆, acc, [n0, ..., nα−1]) ‖ C)

Given (A) Π.((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0),(l1,0),...,(l1,α−1)])
(p,[rea]) ((p, γ, σ, ∆, acc, [n0, ..., nα−1]) ‖ C) by SMC2

rule Read Entire Array we have (B) γ(x) = (l, a const bty∗), (C) σ(l) = (ω, a const bty∗, 1,PermL(Freeable,

a const bty∗, a, 1)), (D) DecodePtr(a const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (E) σ(l1) = (ω1, a bty , α,

PermL(Freeable, a bty , a, α)), and (F) ∀i ∈ {0...α− 1} DecodeArr(a bty , i, ω1) = ni.

Given (G) Σ . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l′,0),(l′1,0),...,(l′1,α
′−1)])

(p,[d]) ((p, γ, σ, ∆, acc, [n′0, ..., n
′
α′−1]) ‖ C) and
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(A), by Lemma 5.2.87 we have (H) d = rea .

Given (G) and (H), by SMC2 rule Read Entire Array we have (I) γ(x) = (l′, a′ const bty ′∗),

(J) σ(l′) = (ω, a′ constbty ′∗, 1,PermL(Freeable, a′ const bty ′∗, a′, 1)),

(K) DecodePtr(a′ const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

(L) σ(l′1) = (ω′1, a
′ bty ′, α′,PermL(Freeable, a′ bty ′, a′, α′)), and

(M) ∀i′ ∈ {0...α′ − 1} DecodeArr(a′ bty ′, i′, ω′1) = n′i′ .

Given (B) and (I), by Definition 5.3.3 we have (N) l = l′, (O) a = a′ and (P) bty = bty ′.

Given (C), (J), and (N), by Definition 5.3.4 we have (Q) ω = ω′.

Given (D), (K), (O), (P) and (Q), by Lemma 5.3.26 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1] and therefore

(R) l1 = l′1.

Given (E), (L), and (R), by Definition 5.3.4 we have (S) ω1 = ω′1 and (T) α = α′.

Given (T), we have (U) i = i′ such that i ∈ {0...α− 1}.

Given (O), (P), (U), and (S), by Lemma 5.3.27 we have (V) ∀i, i′ ∈ {0...α− 1} such that i = i′, ni = n′i′ . Therefore,

we have (W) [n0, ..., nα−1] = [n′0, ..., n
′
α′−1].

Given (C) and (D) by Lemma 5.3.62 we have accessed location (X) (p, [(l, 0)]). Given (E) and (F), by Lemma 5.3.63

we have accessed locations (Y) (p, [(l1, 0), ..., (l1, α− 1)]). Given (X) and (Y), by Lemmas 5.3.44 and 5.3.45 we have

(Z) (p, [(l, 0), (l1, 0), ..., (l1, α− 1)]).

Given (J) and (K) by Lemma 5.3.62 we have accessed location (A1) (p, [(l′, 0)]). Given (L) and (M), by Lemma 5.3.63

we have accessed locations (B1) (p, [(l′1, 0), ..., (l′1, α
′ − 1)]). Given (A1) and (B1), by Lemmas 5.3.44 and 5.3.45 we

have (C1) (p, [(l′, 0), (l′1, 0), ..., (l′1, α
′ − 1)]).

Given (N), (T), (R), (Z), and (C1), we have (D1) (p, [(l, 0), (l1, 0), ..., (l1, α−1)]) = (p, [(l′, 0), (l′1, 0), ..., (l′1, α
′−1)]).

Given (D1), (W), and (H), by Definition 5.3.2 we have Π 'L Σ.
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Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

by SMC2 rule Public Array Write Entire Array we have αe = α, acc = 0, (e) 0 γ, (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1

((p, γ, σ1, ∆1, acc, [n0, ..., nαe−1]) ‖ C1), (C) γ(x) = (l, public const bty∗),

(D) σ1(l) = (ω, public const bty∗, 1, PermL(Freeable,public const bty∗,public, 1)),

(E) DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

(F) σ1(l1) = (ω1,public bty , α,PermL(Freeable,public bty ,public, α)), and

(G) ∀i ∈ {0...α− 1} UpdateArr(σ1+i, (l1, i), ni, public bty) = σ2+i.

Given (H) Σ . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L
′
1::(p,[(l′,0),(l′1,0),...,(l′1,α

′−1)])

D′1 ::(p,[d]) ((p, γ, σ′2+α′−1, ∆′1, acc, skip) ‖ C ′1)

and (A), by Lemma 5.2.87 we have (I) d = wea .

Given (H) and (I), by SMC2 rule Public Array Write Entire Array we have α′e = α′, acc = 0, (e) 0 γ, (J)

((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, [n′0, ..., n

′
α′e−1]) ‖ C ′1), (K) γ(x) = (l′, public const bty ′∗),

(L) σ′1(l′) = (ω′, public const bty ′∗, 1,PermL(Freeable,public const bty ′∗,public, 1)), (M) DecodePtr(public

const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1], (N) σ′1(l′1) = (ω′1,public bty ′, α′,PermL(Freeable,public bty ′,public,

α′)), and (O) ∀i′ ∈ {0...α′ − 1}UpdateArr(σ′1+i′ , (l′1, i
′), n′i, public bty) = σ′2+i′ .

Given (B) and (J), by the inductive hypothesis we have (P) σ1 = σ′1, (Q) ∆1 = ∆′1, (R) [n0, ..., nαe−1] = [n′0, ..., n
′
α′e−1]

and therefore (S) αe = α′e, (T) D1 = D′1, (U) L1 = L′1, and (V) C1 = C ′1.

Given (C) and (K), by Definition 5.3.3 we have (W) l = l′ and (X) bty = bty ′.

Given (D), (L), (P), and (W), by Definition 5.3.4 we have (Y) ω = ω′.

Given (E), (M), (X), and (Y), by Lemma 5.3.26 we have [1, [(l1, 0)], [1], 1] = [1, [(l′1, 0)], [1], 1] and therefore (Z)

l1 = l′1.

Given (F), (N), (P), and (Z), by Definition 5.3.4 we have (A1) ω1 = ω′1 and (B1) α = α′.
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Given (B1), (S), αe = α, and α′e = α′, we have (C1) i = i′ such that i ∈ {0...α− 1}.

Given (G), (O), (B1), (C1), (P), (Z), (X), (S), αe = α, α′e = α′, and (R), by Lemma 5.3.35 we have (D1) ∀i, i′ ∈

{0...α− 1} such that i = i′, σ1+i = σ′1+i′ and (E1) σ2+i = σ′2+i′ .

Given (D) and (E) by Lemma 5.3.62 we have accessed location (F1) (p, [(l, 0)]). Given (G), by Lemma 5.3.67 we have

accessed locations (G1) (p, [(l1, 0), ..., (l1, α− 1)]). Given (F1) and (G1), by Lemmas 5.3.44 and 5.3.45 we have (H1)

(p, [(l, 0), (l1, 0), ..., (l1, α− 1)]).

Given (L) and (M) by Lemma 5.3.62 we have accessed location (I1) (p, [(l′, 0)]). Given (O), by Lemma 5.3.67 we have

accessed locations (J1) (p, [(l′1, 0), ..., (l′1, α
′ − 1)]). Given (I1) and (J1), by Lemmas 5.3.44 and 5.3.45 we have (K1)

(p, [(l′, 0), (l′1, 0), ..., (l′1, α
′ − 1)]).

Given (U), (W), (Z), (B1), (H1), and (K1), by Lemma 5.3.47 we have (L1) L1 :: (p, [(l, 0), (l1, 0), ..., (l1, α − 1)])

= L′1 :: (p, [(l′, 0), (l′1, 0), ..., (l′1, α
′ − 1)]).

Given (T) and (I), by Lemma 5.3.38 we have (M1) D1 :: (p, [wea]) = D′1 :: (p, [wea]).

Given (E1), (V), (L1), (M1), and (V), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea1 ]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea]) ((p, γ, σ2+α−1, ∆1,

acc, skip) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea2 ]) ((p, γ, σ2+α−1, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,0),...,(l1,α−1)])
D1 ::(p,[wea]) ((p, γ, σ2+α−1, ∆1,

acc, skip) ‖ C1). We use Axiom 5.3.1 to prove that encrypt(n) = encrypt(n′).
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Case Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa]) ((p, γ, σ3, ∆2, acc, skip) ‖ C2)

Given (A) Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa]) ((p, γ, σ3, ∆2, acc, skip) ‖ C2) by

SMC2 rule Public Array Write Public Value Public Index we have (e1, e2) 0 γ, 0 ≤ i ≤ α− 1, acc = 0

(B) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1), (C) ((p, γ, σ1, ∆1, acc, e2) ‖ C1)

⇓L2

D2
((p, γ, σ2, ∆2, acc, n) ‖ C2), (D) γ(x) = (l, public const bty∗), (E) σ2(l) = (ω,public const bty∗, 1,

PermL(Freeable,public const bty∗, public, 1)), (F) DecodePtr(public const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1], (G)

σ2(l1) = (ω1,public bty , α, PermL(Freeable,public bty ,public, α)), and (H) UpdateArr(σ2, (l1, i), n, public

bty) = σ3.

Given (I) Σ . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L
′
1::L′2::(p,[(l′,0),(l′1,i

′)])

D′1 ::D′2 ::(p,[d]) ((p, γ, σ′3, ∆′2, acc, skip) ‖ C ′2) and (A),

by Lemma 5.2.87 we have (J) d = wa .

Given (I) and (J), by SMC2 rule Public Array Write Public Value Public Index we have (e1, e2) 0 γ, 0 ≤ i′ ≤

α′ − 1, (K) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, i′) ‖ C ′1), (L) ((p, γ, σ′1, ∆1, acc, e2) ‖ C ′1)

⇓L
′
2

D′2
((p, γ, σ′2, ∆′2, acc, n′) ‖ C ′2), (M) γ(x) = (l′, public const bty ′∗), (N) σ′2(l′) = (ω′,public const bty ′∗, 1,

PermL(Freeable,public const bty ′∗,public, 1)), (O) DecodePtr(public const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

(P) σ′2(l′1) = (ω′1,public bty ′, α′,PermL(Freeable,public bty ′,public, α′)), and (Q) UpdateArr(σ′2, (l′1, i
′), n′,

public bty ′) = σ′3.

Given (B) and (K), by the inductive hypothesis we have (R) σ1 = σ′1, (S) ∆1 = ∆′1, (T) i = i′, (U) D1 = D′1, (V)

L1 = L′1, and (W) C1 = C ′1.

Given (C), (L), (R), (S), and (W), by the inductive hypothesis we have (X) σ2 = σ′2, (Y) ∆2 = ∆′2, (Z) n = n′, (A1)

D2 = D′2, (B1) L2 = L′2, and (C1) C2 = C ′2.

Given (D) and (M), by Definition 5.3.3 we have (D1) l = l′ and (E1) bty = bty ′.

Given (E), (N), (X), and (D1), by Definition 5.3.4 we have (F1) ω = ω′.

Given (F), (O), (E1), and (F1), by Lemma 5.3.26 we have (G1) l1 = l′1.

Given (G), (P), (X), and (G1), by Definition 5.3.4 we have (H1) ω1 = ω′1 and (I1) α = α′.
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Given (H), (Q), (X), (G1), (T), (Z), and (E1), by Lemma 5.3.35 we have (J1) σ3 = σ′3.

Given (E) and (F) by Lemma 5.3.62 we have accessed location (K1) (p, [(l, 0)]). Given (H), by Lemma 5.3.67

we have accessed location (L1) (p, [(l1, i)]). Given (K1) and (L1), by Lemmas 5.3.44 and 5.3.45 we have (M1)

(p, [(l, 0), (l1, i)]).

Given (N) and (O) by Lemma 5.3.62 we have accessed location (N1) (p, [(l′, 0)]). Given (Q), by Lemma 5.3.67

we have accessed location (O1) (p, [(l′1, i
′)]). Given (N1) and (O1), by Lemmas 5.3.44 and 5.3.45 we have (P1)

(p, [(l′, 0), (l′1, i
′)]).

Given (V), (B1), (M1), (P1), (D1), (G1), and (T), by Lemma 5.3.47 we have (Q1) L1 :: L2 :: (p, [(l, 0), (l1, i)]) = L′1 ::

L′2 :: (p, [(l′, 0), (l′1, i
′)]).

Given (U), (A1), and (p, [wa]), by Lemma 5.3.38 we have (R1) D1 :: D2 :: (p, [wa]) = D′1 :: D′2 :: (p, [wa]).

Given (Y), (J1), (C1), (Q1), and (R1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2)

Given (A) Π.((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa2 ]) ((p, γ, σ3, ∆3, acc, skip) ‖ C2) by SMC2

rule Private Array Write Private Value Public Index we have (e1) 0 γ, (e2) ` γ, 0 ≤ i ≤ α− 1,

(B) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, i) ‖ C1),

(C) ((p, γ, σ1, ∆1, acc, e2) ‖ C1) ⇓L2

D2
((p, γ, σ2, ∆2, acc, n) ‖ C2),

(D) γ(x) = (l, private const bty∗),

(E) σ2(l) = (ω,private const bty∗, 1, PermL(Freeable,private const bty∗,private, 1)),

(F) DecodePtr(private const bty∗, 1, ω) = [1, [(l1, 0)], [1], 1],

(G) σ2(l1) = (ω1,private bty , α, PermL(Freeable,private bty ,private, α)),

(H) DynamicUpdate(∆2, σ2, [(l1, i)], acc,private bty) = ∆3, and

(I) UpdateArr(σ2, (l1, i), n, private bty) = σ3.

Given (J) Σ . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L
′
1::L′2::(p,[(l′,0),(l′1,i

′)])

D′1 ::D′2 ::(p,[d]) ((p, γ, σ′3, ∆′3, acc, skip) ‖ C ′2) and (A),
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by Lemma 5.2.87 we have (K) d = wa2 .

Given (J) and (K), by SMC2 rule Private Array Write Private Value Public Index we have (e1) 0 γ, (e2) ` γ, 0 ≤

i′ ≤ α′ − 1, (L) ((p, γ, σ, ∆, acc, e1) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, i′) ‖ C ′1), (M) ((p, γ, σ′1, ∆′1, acc, e2) ‖ C ′1)

⇓L
′
2

D′2
((p, γ, σ′2, ∆′2, acc, n′) ‖ C ′2), (N) γ(x) = (l′, private const bty ′∗), (O) σ′2(l′) = (ω′, private const bty ′∗, 1,

PermL(Freeable, private const bty ′∗, private, 1)), (P) DecodePtr(private const bty ′∗, 1, ω′) = [1, [(l′1, 0)], [1], 1],

(Q) σ′2(l′1) = (ω′1,private bty ′, α′, PermL(Freeable,private bty ′,private, α′)), (R) DynamicUpdate(∆′2, σ
′
2,

[(l′1, i
′)], acc,private bty ′) = ∆′3, and (S) UpdateArr(σ′2, (l′1, i

′), n′, private bty ′) = σ′3.

Given (B) and (L), by the inductive hypothesis we have (T) σ1 = σ′1, (U) ∆1 = ∆′1, (V) i = i′, (W) D1 = D′1, (X)

L1 = L′1, and (Y) C1 = C ′1.

Given (C), (M), (T), (U), and (Y), by the inductive hypothesis we have (Z) σ2 = σ′2, (A1) ∆2 = ∆′2, (B1) n = n′, (C1)

D2 = D′2, (D1) L2 = L′2, and (E1) C2 = C ′2.

Given (D) and (N), by Definition 5.3.3 we have (F1) l = l′ and (G1) bty = bty ′.

Given (E), (O), (Z), and (F1), by Definition 5.3.4 we have (H1) ω = ω′.

Given (F), (P), (G1), and (H1), by Lemma 5.3.26 we have (I1) l1 = l′1.

Given (G), (Q), (Z), and (I1), by Definition 5.3.4 we have (J1) ω1 = ω′1 and (K1) α = α′.

Given (H), (R), (A1), (Z), (I1), (V), and (G1), by Lemma 5.3.25 we have (L1) ∆3 = ∆′3.

Given (I), (S), (Z), (I1), (V), (B1), and (G1), by Lemma 5.3.35 we have (M1) σ3 = σ′3.

Given (E) and (F) by Lemma 5.3.62 we have accessed location (N1) (p, [(l, 0)]). Given (I), by Lemma 5.3.67 we have

accessed location (O1) (p, [(l1, i)]). Given (N1) and (O1), by Lemmas 5.3.44 and 5.3.45 we have (P1) (p, [(l, 0), (l1, i)]).

Given (O) and (P) by Lemma 5.3.62 we have accessed location (Q1) (p, [(l′, 0)]). Given (S), by Lemma 5.3.67

we have accessed location (R1) (p, [(l′1, i
′)]). Given (Q1) and (R1), by Lemmas 5.3.44 and 5.3.45 we have (S1)

(p, [(l′, 0), (l′1, i
′)]).
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Given (X), (D1), (P1), (S1), (F1), (I1), and (V), by Lemma 5.3.47 we have (T1) L1 :: L2 :: (p, [(l, 0), (l1, i)]) = L′1 ::

L′2 :: (p, [(l′, 0), (l′1, i
′)]).

Given (Y), (E1), and (K), by Lemma 5.3.38 we have (U1) D1 :: D2 :: (p, [wa2 ]) = D′1 :: D′2 :: (p, [wa2 ]).

Given (E1), (L1), (M1), (T1), and (U1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa1 ]) ((p, γ, σ3, ∆2, acc, skip) ‖ C2)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, x[e1] = e2) ‖ C) ⇓L1::L2::(p,[(l,0),(l1,i)])
D1 ::D2 ::(p,[wa2 ]) ((p, γ, σ3, ∆2, acc, skip)

‖ C2). We use Axiom 5.3.1 to prove that encrypt(n) = encrypt(n′).

Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dp]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dp]) ((p, γ1, σ1, ∆, acc, skip) ‖ C) by SMC2 rule Public

Pointer Declaration we have (ty = public bty∗) ∨ ((ty = bty∗) ∧ ((bty = char) ∨ (bty = void))), acc = 0, (B)

l = φ(), (C) GetIndirection(∗) = i, (D) ω = EncodePtr(public bty∗, [1, [(ldefault , 0)], [1], i]), (E) γ1 = γ[x →

(l, public bty∗)], and (F) σ1 = σ[l → (ω, public bty∗, 1, PermL(Freeable,public bty∗,public, 1))].

Given (G) Σ . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l′,0)])
(p,[d]) ((p, γ′1, σ

′
1, ∆, acc, skip) ‖ C) and (A), by Lemma 5.2.87

we have (H) d = dp.

Given (G) and (H), by SMC2 rule Public Pointer Declaration we have (ty = public bty∗) ∨ ((ty = bty∗) ∧ ((bty =

char) ∨ (bty = void))), acc = 0, (I) l′ = φ(), (J) GetIndirection(∗) = i′, (K) ω′ = EncodePtr(public bty∗, [1,

[(ldefault , 0)], [1], i′]), (L) γ′1 = γ[x → (l′, public bty∗)], and (M) σ′1 = σ[l′ → (ω′, public bty∗, 1,

PermL(Freeable,public bty∗,public, 1))].

Given (B) and (I), by Axiom 5.3.4 we have (N) l = l′.

Given (C) and (J), by Lemma 5.3.13 we have (O) i = i′.
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Given (D), (K), and (O), by Lemma 5.3.32 we have (P) ω = ω′.

Given (E), (L), and (N), by Definition 5.3.3 we have (Q) γ1 = γ′1.

Given (F), (M), (N), and (P), by Definition 5.3.4 we have (R) σ1 = σ′1.

Given (A), (G), and (H), we have (S) (p, [dp]) = (p, [dp]).

Given (F), by Lemma 5.3.51 we have accessed (T) (p, [(l, 0)]). Given (M), by Lemma 5.3.51 we have accessed (U)

(p, [(l′, 0)]). Given (T), (U), and (N), we have (V) (p, [(l, 0)]) = (p, [(l′, 0)]).

Given (Q), (R), (S), and (V), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dp1 ]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ty x) ‖ C) ⇓(p,[(l,0)])
(p,[dp]) ((p, γ1, σ1, ∆, acc, skip) ‖ C)

Case Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[rp]) ((p, γ, σ, ∆, acc, (l1, µ1)) ‖ C)

Given (A) Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[rp]) ((p, γ, σ, ∆, acc, (l1, µ1)) ‖ C) by SMC2 rule Pointer Read

Single Location we have (B) γ(x) = (l, a bty∗), (C) σ(l) = (ω, a bty∗, 1, PermL(Freeable, a bty∗, a, 1)), and (D)

DecodePtr(a bty∗, 1, ω) = [1, [(l1, µ1)], [1], i].

Given (E) Σ . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l′,0)])
(p,[d]) ((p, γ, σ, ∆, acc, (l′1, µ

′
1)) ‖ C) and (A), by Lemma 5.2.87 we

have (F) d = rp.

Given (E) and (F), by SMC2 rule Pointer Read Single Location we have (G) γ(x) = (l′, a′ bty ′∗), (H) σ(l′) =

(ω′, a′ bty ′∗, 1, PermL(Freeable, a′ bty ′∗, a′, 1)), and (I) DecodePtr(a′ bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], i′].

Given (B) and (G), by Definition 5.3.3 we have (J) l = l′, (K) a =, and (L) bty = bty ′.
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Given (C), (H), and (J), by Definition 5.3.4 we have (M) ω = ω′.

Given (D), (I), (K), (L), and (M), by Lemma 5.3.26 we have [1, [(l1, µ1)], [1], i] = [1, [(l′1, µ
′
1)], [1], i′] and therefore

(N) (l1, µ1) = (l′1, µ
′
1).

Given (C) and (D), by Lemma 5.3.62 we have accessed location (O) (p, [(l, 0)]).

Given (H) and (I), by Lemma 5.3.62 we have accessed location (P) (p, [(l′, 0)]).

Given (O), (P), and (J), we have (Q) (p, [(l, 0)]) = (p, [(l′, 0)]).

Given (F), (N), and (Q), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[rp1 ]) ((p, γ, σ, ∆, acc, (l1, µ1)) ‖ C)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x) ‖ C) ⇓(p,[(l,0)])
(p,[rp]) ((p, γ, σ, ∆, acc, (l1, µ1)) ‖ C).

Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1) by SMC2 rule

Private Pointer Write we have (e) 0 γ, (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, (le, µe)) ‖ C1),

(C) γ(x) = (l, private bty∗), (D) σ1(l) = (ω, private bty∗, α,PermL(Freeable,private bty∗,private, α)), (E)

DecodePtr(private bty∗, α, ω) = [α, l, j, i], and (F) UpdatePtr(σ1, (l, 0), [1, [(le, µe)], [1], i], private bty∗) =

(σ2, 1).

Given (G) Σ . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L
′
1::(p,[(l′,0)])

D′1 ::(p,[d]) ((p, γ, σ′2, ∆′1, acc, skip) ‖ C ′1) and (A), by

Lemma 5.2.87 we have (H) d = wp1 .

Given (G) and (H), by SMC2 rule Private Pointer Write we have (e) 0 γ,

(I) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, (l′e, µ

′
e)) ‖ C ′1),
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(J) γ(x) = (l′, private bty ′∗),

(K) σ′1(l′) = (ω′, private bty ′∗, α′, PermL(Freeable,private bty ′∗,private, α′)),

(L) DecodePtr(private bty ′∗, α′, ω′) = [α′, l
′
, j
′
, i′], and

(M) UpdatePtr(σ′1, (l′, 0), [1, [(l′e, µ
′
e)], [1], i′], private bty ′∗) = (σ′2, 1).

Given (B) and (I), by the inductive hypothesis we have (N) σ1 = σ′1, (O) ∆1 = ∆′1, (P) (le, µe) = (l′e, µ
′
e), (Q)

D1 = D′1, (R) L1 = L′1, and (S) C1 = C ′1.

Given (C) and (J), by Definition 5.3.3 we have (T) l = l′ and (U) bty = bty ′.

Given (D), (K), (N), and (T), by Definition 5.3.4 we have (V) ω = ω′ and (W) α = α′.

Given (E), (L), (U), (W), and (V), by Lemma 5.3.26 we have l = l
′
, j = j

′
, and (X) i = i′.

Given (F), (M), (N), (T), (P), (X), and (V), by Lemma 5.3.36 we have (Y) σ2 = σ′2.

Given (Q) and (H), by Lemma 5.3.38 we have (Z) D1 :: (p, [wp1 ]) = D′1 :: (p, [wp1 ]).

Given (D) and (E), by Lemma 5.3.62 we have accessed location (A1) (p, [(l, 0)]). Given (F), by Lemma 5.3.68 we have

accessed location (B1) (p, [(l, 0)]).

Given (K) and (L), by Lemma 5.3.62 we have accessed location (C1) (p, [(l′, 0)]). Given (M), by Lemma 5.3.68 we

have accessed location (D1) (p, [(l′, 0)])

Given (R), (A1), (B1), (C1), (D1), and (T), by Lemma 5.3.47 we have (E1) L1 :: (p, [(l, 0)]) = L′1 :: (p, [(l′, 0)]).

Given (Y), (O), (S), (Z), and (E1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1).
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Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp2 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, x = e) ‖ C) ⇓L1::(p,[(l,0)])
D1 ::(p,[wp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1).

Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

Given (A) Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1) by SMC2

rule Private Pointer Dereference Write Single Location Private Value we have (e) ` γ, (bty = int) ∨ (bty =

float), (B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, n) ‖ C1), (C) γ(x) = (l, private bty∗), (D)

σ1(l) = (ω, private bty∗, 1, PermL(Freeable,private bty∗,private, 1)), (E) DecodePtr(private bty∗, 1, ω) =

[1, [(l1, µ1)], [1], 1], (F) DynamicUpdate(∆1, σ1, [(l1, µ1)], acc,private bty) = (∆2, l1), and (G) UpdateOffset(σ1,

(l1, µ1), n, private bty) = (σ2, 1).

Given (H) Σ . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L
′
1::(p,[(l′,0)]::l

′
1::[(l′1,µ

′
1)])

D′1 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc, skip) ‖ C ′1) and (A),

by Lemma 5.2.87 we have (I) d = wdp3 .

Given (H) and (I), by SMC2 rule Private Pointer Dereference Write Single Location Private Value we have (e) `

γ, (bty ′ = int) ∨ (bty ′ = float), (J) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, n′) ‖ C ′1), (K)

γ(x) = (l′, private bty ′∗), (L) σ′1(l′) = (ω′, private bty ′∗, 1, PermL(Freeable,private bty ′∗,private, 1)), (M)

DecodePtr(private bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], 1], (N) DynamicUpdate(∆′1, σ

′
1, [(l

′
1, µ
′
1)], acc,private

bty ′) = (∆′2, l
′
1), and (O) UpdateOffset(σ′1, (l′1, µ

′
1), n′, private bty ′) = (σ′2, 1).

Given (B) and (J), by the inductive hypothesis we have (P) σ1 = σ′1, (Q) ∆1 = ∆′1, (R) n = n′, (S) D1 = D′1, (T)

L1 = L′1, and (U) C1 = C ′1.

Given (C) and (K), by Definition 5.3.3 we have (V) l = l′ and (W) bty = bty ′.

Given (D), (L), (P), and (V), by Definition 5.3.4 we have (X) ω = ω′.

Given (E), (M), (W), and (X), by Lemma 5.3.26 we have (Y) (l1, µ1) = (l′1, µ
′
1).
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Given (F), (N), (Q), (P), (Y), and (W), by Lemma 5.3.25 we have (Z) ∆2 = ∆′2 and (A1) l1 = l
′
1.

Given (G), (O), (P), (Y), (R), and (W), by Lemma 5.3.37 we have (B1) σ2 = σ′2.

Given (S) and (p, [wdp3 ]), by Lemma 5.3.38 we have (C1) D1 :: (p, [wdp3 ]) = D′1 :: (p, [wdp3 ]).

Given (D) and (E), by Lemma 5.3.62 we have accessed location (D1) (p, [(l, 0)]). Given (F), by Lemma 5.3.61 we have

accessed location (E1) (p, l1). Given (G), by Lemma 5.3.69 we have accessed location (F1) (p, [(l1, µ1)]). Given (D1),

(E1), and (F1), by Lemmas 5.3.44 and 5.3.45 we have (G1) (p, [(l, 0)] :: l1 :: [(l1, µ1)]).

Given (L) and (M), by Lemma 5.3.62 we have accessed location (H1) (p, [(l′, 0)]). Given (N), by Lemma 5.3.61 we

have accessed location (I1) (p, l
′
1). Given (O), by Lemma 5.3.69 we have accessed location (J1) (p, [(l′1, µ

′
1)]). Given

(H1), (I1), and (J1), by Lemmas 5.3.44 and 5.3.45 we have (K1) (p, [(l′, 0)] :: l
′
1 :: [(l′1, µ

′
1)])

Given (T), (G1), (K1), (A1), (V), and (Y), by Lemma 5.3.47 we have (L1) L1 :: (p, [(l, 0)] :: l1 :: [(l1, µ1)) = L′1 ::

(p, [(l′, 0)] :: l
′
1 :: [(l′1, µ

′
1)] :: l

′
1).

Given (A1), (Z), (U), (B1), and (L1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp4 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C1), with the addition of using Axiom 5.3.1 to prove that encrypt(n) = encrypt(n′).

Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,µ1)])
D1 ::(p,[wdp]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp3 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C1), removing the reasoning about DynamicUpdate and its resulting locations, as it is not present in this rule.

Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)
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Given (A) Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1) by SMC2

rule Private Pointer Dereference Write Multiple Locations to Single Location Higher Level Indirection we have (e) ` γ,

(bty = int) ∨ (bty = float),

(B) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L1

D1
((p, γ, σ1, ∆1, acc, [α, le, je, i− 1]) ‖ C1),

(C) γ(x) = (l, private bty∗),

(D) σ1(l) = (ω, private bty∗, 1, PermL(Freeable,private bty∗,private, 1)),

(E) DecodePtr(private bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1],

(F) DynamicUpdate(∆1, σ1, [(l1, µ1)], acc,private bty∗) = (∆2, l1), and

(G) UpdatePtr(σ1, (l1, µ1), [α, le, je, i− 1],private bty∗) = (σ2, 1).

Given (H) Σ . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L
′
1::(p,[(l′,0)]::l

′
1::[(l′1,µ

′
1)])

D′1 ::(p,[d]) ((p, γ, σ′2, ∆′2, acc, skip) ‖ C ′1) and (A),

by Lemma 5.2.87 we have (I) d = wdp2 .

Given (H) and (I), by SMC2 rule Private Pointer Dereference Write Multiple Locations to Single Location Higher Level

Indirection we have (e) ` γ, (bty ′ = int) ∨ (bty ′ = float),

(J) ((p, γ, σ, ∆, acc, e) ‖ C) ⇓L
′
1

D′1
((p, γ, σ′1, ∆′1, acc, [α′, l

′
e, j
′
e, i
′ − 1]) ‖ C ′1),

(K) γ(x) = (l′, private bty ′∗),

(L) σ′1(l′) = (ω′, private bty ′∗, 1, PermL(Freeable,private bty ′∗,private, 1)),

(M) DecodePtr(private bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], 1],

(N) DynamicUpdate(∆′1, σ
′
1, [(l

′
1, µ
′
1)], acc,private bty ′∗) = (∆′2, l

′
1), and

(O) UpdatePtr(σ′1, (l′1, µ
′
1), [α′, l

′
e, j
′
e, i
′ − 1], private bty ′∗) = (σ′2, 1).

Given (B) and (J), by the inductive hypothesis we have (P) σ1 = σ′1, (Q) ∆1 = ∆′1, (R) [α, le, je, i−1] = [α′, l
′
e, j
′
e, i
′−

1], (S) D1 = D′1, (T) L1 = L′1, and (U) C1 = C ′1.

Given (C) and (K), by Definition 5.3.3 we have (V) l = l′ and (W) bty = bty ′.

Given (D), (L), (P), and (V), by Definition 5.3.4 we have (X) ω = ω′.

Given (E), (M), (W), and (X), by Lemma 5.3.26 we have (Y) (l1, µ1) = (l′1, µ
′
1).

Given (F), (N), (Q), (P), (Y), and (W), by Lemma 5.3.25 we have (Z) ∆2 = ∆′2 and (A1) l1 = l
′
1.
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Given (G), (O), (P), (Y), (R), and (W), by Lemma 5.3.37 we have (B1) σ2 = σ′2.

Given (S) and (p, [wdp2 ]), by Lemma 5.3.38 we have (C1) D1 :: (p, [wdp2 ]) = D′1 :: (p, [wdp2 ]).

Given (D) and (E), by Lemma 5.3.62 we have accessed location (D1) (p, [(l, 0)]). Given (F), by Lemma 5.3.61 we have

accessed location (E1) (p, l1). Given (G), by Lemma 5.3.68 we have accessed location (F1) (p, [(l1, µ1)]). Given (D1),

(E1), and (F1), by Lemmas 5.3.44 and 5.3.45 we have (G1) (p, [(l, 0)] :: l1 :: [(l1, µ1)]).

Given (L) and (M), by Lemma 5.3.62 we have accessed location (H1) (p, [(l′, 0)]). Given (N), by Lemma 5.3.61 we

have accessed location (I1) (p, l
′
1). Given (O), by Lemma 5.3.68 we have accessed location (J1) (p, [(l′1, µ

′
1)]). Given

(H1), (I1), and (J1), by Lemmas 5.3.44 and 5.3.45 we have (K1) (p, [(l′, 0)] :: l
′
1 :: [(l′1, µ

′
1)])

Given (T), (G1), (K1), (A1), (V), and (Y), by Lemma 5.3.47 we have (L1) L1 :: (p, [(l, 0)] :: l1 :: [(l1, µ1)) = L′1 ::

(p, [(l′, 0)] :: l
′
1 :: [(l′1, µ

′
1)] :: l

′
1).

Given (A1), (Z), (U), (B1), and (L1), by Definition 5.3.2 we have Π 'L Σ.

Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0),(l1,µ1)])
D1 ::(p,[wdp1 ]) ((p, γ, σ2, ∆1, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C1), removing the reasoning about DynamicUpdate and its resulting locations, as it is not present in this rule.

Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp5 ]) ((p, γ, σ2, ∆2, acc, skip) ‖ C1)

This case is similar to Case Π . ((p, γ, σ, ∆, acc, ∗x = e) ‖ C) ⇓L1::(p,[(l,0)]::l1::[(l1,µ1)])
D1 ::(p,[wdp2 ]) ((p, γ, σ2, ∆2, acc, skip)

‖ C1).

Case Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp]) ((p, γ, σ, ∆, acc, n) ‖ C)
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Given (A) Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp]) ((p, γ, σ, ∆, acc, n) ‖ C) by SMC2 rule Pointer Deref-

erence Single Location, we have (B) γ(x) = (l, a bty∗), (C) σ(l) = (ω, a bty∗, 1, PermL(Freeable, a bty∗, a, 1)),

(D) DecodePtr(a bty∗, 1, ω) = [1, [(l1, µ1)], [1], 1], and (E) DerefPtr(σ, a bty , (l1, µ1)) = (n, 1).

Given (F) Σ . ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l′,0),(l′1,µ
′
1)])

(p,[d]) ((p, γ, σ, ∆, acc, n′) ‖ C) and (A), by Lemma 5.2.87

we have (G) d = rdp.

Given (F) and (G), by SMC2 rule Pointer Dereference Single Location, we have (H) γ(x) = (l′, a′ bty ′∗), (I)

σ(l′) = (ω′, a′ bty ′∗, 1, PermL(Freeable, a′ bty ′∗, a′, 1)), (J) DecodePtr(a′ bty ′∗, 1, ω′) = [1, [(l′1, µ
′
1)], [1], 1],

and (K) DerefPtr(σ, a′ bty ′, (l′1, µ
′
1)) = (n′, 1).

Given (B) and (H), by Definition 5.3.3 we have (L) l = l′ and (M) a bty = a′ bty ′.

Given (C), (I), and (L), by Definition 5.3.4 we have (N) ω = ω′ and (O) a = a′.

Given (D), (J), (M), and (N), by Lemma 5.3.26 we have (P) (l1, µ1) = (l′1, µ
′
1).

Given (E), (K), (M), and (P), by Lemma 5.3.14 we have (Q) n = n′.

Given (C) and (D), by Lemma 5.3.62 we have accessed location (R) (p, [(l, 0)]). Given (E), by Lemma 5.3.70 we have

accessed location (S) (p, [(l1, µ1)]). Given (R) and (S), by Lemmas 5.3.44 and 5.3.45 we have (T) (p, [(l, 0), (l1, µ1)]).

Given (I) and (J), by Lemma 5.3.62 we have accessed location (U) (p, [(l′, 0)]). Given (K), by Lemma 5.3.70 we have

accessed location (V) (p, [(l′1, µ
′
1)]). Given (U) and (V), by Lemmas 5.3.44 and 5.3.45 we have (W) (p, [(l, 0), (l1, µ1)]).

Given (T), (W), (L), and (P), we have (X) (p, [(l, 0), (l1, µ1)]) = (p, [(l′, 0), (l′1, µ
′
1)]).

Given (Q) and (X), by Definition 5.3.2 we have Π 'L Σ.

Case Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp1 ]) ((p, γ, σ, ∆, acc, (l2, µ2)) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp]) ((p, γ, σ, ∆, acc, n) ‖ C). The
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difference is in the use of Lemma 5.3.15 in place of Lemma 5.3.14 to reason about the use of DerefPtrHLI and that the

pointer data structure being returned is equivalent. We use Lemma 5.3.71 in place of Lemma 5.3.70 to reason about the

locations accessed within DerefPtrHLI.

Case Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp2 ]) ((p, γ, σ, ∆, acc, [α, l, j, i− 1]) ‖ C)

This case is similar to Case Π. ((p, γ, σ, ∆, acc, ∗x) ‖ C) ⇓(p,[(l,0),(l1,µ1)])
(p,[rdp1 ]) ((p, γ, σ, ∆, acc, (l2, µ2)) ‖ C).

Case Π. ((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l1,0)::l
1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp]) ((1, γ1, σ1,∆1, acc,

n1) ‖ ... ‖ (q, γq, σq,∆q, acc, nq))

Given (A) Π. ((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l1,0)::l
1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp]) ((1, γ1, σ1,∆1,

acc, n1) ‖ ... ‖ (q, γq, σq,∆q, acc, nq)) by SMC2 rule Multiparty Private Pointer Dereference Single Level Indi-

rection, we have (B) {(x) ` γp}qp=1, (C) {γp(x) = (lp,private bty∗)}qp=1, (D) {σp(lp) = (ωp, private bty∗, α,

PermL(Freeable,private bty∗,private, α))}qp=1, (E) α > 1, (F) {DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
,

1]}qp=1, (G) {Retrieve_vals(α, l
p
,private bty , σp) = ([np

0 , ...n
p
α−1], 1)}qp=1, and (H) MPCdv ([[n1

0, ..., n
1
α−1], ...,

[nq
0, ..., n

q
α−1]], [j

1
, ..., j

q
]) = (n1, ..., nq).

Given (I) Σ.((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l′1,0)::l
′1

) ‖ ... ‖ (q,(l′q,0)::l
′q

)
(ALL,[d]) ((1, γ1, σ1,∆1,

acc, n′1) ‖ ... ‖ (q, γq, σq,∆q, acc, n′q)) and (A), by Lemma 5.2.87 we have (J) d = mprdp.

Given (I) and (J), by SMC2 rule Multiparty Private Pointer Dereference Single Level Indirection, we have

(K) {(x) ` γp}qp=1, (L) {γp(x) = (l′p,private bty ′∗)}qp=1, (M) {σp(l′p) = (ω′p, private bty ′∗, α′,

PermL(Freeable,private bty ′∗,private, α′))}qp=1, (N) α′ > 1, (O) {DecodePtr(private bty ′∗, α′, ω′p) = [α′,

l
′p
, j
′p
, 1]}qp=1, (P) {Retrieve_vals(α′, l

′p
,private bty ′, σp) = ([n′p0 , ...n

′p
α′−1], 1)}qp=1, and (Q) MPCdv ([[n′10 , ...,

n′1α′−1], ..., [n′q0 , ..., n
′q
α′−1]], [j

′1
, ..., j

′q
]) = (n′1, ..., n′q).

Given (C) and (L), by Definition 5.3.3 we have (R) {lp = l′p}qp=1, and (S) bty = bty ′.

Given (D), (M), and (R), by Definition 5.3.4 we have (T) {ωp = ω′p}qp=1 and (U) α = α′.
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Given (F), (O), (S), (U), and (T), by Lemma 5.3.26 we have (V) {lp = l
′p}qp=1 and (W) {jp

= j
′p}qp=1.

Given (G), (P), (U), (V), and (S), by Lemma 5.3.39 we have (X) {[np
0 , ...n

p
α−1] = [n′p0 , ...n

′p
α′−1]}qp=1.

Given (H), (Q), (X), and (W), by Axiom 5.3.11 we have (Y) {np = n′p}qp=1.

Given (D) and (F), by Lemma 5.3.62 we have accessed location (Z) {(p, [(lp, 0)])}qp=1. Given (G), by Lemma 5.3.72

we have accessed locations (A1) {(p, lp)}qp=1. Given (Z) and (A1), by Lemmas 5.3.44 and 5.3.45 we have (B1)

{(p, (lp, 0) :: l
p
)}qp=1.

Given (M) and (O), by Lemma 5.3.62 we have accessed location (C1) {(p, [(l′p, 0)])}qp=1. Given (P), by Lemma 5.3.72

we have accessed locations (D1) {(p, l′p)}qp=1. Given (C1) and (D1), by Lemmas 5.3.44 and 5.3.45 we have (E1)

{(p, (l′p, 0) :: l
′p

)}qp=1.

Given (B1), (E1), (R), and (V), we have (F1) (1, (l1, 0) :: l
1
) ‖ ... ‖ (q, (lq, 0) :: l

q
) = (1, (l′1, 0) :: l

′1
) ‖ ... ‖

(q, (l′q, 0) :: l
′q

).

Given (Y) and (F1), by Definition 5.3.2 we have Π 'L Σ.

Case Π. ((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x)) ⇓(1,(l1,0)::l
1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp1 ]) ((1, γ1, σ1,∆1, acc,

[αα, l
1

α, j
1
α, i− 1]) ‖ ... ‖ (q, γq, σq,∆q, acc, [αα, l

q

α, j
q
α, i− 1]))

This case is similar to Case Π. ((1, γ1, σ1,∆1, acc, ∗x) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x))

⇓(1,(l1,0)::l
1
) ‖ ... ‖ (q,(lq,0)::l

q
)

(ALL,[mprdp]) ((1, γ1, σ1,∆1, acc, n1) ‖ ... ‖ (q, γq, σq,∆q, acc, nq)). We use Axiom 5.3.12 to

reason about the behavior of MPCdp .

Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq, ∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp3 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 , ∆q

2, acc, skip))

Given (A) Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq, ∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp3 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 , ∆q

2, acc, skip)) by SMC2
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rule Multiparty Private Pointer Dereference Write Private Value, we have (B) {(e) ` γp}qp=1, (C) ((1, γ1, σ1, ∆1,

acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L1

D1
((1, γ1, σ1

1 ,∆
1
1, acc, n1) ‖ ... ‖ (q, γq, σq

1 ,∆
q
1, acc, nq)), (D) {γp(x) =

(lp,private bty∗)}qp=1, (E) {σp
1 (lp) = (ωp, private bty∗, α, PermL(Freeable,private bty∗,private, α))}qp=1, (F)

α > 1, (G) {DecodePtr(private bty∗, α, ωp) = [α, l
p
, j

p
, 1]}qp=1, (H) {DynamicUpdate(∆p

1 , σ
p
1 , l

p
, acc, private

bty) = (∆p
2 , l

p

1)}qp=1,

(I) {Retrieve_vals(α, l
p
,private bty , σp

1 ) = ([np
0 , ...n

p
α−1], 1)}qp=1, (J) MPCwdv ([[n1

0, ..., n
1
α−1], ..., [nq

0, ..., n
q
α−1]],

[n1, ..., nq], [j
1
, ..., j

q
]) = ([n′10 , ..., n

′1
α−1], ..., [n′q0 , ..., n

′q
α−1]), and (K) {UpdateDerefVals(α, l

p
, [n′p0 , ..., n

′p
α−1],

private bty , σp
1 ) = σp

2}
q
p=1.

Given (L) Σ. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq, ∆q, acc, ∗x = e))

⇓L
′
1::(1,(l′1,0)::l

′1
1 ::l
′1

) ‖ ... ‖ (q,(l′q,0)::l
′q
1 ::l
′q

)

D′1 ::(ALL,[d]) ((1, γ1, σ′12 , ∆′12 , acc, skip) ‖ ... ‖ (q, γq, σ′q2 , ∆′q2 , acc, skip)) and

(A), by Lemma 5.2.87 we have (M) d = mpwdp3 .

Given (L) and (M), by SMC2 rule Multiparty Private Pointer Dereference Write Private Value, we have (N) {(e) `

γp}qp=1, (O) ((1, γ1, σ1, ∆1, acc, e) ‖ ... ‖ (q, γq, σq,∆q, acc, e)) ⇓L
′
1

D′1
((1, γ1, σ′11 ,∆

′1
1 , acc, n′1) ‖ ... -

‖ (q, γq, σ′q1 ,∆
′q
1 , acc, n′q)), (P) {γp(x) = (l′p,private bty ′∗)}qp=1, (Q) {σ′p1 (l′p) = (ω′p, private bty ′∗, α′,

PermL(Freeable,private bty ′∗,private, α′))}qp=1, (R) α′ > 1, (S) {DecodePtr(private bty ′∗, α′, ω′p) = [α′, l
′p
,

j
′p
, 1]}qp=1, (T) {DynamicUpdate(∆′p1 , σ

′p
1 , l
′p
, acc,private bty ′) = (∆′p2 , l

′p
1 )}qp=1,

(U) {Retrieve_vals(α′, l
′p
,private bty ′, σ′p1 ) = ([n′′p0 , ...n′′pα′−1], 1)}qp=1, (V) MPCwdv ([[n′′10 , ..., n′′1α′−1], ..., [n′′q0 , ...,

n′′qα′−1]], [n′1, ..., n′q], [j
′1
, ..., j

′q
]) = ([n′′′10 , ..., n′′′1α′−1], ..., [n′′′q0 , ..., n′′′qα′−1]), and

(W) {UpdateDerefVals(α′, l
′p
, [n′′′p0 , ..., n′′′pα′−1],private bty ′, σ′p1 ) = σ′p2 }

q
p=1.

Given (C) and (O), by the inductive hypothesis we have (X) {σp
1 = σ′p1 }

q
p=1, (Y) {∆p

1 = ∆′p1 }
q
p=1, (Z) {np = n′p}qp=1,

(A1) D1 = D′1, and (B1) L1 = L′1.

Given (D) and (P), by Definition 5.3.3 we have (C1) {lp = l′p}qp=1 and (D1) bty = bty ′.

Given (E), (Q), (X), and (C1), by Definition 5.3.4 we have (E1) {ωp = ω′p}qp=1 and (F1) α = α′.

Given (G), (S), (W), and (X), by Lemma 5.3.26 we have (G1) {lp = l
′p}qp=1 and (H1) {jp

= j
′p}qp=1.

Given (F), (N), (Q), (P), (Y), and (W), by Lemma 5.3.25 we have (I1) {∆p
2 = ∆′p2 }

q
p=1 and (J1) {lp1 = l

′p
1 }

q
p=1.
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Given (I), (U), (F1), (G1), (D1), and (X), by Lemma 5.3.39 we have (K1) {[np
0 , ...n

p
α−1] = [n′′p0 , ...n′′pα′−1]}qp=1

Given (J), (V), (K1), (Z), and (H1), by Axiom 5.3.14 we have (L1) {[n′p0 , ..., n
′p
α−1] = [n′′′p0 , ..., n′′′pα′−1]}qp=1.

Given (K), (W), (F1), (G1), (L1), (D1), and (X), by Lemma 5.3.43 we have (M1) {σp
2 = σ′p2 }

q
p=1.

Given (A1) and (ALL, [mpwdp3 ]), by Lemma 5.3.38 we have

(N1) D1 :: (ALL, [mpwdp3 ]) = D′1 :: (ALL, [mpwdp3 ]).

Given (E) and (G), by Lemma 5.3.62 we have accessed location (O1) {(p, [(lp, 0)])}qp=1. Given (N), by Lemma 5.3.61

we have accessed locations (P1) {(p, lp1)}qp=1 Given (I) and (K), by Lemma 5.3.72 and 5.3.76 we have accessed locations

(Q1) {(p, lp)}qp=1 Given (C), (O1), (P1), and (Q1), by Lemmas 5.3.44 and 5.3.45 we have (R1)L1 :: (1, (l1, 0) :: l
1

1 :: l
1
)

‖ ... ‖ (q, (lq, 0) :: l
q

1 :: l
q
).

Given (Q) and (S), by Lemma 5.3.62 we have accessed location (S1) {(p, [(l′p, 0)])}qp=1. Given (T), by Lemma 5.3.61

we have accessed locations (T1) {(p, l′p1 )}qp=1. Given (U) and (W), by Lemma 5.3.72 and 5.3.76 we have accessed

locations (U1) {(p, l′p)}qp=1. Given (O), (S1), (T1), and (U1), by Lemmas 5.3.44 and 5.3.45 we have (V1) L′1 ::

(1, (l′1, 0) :: l
′1
1 :: l

′1
) ‖ ... ‖ (q, (l′q, 0) :: l

′q
1 :: l

′q
).

Given (R1), (V1), (B1), (C1), (J1), and (G1), by Lemma 5.3.47 we have (W1) L1 :: (1, (l1, 0) :: l
1

1 :: l
1
) ‖ ... ‖

(q, (lq, 0) :: l
q

1 :: l
q
) = L′1 :: (1, (l′1, 0) :: l

′1
1 :: l

′1
) ‖ ... ‖ (q, (l′q, 0) :: l

′q
1 :: l

′q
)

Given (M1), (I1), (W1), and (N1), by Definition 5.3.2 we have Π 'L Σ.

Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e)) ⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp])

((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

This case is similar to Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp3 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip)). We use Ax-

iom 5.3.1 to reason about the use of encrypt.
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Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e)) ⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp2 ])

((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

This case is similar to Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp3 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip)). We use Ax-

iom 5.3.15 to reason about the use of MPCwdp .

Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e)) ⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp1 ])

((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip))

This case is similar to Case Π. ((1, γ1, σ1, ∆1, acc, ∗x = e) ‖ ... ‖ (q, γq, σq,∆q, acc, ∗x = e))

⇓L1::(1,(l1,0)::l
1
1::l

1
) ‖ ... ‖ (q,(lq,0)::l

q
1::l

q
)

D1 ::(ALL,[mpwdp3 ]) ((1, γ1, σ1
2 , ∆1

2, acc, skip) ‖ ... ‖ (q, γq, σq
2 ,∆

q
2, acc, skip)). We use Ax-

iom 5.3.15 to reason about the use of MPCwdp .

Case Π. ((1, γ1, σ1,∆1, acc,++ x) ‖ ... ‖ (q, γq, σq,∆q, acc,++ x)) ⇓(1,[(l1,0)]) ‖ ... ‖ (q,[(lq,0)])
(ALL,[mppin]) ((1, γ1, σ1

1 , ∆1,

acc, n1
2) ‖ ... ‖ (q, γq, σq

1 ,∆
q, acc, nq

2))

Given (A) Π. ((1, γ1, σ1,∆1, acc,++ x) ‖ ... ‖ (q, γq, σq,∆q, acc,++ x)) ⇓(1,[(l1,0)]) ‖ ... ‖ (q,[(lq,0)])
(ALL,[mppin]) ((1, γ1, σ1

1 ,

∆1, acc, n1
2) ‖ ... ‖ (q, γq, σq

1 ,∆
q, acc, nq

2)) by SMC2 rule Multiparty Pre-Increment Private Float Variable, we

have (B) {γp(x) = (lp,private float)}qp=1, (C) {σp(lp) = (ωp,private float, 1, PermL(Freeable,private float,

private, 1))}qp=1, (D) {(x) ` γp}qp=1, (E) {DecodeVal(private float, ωp) = np
1}

q
p=1, (F) MPCu(++, n1

1, ..., n
q
1) =

(n1
2, ..., n

q
2), and (G) {UpdateVal(σp, lp, np

2 ,private float) = σp
1}

q
p=1.

Given (H) Σ.((1, γ1, σ1,∆1, acc,++ x) ‖ ... ‖ (q, γq, σq,∆q, acc,++ x)) ⇓(1,[(l′1,0)]) ‖ ... ‖ (q,[(l′q,0)])
(ALL,[d]) ((1, γ1, σ′11 ,

∆1, acc, n′12 ) ‖ ... ‖ (q, γq, σ′q1 ,∆
q, acc, n′q2 )) and (A), by Lemma 5.2.87 we have (I) d = mppin .

Given (H) and (I), by SMC2 rule Multiparty Pre-Increment Private Float Variable, we have

(J) {γp(x) = (l′p,private float)}qp=1,

(K) {σp(l′p) = (ω′p,private float, 1, PermL(Freeable,private float, private, 1))}qp=1,

(L) {(x) ` γp}qp=1,

(M) {DecodeVal(private float, ω′p) = n′p1 }
q
p=1,
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(N) MPCu(++, n′11 , ..., n
′q
1 ) = (n′12 , ..., n

′q
2 ), and

(O) {UpdateVal(σp, l′p, n′p2 ,private float) = σ′p1 }
q
p=1.

Given (B) and (J), by Definition 5.3.3 we have (P) {lp = l′p}qp=1.

Given (C), (K), and (P), by Definition 5.3.4 we have (Q) {ωp = ω′p}qp=1.

Given (E), (M), and (Q), by Lemma 5.3.29 we have (R) {np
1 = n′p1 }

q
p=1.

Given (F), (N), and (R), by Axiom 5.3.9 we have (S) {np
2 = n′p2 }

q
p=1.

Given (G), (O), (P), and (S), by Lemma 5.3.34 we have (T) {σp
1 = σ′p1 }

q
p=1.

Given (A), (H), and (I), we have (U) (ALL, [mppin]) = (ALL, [mppin]).

Given (C), (E), and (G), by Lemma 5.3.64 and Lemma 5.3.66 we have accessed location (V) {(p, [(l, 0)])}qp=1. Given

(V), by Lemmas 5.3.44 and 5.3.46 we have (W) (1, [(l1, 0)]) ‖ ... ‖ (q, [(lq, 0)]).

Given (K), (M), and (O), by Lemma 5.3.64 and Lemma 5.3.66 we have accessed location (X) {(p, [(l′, 0)])}qp=1. Given

(X), by Lemmas 5.3.44 and 5.3.46 we have (Y) (1, [(l′1, 0)]) ‖ ... ‖ (q, [(l′q, 0)]).

Given (W), (Y), and (P), we have (Z) (1, [(l1, 0)]) ‖ ... ‖ (q, [(lq, 0)]) = (1, [(l′1, 0)]) ‖ ... ‖ (q, [(l′q, 0)]).

Given (T), (S), (U), and (Z) by Definition 5.3.2 we have Π 'L Σ.

Case Π. ((1, γ1, σ1,∆1, acc,pfree(x)) ‖ ... ‖ (q, γq, σq,∆q, acc,pfree(x)))

⇓(1,[(l1,0)]::l
1
::l

1
1) ‖ ... ‖ (q,[(lq,0)]::l

q
::l

q
1)

(ALL,[mpfre]) ((1, γ1, σ1
2 , ∆1, acc, skip) ‖ ... ‖ (q, γq, σq

2 ,∆
q, acc, skip))

Given (A) Π. ((1, γ1, σ1,∆1, acc,pfree(x)) ‖ ... ‖ (q, γq, σq,∆q, acc,pfree(x)))

⇓(1,[(l1,0)]::l
1
::l

1
1) ‖ ... ‖ (q,[(lq,0)]::l

q
::l

q
1)

(ALL,[mpfre]) ((1, γ1, σ1
2 , ∆1, acc, skip) ‖ ... ‖ (q, γq, σq

2 ,∆
q, acc, skip)) by SMC2 rule

Private Free Multiple Locations, we have (B) {γp(x) = (lp, private bty∗)}qp=1, (C) acc = 0, (D) (bty = int)∨(bty =

float), (E) {σp(lp) = (ωp,private bty∗, α, PermL(Freeable,private bty∗,private, α))}qp=1, (F) {α > 1}qp=1, (G)
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{[α, lp, jp
, i] = DecodePtr(private bty∗, α, ωp)}qp=1, (H) if(i > 1){ty = private bty∗} else {ty = private bty},

(I) {CheckFreeable(γp, l
p
, j

p
, σp) = 1}qp=1, (J) {∀(lpm, 0) ∈ lp. σp(lpm) = (ωp

m, ty , αm,

PermL(Freeable, ty ,private, αm))}qp=1, (K) MPCfree([[ω1
0 , ..., ω

1
α−1], ..., [ωq

0 , ..., ω
q
α−1]], [j

1
, ...j

q
]) = ([[ω′10 , ...,

ω′1α−1], ..., [ω′q0 , ..., ω
′q
α−1]], [j

′1
, ..., j

′q
]), (L) {UpdateBytesFree(σp, l

p
, [ω′p0 , ..., ω

′p
α−1]) = σp

1}
q
p=1, and

(M) {(σp
2 , l

p

1) = UpdatePointerLocations(σp
1 , l

p
[1 : α− 1], j

p
[1 : α− 1], l

p
[0], j

p
[0])}qp=1.

Given (N) Σ . ((1, γ1, σ1,∆1, acc,pfree(x)) ‖ ... ‖ (q, γq, σq,∆q, acc,pfree(x)))

⇓(1,[(l′1,0)]::l
′1

::l
′1
1 ) ‖ ... ‖ (q,[(l′q,0)]::l

′q
::l
′q
1 )

(ALL,[d]) ((1, γ1, σ′12 , ∆1, acc, skip) ‖ ... ‖ (q, γq, σ′q2 ,∆
q, acc, skip)) and (A), by

Lemma 5.2.87 we have (O) d = mpfre .

Given (N) and (O), by SMC2 rule Private Free Multiple Locations, we have (P) {γp(x) = (l′p, private bty ′∗)}qp=1, (Q)

acc = 0, (R) (bty ′ = int) ∨ (bty ′ = float), (S) {σp(l′p) = (ω′p,private bty ′∗, α′, PermL(Freeable,private

bty ′∗,private, α′))}qp=1, (T) {α′ > 1}qp=1, (U) {[α′, l′p, j′′p, i′] = DecodePtr(private bty ′∗, α′, ω′p)}qp=1,

(V) if(i′ > 1){ty ′ = private bty ′∗} else {ty ′ = private bty ′}, (W) {CheckFreeable(γp, l
′p
, j
′′p
, σp) = 1}qp=1,

(X) {∀(l′pm′ , 0) ∈ l′p. σp(l′pm′) = (ω′′pm′ , ty
′, α′m′ , PermL(Freeable, ty ′,private, α′m′))}

q
p=1, (Y) MPCfree([[ω′′10 , ...,

ω′′1α′−1], ..., [ω′′q0 , ..., ω′′qα′−1]], [j
′′1
, ...j

′′q
]) = ([[ω′′′10 , ..., ω′′′1α′−1], ..., [ω′′′q0 , ..., ω′′′qα′−1]], [j

′′′1
, ..., j

′′′q
]),

(Z) {UpdateBytesFree(σp, l
′p
, [ω′′′p0 , ..., ω′′′pα′−1]) = σ′p1 }

q
p=1, and

(A1) {(σ′p2 , l
′p
1 ) = UpdatePointerLocations(σ′p1 , l

′p
[1 : α′ − 1], j

′′p
[1 : α′ − 1], l

′p
[0], j

′′p
[0])}qp=1.

Given (B) and (P), by Definition 5.3.3 we have (B1) {lp = l′p}qp=1 and (C1) bty = bty ′.

Given (E), (S), and (B1), by Definition 5.3.4 we have (D1) {ωp = ω′p}qp=1 and (E1) α = α′.

Given (G), (U), (C1), (E1), and (D1), by Lemma 5.3.26 we have (F1) {lp = l
′p}qp=1, (G1) {jp

= j
′′p}qp=1, and (H1)

i = i′.

Given (H), (V), (H1), and (C1), we have (I1) ty = ty ′.

Given (I), (W), (F1), and (G1), by Lemma 5.3.40 we have (J1) 1 = 1.

Given (J), (X), and (F1), we have (K1) {lpm = l′pm′}
q
p=1 such that (L1) m = m′. Given (J), (X), (F1), (K1), (E1),

and (L1), by Definition 5.3.4 we have (M1) {∀m = m′ ∈ {0...α − 1}, ωp
m = ω′′pm′}

q
p=1 and (N1) ∀m = m′ ∈

{0...α− 1}, αm = α′m′ .
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Given (K), (Y), (E1), (M1), and (G1), by Axiom 5.2.15 we have (O1) {∀m = m′ ∈ {0...α− 1}, ω′pm = ω′′′pm′ }
q
p=1 and

(P1) {j′p = j
′′′p}qp=1.

Given (L), (Z), (F1), (O1), and (E1), by Lemma 5.3.41 we have (Q1) {σp
1 = σ′p1 }

q
p=1.

Given (M), (A1), (Q1), (F1), (E1), and (G1), by Lemma 5.3.42 we have (R1) {σp
2 = σ′p2 }

q
p=1 and (S1) {lp1 = l

′p
1 }

q
p=1.

Given (A), (N), and (O), we have (T1) (ALL, [mpfre]) = (ALL, [mpfre]).

Given (E) and (G), by Lemma 5.3.62 we have accessed location (U1) {(p, [(lp, 0)])}qp=1. Given (I), (J), (L), by

Lemma 5.3.73 and Lemma 5.3.74 we have accessed locations (V1) {(p, lp)}qp=1. Given (M), by Lemma 5.3.75 we

have accessed locations (W1) {(p, lp1)}qp=1. Given (U1), (V1), and (W1), by Lemmas 5.3.44 and 5.3.46 we have (X1)

(1, [(l1, 0)] :: l
1

:: l
1

1) ‖ ... ‖ (q, [(lq, 0)] :: l
q

:: l
q

1).

Given (S) and (U), by Lemma 5.3.62 we have accessed location (Y1) {(p, [(l′p, 0)])}qp=1. Given (W), (X), (Z), by

Lemma 5.3.73 and Lemma 5.3.74 we have accessed locations (Z1) {(p, l′p)}qp=1. Given (A1), by Lemma 5.3.75 we

have accessed locations (A2) {(p, l′p1 )}qp=1. Given (Y1), (Z1), and (A2), by Lemmas 5.3.44 and 5.3.46 we have (B2)

(1, [(l′1, 0)] :: l
′1

:: l
′1
1 ) ‖ ... ‖ (q, [(l′q, 0)] :: l

′q
:: l
′q
1 ).

Given (X1), (B2), (B1), (F1), and (S1), we have (C2) (1, [(l1, 0)] :: l
1

:: l
1

1) ‖ ... ‖ (q, [(lq, 0)] :: l
q

:: l
q

1) =

(1, [(l′1, 0)] :: l
′1

:: l
′1
1 ) ‖ ... ‖ (q, [(l′q, 0)] :: l

′q
:: l
′q
1 ).

Given (R1), (T1), and (C2) by Definition 5.3.2 we have Π 'L Σ.
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6 Realization

6.1 Implementing Multiparty SMC2 in PICCO

We implement our semantics in the PICCO compiler. Our implementation is available at https://github.

com/amypritc/SMC2 and is currently being merged into the main PICCO branch as a submitted patch.

The main modifications to PICCO revolve around a conditional code block tracking scheme and resolution

mechanism for private variables, support for pointer operations and computation within private-conditioned

branches, and the addition of tracking structures for pointers based on our semantics in Chapter 5. PICCO uses

single-statement resolution to manage modifications to private variables made within a private-conditioned

branch, which can prove to be more costly when a single variable is modified multiple times within a private-

conditioned branch, as shown in the example in Figure 6.1. Here, we show how PICCO conditionally updates

the true value of a variable after each statement, resulting in a more costly operation for each statement, as

obtaining the true value requires communication between the various computational parties (i.e. this is a

distributed secure computation). In SMC2, we provide a conditional code block tracking scheme, where we

store the original value for each modified variable before the execution of the then branch, execute the then

branch as normal, store the updated values, restore the original values, execute the else branch as normal,

and perform resolution of all modified variables once at the end of both branches. The cost of executing

each statement remains the same, however, in SMC2, the communication overhead is greatly reduced due to

only needing to communicate between computational parties to resolve a single variable once at the end of

both branches. In Figures 6.1b and 6.1c, this amounts to six fewer times the program needs to communicate

between computational parties to resolve.

6.1.1 Conditional Code Block Tracking Implementation

To implement data-oblivious execution of branches on private data, SMC implementations typically execute

both branches, but privately apply the effects of only the relevant branch. Figure 6.2a shows the standard

handling of private-conditioned branches, as we have formalized in Basic SMC2. The top left shows the

original C-code block, with annotations for private data; the top right shows how compilers would flatten the
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1 private int c,
2 a=1,b=2;
3 if(a < b) {
4 c = a;
5 a = a + b;
6 c = c * b;
7 a = c + a;
8 } else {
9 c = b;

10 a = a - b;
11 c = c * a;
12 a = c - a;
13 }

(a) Example code.

1 private int c,a=1,b=2;
2 private int res=a<b;
3 {
4 c=(res·a)+((1-res)·c);
5 a=(res·(a+b))+((1-res)·a);
6 c=(res·(c*b))+((1-res)·c);
7 a=(res·(c+a))+((1-res)·a);
8 }
9 {c=((1-res)·b)+(res·c);

10 a=((1-res)·(a-b))+(res·a);
11 c=((1-res)·(c*a))+(res·c);
12 a=((1-res)·(c-a))+(res·a);
13 }

(b) How PICCO executes 6.1a.

1 private int c,a=1,b=2,c_t,
2 res=a<b,c_e=c,a_t,a_e=a;
3 {c = a;
4 a = a + b;
5 c = c * b;
6 a = c + a;}
7 c_t=c;c=c_e;a_t=a;a=a_e;
8 {c = b;
9 a = a - b;

10 c = c * a;
11 a = c - a;}
12 c=(res·c_t)+((1-res)·c);
13 a=(res·a_t)+((1-res)·a);

(c) How SMC2 executes 6.1a.

Figure 6.1: Example illustrating why single-statement resolution is more costly when modifying variables
multiple times in both branches.

branch to hide the private data used in the condition. Here, the only variable modified within either branch is

c, so we insert temporary variables to assist in tracking the results of both branches. Notation lx in the table

indicates the (private) value stored at the location of variable x. For every variable we list the value in the

initial state, before executing the conditional; the one after executing the then branch; the one after the

initial state has been restored; the one after the execution of the else branch; and the one after the true value

of c has been resolved.

To guarantee data-oblivious executions we also need to guarantee that when we branch on a private

condition, the two branches do not have different public side effects. A way to address this is to reject

programs that contain public side effects in the body of private-conditioned branching statements. This has

an impact on other language constructs such as functions. That is, to be able to call a function from the body

of such a branching statement, it must have no public side effects. To address this challenge, in our formalism

we evaluate each declared function for public side effects and mark it with a flag that indicates whether it is

allowed to be called from within a private-conditioned branch.

PICCO is the only compiler we are aware of that treats pointers to private values, or private pointers. For

private pointers, the location being pointed to might be private as well. That is, if a pointer is assigned a new

value inside a private-conditioned branch, we cannot reveal whether the original or new location is to be used.

For that reason, a private pointer is associated with multiple locations and a private tag that indicates which

location is the true location. In particular, a private pointer is represented as a data structure which tracks the

number of locations α being pointed to; a list of these α (known) locations; a list of α (private) tags, one of
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1 private int a=3,b=7,c=0;
2 if(a<b) {c=a;}
3 else {c=b;}

1 private int a=3,b=7,c=0,res=a<b,c_e=c,c_t;
2 {c=a;} c_t=c; c=c_e;
3 {c=b;} c=(res·c_t)+((1-res)·c);

location init then restore else resolve
lc 0 3 0 7 3
lc_t 3 3 3

location value
lres 1
lc_e 0

(a) Regular variable handling within private-conditioned branches.

1 private int a=3,b=7,*p;
2 if(a<b) {p=&a;}
3 else {p=&b;}

1 private int a=3,b=7,*p,res=a<b,*p_e=p,*p_t;
2 {p=&a;} p_t=p; p=p_e;
3 {p=&b;} p=resolve(res,p_t,p);

location init then restore else resolve
lp ( ), ( ) (la), (1) ( ), ( ) (lb), (1) (la, lb), (1, 0)
lp_t (la), (1) (la), (1) (la), (1)

location value
lres 1
lp_e ( ), ( )

(b) Pointer handling within private-conditioned branches.

Figure 6.2: Simple private-conditioned branching examples. An example for private integer variables is
shown in 6.2a, and for private pointers 6.2b. We show values in memory that change in the table to the left,
and values for temporary variables that do not change in the table to the right. We indicate updates in memory
in green.

which is set to 1 and all others set to 0; and the level of pointer indirection. Because locations associated

with pointers can now be private, there might be additional limitations on what programs can contain within

private-conditioned branches to guarantee data-oblivious execution. To understand why multiple locations

may potentially be stored for a pointer consider Figure 6.2b, whose code will result in the pointer p storing

two locations, la and lb, with la being the true location.

6.1.2 Multiparty SMC2 Evaluation

To highlight the feasibility of our approach we provide preliminary performances numbers over both mi-

crobenchmarks and real-world SMC programs. All experiments were run in a local and distributed manner.

We leverage local runs, where all participants in the SMC program execute on the same machine, to analyze

overheads and benefits of our approach. We also provide distributed deployment of the same benchmarks to

illustrate real-world performance. In the distributed configuration, each participant in the SMC program is

executed on a separate machine. We ran our experiments using single-threaded execution on three 2.10GHz

machines running CentOS-7. The machines were connected via 1Gbps Ethernet.

Benchmark pay-gap is the program shown in Figure 2.1, where the average female salary and average

male salary is computed. Benchmark LR-parser is a program that will parse and execute a mathematical
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function over private data. This program is given as input the function as a list of tokens and the private

data to execute the function over. Benchmark h_analysis is a program that takes two sets of input data and

calculates the percent difference between each element of the two data sets. All of the "pb" benchmarks are

programs designed to emphasize the difference in executing using single-statement resolution, as PICCO

does, and when using the conditional code block tracking, as in SMC2. These programs are run through a

large number of iterations of branches where variables are modified several times in each branch, as in the

example in Figure 6.1.

When executing locally, we ran all three computational parties on a single machine. When executing

distributed, one computational party is run on each machine. All programs were run for 50 times both

distributed and locally. LR-parser has the shortest execution time of our benchmarks (seconds), and its timing

is more influenced by small differences in communication overhead during the computation, resulting in a

greater standard deviation. Program pb-reuse has the longest runtime, executing in about 5 and 3.5 minutes

locally and 15 and 8 minutes distributed for PICCO and SMC2, respectively. In our computations, we first

took the average time of each of the three computational parties, then the total average and standard deviation

of all runs. We calculated the percent speedup in Figure 6.3 using PICCO’s timings as a baseline. We can see

from our micro-benchmarks which stress private-conditioned branches that our approach provides significant

runtime improvement. This is not surprising as our resolution mechanism requires less communication

between parties. However, this benefit is reduced in real-world SMC programs and is proportional to the

number of private-conditioned branches as well as their complexity (i.e. the number of private variables

they use and modify). Similarly we observe that performance improvement or reduction is dilated when

communication overheads increase (e.g. we execute in a distributed setting). This is also not surprising as the

communication cost as a percentage of total runtime increases in a distributed execution.

Runtime Statistics

To calculate the averages and standard deviation, we first average the runtimes of each of the 3 parties in a

single run (i.e., (Party3 + Party2 + Party1)/3). We then use the average timing for each run to obtain the total

average and standard deviation for the runtime of each program. To calculate percent speedup with PICCO as

the baseline, we used the formula: (PICCO avg - SMC2 avg)/PICCO avg * 100. To calculate the standard

deviation error bars, we used the formula: ((PICCO avg - (SMC2 avg - SMC2 st dev))/PICCO avg*100) -

percent speedup. We illustrate these statistics in Figure 6.3 and show the values in Tables 6.1 and 6.2
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(a) Local (b) Distributed

Figure 6.3: Percentage Runtime Differences

PICCO PICCO SMC2 SMC2

Program Name Average Standard Deviation Average Standard Deviation
LR-parser 0.00226 0.00047 0.00222 0.00044
pay-gap 4.05632 0.08251 4.08879 0.13961
h_analysis 12.60051 0.14929 12.81269 0.22293
private-branching 1.67252 0.16551 1.57602 0.08988
private-branching-mult 1.89925 0.17203 1.61712 0.14109
private-branching-add 2.30731 0.09335 1.77433 0.1394
private-branching-reuse 307.72411 2.17444 207.99393 1.29311

Table 6.1: Average runtimes and standard deviation for local computation.

PICCO PICCO SMC2 SMC2

Program Name Average Standard Deviation Average Standard Deviation
LR-parser 0.00242 0.00029 0.00242 0.00019
pay-gap 13.86972 0.38221 14.30434 0.25417
h_analysis 33.17922 0.26027 33.16173 0.31844
private-branching 3.44979 0.06592 3.222 0.06049
private-branching-mult 4.56412 0.06466 3.23905 0.06333
private-branching-add 6.45718 0.02443 3.99943 0.14629
private-branching-reuse 923.30999 18.20752 470.81101 9.9084

Table 6.2: Average runtimes and standard deviation for distributed computation.
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Programs

Benchmarking program pay-gap is shown in Figure 6.4. Here, we use the PICCO syntax for executing

smcinput and smcoutput this program, as opposed to the simplified syntax used in the Figure 1 in the

main paper. For simplicity, we aggregated the input data into a single file, rather than reading from 100

different files.
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1 p u b l i c i n t main ( ) {

2 p u b l i c i n t n u m P a r t i c i p a n t s = 100 , i , j , m a x I n p u t S i z e = 100 ;

3 p u b l i c i n t i n p u t S i z e [ n u m P a r t i c i p a n t s ] , inputNum ;

4 p r i v a t e i n t s a l a r y [ n u m P a r t i c i p a n t s ] [ m a x I n p u t S i z e ] ;

5 p r i v a t e i n t <1> g en d e r [ n u m P a r t i c i p a n t s ] [ m a x I n p u t S i z e ] ;

6 p r i v a t e i n t avgMaleSa l a ry = 0 , a v g F e m a l e S a l a r y = 0 ;

7 p r i v a t e i n t maleCount = 0 , fema leCoun t = 0 ;

8 p u b l i c i n t h i s t o r i c F e m a l e S a l a r y A v g , h i s t o r i c M a l e S a l a r y A v g ;

9

10 s m c i n p u t ( i n p u t S i z e , 1 , n u m P a r t i c i p a n t s ) ;

11 s m c i n p u t ( gender , 1 , n u m P a r t i c i p a n t s , m a x I n p u t S i z e ) ;

12 s m c i n p u t ( s a l a r y , 1 , n u m P a r t i c i p a n t s , m a x I n p u t S i z e ) ;

13 s m c i n p u t ( h i s t o r i c F e m a l e S a l a r y A v g , 1 ) ; s mc i n p u t ( h i s t o r i c M a l e S a l a r y A v g , 1 ) ;

14 f o r ( i = 0 ; i < n u m P a r t i c i p a n t s ; i ++){

15 f o r ( j = 0 ; j < i n p u t S i z e [ i ] ; j ++){

16 i f ( g en de r [ i ] [ j ] == 0) {

17 a v g F e m a l e S a l a r y += s a l a r y [ i ] [ j ] ;

18 femaleCoun t ++;

19 }

20 e l s e {

21 avgMaleSa l a ry += s a l a r y [ i ] [ j ] ;

22 maleCount ++;

23 }

24 }

25 }

26 a v g F e m a l e S a l a r y =( a v g F e m a l e S a l a r y / f ema leCoun t ) / 2 + h i s t o r i c F e m a l e S a l a r y A v g / 2 ;

27 avgMaleSa l a ry =( avgMaleSa l a ry / maleCount ) / 2 + h i s t o r i c F e m a l e S a l a r y A v g / 2 ;

28 smcou tpu t ( avgFemaleSa la ry , 1 ) ;

29 smcou tpu t ( avgMaleSa la ry , 1 ) ;

30 re turn 1 ;

31 }

Figure 6.4: Benchmarking program: pay-gap.c
Benchmarking program LR-parser is split into two parts due to the length of the program, and shown in

Figures 6.5 and 6.6. When reading the program, be aware that several lines contain multiple statements to be
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able to show this program within two figures, and the program contains comments (enclosed in /*... */)

to help understand the program.

1 p u b l i c i n t K = 100 ; / * max number o f v a r i a b l e s i n t h e e x p r e s s i o n * /

2 / * t h i s d e f i n e s i n t e g e r r e p r e s e n t a t i o n o f symbo l s : * /

3 / * + = K; * = K+1; ( = K+2; ) = K+3; EOF = K+4 * /

4 p u b l i c i n t M = 1 0 ; / * t h e number o f v a r i a b l e s i n t h e e x p r e s s i o n * /

5 p u b l i c i n t S = 2 9 ; / * t h e l e n g t h o f t h e e x p r e s s i o n * /

6 s t r u c t t o k e n { p r i v a t e i n t v a l ; p u b l i c i n t t y p e ; s t r u c t t o k e n * n e x t ; } ;

7 / * t y p e == 0 −−− i d ; t y p e == 1 −−− F ; t y p e == 2 −−− T ; t y p e == 3 −−− S * /

8 / * t y p e == 4 −−− +; t y p e == 5 −−− *; t y p e == 6 −−− ( ; t y p e == 7 −−− ) * /

9 s t r u c t t o k e n *pop ( s t r u c t t o k e n ** h e a d e r ) {

10 s t r u c t t o k e n * t = * h e a d e r ; s t r u c t t o k e n * tmp = * h e a d e r ;

11 * h e a d e r = tmp−>n e x t ; re turn t ; }

12 p u b l i c void push ( s t r u c t t o k e n ** header , s t r u c t t o k e n * t ) {

13 t−>n e x t = * h e a d e r ; * h e a d e r = t ; }

14 p u b l i c void i d _ r o u t i n e ( s t r u c t t o k e n ** header , i n t v a l ) {

15 s t r u c t t o k e n * t ; t = pma l loc ( 1 , s t r u c t t o k e n ) ;

16 t−>t y p e = 0 ; t−>v a l = v a l ; push ( header , t ) ; }

17 p u b l i c void c h e c k _ f o r _ r e m o v a b l e _ l b r a ( s t r u c t t o k e n ** h e a d e r ) {

18 s t r u c t t o k e n * t ; t = pop ( h e a d e r ) ;

19 i f ( t−>t y p e != 6) push ( header , t ) ; }

20 p u b l i c void p r o d _ s u b _ r o u t i n e ( s t r u c t t o k e n ** header , s t r u c t t o k e n * x1 , p u b l i c i n t

21 f l a g ) {

22 s t r u c t t o k e n * x3 ; x3 = pop ( h e a d e r ) ;

23 x1−>t y p e = 2 ; / * T * / x1−>v a l = x3−>v a l * x1−>v a l ;

24 i f (* h e a d e r != 0) {

25 s t r u c t t o k e n * x4 ; x4 = pop ( h e a d e r ) ;

26 i f ( x4−>t y p e == 4) / * + * / {

27 s t r u c t t o k e n * x5 ; x5 = pop ( h e a d e r ) ;

28 x1−>v a l = x1−>v a l + x5−>v a l ; x1−>t y p e = 3 ; }

29 e l s e push ( header , x4 ) ; }

30 i f ( f l a g == 1) c h e c k _ f o r _ r e m o v a b l e _ l b r a ( h e a d e r ) ;

31 push ( header , x1 ) ; }

32 p u b l i c void p l u s _ s u b _ r o u t i n e ( s t r u c t t o k e n ** header , s t r u c t t o k e n * x1 , p u b l i c i n t f l a g ) {

33 s t r u c t t o k e n * x3 ; x3 = pop ( h e a d e r ) ;

34 x1−>t y p e = 3 ; x1−>v a l = x1−>v a l + x3−>v a l ;

35 i f ( f l a g == 1) c h e c k _ f o r _ r e m o v a b l e _ l b r a ( h e a d e r ) ;

36 push ( header , x1 ) ; }

37 p u b l i c void p l u s _ r o u t i n e ( s t r u c t t o k e n ** h e a d e r ) {

38 s t r u c t t o k e n * p l u s ; p l u s = pma l loc ( 1 , s t r u c t t o k e n ) ; p lus−>t y p e = 4 ;

39 s t r u c t t o k e n * x1 ; x1 = pop ( h e a d e r ) ;

40 i f (* h e a d e r != 0) {

41 i f ( x1−>t y p e == 0) / * i d * / x1−>t y p e == 1 ; / * F * /

42 s t r u c t t o k e n * x2 ; x2 = pop ( h e a d e r ) ;

43 i f ( x2−>t y p e == 5) / * * * / p r o d _ s u b _ r o u t i n e ( header , x1 , 0 ) ;

44 e l s e i f ( x2−>t y p e == 4) / * + * / p l u s _ s u b _ r o u t i n e ( header , x1 , 0 ) ;

45 e l s e i f ( x2−>t y p e == 6) { / * ( * /

46 x1−>t y p e = 3 ; / * S * / push ( header , x2 ) ; push ( header , x1 ) ; } }

47 e l s e { x1−>t y p e = 3 ; push ( header , x1 ) ; }

48 push ( header , p l u s ) ; }

Figure 6.5: Benchmarking program: LR-parser.c (Part 1/2)
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50 p u b l i c void p r o d _ r o u t i n e ( s t r u c t t o k e n ** h e a d e r ) {

51 s t r u c t t o k e n * prod ; prod = pmal loc ( 1 , s t r u c t t o k e n ) ;

52 prod−>t y p e = 5 ; s t r u c t t o k e n * x1 ; x1 = pop ( h e a d e r ) ;

53 i f (* h e a d e r != 0){

54 i f ( x1−>t y p e == 0) / * i d * / x1−>t y p e == 1 ; / * F * /

55 s t r u c t t o k e n * x2 ; x2 = pop ( h e a d e r ) ;

56 i f ( x2−>t y p e == 5){

57 s t r u c t t o k e n * x3 ; x3 = pop ( h e a d e r ) ;

58 x1−>t y p e = 2 ; x1−>v a l = x1−>v a l * x3−>v a l ; push ( header , x1 ) ; } / * * * /

59 e l s e i f ( x2−>t y p e == 4 | | x2−>t y p e == 6) { / * + or ( * /

60 x1−>t y p e = 2 ; / * T * / push ( header , x2 ) ; push ( header , x1 ) ; } }

61 e l s e { x1−>t y p e = 2 ; push ( header , x1 ) ; }

62 push ( header , p rod ) ; }

63 p u b l i c void l b r a _ r o u t i n e ( s t r u c t t o k e n ** h e a d e r ) {

64 s t r u c t t o k e n * t ; t = pma l loc ( 1 , s t r u c t t o k e n ) ;

65 t−>t y p e = 6 ; push ( header , t ) ; }

66 p u b l i c void r b r a _ r o u t i n e ( s t r u c t t o k e n ** h e a d e r ) {

67 s t r u c t t o k e n * x1 ; x1 = pop ( h e a d e r ) ;

68 i f (* h e a d e r != 0) {

69 i f ( x1−>t y p e == 0) / * i d * / x1−>t y p e == 1 ; / * F * /

70 s t r u c t t o k e n * x2 ; x2 = pop ( h e a d e r ) ;

71 i f ( x2−>t y p e == 5) / * * * / p r o d _ s u b _ r o u t i n e ( header , x1 , 1 ) ;

72 e l s e i f ( x2−>t y p e == 4) / * + * / p l u s _ s u b _ r o u t i n e ( header , x1 , 1 ) ;

73 e l s e i f ( x2−>t y p e == 6) { x1−>t y p e = 1 ; push ( header , x1 ) ; } } }

74 p u b l i c void e o f _ r o u t i n e ( s t r u c t t o k e n ** h e a d e r ) {

75 s t r u c t t o k e n * x1 ; x1 = pop ( h e a d e r ) ; i n t r e s u l t = 0 ;

76 i f (* h e a d e r != 0) {

77 i f ( x1−>t y p e == 0) / * i d * / x1−>t y p e == 1 ; / * F * /

78 s t r u c t t o k e n * x2 ; x2 = pop ( h e a d e r ) ;

79 i f ( x2−>t y p e == 5) / * * * / p r o d _ s u b _ r o u t i n e ( header , x1 , 0 ) ;

80 e l s e i f ( x2−>t y p e == 4) / * + * / p l u s _ s u b _ r o u t i n e ( header , x1 , 0 ) ;

81 x1 = pop ( h e a d e r ) ; r e s u l t = x1−>v a l ; smcou tpu t ( r e s u l t , 1 ) ; }

82 e l s e { r e s u l t = x1−>v a l ; smcou tpu t ( r e s u l t , 1 ) ; / * o u t p u t t h e r e s u l t * / } }

83 p u b l i c i n t main ( ) {

84 p r i v a t e i n t i d s [M] ; p u b l i c i n t exp r [ S ] ;

85 s t r u c t t o k e n * h e a d e r = 0 ; / / header o f t h e s t a c k

86 p u b l i c i n t i n d e x = 0 ; p u b l i c i n t symbol = 0 ;

87 s m c i n p u t ( expr , 1 , S ) ; s m c i n p u t ( i d s , 1 , M) ;

88 whi le ( i n d e x < S ) {

89 symbol = exp r [ i n d e x ] ;

90 i f ( symbol < K) / * i d * / i d _ r o u t i n e (& header , i d s [ symbol ] ) ;

91 e l s e i f ( symbol == K) / * + * / p l u s _ r o u t i n e (& h e a d e r ) ;

92 e l s e i f ( symbol == K+1) / * * * / p r o d _ r o u t i n e (& h e a d e r ) ;

93 e l s e i f ( symbol == K+2) / * ( * / l b r a _ r o u t i n e (& h e a d e r ) ;

94 e l s e i f ( symbol == K+3) / * ) * / r b r a _ r o u t i n e (& h e a d e r ) ;

95 e l s e i f ( symbol == K+4) / * EOF * / e o f _ r o u t i n e (& h e a d e r ) ;

96 i n d e x = i n d e x +1; }

97 re turn 1 ;

98 }

Figure 6.6: Benchmarking program: LR-parser.c (Part 2/2)

857



1 p u b l i c i n t K=1000; / * l e n g t h o f i n p u t s e t * /

2 p u b l i c i n t main ( ) {

3 p u b l i c i n t i ; p r i v a t e i n t y e a r 1 [K] , y e a r 2 [K ] ; p r i v a t e i n t f i n a l [K ] ;

4 s m c i n p u t ( year1 , 1 , K ) ; sm c i n p u t ( year2 , 1 , K ) ;

5 f o r ( i = 0 ; i < K; i ++) { y e a r 2 [ i ] = ( y e a r 2 [ i ] − y e a r 1 [ i ] ) * 1000 ; }

6 f o r ( i = 0 ; i < K; i ++) { f i n a l [ i ] = y e a r 2 [ i ] / y e a r 1 [ i ] ; }

7 smcou tpu t ( f i n a l , 1 , K ) ;

8 re turn 0 ;

9 }

Figure 6.7: Benchmarking program: h_analysis.c

1 p u b l i c i n t main ( ) {

2 p u b l i c i n t S = 100 ; p r i v a t e i n t A[ S ] ; p r i v a t e i n t B[ S ] ;

3 p r i v a t e i n t c ; p u b l i c i n t i , j ;

4 s m c i n p u t (A, 1 , S ) ; sm c i n p u t (B , 1 , S ) ;

5 f o r ( i = 0 ; i < S ; i ++) {

6 i f (A[ i ] < B[ i ] ) { c = A[ i ] ; } e l s e { c = B[ i ] ; } }

7 smcou tpu t ( c , 1 ) ;

8 f o r ( i = 0 ; i < S ; i ++) {

9 i f (A[ i ] > B[ i ] ) { c = A[ i ] ; } e l s e { c = B[ i ] ; } }

10 smcou tpu t ( c , 1 ) ;

11 f o r ( i = 0 ; i < S ; i ++) {

12 i f (A[ i ] < B[ i ] ) { c = B[ i ] − A[ i ] ; } e l s e { c = A[ i ] − B[ i ] ; } }

13 smcou tpu t ( c , 1 ) ;

14 f o r ( i = 0 ; i < S ; i ++) {

15 i f (A[ i ] > B[ i ] ) { c = A[ i ] − B[ i ] ; } e l s e { c = B[ i ] − A[ i ] ; } }

16 smcou tpu t ( c , 1 ) ;

17 f o r ( i = 0 ; i < 1000 ; i ++) {

18 j = i %100;

19 i f (A[ j ] < B[ j ] ) { c = A[ j ] ; } e l s e { c = B[ j ] ; } }

20 smcou tpu t ( c , 1 ) ;

21 re turn 0 ;

22 }

Figure 6.8: Benchmarking program: private-branching.c
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1 p u b l i c i n t main ( ) {

2 p u b l i c i n t S =100; p r i v a t e i n t A[ S ] ; p r i v a t e i n t B[ S ] ;

3 p r i v a t e i n t c ; p u b l i c i n t i , j ;

4 s m c i n p u t (A, 1 , S ) ; sm c i n p u t (B , 1 , S ) ;

5 f o r ( i = 0 ; i < S ; i ++) {

6 i f (A[ i ] < B[ i ] ) { c = A[ i ] ; c = c + B[ i ] ; c = c * 2 ; }

7 e l s e { c = B[ i ] ; c = c + B[ i ] ; c = c + 2 ; } }

8 smcou tpu t ( c , 1 ) ;

9 f o r ( i = 0 ; i < S ; i ++) {

10 i f (A[ i ] < B[ i ] ) { c = A[ i ] ; c = c + B[ i ] ; c = c * 2 ; }

11 e l s e { c = B[ i ] ; c = c + B[ i ] ; c = c + 2 ; } }

12 smcou tpu t ( c , 1 ) ;

13 f o r ( i = 0 ; i < S ; i ++) {

14 i f (A[ i ] < B[ i ] ) { c = A[ i ] ; c = c + B[ i ] ; c = c * 2 ; }

15 e l s e { c = B[ i ] ; c = c + B[ i ] ; c = c + 2 ; } }

16 smcou tpu t ( c , 1 ) ;

17 f o r ( i = 0 ; i < S ; i ++) {

18 i f (A[ i ] < B[ i ] ) { c = A[ i ] ; c = c + B[ i ] ; c = c * 2 ; }

19 e l s e { c = B[ i ] ; c = c + B[ i ] ; c = c + 2 ; } }

20 smcou tpu t ( c , 1 ) ;

21 f o r ( i = 0 ; i < 1000 ; i ++) {

22 j = i %100;

23 i f (A[ j ] < B[ j ] ) { c = A[ j ] ; c = c + B[ j ] ; c = c * 2 ; }

24 e l s e { c = B[ j ] ; c = c + B[ j ] ; c = c + 2 ; } }

25 smcou tpu t ( c , 1 ) ;

26 re turn 0 ;

27 }

Figure 6.9: Benchmarking program: private-branching-mult.c
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1 p u b l i c i n t main ( ) {

2 p u b l i c i n t S=100 , i , j ;

3 p r i v a t e i n t A[ S ] , B[ S ] , c , d ;

4 s m c i n p u t (A, 1 , S ) ; s m c i n p u t (B , 1 , S ) ;

5 f o r ( i = 0 ; i < S ; i ++) {

6 i f (A[ i ] < B[ i ] ) {

7 c = A[ i ] ; d = c ; c = c + B[ i ] ; d = d * c ; c = c * 2 ; d = d + c ; }

8 e l s e {

9 c = B[ i ] ; d = c ; c = c + B[ i ] ; d = d * c ; c = c + 2 ; d = d + c ; } }

10 smcou tpu t ( c , 1 ) ; smcou tpu t ( d , 1 ) ;

11 f o r ( i = 0 ; i < S ; i ++) {

12 i f (A[ i ] < B[ i ] ) {

13 c = A[ i ] ; d = c ; c = c + B[ i ] ; d = d * c ; c = c * 2 ; d = d + c ; }

14 e l s e {

15 c = B[ i ] ; d = c ; c = c + B[ i ] ; d = d * c ; c = c + 2 ; d = d + c ; } }

16 smcou tpu t ( c , 1 ) ; smcou tpu t ( d , 1 ) ;

17 f o r ( i = 0 ; i < S ; i ++) {

18 i f (A[ i ] < B[ i ] ) {

19 c = A[ i ] ; d = c ; c = c + B[ i ] ; d = d * c ; c = c * 2 ; d = d + c ; }

20 e l s e {

21 c = B[ i ] ; d = c ; c = c + B[ i ] ; d = d * c ; c = c + 2 ; d = d + c ; } }

22 smcou tpu t ( c , 1 ) ; smcou tpu t ( d , 1 ) ;

23 f o r ( i = 0 ; i < S ; i ++) {

24 i f (A[ i ] < B[ i ] ) {

25 c = A[ i ] ; d = c ; c = c + B[ i ] ; d = d * c ; c = c * 2 ; d = d + c ; }

26 e l s e {

27 c = B[ i ] ; d = c ; c = c + B[ i ] ; d = d * c ; c = c + 2 ; d = d + c ; } }

28 smcou tpu t ( c , 1 ) ; smcou tpu t ( d , 1 ) ;

29 f o r ( i = 0 ; i < 1000 ; i ++) {

30 j = i %100;

31 i f (A[ j ] < B[ j ] ) {

32 c = A[ j ] ; d = c ; c = c + B[ j ] ; d = d * c ; c = c * 2 ; d = d + c ; }

33 e l s e {

34 c = B[ j ] ; d = c ; c = c + B[ j ] ; d = d * c ; c = c + 2 ; d = d + c ; } }

35 smcou tpu t ( c , 1 ) ; smcou tpu t ( d , 1 ) ;

36 re turn 0 ;

37 }

Figure 6.10: Benchmarking program: private-branching-add.c
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1 p u b l i c i n t main ( ) {

2 p u b l i c i n t S =100; p r i v a t e i n t A[ S ] ; p r i v a t e i n t B[ S ] ;

3 p r i v a t e i n t c =0 , d =0 , e =0; p u b l i c i n t i , j ;

4 s m c i n p u t (A, 1 , S ) ; sm c i n p u t (B , 1 , S ) ;

5 f o r ( i = 0 ; i < 100000; i ++) {

6 j = i %100;

7 i f (A[ j ] < B[ j ] ) {

8 c = c + A[ j ] ; e = e + c ; d = d + c ; e = e − 2 ;

9 c = c + B[ j ] ; e = e + d ; d = d + c ; e = e − c ;

10 c = c + 2 ; e = e − 2 ; d = d + c ; e = e + 1 0 ;

11 e = e − 100 ; e = e + d − c ; }

12 e l s e {

13 c = c + B[ j ] ; e = e + c ; d = d + c ; e = e + d ;

14 c = c + B[ j ] ; e = e − 5 0 ; d = d + c ; e = e + e ;

15 c = c + 2 ; e = e − c − d ; d = d + c ; e = e + 1 0 ;

16 e = e − 100 ; e = e + d − c ; }

17 i f ( e > 100000){ e = e − 100000; }

18 i f ( i %50 == 0){ c = 0 ; d = 0 ; e = 0 ; } }

19 smcou tpu t ( c , 1 ) ; smcou tpu t ( d , 1 ) ; smcou tpu t ( e , 1 ) ;

20 re turn 0 ;

21 }

Figure 6.11: Benchmarking program: private-branching-reuse.c
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Table 6.3: h_analysis - local PICCO

Run Party 3 Party 2 Party 1

1 12.6165 12.6182 12.6205
2 12.6407 12.6411 12.6430
3 12.6690 12.6697 12.6712
4 12.6986 12.6992 12.7020
5 12.9585 12.9592 12.9607
6 12.5118 12.5127 12.5150
7 12.5107 12.5113 12.5136
8 12.5615 12.5621 12.5644
9 12.6041 12.6049 12.6066
10 12.5351 12.5357 12.5371
11 12.7150 12.7158 12.7175
12 12.5866 12.5868 12.5885
13 12.6791 12.6796 12.6811
14 12.5861 12.5865 12.5885
15 12.5791 12.5807 12.5815
16 12.5046 12.5051 12.5069
17 12.5390 12.5396 12.5409
18 12.5444 12.5448 12.5462
19 12.5525 12.5532 12.5555
20 12.5229 12.5235 12.5250
21 12.5750 12.5758 12.5778
22 12.5120 12.5126 12.5144
23 12.5044 12.5053 12.5067
24 12.5996 12.6005 12.6030
25 12.5209 12.5218 12.5241
26 12.5379 12.5390 12.5413
27 12.5548 12.5553 12.5582
28 12.5402 12.5409 12.5431
29 12.5705 12.5712 12.5729
30 12.4891 12.4898 12.4921
31 12.5110 12.5116 12.5142
32 12.4431 12.4438 12.4454
33 12.5129 12.5132 12.5156
34 12.5426 12.5432 12.5446
35 12.5670 12.5674 12.5690
36 12.5775 12.5781 12.5805
37 12.5252 12.5259 12.5283
38 12.6392 12.6400 12.6414
39 13.2066 13.2092 13.2113
40 12.5044 12.5050 12.5066
41 12.4948 12.4952 12.4977
42 12.5765 12.5777 12.5789
43 12.5128 12.5135 12.5156
44 12.5350 12.5358 12.5380
45 13.1942 13.1948 13.1970
46 12.5688 12.5692 12.5705
47 12.7549 12.7573 12.7592
48 12.6145 12.6152 12.6166
49 12.5559 12.5566 12.5583
50 12.6109 12.6116 12.6138

Table 6.4: h_analysis - local SMC2

Run Party 3 Party 2 Party 1

1 12.8186 12.8203 12.8245
2 12.8695 12.8724 12.8727
3 12.9447 12.9467 12.9501
4 12.7745 12.7764 12.7794
5 12.9614 12.9634 12.9664
6 12.6944 12.6975 12.6977
7 12.6011 12.6032 12.6032
8 12.6476 12.6498 12.6527
9 12.8900 12.8924 12.8958
10 12.9264 12.9273 12.9319
11 13.1416 13.1442 13.1444
12 12.7686 12.7721 12.7708
13 12.8705 12.8730 12.8766
14 12.8357 12.8382 12.8384
15 12.8516 12.8545 12.8553
16 12.7758 12.7791 12.7777
17 12.7853 12.7878 12.7905
18 13.0108 13.0138 13.0141
19 13.4011 13.4038 13.4070
20 13.2590 13.2618 13.2648
21 12.9835 12.9867 12.9871
22 12.5944 12.5972 12.5979
23 12.7999 12.8027 12.8056
24 12.7980 12.8004 12.8031
25 12.6918 12.6953 12.6942
26 12.4757 12.4765 12.4777
27 12.7187 12.7210 12.7243
28 12.5477 12.5487 12.5506
29 13.0753 13.0778 13.0812
30 12.9022 12.9048 12.9051
31 12.5510 12.5516 12.5535
32 13.1789 13.1817 13.1821
33 12.8397 12.8421 12.8449
34 13.2833 13.2850 13.2879
35 12.9896 12.9930 12.9935
36 13.0452 13.0475 13.0502
37 12.7573 12.7599 12.7628
38 12.7752 12.7778 12.7781
39 12.7908 12.7921 12.7955
40 12.5684 12.5689 12.5700
41 13.0630 13.0651 13.0677
42 12.8728 12.8752 12.8781
43 12.6476 12.6506 12.6513
44 12.5682 12.5687 12.5713
45 12.5392 12.5403 12.5426
46 12.4598 12.4604 12.4627
47 12.5042 12.5045 12.5066
48 12.5861 12.5869 12.5893
49 12.5304 12.5316 12.5340
50 12.5667 12.5671 12.5685
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Table 6.5: LR-parser - local PICCO

Run Party 3 Party 2 Party 1

1 8.540 · 10−4 2.316 · 10−3 5.012 · 10−3

2 7.990 · 10−4 1.695 · 10−3 2.984 · 10−3

3 8.340 · 10−4 1.633 · 10−3 3.939 · 10−3

4 7.750 · 10−4 1.176 · 10−3 2.742 · 10−3

5 8.270 · 10−4 1.489 · 10−3 3.861 · 10−3

6 8.160 · 10−4 1.664 · 10−3 3.401 · 10−3

7 7.920 · 10−4 1.086 · 10−3 3.703 · 10−3

8 7.270 · 10−4 1.064 · 10−3 3.501 · 10−3

9 7.700 · 10−4 1.632 · 10−3 2.592 · 10−3

10 7.880 · 10−4 1.344 · 10−3 3.129 · 10−3

11 8.180 · 10−4 1.392 · 10−3 3.188 · 10−3

12 8.310 · 10−4 1.641 · 10−3 3.369 · 10−3

13 8.900 · 10−4 2.542 · 10−3 5.069 · 10−3

14 8.300 · 10−4 1.722 · 10−3 3.196 · 10−3

15 8.310 · 10−4 1.463 · 10−3 3.075 · 10−3

16 9.180 · 10−4 2.500 · 10−3 2.920 · 10−3

17 8.710 · 10−4 2.389 · 10−3 5.403 · 10−3

18 8.190 · 10−4 1.290 · 10−3 3.023 · 10−3

19 8.210 · 10−4 1.494 · 10−3 3.746 · 10−3

20 9.120 · 10−4 2.459 · 10−3 3.413 · 10−3

21 8.180 · 10−4 1.555 · 10−3 3.850 · 10−3

22 7.640 · 10−4 1.487 · 10−3 3.134 · 10−3

23 8.050 · 10−4 1.256 · 10−3 2.739 · 10−3

24 7.890 · 10−4 1.390 · 10−3 2.839 · 10−3

25 8.060 · 10−4 1.434 · 10−3 2.744 · 10−3

26 1.572 · 10−3 2.111 · 10−3 4.370 · 10−3

27 9.490 · 10−4 1.740 · 10−3 6.200 · 10−3

28 9.020 · 10−4 2.551 · 10−3 3.305 · 10−3

29 9.010 · 10−4 2.073 · 10−3 4.935 · 10−3

30 8.860 · 10−4 2.610 · 10−3 5.219 · 10−3

31 8.990 · 10−4 1.662 · 10−3 5.993 · 10−3

32 9.480 · 10−4 2.482 · 10−3 3.348 · 10−3

33 9.610 · 10−4 2.432 · 10−3 3.020 · 10−3

34 7.910 · 10−4 1.508 · 10−3 3.285 · 10−3

35 9.160 · 10−4 2.268 · 10−3 5.130 · 10−3

36 1.021 · 10−3 3.897 · 10−3 2.418 · 10−3

37 9.020 · 10−4 2.550 · 10−3 4.612 · 10−3

38 8.870 · 10−4 2.491 · 10−3 5.528 · 10−3

39 8.870 · 10−4 2.556 · 10−3 5.101 · 10−3

40 9.790 · 10−4 2.485 · 10−3 3.595 · 10−3

41 1.032 · 10−3 2.776 · 10−3 5.811 · 10−3

42 9.460 · 10−4 3.891 · 10−3 2.379 · 10−3

43 8.000 · 10−4 1.312 · 10−3 2.932 · 10−3

44 9.200 · 10−4 2.252 · 10−3 4.529 · 10−3

45 9.120 · 10−4 2.482 · 10−3 5.177 · 10−3

46 8.940 · 10−4 2.409 · 10−3 3.015 · 10−3

47 8.930 · 10−4 2.597 · 10−3 3.109 · 10−3

48 9.630 · 10−4 2.347 · 10−3 2.817 · 10−3

49 1.014 · 10−3 2.666 · 10−3 6.002 · 10−3

50 9.220 · 10−4 3.894 · 10−3 2.536 · 10−3

Table 6.6: LR-parser - local SMC2

Run Party 3 Party 2 Party 1

1 8.710 · 10−4 1.145 · 10−3 3.156 · 10−3

2 9.390 · 10−4 2.686 · 10−3 3.339 · 10−3

3 8.770 · 10−4 2.452 · 10−3 5.342 · 10−3

4 8.840 · 10−4 2.273 · 10−3 2.630 · 10−3

5 9.010 · 10−4 2.452 · 10−3 5.315 · 10−3

6 1.003 · 10−3 3.679 · 10−3 2.311 · 10−3

7 9.090 · 10−4 2.376 · 10−3 5.328 · 10−3

8 9.480 · 10−4 2.487 · 10−3 2.941 · 10−3

9 8.990 · 10−4 2.349 · 10−3 3.401 · 10−3

10 1.225 · 10−3 4.193 · 10−3 2.377 · 10−3

11 8.880 · 10−4 2.421 · 10−3 4.982 · 10−3

12 9.070 · 10−4 1.575 · 10−3 5.926 · 10−3

13 9.020 · 10−4 2.340 · 10−3 5.113 · 10−3

14 9.490 · 10−4 2.139 · 10−3 5.352 · 10−3

15 9.290 · 10−4 2.621 · 10−3 3.371 · 10−3

16 8.900 · 10−4 2.363 · 10−3 6.000 · 10−3

17 8.820 · 10−4 2.386 · 10−3 5.253 · 10−3

18 9.130 · 10−4 3.613 · 10−3 2.008 · 10−3

19 9.780 · 10−4 2.622 · 10−3 5.543 · 10−3

20 8.430 · 10−4 2.472 · 10−3 3.559 · 10−3

21 8.530 · 10−4 1.528 · 10−3 5.406 · 10−3

22 9.080 · 10−4 2.544 · 10−3 5.216 · 10−3

23 9.140 · 10−4 3.811 · 10−3 2.401 · 10−3

24 8.450 · 10−4 1.225 · 10−3 3.310 · 10−3

25 9.780 · 10−4 2.569 · 10−3 2.828 · 10−3

26 8.310 · 10−4 2.000 · 10−3 3.705 · 10−3

27 7.830 · 10−4 1.690 · 10−3 2.561 · 10−3

28 7.530 · 10−4 1.155 · 10−3 3.258 · 10−3

29 8.120 · 10−4 1.665 · 10−3 3.065 · 10−3

30 7.800 · 10−4 1.332 · 10−3 3.652 · 10−3

31 7.860 · 10−4 1.475 · 10−3 3.993 · 10−3

32 7.710 · 10−4 1.214 · 10−3 2.527 · 10−3

33 8.320 · 10−4 1.611 · 10−3 3.107 · 10−3

34 8.190 · 10−4 1.365 · 10−3 3.329 · 10−3

35 8.440 · 10−4 1.510 · 10−3 4.705 · 10−3

36 8.780 · 10−4 1.842 · 10−3 3.954 · 10−3

37 8.510 · 10−4 1.525 · 10−3 3.250 · 10−3

38 8.990 · 10−4 2.663 · 10−3 4.528 · 10−3

39 7.820 · 10−4 8.510 · 10−4 3.009 · 10−3

40 7.990 · 10−4 1.503 · 10−3 3.539 · 10−3

41 8.420 · 10−4 1.464 · 10−3 3.614 · 10−3

42 8.210 · 10−4 1.842 · 10−3 3.921 · 10−3

43 7.430 · 10−4 1.336 · 10−3 3.164 · 10−3

44 8.520 · 10−4 1.627 · 10−3 2.923 · 10−3

45 8.290 · 10−4 1.585 · 10−3 3.940 · 10−3

46 7.950 · 10−4 1.371 · 10−3 2.803 · 10−3

47 8.230 · 10−4 1.489 · 10−3 3.662 · 10−3

48 8.200 · 10−4 1.478 · 10−3 2.972 · 10−3

49 7.570 · 10−4 1.175 · 10−3 3.160 · 10−3

50 7.500 · 10−4 1.280 · 10−3 3.948 · 10−3
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Table 6.7: pay-gap - local PICCO

Run Party 3 Party 2 Party 1

1 4.16726 4.16811 4.16981
2 4.03592 4.03685 4.03826
3 4.00866 4.00958 4.01208
4 4.10085 4.10164 4.10376
5 4.04085 4.04344 4.04604
6 3.98020 3.98091 3.98327
7 4.01444 4.01522 4.01747
8 4.29332 4.29734 4.29578
9 4.05769 4.05859 4.06192
10 4.02625 4.02711 4.02931
11 3.99417 3.99530 4.00207
12 4.04705 4.04803 4.04939
13 4.12716 4.12822 4.13046
14 3.98831 3.98895 3.99048
15 4.00110 4.00219 4.00437
16 4.03571 4.03719 4.03813
17 4.25825 4.25555 4.26014
18 4.01612 4.01703 4.01820
19 4.21264 4.21373 4.21821
20 4.02595 4.02700 4.02937
21 4.17542 4.17704 4.18179
22 4.01560 4.01614 4.01937
23 3.98058 3.98066 3.98402
24 4.00213 4.00046 4.00343
25 4.00142 4.00205 4.00435
26 4.20610 4.20698 4.20958
27 4.12068 4.12291 4.12347
28 4.10280 4.10058 4.10424
29 4.01360 4.01449 4.01568
30 3.96217 3.96325 3.96492
31 4.03994 4.04055 4.04318
32 4.00828 4.00980 4.01079
33 3.97393 3.97476 3.97659
34 4.02941 4.03030 4.03258
35 3.98304 3.98376 3.98556
36 4.00000 4.00049 4.00202
37 3.98944 3.99020 3.99271
38 4.17173 4.17255 4.17467
39 4.13375 4.13451 4.13671
40 3.98662 3.98736 3.98963
41 4.02506 4.02599 4.02843
42 3.98928 3.99069 3.99465
43 4.19137 4.19228 4.19389
44 4.04239 4.04339 4.04532
45 3.98701 3.98745 3.98949
46 3.98489 3.98588 3.99115
47 3.99005 3.99224 3.99289
48 4.04459 4.04541 4.04779
49 4.16325 4.16382 4.16617
50 4.00166 4.00349 4.00453

Table 6.8: pay-gap - local SMC2

Run Party 3 Party 2 Party 1

1 4.02504 4.02626 4.02898
2 4.00674 4.00838 4.01023
3 4.00143 4.00328 4.00424
4 4.20375 4.20519 4.20611
5 4.01353 4.01505 4.01574
6 4.17787 4.17887 4.18324
7 3.98043 3.98128 3.98279
8 4.18946 4.19008 4.19118
9 4.11967 4.12053 4.12294
10 4.02879 4.02999 4.03219
11 4.47848 4.48203 4.48278
12 4.01288 4.01387 4.01608
13 3.97971 3.98042 3.98265
14 4.19594 4.19803 4.19890
15 4.03561 4.03655 4.03919
16 3.98955 3.98980 3.99255
17 4.00117 4.00187 4.00328
18 3.98528 3.98599 3.98754
19 4.25372 4.25549 4.25623
20 3.97173 3.97263 3.97480
21 3.99446 3.99529 3.99759
22 4.02002 4.02076 4.02276
23 3.98496 3.98674 3.98779
24 4.00550 4.00646 4.00781
25 4.55908 4.56078 4.56227
26 3.97448 3.97510 3.97744
27 4.49137 4.49360 4.49689
28 4.12475 4.12648 4.12932
29 3.98664 3.98840 3.98931
30 3.98306 3.98355 3.98665
31 3.99172 3.99308 3.99364
32 4.27796 4.27945 4.27989
33 4.14147 4.14232 4.14440
34 4.20099 4.20122 4.20419
35 4.02764 4.02862 4.03097
36 4.01179 4.01307 4.01597
37 3.98353 3.98402 3.98563
38 4.02764 4.02832 4.03072
39 3.98398 3.98509 3.98716
40 3.99998 4.00196 4.00284
41 4.10665 4.10772 4.11041
42 4.18827 4.18885 4.19138
43 3.97756 3.97819 3.98022
44 3.98376 3.98494 3.98699
45 4.11079 4.11221 4.11315
46 4.03477 4.03561 4.03757
47 4.22173 4.22256 4.22479
48 4.15755 4.15995 4.16039
49 4.16673 4.16786 4.16921
50 3.99967 4.00050 4.00172

864



Table 6.9: private-branching - local PICCO

Run Party 3 Party 2 Party 1

1 1.60458 1.60673 1.60834
2 1.65330 1.65421 1.65680
3 1.60857 1.60919 1.61080
4 1.59710 1.59767 1.59945
5 1.61263 1.61330 1.61579
6 1.62257 1.62348 1.62550
7 1.61156 1.61220 1.61395
8 1.59742 1.59801 1.60061
9 1.60492 1.60566 1.60717
10 1.60842 1.60911 1.61165
11 1.59461 1.59533 1.59769
12 2.50973 2.51158 2.51490
13 1.58400 1.58452 1.58694
14 1.60348 1.60428 1.60652
15 1.76747 1.76820 1.76988
16 1.96118 1.96397 1.96693
17 1.59610 1.59674 1.59823
18 1.59450 1.59513 1.59753
19 1.64438 1.64514 1.65158
20 1.66879 1.66941 1.67101
21 1.61062 1.61118 1.61233
22 2.04844 2.05102 2.05405
23 1.61313 1.61384 1.61556
24 1.59406 1.59463 1.59695
25 1.59437 1.59497 1.59651
26 1.61402 1.61473 1.61719
27 1.60158 1.60215 1.60342
28 1.60954 1.61027 1.61187
29 1.60095 1.60162 1.60396
30 1.83951 1.84268 1.84503
31 1.56627 1.56726 1.56862
32 1.60700 1.60719 1.61004
33 1.61720 1.61777 1.61957
34 1.84574 1.84823 1.85089
35 1.58155 1.58230 1.58442
36 1.59460 1.59521 1.59740
37 1.59218 1.59294 1.59525
38 1.59741 1.59851 1.59918
39 1.60366 1.60427 1.60685
40 1.92327 1.92631 1.92846
41 1.59204 1.59228 1.59454
42 1.94828 1.95088 1.95365
43 1.66567 1.66617 1.66852
44 1.61146 1.61214 1.61398
45 1.63584 1.63656 1.63896
46 1.59177 1.59239 1.59357
47 1.60450 1.60493 1.60650
48 1.79401 1.79672 1.79906
49 1.60696 1.60738 1.60991
50 1.60545 1.60631 1.60769

Table 6.10: private-branching - local SMC2

Run Party 3 Party 2 Party 1

1 1.54662 1.54731 1.54858
2 1.54512 1.54577 1.54682
3 1.55057 1.55120 1.55271
4 1.52629 1.52701 1.52838
5 1.53156 1.53222 1.53410
6 1.55063 1.55140 1.55305
7 1.55285 1.55350 1.55526
8 1.55436 1.55503 1.55730
9 1.87710 1.87850 1.88182
10 1.51997 1.52075 1.52320
11 1.59211 1.59217 1.59526
12 1.53990 1.54064 1.54209
13 1.53930 1.53956 1.54156
14 1.60499 1.60590 1.60759
15 1.55078 1.55152 1.55306
16 1.53605 1.53667 1.53897
17 1.54284 1.54336 1.54498
18 1.84004 1.84267 1.84534
19 1.53181 1.53255 1.53451
20 1.53991 1.54024 1.54194
21 1.54858 1.54927 1.55104
22 1.72932 1.73221 1.73412
23 1.53651 1.53700 1.53847
24 1.53265 1.53333 1.53584
25 1.55363 1.55451 1.55675
26 1.55277 1.55355 1.55581
27 1.55109 1.55155 1.55298
28 1.53933 1.53991 1.54191
29 1.54686 1.54776 1.55025
30 1.76529 1.76749 1.77031
31 1.52424 1.52501 1.52687
32 1.53305 1.53401 1.53590
33 1.53941 1.53998 1.54147
34 1.54670 1.54761 1.54911
35 1.53822 1.53879 1.54017
36 1.53811 1.53882 1.54105
37 1.53320 1.53388 1.53615
38 1.54169 1.54203 1.54460
39 1.53514 1.53569 1.53741
40 1.52526 1.52616 1.52859
41 1.55529 1.55616 1.55830
42 1.52545 1.52637 1.52794
43 1.54622 1.54679 1.54858
44 1.55675 1.55736 1.55886
45 1.54968 1.55074 1.55217
46 1.88024 1.88338 1.88447
47 1.53542 1.53611 1.53888
48 1.72987 1.73224 1.73470
49 1.53644 1.53710 1.53974
50 1.53938 1.53983 1.54230
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Table 6.11: private-branching-mult - local PICCO

Run Party 3 Party 2 Party 1

1 1.84452 1.84614 1.84859
2 1.83161 1.83239 1.83416
3 1.82864 1.82927 1.83088
4 1.83207 1.83290 1.83461
5 1.82922 1.83012 1.83177
6 2.17623 2.17756 2.18199
7 1.81076 1.81217 1.81256
8 2.18860 2.19121 2.19377
9 1.82277 1.82319 1.82446
10 1.82890 1.82947 1.83144
11 1.84167 1.84242 1.84360
12 1.82250 1.82295 1.82549
13 1.83336 1.83418 1.83658
14 1.83057 1.83099 1.83256
15 1.83686 1.83733 1.83899
16 1.85853 1.85929 1.86167
17 1.81368 1.81429 1.81695
18 2.07964 2.08242 2.08509
19 1.81677 1.81699 1.81945
20 2.48197 2.48377 2.48751
21 1.82953 1.83019 1.83176
22 1.83899 1.83977 1.84206
23 1.81361 1.81446 1.81593
24 1.81658 1.81801 1.81881
25 1.81737 1.81791 1.82040
26 1.99169 1.99413 1.99673
27 1.78829 1.78899 1.79113
28 1.82606 1.82748 1.82819
29 1.81855 1.81883 1.82111
30 1.82258 1.82325 1.82468
31 1.82914 1.82949 1.83157
32 2.52867 2.53119 2.53375
33 1.81997 1.82122 1.82293
34 1.82738 1.82803 1.83074
35 1.81170 1.81202 1.81471
36 1.92061 1.92316 1.92566
37 1.80583 1.80639 1.80898
38 2.13714 2.14014 2.14237
39 1.81543 1.81637 1.81789
40 1.82036 1.82112 1.82356
41 1.82171 1.82248 1.82504
42 2.16868 2.16983 2.17338
43 1.80742 1.80765 1.81031
44 2.27346 2.27592 2.27898
45 1.81042 1.81120 1.81293
46 1.81737 1.81804 1.82065
47 1.83220 1.83295 1.83462
48 1.80715 1.80719 1.80937
49 1.82041 1.82082 1.82340
50 1.84488 1.84581 1.84804

Table 6.12: private-branching-mult - local SMC2

Run Party 3 Party 2 Party 1

1 1.54888 1.55031 1.55182
2 1.53811 1.53893 1.54046
3 1.53257 1.53305 1.53573
4 1.54548 1.54625 1.54842
5 1.54048 1.54082 1.54309
6 1.53612 1.53677 1.53841
7 1.52219 1.52293 1.52515
8 1.90041 1.90295 1.90517
9 1.54033 1.54103 1.54261
10 1.59069 1.59132 1.59357
11 1.77185 1.77268 1.77516
12 2.08521 2.08763 2.09016
13 1.53254 1.53304 1.53565
14 1.64102 1.64349 1.64630
15 1.52872 1.52959 1.53131
16 1.54642 1.54720 1.54897
17 1.54477 1.54589 1.54836
18 1.80777 1.81025 1.81294
19 1.52321 1.52405 1.52658
20 1.52073 1.52143 1.52325
21 1.53302 1.53371 1.53533
22 1.53418 1.53491 1.53636
23 1.53334 1.53404 1.53558
24 1.53236 1.53317 1.53466
25 1.53389 1.53415 1.53668
26 1.52296 1.52361 1.52610
27 1.54760 1.54816 1.54963
28 1.55751 1.55837 1.56068
29 1.54656 1.54736 1.54994
30 1.69967 1.70265 1.70360
31 1.53887 1.53953 1.54117
32 1.67955 1.68211 1.68450
33 1.55447 1.55541 1.55708
34 1.53531 1.53588 1.53827
35 1.71574 1.71853 1.71930
36 1.55839 1.56080 1.56344
37 1.52407 1.52591 1.52682
38 1.52493 1.52541 1.52702
39 1.61137 1.61196 1.61380
40 1.72207 1.72284 1.72529
41 1.56052 1.56134 1.56352
42 1.81293 1.81597 1.81702
43 1.97124 1.97382 1.97671
44 1.78799 1.79075 1.79322
45 1.52358 1.52413 1.52567
46 1.55960 1.56031 1.56216
47 1.54804 1.54877 1.55009
48 2.02455 2.02757 2.02838
49 1.53037 1.53106 1.53258
50 1.65964 1.66256 1.66333
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Table 6.13: private-branching-add - local PICCO

Run Party 3 Party 2 Party 1

1 2.26137 2.26344 2.26575
2 2.25126 2.25196 2.25415
3 2.26869 2.26954 2.27113
4 2.37157 2.37416 2.37640
5 2.25388 2.25427 2.25700
6 2.26388 2.26453 2.26589
7 2.24790 2.24844 2.25111
8 2.44936 2.45201 2.45472
9 2.26814 2.26872 2.27139
10 2.28338 2.28404 2.28663
11 2.29533 2.29539 2.29759
12 2.25524 2.25630 2.25900
13 2.27186 2.27259 2.27411
14 2.25764 2.25817 2.26003
15 2.24657 2.24718 2.24961
16 2.52695 2.52984 2.53208
17 2.28396 2.28441 2.28616
18 2.26472 2.26531 2.26676
19 2.28065 2.28115 2.28294
20 2.41586 2.41889 2.41946
21 2.23359 2.23398 2.23586
22 2.46324 2.46554 2.46761
23 2.25360 2.25417 2.25589
24 2.25771 2.25838 2.26094
25 2.28734 2.28779 2.28942
26 2.23570 2.23646 2.23913
27 2.34608 2.34681 2.34867
28 2.24490 2.24554 2.24794
29 2.25011 2.25080 2.25272
30 2.25984 2.26068 2.26289
31 2.34647 2.34694 2.34923
32 2.32354 2.32579 2.32836
33 2.26515 2.26598 2.26776
34 2.25612 2.25678 2.25834
35 2.24158 2.24220 2.24450
36 2.61099 2.61364 2.61595
37 2.28469 2.28557 2.28706
38 2.38805 2.39068 2.39333
39 2.22541 2.22597 2.22799
40 2.51652 2.51919 2.52146
41 2.25918 2.26020 2.26283
42 2.25602 2.25717 2.25856
43 2.25852 2.25908 2.26142
44 2.26348 2.26391 2.26521
45 2.25589 2.25649 2.25918
46 2.34781 2.35000 2.35257
47 2.25329 2.25419 2.25654
48 2.25370 2.25424 2.25660
49 2.25657 2.25756 2.25943
50 2.57972 2.58237 2.58505

Table 6.14: private-branching-add - local SMC2

Run Party 3 Party 2 Party 1

1 1.71235 1.71382 1.71662
2 1.72306 1.72404 1.72604
3 1.71693 1.71758 1.72048
4 1.84594 1.84914 1.85015
5 1.69609 1.69681 1.69823
6 1.71023 1.71102 1.71333
7 1.69963 1.70073 1.70256
8 1.81254 1.81504 1.81743
9 1.69577 1.69650 1.69884
10 1.99570 1.99863 1.99932
11 1.71234 1.71335 1.71481
12 1.70743 1.70784 1.71001
13 1.70228 1.70313 1.70442
14 1.70913 1.70986 1.71147
15 1.70737 1.70801 1.70997
16 2.02438 2.02725 2.02912
17 1.69039 1.69109 1.69275
18 1.69969 1.70007 1.70276
19 1.71531 1.71623 1.71845
20 2.27585 2.27866 2.28155
21 1.71745 1.71798 1.71927
22 1.93455 1.93817 1.93695
23 1.70552 1.70621 1.70856
24 1.70485 1.70570 1.70729
25 1.70303 1.70357 1.70530
26 1.87633 1.87756 1.88020
27 1.71121 1.71202 1.71425
28 2.28842 2.29075 2.29354
29 1.98787 1.99013 1.99183
30 1.71027 1.71093 1.71340
31 1.69438 1.69494 1.69622
32 1.99784 2.00022 2.00298
33 1.69397 1.69459 1.69580
34 1.70427 1.70499 1.70739
35 1.70912 1.70961 1.71124
36 1.73849 1.73924 1.74060
37 1.71039 1.71123 1.71276
38 1.88031 1.88292 1.88553
39 1.69504 1.69572 1.69726
40 1.69340 1.69383 1.69548
41 1.71090 1.71165 1.71303
42 1.69498 1.69654 1.69744
43 1.71914 1.71990 1.72149
44 1.73577 1.73649 1.73809
45 1.79852 1.79906 1.80076
46 1.71324 1.71384 1.71557
47 1.70883 1.70936 1.71105
48 1.71332 1.71389 1.71615
49 1.71390 1.71435 1.71633
50 1.73054 1.73090 1.73261
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Table 6.15: private-branching-reuse - local PICCO

Run Party 3 Party 2 Party 1

1 306.417 306.417 306.420
2 306.770 306.770 306.773
3 307.605 307.605 307.608
4 304.854 304.854 304.856
5 305.650 305.651 305.653
6 313.356 313.356 313.359
7 307.517 307.517 307.519
8 306.909 306.910 306.912
9 308.475 308.477 308.478
10 307.584 307.585 307.588
11 308.927 308.928 308.930
12 305.307 305.308 305.310
13 307.220 307.221 307.224
14 307.052 307.053 307.055
15 306.521 306.522 306.524
16 313.535 313.536 313.536
17 309.687 309.687 309.690
18 309.937 309.937 309.939
19 312.982 312.984 312.985
20 309.028 309.027 309.029
21 307.059 307.059 307.061
22 306.067 306.068 306.069
23 309.403 309.404 309.406
24 308.003 308.004 308.006
25 311.320 311.320 311.323
26 308.300 308.301 308.303
27 307.684 307.685 307.688
28 311.649 311.652 311.655
29 304.103 304.104 304.106
30 307.001 307.001 307.003
31 307.276 307.277 307.279
32 306.671 306.671 306.674
33 306.545 306.546 306.548
34 305.210 305.211 305.213
35 306.935 306.936 306.939
36 306.058 306.058 306.060
37 305.447 305.447 305.449
38 309.230 309.230 309.233
39 305.702 305.703 305.705
40 309.179 309.180 309.182
41 308.917 308.917 308.919
42 306.335 306.335 306.337
43 306.904 306.906 306.906
44 305.180 305.181 305.184
45 308.632 308.633 308.634
46 305.768 305.769 305.771
47 310.487 310.488 310.490
48 306.675 306.675 306.678
49 307.250 307.251 307.254
50 305.823 305.824 305.826

Table 6.16: private-branching-reuse - local SMC2

Run Party 3 Party 2 Party 1

1 207.435 207.436 207.438
2 208.437 208.438 208.442
3 207.562 207.562 207.564
4 208.017 208.018 208.020
5 207.633 207.635 207.636
6 208.643 208.645 208.646
7 206.995 206.995 206.997
8 208.240 208.241 208.243
9 207.078 207.078 207.081
10 208.841 208.842 208.843
11 206.712 206.713 206.714
12 209.619 209.619 209.621
13 207.887 207.887 207.890
14 208.898 208.898 208.901
15 208.852 208.853 208.855
16 209.493 209.494 209.496
17 207.297 207.298 207.299
18 206.614 206.615 206.617
19 209.137 209.138 209.140
20 206.691 206.691 206.693
21 207.515 207.516 207.517
22 210.254 210.255 210.257
23 208.206 208.207 208.209
24 206.548 206.548 206.551
25 207.497 207.498 207.500
26 208.610 208.611 208.614
27 207.952 207.953 207.955
28 206.238 206.239 206.240
29 207.875 207.876 207.878
30 208.124 208.125 208.127
31 206.764 206.765 206.767
32 213.974 213.976 213.977
33 207.685 207.686 207.688
34 207.504 207.505 207.506
35 207.304 207.305 207.306
36 206.047 206.047 206.050
37 206.517 206.518 206.519
38 208.409 208.410 208.411
39 209.372 209.372 209.375
40 207.550 207.550 207.553
41 209.026 209.027 209.029
42 207.617 207.617 207.619
43 208.531 208.532 208.533
44 206.267 206.267 206.270
45 207.775 207.775 207.778
46 206.919 206.922 206.923
47 208.300 208.301 208.303
48 209.102 209.103 209.105
49 208.143 208.145 208.148
50 207.930 207.931 207.932
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Table 6.17: h_analysis - distributed PICCO

Run Party 3 Party 2 Party 1

1 32.9724 32.9741 32.9740
2 33.0030 33.0038 33.0038
3 33.1318 33.1323 33.1327
4 33.0414 33.0425 33.0429
5 33.1214 33.1224 33.1228
6 33.0819 33.0831 33.0846
7 33.2351 33.2362 33.2367
8 32.6875 32.6882 32.6885
9 33.0159 33.0171 33.0174
10 33.3818 33.3826 33.3836
11 33.4762 33.4771 33.4776
12 33.0908 33.0904 33.0908
13 32.9965 32.9971 32.9977
14 33.4771 33.4784 33.4783
15 33.2027 33.2043 33.2043
16 33.1458 33.1465 33.1469
17 33.0859 33.0870 33.0874
18 33.2989 33.2999 33.2999
19 33.3585 33.3594 33.3601
20 33.4771 33.4781 33.4782
21 32.5989 32.5988 32.5992
22 33.2016 33.2024 33.2031
23 33.4653 33.4665 33.4667
24 33.4956 33.4970 33.4975
25 33.5036 33.5048 33.5059
26 33.5028 33.5037 33.5039
27 33.3172 33.3185 33.3193
28 32.8595 32.8605 32.8608
29 33.2181 33.2191 33.2192
30 32.8554 32.8566 32.8564
31 33.5673 33.5682 33.5691
32 32.6680 32.6691 32.6698
33 33.3845 33.3856 33.3862
34 33.4602 33.4609 33.4610
35 33.3772 33.3784 33.3791
36 32.8090 32.8104 32.8110
37 33.5681 33.5695 33.5702
38 32.9796 32.9805 32.9809
39 32.9324 32.9333 32.9336
40 33.0995 33.1009 33.1015
41 33.4864 33.4872 33.4876
42 33.0941 33.0950 33.0954
43 33.4355 33.4369 33.4379
44 32.7640 32.7646 32.7649
45 32.9461 32.9474 32.9473
46 33.1884 33.1895 33.1900
47 33.3549 33.3554 33.3559
48 33.1047 33.1055 33.1057
49 33.4986 33.4993 33.5002
50 32.9027 32.9039 32.9047

Table 6.18: h_analysis - distributed SMC2

Run Party 3 Party 2 Party 1

1 33.3860 33.3859 33.3858
2 33.4402 33.4409 33.4410
3 33.0142 33.0152 33.0157
4 33.3040 33.3052 33.3056
5 33.4974 33.4984 33.4991
6 32.7267 32.7272 32.7281
7 33.2915 33.2938 33.2930
8 33.2545 33.2560 33.2564
9 33.3282 33.3296 33.3298
10 32.4965 32.4973 32.5000
11 33.2348 33.2357 33.2357
12 32.4525 32.4532 32.4534
13 32.5411 32.5419 32.5428
14 33.2799 33.2807 33.2825
15 33.2421 33.2439 33.2444
16 33.2257 33.2272 33.2276
17 33.6459 33.6471 33.6472
18 32.4917 32.4932 32.4936
19 32.8390 32.8403 32.8407
20 33.2840 33.2849 33.2864
21 33.3813 33.3825 33.3828
22 33.2197 33.2208 33.2220
23 32.8390 32.8383 32.8382
24 33.3357 33.3365 33.3374
25 33.2647 33.2659 33.2659
26 33.4063 33.4057 33.4060
27 32.8752 32.8760 32.8760
28 33.3966 33.3981 33.3980
29 33.5832 33.5847 33.5851
30 33.3178 33.3189 33.3192
31 33.3770 33.3777 33.3783
32 33.2906 33.2918 33.2921
33 33.0039 33.0044 33.0059
34 33.4027 33.4044 33.4042
35 33.5612 33.5625 33.5626
36 33.3462 33.3479 33.3485
37 33.2213 33.2239 33.2245
38 32.7314 32.7322 32.7333
39 33.5250 33.5262 33.5270
40 33.0647 33.0660 33.0659
41 33.4969 33.4981 33.4987
42 33.6321 33.6330 33.6344
43 32.9909 32.9921 32.9929
44 33.2335 33.2346 33.2348
45 33.0860 33.0868 33.0877
46 32.9811 32.9821 32.9822
47 33.0257 33.0263 33.0269
48 33.1959 33.1973 33.1965
49 32.7920 32.7926 32.7939
50 32.4894 32.4902 32.4912
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Table 6.19: LR-parser - distributed PICCO

Run Party 3 Party 2 Party 1

1 1.549 · 10−3 3.097 · 10−3 3.742 · 10−3

2 1.574 · 10−3 2.668 · 10−3 2.459 · 10−3

3 1.594 · 10−3 2.662 · 10−3 2.632 · 10−3

4 1.609 · 10−3 2.899 · 10−3 2.222 · 10−3

5 1.584 · 10−3 3.201 · 10−3 3.635 · 10−3

6 1.497 · 10−3 2.546 · 10−3 2.317 · 10−3

7 1.539 · 10−3 2.773 · 10−3 3.946 · 10−3

8 1.739 · 10−3 2.730 · 10−3 3.145 · 10−3

9 1.508 · 10−3 2.747 · 10−3 2.376 · 10−3

10 1.529 · 10−3 2.863 · 10−3 2.891 · 10−3

11 1.523 · 10−3 2.528 · 10−3 3.607 · 10−3

12 1.507 · 10−3 2.286 · 10−3 2.583 · 10−3

13 1.482 · 10−3 2.596 · 10−3 2.993 · 10−3

14 1.619 · 10−3 2.295 · 10−3 3.279 · 10−3

15 1.460 · 10−3 2.817 · 10−3 3.066 · 10−3

16 1.591 · 10−3 2.880 · 10−3 2.949 · 10−3

17 1.586 · 10−3 2.810 · 10−3 2.955 · 10−3

18 1.583 · 10−3 2.686 · 10−3 3.654 · 10−3

19 1.584 · 10−3 2.731 · 10−3 3.259 · 10−3

20 1.541 · 10−3 2.752 · 10−3 3.583 · 10−3

21 1.719 · 10−3 2.697 · 10−3 3.675 · 10−3

22 1.607 · 10−3 2.661 · 10−3 2.966 · 10−3

23 1.597 · 10−3 2.556 · 10−3 2.753 · 10−3

24 1.561 · 10−3 2.754 · 10−3 3.218 · 10−3

25 1.510 · 10−3 2.876 · 10−3 2.876 · 10−3

26 1.228 · 10−3 2.165 · 10−3 3.021 · 10−3

27 1.608 · 10−3 2.521 · 10−3 3.243 · 10−3

28 1.488 · 10−3 2.998 · 10−3 3.607 · 10−3

29 1.666 · 10−3 2.615 · 10−3 3.443 · 10−3

30 1.196 · 10−3 2.203 · 10−3 3.062 · 10−3

31 1.588 · 10−3 2.649 · 10−3 2.558 · 10−3

32 1.245 · 10−3 2.054 · 10−3 3.131 · 10−3

33 1.723 · 10−3 2.394 · 10−3 2.611 · 10−3

34 1.257 · 10−3 2.056 · 10−3 2.666 · 10−3

35 1.655 · 10−3 2.450 · 10−3 2.621 · 10−3

36 1.627 · 10−3 2.730 · 10−3 3.777 · 10−3

37 1.598 · 10−3 2.868 · 10−3 3.194 · 10−3

38 1.164 · 10−3 1.121 · 10−3 1.113 · 10−3

39 1.556 · 10−3 2.399 · 10−3 2.723 · 10−3

40 1.538 · 10−3 2.593 · 10−3 2.758 · 10−3

41 1.624 · 10−3 2.681 · 10−3 2.761 · 10−3

42 1.536 · 10−3 2.343 · 10−3 3.304 · 10−3

43 1.618 · 10−3 2.886 · 10−3 2.842 · 10−3

44 1.587 · 10−3 2.269 · 10−3 2.522 · 10−3

45 1.687 · 10−3 3.383 · 10−3 3.675 · 10−3

46 1.660 · 10−3 3.083 · 10−3 3.629 · 10−3

47 1.664 · 10−3 3.295 · 10−3 3.371 · 10−3

48 1.537 · 10−3 2.805 · 10−3 3.419 · 10−3

49 1.697 · 10−3 2.794 · 10−3 3.796 · 10−3

50 1.559 · 10−3 2.700 · 10−3 3.388 · 10−3

Table 6.20: LR-parser - distributed SMC2

Run Party 3 Party 2 Party 1

1 1.637 · 10−3 2.625 · 10−3 3.257 · 10−3

2 1.567 · 10−3 2.633 · 10−3 3.690 · 10−3

3 1.491 · 10−3 2.160 · 10−3 2.374 · 10−3

4 1.565 · 10−3 2.612 · 10−3 2.544 · 10−3

5 1.618 · 10−3 2.542 · 10−3 3.210 · 10−3

6 1.477 · 10−3 2.852 · 10−3 2.890 · 10−3

7 1.620 · 10−3 2.481 · 10−3 2.512 · 10−3

8 1.577 · 10−3 2.879 · 10−3 3.007 · 10−3

9 1.462 · 10−3 2.566 · 10−3 2.138 · 10−3

10 1.533 · 10−3 2.772 · 10−3 3.091 · 10−3

11 1.524 · 10−3 2.360 · 10−3 2.444 · 10−3

12 1.553 · 10−3 2.868 · 10−3 2.984 · 10−3

13 1.717 · 10−3 2.877 · 10−3 2.968 · 10−3

14 1.549 · 10−3 2.622 · 10−3 2.733 · 10−3

15 1.620 · 10−3 2.809 · 10−3 3.237 · 10−3

16 1.602 · 10−3 2.230 · 10−3 3.178 · 10−3

17 1.554 · 10−3 2.687 · 10−3 2.697 · 10−3

18 1.538 · 10−3 2.568 · 10−3 3.231 · 10−3

19 1.559 · 10−3 2.369 · 10−3 2.405 · 10−3

20 1.590 · 10−3 2.871 · 10−3 3.280 · 10−3

21 1.581 · 10−3 2.597 · 10−3 2.555 · 10−3

22 1.525 · 10−3 2.470 · 10−3 2.604 · 10−3

23 1.622 · 10−3 2.545 · 10−3 2.641 · 10−3

24 1.464 · 10−3 2.367 · 10−3 2.570 · 10−3

25 1.584 · 10−3 3.247 · 10−3 3.428 · 10−3

26 1.691 · 10−3 2.589 · 10−3 2.947 · 10−3

27 1.616 · 10−3 2.265 · 10−3 3.365 · 10−3

28 1.436 · 10−3 2.379 · 10−3 2.555 · 10−3

29 1.662 · 10−3 3.476 · 10−3 3.694 · 10−3

30 1.488 · 10−3 2.437 · 10−3 3.049 · 10−3

31 1.515 · 10−3 2.998 · 10−3 3.454 · 10−3

32 1.537 · 10−3 2.580 · 10−3 3.648 · 10−3

33 1.526 · 10−3 2.600 · 10−3 3.531 · 10−3

34 1.560 · 10−3 2.723 · 10−3 3.289 · 10−3

35 1.546 · 10−3 2.668 · 10−3 2.603 · 10−3

36 1.528 · 10−3 2.727 · 10−3 3.226 · 10−3

37 1.608 · 10−3 2.723 · 10−3 2.855 · 10−3

38 1.564 · 10−3 2.645 · 10−3 2.646 · 10−3

39 1.642 · 10−3 2.640 · 10−3 3.251 · 10−3

40 1.502 · 10−3 2.829 · 10−3 2.936 · 10−3

41 1.564 · 10−3 2.362 · 10−3 3.332 · 10−3

42 1.551 · 10−3 2.969 · 10−3 2.876 · 10−3

43 1.516 · 10−3 2.174 · 10−3 3.008 · 10−3

44 1.577 · 10−3 2.618 · 10−3 3.239 · 10−3

45 1.656 · 10−3 2.653 · 10−3 3.531 · 10−3

46 1.573 · 10−3 2.582 · 10−3 3.645 · 10−3

47 1.593 · 10−3 2.875 · 10−3 3.258 · 10−3

48 1.470 · 10−3 2.418 · 10−3 3.786 · 10−3

49 1.541 · 10−3 2.741 · 10−3 3.348 · 10−3

50 1.543 · 10−3 2.614 · 10−3 3.615 · 10−3
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Table 6.21: private-branching - distributed PICCO

Run Party 3 Party 2 Party 1

1 3.23942 3.24051 3.24039
2 3.32584 3.32801 3.32975
3 3.41976 3.42104 3.42105
4 3.50588 3.57090 3.50791
5 3.50504 3.50583 3.50598
6 3.52268 3.52391 3.52445
7 3.49831 3.49998 3.50061
8 3.48104 3.48227 3.48231
9 3.27109 3.27205 3.27310
10 3.47149 3.47318 3.47330
11 3.46770 3.46963 3.46930
12 3.41150 3.41241 3.41247
13 3.50748 3.50928 3.50926
14 3.46141 3.46275 3.46261
15 3.48426 3.48535 3.48518
16 3.41861 3.41867 3.41885
17 3.52237 3.52339 3.52409
18 3.47470 3.47588 3.47688
19 3.41949 3.42051 3.42104
20 3.42541 3.42669 3.42736
21 3.41429 3.41580 3.41606
22 3.51975 3.52094 3.52186
23 3.40489 3.40664 3.40703
24 3.48310 3.48456 3.48458
25 3.43877 3.44023 3.44059
26 3.49143 3.49223 3.49284
27 3.40712 3.40810 3.40841
28 3.45702 3.45831 3.45812
29 3.47067 3.47160 3.47144
30 3.45716 3.45846 3.45848
31 3.47034 3.47139 3.47160
32 3.32684 3.32811 3.32818
33 3.44954 3.45095 3.45088
34 3.51742 3.51830 3.51939
35 3.45803 3.45918 3.45967
36 3.45175 3.45274 3.45274
37 3.43281 3.43406 3.43469
38 3.46394 3.46513 3.46535
39 3.53129 3.53300 3.53338
40 3.52613 3.52715 3.52741
41 3.48972 3.49049 3.49174
42 3.33954 3.34034 3.33998
43 3.47977 3.48063 3.48168
44 3.44981 3.45097 3.45144
45 3.42624 3.42774 3.42787
46 3.32197 3.32286 3.32288
47 3.51539 3.51679 3.51722
48 3.51441 3.51560 3.51640
49 3.45600 3.45720 3.45723
50 3.42339 3.42473 3.42506

Table 6.22: private-branching - distributed SMC2

Run Party 3 Party 2 Party 1

1 3.22575 3.22693 3.22709
2 3.31135 3.31285 3.31392
3 3.32549 3.32621 3.32626
4 3.14090 3.14259 3.14264
5 3.22530 3.22638 3.22636
6 3.19258 3.19365 3.19423
7 3.19228 3.19378 3.19397
8 3.25889 3.25975 3.26027
9 3.21114 3.21212 3.21235
10 3.20388 3.20535 3.20590
11 3.27287 3.27393 3.27411
12 3.27767 3.27873 3.27860
13 3.30338 3.30437 3.30485
14 3.31036 3.31107 3.31126
15 3.16673 3.16760 3.16863
16 3.16910 3.16895 3.16904
17 3.11065 3.11214 3.11259
18 3.18197 3.18278 3.18289
19 3.24375 3.24505 3.24465
20 3.22024 3.22139 3.22159
21 3.24179 3.24286 3.24307
22 3.33262 3.33370 3.33387
23 3.20144 3.20242 3.20316
24 3.18528 3.18648 3.18624
25 3.23825 3.23958 3.24017
26 3.23015 3.23186 3.23219
27 3.18560 3.18664 3.18778
28 3.22072 3.22191 3.22287
29 3.12446 3.12533 3.12534
30 3.28129 3.28270 3.28344
31 3.21136 3.21253 3.21259
32 3.30145 3.30228 3.30240
33 3.24651 3.24750 3.24837
34 3.25778 3.25880 3.25932
35 3.19060 3.19143 3.19146
36 3.25630 3.25724 3.25729
37 3.23832 3.23925 3.23916
38 3.20474 3.20554 3.20572
39 3.18841 3.18770 3.18864
40 3.33595 3.33666 3.33635
41 3.16652 3.16739 3.16768
42 3.17713 3.17823 3.17821
43 3.31800 3.31935 3.31969
44 3.18529 3.18608 3.18621
45 3.20002 3.20121 3.20190
46 3.18166 3.18285 3.18282
47 3.13168 3.13296 3.13328
48 3.16449 3.16536 3.16550
49 3.06241 3.06366 3.06418
50 3.25584 3.25689 3.25775
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Table 6.23: private-branching-mult - distributed
PICCO

Run Party 3 Party 2 Party 1

1 4.59540 4.59636 4.59609
2 4.53936 4.54049 4.54061
3 4.49363 4.49520 4.49554
4 4.63247 4.63376 4.63421
5 4.52342 4.52411 4.52453
6 4.56561 4.56762 4.56772
7 4.43305 4.43410 4.43538
8 4.59511 4.59691 4.59689
9 4.57623 4.57736 4.57834
10 4.63623 4.63711 4.63736
11 4.60049 4.60142 4.60220
12 4.61652 4.61733 4.61768
13 4.55563 4.55672 4.55650
14 4.60324 4.60420 4.60450
15 4.26586 4.26708 4.26720
16 4.53426 4.53562 4.53601
17 4.55882 4.55996 4.56028
18 4.58667 4.58789 4.58838
19 4.59861 4.59996 4.60039
20 4.61689 4.61770 4.61797
21 4.53529 4.53596 4.53716
22 4.62299 4.62452 4.62489
23 4.56215 4.56327 4.56317
24 4.58665 4.58748 4.58826
25 4.50510 4.50637 4.50617
26 4.55368 4.55424 4.55463
27 4.57286 4.57407 4.57444
28 4.60919 4.61025 4.61068
29 4.57066 4.57152 4.57266
30 4.64601 4.64708 4.64726
31 4.54558 4.54722 4.54768
32 4.59367 4.59467 4.59476
33 4.53832 4.53918 4.53935
34 4.46108 4.46304 4.46307
35 4.51477 4.51649 4.51689
36 4.59608 4.59698 4.59723
37 4.48141 4.48268 4.48337
38 4.55729 4.55807 4.55816
39 4.57702 4.57796 4.57899
40 4.53622 4.53781 4.53826
41 4.65083 4.65278 4.65319
42 4.50843 4.51003 4.51003
43 4.61518 4.61689 4.61719
44 4.58877 4.58969 4.59020
45 4.61282 4.61464 4.61505
46 4.54268 4.54413 4.54483
47 4.51636 4.51743 4.51820
48 4.61769 4.61860 4.61878
49 4.63943 4.64074 4.64127
50 4.57378 4.57488 4.57506

Table 6.24: private-branching-mult
- distributed SMC2

Run Party 3 Party 2 Party 1

1 3.24871 3.24850 3.24850
2 3.24513 3.24615 3.24697
3 3.28705 3.28819 3.28874
4 3.19546 3.19640 3.19654
5 3.30502 3.30589 3.30737
6 3.20291 3.20383 3.20390
7 3.26045 3.26134 3.26235
8 3.23805 3.23976 3.24205
9 3.22116 3.22245 3.22218
10 3.30338 3.30437 3.30457
11 3.23186 3.23358 3.23359
12 3.24383 3.24506 3.24505
13 3.26867 3.26974 3.27076
14 3.22740 3.22850 3.22928
15 3.14338 3.14479 3.14475
16 3.26569 3.26706 3.26746
17 3.19437 3.19544 3.19594
18 3.20916 3.21031 3.21105
19 3.24551 3.24647 3.24649
20 3.37681 3.37665 3.37682
21 3.07650 3.07712 3.07828
22 3.37420 3.37544 3.37491
23 3.22330 3.22408 3.22510
24 3.29998 3.30118 3.30176
25 3.18802 3.18935 3.18907
26 3.25063 3.25161 3.25164
27 3.24884 3.25005 3.25041
28 3.26558 3.26676 3.26762
29 3.14865 3.14964 3.14947
30 3.26928 3.27028 3.27031
31 3.18859 3.18982 3.18980
32 3.32418 3.32516 3.32620
33 3.16827 3.16913 3.16982
34 3.14683 3.14786 3.14780
35 3.14419 3.14557 3.14431
36 3.21007 3.21171 3.21177
37 3.28256 3.28375 3.28489
38 3.16202 3.16304 3.16409
39 3.26626 3.26717 3.26719
40 3.25889 3.26021 3.26068
41 3.20518 3.20634 3.20620
42 3.31639 3.31774 3.31825
43 3.20719 3.20798 3.20822
44 3.28656 3.28770 3.28863
45 3.23714 3.23846 3.23915
46 3.39525 3.39600 3.39599
47 3.27075 3.27159 3.27197
48 3.21416 3.21503 3.21609
49 3.14558 3.14653 3.14661
50 3.22141 3.22269 3.22296
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Table 6.25: private-branching-add - distributed
PICCO

Run Party 3 Party 2 Party 1

1 6.50164 6.50246 6.50214
2 6.46684 6.46768 6.46832
3 6.48319 6.48395 6.48499
4 6.42252 6.42351 6.42375
5 6.46481 6.46628 6.46677
6 6.51813 6.51912 6.51919
7 6.41184 6.41273 6.41274
8 6.46118 6.46196 6.46297
9 6.48374 6.48493 6.48537
10 6.46173 6.46315 6.46359
11 6.44803 6.44916 6.44910
12 6.46533 6.46643 6.46651
13 6.44199 6.44286 6.44395
14 6.46640 6.46746 6.46753
15 6.45817 6.45885 6.45899
16 6.45497 6.45630 6.45621
17 6.47309 6.47411 6.47428
18 6.46976 6.47101 6.47160
19 6.47669 6.47790 6.47804
20 6.44402 6.44509 6.44497
21 6.46258 6.46305 6.46305
22 6.45184 6.45304 6.45379
23 6.46708 6.46874 6.46888
24 6.50002 6.50121 6.50155
25 6.43453 6.43648 6.43651
26 6.42595 6.42746 6.42788
27 6.44219 6.44334 6.44332
28 6.45200 6.45313 6.45325
29 6.45469 6.45614 6.45663
30 6.42916 6.43043 6.43107
31 6.43679 6.43779 6.43815
32 6.48524 6.48660 6.48672
33 6.46485 6.46631 6.46651
34 6.47884 6.48058 6.48092
35 6.37378 6.37457 6.37482
36 6.45143 6.45277 6.45247
37 6.43697 6.43808 6.43825
38 6.46466 6.46566 6.46550
39 6.45191 6.45330 6.45383
40 6.45636 6.45735 6.45731
41 6.44296 6.44427 6.44446
42 6.42655 6.42765 6.42843
43 6.46664 6.46785 6.46804
44 6.46296 6.46393 6.46425
45 6.44887 6.44998 6.45031
46 6.47456 6.47553 6.47668
47 6.46136 6.46230 6.46228
48 6.43963 6.44074 6.44077
49 6.47579 6.47713 6.47777
50 6.42132 6.42280 6.42314

Table 6.26: private-branching-add - distributed
SMC2

Run Party 3 Party 2 Party 1

1 4.17418 4.17424 4.17450
2 3.74590 3.74765 3.74947
3 3.75282 3.75458 3.75771
4 3.82356 3.82493 3.82896
5 4.07070 4.07152 4.07156
6 4.10426 4.10537 4.10543
7 4.07842 4.07957 4.07937
8 4.11001 4.11096 4.11143
9 4.01142 4.01319 4.01349
10 4.11668 4.11746 4.11801
11 4.06778 4.06862 4.06961
12 4.14263 4.14362 4.14347
13 4.04563 4.04723 4.04756
14 4.10021 4.10129 4.10145
15 3.91254 3.91383 3.91392
16 4.21228 4.21303 4.21319
17 3.96840 3.96974 3.97054
18 4.01983 4.02107 4.02158
19 4.07483 4.07623 4.07665
20 4.12336 4.12429 4.12477
21 4.03838 4.03942 4.03948
22 3.95919 3.96049 3.96082
23 4.00141 4.00303 4.00309
24 3.99121 3.99227 3.99317
25 4.11988 4.12121 4.12112
26 4.01589 4.01801 4.01814
27 4.02534 4.02631 4.02747
28 4.13796 4.13845 4.13946
29 3.93888 3.93997 3.94090
30 4.00427 4.00550 4.00619
31 4.16683 4.16785 4.16876
32 4.05642 4.05820 4.05857
33 4.15460 4.15534 4.15575
34 4.15907 4.15994 4.16018
35 4.01624 4.01715 4.01773
36 4.00861 4.00983 4.01022
37 3.97886 3.97984 3.98024
38 4.11109 4.11238 4.11240
39 3.73384 3.73468 3.73571
40 3.77550 3.77636 3.77728
41 3.99583 3.99726 3.99769
42 4.02460 4.02564 4.02683
43 4.03986 4.04157 4.04184
44 4.14853 4.14932 4.14955
45 4.09817 4.09904 4.09903
46 3.75002 3.75129 3.75145
47 3.72462 3.72539 3.72574
48 3.66927 3.67020 3.67034
49 3.69157 3.69257 3.69338
50 3.73260 3.73357 3.73455
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Table 6.27: private-branching-reuse - distributed
PICCO

Run Party 3 Party 2 Party 1

1 939.677 939.678 939.678
2 934.200 934.201 934.201
3 933.701 933.702 933.702
4 933.659 933.659 933.657
5 933.478 933.478 933.477
6 933.456 933.457 933.457
7 933.273 933.273 933.274
8 930.833 930.834 930.833
9 930.503 930.504 930.504
10 929.933 929.934 929.934
11 893.004 893.005 893.006
12 883.523 883.524 883.523
13 883.316 883.317 883.318
14 882.261 882.262 882.262
15 879.770 879.771 879.771
16 878.815 878.816 878.817
17 874.693 874.694 874.694
18 934.262 934.262 934.262
19 896.204 896.206 896.206
20 933.213 933.214 933.215
21 934.800 934.801 934.801
22 930.751 930.752 930.753
23 939.329 939.329 939.336
24 931.335 931.336 931.336
25 934.438 934.439 934.440
26 930.345 930.347 930.347
27 929.639 929.641 929.641
28 946.800 946.802 946.802
29 930.576 930.578 930.578
30 932.871 932.872 932.873
31 931.209 931.210 921.211
32 933.872 933.873 933.874
33 936.157 936.159 936.159
34 918.741 918.742 918.742
35 917.047 917.048 917.049
36 927.901 927.902 927.902
37 929.557 929.559 929.559
38 922.454 922.455 922.455
39 928.380 928.381 928.382
40 929.934 929.935 929.936
41 928.381 928.383 928.383
42 929.074 929.075 929.075
43 926.697 926.698 926.699
44 924.680 924.681 924.682
45 929.556 929.557 929.557
46 925.540 925.542 925.542
47 928.330 928.331 928.332
48 924.925 924.917 924.917
49 934.215 934.217 934.218
50 929.488 929.489 929.489

Table 6.28: private-branching-reuse - distributed
SMC2

Run Party 3 Party 2 Party 1

1 475.252 475.252 475.252
2 474.749 474.750 474.751
3 475.626 475.627 475.628
4 456.563 456.564 456.564
5 450.563 450.651 450.661
6 471.822 471.824 471.835
7 471.068 471.069 471.080
8 448.641 448.643 448.654
9 452.754 452.756 452.767
10 452.021 452.023 452.042
11 458.783 458.785 458.796
12 465.188 465.190 465.211
13 474.854 474.855 474.855
14 478.646 478.647 478.648
15 475.822 475.824 475.825
16 474.708 474.709 474.709
17 472.542 472.543 472.544
18 475.325 475.326 475.326
19 474.326 474.327 474.328
20 474.090 474.091 474.092
21 474.348 474.349 474.349
22 473.485 473.486 473.486
23 471.181 471.182 471.183
24 477.147 477.148 477.148
25 476.871 476.872 476.872
26 480.441 480.442 480.443
27 477.851 477.852 477.853
28 477.094 477.095 477.095
29 485.520 485.521 485.521
30 450.194 450.196 450.195
31 450.494 450.496 450.496
32 449.176 449.176 449.177
33 452.379 452.380 452.381
34 472.001 472.001 472.002
35 477.727 477.728 477.730
36 478.685 478.685 478.687
37 476.482 476.483 476.483
38 473.843 473.843 473.844
39 476.136 476.137 476.138
40 476.402 476.404 476.404
41 475.359 475.360 475.360
42 478.351 478.352 478.352
43 477.333 477.334 477.334
44 475.617 475.618 475.619
45 475.808 475.810 475.810
46 474.918 474.919 474.920
47 476.794 476.795 476.796
48 474.985 474.986 474.986
49 475.471 475.472 475.473
50 474.977 474.978 474.978
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6.2 Domain Specific Language (DSL)

In this section, we will discuss extending our formal model and implementation with a DSL. Writing SMC

programs can be complex, and attempting to write them in such a way that they will be efficient at runtime

requires in depth knowledge of the system, the underlying SMC protocols, and also the runtime environment.

There are also limitations on what a programmer can do to write more efficient programs based on the system

itself. For example, if a system does not provide the syntax to allow the programmer to specify certain

elements (e.g., variable bit lengths) that could help improve the runtime of a program, then there is a limit to

how much the programmer can do to improve the efficiency of their program on their own. A programmer

could, of course, write out their own functions and libraries to attempt to improve efficiency, but at that point

the SMC system is of questionable use to them. There is a great need for a system that simplifies writing

efficient SMC programs and facilitates implementing optimizations on SMC programs.

In order to satisfy this need, we must extend our model to include a DSL. Our goal with this DSL

extension is to have a fully formalized model for SMC that is proven correct and secure while also helping

programmers write more efficient SMC programs that can easily be optimized. In order to accomplish this,

we must begin by designing the DSL, keeping in mind what syntactic elements may help us in enabling

optimizations. Then we must formalize the DSL and it’s translation to our Multiparty SMC2 semantics.

Finally, we must implement the DSL, enabling us to show that by providing the DSL we can simplify writing

SMC programs that will be more efficient at runtime.

6.2.1 Design

When trying to design our DSL, we first need to take into consideration what we want to accomplish with

this DSL. As discussed above, we need a way to simplify writing and optimizing SMC programs. One fairly

straight-forward way to do this is by designing the DSL with at least one optimization in mind that would

help improve the efficiency of SMC programs. To start, we have chosen to focus on the optimization of

finding optimal variable sizes, as the performance of SMC operations are often dependent on the bit length of

data.
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Optimal Variable Sizes

Because performance of SMC operations is often dependent on the bit length of the data provided as input,

we plan on exploring automatic mechanisms for inferring optimal variable sizes. Specifically, we want to

automatically reduce the number of bits necessary to encode various data types, as there are many operations

on private variables whose cost is at least linear in the bit length of their representation. If we can determine

the bounds on the range of values a variable will store (e.g., based on the input bit length), we can determine

the optimal number of bits needed to represent the values without overflow. As an example, consider the

code in Figure 6.12 that uses two private bit arrays A and B of size S.

1 private int<1> A[S], B[S];
2 public int d; private int hd, c;
3 hd = A @ B;
4 if (hd > d) c = 1;
5 else c = 0;

Figure 6.12: Computation of Hamming distance: notation <n> denotes the size of integers in bits and @ the
dot product.

If we compute the Hamming distance hd and consequently use this result in a comparison, the size of

the variable in which the Hamming distance is stored will determine the cost of the comparison. If hd is

declared to a default value (such as 32 or 64 bits), performance can be several times higher than necessary

if log(S) is substantially lower than the default bit length. Inference of the optimal number of bits needed

for the computation requires effective constant propagation [42], loop bound inference [43, 44], as well as

precise data-flow information [45, 46]. We are not aware of previous study of this topic in the SMC context.

DSL Grammar

When designing the grammar for the DSL, we chose to start with a fairly basic set of statements, expressions,

and operations. We maintained the primitive functions from SMC2 to facilitate data input and output, as well

as annotating types with privacy labels. After starting with this basic set, we began to fully consider the first

optimization we will be implementing – finding the optimal bit length of variables. To enable us to do this, we

first need the syntax to annotate variable declarations with a size n, indicating that the given variable should

not contain data that is larger than what can be stored in n bits. We chose to use the syntax ty < n > var , as

it provides a simple way to declare the variable’s size, and it is already present within PICCO, the system
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ty ∈ Type ::= a bty | ty → ty
bty ∈ BasicType ::= int
a ∈ PrivacyLabel ::= private | public

s ∈ Statement ::= var = e | s; s | decl | if (e) s else s | {s} | prim | e
| bound n for(s; e; s){s} | return e

e ∈ Expression ::= e bop e | var | x(e) | (e) | v |++ x
decl ∈ Declaration ::= ty var | ty < n > var | ty x(p){s}
var ∈ Variable ::= x | x[e]
v ∈ Value ::= n | v | skip

prim ∈ PrimitiveFunction ::= smcinput(var , n) | smcoutput(var , n)
bop ∈ BinaryOperation ::= − | + | · | ÷ | == | ! = | < | << | >>
e ∈ ExpressionList ::= e, e | e | void
p ∈ ParameterList ::= p, ty var | ty var | void

cl ∈ ComputeSizeList ::= f : x→e
θ ∈ OptimalSizeMap ::= f : x→(ty , n, n, n, cl , x)

ty ∈ TypeList
v ∈ ValueList n ∈ N
x ∈ VariableList x ∈ Variable

Figure 6.13: DSL Grammar. The color red denotes terms specific to programs written in the DSL extension
of SMC2, and the color blue denotes terms synthesized by the semantics.

upon which our system is built. We then carefully considered each of the elements in our grammar and how

they would impact our ability to evaluate what size a variable should be during the execution of a program.

The element we found to prove the most difficult without having further information from the programmer

was loops. Given that the number of times a loop will execute can be based entirely upon variables (e.g.,

using the termination condition i < j), it is possible for a programmer to write a program that we cannot

obtain a loop bound just by simply analyzing the content of the program. We could simply increase the size

of the variables modified within the loop to be their maximum possible size, but this would unnecessarily

limit us in our ability to improve the efficiency of many programs when using this optimization. Instead, we

chose to extend the syntax of SMC2 to include a bound specification for loops (i.e., bound n for(s; e; s){s}).

This allows us to reason about how large each variable could possibly get in the worst case execution of the

loop. With this, we can now formalize our optimal variable sizing pass.

6.2.2 Formalization

Algorithm 147 (GetBitsize) takes a number and returns the bit size necessary to store that number in

memory. This algorithm is used when we have variables with constant values or other hard-coded numbers in

a program. We add in an additional check at the beginning to check if the value is 0, and if it is, set the return

877



Algorithm 147 n2 ← GetBitsize(n1)

1: n2 = 0
2: if n1 = 0 then
3: n2 = 1
4: end if
5: while n1 ≥ 2 do
6: n1 = n1 ÷ 2
7: n2 = n2 + 1
8: end while
9: if n1 ≥ 1 then

10: n2 = n2 + 1
11: end if
12: return n2

value to 1, as the size should not be 0.
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Algorithm 148 n3 ← GetSizeBinary(n1, n2, e, bop)

1: n3 = 0
2: if (bop = ·) then
3: n3 = n1 + n2

4: else if (bop = +) ∧ (bop = −) then
5: n3 = max (n1, n2) + 1
6: else if (bop = ÷) then
7: n3 = n1

8: else if (bop =<<) then
9: if (e = n) then

10: n3 = n1 + n
11: else
12: n3 = MAX_VAL
13: end if
14: else if (bop =>>) then
15: if (e = n) then
16: n3 = n1 − n
17: else
18: n3 = n1

19: end if
20: else
21: n3 = 1
22: end if
23: if n3 > MAX_VAL then
24: n3 = MAX_VAL
25: else if n3 < 1 then
26: n3 = 1
27: end if
28: return n3

Algorithm 148 (GetSizeBinary) computes the size that is necessary for a variable storing the result of

the given binary operation bop on values of size n1 and n2. It takes as input the size of the sizes of the

first and second expression, the second expression, and the binary operation that is being performed. For

multiplication, we add the two sizes together. For addition, we take the maximum of the two sizes and add

one to obtain the final size; in order to account for negative values, we do the same for subtraction. For

division, we keep the size of the dividend, n1.

For left shifts, if the expression is a constant number, then we increment the size by this number; otherwise

we increase the size to the maximum size. For right shifts, if the expression is a constant, we can decrement

the size by this number. If not, we keep the size of the first expression (in the case of a shift by 0). The final

case accounts for all comparison operations, which will return either 0 or 1, and therefore needs a bit length

of 1. We then check the size we are returning to ensure that the size is not greater than the maximum size or

less than 1.

Algorithm 149 (EvaluateVariableSizeExpr) computes the size requirement of the given expression,

using recursion to evaluate more complex expressions. To evaluate binary operations, it leverages Algo-
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Algorithm 149 (θf , nf )← EvaluateVariableSizeExpr(e, θ)

1: θf = θ
2: nf = 1
3: if (e = e1 bop e2) then
4: (θ1, n1) = EvaluateVariableSizeExpr(e1, θ)
5: (θ2, n2) = EvaluateVariableSizeExpr(e2, θ1)
6: nf = GetSizeBinary(n1, n2, e2, bop)
7: θf = θ2
8: else if (e = + + x) then
9: θ1[x→ (ty , nmax , ncurr_max , ncurr ,NULL,NULL)] = θ

10: nf = ncurr + 1
11: θf = θ1[x→ (ty , nmax , ncurr_max , nf ,NULL,NULL)]
12: else if (e = x[e1]) ∨ (e = x) then
13: (θf , n1) = EvaluateVariableSizeExpr(e1, θ)
14: (ty , nmax , ncurr_max , ncurr ,NULL,NULL) = θf (x)
15: nf = ncurr

16: else if (e = (e1)) then
17: (θf , nf ) = EvaluateVariableSizeExpr(e1, θ)
18: else if (e = x(e)) then
19: (θf , nf ) = EvaluateFunctionSize(x(e), θ)
20: else if (e = n) then
21: nf = GetBitsize(n)
22: end if
23: return (θf , nf )

rithm 148. For pre-increment operations, it increases the size requirement for the given variable by 1, and

returns this size. For memory allocation and finding the address of a variable, we evaluate e1, and return

the size of a Void pointer, as these will return a pointer to the given memory address. When evaluating a

parenthesized expression, we evaluate the inner expression and pass along the results. For function calls, we

are currently returning the size of the return type. This can be refined further by analyzing the content of the

function with relation to the given arguments. To evaluate a hard-coded number n, we find the size of the

number in bits and return this size. Similarly, with the primitive function for finding the size of a type, we

evaluate the size of the type to get n and return the number of bits required to store the number n.

Algorithm 150 θ3 ← MaxSizeMap(θ1, θ2)

1: θ3 = θ2
2: for all (x→ (ty , nmax , ncurr_max , ncurr , cl , x) ∈ θ1) do
3: if (x /∈ θ2) then
4: θ3 = θ3[x→ (ty , nmax , ncurr_max , ncurr , cl , x)]
5: else
6: θ4[x→ (ty , nmax , n

′
curr_max , n

′
curr , cl , x)] = θ3

7: θ3 = θ4[x→ (ty , nmax ,max(ncurr_max , n
′
curr_max ),max(ncurr , n

′
curr ), cl , x)]

8: end if
9: end for

10: return θ3

Algorithm 150 (MaxSizeMap) is designed to get the maximum values possible that can occur from the
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evaluation of either branch. It is used after both branches of an if else statement have been evaluated, and

must keep the larger size that is determined for either branch as the new value for the variable in order to

accommodate having either branch being the true branch that will be evaluated when the program is run. It

takes the resulting maps from the then and else branches as input, and chooses one to serve as the base for

the resulting map, then iterates through the other. If a variable mapping is not present in the resulting map, it

simply adds in the variable mapping; otherwise, it keeps the maximum value of the current max and current

size for each variable that is present in both maps. It then returns the final, combined map.

Algorithm 151 θf ← SetCurrentSize(θ, x, n)

1: θ1[x→ (ty , nmax , ncurr_max , ncurr , cl , x)] = θ
2: (n1, n2) = (ncurr_max , n)
3: if (n ≥ nmax ) then
4: (n1, n2) = (nmax , nmax )
5: else if (n > ncurr_max ) then
6: n1 = n
7: end if
8: θf = θ1[x→ (ty , nmax , n1, n2, cl , x)]
9: return θf

Algorithm 151 (SetCurrentSize) is designed to update the size for a variable in our variable size map θ.

It takes as input the current map, the variable to be updated, and the new size to update the variable with, and

returns the updated map. In this algorithm, our defaults in line 2 are set to update the current maximum as

itself and the current size as the new size. We then ensure that if the new size is larger than the maximum size

for this variable, we instead updated these sizes as the maximum size. Otherwise, if the new size is larger

than the current max, we then ensure that the current max is updated to this new maximum size.

Algorithm 152 (EvaluateVariableSizeStmt) takes a program s and variable size map θ as input. It

iterates over and evaluates all statements in s in order to determine the smallest possible size for each

variable based on the operations performed within the program and the sizes provided by the programmer

for the variables storing the input data. For each declaration with a size annotation, a mapping is added

to θ specifying the variable name, type, and maximum size as the given size; the current size and current

maximum size are initialized to 1, and to be updated during later statements. For arrays, the sizes refer to

that of each element within the array. For declarations without a size annotation, we initialize the mapping

with the size 1 for the current maximum and current size, and a maximum size of the maximum size for the

declared type. For function declarations and definitions, we initialize the mapping for the function variable

with the expected size of the return type.
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For regular assignments (i.e., x = e), we evaluate the expression, then update the mapping for the variable

with the size returned from evaluating the expression using Algorithm 151. This prevents the variable’s

size from growing beyond that of its maximum size. For array assignments at an index (i.e., x[e1] = e2),

we evaluate the first expression to ensure we catch and increment operations, then we evaluate the second

expression and update the mapping for the variable with the size returned from the evaluation of the second

expression using Algorithm 151. For bounded loops, we first evaluate the initialization statement s1, then use

the loop bound n to evaluate the loop contents n times. We must evaluate the loop contents in the order the

loop would be executed: the expression first, then the loop body s3, and finally the increment statement s2.

For branches, we first evaluate the expression, then both of the branches, keeping all changes. With evaluating

both branches separately after the expression, we are ensuring that we will update the sizes for variables

accurately for each branch. Then we perform a comparison between θ2 and θ3, keeping the maximum sizes

for each changed variable in order to account for either branch being taken using Algorithm 150. Whenever

we see data being input to a variable, we assume that it will be the maximum size defined for that variable,

and we update the variable’s current size as such. This functionality is why all variables storing input data

should have the sizes pre-defined by the programmer.
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Algorithm 152 (θf )← EvaluateVariableSizeStmt(s, θ)

1: θf = θ
2: for all s1 ∈ s do
3: if (s1 = ty < n > x[e]) then
4: (θ1, n1) = EvaluateVariableSizeExpr(e, θf )
5: θf = θ1[x→ (ty , n, 1, 1,NULL,NULL)]
6: else if (s1 = ty < n > x) then
7: θf = θf [x→ (ty , n, 1, 1,NULL,NULL)]
8: else if (s1 = ty x[e]) then
9: (θ1, n) = EvaluateVariableSizeExpr(e, θf )

10: θf = θ1[x→ (ty , τ(ty) · 8, 1, 1,NULL,NULL)]
11: else if (s1 = ty x) then
12: θf = θf [x→ (ty , τ(ty) · 8, 1, 1,NULL,NULL)]
13: else if (s1 = ty x(p){s2}) then
14: (θf )← EvaluateFunctionDefinition(ty , 0, x, p, s2, θf )
15: else if (s1 = ty < n > x(p){s2}) then
16: (θf )← EvaluateFunctionDefinition(ty , n, x, p, s2, θf )
17: else if (s1 = x = e) then
18: (θ1, n) = EvaluateVariableSizeExpr(e, θf )
19: θf = SetCurrentSize(θ1, x, n)
20: else if (s1 = x[e1] = e2) then
21: (θ1, n1) = EvaluateVariableSizeExpr(e1, θf )
22: (θ2, n2) = EvaluateVariableSizeExpr(e2, θ1)
23: θf = SetCurrentSize(θ1, x, n2)
24: else if (s1 = bound n for(s2; e; s3) {s4}) then
25: (θ1) = EvaluateVariableSizeStmt(s2, θf )
26: for all i ∈ {0...n} do
27: (θ2, n1) = EvaluateVariableSizeExpr(e, θ1)
28: (θ3) = EvaluateVariableSizeStmt(s4, θ2)
29: (θ1) = EvaluateVariableSizeStmt(s3, θ3)
30: end for
31: θf = θ1
32: else if (s1 = if (e) s2 else s3) then
33: (θ1, n) = EvaluateVariableSizeExpr(e, θf )
34: θ2 = EvaluateVariableSizeStmt(s2, θ1)
35: θ3 = EvaluateVariableSizeStmt(s3, θ1)
36: θf = MaxSizeMap(θ2, θ3)
37: else if (s1 = {s2}) then
38: θf = EvaluateVariableSizeStmt(s2, θf )
39: else if (s1 = e) then
40: (θf , n) = EvaluateVariableSizeExpr(e, θf )
41: else if (s1 = smcinput(x, n)) then
42: (ty , nmax , ncurr_max , ncurr ,NULL,NULL) = θf (x)
43: θf = SetCurrentSize(θf , x, nmax )
44: end if
45: end for
46: return (θf )
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Algorithm 153 (ty , x, θf )← EvaluateFunctionParameters(p, θ)

1: (ty , x, θf ) = ([ ], [ ], θ)
2: while (p 6= void) do
3: if (p = ty x) ∨ (p = ty x[e]) then
4: ty = ty :: ty
5: x = x :: x
6: p = void
7: θf = θf [x→ (ty , τ(ty) · 8, 1, 1,NULL,NULL)]
8: else if (p = ty < n > x) ∨ (p = ty < n > x[e]) then
9: ty = ty :: ty

10: x = x :: x
11: p = void
12: θf = θf [x→ (ty , n, 1, 1,NULL,NULL)]
13: else if (p = p1, ty x) ∨ (p = p1, ty x[e]) then
14: ty = ty :: ty
15: x = x :: x
16: p = p1
17: θf = θf [x→ (ty , τ(ty) · 8, 1, 1,NULL,NULL)]
18: else if (p = p1, ty < n > x) ∨ (p = p1, ty < n > x[e]) then
19: ty = ty :: ty
20: x = x :: x
21: p = p1
22: θf = θf [x→ (ty , n, 1, 1,NULL,NULL)]
23: end if
24: end while
25: return ty

Algorithm 153 (EvaluateFunctionParameters) is designed to obtain a list of types of the parameters

ty , a list of parameter variable names x, and add mappings for all of the parameter variables into memory. If

the parameter is not given a bit size in its declaration, then the maximum size is defined to be the maximum

size for that type; otherwise, it is given the bit size from its declaration. All parameter entries are given an

initial current size and current maximum size of 1, which will be updated as we evaluate function calls for

this function.

Algorithm 154 (θf )← EvaluateFunctionDefinition(ty , n, x, p, s, θ)

1: (ty , x, θ1)← EvaluateFunctionParameters(p, θ)
2: (cl , nmax ) = ([ ], n)
3: if (nmax = 0) then
4: nmax = τ(ty) · 8
5: end if
6: (cl , θ2) = GetComputeListStmt(s, θ1)
7: θf = θ2[x→ (ty → ty , nmax , 1, 1, cl , x)]
8: return (θf )

Algorithm 154 (EvaluateFunctionDefinition) is designed to handle the evaluation of a function defini-

tion. It first calls Algorithm 153 to evaluate the function parameters, obtaining the type list for the function,

the list of parameter variable names, and the updated optimal size map with the function parameters added in.
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It is worthwhile to note again here that we assume all variable names are unique, including those used as

function parameters. We then initialize the compute size list as an empty list, and the max size as the number

n given as a parameter. We check to ensure that if n was given as 0, we set the max size to the maximum

size for the type, as this means that the maximum size was not pre-defined for the function. We then call

Algorithm 155 to obtain the compute size list for the function body. It is important to note here that we do

not currently support recursive functions; the model can be extended to support them in the future, but this

extension is beyond the scope of the current formalization.

Algorithm 155 (cl , θf )← GetComputeListStmt(s, θ)

1: θf = θ
2: cl = [ ]
3: for all s1 ∈ s do
4: if (s1 = ty < n > x[e]) then
5: θf = θf [x→ (ty , n, 1, 1,NULL,NULL)]
6: cl = cl [setSize(x, 1)][GetComputeListExpr(e)]
7: else if (s1 = ty < n > x) then
8: θf = θf [x→ (ty , n, 1, 1,NULL,NULL)]
9: cl = cl [setSize(x, 1)]

10: else if (s1 = ty x[e]) then
11: θf = θf [x→ (ty , τ(ty) · 8, 1, 1,NULL,NULL)]
12: cl = cl [setSize(x, 1)][GetComputeListExpr(e)]
13: else if (s1 = ty x) then
14: θf = θf [x→ (ty , τ(ty) · 8, 1, 1,NULL,NULL)]
15: cl = cl [setSize(x, 1)]
16: else if (s1 = x = e) then
17: cl = cl [setSize(x,GetComputeListExpr(e))]
18: else if (s1 = x[e1] = e2) then
19: cl = cl [GetComputeListExpr(e1)][setSize(x,GetComputeListExpr(e2))]
20: else if (s1 = bound n for(s2; e; s3) {s4}) then
21: cl1 = cl [GetComputeListStmt(s2)]
22: cl = cl1[loop(n,GetComputeListExpr(e),GetComputeListStmt(s4),GetComputeListStmt(s3))]
23: else if s1 = if (e) s2 else s3 then
24: cl1 = cl [GetComputeListExpr(e)]
25: cl = cl1[branch(GetComputeListStmt(s2),GetComputeListStmt(s3))]
26: else if (s1 = {s2}) then
27: cl = cl [GetComputeListStmt(s2)]
28: else if (s1 = e) then
29: cl = cl [GetComputeListExpr(e)]
30: else if (s1 = smcinput(x, n)) then
31: cl = cl [setSize(x, getMaxSize(x))]
32: else if (s1 = return e) then
33: cl = cl [return(GetComputeListExpr(e))]
34: end if
35: end for
36: return (cl , θf )

Algorithm 155 (GetComputeListStmt) analyzes the body of a function and creates the compute size

list for the function. This list will then be used to evaluate the return size when this function is called. It takes

the function body s and the optimal size map θ as input, and returns the compute size list for the function and
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the optimal size map updated with any variables local to the function. It is important to note here that we

assume all variable names will be unique. We use blue text in this algorithm to identify ‘functions’ that will

be used in Algorithm 157 when we are evaluating the size of the function call – they are part of the compute

list equation, and thus not evaluated here. All other functions are evaluated here.

Algorithm 156 (cl)← GetComputeListExpr(e)

1: if (e = e1 + e2) ∨ (e = e1 − e2) then
2: cl = add(max(GetComputeListExpr(e1),GetComputeListExpr(e2)), 1)
3: else if e = e1 · e2 then
4: cl = add(GetComputeListExpr(e1),GetComputeListExpr(e2))
5: else if e = e1 ÷ e2 then
6: cl = first(GetComputeListExpr(e1),GetComputeListExpr(e2))
7: else if e = e1 << e2 then
8: if e2 = n then
9: cl = add(GetComputeListExpr(e1), n)

10: else
11: cl = first(getMaxSize(x), first(GetComputeListExpr(e1),GetComputeListExpr(e2)))
12: end if
13: else if e = e1 >> e2 then
14: if e2 = n then
15: cl = add(GetComputeListExpr(e1),−n)
16: else
17: cl = first(GetComputeListExpr(e1),GetComputeListExpr(e2))
18: end if
19: else if e = (e1) then
20: cl = (GetComputeListExpr(e1))
21: else if e = x[e1] then
22: cl = first(getCurrentSize(x),GetComputeListExpr(e1))
23: else if e = x then
24: cl = getCurrentSize(x)
25: else if e = + + x then
26: cl = setSize(x, add(getCurrentSize(x), 1))
27: else if e = n then
28: cl = GetBitsize(n)
29: end if
30: return cl

Algorithm 156 (GetComputeListExpr) analyzes an expression to form an equation to add to the

compute list for finding the size needed for the result of that expression. This algorithm is used by to develop

the compute list during the evaluation of a function definition. We use blue text in this algorithm to identify

compute list commands that will be used in Algorithm 157 when we are evaluating the size of the function

call – they are part of the compute list equation, and thus not evaluated here. All other functions are evaluated

here.

Algorithm 157 (EvaluateFunctionSize) is designed to manage the evaluation of the function arguments

and function body to obtain the size of the value returned by the function call. It first looks up the function in

the optimal size map, then assigns the arguments to their corresponding parameters. Then, it proceeds to
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Algorithm 157 (θf , nret) = EvaluateFunctionSize(x(e), θ)

1: θ1[x→ (ty → ty , nmax , ncurr_max , ncurr , cl , x)] = θ
2: θf = θ1
3: nret = 0
4: nx = |x|
5: for all i ∈ {0...nx − 1} do
6: x = x[i]
7: e = e[i]
8: θf = EvaluateVariableSizeStmt(x = e, θf )
9: end for

10: for cl1 ∈ cl do
11: (n1, θf , n2) = EvaluateComputeList(cl , θ, 0)
12: if (n2 ≥ nmax ) then
13: nret = nmax

14: else if (n2 > nret) then
15: nret = n2

16: end if
17: end for
18: nm = max (ncurr_max , nret)
19: θf = θf [x→ (ty , nmax , nm, nret , cl , x)]
20: return (θf , nret)

evaluate the compute size list that is stored for this function, finding the maximum return size for the function.

In line 18, it will find the new current maximum return size for the function, then in line 19 update the current

maximum and the current return size for the function. Finally, it returns the updated optimal size map and the

return size.

Algorithm 158 (EvaluateComputeList) to evaluate the final size of a compute list command. We have

nine compute list commands, which can be nested within each other. We use blue text in this algorithm to

highlight the compute list commands, differentiating them from other algorithm and function names used

in the formalism. It takes the compute size list that we need to evaluate, an optimal size map to use and

update, and a return size m. Once complete, it will return the size of the current list that was computed, the

updated optimal size map, and an updated return size. Command add evaluates its two arguments, then adds

the resulting values together. Command max evaluates its two arguments, then returns the maximum of

the two resulting values. Command first evaluates its two arguments in order, and returns the first resulting

value. Command setSize evaluates the second argument, then assigns the returned value to the variable

specified as the first argument. Command getCurrentSize returns the current size of the variable specified

as its argument. Command getMaxSize returns the maximum size of the variable specified as its argument.

Command branch first evaluates the first argument from the original optimal size map, then the second

argument from the original optimal size map. It then uses Algorithm 150 to keep the maximum values within

the optimal size map. This behavior mirrors that of regular branch evaluation that occurs outside of a function
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call. We then evaluate our return sizes m1 and m2 to see if they are larger than the current return size, as we

must return the maximum possible return size for the function. Command loop will evaluate its arguments the

number of times specified by n1. It then evaluates its other three arguments sequentially, and once complete,

returns. Command return evaluates its argument, then checks if the value returned is larger than the current

return size, and if so, updates the return size. The second to last case handles when we have reached a number

n and simply need to return that number. The final case handles when we call this function and the compute

size list is a list, and we need to evaluate it sequentially (i.e., when called on the body of a loop or branch).
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Algorithm 158 (nf , θf , nret) = EvaluateComputeList(cl , θ,m)

1: (nf , θf , nret) = (0, θ,m)
2: if (cl = add(cl1, cl2)) then
3: (n1, θ1,m1) = EvaluateComputeList(cl1, θ,m)
4: (n2, θf , nret) = EvaluateComputeList(cl2, θ1,m1)
5: nf = n1 + n2

6: else if (cl = max(cl1, cl2)) then
7: (n1, θ1,m1) = EvaluateComputeList(cl1, θ,m)
8: (n2, θf , nret) = EvaluateComputeList(cl2, θ1,m1)
9: nf = max (n1, n2)

10: else if (cl = first(cl1, cl2)) then
11: (nf , θ1,m1) = EvaluateComputeList(cl1, θ,m)
12: (n2, θf , nret) = EvaluateComputeList(cl2, θ1,m1)
13: else if (cl = setSize(x, cl1)) then
14: (nf , θ1, nret) = EvaluateComputeList(cl1, θ,m)
15: θ2[x→ (ty , nmax , ncurr_max , ncurr , cl , x)] = θ1
16: θf = θ2[x→ (ty , nmax , ncurr_max , nf , cl , x)]
17: else if (cl = getCurrentSize(x)) then
18: (ty , nmax , ncurr_max , ncurr , cl , x) = θ(x)
19: nf = ncurr

20: else if (cl = getMaxSize(x)) then
21: (ty , nmax , ncurr_max , ncurr , cl , x) = θ(x)
22: nf = nmax

23: else if (cl = branch(cl1, cl2)) then
24: (n1, θ1,m1) = EvaluateComputeList(cl1, θ,m)
25: (n2, θ2,m2) = EvaluateComputeList(cl2, θ,m)
26: θf = MaxSizeMap(θ1, θ2)
27: if (m1 > nret) ∨ (m2 > nret) then
28: if (m1 > m2) then
29: nret = m1

30: else
31: nret = m2

32: end if
33: end if
34: else if (cl = loop(n1, cl1, cl2, cl3)) then
35: for all (i ∈ {1...n1}) do
36: (n2, θ1,m1) = EvaluateComputeList(cl1, θ,m)
37: (n3, θ2,m2) = EvaluateComputeList(cl2, θ1,m1)
38: (n4, θ3,m3) = EvaluateComputeList(cl3, θ2,m2)
39: θ = θ3
40: m = m3

41: end for
42: (nf , θf , nret) = (n4, θ,m)
43: else if (cl = return(cl1)) then
44: (nf , θf ,m1) = EvaluateComputeList(cl1, θ, n)
45: if m1 > m then
46: nret = m1

47: end if
48: else if (cl = n) then
49: nf = n
50: else if (cl = cl1 :: cl2) then
51: (n1, θ1,m1) = EvaluateComputeList(cl1, θ,m)
52: (nf , θf , nret) = EvaluateComputeList(cl2, θ1,m1)
53: end if
54: return (nf , θf , nret)
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Algorithm 159 (sf )← ApplyVarSize(s, θ)

1: sf = skip
2: for all s1 ∈ s do
3: if (s1 = ty x) then
4: (ty , nmax , ncurr_max , ncurr ,NULL,NULL) = θ(x)
5: if (ncurr_max > nmax ) then
6: sf = sf ; ty < nmax > x
7: else
8: sf = sf ; ty < ncurr_max > x
9: end if

10: else if (s1 = ty x[e]) then
11: (ty , nmax , ncurr_max , ncurr ,NULL,NULL) = θ(x)
12: if (ncurr > τ(ty)) then
13: sf = sf ; ty < nmax > x[e]
14: else
15: sf = sf ; ty < ncurr > x[e]
16: end if
17: else
18: sf = sf ; s1
19: end if
20: end for
21: return sf

Algorithm 159 takes the program s and the variable size map θ as input and returns the updated program

with size annotations for all variables except function variables and those which were already labeled. When

the evaluated current optimal size for a given type is larger that the expected size of the type, we default to the

expected size of the type stored in nmax . This is because certain operations, particularly multiplication, may

grow the size of the variable rapidly when repeated, despite the actual data and evaluation not exceeding the

expected size. It is up to the programmer to ensure that the data will not exceed the maximum expected size

for a type. We add in size annotations to declarations using the current maximum size evaluated, ncurr_max .

We do this because, in the declaration, we need to size the variable to enable the largest it could be at any

given point in the program. It is possible to optimize the program beyond this, as we have done in our

implementation, when the sizes are utilized with each expression and statement. This is discussed in more

detail in the following section, but is beyond the scope of our current formalization.

6.2.3 Implementation

In this section, we will discuss some specifics of the proof of concept implementation. The implementation

can be found at https://github.com/amypritc/SMC2. We implement a basic optimal variable

sizing pass in our SMC2 version of PICCO, which can be triggered using the option -vs when compiling the

original source program using picco. Additionally, you can trigger the implementation to print out the table
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storing the optimal variable sizing information at the end of the pass by also using the debug option -d when

compiling the original source program using picco. It is important to note that we assume that all variable

names are unique - implementing alpha renaming is an additional pass that is beyond the scope of this thesis.

Our basic DSL and optimal variable sizing pass implementation currently includes support for declarations,

assignments, binary operations, and bounded loops with integer variables. For functions, we currently only

support intraprocedural analysis, and will return the maximum size for the return type as the resulting size of

a function call. In our implementation, we first added syntax for specifying a loop bound when using for

loops. This syntax allows us to analyze the loop contents without needing to implement an analysis of the

loop to find the loop bound. We then added elements to the AST for use within the optimal variable sizing

pass, and added the optimization pass into our SMC2 implementation after the AST is created and before it is

printed out to the .cpp file. We chose to add this pass here as the AST is already created and can easily be

iterated over, but also so this pass is separate from the final printing pass and therefore can be turned on or off

as desired.

Our implementation goes beyond the formalization due to SMC2 storing the sizes within the AST at

each node and leveraging them within each individual expression and statement, as each call to an SMC

protocol includes sizing. As such, we were able to store the optimal size at each expression within the

AST, allowing us to achieve further optimization of the execution time than the simple variable size-per

declaration substitution we show here. In order to formalize the specifics of what we were able to do with the

optimization per expression, we need to formalize the AST itself by adding metadata to each expression; this

is left as future work, and is beyond the scope of our current formalization.

6.2.4 Evaluation

To highlight the feasibility of our approach we provide preliminary performances numbers over both mi-

crobenchmarks that mimic behavior found in real-world SMC programs. All experiments were run in a local

and distributed manner. We leverage local runs, where all participants in the SMC program execute on the

same machine, to analyze overheads and benefits of our approach. We also provide distributed deployment of

the same benchmarks to illustrate real-world performance. In the distributed configuration, each participant in

the SMC program is executed on a separate machine. We ran our experiments using single-threaded execution

on three 2.10GHz machines running Ubuntu 20.04.3 LTS. The machines were connected via 1Gbps Ethernet.

In all test programs, we use variables a, b, and c as private input data of a predetermined bit size, and
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variables x, y, and z as private temporary variables to perform the computations with. We use the public

variable i to manage the loop, which iterates 1000 times in each program. We omit input and output functions

and choose to instead hard-code the input in our test programs, as we are testing the improvements of the

computations that occur between parties, not local data management. We show and give a bit of description

for each program below in subsection Programs.

Runtime Statistics

(a) Local (b) Distributed

Figure 6.14: Percentage of runtime speedup for optimized variable size tests.

To calculate the averages and standard deviation, we first average the runtimes of each of the 3 parties

in a single run (i.e., (Party3 + Party2 + Party1)/3). We then use the average timing for each run to obtain

the total average and standard deviation for the runtime of each program. To calculate percent speedup with

SMC2 as the baseline, we used the formula: (SMC2 avg - optimized avg)/SMC2 avg * 100. To calculate the

standard deviation error bars, we used the formula: ((SMC2avg - (optimized avg - optimized st dev))/SMC2

avg*100) - percent speedup. We give the runtime statistics in Table 6.29, as well as visuals of the percent

speedup and standard deviation for local and distributed executions of our tests in Figure 6.14.

892



Test
Local

Regular Optimized Percent Standard
Average St. Dev. Average St. Dev. Speedup Deviation

1 0.86641 0.02413 0.30441 0.02290 64.86516 2.64261
2 0.86510 0.02109 0.48030 0.02214 44.48040 2.55899
3 1.11485 0.02423 0.73896 0.02542 33.71633 2.28041
4 1.10950 0.02852 0.95318 0.02014 14.08949 1.81527
5 0.86783 0.02247 0.71565 0.02343 17.53571 2.70010
6 1.14385 0.02648 0.66549 0.02393 41.81957 2.09187

Test
Distributed

Regular Optimized Percent Standard
Average St. Dev. Average St. Dev. Speedup Deviation

1 1.55134 0.01454 0.88648 0.00563 42.85701 0.36316
2 1.50511 0.01370 1.07687 0.00845 28.45279 0.56165
3 2.33464 0.02072 1.92087 0.01182 17.72297 0.50612
4 2.33381 0.02148 2.17152 0.01951 6.953904 0.83596
5 1.50167 0.01079 1.34208 0.01324 10.62736 0.88191
6 2.44758 0.01400 1.91382 0.00896 21.80746 0.36607

Table 6.29: Runtime statistics for each optimal variable sizing test program.

Programs

1 # i n c l u d e < s t d i o . h>
2
3 p u b l i c i n t main ( ) {
4 p r i v a t e i n t <3> a = 7 , b = 3 ;
5 p r i v a t e i n t x , y , z ;
6 p u b l i c i n t i ;
7
8 x = a ; / / x −> s i z e = 3
9 y = b ; / / y −> s i z e = 3

10 bound 1000
11 f o r ( i = 0 ; i < 1000 ; i = i + 1){
12 z = x > y ; / / z −> s i z e = 1
13 }
14 re turn 0 ;
15 }

Figure 6.15: Optimal Variable Sizes - Test 1

Test 1, shown in Figure 6.15, is a loop of comparisons z = x > y, with a computed 3 bit optimal size for

both x and y and regular bit size of 32. The optimized program will compute the comparison operation over

3 bits each time versus the 32 bit comparison operation done by the unoptimized SMC2 program, resulting in

a significantly faster runtime for the optimized version. This program is representative of a program designed

to securely compare two sets of data (e.g., comparing profits throughout a period of time between companies).
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1 # i n c l u d e < s t d i o . h>
2
3 p u b l i c i n t main ( ) {
4 p r i v a t e i n t <12> a = 1780 , b = 3456 , c = 2345 ;
5 p r i v a t e i n t x , z ;
6 p u b l i c i n t i ;
7
8 x = ( a + b ) >> 1 ; / / x −> s i z e = (12 + 1) − 1 = 12
9 bound 1000

10 f o r ( i = 0 ; i < 1000 ; i = i + 1){
11 z = x > c ; / / z −> s i z e = 1
12 }
13 re turn 0 ;
14 }

Figure 6.16: Optimal Variable Sizes - Test 2

1 # i n c l u d e < s t d i o . h>
2
3 p u b l i c i n t main ( ) {
4 p r i v a t e i n t <12> a = 1780 , b = 3456 , c = 2345 ;
5 p r i v a t e i n t x , z ;
6 p u b l i c i n t i ;
7
8 bound 1000
9 f o r ( i = 0 ; i < 1000 ; i = i + 1){

10 x = ( a + b ) >> 1 ; / / x −> s i z e = (12 + 1) − 1 = 12
11 z = x > c ; / / z −> s i z e = 1
12 }
13 re turn 0 ;
14 }

Figure 6.17: Optimal Variable Sizes - Test 3

Test 2, shown in Figure 6.16, computes x = (a + b) >> 1, finding the optimal size of x to be 12 bits,

then iterates over a loop of comparisons. The operations performed for the first computation of x will take the

same time, as the unoptimized version is already set up to use the sizes that are given in the source program.

The comparison operation performed in the loop will be performed on two elements of bit size 12 in the

optimized program, versus two elements of bit size 32 in the unoptimized program, resulting in a decent

speedup for the optimized version. This program is representative of a program designed to take the average

of two data sets, and compare it to a third data set.

Test 3, shown in Figure 6.17, computes x = (a + b) >> 1 and then compares the result of this to

another input data z = x > c in each loop iteration. As with test 2, the optimal bit size is 12, regular bit

size is 32, and this program is representative of a program designed to take the average of two data sets, and

compare it to a third data set.

Test 4, shown in Figure 6.18, is like test 3, but with a larger bit length for the input data. This reduces the

894



1 # i n c l u d e < s t d i o . h>
2
3 p u b l i c i n t main ( ) {
4 p r i v a t e i n t <24> a = 1780 , b = 3456 , c = 2345 ;
5 p r i v a t e i n t x , z ;
6 p u b l i c i n t i ;
7
8 bound 1000
9 f o r ( i = 0 ; i < 1000 ; i = i + 1){

10 x = ( a + b ) >> 1 ; / / x −> s i z e = (12 + 1) − 1 = 12
11 z = x > c ; / / z −> s i z e = 1
12 }
13 re turn 0 ;
14 }

Figure 6.18: Optimal Variable Sizes - Test 4

1 # i n c l u d e < s t d i o . h>
2
3 p u b l i c i n t main ( ) {
4 p r i v a t e i n t <24> a = 1780 , b = 3456 , c = 2345 ;
5 p r i v a t e i n t x , z ;
6 p u b l i c i n t i ;
7
8 x = ( a + b ) >> 1 ; / / x −> s i z e = (12 + 1) − 1 = 12
9 bound 1000

10 f o r ( i = 0 ; i < 1000 ; i = i + 1){
11 z = x > c ; / / z −> s i z e = 1
12 }
13 re turn 0 ;
14 }

Figure 6.19: Optimal Variable Sizes - Test 5

difference in sizes used for the multiparty operations, but is still shown to speed up the execution time overall,

indicating that even programs with data that is closer to the standard bit length of 32 can benefit from this

optimization.

Test 5, shown in Figure 6.19, is like test 2 but with a larger optimal bit size of 24. We compare this to the

program that will compute the comparisons with the regular 32 bit size, as comparisons will always compute

over the larger bit size of the two. This program shows a lesser speedup due to the size difference between

the two versions being smaller, but is still a notable speedup.

Test 6, shown in Figure 6.20, differs a bit from the previous tests in that it uses a wider variety of the

operations we support for optimal variable size computation for within our initial implementation as well

as varying sizes of input data. Each loop iteration will compute all of these operations, with the bit lengths

of the variables changing based on what the operations are and what data they are using. This program

demonstrated a decent speedup even when run distributed, showing that enabling a pass to calculate optimal
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1 # i n c l u d e < s t d i o . h>
2
3 p u b l i c i n t main ( ) {
4 p r i v a t e i n t <2> a = 2 ;
5 p r i v a t e i n t <4> b = 1 4 ;
6 p r i v a t e i n t <6> c = 3 2 ;
7 p r i v a t e i n t x , y , z ;
8 p u b l i c i n t i ;
9

10 bound 1000
11 f o r ( i = 0 ; i < 1000 ; i = i + 1){
12 x = a << 1 ; / / x −> s i z e = 2 + 1 = 3
13 z = a − c ; / / z −> s i z e = max ( 2 , 6 ) + 1 = 7
14 y = x + b ; / / y −> s i z e = max ( 3 , 4 ) + 1 = 5
15 y = y * b ; / / y −> s i z e = 5 + 4 = 9
16 z = z >= 0 ; / / z −> s i z e = 1
17 x = x >> 1 ; / / x −> s i z e = 3 − 1 = 2
18 }
19 re turn 0 ;
20 }

Figure 6.20: Optimal Variable Sizes - Test 6

variable sizes within multiparty computations can help to improve the runtime of general programs, not just

those performing comparisons.

Runtimes
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Table 6.30: Test 1 - local SMC2

Run Party 3 Party 2 Party 1

1 0.868508 0.870217 0.867193
2 0.874850 0.873187 0.872607
3 0.869223 0.867131 0.867753
4 0.897033 0.893162 0.891625
5 0.860548 0.859315 0.858675
6 0.872684 0.874783 0.871955
7 0.874951 0.873491 0.874809
8 0.900054 0.904284 0.899392
9 0.859444 0.861676 0.858758
10 0.908688 0.905547 0.904206
11 0.893248 0.897406 0.892067
12 0.888241 0.888868 0.893088
13 0.890421 0.886573 0.885491
14 0.833694 0.832760 0.831247
15 0.868163 0.867475 0.865815
16 0.834370 0.832191 0.831512
17 0.831957 0.833260 0.831272
18 0.897107 0.895590 0.894790
19 0.859999 0.861813 0.859240
20 0.851575 0.849424 0.848982
21 0.913960 0.917207 0.912772
22 0.886210 0.884743 0.886227
23 0.862930 0.861949 0.860915
24 0.838028 0.839736 0.837150
25 0.847045 0.848329 0.848353
26 0.835169 0.833304 0.832683
27 0.866459 0.865777 0.868828
28 0.870354 0.869182 0.868281
29 0.832932 0.834779 0.832247
30 0.902152 0.899489 0.898820
31 0.883325 0.884152 0.881424
32 0.914279 0.910649 0.908026
33 0.839794 0.840188 0.838234
34 0.857451 0.856852 0.859492
35 0.886976 0.891077 0.886385
36 0.847653 0.850521 0.846473
37 0.838673 0.841868 0.839379
38 0.885315 0.879736 0.878671
39 0.856761 0.861382 0.856135
40 0.893067 0.889413 0.887620
41 0.904329 0.902389 0.901764
42 0.878628 0.880424 0.877657
43 0.865223 0.868081 0.864067
44 0.839481 0.842249 0.838382
45 0.843150 0.840413 0.839360
46 0.863163 0.863179 0.859798
47 0.836371 0.834623 0.833766
48 0.834800 0.837129 0.834081
49 0.849037 0.847277 0.846609
50 0.844101 0.841703 0.840516

Table 6.31: Test 1 - local optimized

Run Party 3 Party 2 Party 1

1 0.316902 0.314573 0.313774
2 0.291400 0.290817 0.288737
3 0.339659 0.336775 0.335867
4 0.281088 0.278478 0.277294
5 0.341326 0.343567 0.339636
6 0.309927 0.307017 0.305623
7 0.286355 0.283644 0.282960
8 0.313478 0.310673 0.310257
9 0.303766 0.301186 0.299949
10 0.279509 0.281267 0.278991
11 0.300836 0.297927 0.297093
12 0.303651 0.305929 0.303112
13 0.287337 0.290146 0.286221
14 0.314759 0.313020 0.310909
15 0.293442 0.296749 0.291491
16 0.325748 0.321466 0.320387
17 0.292492 0.287757 0.287108
18 0.316426 0.312256 0.310937
19 0.284641 0.281114 0.278766
20 0.294261 0.289610 0.288878
21 0.319628 0.315930 0.313814
22 0.305030 0.308295 0.303721
23 0.321093 0.315964 0.315250
24 0.301993 0.299427 0.298359
25 0.280100 0.278058 0.277412
26 0.346662 0.344792 0.344133
27 0.281928 0.280080 0.279399
28 0.278969 0.282011 0.277576
29 0.280044 0.277217 0.275869
30 0.319327 0.323368 0.318612
31 0.315627 0.312941 0.311719
32 0.293467 0.290631 0.289522
33 0.367088 0.364105 0.362910
34 0.348557 0.351443 0.347640
35 0.283320 0.281219 0.280499
36 0.336620 0.332452 0.331925
37 0.285046 0.290115 0.284388
38 0.285264 0.280049 0.281876
39 0.322377 0.324418 0.320222
40 0.329799 0.325525 0.324728
41 0.288031 0.284100 0.283454
42 0.299835 0.301847 0.299157
43 0.328249 0.324082 0.323540
44 0.282591 0.280645 0.279508
45 0.282577 0.279805 0.278787
46 0.285109 0.282144 0.280891
47 0.357979 0.353669 0.353226
48 0.315701 0.318440 0.314527
49 0.283268 0.286053 0.283028
50 0.293935 0.296638 0.292648
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Table 6.32: Test 1 - distributed SMC2

Run Party 3 Party 2 Party 1

1 1.56247 1.56298 1.56253
2 1.56817 1.56866 1.56980
3 1.55295 1.55362 1.55455
4 1.56917 1.57010 1.57109
5 1.55180 1.55261 1.55343
6 1.54366 1.54449 1.54516
7 1.53855 1.53958 1.54049
8 1.53472 1.53539 1.53616
9 1.56714 1.56833 1.56919
10 1.56705 1.56764 1.56902
11 1.56600 1.56667 1.56766
12 1.55738 1.55820 1.55911
13 1.53885 1.53952 1.54049
14 1.54980 1.55064 1.55163
15 1.57676 1.57758 1.57871
16 1.53696 1.53795 1.53870
17 1.55868 1.55965 1.56078
18 1.55768 1.55828 1.55947
19 1.53568 1.53624 1.53721
20 1.53502 1.53561 1.53687
21 1.53450 1.53546 1.53676
22 1.55829 1.55913 1.56019
23 1.55082 1.55152 1.55259
24 1.54788 1.54895 1.54990
25 1.53058 1.53105 1.53222
26 1.55991 1.56045 1.56156
27 1.55331 1.55423 1.55527
28 1.57096 1.57131 1.57227
29 1.55150 1.55201 1.55307
30 1.52953 1.53031 1.53130
31 1.53329 1.53378 1.53503
32 1.57952 1.58035 1.58139
33 1.54421 1.54514 1.54639
34 1.57853 1.57927 1.58035
35 1.53371 1.53459 1.53572
36 1.56858 1.56910 1.56990
37 1.53881 1.53945 1.54009
38 1.53778 1.53897 1.53963
39 1.54521 1.54597 1.54686
40 1.53394 1.53478 1.53581
41 1.56852 1.56922 1.57048
42 1.54221 1.54295 1.54390
43 1.52755 1.52839 1.52928
44 1.54982 1.55078 1.55160
45 1.53677 1.53744 1.53819
46 1.54346 1.54425 1.54538
47 1.57116 1.57155 1.57269
48 1.55376 1.55443 1.55578
49 1.53479 1.53550 1.53624
50 1.54827 1.54882 1.54993

Table 6.33: Test 1 - distributed optimized

Run Party 3 Party 2 Party 1

1 0.888133 0.889322 0.890095
2 0.896760 0.897719 0.898462
3 0.887323 0.887976 0.889139
4 0.893222 0.893890 0.894884
5 0.881776 0.882704 0.883995
6 0.882017 0.882815 0.883808
7 0.875366 0.876274 0.877364
8 0.883016 0.883834 0.884640
9 0.882106 0.883170 0.884113
10 0.885118 0.885863 0.887077
11 0.894901 0.895699 0.897047
12 0.884488 0.885167 0.886206
13 0.885675 0.885921 0.887275
14 0.885685 0.886126 0.887769
15 0.889443 0.889865 0.890731
16 0.887337 0.887879 0.888552
17 0.886668 0.887306 0.888514
18 0.885839 0.886380 0.887392
19 0.886622 0.887136 0.888198
20 0.881153 0.881767 0.882753
21 0.878778 0.879529 0.880517
22 0.877782 0.878291 0.879220
23 0.882033 0.889140 0.882909
24 0.895151 0.896564 0.897164
25 0.878688 0.879514 0.880448
26 0.888644 0.889437 0.890523
27 0.879807 0.880617 0.881216
28 0.883848 0.884417 0.885308
29 0.883657 0.884264 0.885079
30 0.891085 0.891563 0.892602
31 0.884472 0.885070 0.886397
32 0.879899 0.880921 0.881652
33 0.886781 0.887555 0.888449
34 0.894025 0.894764 0.896028
35 0.887801 0.888464 0.889384
36 0.886098 0.886895 0.887977
37 0.888262 0.889161 0.890500
38 0.884349 0.885169 0.885933
39 0.878941 0.879808 0.880863
40 0.882711 0.883658 0.884598
41 0.879849 0.880367 0.881374
42 0.879238 0.880240 0.881356
43 0.879875 0.880668 0.881953
44 0.892477 0.893193 0.894563
45 0.885873 0.886703 0.887750
46 0.882768 0.883352 0.884341
47 0.889235 0.889818 0.890736
48 0.900411 0.900939 0.902278
49 0.897040 0.897774 0.898764
50 0.878181 0.878911 0.880070
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Table 6.34: Test 2 - local SMC2

Run Party 3 Party 2 Party 1

1 0.891668 0.895457 0.890954
2 0.837612 0.836029 0.834608
3 0.866312 0.864993 0.864400
4 0.838134 0.840096 0.837476
5 0.837876 0.836472 0.835906
6 0.883322 0.882122 0.880984
7 0.880129 0.880900 0.883350
8 0.856170 0.857407 0.855587
9 0.893019 0.895024 0.892356
10 0.835201 0.833319 0.834093
11 0.886413 0.887801 0.885241
12 0.834628 0.832663 0.831995
13 0.852675 0.853985 0.852176
14 0.882949 0.886442 0.882255
15 0.871571 0.873764 0.870298
16 0.874361 0.872413 0.871090
17 0.865299 0.863003 0.861863
18 0.831887 0.834156 0.831259
19 0.832848 0.831075 0.830451
20 0.830114 0.831934 0.829497
21 0.885133 0.881776 0.880183
22 0.865484 0.866944 0.866660
23 0.899854 0.896455 0.895623
24 0.899622 0.893325 0.892145
25 0.889801 0.890995 0.896890
26 0.867174 0.862901 0.862369
27 0.875491 0.878302 0.874499
28 0.891293 0.883357 0.882694
29 0.866069 0.868495 0.864232
30 0.859616 0.857988 0.859328
31 0.882439 0.885857 0.883820
32 0.835479 0.839104 0.834777
33 0.833541 0.837216 0.832323
34 0.873825 0.871938 0.871488
35 0.871667 0.868580 0.867569
36 0.868554 0.866412 0.865042
37 0.891310 0.896422 0.889998
38 0.870169 0.866229 0.865604
39 0.880029 0.884356 0.878724
40 0.839018 0.841884 0.839597
41 0.834652 0.836550 0.834076
42 0.872299 0.874829 0.871885
43 0.870250 0.872211 0.869632
44 0.882912 0.886191 0.881687
45 0.871254 0.873001 0.870509
46 0.893178 0.896716 0.892126
47 0.873400 0.870251 0.869720
48 0.843858 0.839630 0.838896
49 0.843337 0.842021 0.840277
50 0.869880 0.867760 0.867082

Table 6.35: Test 2 - local optimized

Run Party 3 Party 2 Party 1

1 0.495619 0.494109 0.492748
2 0.513158 0.509342 0.508972
3 0.468367 0.471167 0.467680
4 0.458835 0.457528 0.456822
5 0.457355 0.455292 0.454611
6 0.509419 0.508929 0.507439
7 0.504641 0.502496 0.501860
8 0.458772 0.456714 0.456021
9 0.459236 0.457161 0.456431
10 0.476800 0.477208 0.474331
11 0.454545 0.453021 0.452674
12 0.516585 0.512566 0.511668
13 0.521884 0.524200 0.520041
14 0.484894 0.486298 0.486442
15 0.475277 0.471167 0.470397
16 0.467467 0.468180 0.466748
17 0.466769 0.469493 0.466255
18 0.524050 0.522608 0.524960
19 0.524314 0.527203 0.523157
20 0.484094 0.482504 0.483666
21 0.489378 0.487964 0.487649
22 0.520279 0.514315 0.513299
23 0.477554 0.475430 0.474821
24 0.456559 0.453857 0.453187
25 0.493726 0.491444 0.490810
26 0.454311 0.452419 0.451748
27 0.455815 0.459056 0.455220
28 0.479482 0.477833 0.477116
29 0.498404 0.495964 0.495301
30 0.457554 0.454648 0.453969
31 0.480113 0.478525 0.479961
32 0.478802 0.477584 0.476867
33 0.456350 0.457742 0.455572
34 0.456816 0.455396 0.454695
35 0.468368 0.466665 0.465954
36 0.505539 0.504125 0.502534
37 0.475155 0.473047 0.472358
38 0.506159 0.508229 0.504289
39 0.486110 0.483792 0.483202
40 0.498584 0.496305 0.495558
41 0.481907 0.480534 0.479864
42 0.501353 0.505257 0.500617
43 0.474980 0.472029 0.472717
44 0.501738 0.500133 0.502051
45 0.501244 0.498655 0.497886
46 0.456229 0.458014 0.455302
47 0.451765 0.453984 0.451024
48 0.467551 0.464798 0.463822
49 0.455140 0.453677 0.452781
50 0.457766 0.459186 0.457195
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Table 6.36: Test 2 - distributed SMC2

Run Party 3 Party 2 Party 1

1 1.51566 1.51766 1.51882
2 1.51496 1.51447 1.51492
3 1.49518 1.49592 1.49717
4 1.53086 1.53127 1.53230
5 1.51167 1.51254 1.51392
6 1.48693 1.48710 1.48877
7 1.49269 1.49357 1.49504
8 1.51947 1.52018 1.52132
9 1.49216 1.49284 1.49378
10 1.52123 1.52182 1.52299
11 1.49396 1.49502 1.49580
12 1.50427 1.50492 1.50599
13 1.49408 1.49460 1.49562
14 1.49769 1.49832 1.49944
15 1.49066 1.49138 1.49263
16 1.49793 1.49878 1.49961
17 1.49736 1.49824 1.49964
18 1.53507 1.53595 1.53691
19 1.48958 1.49018 1.49160
20 1.49817 1.49891 1.50005
21 1.50293 1.50426 1.50493
22 1.49883 1.49940 1.50008
23 1.53036 1.53118 1.53198
24 1.49741 1.49799 1.49940
25 1.50686 1.50758 1.50879
26 1.49970 1.50043 1.50137
27 1.49625 1.49692 1.49808
28 1.53121 1.53192 1.53334
29 1.52713 1.52784 1.52882
30 1.49392 1.49456 1.49578
31 1.49594 1.49698 1.49770
32 1.49128 1.49248 1.49343
33 1.49758 1.49830 1.49948
34 1.49794 1.49890 1.49989
35 1.53298 1.53384 1.53507
36 1.49487 1.49561 1.49676
37 1.52171 1.52276 1.52392
38 1.51299 1.51373 1.51498
39 1.49996 1.50079 1.50201
40 1.49226 1.49258 1.49367
41 1.50749 1.50817 1.50919
42 1.50763 1.50848 1.51016
43 1.50168 1.50235 1.50353
44 1.50253 1.50335 1.50452
45 1.47927 1.47984 1.48133
46 1.49834 1.49900 1.50045
47 1.49090 1.49165 1.49294
48 1.52027 1.52106 1.52269
49 1.50915 1.50974 1.51110
50 1.49295 1.49348 1.49444

Table 6.37: Test 2 - distributed optimized

Run Party 3 Party 2 Party 1

1 1.09731 1.09731 1.09978
2 1.07185 1.07369 1.07320
3 1.06483 1.06519 1.06611
4 1.06849 1.06926 1.07048
5 1.06788 1.06865 1.06934
6 1.07396 1.07470 1.07568
7 1.07166 1.07139 1.07346
8 1.07218 1.07299 1.07414
9 1.10020 1.10102 1.10197
10 1.07125 1.07195 1.07300
11 1.07446 1.07529 1.07583
12 1.07121 1.07190 1.07295
13 1.07659 1.07621 1.07849
14 1.09666 1.09753 1.09844
15 1.07006 1.07072 1.07189
16 1.07419 1.07488 1.07609
17 1.08297 1.08358 1.08452
18 1.07693 1.07784 1.07919
19 1.07312 1.07266 1.07499
20 1.07068 1.07141 1.07248
21 1.07638 1.07692 1.07802
22 1.08334 1.08397 1.08504
23 1.09670 1.09727 1.09790
24 1.07110 1.07174 1.07282
25 1.07558 1.07516 1.07706
26 1.09291 1.09334 1.09468
27 1.07993 1.08054 1.08150
28 1.07027 1.07097 1.07208
29 1.07025 1.07086 1.07156
30 1.07352 1.07424 1.07605
31 1.09294 1.09254 1.09468
32 1.07721 1.07802 1.07890
33 1.07357 1.07444 1.07547
34 1.07116 1.07173 1.07302
35 1.06903 1.06937 1.07019
36 1.06935 1.06980 1.07075
37 1.07477 1.07437 1.07627
38 1.07287 1.07366 1.07491
39 1.07368 1.07473 1.07557
40 1.07506 1.07574 1.07687
41 1.06533 1.06608 1.06676
42 1.07324 1.07341 1.07487
43 1.06875 1.06846 1.07084
44 1.07794 1.08001 1.08127
45 1.07959 1.08044 1.08154
46 1.07255 1.07314 1.07451
47 1.07131 1.07234 1.07267
48 1.07644 1.07746 1.07847
49 1.07984 1.07972 1.08185
50 1.07306 1.07389 1.07508
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Table 6.38: Test 3 - local SMC2

Run Party 3 Party 2 Party 1

1 1.13104 1.12646 1.12739
2 1.15680 1.15459 1.15414
3 1.11698 1.12138 1.11623
4 1.09831 1.09497 1.09414
5 1.09055 1.09226 1.08969
6 1.10710 1.10833 1.10577
7 1.11626 1.11315 1.11264
8 1.07924 1.08091 1.08133
9 1.13216 1.13545 1.13098
10 1.15596 1.15167 1.15036
11 1.11188 1.11441 1.11242
12 1.12671 1.12228 1.12159
13 1.07009 1.07344 1.07140
14 1.07158 1.07292 1.07080
15 1.07955 1.08090 1.07828
16 1.08088 1.07787 1.07721
17 1.11884 1.11773 1.11712
18 1.14857 1.14764 1.15114
19 1.09932 1.09778 1.09703
20 1.08106 1.07972 1.07907
21 1.07726 1.07583 1.07511
22 1.12053 1.11848 1.11795
23 1.11325 1.11397 1.11590
24 1.10167 1.10250 1.10375
25 1.12213 1.12420 1.12156
26 1.14897 1.14329 1.14209
27 1.11894 1.11663 1.11695
28 1.14841 1.14416 1.14248
29 1.13874 1.13784 1.14267
30 1.09843 1.09652 1.09580
31 1.12390 1.12078 1.12006
32 1.11841 1.11718 1.11620
33 1.07838 1.08290 1.07770
34 1.11195 1.11179 1.11051
35 1.12098 1.11948 1.11756
36 1.12583 1.12992 1.12399
37 1.09419 1.09574 1.09670
38 1.10549 1.10211 1.10144
39 1.16890 1.16832 1.17053
40 1.13870 1.13648 1.13853
41 1.08814 1.08479 1.08445
42 1.13468 1.13561 1.13855
43 1.10828 1.11085 1.10770
44 1.14617 1.15138 1.14488
45 1.10681 1.10272 1.10192
46 1.12893 1.13293 1.12793
47 1.11565 1.11719 1.11498
48 1.14605 1.14446 1.14267
49 1.11582 1.11851 1.11511
50 1.13580 1.13428 1.13339

Table 6.39: Test 3 - local optimized

Run Party 3 Party 2 Party 1

1 0.749725 0.747282 0.737363
2 0.704936 0.703478 0.702798
3 0.746494 0.744244 0.743601
4 0.732828 0.733695 0.731130
5 0.724558 0.723216 0.723846
6 0.706549 0.706009 0.709932
7 0.726216 0.727274 0.724571
8 0.756389 0.752371 0.751108
9 0.749838 0.751710 0.751220
10 0.790074 0.785912 0.786994
11 0.699078 0.702160 0.698529
12 0.800316 0.801086 0.798765
13 0.750651 0.745781 0.746460
14 0.737928 0.738909 0.743162
15 0.771391 0.772601 0.769681
16 0.771979 0.774293 0.770012
17 0.757577 0.758373 0.761176
18 0.781396 0.779110 0.778322
19 0.794284 0.792259 0.793610
20 0.706721 0.705329 0.707053
21 0.758371 0.756689 0.758872
22 0.728093 0.731170 0.727547
23 0.747503 0.744244 0.746376
24 0.749567 0.745836 0.745483
25 0.699278 0.700822 0.701375
26 0.697998 0.700160 0.698924
27 0.700039 0.698534 0.697793
28 0.745962 0.746718 0.745430
29 0.717986 0.720681 0.717331
30 0.748508 0.744532 0.743098
31 0.742194 0.743314 0.741445
32 0.749714 0.745710 0.743877
33 0.746119 0.744311 0.743649
34 0.708436 0.706298 0.705600
35 0.762285 0.762838 0.760619
36 0.740853 0.738306 0.737616
37 0.739103 0.738518 0.737016
38 0.739071 0.737283 0.736235
39 0.722407 0.724427 0.722370
40 0.718988 0.717281 0.716732
41 0.760370 0.757497 0.755713
42 0.730364 0.731880 0.732319
43 0.721416 0.720023 0.719344
44 0.705025 0.702336 0.702887
45 0.723370 0.720699 0.719873
46 0.776031 0.780165 0.774877
47 0.726915 0.723031 0.723758
48 0.760764 0.759095 0.757451
49 0.734845 0.733301 0.732466
50 0.730622 0.728696 0.728009
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Table 6.40: Test 3 - distributed SMC2

Run Party 3 Party 2 Party 1

1 2.34157 2.34208 2.34451
2 2.34617 2.34690 2.34620
3 2.32045 2.32101 2.32148
4 2.39287 2.39366 2.39488
5 2.32415 2.32502 2.32621
6 2.32624 2.32712 2.32861
7 2.32889 2.33024 2.33115
8 2.33081 2.33159 2.33231
9 2.33214 2.33289 2.33370
10 2.35170 2.35198 2.35357
11 2.32057 2.32112 2.32206
12 2.32982 2.33051 2.33181
13 2.30757 2.30832 2.30951
14 2.34013 2.33985 2.34073
15 2.31064 2.30994 2.31034
16 2.31258 2.31154 2.31285
17 2.35282 2.35099 2.35181
18 2.30763 2.30837 2.30936
19 2.35455 2.35553 2.35633
20 2.31031 2.31123 2.31238
21 2.35540 2.35564 2.35598
22 2.34718 2.34588 2.34738
23 2.35055 2.35006 2.35115
24 2.31603 2.31503 2.31610
25 2.39928 2.39865 2.39965
26 2.33940 2.33887 2.33970
27 2.31983 2.32013 2.32049
28 2.32493 2.32564 2.32675
29 2.31282 2.31373 2.31464
30 2.34530 2.34614 2.34702
31 2.35335 2.35423 2.35486
32 2.31942 2.32031 2.32132
33 2.35079 2.34920 2.34981
34 2.33498 2.33508 2.33637
35 2.34113 2.34214 2.34325
36 2.31892 2.31841 2.31956
37 2.31702 2.31782 2.31898
38 2.32734 2.32721 2.32806
39 2.33395 2.33499 2.33474
40 2.33072 2.33108 2.33221
41 2.31627 2.31700 2.31808
42 2.32281 2.32380 2.32507
43 2.32878 2.32958 2.33088
44 2.32179 2.32268 2.32383
45 2.32473 2.32397 2.32404
46 2.38503 2.38203 2.38344
47 2.31912 2.31966 2.32074
48 2.36818 2.36755 2.36815
49 2.31127 2.31043 2.31169
50 2.33164 2.33242 2.33365

Table 6.41: Test 3 - distributed optimized

Run Party 3 Party 2 Party 1

1 1.92617 1.92695 1.92797
2 1.92804 1.93007 1.92971
3 1.90952 1.91014 1.91156
4 1.92891 1.92965 1.93083
5 1.91378 1.91451 1.91507
6 1.91668 1.91747 1.91841
7 1.92968 1.92972 1.93112
8 1.91361 1.91456 1.91560
9 1.92246 1.92302 1.92394
10 1.92025 1.92115 1.92227
11 1.90034 1.90123 1.90189
12 1.91617 1.91680 1.91778
13 1.90689 1.90662 1.90774
14 1.91921 1.92000 1.92128
15 1.92263 1.92335 1.92441
16 1.90568 1.90639 1.90763
17 1.93163 1.93261 1.93329
18 1.91513 1.91596 1.91710
19 1.92887 1.92864 1.93036
20 1.91157 1.91241 1.91362
21 1.94057 1.94110 1.94224
22 1.91942 1.92007 1.92132
23 1.92520 1.92555 1.92654
24 1.91495 1.91569 1.91686
25 1.90756 1.90721 1.90904
26 1.90450 1.90499 1.90659
27 1.90611 1.90693 1.90799
28 1.90220 1.90280 1.90411
29 1.90632 1.90722 1.90808
30 1.93912 1.93962 1.94095
31 1.94298 1.94275 1.94451
32 1.93109 1.93192 1.93334
33 1.91412 1.91488 1.91600
34 1.92066 1.92131 1.92225
35 1.90919 1.90978 1.91065
36 1.92136 1.92206 1.92331
37 1.92156 1.92106 1.92273
38 1.92272 1.92345 1.92461
39 1.92088 1.92149 1.92287
40 1.90860 1.90943 1.91062
41 1.94716 1.94794 1.94869
42 1.90721 1.90776 1.90882
43 1.94203 1.94158 1.94338
44 1.93595 1.93694 1.93817
45 1.92647 1.92729 1.92845
46 1.90537 1.90618 1.90750
47 1.91036 1.91151 1.91163
48 1.91900 1.91967 1.92062
49 1.94040 1.94025 1.94221
50 1.92441 1.92499 1.92603
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Table 6.42: Test 4 - local SMC2

Run Party 3 Party 2 Party 1

1 1.14050 1.14145 1.14372
2 1.14184 1.14295 1.14360
3 1.10228 1.10110 1.10255
4 1.09165 1.09420 1.09208
5 1.09887 1.10018 1.10019
6 1.08504 1.08736 1.08558
7 1.08265 1.08136 1.08256
8 1.14324 1.14115 1.13993
9 1.08061 1.07923 1.07799
10 1.08431 1.08002 1.07957
11 1.07883 1.07814 1.08076
12 1.08523 1.08674 1.08769
13 1.07967 1.08078 1.07840
14 1.14462 1.14789 1.14351
15 1.11043 1.10864 1.11479
16 1.12080 1.12201 1.11962
17 1.12393 1.12018 1.11963
18 1.10784 1.10956 1.10702
19 1.11135 1.11006 1.10961
20 1.08906 1.08697 1.08625
21 1.16146 1.15771 1.15811
22 1.09434 1.09576 1.09301
23 1.15391 1.15265 1.15454
24 1.11568 1.11788 1.11495
25 1.13141 1.13419 1.13084
26 1.18784 1.18381 1.18447
27 1.08767 1.08960 1.08829
28 1.07630 1.07498 1.07436
29 1.08241 1.08176 1.08483
30 1.09883 1.09807 1.10019
31 1.10497 1.10419 1.10664
32 1.12265 1.12516 1.12227
33 1.13964 1.13896 1.13750
34 1.07275 1.07552 1.07210
35 1.06981 1.07266 1.06927
36 1.14434 1.14695 1.14557
37 1.10440 1.10532 1.10652
38 1.08442 1.08061 1.07994
39 1.11437 1.11177 1.11107
40 1.12863 1.12742 1.12667
41 1.13241 1.13399 1.13171
42 1.12616 1.12935 1.12486
43 1.07708 1.07977 1.07637
44 1.12055 1.12154 1.11925
45 1.17454 1.17763 1.17241
46 1.13031 1.13145 1.13536
47 1.08786 1.08686 1.08514
48 1.08642 1.08283 1.08247
49 1.08813 1.08638 1.08567
50 1.08389 1.08196 1.08303

Table 6.43: Test 4 - local optimized

Run Party 3 Party 2 Party 1

1 0.963960 0.962170 0.960005
2 0.985631 0.984903 0.988224
3 0.945429 0.947592 0.946111
4 0.926027 0.927287 0.925075
5 0.959674 0.958775 0.962850
6 0.993276 0.991902 0.991201
7 0.928095 0.931009 0.928782
8 0.985702 0.982661 0.981478
9 0.943208 0.941140 0.940420
10 0.931352 0.929193 0.928467
11 0.967272 0.965785 0.964767
12 0.980439 0.983454 0.979605
13 0.948339 0.947056 0.946437
14 0.950888 0.946514 0.945817
15 0.942699 0.940658 0.939969
16 0.947173 0.946444 0.948572
17 0.994645 0.991248 0.989158
18 0.955303 0.956593 0.954504
19 0.953356 0.954931 0.952127
20 0.927913 0.931230 0.928641
21 0.930321 0.931449 0.929479
22 0.932349 0.930838 0.930169
23 0.925005 0.928296 0.924391
24 0.964811 0.965499 0.968093
25 0.995909 0.993204 0.992175
26 0.970465 0.969733 0.966474
27 0.959858 0.963873 0.959081
28 0.973561 0.972816 0.971573
29 0.990583 0.989060 0.987512
30 0.949983 0.952631 0.949288
31 0.935877 0.939699 0.934909
32 0.926859 0.927495 0.930137
33 0.933827 0.932648 0.933760
34 0.972193 0.970662 0.968421
35 0.957156 0.960686 0.956260
36 0.947446 0.944620 0.943986
37 0.966242 0.968908 0.965326
38 0.950687 0.952124 0.950021
39 0.962127 0.961526 0.963350
40 0.939051 0.938357 0.937160
41 0.933857 0.932341 0.931688
42 0.931141 0.932175 0.930209
43 0.982224 0.981355 0.980709
44 0.948196 0.945729 0.945031
45 0.952272 0.953601 0.953493
46 0.927521 0.928916 0.926907
47 0.933172 0.937676 0.932528
48 0.960724 0.961954 0.963497
49 0.934639 0.932648 0.933803
50 0.961133 0.958237 0.956127
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Table 6.44: Test 4 - distributed SMC2

Run Party 3 Party 2 Party 1

1 2.32823 2.33030 2.33040
2 2.38042 2.37808 2.38094
3 2.32755 2.32576 2.32708
4 2.38298 2.38165 2.38213
5 2.31284 2.31172 2.31346
6 2.32917 2.32855 2.32916
7 2.35747 2.35778 2.35888
8 2.34597 2.34698 2.34781
9 2.33942 2.34021 2.34164
10 2.31390 2.31466 2.31535
11 2.33936 2.33981 2.34126
12 2.33658 2.33713 2.33814
13 2.31769 2.31612 2.31734
14 2.31792 2.31871 2.31965
15 2.33204 2.33168 2.33267
16 2.32898 2.32956 2.33003
17 2.39794 2.39773 2.40018
18 2.33488 2.33413 2.33548
19 2.31274 2.31142 2.31212
20 2.31331 2.31267 2.31353
21 2.34999 2.34860 2.34996
22 2.34677 2.34598 2.34642
23 2.32436 2.32438 2.32581
24 2.33420 2.33489 2.33627
25 2.33085 2.33098 2.33212
26 2.36378 2.36486 2.36590
27 2.31631 2.31560 2.31647
28 2.31013 2.30961 2.30994
29 2.31442 2.31208 2.31391
30 2.30976 2.30849 2.30964
31 2.31711 2.31725 2.31817
32 2.34696 2.34762 2.34873
33 2.32492 2.32575 2.32677
34 2.32810 2.32855 2.32903
35 2.32383 2.32166 2.32324
36 2.34621 2.34705 2.34791
37 2.32196 2.32052 2.32179
38 2.31099 2.31028 2.31128
39 2.31106 2.30892 2.30977
40 2.35638 2.35478 2.35518
41 2.30796 2.30643 2.30838
42 2.33201 2.33116 2.33225
43 2.36732 2.36729 2.36830
44 2.35696 2.35747 2.35854
45 2.32039 2.32104 2.32239
46 2.32113 2.32220 2.32251
47 2.35099 2.35133 2.35285
48 2.31744 2.31562 2.31676
49 2.30828 2.30852 2.30978
50 2.36282 2.36380 2.36465

Table 6.45: Test 4 - distributed optimized

Run Party 3 Party 2 Party 1

1 2.16087 2.16120 2.16328
2 2.16271 2.16480 2.16423
3 2.16832 2.16896 2.16999
4 2.25211 2.25288 2.25388
5 2.17003 2.17078 2.17155
6 2.15817 2.15885 2.16000
7 2.18712 2.18670 2.18895
8 2.15347 2.15427 2.15533
9 2.17009 2.17085 2.17191
10 2.14256 2.14343 2.14462
11 2.18716 2.18807 2.18862
12 2.18100 2.18163 2.18316
13 2.14788 2.14770 2.14925
14 2.19296 2.19366 2.19479
15 2.18750 2.18848 2.18948
16 2.16045 2.16090 2.16209
17 2.15214 2.15246 2.15298
18 2.14776 2.14845 2.14965
19 2.16438 2.16416 2.16557
20 2.17230 2.17316 2.17425
21 2.14423 2.14478 2.14598
22 2.17753 2.17826 2.17913
23 2.16021 2.16090 2.16128
24 2.16306 2.16364 2.16487
25 2.18780 2.18771 2.18945
26 2.20773 2.20842 2.20969
27 2.14096 2.14162 2.14286
28 2.15794 2.15869 2.15955
29 2.15423 2.15505 2.15550
30 2.16829 2.16915 2.17042
31 2.15761 2.15751 2.15904
32 2.18137 2.18205 2.18293
33 2.17177 2.17280 2.17386
34 2.15927 2.15984 2.16101
35 2.18857 2.18950 2.19014
36 2.17764 2.17841 2.17958
37 2.16800 2.16763 2.16904
38 2.14784 2.14851 2.14951
39 2.16987 2.17070 2.17245
40 2.16209 2.16276 2.16425
41 2.16073 2.16132 2.16214
42 2.19175 2.19226 2.19335
43 2.18383 2.18360 2.18532
44 2.16067 2.16179 2.16294
45 2.19754 2.19851 2.19940
46 2.19184 2.19253 2.19384
47 2.18606 2.18714 2.18810
48 2.16822 2.16899 2.16991
49 2.16132 2.16222 2.16324
50 2.16945 2.17041 2.17158
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Table 6.46: Test 5 - local SMC2

Run Party 3 Party 2 Party 1

1 0.892470 0.895347 0.891705
2 0.833727 0.835280 0.835335
3 0.855584 0.856775 0.854182
4 0.867249 0.864978 0.864362
5 0.897705 0.900824 0.896875
6 0.868038 0.866599 0.865972
7 0.861226 0.862524 0.863180
8 0.887344 0.889874 0.889618
9 0.886904 0.888886 0.885624
10 0.842471 0.840115 0.839433
11 0.866403 0.867315 0.869224
12 0.892790 0.888952 0.888159
13 0.882539 0.883543 0.886474
14 0.856526 0.854605 0.853987
15 0.887616 0.884308 0.883890
16 0.842425 0.844461 0.844648
17 0.852887 0.854115 0.852196
18 0.889793 0.893151 0.889282
19 0.842582 0.840691 0.840047
20 0.862042 0.862482 0.860162
21 0.837995 0.833866 0.832561
22 0.838093 0.836227 0.837787
23 0.832771 0.834211 0.831436
24 0.839837 0.842256 0.838367
25 0.888654 0.891839 0.887565
26 0.852701 0.850927 0.851763
27 0.859602 0.861661 0.859001
28 0.833389 0.831541 0.832588
29 0.833458 0.831986 0.831403
30 0.898285 0.899099 0.896670
31 0.849426 0.850644 0.848649
32 0.898630 0.896722 0.895458
33 0.852434 0.849639 0.849151
34 0.889374 0.887833 0.887024
35 0.863549 0.864679 0.861553
36 0.887668 0.889025 0.884501
37 0.904637 0.902803 0.901631
38 0.892043 0.890019 0.888128
39 0.864321 0.867141 0.867441
40 0.854694 0.850335 0.849783
41 0.906781 0.905945 0.906542
42 0.888565 0.886491 0.885052
43 0.852559 0.850932 0.850364
44 0.899600 0.896184 0.894988
45 0.864524 0.863166 0.862519
46 0.878380 0.875936 0.875385
47 0.875955 0.878630 0.879123
48 0.903071 0.899592 0.898268
49 0.857422 0.856012 0.855269
50 0.853933 0.855735 0.853298

Table 6.47: Test 5 - local optimized

Run Party 3 Party 2 Party 1

1 0.736036 0.730749 0.729971
2 0.721534 0.719451 0.718763
3 0.713156 0.714375 0.712514
4 0.718496 0.720393 0.720496
5 0.682949 0.681676 0.682395
6 0.681737 0.678549 0.677906
7 0.683124 0.684245 0.681822
8 0.732746 0.730653 0.732052
9 0.728249 0.724026 0.723448
10 0.733078 0.727948 0.726870
11 0.709209 0.710666 0.707377
12 0.728851 0.723565 0.722287
13 0.698899 0.701305 0.700354
14 0.700398 0.698131 0.697714
15 0.747874 0.748162 0.744627
16 0.716000 0.714702 0.714102
17 0.698450 0.695898 0.695187
18 0.731568 0.732244 0.736617
19 0.731647 0.728118 0.726946
20 0.702104 0.703471 0.701441
21 0.697449 0.699993 0.696792
22 0.729554 0.728063 0.726087
23 0.733278 0.732157 0.729438
24 0.749312 0.744658 0.743504
25 0.719514 0.716835 0.716135
26 0.762853 0.764313 0.760733
27 0.766196 0.766100 0.764594
28 0.716541 0.714209 0.715894
29 0.683019 0.680755 0.681443
30 0.686507 0.690430 0.685822
31 0.735601 0.735225 0.732116
32 0.718460 0.714675 0.713873
33 0.693039 0.690191 0.687959
34 0.684695 0.681397 0.680996
35 0.719314 0.718024 0.717308
36 0.737686 0.735225 0.733510
37 0.686820 0.684115 0.683769
38 0.738299 0.739696 0.737029
39 0.705827 0.707357 0.705168
40 0.677695 0.679898 0.677089
41 0.711069 0.708383 0.707347
42 0.686284 0.682201 0.681564
43 0.727157 0.726620 0.723332
44 0.723944 0.718363 0.719211
45 0.697799 0.699266 0.697034
46 0.683694 0.683417 0.682334
47 0.733015 0.731555 0.729633
48 0.762123 0.766315 0.760889
49 0.736797 0.736410 0.733260
50 0.745671 0.739517 0.741467
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Table 6.48: Test 5 - distributed SMC2

Run Party 3 Party 2 Party 1

1 1.50233 1.50406 1.50519
2 1.51322 1.51266 1.51341
3 1.49658 1.49737 1.49894
4 1.49497 1.49559 1.49666
5 1.49201 1.49217 1.49276
6 1.49784 1.49862 1.49955
7 1.49530 1.49597 1.49675
8 1.50136 1.50231 1.50319
9 1.49230 1.49269 1.49361
10 1.48558 1.48623 1.48733
11 1.49216 1.49117 1.49202
12 1.48718 1.48789 1.48873
13 1.51596 1.51629 1.51720
14 1.52567 1.52643 1.52819
15 1.51915 1.52036 1.52139
16 1.50638 1.50723 1.50840
17 1.49647 1.49653 1.49766
18 1.50987 1.51032 1.51169
19 1.48457 1.48506 1.48588
20 1.50407 1.50489 1.50587
21 1.49892 1.49955 1.50061
22 1.49456 1.49530 1.49636
23 1.50508 1.50534 1.50646
24 1.52899 1.52875 1.53091
25 1.49403 1.49415 1.49485
26 1.52848 1.52901 1.53014
27 1.50606 1.50680 1.50800
28 1.49459 1.49518 1.49635
29 1.48860 1.48873 1.48953
30 1.49281 1.49337 1.49455
31 1.50227 1.50232 1.50365
32 1.48761 1.48829 1.48959
33 1.49310 1.49371 1.49514
34 1.51146 1.51262 1.51348
35 1.50241 1.50311 1.50397
36 1.49842 1.49911 1.50046
37 1.50712 1.50796 1.50914
38 1.50118 1.50175 1.50287
39 1.48310 1.48408 1.48509
40 1.48932 1.48894 1.49008
41 1.49680 1.49764 1.49874
42 1.49766 1.49857 1.49988
43 1.51758 1.51825 1.51981
44 1.49837 1.49919 1.50049
45 1.49941 1.50035 1.50165
46 1.50837 1.50836 1.50921
47 1.50181 1.50278 1.50347
48 1.50284 1.50356 1.50476
49 1.50048 1.50127 1.50251
50 1.50201 1.50242 1.50353

Table 6.49: Test 5 - distributed optimized

Run Party 3 Party 2 Party 1

1 1.34574 1.34560 1.34685
2 1.33227 1.33118 1.33303
3 1.32883 1.32945 1.33093
4 1.33213 1.33333 1.33425
5 1.32342 1.32390 1.32484
6 1.33163 1.33228 1.33335
7 1.33846 1.33852 1.33999
8 1.34807 1.34831 1.34933
9 1.34363 1.34419 1.34523
10 1.33759 1.33823 1.33923
11 1.38520 1.38551 1.38678
12 1.34487 1.34567 1.34708
13 1.34419 1.34292 1.34420
14 1.34043 1.34098 1.34213
15 1.33436 1.33504 1.33601
16 1.34544 1.34604 1.34746
17 1.37375 1.37374 1.37526
18 1.35436 1.35450 1.35595
19 1.33324 1.33361 1.33474
20 1.33281 1.33416 1.33482
21 1.33664 1.33753 1.33846
22 1.36485 1.36574 1.36688
23 1.34787 1.34818 1.34896
24 1.33784 1.33827 1.33935
25 1.33815 1.33841 1.33986
26 1.34044 1.34151 1.34231
27 1.33625 1.33701 1.33787
28 1.33553 1.33609 1.33713
29 1.33751 1.33784 1.33899
30 1.33379 1.33486 1.33578
31 1.33455 1.33504 1.33573
32 1.36299 1.36372 1.36466
33 1.35423 1.35490 1.35626
34 1.32149 1.32216 1.32327
35 1.32743 1.32813 1.32914
36 1.34208 1.34342 1.34383
37 1.34023 1.34047 1.34146
38 1.34780 1.34851 1.34957
39 1.38335 1.38417 1.38529
40 1.33596 1.33669 1.33775
41 1.33653 1.33636 1.33760
42 1.33177 1.33270 1.33386
43 1.33815 1.33854 1.33959
44 1.34221 1.34281 1.34373
45 1.33118 1.33178 1.33291
46 1.33472 1.33549 1.33658
47 1.33731 1.33776 1.33893
48 1.33468 1.33520 1.33651
49 1.34473 1.34553 1.34621
50 1.32774 1.32841 1.32949

906



Table 6.50: Test 6 - local SMC2

Run Party 3 Party 2 Party 1

1 1.16664 1.16518 1.16444
2 1.14848 1.14542 1.14473
3 1.12920 1.12790 1.12724
4 1.14700 1.15026 1.14634
5 1.14949 1.14653 1.14536
6 1.13827 1.13875 1.13875
7 1.12975 1.12774 1.12836
8 1.17780 1.18107 1.17696
9 1.11726 1.11896 1.11583
10 1.11044 1.11317 1.10981
11 1.14446 1.14780 1.14375
12 1.22460 1.22062 1.22018
13 1.13542 1.13740 1.13486
14 1.23013 1.22703 1.22637
15 1.17713 1.17488 1.17412
16 1.13458 1.13835 1.13375
17 1.16491 1.17090 1.16409
18 1.14309 1.14486 1.14237
19 1.13502 1.13366 1.13563
20 1.14653 1.14955 1.14621
21 1.15262 1.14823 1.14885
22 1.16810 1.16762 1.16988
23 1.13800 1.14003 1.13744
24 1.14976 1.14572 1.14496
25 1.15848 1.15350 1.15275
26 1.14047 1.13858 1.13799
27 1.13980 1.14176 1.14209
28 1.13065 1.12716 1.12657
29 1.17034 1.16716 1.16627
30 1.14423 1.14078 1.14011
31 1.12967 1.13234 1.12906
32 1.13539 1.13400 1.13617
33 1.17303 1.17423 1.17292
34 1.18115 1.18464 1.18036
35 1.13757 1.13975 1.13699
36 1.12964 1.13107 1.12904
37 1.11319 1.11541 1.11255
38 1.10777 1.10821 1.11027
39 1.15285 1.14835 1.14754
40 1.16331 1.16637 1.16259
41 1.14442 1.14234 1.14172
42 1.11005 1.10877 1.10818
43 1.11719 1.11434 1.11389
44 1.14323 1.14378 1.14551
45 1.13994 1.14170 1.13946
46 1.10517 1.10450 1.10712
47 1.10853 1.10662 1.10597
48 1.10024 1.10215 1.09969
49 1.17347 1.16918 1.16814
50 1.11423 1.11176 1.11099

Table 6.51: Test 6 - local optimized

Run Party 3 Party 2 Party 1

1 0.668696 0.666209 0.665564
2 0.685263 0.681641 0.680907
3 0.672267 0.669501 0.670556
4 0.735243 0.733186 0.732244
5 0.638218 0.633990 0.633178
6 0.724135 0.719776 0.718991
7 0.653292 0.655395 0.652645
8 0.634857 0.632186 0.631651
9 0.666026 0.664104 0.663474
10 0.653798 0.655012 0.653104
11 0.639681 0.641762 0.639052
12 0.679118 0.674335 0.674924
13 0.651690 0.650193 0.652134
14 0.657898 0.655452 0.654858
15 0.648569 0.650179 0.647951
16 0.665692 0.667294 0.664706
17 0.646767 0.648440 0.646160
18 0.684404 0.687578 0.683757
19 0.658656 0.654617 0.653919
20 0.674990 0.669710 0.668653
21 0.689790 0.693213 0.689064
22 0.691946 0.687771 0.687022
23 0.670328 0.671618 0.671269
24 0.630657 0.634741 0.629975
25 0.665263 0.667378 0.664850
26 0.670449 0.667702 0.667017
27 0.666294 0.671466 0.665454
28 0.670438 0.668684 0.667385
29 0.648765 0.645800 0.644967
30 0.657960 0.656742 0.655979
31 0.675366 0.671561 0.670597
32 0.677816 0.677278 0.679696
33 0.683596 0.687985 0.682798
34 0.653160 0.651835 0.650388
35 0.685180 0.680935 0.680290
36 0.661336 0.661595 0.659617
37 0.663334 0.662444 0.661038
38 0.653121 0.650411 0.649726
39 0.716883 0.714626 0.716196
40 0.631997 0.630698 0.629958
41 0.692422 0.689224 0.688625
42 0.663466 0.664746 0.662484
43 0.679765 0.678825 0.676976
44 0.631733 0.630551 0.631419
45 0.631596 0.630283 0.630775
46 0.664866 0.662989 0.662256
47 0.722124 0.716621 0.715835
48 0.668908 0.667685 0.666424
49 0.641249 0.639734 0.639174
50 0.632310 0.630365 0.631098
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Table 6.52: Test 6 - distributed SMC2

Run Party 3 Party 2 Party 1

1 2.45985 2.46092 2.46132
2 2.43933 2.44018 2.44138
3 2.43015 2.43108 2.43199
4 2.45521 2.45592 2.45730
5 2.44059 2.44132 2.44251
6 2.45002 2.45078 2.45191
7 2.47251 2.47221 2.47349
8 2.45556 2.45614 2.45721
9 2.44673 2.44744 2.44863
10 2.43473 2.43561 2.43661
11 2.46897 2.46971 2.47042
12 2.43704 2.43777 2.43884
13 2.44535 2.44511 2.44627
14 2.44383 2.44428 2.44508
15 2.42411 2.42483 2.42571
16 2.44077 2.44144 2.44250
17 2.46005 2.46093 2.46188
18 2.45163 2.45237 2.45313
19 2.46712 2.46657 2.46776
20 2.43416 2.43477 2.43561
21 2.43222 2.43286 2.43380
22 2.44419 2.44490 2.44612
23 2.45695 2.45778 2.45911
24 2.43872 2.43959 2.44048
25 2.43462 2.43418 2.43564
26 2.43036 2.43163 2.43272
27 2.45114 2.45191 2.45297
28 2.47535 2.47700 2.47811
29 2.44900 2.44986 2.45120
30 2.44047 2.44106 2.44226
31 2.46736 2.46715 2.46796
32 2.44109 2.44161 2.44285
33 2.43985 2.44042 2.44207
34 2.44044 2.44117 2.44256
35 2.43048 2.43113 2.43250
36 2.43567 2.43666 2.43782
37 2.44844 2.44800 2.44904
38 2.43249 2.43311 2.43402
39 2.44281 2.44325 2.44436
40 2.44514 2.44641 2.44721
41 2.43241 2.43303 2.43412
42 2.42968 2.43051 2.43130
43 2.42994 2.42956 2.43077
44 2.45376 2.45447 2.45539
45 2.46219 2.46299 2.46423
46 2.47630 2.47688 2.47813
47 2.44165 2.44234 2.44338
48 2.44657 2.44706 2.44832
49 2.45015 2.44980 2.45098
50 2.48423 2.48483 2.48561

Table 6.53: Test 6 - distributed optimized

Run Party 3 Party 2 Party 1

1 1.92887 1.93075 1.93074
2 1.90686 1.90763 1.90855
3 1.90282 1.90348 1.90463
4 1.90558 1.90633 1.90777
5 1.92090 1.92151 1.92251
6 1.92509 1.92570 1.92663
7 1.91017 1.91089 1.91178
8 1.91338 1.91380 1.91467
9 1.91475 1.91506 1.91621
10 1.92603 1.92709 1.92804
11 1.92604 1.92678 1.92787
12 1.92646 1.92717 1.92858
13 1.91228 1.91296 1.91429
14 1.90709 1.90760 1.90863
15 1.90773 1.90835 1.90945
16 1.91053 1.91122 1.91253
17 1.91833 1.91902 1.92045
18 1.91418 1.91512 1.91604
19 1.90413 1.90483 1.90588
20 1.90657 1.90731 1.90848
21 1.90966 1.91067 1.91178
22 1.91764 1.91849 1.91933
23 1.90376 1.90416 1.90549
24 1.92051 1.92149 1.92234
25 1.91817 1.91909 1.92024
26 1.91829 1.91887 1.92014
27 1.90197 1.90280 1.90409
28 1.92109 1.92172 1.92316
29 1.93152 1.93243 1.93327
30 1.89837 1.89907 1.90001
31 1.90204 1.90287 1.90375
32 1.90164 1.90224 1.90352
33 1.90106 1.90179 1.90293
34 1.90457 1.90523 1.90598
35 1.91030 1.91117 1.91226
36 1.90379 1.90453 1.90551
37 1.90672 1.90715 1.90804
38 1.90600 1.90672 1.90783
39 1.90323 1.90382 1.90493
40 1.91400 1.91466 1.91569
41 1.90675 1.90749 1.90882
42 1.91558 1.91667 1.91762
43 1.91138 1.91241 1.91310
44 1.90995 1.91081 1.91177
45 1.92498 1.92569 1.92700
46 1.91269 1.91348 1.91427
47 1.92193 1.92250 1.92348
48 1.91201 1.91308 1.91401
49 1.91573 1.91644 1.91777
50 1.93532 1.93604 1.93687
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7 Conclusion

In this thesis, we have presented the progression of a formal model for a general SMC compiler. We started

from Basic SMC2 in Chapter 3, which supported the basic SMC concepts for general purpose programs

in C. We extended this model to Location-tracking SMC2 in Chapter 4, providing full support for the C

language This lead to our final model, Multiparty SMC2, in Chapter 5, a fully comprehensive, multiparty

formal model supporting both safe and unsafe features of C in a more efficient manner. Our model does

not artificially restrict what C features can be present in private branches – restrictions are instead guided

by which operations our model has shown to be unsafe. We provide support through additional tracking

meta-data to enable further general-purpose features, such as pointers, which are unsafe in current SMC

techniques. The intuition, shown in our motivation, is that state-of-the-art SMC techniques cannot track

complex memory indirections that can occur when using pointers. By providing this tracking, we have shown

that these operations can be made safe.

We provide an implementation of our model in PICCO in Chapter 6 (Section 6.1), modifying it’s style

of single-statement resolution to reflect our optimized conditional code block tracking scheme, and show

an improvement in execution runtime over microbenchmarks and maintenance of the anticipated runtime in

real-world programs. We further extend our model to include a DSL in Chapter 6 (Section 6.2), formalizing

the syntax of the DSL, the algorithms for use in the optimization to find optimal variable sizes, and the

translation from the DSL and optimization to Multiparty SMC2 semantics. We provide a basic implementation

of our DSL as an optimization pass on top of our Multiparty SMC2 implementation in PICCO, with initial

benchmarks showing that this optimization can be useful in improving the runtime of programs in several

cases. With all of these elements, we have successfully created an efficient formal model for general-purpose

SMC that allows the programmer many freedoms in writing programs and the implementor ease in extending

the model to include new features and optimizations, all while maintaining correctness and security.

As future work, our model can be extended to support explicit declassification, through a primitive PICCO

calls smcopen. Consider Figure 7.1, which highlights a modification to our original gender based salary

computation (lines 16-17) from Figure 2.1. Explicitly declassifying the sum and count earlier in the program,
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22 avgFemaleSalPub=smcopen(avgFemaleSalary);
23 femaleCountPub=smcopen(femaleCount);
24 avgMaleSalPub=smcopen(avgMaleSalary); maleCountPub=smcopen(maleCount);
25 avgFemaleSalPub=(avgFemaleSalPub/femaleCountPub)/2+historicFemaleSalAvg/2;
26 avgMaleSalPub=(avgMaleSalPub/maleCountPub)/2+historicMaleSalAvg/2;
27
28 for (i=1; i<numParticipants+1; i++){
29 smcoutput(avgFemaleSalPub, i);
30 smcoutput(avgMaleSalPub, i);
31 }

Figure 7.1: Securely calculating the gender pay gap for 100 organizations with additional information
released.

allows us to change the average computation to a public computation. This reduces the number of high cost

communications and cryptographic computations in the program. To support explicit declassification in our

model we would need to extend our semantics with gradual release [47].

As for future work for the DSL, there are many possibilities, some of which we will discuss here.

Interprocedural analysis for functions is a non-trivial extension of the DSL implementation, but was not

essential in the first round of implementation to show that the DSL and this particular optimization can be of

great value when it comes to creating more efficient SMC programs. Implementing interprocedural analysis

as we have planned in our formalization above would be a next logical step in improving the implementation.

The implementation of support for branches involves creating a copy of the variables whose sizes are

modified within the evaluation of the then branch. Then if there is an else branch, evaluating the else

branch can be done as normal. Next, you will iterate through the copies that were changed within the then

branch, updating the variable table to store the maximum resulting value for each of the variables, as we have

formalized in Algorithm 150.

The implementation of support for arrays involves ensuring that the size expected of an element of the

array is passed along properly. This simple implementation will not result in efficiency on its own, but will

need to be extended to take into consideration things like loops where we modify a different index of the

array within each loop iteration, and therefore may need to only update the size of the array once. Such a loop

that is not inter-dependent on elements of the array (e.g., does not perform swapping or combination of array

elements) may also be parallelizable; the analysis of such elements may benefit from the introduction of a

foreach loop or some such syntax to indicate that it likely falls into this case. However, this is optimization

requires further analysis beyond what we do here, and is therefore out of scope of this thesis.
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Adding support for the dot product operator @ used in the Hamming distance example shown in Figure 6.12

involves looking up the length of the arrays. Once you know the length n of the arrays, the optimal size for

the result of this operation is log(n), as the arrays should both be of the same length. This is not currently

supported within our formalization of the DSL, but could easily be added by extending the optimal size map

θ to include the metadata for length, and then Algorithm 148 would need to be extended to use the expression

parameter to find the length of the arrays that we are performing this operation on.

Another interesting DSL feature that loop bounds can enable is the ability to use private conditions within

loops - the loop would essentially then run for "bound" number of iterations and have a private-conditioned

branching statement on whether to keep the results of executing the loop in that iteration. While this is not

essential functionality and can be bypassed with the programmer writing the loop as such with a public-

conditioned outer loop and a private-conditioned inner branch, it would allow the programmer to write more

expressive programs without having to think of how to work around only allowing public-conditioned loops.
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