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Abstract

Secure multi-party computation (SMC) enables a group of participants to per-

form the computation on their private data jointly, where nothing about the

original data will be released but the final results. SMC has shown potential for

academic and practical applications in the last decade, ranging from applica-

tions in the academic field of secure computational geometry to more practical

applications like privacy-preserving machine learning, financial analysis, and

biomedical computations. Because the actual adoption of secure computation

techniques depends on their performance in practice, it is essential to continue

improving their performance. This dissertation focuses on common non-trivial

building blocks used by many types of programs, where any advances in their

performance would impact the runtime of programs that rely on them.

Firstly, we propose new constructions to access an array at a private loca-

tion that could significantly outperform conventional implementations of these

operations in the setting with an honest majority based on secret sharing. In par-

ticular, we propose a general construction that works for any number of compu-

tation participants that uses conventional Shamir secret sharing. In addition, we

also propose a custom construction for the typical case of three parties, which

xii



outperforms the general construction.

Secondly, we explore how to implement binary search in secure computa-

tion. Realizing binary search in the context of secure multi-party computation,

which demands data-oblivious execution, is extremely non-trivial. We propose

a suite of protocols with different properties and different structures to search

a private dataset of m elements by a private numeric key. Our proposed solu-

tions result in O(m) and O(
√

m) communication using only standard and read-

ily available operations based on secret sharing.

Finally, we address the problem of floating-point summation in secure com-

putation. Calculating the exact summation of m floating-point numbers is a

non-trivial problem, which becomes much more challenging in the context of

secure multi-party computation. We are not aware of any prior work that could

achieve this goal in the context of secure computation. Therefore, we propose a

superaccumulator based solution that could efficiently perform the summation

without loss of accuracy.
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Chapter 1
Introduction

Secure multi-party computation (SMC) allows a number of parties to compute

jointly on private data without releasing unintended information about the pri-

vate data to any party. Since its introduction by Yao [1, 2] in his seminal works,

SMC has been the subject of research for many years but not commonly used

in practice because of its complexity and overhead [3]. The last years have

witnessed significant progress towards practical solutions for secure compu-

tation, which are now suitable for data and computations of significant sizes

[4, 5, 6, 7, 8]. Because of its strong security guarantees, secure computation

can be increasingly applied to secure statistical analysis of private data sets dis-

tributed among a number of participants [9, 10], as well as data analytics and

decision making using private distributed data [11, 12, 13].

Of particular interest to the research community in recent years has been

privacy-preserving machine learning, which uses non-trivial algorithms to an-

alyze large volumes of data. Computation used in such analyses often requires

access to data at private locations, be it due to the nature of data representation,
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e.g., in the form of sparse data sets or due to the nature of the algorithm itself.

When such operations are executed as part of secure computation on private

data, we must employ data-oblivious (i.e., data-independent) constructions for

realizing the operations to eliminate leakage of private information.

Despite the progresses in the basic SMC applications, designing and build-

ing an efficient data-oblivious application in secure computation is still chal-

lenging. One of the major challenges is how to optimize performance as much

as possible while ensuring obliviousness, which requires that the behavior or

access pattern of a program leaks no information about the input data. For ef-

ficiency, both the local computation and the communication need to be highly

optimized to reduce the computation latency. However, most modern algo-

rithms and optimization strategies are unavailable or ineffective in secure com-

puting because these methods do not satisfy the requirement of obliviousness.

Although some existing technologies, such as Oblivious RAM (ORAM) [14, 15],

could help with hiding the data access pattern, their performance is far from

acceptable, especially for small-to-medium size datasets.

In this work, we study data-oblivious building blocks and algorithms which

permit higher-level functionalities to be executed within secure multi-party com-

putation frameworks, ideally with asymptotic complexities of data-oblivious

constructions being as close as possible to those of their non-oblivious counter-

parts. The goals of this work are (1) to design efficient building blocks which

could enhance the performance of secure computation applications that rely on

them, and (2) to develop new building blocks which would improve the avail-

ability of secure computation in practice.

In Chapter 4, we start with the problem of accessing a private array at a

private index. As the location of array access or the access pattern may leak
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sensitive information about the private inputs, obliviousness in array access is

a significant property in secure computation. We develop new constructions

for access to an array at a private location that significantly outperform conven-

tional implementations of this operations in the setting with honest majority

based on secret sharing.

In Chapter 5, we study the problem of performing a binary search in a pri-

vate array with a private key. Although binary search is one of the most widely

used data searching algorithms, realizing it in the context of secure multiparty

computation which demands data-oblivious execution, however, is extremely

non-trivial. Because of the nature of binary search, its access pattern will in-

evitably disclose the comparison results, which would leak information about

the private target value and even the private array. We develop a suite of pro-

tocols with different properties and structure and further combine them into

hybrid solutions to improve performance and asymptotic complexity.

In Chapter 6, we further explore the applications of data-oblivious technolo-

gies and address the problem of accurate floating-point summation. Calculating

the exact summation of multiple floating-point numbers is a challenging prob-

lem, even without considering security and obliviousness. We propose the first

private floating-point summation protocol in secure computation, which not

only guarantees the accuracy but also has a constant number of communication

rounds.

We finally conclude the dissertation in Chapter 7.



Chapter 2
Background

Secure multi-party computation refers to the ability of several participants to

evaluate a function of their choice on private data without disclosing unin-

tended information about the private data to the computation participants. Such

techniques aim to provide the functionality of a trusted third party that con-

ducts computation on private inputs received from one or more parties and

returns results to the parties entitled to learn the output.

Throughout this work, we denote the parties that perform the computation

as computational parties and denote the parties that own the input or output

as input/output parties. It is noted that the input or output parties may be dis-

joint from the computational parties carrying out the computation (as in the case

with outsourcing). We assume that the computational parties P1, . . . , Pn and the

input/output parties are connected with secure authenticated channels. The in-

put will be shared among computational parties using secret sharing techniques

which will be introduced in detail in Section 2.1. Prior to the computation, the

input parties are responsible for generating the input shares. The computational

parties hold their respective shares of the private inputs before the computation
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starts. Upon computation completion, the output parties reconstruct the results

by using the shares received from all computational parties.

In the rest of this section, we introduce the fundamental cryptographic prim-

itives as well as notions and definitions we use throughout this work.

2.1 Secret Sharing

A secret sharing (SS) scheme allows one to produce shares of secret x such that

the secret can only be reconstructed by collecting more than t shares, where t

is the threshold. In the context of secure multi-party computation, we create n

shares from the secret x and each of the n participants receives xi. In the case

of (n, t) threshold secret sharing schemes, possession of shares stored at any t

or fewer parties reveals no information about x, while access to shares stored at

t + 1 or more parties allows for reconstruction of x. Of particular importance to

secure multi-party computation are linear secret sharing schemes, which have

the property that a linear combination of secret shared values can be performed

locally on the shares.

In what follows, we perform the computation over a field or a ring. Because

each secret-shared integer is a field or ring element, the size of the field F or the

ring R needs to be large enough to be able to represent values in the desired

range. For example, to be able to support computation on k-bit integers, we

must have that |F| ≥ 2k or |R| ≥ 2k. We use notation [x] to denote that the

integer x is secret shared among the participants using secret sharing. We will

discuss about the representation of a secret floating-point number in Chapter 6.

Shamir Secret Sharing (SSS). Shamir secret sharing [16] (SSS) is an (n, t)-linear

SS scheme with t < n, where computation takes places over a finite field F.
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A secret value s ∈ F is represented by a random polynomial of degree t with

the free coefficient set to s. Each share of s corresponds to the evaluation of

the polynomial on a unique non-zero point. Consequently, given t + 1 or more

shares, the parties can reconstruct the polynomial and learn s using Lagrange

interpolation. Possession of t or fewer shares, on the other hand, information-

theoretically reveals no information about s.

Replicated Secret Sharing (RSS). Replicated secret sharing (RSS) [17] is another

type of linear secret sharing that can be used to realize (n, t)-threshold secret

sharing (and can be defined for more general access structures Γ, but we limit

our use to threshold structures only). RSS can be defined for any n ≥ 2 and any

t < n and works over any finite ring. The RSS access structure uses the notion

of qualified sets, which are all subsets of the participants who are permitted to

reconstruct the secret (i.e., all subsets of t + 1 or more parties in our case), while

all other subsets are called unqualified. To secret-share private x using RSS, we

additively split it into shares xT such that x = ∑T∈T xT, where T consists of

all maximal unqualified sets (i.e., all sets of t parties in our case). Then each

party Pi stores shares xT for all T ∈ T subject to i ̸∈ T. In the general case of

(n, t)-threshold RSS, the total number of shares is (n
t) with (n−1

t ) shares stored

by each party, which can become large as n and t grow. However, for small n,

the number of shares is small (e.g., with both (3, 1) and (3, 2) RSS, there are the

total of 3 shares).

It is note that all protocols and building blocks proposed in this work could

be implemented by using these two secret sharing techniques unless indicated

otherwise. In the rest of this work, we implement our SSS protocols over a field

and implement RSS protocols over a ring.
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2.2 Threat Model

We consider a conventional secure multi-party setting with n computational

parties, out of which at most t can be corrupt. We work in the setting with

honest majority unless indicated otherwise, i.e., t < n/2 and focus on security

against semi-honest participants, in which the participants are trusted to follow

the prescribed computation, but might attempt to learn unauthorized informa-

tion based on the information they possess. We use a standard simulation-based

security definition that requires that the participants do not learn any informa-

tion beyond their intended output.

As customary with techniques based on secret sharing, the set of computa-

tional parties does not have to coincide with (and can be formed independently

from) the set of parties supplying inputs in the computation (input providers)

and the set of parties receiving output (output recipients). Then if a compu-

tational party learns no output, the computation should not reveal any infor-

mation to that party. Consequently, if we wish to design a functionality that

takes input in the secret-shared form and produces shares of the output, any

computational party should learn nothing from protocol execution.

We formally define the security in secure multi-party computation in the

presence of semi-honest adversaries.

Definition 1. Let parties P1, . . ., Pn engage in a protocol Π that computes function

f (in1, . . ., inn) = (out1, . . ., outn), where ini and outi denote the input and output of

party Pi, respectively. Let VIEWΠ(Pi) denote the view of participant Pi during the

execution of protocol Π. More precisely, Pi’s view is formed by its input and internal

random coin tosses ri, as well as messages m1, . . ., mk passed between the parties dur-

ing protocol execution: VIEWΠ(Pi) = (ini, ri, m1, . . ., mk). Let I = {Pi1 , Pi2 , . . ., Pit}
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denote a subset of the participants for t < n, VIEWΠ(I) denote the combined view

of participants in I during the execution of protocol Π (i.e., the union of the views

of the participants in I), and f I(in1, . . . , inn) denote the projection of f (in1, . . . , inn)

on the coordinates in I (i.e., f I(in1, . . . , inn) consists of the i1th, . . ., itth element that

f (in1, . . . , inn) outputs). We say that protocol Π is t-private in the presence of semi-

honest adversaries if for each coalition of size at most t there exists a probabilistic poly-

nomial time (PPT) simulator SI such that {SI(inI , f I(in1, . . . , inn)), f (in1, . . ., inn)} ≡

{VIEWΠ(I), (out1, . . . , outn)}, where inI =
⋃

Pi∈I{ini} and ≡ denotes computational

or statistical indistinguishability.

In addition to semi-honest model, malicious model allows the corrupt par-

ties to actively deviate from the prescribed computation. We will prove the

security of our protocols in the semi-honest model, while some of our proposed

protocols also could work in the latter.

2.3 Building Blocks

In this section, we introduce the common building blocks we use throughout

this dissertation.

Arithmetic operations. In a linear secret sharing scheme, such as SSS and RSS,

a linear combination of secret shared values can be performed locally on the

shares without communication. For example, to add or subtract secret shared

[x] and [y], each participant can locally compute the addition or subtraction on

shares it possesses. A multiplication protocol requires communication, while

the costs vary among different protocols. We use the multiplication protocols

from [18] for the SSS and from [19] for RSS, where both only communicate one

element within one round in three-party setting.
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Pseudorandomness generation. The operation RandBit is used to generate a

secret random bit shared among parties in one round. More recently, edaBit is

proposed in [20] for generating many random bits [ri] in the ring Z2 and all bits

are assembled in an integer [r] such that [r] = ∑k
i=1 2i[ri], where k represents the

number of random bits. edaBit uses noticeably lower communication per bit,

but the round complexity is logarithmic in k and t.

Comparisons. An equality protocol [c] ← EQ([a], [b]) takes two private inputs

[a] and [b] and returns a secret result. The result will be [1] iff a = b holds

and [0] otherwise. EQ is implemented by invoking an equal-to-zero protocol

EQZ([a]− [b]). EQZ returns [1] if the input secret value is zero and returns [0]

otherwise.

In addition, less-than-zero comparison LTZ([a]) is also widely used. It checks

wether its input secret value is less than zero. In SSS, we use truncation to im-

plement LTZ. An truncation protocol [a′] ← Trunc([a], ℓ, k) [21] takes an ℓ-bit

secret value [a] and truncates the k least significant bits, where [a′] = [a]/2k.

Regarding LTZ, we truncate ℓ− 1 bits from the ℓ-bit input so that only the most

significant bit (the sign bit) remains. In RSS, LTZ can be implemented using a

most-significant-bit protocol MSB [19] that extracts the most significant bit (the

sign bit) of a secret value.

Share conversions. Share conversions is also one of the most widely used build-

ing blocks in secure computation. BitDec([x], ℓ, k) performs bit decomposition

of a ℓ-bit integer [x] and output its k least significant bits in the form of secret

shares. In addition, B2A([r]1, k) converts a binary share [r]1 into its correspond-

ing arithmetic share [r]k, where we use [x]j to represent that the share is a j-bit

ring or field element.
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2.4 Oblivious RAM

An Oblivious RAM (ORAM) is a (probabilistic) RAM machine that its memory

access pattern reveals nothing about the program as well as the data on which it

is computed. More precisely, the access patterns from executions on two inputs

with an equal number of memory accesses should be the same or indistinguish-

able [22]. With the ability to conceal access patterns, Oblivious RAM is often

used as a general-purpose solution for constructing oblivious algorithms. Al-

though we will not directly work on designing ORAM protocols, we introduce

this technique here because it could be an alternative of our solutions. ORAM

was introduced by Goldreich and Ostrovsky [23, 14, 15] to address the prob-

lem of software protection. In the original formulation, a client outsources its

private memory to a remote server without revealing any information includ-

ing access patterns to the server. Great progress has been made in recent years

for optimizing the performance of ORAM. A popular type of ORAM is tree-

based [24, 25, 26, 27], with constructions capable of achieving communicating

O(log m) blocks of sufficient size per access with constant client storage [25]. As

the ORAM designed for the traditional client-server setting cannot be applied

to the secure computation environment, we will focus on the ORAM works for

secure computation.

In the context of ORAM for secure computation, SCORAM [28] was among

the early constructions in the two-party setting. More recently, Floram [29] built

on function secret sharing in the two-party setting and improved performance

of prior schemes. In the multi-party setting, Keller and Scholl [30] designed

and implemented ORAM constructions on top of SPDZ [31], security of which

holds in the malicious model with no honest majority with n ≥ 2 parties. [32]
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is a scheme that works only for three parties with custom techniques based on

a variant of [24]. Most recently, Jarecki and Wei [33] re-designed Circuit ORAM

(3PC ORAM) for the three-party setting by using customized asymptotically

bandwidth-optimal and constant-round protocols.



Chapter 3
Related Work

3.1 Private Array Access

Conventional implementations of performing an array access at a private loca-

tion via a linear scan can be comparison-based or multiplexer-based as we fur-

ther discuss in Chapter 4. Optimizations to the simple solutions are available in

both two-party setting based on garbled circuits (which does not directly apply

to the content of this work) and in the multi-party setting. The closest to our

work is the construction due to Laud [34] for array read, which is applicable to

both Shamir SS and Sharemind framework. The goal of that work was to mini-

mize the online work (which depends on the private inputs), while our goal is

to minimize the overall work. As a result, the proposed solution from [34] has

large round complexity. It also offers optimizations, the most effective of which

is applicable only to the Sharemind framework. We draw a more detailed com-

parison to the construction from [34] and our solutions in Chapter 4.

Laud [35] proposed efficient protocols for reading and writing elements of

an array at private locations in parallel. The solution is based on sorting and for
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ℓ parallel read requests to an array of size m has complexity O((m + ℓ) log(m +

ℓ)). Because the solution is non-trivial and was implemented in the Share-

mind framework, we are unable to empirically compare its runtime to our con-

structions designed for Shamir secret sharing. We, however, note that based

on the best known oblivious sorting algorithms, this construction will require

O((m + ℓ) log(m + ℓ)) comparisons each of cost O(k) for k-bit integers. Based

on our detailed analysis of its possible implementation in our setting, we expect

that it might outperform our proposed constructions only when both m and ℓ

are large. That is, when the number of parallel invocations ℓ is small or when

the array size m is not large (even with a very large number of parallel invo-

cations), we expect our constructions to outperform the solution from [35]. We

provide additional comments in Chapter 4.

ORAM can also be used to realize array read or write at a private location,

where a client outsources its private memory to a remote server without reveal-

ing any information including access patterns to the server. Floram [29] is one

of the best performing ORAM constructions among two- and three-party im-

plementations. We will compare performance of our constructions Floram in

Chapter 4.

3.2 Private Binary Search

All prior work that securely performs binary search in the context of secure

multi-party computation we are aware of [25, 29, 36, 26, 37, 28] focuses on lever-

aging ORAM operations to hide search patterns, typically invoking a logarith-

mic number of ORAM accesses per binary search. With the ability to conceal ac-

cess patterns, ORAM is often used as a general-purpose solution for construct-
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ing oblivious algorithms.

Floram [29] reported the best binary search performance among [36, 26, 37,

38], and thus we empirically compare performance of our constructions to that

of Floram. Bunn et al.’s ORAM [39] has similar properties to Floram; i.e., it is

based on a distributed point function [40], has the same round, communication,

and local work complexities as Floram, but uses three parties instead of two.

While its performance can be competitive to other ORAM schemes, it comes

without an implementation and it is not possible for us to do meaningful com-

parisons of our solutions to that ORAM, especially because the underlying tech-

niques differ (e.g., it uses oblivious transfer). We can only say that our constant

round binary search construction is expected to outperform binary search based

on Bunn et al.’s ORAM for small datasets. Its (linear per access) local work will

also be the bottleneck when m is large and our optimization from Chapter 5

reduces it from O(m log m) to O(m) per search, which would match O(
√

m)

communication and O(m) local work of our best construction. In addition, 3PC

ORAM was reported to have a lower bandwidth than Floram when the dataset

size is < 216 and thus is also competitive. Earlier, Gentry et al. [27] proposed an

ORAM optimization for binary search for their tree-based construction, which

enables binary search to have the asymptotic cost of a single (recursive) ORAM

access. This optimization is also applicable to 3PC ORAM and therefore we

apply the optimization to 3PC ORAM and include the optimized scheme in

the discussion as well. The above constructions were developed for the semi-

honest adversarial model, and the only ORAM secure against malicious adver-

saries we are aware of is by Keller and Yanai [41] which can be based on Circuit

ORAM [42] or Path ORAM [25]. Although other recent ORAM constructions

exist [43, 44, 45, 46, 47], they are designed for client-server environments and
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are not applicable to secure computation.

In addition to the above generic solutions, there have been efforts to im-

prove efficiency of oblivious computation by designing oblivious data struc-

tures. Toft [48] proposed an oblivious secure priority queue with an amortized

cost of O(log2 n) per insertion and removal operation. Wang et al. [38] pre-

sented oblivious data structures that include priority-queues and stacks build-

ing upon techniques of [25] and [27]. Keller and Scholl [30] proposed oblivi-

ous data structures using two ORAM schemes [24, 25] and basic secure multi-

party operations from [49]. The work realized oblivious arrays, dictionaries,

and priority-queues in the multi-party setting using secret sharing. Shi [50]

and Jafargholi et al. [51] proposed oblivious priority queues that achieve op-

timal O(log m) complexity. However, most of these data structures cannot be

directly used for binary search operations in the context of secure multi-party

computation. Among these oblivious data structures, the closest to our work

is the oblivious dictionary construction for secure computation from [30]. It is

capable of performing record search in a binary-search-like manner with com-

munication complexity of O(m), while the best of our protocols has sublinear

communication complexity.

Lastly, a recent article by Rao et al. [52] claims to achieve private binary

search based on secret sharing. However, the protocol in [52] is not data-oblivious,

simply invokes O(log m) comparisons the way a regular binary search would,

and has to disclose the locations used in the comparisons. Furthermore, there

are other significant discrepancies in that work. For example, the protocol’s

complexity is not analyzed in the text, but is said to be O(m log m) communica-

tion in O(1) rounds in the abstract, which disagrees with the protocol itself.
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3.3 Private and Accurate Floating-Point Summation

Neal [53] describes algorithms that use a number representation, named by su-

peraccumulator, to exactly sum n floating point numbers, which will be convert

to a faithfully-rounded floating-point number. Unfortunately, while Neal’s su-

peraccumulator representation reduces carry-bit propagation, it does not elimi-

nate it, as is needed for secure computations with few rounds. A similar idea has

been used in ExBLAS [54], an open source library for exact floating point com-

putations. Shewchuck [55] describes an alternative representation for exactly

representing intermediate results of floating-point arithmetic, but the method

also does not eliminate carry-bit propagation in summations; hence, it also does

not lead to efficient secure protocols. In addition to these methods, there are a

number of other adaptive methods for exactly summing n floating point num-

bers using various other data structures for representing intermediate results,

which do not consider the security or privacy of the data. Further, these meth-

ods, which include ExBLAS [54] and algorithms in [56, 57, 58, 59, 60, 61, 62, 63,

64, 65] are not amenable to conversion to secure protocols with constant rounds.

Whereas the integer arithmetic in secure multi-party computation has been

extensively investigated, the study of floating-point arithmetics has gradually

attracted the attention in the last decade. [66] extended secure computation

from integer arithmetic to fixed-point arithmetic for the first time and applied it

to linear programming [67, 68]. Franz and Katzenbeisser [69] proposed a solu-

tion, based on homomorphic encryption and garbled circuits, for floating-point

arithmetics in the two-party setting with no implementation or perfomance re-

sults. Aliasgari et al. [70] designed a set of protocols for basic floating-point

operations based on Shamir secret sharing and developed several advanced
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operations such as logarithm, square root and exponentiation of floating-point

numbers. Their solution was improved and extended for other settings and

applications [71, 72] later. Dimitrov et al. [73] proposed two sets of proto-

cols based on new representations, but failed to follow IEEE 754 standard for

efficiency reasons. In addition to the above works on improving efficiency

of unary/binary floating-point operations, Catrina [74, 75] proposed and im-

proved several multi-operand operations such as sum and dot-product. Be-

cause their solutions are still based on traditional floating-point addition, the

round-off errors will be introduced inevitably in each addition operation.



Chapter 4
Private Array Access

In this chapter, we study performance improvements to private array access

in secure multi-party computation based on secret sharing. We present two

optimized protocols for accessing an element of an array at a private index. The

former of our constructions are based on Shamir secret sharing and could work

with any number of parties. The latter uses 2-out-of-2 additive secret sharing

in the three-party setting with honest majority, but offers superior performance

compared to general constructions. To be compatible with computation based

on Shamir secret sharing, we also provide conversion procedures to convert

between the two representations. We implement the presented constructions in

the setting with three computational parties and show that they offer attractive

performance in both LAN and WAN settings.

We first define the problem before decomposing our constructions. Assume

that we are given an array of m (private or public) elements a0, . . ., am−1 and

would like to retrieve the element aj at a private index j. We will abstract the

array access functionality as a standalone building blocks. The input private

array and private index as well as the output will be in form of secret sharing.
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Protocol 1 [b]← OriginalArrayRead(⟨[a0], . . . , [am−1]⟩, [j])
1: for i = 0, . . . , m− 1 in parallel do
2: [ci]← EQ([j], i);
3: end for
4: [b]← ∑m−1

i=0 [ci] · [ai];;
5: return [b];

4.1 General Construction

Conventional implementations of this functionality via linear scan include (i)

privately comparing j to every integer in the range [0, m− 1] to compute m bits

and computing the dot product of the resulting bits and the array elements and

(ii) bit-decomposing the index and using a multiplexer to retrieve the desired

element. The latter approach was implemented in the PICCO compiler [76]

using conventional Shamir secret sharing arithmetic, while the former was later

shown to be slightly faster for this setting [77]. Our starting point for improving

the general solution was the first traditional approach above where we privately

compare j to each position of the array and retrieve the element for which the

result of the comparison was true. If we let EQ denote the operation of privately

comparing two integers for equality with at least one of them being private,

this operation can be represented as shown in Protocol 1. This computation is

written to take an array of private elements as its input, but when the elements

are public, the computation proceeds similarly.

To optimize performance of this operation, our first observation stems from

the fact that j is compared to all index values between 0 and m − 1 and, as

a result, part of the computation might be redundant. To determine whether

this might be the case, let us look at the details of the secure equality operation

EQ. The most efficient constant-round equality protocol in our setting is due

to Catrina and de Hoogh [21], which we specify in Protocol 2. It proceeds by
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Protocol 2 [b]← EQZ([a], k)

1: ([r′], [r], [rk−1], . . ., [r0])← PRandM(k, k);
2: c← Open([a] + 2k[r′] + [r]);
3: (ck−1, . . ., c0)← Bits(c, k);
4: for i = 0, . . . , k− 1 in parallel do
5: [di]← ci + [ri]− 2ci[ri];
6: end for
7: [b]← 1− KOr([dk−1], . . ., [d0]);
8: return [b];

comparing a single private integer a to 0 and is denoted by EQZ. To compare

a to b, one would enter their difference a− b as the input to the protocol. The

algorithm also takes a second argument, which is the bitlength k of the first

operand a.

Here, the operation PRandM(k, α) assumes that we work with k-bit integers

and generates a (k + ρ)-bit random integer for a statistical security parameter

ρ, the α least significant bits of which are available in the bit-decomposed form.

The returned result is the shares of α random bits r0, . . . , rα−1, α-bit r = ∑α−1
i=0 2iri,

and (k + ρ− α)-bit integer r′. The Open function reveals the value of its private

argument. Bits(c, α) simply returns the α least significant bits of its public argu-

ment c. Lastly, KOr computes the k-ary OR of its k private input bits.

This operation hides the value of a by adding large random 2k · r′ + r to it

and opening the sum.1 Because the bits of r are available (as r0 through rk−1),

the remaining computation can efficiently compute the bits of a (in step 4) and

consequently test whether at least one of them is 1 (in step 5) using k-ary OR of

k bits. The cost of this operation is dominated by PRandM which contributes k

(parallel) interactive operations, while KOr costs 4 log(k) and Open costs 1 inter-

1Note that the original EQZ in [21] was designed for signed k-bit integers. Because of that, it
also specified to add 2k−1 to the value being opened, to move the input into the positive range.
In our application, we use only positive values and let the entire k-bit space be occupied by
them. For that reason, one should omit adding that constant.
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active operation, respectively. The overall number of rounds is 4.

When we compare private j to all possible indices i in the set, we invoke EQZ

on inputs j − i, the adjacent values of which differ by 1. This introduces sig-

nificant inefficiencies because expensive generation of random bits is invoked

for each i to protect related values with a known difference. This means that,

instead of generating independent random bits for each j − i via a new call

to PRandM, we could execute this function once, protect j using the random

values as in step 2 above, and open this protected value as c. Given the pro-

tected value c of j, we can then form protected values of j − i by computing

c− 0, c− 1, . . ., c− (m− 1) if we assume that i ranges from 0 to m− 1.

This optimization reduces the cost of array read from m(log m+ 4 log log m+

1) + 1 interactive operations in 5 rounds to 4m log log m + log m + 2 in 5 rounds.

Alternatively, we could use a simple tree-like implementation of KOr with log m−

1 interactive operations in log log m rounds, which makes the complexity of

ArrayRead be m(log m− 1) + log m + 1 in log log m + 2 rounds.

This, however, still appears redundant because the bits of v, and conse-

quently bits d provided as input into the k-ary OR in step 3(d), are often reused

from one loop iteration i to another. For example, we know that c and c− 1 are

going to differ in their least significant bits, but a number of most significant bits

might be the same. Also, because the bitlength of j is log m, we know that most

of (or all) possible combinations of log m bits will be used in KOr across all i. In

other words, for any given v, its ith bit will be either the ith bit of c or its comple-

ment, and most of all possible 2log m combinations of bits will be used across all

is to form vs. To combat this inefficiency, we design a new efficient mechanism

for computing OR of all possible combinations of bits and then incorporate it in

the private lookup protocol.
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Protocol 3 ⟨[b0], . . ., [b2k−1]⟩ ← AllOr([dk−1], . . ., [d0])

1: if k = 1 then
2: return ⟨[d0], 1− [d0]⟩;
3: end if
4: ℓ← ⌊k/2⌋;
5: [u0], . . ., [u2ℓ−1]← AllOr([dℓ−1], . . ., [d0]);
6: [v0], . . ., [v2k−m−1]← AllOr([dk−1], . . ., [dℓ]);
7: for i = 0, . . . , 2k−ℓ − 1 and j = 0 to 2ℓ − 1 in parallel do
8: [b2ℓi+j]← [vi] + [uj]− [vi] · [uj];
9: end for

10: return ⟨[b0], . . ., [b2k − 1]⟩;

Our algorithm for computing ORs of bits uses a divide-and-conquer ap-

proach, where we split the original size into two halves, recurse on each half,

and then assemble the result. It is denoted as AllOr and given in Protocol 3. On

input k bits di, it computes 2k k-ary ORs of the form
∨k−1

i=0 ci, where ci is either di

or its complement ¬di.

To integrate this solution into our array read protocol, we apply AllOr to

the bits ris computed in step 1 of the last variant of ArrayRead and, as before,

reveal the value of j protected by r; let the log m least significant bits of the

protected value be denoted by c′. The intuition is now that the computed k-

ary ORs correspond to all possible k-ary ORs over all k-bit integers “shuffled”

based on the value of r and the only OR that evaluates to 0 will be at position

r. This means that if we would like to know whether, e.g., j = 0, we need to

test whether c′ = r or, equivalently, whether the c′th position in the array of

k-ary ORs corresponds to 0. Similarly, for testing whether j = i, we test whether

c′ = r + i (or, equivalently, whether r = c′ − i) and retrieve the (c′ − i)th value

in the returned array. Lastly, because we need a single OR evaluate to 1 with

the remaining values being 0, we complement the result of the AllOr operation.

(Note that the original implementation of EQZ from [21] computes c⊕ r instead
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Protocol 4 [b]← ArrayRead(⟨[a0], . . ., [am−1]⟩, [j])
1: ([r′], [r], [rlog m−1], . . ., [r0])← PRandM(log m, log m);
2: ⟨[b0], . . ., [b2log m−1]⟩ ← AllOr([rlog m−1], . . ., [r0]);
3: for i = 0, . . . , 2log m − 1 in parallel do
4: [bi] = 1− [bi];
5: end for
6: c← Open([j] + 2log m[r′] + [r]);
7: c′ ← c mod 2log m;
8: [b]← ∑m−1

i=0 [bc′−i mod 2log m ] · [ai];
9: return [b];

of c− r prior to calling KOr using a more complex logic to show correctness of

the algorithm, but the same approach does not work in our case.) We obtain the

Protocol 4.

To demonstrate security, we note that all instructions are input-independent

and follow a similar structure to that of EQZ from [21]. All steps operate on

shares except step 4, in which the value of c is revealed. The value of c corre-

sponds to private j protected by a random value at least ρ bits longer than j. This

means that the probability that any information is revealed about j is negligible

in the security parameter ρ and is therefore acceptable. This implies that we are

able to simulate the adversarial view without access to the inputs, as is formally

shown in the Section 4.3.

4.2 Custom Three-Party Construction

In this section, we provide a second construction which is designed to work

only with n = 3 parties using custom computation, but offers superior per-

formance compared to the general construction. Our second construction uses

2-out-of-2 additive secret sharing, which means that if we would like to use it

together with a standard SS framework such as Shamir SS, we need to provide
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procedures for converting between the two representations. This is what we do

at the end of this section as well.

In what follows, we use notation JxK to denote that the value of x ∈ F is

secret shared using 2-out-of-2 additive secret sharing. We note that this solution

works over any finite ring, which has performance benefits such as using native

hardware implementations of arithmetic in Z2k for some k. For the purposes

of this work, we let computation to be over a finite field to be compatible with

other constructions we propose.

Because in this representation the shares are held by two parties out of three,

for concreteness of the presentation, we let the notation include the parties hold-

ing the shares. Thus, we use JxKp1 p2 to indicate that the value is split between

parties p1, p2 ∈ [1, 3] with p1 ̸= p2. For example, we might use JxK12. Then

notation JxKp1 and JxKp2 denotes the individual shares when x is secret shared

as JxKp1 p2 .

In our construction, the data set is originally additively shared between par-

ties 1 and 2 (i.e., we have Ja0K12, . . . , Jam−1K12). The private index j can be secret-

shared using any linear SS scheme and for simplicity we assume it is shared

using Shamir SS as [j]. The intuition behind our solution is that the data set is

rotated by a private number of positions and the value of j gets adjusted by that

value. Then the parties who do not have information about the entire amount

of rotation learn the modified value of j and read the element at that position.

To implement this idea, we need to be careful to ensure that reading the element

is performed on the shares to prevent any single party from having access to the

read element. And at the same time we must enforce that the parties with clear

text access to the modified j do not know by which value j was modified from

its original value.
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To realize this intuition, we instruct parties 1 and 2 to rotate their shares

of the data set by random amount r1 ∈ Zm known only to the two of them.

Next, party 1 re-shares its shares of the data set between parties 2 and 3, which

makes the rotated data set to be shared between these two parties. Now parties

2 and 3 again rotate the shared data set by random amount r2 known only to

the two of them, after which party 2 re-shares its data set shares among parties

1 and 3. At this point, the data set has been rotated by r1 + r2 and is shared

between parties 1 and 3, neither of whom knows the value of r1 + r2. Thus, we

open h = (j + r1 + r2) mod m to parties 1 and 3 who consequently retrieve the

element at position h in their data sets and return their share as the output.

In our solution, we propose that the parties generate r1 and r2 non-interactively

using a shared seed to a pseudo-random generator. That is, parties 1 and 2 share

key k12, while parties 2 and 3 share key k23. Because generation of r1 and r2 is

a one-time cost independent of the data set size, any other suitable mechanism

for agreeing on these values will work as well (e.g., if one wants to maintain

information-theoretic security of the protocol). The computation then proceeds

as described in Protocol 5.

This computation is dominated by communicating 4m elements in two rounds,

i.e., similar to that of executing m multiplications in parallel. There might also

be communication for computing h or h mod m depending on the underlying

SS scheme. In particular, if h is secret-shared using additive SS in Zm, no addi-

tional communication is needed. That is, with additive SS, we would need to

modify only one of the shares to perform addition of r1 or r2, and the opened

value will be in Zm, as desired, because the arithmetic is in Zm. With a different

type of SS such as Shamir SS, the parties need to update h and re-share its value

across all parties with fresh randomness. Similarly, when computation is not
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Protocol 5 [b]← 3PartyArrayRead(⟨[a0], . . ., [am−1]⟩, [j])
1: Parties 1 and 2 agree on random r1 ∈ Zm and locally rotate their shares

as ⟨Jar1Kp, . . ., Jam−1Kp, Ja0Kp, . . ., Jar1−1Kp⟩ ← ⟨Ja0Kp, . . ., Jam−1Kp⟩, where p ∈
[1, 2], and also let [h]← [j] + r1.

2: Party 1 randomly generates si ∈ F for i ∈ [0, m− 1] and sends ⟨s0, . . ., sm−1⟩
to party 2, who consequently sets Ja′iK2 = JaiK2 + si for i ∈ [0, m− 1].

3: Party 1 sets Ja′iK3 = JaiK1 − si for i ∈ [0, m− 1] and sends ⟨Ja′0K3, . . ., Ja′m−1K3⟩
to party 3.

4: Parties 2 and 3 agree on random r2 ∈ Zm and locally rotate their shares as
⟨Ja′r2

Kp, . . ., Ja′m−1Kp, Ja′0Kp, . . ., Ja′r2−1Kp⟩ ← ⟨Ja′0Kp, . . ., Ja′m−1Kp⟩ and let [h] ←
[h] + r2.

5: Party 2 randomly generates s′i ∈ F for i ∈ [0, m− 1] and sends ⟨s′0, . . ., s′m−1⟩
to party 3, who consequently sets Ja′′i K3 = Ja′iK3 + s′i for i ∈ [0, m− 1].

6: Party 2 sets Ja′′i K1 = Ja′iK2− s′i for i ∈ [0, m− 1] and sends ⟨Ja′′0 K1, . . ., Ja′′m−1K1⟩
to party 1.

7: The value of h mod m is opened to parties 1 and 3 who set JbKp = Ja′′h Kp for
p ∈ [1, 3].

8: return JbK13.

in Zm, computing h mod m is needed prior to opening the value. For example,

with SSS, one might invoke efficient Mod protocol from [21] (integer division

with public divisor). This is a one-time operation of cost at most O(log m) and

does not have a significant impact on the performance of the overall protocol.

To show security in the three-party setting with a single corrupt party, we

argue that the data set remains information-theoretically protected from any

participant. In particular, it is always secret-shared among two parties. Further-

more, the value of j is also information-theoretically protected from the parties

if r1 and r2 are chosen randomly (and otherwise is computationally protected).

Thus, it can be shown that the simulated view with no access to real data is in-

distinguishable from a real run of the protocol. We provide a formal proof in

the Section 4.3.

Lastly, to permit this construction to be used in conjunction with SSS tech-

niques, we next provide conversion procedures to and from 2-out-of-2 additive
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Protocol 6 JaK12 ← S2A([a])

1: [r]← PRSS();
2: [d]← [a]− [r];
3: Open r to party 1 who sets JaK1 = r;
4: Open d to party 2 who sets JaK2 = d;
5: return JaK12;

Protocol 7 [a]← A2S(JaK12)

1: Party 1 creates Shamir secret shares of JaK1 and distributes them among the
parties;

2: Party 2 creates Shamir secret shares of JaK2 and distributes them among the
parties;

3: [a] = [JaK1] + [JaK2];
4: return [a];

secret sharing and SSS over the same field F. The cost of converting a field ele-

ment to or from additive SS is that of communicating two field elements. This

means that for a read operation, the cost of converting the inputs and outputs

of ArrayRead is communicating about 2m elements. The cost of the conversion,

however, can be amortized among multiple operations if these operations are

repeatedly called on the same data set without other intermediate operations.

We start from the SSS to additive SS conversion, which proceeds as shown

in Protocol 6. If we assume that PRSS can be realized non-interactively as pre-

viously described, reconstructing r in step 3 and d in step 4 involves communi-

cating one field element each. That is, party 2 or 3 sends its share of r to party 1

in step 3, from which party 1 recovers r. Thus, the cost is communicating 2 field

elements in 1 round.

The conversion from additive SS to SSS is shown in Protocol 7. Steps 1

and 2 can be accomplished by communicating a single field element each in the

computational setting similar to the approach taken in [18] (otherwise, the cost

is 2 field elements in the information-theoretic setting). That is, party 1 shares
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a secret key with another party for generating that party’s share as a pseudo-

random value. The remaining shares are computed to be consistent with the

pseudo-random share and the value of JaK1, which requires communication of

a single share. Thus, the protocol’s cost is communicating 2 field elements in 1

round.

4.3 Security Proof

In this section, we demonstrate the security of the protocols proposed in this

chapter based on Definition 1.

Theorem 1. The ArrayRead protocols of section 4.1 are t-private for any t < n/2

assuming security of sub-protocols PRandM and multiplication.

Proof. As in definition 1, let I denote the set of corrupt parties for any t < n/2.

We build a simulator SI , which simulates the view of the parties in I in the ideal

model without access to private data. Note that in the case of ArrayRead oper-

ations, each corrupt party contributes no private input and learns no private

output. Thus, the simulator needs to construct their view without access to any

private data. Our simulator SI proceeds as follows:

• In step 1 of the protocol, SI invokes the simulator for PRandM, which sim-

ulates the view of the corrupt parties.

• During the computation of AllOr, SI invokes the simulator for each multi-

plication of secret-shared values called by that protocol.

• During step 4, SI broadcasts shares of c on behalf of honest parties such

that all shares reconstruct to random c of the desired length. In particular,

SI can wait for the corrupt parties to transmit their shares and fix a desired
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c (which corresponds to a share evaluated at point 0). These t + 1 values

define a unique degree-t polynomial, which SI reconstructs through poly-

nomial interpolation and consequently computes and broadcasts shares

on behalf of the honest parties.

Note that SI is not required to wait for the corrupt parties to transmit their

shares. Instead, SI can use its access to the corrupt parties’ inputs in the

protocol, including randomness that they use throughout the computa-

tion. Based on that information and the messages that each corrupt party

receives prior to step 4, SI can correctly compute the share that each party

in I is to broadcast in step 4. From that point, it creates shares of c on behalf

of the remaining parties as specified above.

• In step 6 of the protocol, SI invokes the simulator for the multiplication

operations (or the simulator for the dot product if available as a separate

primitive).

Now we need to compare the view that SI produces with the view of the corrupt

parties in the real protocol execution. Notice that most steps invoke simulators

for the respective building blocks which we assume secure. This means that

the views produced by those simulators are indistinguishable from the parties’

views in the real protocol execution. The only value that SI produces on its own

is c. Because SI samples the value of c from the same distribution as the protocol

does, the only difference between the real and simulated values can come from

the fact that adding j to the random value prior to its opening in the real protocol

execution may result in overflow and thus be distinguishable. The probability

of this happening, however, is negligible in the statistical security parameter ρ

and is beyond the adversarial control. Therefore, the real and simulated views

are statistically indistinguishable, which completes the proof.
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Theorem 2. Custom three-party ArrayRead of section 4.2 are 1-private.

Proof. We prove that our custom three-party array read protocols are secure in

the presence of a single corrupt party based on definition 1. We consider cor-

ruption of party 1, 2, and 3 in turn.

Party 1 is corrupt. First, let party 1 be corrupt, and we build the correspond-

ing simulator S1. As before, the protocol has no private inputs or outputs for

any party and therefore the simulator is not given any private values. Our S1

proceeds as follows:

• If updating [h] in steps 1 and 4 of the protocol or computation of [h mod m]

in step 7 involves interaction, S1 invokes simulators for the corresponding

computation.

• In step 2, S1 receives shares s0, . . . , sm−1 from party 1 on behalf of party 2.

• In step 6, S1 generates random shares Ja′′0 K1, . . ., Ja′′m−1K1 and sends them to

party 1 on behalf of party 2.

• In step 7, S1 participates in opening shares of h mod m on behalf of party

3. To do so, S1’s behavior depends on the choice of the secret sharing

used. For additive sharing over Zm, S1 simply generates random shares

in Zm and sends them to party 1. For Shamir SS over F, S1 computes the

remaining shares for its choice of random h ∈ Zm taking into account its

knowledge of party 1’s share. The mechanism is the same as what SI used

in the proof of Theorem 1.

To analyze party 1’s view, we see that party 1 has access to 1 out of 2 shares

for each element ai at step 1 and later receives a new share of each ai after

its re-sharing in step 6. Party 1 also has access to r1 and obtains the value of

h mod m = (j + r1 + r2) mod m in step 7. In the simulated view, party 1 re-
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ceives random shares in step 6 and a random h ∈ Zm in step 7. Now notice that

the shares of ais that party 1 receives in step 6 are distributed uniformly in F

and are therefore distributed identically to the values that the party receives in

the simulated view. Also, because the values that (r2 + j) mod m takes is dis-

tributed as a random (or pseudo-random) element of Zm in the real execution,

h = (r1 + r2 + j) mod m in the real execution is indistinguishable from random

h ∈ Zm in the simulated execution.

Party 2 is corrupt. We next construct simulator S2 for the case of corrupt party

2. In this case, the simulator is simple: besides accepting messages from party 2

in steps 5 and 6, S2 only needs to simulate the message party 1 sends to party 2

in step 2. To do so, S2 randomly generates shares s0, . . ., sm−1 and sends them to

party 2. Also, if computation of h and h mod m in steps 1, 4, and 7 is interactive,

S2 would need to invoke the corresponding simulators.

From the above, it is clear that the simulated view is identical to the real

view, i.e., values s0, . . ., sm−1 are distributed identically in both views. Party 2

also has access to r1 and r2, which are independent of private data.

Party 3 is corrupt. Lastly, we consider party 3 to be corrupt and construct sim-

ulator S3 which works as follows:

• As before, if the computation of h and h mod n is interactive, S3 invokes

the corresponding simulators.

• S3 generates and sends random shares Ja′0K3, . . ., Ja′m−1K3 to party 3 in step

3.

• S3 generates and sends random shares s′0, . . ., s′m−1 to party 3 in step 5.

• In step 7, S3 participates in opening a random value h ∈ Zm in the same

way it was accomplished by S1.
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To analyze the real and simulated views, we first note that the shares s′i commu-

nicated to party 3 are chosen and distributed identically in both views. Further-

more, while S3 used random values for Ja′iK3s, but in the real protocol execution

these shares were computed differently, the real execution shares were protected

by uniformly random values not accessible to party 3 and thus both have uni-

formly random distributions. Lastly, party3 learns random h ∈ Zm in the simu-

lated view, while in the real execution the opened value is (j + r1 + r2) mod m

with r2 known by party 3, the views are still indistinguishable. This is because

r1 is a random or pseudo-random element of Zm and (r1 + j) mod m has the

same distribution is that of r1.

We conclude that our custom three-party construction is secure in the pres-

ence of a single semi-honest party.

4.4 Performance Evaluation

We have implemented the proposed array read and multiplication operations

in C using single invocation as well as batched execution. Because the custom

3-party array read is asymmetric, our batched execution of that protocol used

3 threads, each taking on the role of a different party and with the workload

divided evenly across the threads. We used the GNU Multiple Precision Arith-

metic Library (GMP) [78] for field arithmetic and executed SSS constructions

within the PICCO compiler framework [76]. We also execute original array read

with private index and multiplication operations as previously implemented in

PICCO. All of our protocols are evaluated in the three-party setting with a single

corrupt party. For comparison, we also include runtimes of two-party Floram

CPRG [29] using their implementation from [79]. This is one of the best perform-
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Figure 4.1: Performances of array read with private index on a LAN (left) and
WAN (right).

ing ORAM constructions among two- and three-party implementations and its

performance tells us at which array sizes ORAM techniques outperform linear

scan. Note that ORAM use might involve additional overhead beyond what we

report, e.g., for initializing ORAM or converting between different data repre-

sentations.

We provide experiments in the LAN and WAN configurations. Our LAN

experiments were carried out on identical machines with a 2.1GHz processor

connected via 1Gbps Ethernet with one-way latency of 0.15ms. Our WAN ex-

periments used local machines and one remote machine with a 2.4GHz pro-

cessor. One-way latency between the remote and local machines was 23ms.

We note that although the machine configurations were slightly different, we

do not expect this to introduce inconsistencies in the experiments. In particu-

lar, computation time is dictated by the slower machines which do not change

across our experiments and the introduced slowdown is attributed to the longer

round-trip times and lower bandwidth in WAN experiments. All experiments

except Floram used a single core and all experiments (except Floram) were exe-

cuted over a 64-bit finite field and averaged over 100 executions.
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Original array read New array read (sec. 4.2) New 3-party array read (sec. 4.1)
1 10 102 103 1 10 102 103 1 10 102 103

24 0.0022 0.0058 0.025 0.24 0.00087 0.0021 0.0095 0.096 0.00022 0.00039 0.00084 0.0069
27 0.0085 0.028 0.26 2.33 0.0018 0.0071 0.044 0.46 0.00043 0.00075 0.0057 0.048
210 0.029 0.28 2.9 27.2 0.0049 0.028 0.29 2.98 0.0016 0.0039 0.036 0.37
213 0.27 2.77 28.8 276 0.022 0.22 2.2 22.5 0.0092 0.027 0.28 3.21
216 2.67 27.8 267 2,689 0.174 1.75 17.6 180 0.061 0.23 2.41 26.1

Table 4.1: Performance of array read with private index for varying array sizes
and in batches of varying size (from 1 to 103) on a LAN in seconds. General
constructions used (3, 1) setting.

Performance of array read is shown in Figures 4.1 in both LAN and WAN set-

tings. We see that the custom three-party construction significantly outperforms

other options and further improvements are possible with parallel execution

(which we discuss later in this section). We also see that linear scan construc-

tions outperform ORAM-based solutions for arrays of size up to 216 in the LAN

setting and up to 221 in the WAN setting. The figure also shows the difference in

the performance of our general array read protocol using the original multipli-

cation protocol as implemented in PICCO (with 6 field elements communicated

per multiplication) and the new multiplication protocol from [18](with 3 field

elements per multiplication).

We further note that a flatter curve in Figure 4.1 indicates that round com-

plexity or another portion of the computation sub-linear in the array size (Flo-

ram or linear scans for arrays of small sizes in the WAN setting) is the bottle-

neck. A steeper curve indicates that work linear in the array size (e.g., O(m)

communication in the case of linear scans) is the bottleneck.

We also provide measurement results for parallel execution of array read in

Table 4.1. We compare the original PICCO multiplexer-based implementation

with (i) our new general array read with new multiplication from [18] and (ii)
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our custom 3-party array read from section 4.2. Substantial runtime reduction

over single execution is observed for arrays of relatively small size and improve-

ment is present for all sizes in the case of the custom 3-party array read. The

largest difference between the original and our general solution is by a factor of

16 with array size of 216 and batch size of 10 and the largest difference between

the original and our custom 3-party solution is by a factor of over 120 for the

same configuration.

We also attempted to compare performance of our array read protocols with

that of the parallel array access protocols from [35], which is designed to do

many simultaneous read or write operations in a batch. Because the protocols

were implemented in the Sharemind setting using different underlying arith-

metic and building blocks, a direct comparison is not possible. Furthermore,

the results were plotted in the log-scale and therefore extracted precise num-

bers is difficult and we can only offer approximate insights. The experiments in

[35] were run on a cluster of three 12-core 3GHz computers on a 1Gbps LAN.

Our conclusion was that our solutions significantly outperform that from [35]

when either the array size is rather small or when the number of parallel invo-

cations is low (or both). For example, performing 5 parallel reads from an array

of size 5 costs > 10ms in [35], which is 5 and 25 times slower than executing 10

reads from an array of size 24 in our general and 3-party solutions, respectively

(recall that Sharemind-based implementation in [35] also works only with three

parties). Performing 100 and 1 simultaneous reads from an array of size of 100

takes around 100ms and 50ms, respectively, which is 2 and respectively > 25

times slower than the same number of reads from an array of 27 in our general

protocol, and > 17 and 115 times slower than our 3-party protocol. Executing a

single read is always faster in our solution for all available data points by a sig-
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nificant amount (1–3 orders of magnitude). Where the construction of [35] can

offer advantage over our solutions is when both the number of parallel reads

and the array size are large. The largest advantage we can observe for 1000 si-

multaneous reads from an array of size 216, where our general construction is

slower than the results from [35] by about a factor of 18 while our three-party

construction is only slower by about 2.5 times.



Chapter 5
Private Binary Search

We are interested in the computation associated with a binary search when we

search a private sorted dataset using a private key. In more detail, we are given

a data set consisting of m private items a0, . . . , am−1, possibly consisting of mul-

tiple fields, one of which is the key field. The items are sorted by their keys.

On input private search value b, we want to retrieve the element ai whose key

is equal to the searched key b or the smallest one that bigger than b. We also

consider update operations where instead of retrieving an element, we update

the chosen item.

In this chapter, we initiate the study of binary search protocols in secure

multi-party computation, where on input a private sorted dataset and a pri-

vate search key, one retrieves or updates the closest element that matches the

search. We first explore the existing methods and possible improvements for

performing an private binary search. Next, we develop a suite of protocols with

different properties and structure and further combine them to into hybrid so-

lutions to improve performance and asymptotic complexity. Our fastest binary

search protocol uses O(
√

m) communication for a dataset of size m. It is noted
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that the protocols proposed in this chapter also apply in the malicious setting.

We will discuss it in the Section 5.5.

Our performance evaluation demonstrates that our solutions outperform ex-

isting ORAM constructions for dataset sizes up to a billion, even after optimiza-

tions to improve performance of ORAM schemes specifically in the context of

binary search. We hope that this work will inspire others to work on this topic

and make further progress in binary search protocols and in particular design-

ing sublinear-cost constructions.

5.1 Initial Construction

5.1.1 Linear-Comparison based Construction

Recall that we are given a set [a0], . . . , [am−1] sorted in the increasing order by

their keys (we assume no duplicate key values) and would like to search for

value [b]. In a linear-scan-type solution, we compare b to each ai.key by execut-

ing a protocol for [b] ≤ [ai.key], which results in an array of m bits. We then

search for the position j in the array where the bits switch from 0s to 1s and

return the corresponding item aj.

A possible comparison-based binary search CompBS is given as Protocol 8,

with linear times of less or equal comparisons LE being called on k-bit argu-

ments. In this protocol, after performing the comparisons on line 2, we com-

pute di as ci ∧ ¬ci−1. Note that dj = 1 indicates that b > aj−1.key and b ≤ aj.key

and thus aj is the desired element that we want to retrieve. Because there is

only one index j such that dj = 1, we retrieve the corresponding element aj

using computation z =
∨m−1

i=0 (di ∧ ai) = ∑m−1
i=0 ai · di on line 9.
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Protocol 8 [z]← CompBS(⟨[a0], . . . , [am−1]⟩, [b])
1: for i = 0, . . . , m− 1 in parallel do
2: [ci]← LE([b], [ai.key]);
3: end for
4: [d0] = [c0];
5: for i = 1, . . . , m− 2 in parallel do
6: [di]← [ci] · (1− [ci−1]);
7: end for
8: [dm−1] = 1− [cm−2];
9: [z]← ∑m−1

i=0 [ai] · [di]
10: return [z];

CompBS is written to return a single element of the set even if the searched

value is outside of the key range for all ais. In particular, if b ≤ a0.key, a0 is

returned; if ai−1.key < b ≤ ai.key for some i, ai is returned; and if b > am−1.key,

am−1 is returned (this means that am−1 is returned if b is greater than the key of

am−2). However, any desired variant of the algorithm can be easily supported.

Because round complexity is crucial to performance of secure protocols based

on secret sharing, our protocol is written to run as many interactive operations

in parallel as possible. The overall cost is dominated by m LE comparisons.

Detailed costs of this and other protocols are provided in Table 5.1 assuming

classical building blocks. In particular, the dot product costs 1 interactive oper-

ation with communication independent of the input size (e.g., implemented as a

generalization of multiplication from [80]), and LE comparisons are instantiated

as in [21, 81] on k-bit inputs ai.key and b, which cost 4k− 2 interactive operations

in 4 rounds, one of which can be precomputed.1 Security analysis of this and

other protocols is provided in section 5.4.

1Note that there are newer comparison protocols such as those that use edaBits for random
bit generation [20] of noticeably lower communication, but higher round complexity. As will
be seen later, our final solution uses a relatively small number of comparison operations and a
lower-round version of the comparison operation is preferred.
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Protocol 9 [z]← OramBS(ORAM([a0], . . . , [am−1]), [b])

1: [c]← LE([b], [a⌊m/2⌋.key]);
2: [d] = ⌊m/2⌋;
3: [p]← [c] · ([a⌊m/2⌋]− [am−1]) + [am−1];
4: for i = 0, . . . , log(m)− 1 do
5: [d] = [d] + (1− 2[c]) · ⌊m/2i+2⌋;
6: [a]← ORAMR([d]);
7: [c]← LE([b], [a.key]);
8: [p]← [c] · ([a]− [p]) + [p];
9: end for

10: return [z] = [p];

5.1.2 ORAM-based Search

We next discuss binary search that uses ORAM. Unless noted otherwise, we let

the array size be m = 2k − 1 for some integer k, i.e., the set can be represented

as a perfect binary tree. Also, we use notation log(·) to denote ⌈log2(·)⌉.

The algorithm for performing an ORAM-based binary search follows the

same structure as that of a conventional binary search with the difference that

the array access to a known index is replaced with ORAM access to a secret

index. Due to the access pattern hiding properties of ORAM, no information

about the decision (i.e., go left or right) will be leaked after each round of com-

parisons. Given an ORAM set up over sorted dataset [a0], . . . , [am−1], we denote

an ORAM read to a logical address [d] as ORAMR([d]). Note that for an entry

[ai], the index i represents its logical address rather than its physical address

in the ORAM. Furthermore, typical realizations of ORAM hide the type of op-

eration (read or write) on each access, but in our context the operation type

is public knowledge. Thus, we reveal the type of the operation in the ORAM

notation (in the case that knowledge of the operation can permit performance

optimizations).

The ORAM-based binary search, OramBS, is given as Protocol 9. It starts by
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comparing the search key to the element at position ⌊m/2⌋. Because the location

of the first access is fixed and known, we store [a⌊m/2⌋] outside of ORAM to

save a costly ORAM access. The value of d stores the (private) location which

should be read in each round, and after the total of j comparisons moves ⌊m/2j⌋

positions left or right depending on the last comparison result c.

In the last iteration, the search key b is compared to the element at position d

to determine whether to return ad or ad+1. While the element at position d was

just retrieved, retrieving ad+1 requires another ORAM access. We, however, ob-

serve that this extra ORAM read is not needed because ad+1 is guaranteed to be

retrieved in an earlier ORAM access. That is, because we know b > ad based on

the last comparison and b ≤ ad+1 based on correctness of the search, the element

at position d + 1 has to reside on the path from the root of the binary search tree

a⌊m/2⌋ to ad (except when d = m− 1 is the last position). This means that ad+1

has been previously read and all we need is to maintain a copy of it instead of

invoking another ORAM access. This is what OramBS does: variable p stores

the last element on the path from the root when the search proceeded left, i.e.,

the searched value was smaller than the element on the path (p is conditionally

updated on line 8 during each loop iteration). This guarantees that p will be

equal to ad+1 if the comparison in the last round results in incrementing d. In

the event that the path never goes left, p is initialized to am−1 on line 3.

The computation on lines 3 and 8 uses conditional statements of the type if

([c]) then [p] = [x] else [p] = [y] expressed as [p] = [c] ∧ [x] ∨ [¬c] ∧ [y] =

[c] · [x] + (1 − [c]) · [y]. We rewrite them as [p] = [c]([x] − [y]) + [y] to save

one multiplication each. Furthermore, because updating the value of p can be

done together with the next interactive operation, updating p contributes to the

round complexity only in the last round. Thus, the cost of the ORAM-based
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binary search is heavily dominated by log m ORAM accesses and log m LE com-

parisons. Security is discussed in Section 5.4.

Gentry et al. [27] suggested a formula for performing greater-than compar-

isons, x > y, on bit-decomposed k-bit values written as x = xk−1 . . . x0 and

y = yk−1 . . . y0. The computation is

g(xk−1 . . . x0, yk−1 . . . y0) = (xk−1− yk−1)xk−1 +(xk−1− yk−1 + 1)g(xk−2 . . . x0, yk−2 . . . y0).

(5.1)

Note that a straightforward implementation of this function would result in

k rounds of computation, which becomes prohibitive in an application like bi-

nary search where comparisons are executed sequentially. We notice that the

formula can be rewritten in a different form to support constant-round eval-

uation as g(x, y) = ∑k−1
i=0 xizi ∏k−1

j=i+1 wj, where zi = xi − yi and wi = zi + 1.

However, note that the original formula was written for computation in Z2 and

does not produce correct output when the computation is over a larger field.

Furthermore, if we rewrite the formula to be correct, it can no longer be repre-

sented in a compact form suitable for constant-round evaluation. This means

that we do not further consider it as competitive for our application compared

to other options (such as LE from [21] mentioned above, which also avoids bit

decomposition).

5.1.3 ORAM-based Optimizations

Gentry et al. [27] suggested an optimization to tree-based ORAM constructions

that allows ORAM-based binary search to have asymptotically the same cost as

that of a recursive tree-based ORAM access. Briefly, the optimization eliminates
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the need for a recursive position map to translate a logical address to its phys-

ical address in ORAM by adding pointers to each block that store the locations

of the next access in the ORAM. As a result, the total cost of a binary search is

equal to that of a single recursive ORAM access instead of a logarithmic number

of full ORAM accesses in general tree-based ORAM protocols. The optimized

solution was not empirically evaluated in [27] and therefore it is difficult to tell

how its performance might compare to other constructions in the literature. We,

however, note that this optimization is expected to apply to other tree-based

ORAM constructions which recursively outsource the position map. In partic-

ular, we determined that one of the latest efficient ORAMs, 3PC ORAM [33], is

tree-based and uses recursive position maps for each ORAM access. Thus, the

optimization is applicable to 3PC ORAM and we use the resulting optimized

3PC ORAM in the performance evaluation of our constructions.

We also note that it is possible to optimize performance of ORAM-based

binary search regardless of the internal structure of the underlying ORAM con-

struction. The general idea behind our optimization is that we partition the

original dataset a0, . . . , am−1 into log m layers of exponentially increasing size.

The ith layer will correspond to the elements which can be accessed during the

ith step of the binary search computation. That is, for m of the form 2k− 1, layer

0 contains only a single element a⌊m/2⌋, layer 1 contains two elements a⌊m/4⌋ and

a⌊3m/4⌋, etc., and layer log(m)− 1 contains (m+ 1)/2 elements at even positions

i. With this division, we can set up a separate ORAM for each layer, significantly

decreasing the work associated with the first accesses to ORAM and thus lead-

ing to practical improvements in the performance of binary search.

This optimization can lead to varying impacts on the asymptotic complexity

of the resulting binary search for different ORAM constructions. In particular,
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for constructions with polylogarithmic (in dataset size) complexities of ORAM

access, there might be no asymptotic gain in applying this optimization. For

example, if ORAM access costs O(log2 N) for an ORAM set up for N elements,

then making log m accesses of cost O(log2 m) and making log m accesses with

exponentially increasing sizes from O(1) to O(m) will both result in O(log3 m)

overall cost. On the other hand, ORAM constructions of larger asymptotic com-

plexities can see pronounced improvements in the asymptotic cost. For exam-

ple, we can look at Floram [29], which is one of the fastest two-party ORAM

constructions. Its asymptotic complexity per access is O(
√

N) communication

and O(N) local work. After applying our optimization, the total work associ-

ated with binary search decreases from O(m log m) using full-size ORAM for

each access to only O(m). We empirically evaluate the associated performance

gain and report it in section 5.5.

5.2 Hierarchical Construction

In this section we describe two new approaches to binary search, both of which

are hierarchical and use only a logarithmic number of comparisons. The high-

level structure is similar to the one used with ORAM-based search, but we re-

place the mechanism for protecting true accesses at each iteration. Because of

the cost of an ORAM access, it can be beneficial to replace it with alternative

computation, including solutions of higher asymptotic complexity linear in the

size of a layer. Our findings are in line with those in [18] that demonstrated that

linear-time constructions for accessing an element at a private location outper-

form ORAM performance in practice unless the size of the array becomes very

large.
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In this section, we offer two solutions: The first one is based on array rotation

to hide accessed locations and the second generates tags for all elements in a

layer to mark the true path. As with the previous, ORAM-based, construction,

we divide the array into layers and process one layer at a time. The conceptual

difference is how true accesses are protected for each layer.

5.2.1 Rotation-based Construction

Our first construction rotates all elements in a layer to hide the true access pat-

tern and is based on the following high-level idea: after comparing an element

to the search key, we privately determine whether we are jumping left or right

and compute the location d to read in the next layer. We next rotate the next

layer of size 2i by a random private amount r ∈ [0, 2i − 1] and disclose the pro-

tected location (d + r) mod 2i. Once we know the location, we can retrieve the

desired element and perform the next comparison without knowing what the

true index d was. Note that the rotation operation should be oblivious and per-

formed once per search for each layer to ensure that no information about the

accessed locations is revealed.

Our algorithm for rotation-based binary search, RotBS, is given as Proto-

col 10. As before, we are given an ordered set [a0], . . . , [am−1], where m is of the

form 2k − 1, and divide it into layers as in the optimized ORAM-based solu-

tion, i.e., with layer 0 consisting of only one element a⌊m/2⌋ and layer log(m)− 1

containing all elements at even indices.

Let [ℓ(i)] denote the elements stored at layer i and [ℓ
(i)
j ] denote the jth element

stored at layer i. We first randomly generate a secret random offset r(i) ∈ [0, 2i)

for each layer i > 0 and rotate all layers by those offsets in parallel to mini-
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Protocol 10 [z]← RotBS(⟨[a0], . . . , [am−1]⟩, [b])
1: let [ℓ(i)] = ⟨[a⌊m/2i+1⌋], [a⌊3m/2i+1⌋], . . . , [a⌊(2i+1−1)m/2i+1⌋]⟩ for i =

1, . . . , log(m)− 1;
2: for i = 1, . . . , log(m)− 1 in parallel do
3: ⟨[ℓ̂(i)], [r(i)]⟩ ← Rotate([ℓ(i)]);
4: end for
5: [c]← LE([b], [a⌊m/2⌋.key]);
6: [p]← [c] · ([a⌊m/2⌋]− [am−1]) + [am−1];
7: [d] = 0;
8: for i = 1, . . . , log(m)− 1 do
9: [d] = 2[d] + [c];

10: [w]← RandInt(κ + 1);
11: s′ = Open([d] + [r(i)] + 2i[w]);
12: s = s′ mod 2i;
13: [a] = [ℓ̂

(i)
s ];

14: [c]← LE([b], [a.key]);
15: [p]← [c] · ([a] + [p]) + [p];
16: end for
17: return [z] = [p];

ℓ(2)

ℓ(0)

ℓ(1) Rotate by [r(1)] = [1]

Rotate by [r(2)] = [3]

Figure 5.1: Illustration of the rotation-based construction.

mize round complexity (lines 2–4). This is illustrated in Figure 5.1. The rotation

algorithm Rotate, which also chooses the amount of rotation, is described after-

wards.

After rotating all layers, we proceed with comparisons and first retrieve the

(only) element from the top layer [ℓ(0)] and compare it with the target value b

(line 5). We continue by jumping left or right as before and privately computing

the index d to access next using local computation (line 9). Note that unlike

OramBS that computed this index d as an index in the entire array, this time we
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compute it as a position in a layer. This means that we start from two possible

positions in layer 1 and update d in the next layer as 2[d] + [c], where [c] is the

result of the current comparison.

To safely disclose the desired (protected) position in the rotated array, we

must open (d + r(i)) mod 2i instead of simply d + r(i). While the latter is a lo-

cation operation, computing the remainder modulo a power of 2 in this frame-

work is a rather expensive operation, with the same number of rounds as in

comparisons and a number of interactive operations linear in the size of the

modulus, i.e., in i (see Mod2m in [21]). Fortunately, we were able to get around

this cost and safely disclose (d+ r(i)) mod 2i using only local computation (prior

to the opening). In particular, we mask the (i + 1)st bit of the sum d + r(i), i.e.,

the carry bit, by a randomly chosen integer, which allows us to safely open the

result. To achieve this, we rely on statistical secrecy and choose an integer of

κ bits longer than the value we are protecting, where κ is a statistical security

parameter (line 10). The corresponding protocol is called RandInt and takes an

argument that specifies the bitlength of an integer to generate. It can be realized

non-interactively as described in [21]. The reader may notice that this approach

requires that the field can represent integers κ bits longer than the bitlength of

the key values. This, however, is already required by the LE protocol.

Because each layer has been rotated by a one-time random offset, we can

safely proceed by revealing the value of (d + r(i)) mod 2i in each layer, retriev-

ing that element in the rotated layer, and performing the comparison until we

reach the last layer. In addition to maintaining the current element used in the

comparison, we also keep track of the last retrieved element p which was ≤ the

target b, in the same way as in OramBS. It will be retrieved in the last round

if the returned element should not be the one used in the last comparison. As
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Protocol 11 (⟨[â0], . . . , [â2u−1]⟩, [r])← Rotate([a0], . . . , [a2u−1])

1: for i = 0, . . . , u− 1 in parallel do
2: [ri]← RandBit();
3: end for
4: let [a(0)j ] = [aj] for j ∈ [0, 2u − 1];
5: for i = 0, . . . , u− 1 do
6: for j = 0, . . . , 2u − 1 in parallel do
7: [a(i+1)

j ]← [a(i)j ]− ([a(i)j ]− [a(i)
(j−2i) mod 2u ]) · [ri];

8: end for
9: end for

10: [r] = ∑u−1
i=0 2i[ri];

11: let [âj] = [a(u)j ] for j ∈ [0, 2u − 1];
12: return (⟨[â0], . . . , [â2u−1]⟩, [r]);

before, the default value of p is am−1.

The cost of this protocol consists of log(m) comparisons and other cheaper

operations (i.e., multiplications and openings) and is dominated by the cost of

rotating all layers. Because some interactive operations could be combined and

executed in the same round, the overall round complexity is that of rotation (see

below) plus 4 log m. Security is shown in Section 5.4.

We next describe our Rotate protocol. It takes as input an array [a0], . . . , [a2u−1]

of size 2u, generates a random u-bit integer r, circularly rotates the elements of

the array by r positions, and outputs r together with the rotated array. Our so-

lution is conceptually simple and is given as Protocol 11. As the first step, we

generate u random bits using protocol RandBit (line 2) and use them to assemble

u-bit offset r (line 10). RandBit can be implemented using 1 interactive operation

[21]. Despite having a higher cost than RandInt(u), generating r from random

bits is important for two reasons: (i) we use the bits in the computation that fol-

lows and (ii) it allows us to generate a value in the exact range [0, 2u − 1], while

RandInt generates values slightly larger than of the specified bitlength.
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The next step is to rotate the array elements by the generated offset, which

we do in u iterations: in iteration i, the elements are shifted by 2i · ri positions

right, i.e., we conditionally perform the shift if the ith bit of r is set. After u

iterations, the array elements are shifted by the value of r, as desired. In more

detail, on line 7 we either keep the current element aj at position j or replace it

with the element at position aj−2i mod 2u based on the value of ri.

When u = log(m), Rotate requires m log m interactive operations in log(m)+

1 rounds. Recall that we use it in RotBS and execute rotations for all layers in

parallel in the beginning. However, rotation of only the smallest layer 1 needs to

finish prior to its use in the first loop iteration on line 13. This means layer rota-

tions do not increase the round complexity of RotBS. As before, we summarize

performance of our binary search constructions in Table 5.1.

On using ring Z2k . Before we conclude, we comment on executing our proto-

cols over ring Z2k instead of a finite field. All protocols described so far except

RotBS work unmodified when instantiated with building blocks over ring Z2k .

The difference is that RotBS protects a value, opens it, and uses i least significant

bits in further computation (i.e., lines 10–12 of RotBS). We note that this opera-

tion can become even easier over ring Z2k because all values are automatically

reduced modulo a power of 2. In particular, instead of prepending a large ran-

dom value to statistically hide the overflow from i bits, we can directly open the

sum [r(i)] + [d] and use the result as s, as long as all shares are reduced modulo

2i prior to the opening.



50

q(2)2 = q(1)1 ∧ c(1)

q(0) = 1

q(1)0 = q(0) ∧ c(0) q(1)1 = q(0) ∧ ¬c(0)

q(2)0 = q(1)0 ∧ c(1) q(2)1 = q(1)0 ∧ ¬c(1) q(2)3 = q(1)1 ∧ ¬c(1)

Figure 5.2: Illustration of the tag-based construction.

5.2.2 Tag-based Construction

Our second hierarchical solution utilizes a different mechanism for retrieving

an element at a private location from each layer. While a generic protocol for

reading an element at a private location could be used (e.g., multiplexor-based

or as described in [18]), in the context of binary search we notice that the location

read at layer i + 1 is highly correlated to the location previously read at layer i.

This observation allows us to generate binary tags for each layer using tags of

the layer before, where in each layer the tag of a single position is set to 1 and the

tags at all other positions are set to 0. This representation consequently permits

us to retrieve the element at the marked position using efficient dot product

computation.

Our tag-based construction, TagBS, is given as Protocol 12. As before, let

[ℓ(i)] denote the elements at layer i and let us use similar notation [q(i)] to denote

binary tags for layer i.

Initially, layer 0 has a single element and its tag is set to 1. The next layer

has two elements, one of which will be set to 1 based on the result of the first

comparison and the other will be set to 0. We continue computing tags for the

current layer from the tags of the previous layer as follows: if the “parent” tag

at position j is 0, both “children” tags at positions 2j and 2j + 1 will be 0. If the

“parent” tag is 1, one of the “children” tags will be 0 and one will be 1 based on

the result of the current comparison c. This process is illustrated in Figure 5.2.
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Protocol 12 [z]← TagBS(⟨[a0], . . . , [am−1]⟩, [b])
1: let [ℓ(i)] = ⟨[a⌊m/2i+1⌋−1], [a⌊3m/2i+1⌋−1], . . . , [a⌊(2i+1−1)m/2i+1⌋−1]⟩ for i =

1, . . . , log(m)− 1;
2: [q(0)] = ⟨1⟩;
3: [c]← LE([b], [a⌊m/2⌋−1.key]);
4: [p] = [c] · ([a⌊m/2⌋−1]− [am−1]) + [am−1];
5: for i = 1, . . . , log(m)− 1 do
6: for j = 0, . . . , 2i − 1 in parallel do
7: if j mod 2 = 0 then
8: [q(i)j ] = [q(i−1)

⌊j/2⌋ ] · [c];
9: else

10: [q(i)j ] = [q(i−1)
⌊j/2⌋ ] · (1− [c]);

11: end if
12: end for
13: [a] = ∑2i−1

j=0 [q(i)j ] · [ℓ(i)j ];
14: [c]← LE([b], [a.key]);
15: [p] = [c] · ([a]− [p]) + [p];
16: end for
17: return [z] = [p];

Then to retrieve the marked element at the current layer, we compute the dot

product of the elements and their tags in the current layer (line 13). Also, as

before, we maintain another element in variable p, which will be used at the

end if the result of the last comparison is false.

The overhead of this protocol is given in Table 5.1. Note that TagBS uses

fewer interactive operations compared to rotation-based RotBS, but the latter

has fewer rounds. Thus, we expect that TagBS will be a faster choice in typi-

cal circumstances, but RotBS can be beneficial for high-latency connections. In

addition, comparison-based CompBS has constant round complexity, but is ex-

pected to be slower for larger datasets due to its communication volume.
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Protocol Rounds Interactive operations
CompBS 5 (4k− 1)m− 1
OramBS (log m)(3 +ORAMRead) N/A

RotBS 4 log m 4k log(m) +
m log(m)− 1

TagBS 5 log m 4k log(m) + m− 2
LayHBS, ı̃ < log(m)− 1 5(log(m)− ı̃) + 4 (4k− 3)2ı̃ + m + 2

SubHBS, α · β = m MBS(α) + BS(β) + 1 MBS(α) + BS(β) + β

Table 5.1: Performance of binary search using field-based building blocks in the
semi-honest model with honest majority.

5.3 Hybrid Construction

In this section we discuss how combining multiple constructions in a single

solution can be used to further improve performance of binary search. Sec-

tion 5.3.1 discusses a solution in which portions of the binary search tree are

processed using different algorithms, and section 5.3.2 presents a solution where

previously developed constructions are applied only to a subset of the tree

nodes resulting in sublinear communication cost. In particular, while all of our

constructions including the one in section 5.3.1 require O(m) communication,

the solution of section 5.3.2 lowers communication to O(
√

m) by relying on an

efficient dot product protocol.

5.3.1 Composition of Layers

The binary search constructions described so far have their own advantages.

For example, comparison-based CompBS has constant round complexity, which

is the lowest across all protocols. Its communication cost, however, is rather

high and is linear in m · k. These properties make it a good choice for datasets of

small size, but performance is expected to deteriorate as the dataset size grows.

In contrast, tag-based TagBS has the lowest communication complexity as the
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dataset size m increases, but the largest round complexity. Because it invokes

only a logarithmic number of comparisons, it is expected to outperform other

constructions for larger values of m, but perform relatively worse for very small

values of m. In particular, the first three rounds of comparisons in that construc-

tion process only 7 elements, but use 15 rounds. This can be contrasted with the

total of 5 rounds in CompBS. Coupled with the fact that communication latency

is the major overhead when the dataset is small, TagBS is sub-optimal during

processing of the top layers.

The hybrid construction we propose here combines flat and hierarchical struc-

tures to take advantage of the benefits of both of them. More precisely, we re-

place the top layers of the hierarchy with a flat structure and design a transition

to feed the results of evaluating the flat structure to the next layer in the hi-

erarchy. Although the idea is straightforward, its realization requires careful

design because the constructions have different interfaces and rely on different

intermediate results. We illustrate a transition mechanism on the example of

combining CompBS and TagBS.

Recall that CompBS computes an array of bits [c0], . . . , [cm−1], where the bits

in the beginning of the array are 0s and switch to 1s at the location of the

searched element [b]. The array is consequently used to compute another bit

array [d0], . . . , [dm−1], in which all elements are 0 except for the location of the

switch, and the non-zero bit is used to retrieve the desired element of the array

[a0], . . . , [am−1]. TagBS, on the other hand, proceeds in a hierarchical manner

and prior to moving to layer i expects state [c], [p] that indicates the position of

the desired element in the already processed layers and computed tags [q(i−1)
j ]

for layer i− 1. Our transition computes the value of [p] and tags [q(i)j ] from the

bit arrays computed by CompBS and no explicit [c], as maintained by TagBS, is
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· · ·

[am/4][a3m/8][am/2] [am−1][a5m/8][a3m/4][a7m/8]
Protocol 1 computation

[am/2] [am−1]

Hierarchical structure

[a5m/8]

[a3m/4][am/4]

Protocol 5 computation

Transition

ℓ(0)

ℓ(1)

ℓ(2) [q7] = [c7]⊕ [c6][q0] = [c0]q(3):

[c0] [c1] [c7][c4] [c5] [c6][c] :

Hybrid structure

[a7m/8][a3m/8][am/8]

[c2] [c3]

[z]

· · · [qi] = [ci]⊕ [ci−1]

[am/8]

Figure 5.3: Illustration of the layer-based hybrid construction.

used in the process.

Suppose we would like to process the first ı̃ layers, or equivalently m̃ =

2ı̃ elements, using the flat structure. We execute the main portion of CompBS

on elements associated with layers 0 through ı̃ − 1, use transition to generate

[p] and the tags at layer ı̃, and continue with the remaining computation as in

TagBS. Figure 5.3 illustrates the process for ı̃ = 3. Note that the very last element

of the original dataset, am−1, is appended to the elements that CompBS processes

and is treated as an element of layer 0.

We determined that the relationship between c0, . . . , cm̃−1 computed by CompBS

and q(ı̃)0 , . . . , q(ı̃)m̃−1 needed in TagBS is rather simple. In particular, we have:

q(ı̃)j =

 c0 if j = 0

cj−1 ⊕ cj if 0 < j ≤ m̃− 1
(5.2)

Somewhat surprisingly, each q(ı̃)j is computed in the same way, while we expect

differences in the computation of even and odd elements because only half of

the values are associated with layer ı̃− 1. XOR of each [cj−1] and [cj] is easily

computed as [cj−1] + [cj]− 2[cj] · [cj−1]. This is equivalent to 2[dj]− [cj] + [cj−1],

where the [dj]s are as computed by CompBS. Because availability of [dj]s makes
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the computation of [q(ı̃)j ]s local, a notable implication for us is that combining

the two constructions reduces the overall cost below that of running CombBS

and TagBS on the respective portions of the data.

It is also necessary to compute the appropriate value of [p] during the tran-

sition. This computation comes first (i.e., to finish processing layer ı̃− 1), and

[p] is computed in the same way as [z] in CompBS, i.e., the first element which

was determined to be ≤ b so far will be used as the next larger element if the

remaining search returns that b is greater than all other elements.

In practice, the best choice of ı̃ depends on the setup. When the network

latency between the computational parties is small, the round complexity may

have less impact on performance and therefore a lower ı̃ is preferred. In con-

trast, if the network latency is high, a larger ı̃ reduces the round complexity

and therefore could be a better choice. We provide additional comments in sec-

tion 5.5. The exact cost is listed in Table 5.1 and this time is a function of ı̃.

5.3.2 Composition of Subtrees

All solutions presented so far, except OramBS, have communication linear in the

size of the dataset m. In this section we show how performance of previously

presented constructions can be further improved to O(
√

m) communication us-

ing only standard building blocks.

The high-level idea behind this solution is as follows. Recall that, on input m

elements, CompBS works by generating a bit array [d0], . . . , [dm−1] with a single

element set to 1 and that array is used to retrieve the searched element using a

dot product (which costs 1 interactive operation). Now suppose that instead of

retrieving a single element at the end of the computation, we use the computed
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sα−1

a0 am−1

s0

Figure 5.4: Illustration of the subtree-based hybrid construction. Shaded array
elements are used to form the top tree of size α. Subtrees s0 through sα−1 have
size β.

bits to retrieve a desired subset of the elements, or a subtree if the elements are

organized in a hierarchy. The high-level structure of this approach is illustrated

in Figure 5.4.

We organize the dataset in a hierarchy and run a modified binary search

(which produces a bit array) on the top portion of the tree of size α. We conse-

quently use dot products to obliviously localize the search to the relevant sub-

tree of size β = m/α, call binary search on that tree, and use its output as the

result of the search. In other words, the top-level search allows us to determine

in what portion of the dataset the searched element falls and the second low-

level search determines the exact position and returns the desired element.

The solution, SubHBS, is formalized as Protocol 13. We use a modified ver-

sion of a binary search protocol that produces a unity bit array, denoted as MBS.

The second call to binary search, on the other hand, uses the conventional in-

terface. We note that communication savings are possible because of the use of

dot product protocols, which on input of two vectors of arbitrary size require

only one interactive operation. This means that when we set α = β = O(
√

m),

communication complexity of this solution reduces from O(m) to O(
√

m). We

note that local computation remains O(m), but this component of interactive

protocols is much easier to speed up than communication, e.g., by employing
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Protocol 13 [z]← SubHBS(⟨[a0], . . . , [am−1]⟩, [b], α)

1: let β = m/α;
2: let [s(i)] = ⟨[ai·β], [ai·β+1], . . . , [ai·β+β−1]⟩ for i = 0, . . . , α− 1;

3: ⟨[d0], . . . , [dα−1]⟩ ← MBS(⟨[s(0)β−1], [s
(1)
β−1], . . . , [s(α−1)

β−1 ]⟩, [b]);
4: for i = 0, . . . , β− 1 in parallel do
5: [ui]← ∑α−1

j=0 [s
(j)
i ] · [dj];

6: end for
7: [z]← BS(⟨[u0], . . . , [uβ−1]⟩, [b]);
8: return [z];

more powerful hardware and/or using multi-threading.

It should be clear that the call to binary search BS on line 7 of SubHBS can be

instantiated with any binary search construction described so far. This includes

hybrid LayHBS and even SubHBS itself, which in that case would be called re-

cursively. Similarly, the first call to binary search on line 3 can be instantiated

with any binary search protocol modified to produce a bit array instead of a sin-

gle element. So far we only showed that CompBS can be naturally used for this

purpose, but below we also show how to modify TagBS. This would imply that

LayHBS could additionally be used for that purpose. Lastly, if we replace the

call to BS on line 7 of SubHBS with a call to MBS, SubHBS itself can be invoked

on line 3. Combined with the ability to choose parameter α (and consequently

β), these options provide a rather significant performance optimization space in

practice.

What remains is to discuss our solution for modifying TagBS to implement

the interface for MBS. Recall that TagBS generates tags [q(i)] for each layer i in

the hierarchy and maintains variable [p]. The tags have a useful structure, which

each tag being a bit and having only a single tag set to 1 per layer. However, to

generate a desired bit array [d0], . . . , [dm−1], we need to have a single bit set to 1

out of the entire dataset and not per layer. Instead of trying to combine different
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Protocol 14 ⟨[d0], . . . , [dm−1]⟩ ← TagMBS(⟨[a0], . . . , [am−1]⟩, [b])
1: let [ℓ(i)] = ⟨[a⌊m/2i+1⌋], [a⌊3m/2i+1⌋], . . . , [a⌊(2i+1−1)m/2i+1⌋]⟩ for i =

0, . . . , log(m)− 1;
2: [q(0)0 ] = 1;
3: for i = 0, . . . , log(m)− 1 do
4: [q(i)] = ⟨[q(i)0 ], . . . , [q(i)2i−1]⟩;
5: [a] = ∑2i−1

j=0 [q(i)j ] · [ℓ(i)j ];
6: [c]← LE([b], [a.key]);
7: for j = 0, . . . , 2i − 1 in parallel do
8: if j mod 2 = 0 then
9: [q(i+1)

j ] = [q(i)⌊j/2⌋] · [c];
10: else
11: [q(i+1)

j ] = [q(i)⌊j/2⌋] · (1− [c]);
12: end if
13: end for
14: end for
15: return ⟨[d0], . . . , [dm−1]⟩ = ⟨[q

(log m)
0 ], . . . , [q(log m)

m−1 ]⟩;

layers into a single array, out solution is to continue with the structure of TagBS

and generate one more layer [q(log m)], which this time will have a tag for each

element of the original dataset and only a single element will be set to 1. We

also remove the code for creating and maintaining the value of [p] because it

is no longer used in the protocol. The final solution TagMBS is formalized as

Protocol 14. As noted before, this variant will allow for a variety of solutions to

be used with SubHBS.

Performance of hierarchical SubHBS is shown in Table 5.1. Because the algo-

rithm makes calls to binary search algorithms on datasets of smaller sizes, we

use notation BS(x) and MBS(x) to denote the cost of binary search and modified

binary search, respectively, invoked on input of size x.
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5.4 Security Proof

In this section, we use the standard definition of security in the presence of

semi-honest participants. The definition requires that an adversary corrupting

at most t participants is unable to learn any information about private inputs.

This is modeled by showing that a simulator without access to the private in-

puts is able to simulate the adversarial view, which the adversary is not able to

distinguish from the actual view of a protocol execution.

Note that showing a protocol secure under this definition will also guarantee

that the computation is data-oblivious, i.e., does not depend on any private data

and can be simulated without access to private data.

As mentioned earlier, for concreteness, we instantiate our constructions us-

ing classical Shamir secret sharing and corresponding building blocks for op-

erations such as multiplication, comparisons, etc. This setting requires honest

majority, i.e., t < n/2. We next proceed with showing our protocols secure

according to definition 1.

Theorem 3. Let λ be a computational security parameter and κ be a statistical security

parameter. Assuming the existence of secure protocols for multiplication, dot product

and comparison LE, denoted by Πmult, Πdot, Πle, respectively, Protocol 8 is secure

according to Definition 1.

Proof. For this protocol, the parties hold no private inputs and obtain no output.

The implication is that it is required that no information about private ais and

b is revealed to corrupt parties I during the protocol execution. This input for-

mulation also means that, upon protocol initiation, the input shares available to

the corrupt parties I information-theoretically reveal no information about the

underlying input, i.e., they can be reconstructed to any possible values with the
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same probability.

We build our simulator SI as follows:

• In step 1, SI invokes the simulator for Πle m times and simulates the view

of the parties in I.

• In step 6, SI invokes the simulator for Πmult m− 2 times and simulates the

view of the parties in I.

• In step 9, SI invokes the simulator for Πdot of two m-element vectors and

simulates the view of the parties in I.

Next, we need to show that the real and simulated view are indistinguishable.

The simulated view consists of the input shares available to the corrupt parties

and the messages received during simulation of Πle, simulation of Πmult, and

simulation of Πdot. Because the input shares of t or fewer participants are dis-

tributed uniformly at random within the field, that component of the view has

identical distributions in the real and simulated views and are therefore indis-

tinguishable. Also, because protocols Πle, Πmult, and Πdot are secure (meaning

that their simulators are guaranteed to produce indistinguishable views), we get

that the remaining components of the view are also indistinguishable, resulting

in the overall indistinguishability of the simulation.

The type of indistinguishability that we obtain depends on the indistinguisha-

bility guarantees of protocols Πle, Πmult, and Πdot. That is, if at least one of them

provides computational guarantees, our simulation will also be computation-

ally secure. Similarly, if at least one of them uses statistical security, our simula-

tion will inherit that requirement as well. Note that many interactive protocols

(including Πle, Πmult, Πdot) assume secure pair-wise communication channels,

which are normally implemented using computationally secure techniques.

Note that because this protocol produces no private output to any of the
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corrupt parties, output correctness of the output in the simulated view does not

need to be shown. However, if this protocol is followed by another operation

that discloses a value to one of more corrupt participants (e.g., open operation),

it will always be possible for the simulator to generate the view that will lead to

the corrupt parties reconstructing the right output. This is due to the properties

of (n, t) secret sharing that will allow any combination of shares that t or fewer

participants holds to reconstruct to any possible value in the field.

Theorem 4. Let λ and κ be computational and statistical security parameters, respec-

tively. Assuming the existence of secure protocols for multiplication, comparison LE,

and ORAM read access ORAMR, denoted by Πmult, Πle, Πoramr, respectively, Proto-

col 9 is secure according to Definition 1.

Proof. As before, we prove security of Protocol 9 in the presence of semi-honest

participants according to Definition 1. Recall that the parties hold no private

inputs and obtain no output. Our simulator SI works as follows:

• In step 1, SI invokes the simulator for Πle and simulates the view of the

parties in I.

• In step 3, SI invokes the simulator for Πmult and simulates the view of the

parties in I.

• During evaluation of the loop, SI iteratively invokes simulators for Πoramr

(step 6), Πle (step 7), and Πmult (step 8) log m times to simulate the view of

the parties in I.

The simulated view now consists of the input shares available to the corrupt

parties and the messages received during the simulation of Πle, Πmult, and

Πoramr. As before, we simulate the input shares by distributing random field ele-

ments to the corrupt parties, which have the same distribution as during the real
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execution and are therefore indistinguishable. In addition, because of security

of protocols Πle, Πmult, and Πoramr, their simulators are guaranteed to produce

indistinguishable views. Thus, all components of the view are indistinguishable

and, as a result, the overall simulation is indistinguishable as well.

Theorem 5. Let λ and κ be computational and statistical security parameters, respec-

tively. Assuming the existence of secure protocols for multiplication and random bit

generation RandBit, denoted by Πmult and Πrandbit, respectively, Protocol 11 is secure

according to Definition 1.

Proof. As before, it is straightforward to prove security of Protocol 11 in the

presence of semi-honest participants based on Definition 1. Our simulator SI

needs to invoke the simulator for Πrandbit u times in step 2 and the simulator for

Πmult u times in batches of size 2u in step 7 to simulates the view of the parties

in I.

As before, indistinguishability follows from information-theoretic security

of the secret sharing scheme in the presence of at most t corrupt participants

and security of protocols Pimult and Πrandbit which must come with simulators

that produce indistinguishable views.

So far security of Protocols 8, 9, and 11 was straightforward to show because

they only combine secure building blocks. We next discuss Protocol 10, which

involves more interesting analysis because it opens values during the computa-

tion.

Theorem 6. Let λ and κ be computational and statistical security parameters, respec-

tively. Assuming the existence of secure protocols for multiplication, random integer

generation RandInt, comparison LE, and rotation Rotate, denoted by Πmult, Πrandint,

Πle, Πrotate, respectively, Protocol 10 is secure according to Definition 1.
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Proof. As before, we prove security of Protocol 10 in presence of a semi-honest

adversaries according to Definition 1, by building a simulator and shoring in-

distinguishability of the real and simulated views. Recall that the parties hold

no private inputs and obtain no output.

Our simulator SI can be built as follows:

1. In step 3, SI invokes the simulator for Πrotate on the layers of varying sizes

log m− 1 times and simulates the view of parties in I.

2. In step 5, SI invokes the simulator for Πle and simulates the view of parties

in I.

3. In step 6, SI invokes the simulator for Πmult to simulate the multiplication

view.

4. Simulation of the for loop on lines 8–16 proceeds as follows:

(a) Assuming non-interactive implementation of Πrandint, there is noth-

ing for SI to simulate for step 10.

(b) To simulate opening of s′ shares, SI generates a random integer s′ ∈

Z2κ+i+1 , uses its knowledge of the corrupt parties’ shares prior to the

opening2 to compute the remaining shares which would reconstruct

to the chosen s′, and communicates the computed shares to the par-

ties in I according to the specification of Πopen.

(c) Consequently, SI invokes the simulators for Πle and Πmult to simulate

the view of the parties in I for steps 14 and 15, respectively.

This portion is repeated and performed log(m)− 1 times to simulate the

2Maintaining shares of the corrupted parties for the variables used in the computation of s′

would require the simulator to remember and maintain additional information, but this can be
accomplished in our setting. In particular, this is because we know the corrupt parties’ inputs
and messages they receive, because the corrupt parties follow the computation, and because
we are working with a redundant secret sharing scheme that permits extraction of corrupt mi-
nority’s shares from the shares they distribute to the simulated parties during the execution of
interactive building blocks.
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view of the parties in I.

Next, we demonstrate that the real and simulated view are indistinguishable.

Besides the simulations of interactive building blocks such as Πmult, Πle, and

Πrotate, which are required to come with simulators that guarantee indistin-

guishability, this simulation includes an important component which makes it

different from prior proofs. In particular, in the simulated view the parties re-

ceive a random (κ + i + 1)-bit integer s′, while in the real view it was computed

according to the protocol specification. That is, in the protocol s′ is computed as

d + r(i) + 2iw, where r(i) is a secret one-time i-bit random value and w is a secret

one-time (κ + 1)-bit random value. The purpose of r(i) was to perfectly protect

d when disclosing d + r mod 2i and the purpose of w was to statistically protect

the carry bit after addition of i-bit d and r(i).

We next argue that the distribution of s′ in real execution is statically close

to the uniform distribution over (κ + i + 1)-bit integers (as used in the simu-

lation) and thus we can simulate the view of corrupt parties during protocol

execution by drawing a random element from that space and obtain statistical

indistinguishability. In more detail, because we protect the (i + 1)st carry bit of

d + r(i) with a (κ + 1)-bit random integer, information about the carry bit can

only be revealed with at most negligible probability in the security parameter κ.

The remaining i bits of d + r(i) and s′ are distributed uniformly at random over

the range [0, 2i − 1] and reveal no information information about d, i.e., perfect

secrecy is achieved.

Combining this argument with the fact that the simulators of the interactive

building blocks produce indistinguishable views, we obtain that the real and

simulated views are indistinguishable in the presence of at most t semi-honest

adversaries.
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Security of other protocols is not difficult to show using the same logic as

that in the proofs of Protocols 8, 9, and 11. Namely, because they only invoke

secure building blocks, a composition of secure building blocks will result in

security of the overall protocols and indistinguishable simulation can be built

by invoking simulators associated with the building blocks.

5.5 Performance Evaluation

We implemented several of our algorithms and carried out experiments on both

LAN and WAN. For LAN experiments, we used three machines with 2.1GHz

processors connected via 1Gbps Ethernet (934Mbps throughput) with a one-

way latency of 0.13ms. Our WAN experiments used local machines and one

remote machine with a 2.4GHz processor. The link between the remote and

local machines had throughput of 76–85Mbps and a one-way latency of 21ms.

While the machine configurations are slightly different, we examine the times to

ensure that the differences do not introduce inconsistencies in the experiments.

That is, the computation time is determined by the slower machines, and the in-

troduced slowdown on WAN is due to the higher latency and lower bandwidth

in the WAN experiments. All experiments used a single thread and the dataset

elements had a single field (the key) represented as a 32-bit integer.

5.5.1 Cost in Different Settings

Table 5.1 shows costs of our constructions when instantiated with Shamir secret

sharing in the semi-honest setting. If one would like to utilize a different under-

lying framework, for example, 3-party replicated secret sharing over ring Z2k ,
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Figure 5.5: Performance of ring-based binary search in the semi-honest model
on LAN (left) and WAN (right).

the costs of the building blocks can change which will have an impact on the

total cost. Using a different realization of LE would likely most significantly im-

pact CompBS, but we expect that relative performance of different construction

will remain similar.

If we realize the constructions in the malicious adversarial setting, many

frameworks do not support dot product of communication independent of the

input size. Note that all of CompBS, RotBS, TagBS, and the hybrid constructions

utilize dot product operations and thus their communication will be impacted.

The amount of impact varies based on the relationship of m to the original com-

munication cost. For example, this is a relatively small increase for CompBS,

close to doubling for TagBS, and significant increase for SubHBS. The order

of the protocols in terms of their communication volumes, however, does not

change.
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Figure 5.6: Communication costs (per party) of binary search in the semi-honest
model on LAN (left) and WAN (right).
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Figure 5.7: Performance of binary search in the malicious model with (left) and
without (right) honest majority on LAN.

5.5.2 Performance in the Semi-Honest Model

Our implementation in the semi-honest model is in the honest majority setting

(i.e., t < n/2). Because ring-based computation is faster than computation over

a field, we use replicated secret sharing over Z232 with three parties. Implemen-

tation of comparisons is adapted from field-based LT [21, 81] as described in

[82, 19].
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Figure 5.8: Performance of binary search in the malicious model with (left) and
without (right) honest majority on WAN.

We compare performance of our constructions to the state-of-the-art Flo-

ram [29] and 3PC ORAM [33] after optimizing them. In particular, we run Flo-

ram’s binary search implementation from [79] and also execute an optimized

version using the results of section 5.1.3. We also apply Gentry et al.’s optimiza-

tion [27] to 3PC ORAM which makes the cost of binary search asymptotically

equal to a single ORAM access and run it using the implementation from [83].

Note that 3PC ORAM uses custom techniques not compatible with standard se-

cure computation building blocks. For that reason we approximate performance

of optimized 3PC ORAM binary search using comparisons and multiplications

as implemented in this work. The exact times might be higher due to the need

to convert between different representations. Furthermore, all ORAM schemes

come with significant initialization costs not captured in our experiments.

The results of our experiments on both LAN and WAN are given in Fig-

ure 5.5. First note that optimized Floram binary search is on par with the orig-

inal Floram binary search for small datasets and the difference starts to show

when m becomes larger than 210. Also, the optimization applied to 3PC ORAM
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removes recursion and makes the construction faster.

Our CompBS outperforms all other protocols when the dataset size is small

because the round complexity is the bottleneck with small m. With larger m,

communication is dominant and CompBS is not competitive, as expected, but

maintains its advantage longer on WAN because of the latency. TagBS has lower

communication and shows a better runtime than optimized Floram for sizes up

to 222 on LAN and larger on WAN, but its linear communication becomes the

bottleneck for large sizes.

Hybrid LayHBS can improve performance of TagBS by only a constant. The

maximum improvement is achieved when ı̃ = 6 on LAN and ı̃ = 12 on WAN,

where the runtime gap between CompBS and TagBS is the largest. Neverthe-

less, the difference in performance of TagBS and LayHBS diminishes as the size

increases.

Our SubHBS shows significant advantage over all other protocols. It outper-

forms all other options for sizes is up to 227 on LAN and 211–230 on WAN due to

its low communication. As the size increases, its curve becomes steep indicating

that local computation is the bottleneck. In particular, the dot-product compu-

tation of O(m) local work consumes 94% (45%) of the total time with m = 225

on LAN (resp., WAN). This means that the performance could be significantly

improved for large sizes via multi-threading. We also would like to note that

while it appears that SubHBS’s curve is significantly steeper than that of (opti-

mized) Floram binary search, this will not be the case if we keep increasing m.

Both SubHBS and optimized Floram search require O(m) local computation, but

computation becomes the bottleneck for SubHBS at smaller sizes because of its

superior performance for medium values of m. This is consistent with findings

in [29] which show that Floram’s curve becomes steep close to 230 in a setting
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with 500Mbps bandwidth.

Recall that implementing SubHBS involves several optimization choices in-

cluding the algorithms for the sub-searches and the values for parameter α.

While using α = O(
√

m) gives us theoretically the lowest communication, the

network environment and the speed of sub-protocols also affect this decision.

For each experiment, we vary the value of α and select the best performing pro-

tocols for the sub-searches to determine the best configuration. Specifically, for

LAN, we used α = 26 and modified CompBS for the first sub-search for m from

210 to 214 and α = 27 and TagMBS for larger m; the second sub-search used the

fastest protocol for the corresponding β. On WAN, we set α ≈
√

m for m < 216

and use α = 28 for m between 216 to 219. For larger m, we let β = 213 or 214

and use SubHBS with α = 28 recursively for the second sub-search. TagBS and

TagMBS were not helpful in WAN experiments because CompBS is faster for

small to medium sizes and SubHBS that combines CompBS variants becomes a

better choice. We expect the best configurations to vary based on computation

and communication resources.

The above choices give us that on LAN each party sends 22.9KB when m =

215, 65KB when m = 220, and 2.12MB when m = 225 per SubHBS. On WAN,

communication becomes 107.5KB, 116.5KB, and 554KB for the same sizes. The

differences are because we opt for CompBS with fewer rounds on WAN and

also use α closer to
√

m when m is large. As is clear from the above, our protocol

configurations were optimized for runtime and do not always use minimally

achievable communication. Compared to ORAM solutions, SubHBS uses less

communication than Floram binary search, both asymptotically and in prac-

tice. For example, for m = 220, Floram search communicates 10MB per party.

Communication of optimized 3PCORAM (of polylogarithmic cost) is 543KB for
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m = 220, but predictably will get closer to that of SubHBS and outperform it

when the size grows to very large. Memory footprint of our constructions is

proportional to the computation size (i.e., linear in m for most protocols).

Figure 5.6 illustrates communication costs of our and ORAM-based binary

search protocols in the semi-honest setting. The communication costs of the

ORAM-based solutions and our CompBS and TagBS are the same on both LAN

and WAN, while communication of hybrid LayHBS and SubHBS vary since we

adjust the settings in different environments to achieve the best runtime re-

sults. CompBS has the steepest curve among all solutions as it has the worst

communication complexity, which is dominated by m instances of LE opera-

tions. TagBS uses only log m LE comparisons, but also invokes m multiplica-

tions, which make its curve relatively flat at small sizes and steep at larger sizes.

LayHBS generates significantly more communication on WAN than on LAN at

small sizes. This is because we used a larger ı̃ on WAN, which means that a

larger portion is processed by CompBS, inevitably increasing the communica-

tion cost. However, larger ı̃ reduces the total number of communication rounds

since CompBS has a constant round complexity, and round complexity is the bot-

tleneck at small sizes on WAN. Thus, a larger ı̃ can improve the overall runtime

of LayHBS on WAN.

The curves of our SubHBS on LAN and WAN are significantly different be-

cause different settings are used, especially when the dataset size is large. As

mentioned in Section 5.5.2, TagBS or LayHBS are of little use as sub-protocols

of SubHBS on WAN because CompBS is faster for small to medium sizes. As a

result, we mainly use CompBS in SubHBS on WAN, but TagBS and LayHBS on

LAN. This makes the communication costs of SubHBS on WAN larger than that

on LAN when the data set size is smaller than 222. For larger sizes, local com-
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putation becomes the dominating component of LAN experiments. The setting

we use, i.e., α = 7, is not the best choice for optimizing the communication cost,

but it results in faster runtime as we can recursively use SubHBS for the second

sub-search.

One can notice from Figure 5.6 that communication of SubHBS fluctuates as

the size changes. This is due to the changes in the settings and the choices of

sub-search protocols. More specifically, we used CompBS to do the second sub-

search on LAN at small sizes and switched to TagBS and SubHBS at m = 212 and

226, respectively, which also reduced communication. Similarly, we replaced

CompBS with a recursive invocation of SubHBS in the second and first sub-

search on WAN at m = 220 and 226 because CompBS’s performance degrades

at large sizes due to its high communication.

To summarize, our best protocols outperform alternative solutions for sizes

up to m = 227 on LAN and m = 230 on WAN. SubHBS is up to 49× faster than

binary search based on best performing ORAM (optimized Floram) on LAN

and up to 27× on WAN.

5.5.3 Performance in the Malicious Model

To demonstrate that our constructions can be used in the malicious setting, we

also evaluate our constructions in the malicious model on both LAN and WAN.

Because relying on dot product protocols of constant communication is impor-

tant for our constructions, we start with the techniques of Dalskov et al. [84]

which have this property. The solution uses replicated secret sharing with three

or four parties one of which is corrupt and we use the three party version. To

evaluate performance when dot products involve linear communication, we use
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SPDZ2k [85, 82]. It is in the dishonest majority setting and our experiments

use two parties, which often gives the best performance. Lastly, we also run

binary search experiments using maliciously secure ORAM [41], which is the

only ORAM in the malicious model we are aware of, and use its BMR+Circuit

ORAM variant with two parties. Because it is tree-based recursive ORAM, Gen-

try et al.’s optimization is applied in the experiments. All implementations are

from MP-SPDZ [86] and ORAM is available only for m ≥ 211.

Figure 5.7 and 5.8 show the results. The left plots with honest majority de-

pict the total time, just like Figure 5.5. The right plots with dishonest majority

show online and total runtime separately. The total runtime includes both on-

line and estimated offline times, where the offline cost is computed based on

the amount of precomputation and offline computation speed for our solutions

in MP-SPDZ and the same triple generation speed is used for our protocols and

Circuit ORAM. LayHBS is not shown in the right plot for clarity and has almost

the same performance as TagBS for larger sizes.

Overall, our constructions show similar trends to those in Figure 5.5. Be-

cause the dot product has linear communication in the dishonest majority set-

ting, both TagBS and SubHBS have linear communication, which narrows the

gap between them. Due to the high latency, the gap is larger on WAN because

SubHBS has a lower round complexity than TagBS. TagBS outperforms CompBS

for m > 28 on LAN and m > 213 on WAN, with the biggest gap at m = 26 on

LAN and m = 29 on WAN. Thus, we use ı̃ = 6 on LAN and ı̃ = 9 on WAN

for our LayHBS in both malicious settings. Also interesting to note that the total

time in the three-party honest majority setting is similar to the online time only

with dishonest majority (with the exception of SubHBS when m is large, which

is expected).
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Online time of our dishonest majority SubHBS is up to 18 times smaller than

that of Circuit ORAM on LAN and up to 2 times on WAN; Circuit ORAM be-

comes faster on LAN when m reaches 221 (resp., 220 on WAN). Circuit ORAM

shows its advantage earlier on WAN because of its low round complexity, which

is consistent with how it is reported in [41]. The total runtime of Circuit ORAM

is up to 140 and 240 times slower than that of SubHBS on LAN and WAN, re-

spectively, and performance of our construction and Circuit ORAM becomes

similar at 222. One may also observe that the total runtimes on WAN are an

order of magnitude slower than on LAN. This is because not only does the low

bandwidth affect the online computation, but it also slows down precomputa-

tion needed to generate multiplication triples.



Chapter 6
Private and Accurate Floating-Point

Summation

Floating-point numbers are the most widely used data type for approximating

real numbers, and floating-point numbers are used in a wide variety of applica-

tions [87, 88, 89]. A well-known issue with floating-point arithmetic is that it is

not exact. For example, summing two floating-point numbers can have a round-

off error and these roundoff errors can propagate and even become larger than a

computed result when performing a sequence of many floating-point additions.

Calculating exact summation of n private floating-point numbers is a more

challenging because of constraints of security and obliviousness requirements.

In this chapter, we explore the problem of performing private floating-point

summation in secure computation environment and develop an accurate and

secure summation solution based on secret sharing.

In more details, given private floating-point number {[x0], [x1], . . . , [xm−1]},

we want to calculate a faithful rounding, one of the immediate floating-point

neighbors, of their exact sum. In this work, we use a controversial way to rep-
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resent a private floating-point number that is shared among parties. Instead

of using a single integer, we represent a secret shared floating-point number x

using a tuple ⟨[b], [p], [v]⟩ of secret shared integers such that x = [b] · [v] · 2[p],

where [b] represents the sign bit, [p] represents the exponent, and [v] represents

the normalized mantissa.

6.1 Accurate Floating-Point Number Summation

In this section, we explore two potential solutions of calculating floating-point

number summations, i.e., the expand-and-sum solution and superaccumulator

solution. It is noted that the solutions discussed in this section are used to cor-

rectness verification and are not designed for the secure computation environ-

ment.

6.1.1 The Expand-and-Sum Solution

There is a simple solution for exactly summing m floating-point numbers, {x1

,x2, . . ., xm}, which we refer to as the expand-and-sum solution. This solution is

reasonable for low-precision floating-point representations.

Protocol 15 s← ExpandAndSum({x1, x2, . . . , xm})
1: for each xi do
2: yi ← ConvertToFixed(xi);
3: yi ← 2u+e · yi // convert to integer
4: end for
5: t← ∑m

i=1 yi; // exact integer addition
6: t← t/2u+e // convert to fixed-precision
7: s← ConvertToFloat(t);
8: return s;

That is, for each floating-point number, xi, we convert the representation of
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xi into a fixed-point number, yi, with as many bits as is possible based on the

type of floating-point being used for the xi’s. Then we sum these exactly us-

ing integer addition (viewing these numbers as integers with the decimal point

understood) and then convert the result back into a floating-point number. For

example, the yi’s would have the following number of bits based on the respec-

tive IEEE 754 formats:

• Half : a half-precision floating-point number in the IEEE 754 format has 1

sign bit, an 5-bit exponent, and a 10-bit mantissa. Thus, representing this

as a fixed-point number requires 1 + 25 + 10 = 43 bits.

• Single: a single-precision floating-point number in the IEEE 754 format has

1 sign bit, an 8-bit exponent, and a 23-bit mantissa. Thus, representing this

as a fixed-point number requires 1 + 28 + 23 = 280 bits.

• Double: a double-precision floating-point number in the IEEE 754 format

has 1 sign bit, an 11-bit exponent, and a 52-bit mantissa. Thus, represent-

ing this as a fixed-point number requires 1 + 211 + 52 = 2101 bits.

• Quad: a quad-precision floating-point number in the IEEE 754 format has

1 sign bit, a 15-bit exponent, and a 112-bit mantissa. Thus, representing

this as a fixed-point number requires 1 + 215 + 112 = 32881 bits.

Further, there are also even higher-precision floating-point representations,

which would require even more bits to represent as fixed-precision numbers;

see, e.g., [90, 78, 91, 92, 93]. Thus, implementing a summation method using

a fixed-precision representation could require many operations, such as in a

secret-sharing scheme, to be performed on very large numbers when applied
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to high-precision floating-point numbers. Of course, applications with high-

precision floating-point numbers are likely to be applications that require accu-

rate summations; hence, we desire solutions that can work efficiently for such

applications without requiring ways of summing very large integers. For ex-

ample, summing very large integers requires techniques for dealing with cas-

cading carry bits during the summations, and performing all these operations

securely is challenging for very large integers. Thus, since we desire a solution

that can be implemented using off-the-shelf primitives for privacy and confi-

dentiality, we consider this expand-and-sum approach for summing n floating-

point numbers as fixed-point precision numbers to be limited to low-precision

floating-point representations.

6.1.2 Superaccumulators

An alternative approach, which is better suited for use with off-the-shelf secure

summation systems when applied to high-precision floating-point formats, is to

use a a superaccumulator to represent floating-point summands, e.g., see [94, 54,

53]. This approach also uses integer arithmetic but with much smaller integers.

More importantly, it avoids cascading carry-bit propagation, which is inefficient

and vulnerable to timing attacks.

In a superaccumulator, rather than representing the bits of a floating-point

number as a single expanded (very-large) integer, we represent that integer as a

sum of small components, which we maintain separately. That is, we represent

the expanded integer, y, representing a floating-point number, x, so that y is
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represented as a vector of 2w-bit integers, (yh, yh−1, . . . , yl), where

y =
h

∑
j=l

2wjyj,

such that l and h are chosen to cover all possible exponents. In our case, we

choose w based on the system we plan to employ to achieve security and pri-

vacy. For example, if we have an off-the-shelf scheme that supports summations

of 32-bit integers, then we can choose w to be 32.

In addition, we say that s is regularized if −2w < yj < 2w, for all j = l, . . . , h.

In our scheme, we start with a regularized representation for each floating-point

number, xi, and after we perform groups of summations we regularize the par-

tial sums. As we show, this approach allows us to limit how carries propagate

after performing a group of sums, which allows us to achieve a constant number

of rounds of communication for the secure constructions.

Suppose we are given n floating-point numbers, {x1, x2, . . . , xm}, each repre-

sented as a regularized superaccumulator,

xi =
h

∑
j=l

2wjyi,j.

Further, suppose n ≤ 2w−2. We sum all the xi’s by first summing the corre-

sponding terms,

sj =
n

∑
i=1

yi,j.

Then, we split the binary representation of each sj into cj+1 and rj, so that

sj = cj+12w−1 + rj,
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where −2w−1 < rj < 2w−1. Then, we update each sj as follows:

sj ← rj + cj,

for j = l, . . . , h + 1. As we show, because of the way that we regularize su-

peraccumulators, the “carry” values, cj, will not propogate in a cascading way,

and the result of the above summation will be regularized. This allows us to

complete the sum in a single communication round.

Further, for practical values of w, the constraint that n ≤ 2w−2 is not restric-

tive. For example, if w = 32, this implies we can sum up to one billion floating-

point numbers in a single communication round. For the case that n > 2w−2, we

could easily split the input set into multiple batch with size smaller than 2w−2

and calculate the sum superaccumulator separately.

Next, as shown in Theorem 7, we prove that the result of summing multiple

regularize superaccumulators is accurate and will still be a regularize superac-

cumulator.

Theorem 7. If n ≤ 2w−2, then summing n regularized superaccumulators using the

above algorithm will produce a regularized result.

Proof. Let x1, x2, . . . , xm be the set of input superaccumulators to sum, where

n ≤ 2w−2, and

xi =
h

∑
j=l

2wjyi,j,

for i = 1, 2, . . . , m. Recall that we sum all the xi’s by summing the corresponding

terms,

sj =
m

∑
i=1

yi,j.

Since each xi is regularized, −2w < yi,j < 2w, for all i, j. Thus, −2wm < sj <
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2wm, for all j; hence, −22w−2 < sj < 22w−2, since m ≤ 2w−2. Recall that we split

the binary representation of each sj into cj+1 and rj, so that

sj = cj+12w−1 + rj,

where −2w−1 < rj < 2w−1. Thus,

sj = cj+12w−1 + rj < cj+12w−1 + 2w−1 = (cj+1 + 1)2w−1 < 22w−2

and

sj = cj+12w−1 + rj > cj+12w−1 − 2w−1 = (cj+1 − 1)2w−1 > −22w−2.

Therefore,

−2w−1 + 1 < cj+1 < 2w−1 − 1,

for each j. So, when we update each sj as sj ← rj + cj, then

sj = rj + cj < 2w−1 + 2w−1 − 1 = 2w − 1

and

sj = rj + cj > −2w−1 − 2w−1 + 1 = −2w + 1.

Therefore, the result is regularized.



82

6.2 Secure Constructions for Floating-Point Number

Summation

In this section, we propose our secure and accurate floating-point number sum-

mation protocol based on the superaccumulator structure proposed in Section 6.1.2.

We assume the input floating-point number [xi] are in the form of a tuple ⟨[bi],

[vi], [pi]⟩, where [bi] represents the 1-bit sign bit, [vi] represents the m-bit man-

tissa, and [pi] represents the e-bit exponent.

Our superaccumulator-based construction is based on the following high-

level idea: we first convert floating-point numbers into superaccumulators. Then,

we calculate the sum of all superaccumulators in a fan-in manner and produce

the result in a format of regularized superaccumulator. At the end, convert the

result superaccumulator back to floating-point number.

6.2.1 High-level Ideas and New Building Blocks

Recall that the propagation of roundoff errors is the reason that leads to highly

inaccurate results when summing multiple floating-point numbers. The straight-

forward idea is to convert floating-point numbers to fixed-point numbers and

then sum in that format, which could avoid doing roundoff during the summa-

tion. However, this only works for low-precision floating-point numbers, such

as half-precision floating-point numbers, which only need 43 bits to be repre-

sented as fixed-point numbers. A higher precision floating-point number would

require more bits for the fix-point format. It would significantly increase com-

putation efforts and inevitably introduce carry-propagation during the compu-

tation, as no native primitive data types support such a long bit length integer.
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Protocol 16 [s]← FLSumLarge(⟨[b0], [v0], [p0]⟩, . . . , ⟨[bm−1], [vm−1], [pm−1]⟩, e, u, w)

1: α = ⌈2e+u
w ⌉, β = ⌈u+1

w ⌉+ 1;
2: for i = 0, . . . , m− 1 in parallel do
3: ⟨[yi,α−1], . . . , [yi,0]⟩ ← FL2SA([bi], [vi], [pi], e, u, w, α, β);
4: end for
5: ⟨[yα−1], . . . , [y0]⟩ ← SuperSum(⟨[y0,α−1], . . . , [y0,0]⟩, . . . , ⟨[ym−1,α−1], . . . , [ym−1,0]⟩);

6: ⟨[b′0], [v′0], [p′0]⟩ ← SA2FL(⟨[yα−1], . . . , [y0]⟩);
7: return ⟨[b′0], [v′0], [p′0]⟩;

Protocol 17 ⟨[b0], . . . , [bu−1]⟩ ← B2U([a], u, k)

1: q = ⌈log u⌉;
2: [r], [rq−1]1, . . . , [r0]1 ← edaBit(q)
3: ⟨[b0]1, . . . , [b2q−1]1⟩ ←

AllOr([rq−1]1, . . . , [r0]1);
4: for i = 0, . . . , u− 1 in parallel do
5: [bi]1 = 1− [bi]1;
6: [bi] = B2A([bi]1, k);

7: end for
8: c← Open2q([a] + ∑

q−1
i=0 2i[ri]);

9: for i = 0, . . . , u− 1 in parallel do
10: [bi] = [b(c−i) mod 2q ];
11: end for
12: return ⟨[b0], . . . , [bu−1]⟩;

Thus, we propose the superaccumulator-based solution to achieve secure and

accurate floating-point number summation.

Our summation solution is based on the superaccumulator structure, which

requires a conversion for all input floating-point numbers. It is non-trivial to

design the conversion from the floating-point number into the format of su-

peraccumulator. We need to make sure that the conversion procedure is input

independent so that no information about the input data will be leaked. While

ensuring the obliviousness, we would like to improve the efficiency of the con-

version since the performance of this conversion is the bottleneck of the entire

computation. As we need to process each input floating-point number, the cost

of this stage depends linearly on the size of the input.

The high-level idea of the conversion from floating-point number into super-

accumulator is that we write the mantissa of a floating-point number into the
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appropriate blocks in the superaccumulator. Because the position of the man-

tissa in the superaccumulator depends on its exponent, the writing procedure

should be oblivious to prevent any information leakage about the updated po-

sition in the superaccumulator. For obliviously writing a value into a private

location in a superaccumulator, we generate a tag vector with the same size of

the superaccumulator, where the tag representing the target position will be [1]

to and others are [0]. We design the building block B2U) to convert a private

index into the corresponding tag vector.

Binary to unary representation ⟨[b0], . . . , [bu−1]⟩ ← B2U([a], u, k). This is a con-

version procedure from a binary to unary representation. B2U converts the pri-

vate argument integer [a] into an array of bits, where only the [a]-th bit is [1]

and all others are set to [0]. It is noted that our B2U is modified based on the

ArrayAccess protocol in [95], as shown in Protocol 17, where the PRandBit is re-

placed by edaBit. The main improvement is that the subsequent AllOr is now

working with binary shares instead of arithmetic shares, which would reduce

the corresponding communication cost.

During the computation, we may need to do conversion from binary shares

to arithmetic shares. We also design a new protocol for binary to arithmetic

conversion B2A that works in the three-party setting.

Binary to Arithmetic Conversion [r]k ← B2A([r]1, k). This building block con-

verts a binary share [r]1 in Z2 into its corresponding arithmetic share [r]k within

a given ring Z2k . This protocol is designed to work only with three-party set-

ting, but offers superior performance compared to the general construction. In

what follows, we use notion Gi to denote a pseudorandom generator, which is

initialized by a secret seed keyi. Because a replicated secret shared value [r] is

split into three shares, i.e, ⟨[r](1), [r](2), [r](3)⟩, we let the notation include the
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number of each share. Each party Pj holds {[r](i)|i ∈ [1, 3], i ̸= j}.

In our construction, the input of B2A is a secret shared bit in Z2 and an inte-

ger k that represents the bit length of the result arithmetic share in Zk. We use

the fact that r = [r](1) ⊕ [r](2) ⊕ [r](3), which is calculated via a custom proce-

dure in two rounds. In particular, we initialize three secret shared variables, i.e.,

[r1]k = ⟨[r](1)1 , 0, 0⟩, [r2]k = ⟨0, [r](2)1 , 0⟩, and [r3]k = ⟨0, 0, [r](3)1 ⟩. It is easy to see

that r = [r1]k ⊕ [r2]k ⊕ [r3]k, which could be calculated mainly with two rounds

of multiplication. This, however, appears redundant because two of the shares

of these variables are zero, which means that most of the parties’ the local com-

putation results will be zero and makes the subsequent re-sharing meaningless.

For example, for the computation [r1]k · [r2]k, P1 and P2’s local computation will

be zero as they don’t hold the [r](1) and [r](2), respectively. Thus, we simplified

the two rounds of multiplication, which reduces the communication cost to only

one element per party.

As shown in Protocol 18, the secret variables [r1]k, [r2]k, and [r3]k are formed

with shares of input [r]1 and shared among three parties. In addition, each party

i also holds two pseudorandom generators, i.e., {Gj|j ∈ [1, 3], i ̸= j}. For cal-

culating the first xor operation [r1]k ⊕ [r2]k, we first calculate the multiplication

[s]k = [r1]k · [r2]k as shown in Protocol 18 Line 3-5. Because only P3 holds the

substantial shares of [r1]k and [r2]k, it could generate the multiplication result

locally and share the result to other parties. It is noted that P3 only needs to

send [s](1)k to P2, because P1 is able to generate [s](2)k using G2. After this step, all

parties hold their corresponding shares of [s]k and continue to compute [s′]k in

local, which is the result of [r1]k · [r2]k. For calculating the second xor operation

that [s′]k ⊕ [r3]k, P1 and P2 compute [s′](2)k · [r]
(3)
1 and [s′](1)k · [r]

(3)
1 separately and

re-share their results with other parties as shown in Protocol 18 Line 8-10. Af-



86

Protocol 18 [r]k ← B2A([r]1, k)

1: Setup: [r1]k, [r2]k, [r3]k consist of three shares, i.e., ⟨[r](1)1 , 0, 0⟩,
⟨0, [r](2)1 , 0⟩,and ⟨0, 0, [r](3)1 ⟩, respectively; Party Pi holds {[r](j)

1 , Gj|j ∈
[1, 3], i ̸= j}.

2: [s]k = [r1]k · [r2]k:
3: P3 computes [r](1)1 · [r]

(2)
1 , sets [s](2)k = G1.next, [s](1)k = [r](1)1 · [r]

(2)
1 −

G2.next and sends [s](1)k to P2;

4: P2 sets [s](1)k to the received value and [s](3)k = 0;

5: P1 computes [s](2)k = G2.next and set [s](3)k = 0;
6: [s′]k = [r1]k + [r2]k − 2[s]k;
7: [t]k = [s′]k · [r3]k:

8: P2 computes g1 = G1.next, g3 = G3.next, and [t′] = [s′](1)k · [r]
(3)
1 − g1.

Then, set [t](1)k = g1 and [t](3)k = [t′] + g3, and sends [t′] to P1;
9: P1 sets [t′] to the received value and sample g3 = G3.next. Then, P1

computes [t](2)k = [s′](2)k · [r]
(3)
1 − g3 and [t](3)k = [t′] + g3, and sends [t](2)k to

P3;
10: P3 sets [t](2)k to the received value and sample [t](1)k = G1.next.

11: [r]k = [s′]k + [r3]k − 2[t]k;
12: return [r]k

ter another round of local computation, the final result [r]k is shared among all

three parties.

The cost of our B2A is mainly communicating one ring element per party in

two rounds, where the communication cost is as same as the cost of a multipli-

cation.

6.2.2 Conversion from a Floating-Point Number to a Superac-

cumulator

Given a normalized floating-point number [x] = [b] · [v] · 2[p], we first convert

it into the superaccumulator format. A regularized superaccumulator is a vec-

tor that consists of α w-bit integers, where α = ⌈2e+u
w ⌉. We first locate where
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Protocol 19 [s]← FL2SA([b], [v], [p], e, u, w, α, β)

1: [phigh]← Trunc([p], e, log w);
2: [plow] = [p]− [phigh] · w;
3: [z] = EQZ([p]);
4: [v] = [v] + 2u · (1− [z]);
5: ⟨[v(0)i ], . . . , [v(β−1)

i ]⟩ ← FL2SAPart1([b], [v], [plow], e, u, w, β);

6: ⟨[yα−1], . . . , [y0]⟩ ← FL2SAPart2(⟨[v(0)i ], . . . , [v(β−1)
i ]⟩, [phigh], e, u, w, α, β);

7: return [s] = ⟨[yα−1], . . . , [y0]⟩;

the floating-point number’s mantissa will fall in the superaccumulator. Then,

we split the the mantissa [v] into multiple pieces and write them into the corre-

sponding blocks of the initially empty superaccumulator.

Our solution for converting a normalized floating-point number into a su-

peraccumulator is given as Protocol 19. We first truncate the exponent [p] into

two parts, i.e., [plow] and [phigh], where the high-order e − log w bits, denoted

as [phigh], indicates the index of the first chunk in a superaccumulator that the

mantissa fall in and the low-order log w bits, , denoted as [plow], indicates the

position of the least significant bit of [v] in the corresponding chunk. In addi-

tion, we check whether [p] is zero. If [p] is not a zero1, it indicates that the input

floating-point number is normalized and we need to denormalize it in the sub-

sequent operation. Next, we describe our conversion in two separate parts, i.e.,

dividing the mantissa into multiple pieces in Protocol 20 and writing them into

the superaccumulator in Protocol 21.

As described in Protocol 20, we first left shift the mantissa [v] by the private

offset [plow
i ] so that [v′] = [v] · 2[plow

i ]. This shift could move the bits in the man-

tissa to their proper position in the superaccumulator, as shown in Figure 6.1.

Then, we split the [v′] into chunks of w-bit starting from the least significant bits.

1Although we assume that the input is normalized floating-point number, this check is still
necessary as there is a case that a number could be too small to be normalized, in which its
exponent will be zero.
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[v0]

Superaccumulator [s]:

Significant [v]:

· · · · · ·[yα−1] [y0]

[plow]

[y[phigh]]

· · ·[vβ−1]

Figure 6.1: Illustration of converting floating-point number into superaccumu-
lator.

Protocol 20 ⟨[v0], . . . , [vβ−1]⟩ ← FL2SAPart1([b], [v], [plow], e, u, w, β)

1: [v′]← LeftShift([v], [plow], log w);
2: {[v0], . . . , [vβ−1]} = Split([v′], β, w, u);
3: for i = 0, . . . , β− 1 in parallel do
4: [vi]← ([1]− 2 · [b]) · [vi];
5: end for
6: return ⟨[v0], . . . , [vβ−1]⟩;

In particular, we recursively truncate w least significant bits from the [v′] until

the bit length of the rest part is less than w. As the mantissa may fall into more

than one piece of chunks in the superaccumulator, we use β to denote the max

possible of chunks that the mantissa may affect, where β = ⌈u+1
w ⌉+ 1. To en-

sure the obliviousness of the computation, we always split the [v′] into β parts.

At the end, we multiply the sign bit ([1]− 2 · [b]) with each [vi] before writing

them into the superaccumulator.

We next describe how to obliviously write [vi] into the corresponding block

of a superaccumulator [s] = ⟨[yα−1], . . . , [y0]⟩. Although we already extracted

[phigh] from which we could calculate each [vi]’s corresponding location in [s], it

is non-trivial to write in a private array with a private index. We cannot reveal

[phigh] to any party as it will leak information about the private input floating-

point number. To obliviously write [vi] into a superaccumulator, we first use

B2U with input [phigh] to generate an array ⟨[dα−1], . . . , [d0]⟩, where only the

[d[phigh]] is [1] and all other elements are [0]. In particular, as shown in Proto-

col 21, we calculate a dot product for each block [yi] to get its updated value.
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Protocol 21 ⟨[yα], . . . , [y0]⟩ ← FL2SAPart2(⟨[v0], . . . , [vβ−1]⟩, [phigh], e, u, w, α, β)

1: [s] = ⟨[yα−1], . . . , [y0]⟩;
2: ⟨[dα−1], . . . , [d0]⟩ = B2U([phigh], α);

3: for i = 0, . . . , α− 1 in parallel do
4: if 0 <= i <= β− 2 then
5: [yi]← ∑i

k=0[di−k] · [vk];
6: end if
7: if β− 1 <= i <= α− β then

8: [yi]← ∑
β−1
k=0 [di−k] · [vk];

9: end if
10: if α− β+ 1 <= i <= α− 1 then
11: [yi] ← ∑α−1−i

k=0 [di−β+1+k] ·
[vβ−1−k];

12: end if
13: end for
14: return ⟨[yα], . . . , [y0]⟩;

Protocol 22 {[zk−1], . . . , [z0]} ← Split([a], k, w, u)

1: [a(0)] = [a];
2: for i = 0, . . . , k− 2 in parallel do
3: [a(i+1)]← Trunc([a(i)], u− i · w, w);
4: [zi] = [a(i)]− [a(i+1)] · 2w;
5: end for
6: [zk−1] = [a(k−1)];
7: return {[zk−1], . . . , [z0]};

If i is in range [[phigh], [phigh] + β− 1], [yi] will be updated to its corresponding

value. Otherwise, [yi] remains zero. For example, the block [y0] may be updated

to [v0] only if [d0] = [1], while block [y1] may be updated to [v0] or [v1] in the

case of [d1] = [1] or [d0] = [1], respectively. Overall, we could batch all the

dot product operations in a single round with a communication cost of α ring

elements.

6.2.3 Superaccumulator Summation

We next present the solution for summing over superaccumulators in Proto-

col 23. After the conversion, all the n floating-point numbers ⟨[b0], [v0], [p0]⟩,

. . ., ⟨[bm−1], [vm−1], [pm−1]⟩ have been converted to the format of superaccumu-

lator ⟨[y0,α−1], . . ., [y0,0]⟩, . . . , ⟨[ym−1,α−1], . . . , [ym−1,0]⟩. Because the bits of the
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Protocol 23 ⟨[yα−1], . . . , [y0]⟩ ← SuperSum(⟨[y0,α−1], . . . , [y0,0]⟩, . . . ,
⟨[ym−1,α−1], . . . , [ym−1,0]⟩)

1: for i = 0, . . . , α− 1 in parallel do
2: [yi] = ∑m−1

j=0 [yj,i];
3: [bi] = MSB([yi]);
4: [y′i] = [yi] · ([bi]− 1);
5: [ci+1] = Trunc([y′i], 2w, w);
6: [ri] = [y′i]− [ci+1] · 2w;
7: [yi] = [ri] · [bi] + [ci] · [bi−1]
8: end for
9: return ⟨[yα−1], . . . , [y0]⟩;

floating-point number’s mantissa are already aligned according to the expo-

nent, the summation of n superaccumulators can be easily achieved by calcu-

lating the sum of all corresponding elements with the same index, i.e., [yi] =

∑m−1
i=0 [yi,j] for i ∈ [0, α − 1]. Once the summation is done, we proceed to reg-

ularize the result superaccumulator. As shown in Protocol 23 Line 3, we first

truncate the each superaccumulator block [yi] to calculate the carry value [ci+1]

and rest value [ri]. Then, we could compute the regularized [yi] by adding [ri]

with carry value from previous block. As proven in Section 6.1.2, the result

superaccumulator are already regularized.

It is noted that the ring size will affect the number of superaccumulators that

can be processed in one batch. If computation is over Z2w+w′ , for instance, the

SuperSum can only calculate the sum of 2w′ inputs. Calculating summation for

more than 2w′ inputs may cause overflow in some blocks as the size of bit length

of each input block is w. For the case that n is greater than 2w′ , a straightforward

option is to use a larger ring size to process all input in a single batch, which

could reduce the round complexity. However, using a smaller ring size might

not always be a bad option as using a smaller ring size could potentially reduce

the runtime of local operation as well as communication cost.
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Protocol 24 ⟨[b], [p], [v]⟩ ← SA2FL(⟨[yα−1], . . . , [y0]⟩)

1: for i = β, . . . , α− 1 in parallel do
2: [ci] = 1− EQZ([yi]);
3: end for
4: [dα−1] = [cα−1];
5: for i = α− 2, . . . , β do
6: [di] = [di+1] + [ci];
7: end for
8: for i = β, . . . , α− 2 in parallel do
9: [c′i] = 1− EQZ([di]);

10: end for
11: [c′α−1] = [cα−1];
12: for i = β, . . . , α− 2 in parallel do
13: [d′i] = [c′i]− [c′i+1];

14: end for
15: [d′β−1] = [1]− [dβ];
16: [d′α−1] = [cα−1];
17: for i = 0, . . . , β− 1 in parallel do
18: [v′i]← ∑

α−β+i
j=i [d′j+β−1−i] · [yj];

19: [v′′i ]← Convert([v′i], 2w, wβ);
20: end for
21: [v′] = ∑

β−1
i=0 [v

′′
i ] · 2w×i;

22: ⟨[b], [p′], [v]⟩ ← Normalize([v], wβ, u);

23: [p]← [p′] + ∑
α−β
i=0 [d

′
i+β−1] · i · w;

24: return ⟨[b], [p], [v]⟩;

6.2.4 Conversion from a Superaccumulator to a Floating-Point

Number

We next describe the last phase, Protocol 24, in our superaccumulator based

floating-point number summation solution. Once the final superaccumulator is

regularized, we need to convert it back to the format of floating-point number.

The high-level idea of this conversion is that we extract β blocks starting from

the first non-zero block. If all blocks in ⟨[yα−1], . . . , [y0]⟩ are zero or the number

of eligible blocks is less than β, the computation will return the ⟨[yβ−1], . . . , [y0]⟩

for privacy concerns. This will make sure that the number of extracted blocks is

always β.

Without loss of generality, we denote k as the index of the first non-zero

block, where k ∈ [α− 1, β]. Given a regularized superaccumulator ⟨[yα−1], . . . , [y0]⟩,

we check all blocks in ⟨[yα−1], . . . , [yβ]⟩ to find out the first non-zero block. We

first execute EQZ on all blocks and then locally calculate prefix-sum ⟨[dα−1], . . . , [dβ]⟩

over the EQZ results staring from [cα−1] towards [cβ]. The prefix-sum results
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Protocol 25 ⟨[b], [v′], [p]⟩ ← Normalize([v], k, k′)

1: [b′]← MSB([v]);
2: [b] = 1− 2[b′];
3: [v′] = [b] · [v]
4: ⟨[v′k−1], . . . , [v′0]⟩ ← BitDec([v′], k);
5: [dk−1] = [v′k−1];
6: for i = k− 2, . . . , k′ + 1 do
7: [di] = [v′i] + [di+1];
8: end for
9: for i = k′ + 1, . . . , k − 2 in parallel

do
10: [ci] = 1− EQZ([di]);
11: end for
12: [ck−1] = [v′k−1];

13: for i = k′ + 1, . . . , k − 2 in parallel
do

14: [d′i] = [ci]− [ci+1];
15: end for
16: [d′k′ ] = 1− [ck′+1];
17: [d′k−1] = [ck−1];
18: for i = 0, . . . , k′ − 1 in parallel do
19: [ui]← ∑k−k′−1+i

j=i [d′i+k′−i] · [v
′
j];

20: end for
21: [v′] = ∑k′−1

i=0 [ui] · 2i;
22: [d′k′ ] = [d′k′ ] · [v

′
k′ ];

23: [p] = ∑k−k′−1
i=0 i · [d′j+k′ ]

24: return ⟨[b], [v′], [p]⟩;

⟨[dα−1], . . . , [dk+1]⟩ remain zero, while all the rests become non-zero values. We

continue executing EQZ on ⟨[dα−1], . . . , [dβ]⟩ again and computing the tag array

⟨[d′α−1], . . . , [d′β−1]⟩ as describe in Protocol 24 Line 11-15. In the end, we get a tag

array that only the k-th element is [1] and all others are [0]. The [d′β−1] will be

set as [1] obliviously if all the ⟨[d′α−1], . . . , [d′β]⟩ are zero. Next, we could extract

the blocks ⟨[yk], . . . , [yk−β+1]⟩ along with the exponent [p′].

After extracting the β blocks, we assembly them into a single integer [v′] =

∑
β−1
i=0 [v

′
i] · 2w×i and normalize [v′] to get the final results.

6.3 Performance Evaluation

In this section, we demonstrate the performance of our proposed constructions

and compare it with the floating-point summation protocol in [74]. We imple-

mented the protocols in C++ using the ring setting. We run all experiments in a

three-party setting, where each machine has a 8-core 2.1GHz CPU and 64GB of
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Table 6.1: Performance of Superaccumulator-based floating-point summation in
milliseconds

Protocol Setting Input size
24 26 28 210 212 214

FL2SA
Single 6.98 8.56 15.1 42.1 125 467

Double 11.3 16.6 34.7 121 405 1661

SuperSum
Single 1.57 1.56 2.23 2.19 2.13 3.09

Double 2.56 2.67 2.74 3.17 3.91 8.98

SA2FL
Single 7.55 7.51 7.4 7.13 6.95 6.96

Double 8.87 8.48 8.75 8.6 8.13 8.41

Total Single 16.1 17.7 25.4 51.4 135 478
Double 22.7 27.8 46.2 132 417 1679

(a) Performance with w = 16

Protocol Setting Input size
24 26 28 210 212 214 216 218

FL2SA
Single 5.94 8.37 16.5 46.5 143 566 2294 8962

Double 9 14.2 32.5 108 379 1501 6198 23775

SuperSum
Single 1.72 1.71 2.45 2.17 2.26 2.95 4.07 9.31

Double 2.64 2.81 2.93 3.12 3.96 5.56 12.9 41.5

SA2FL
Single 8.44 8.41 8.36 8.17 8.11 8.16 8.17 7.97

Double 9.76 9.57 9.41 9.51 9.54 9.47 9.28 9.61

Total Single 16.1 18.5 27.4 56.8 154 578 2307 8980
Double 21.4 26.7 44.8 121 393 1517 6220 23826

(b) Performance with w = 32

RAM. All experiments only used a single thread. The machines were connected

in a LAN network by 1 Gbps Ethernet link with one-way latency of 0.08ms.

The performance of our superaccumulator based floating-point number sum-

mation protocols are shown in Figure 6.2 and Figure 6.3. Additional numbers

are available in Table 6.1. From the break down of the runtime in both sin-

gle and double precision experiments, the bottleneck of the summation is the

conversion FL2SA, especially when the input size is large. This is as expected

because we need to convert all input floating-point number into the format of

superaccumulator. In contrast, the conversion from superaccumulator back to

floating-point number SA2FL has a constant runtime for all batch sizes, which is
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Figure 6.2: Performance of Superaccumulator-based floating-point summation
for single precision with w = 16 (left) and w = 32 (right).
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Figure 6.3: Performance of Superaccumulator-based floating-point summation
for double precision with w = 16 (left) and w = 32 (right).

because we only need to convert the final superaccumulator so that the work-

load of SA2FL is constant through all experiments. Although our superaccu-

mulator summation protocol SuperSum has constant online complexity, its local

computation complexity linearly depends on the input size, which makes its

runtime increase as the input sizes.

Comparing the experiments using different values of w, using w = 16 could

bring a better overall runtime for the single precision experiments, while the

double precision experiments recorded the better performance with w = 32.
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Protocol Precision Input size
10 20 50 100

Ours Single 15.3 16.1 17.2 19.2
Double 20.7 22.2 25.2 29.4

[75] Single 19.3 33.1 71.6 136
Double 34.7 55.9 118.6 198

Table 6.2: Performance comparison (ms)

The performance differences from different choice of w mainly come from the

conversion FL2SA. As the value of parameters α and β directly depends on

the precision and w, a larger w will bring a smaller α and a larger β. In other

words, increasing the value of w will increase the complexity of Protocol 20 but

decreasing the complexity of Protocol 21. Thus, for a better over all runtime, the

choice of w should be decided based on the computational environment as well

as the target precision.

We compare the performance of our superaccumulator based summation

protocols with the reported runtime of a floating-point summation protocol

from [74, 75]. The experiments in [75] were run on 3 computers with 3.6 GHz

CPU connected by 1 Gbps Ethernet LAN. As shown in Table 6.2, although our

experiments were run on slower machines, the best of ours still has a better run-

time. The experiments with input size 100 recorded the largest gap, where ours

is 7 and 6.7 times faster for the single and double precision, respectively. We

believe the advantage of ours will be larger as the batch size increases.



Chapter 7
Conclusion

We conclude this dissertation in this chapter.

7.1 Private Array Access

We present optimized protocols for reading or writing an element of an array at

a private index. Most of our constructions are based on Shamir secret sharing

with the exception of one array access construction. The latter uses 2-out-of-2

additive secret sharing in the three-party setting with honest majority, but of-

fers superior performance compared to general constructions. To be compatible

with computation based on Shamir secret sharing, we also provide conversion

procedures to convert between the two representations. We implement the pre-

sented constructions in the setting with three computational parties and show

that they offer attractive performance in both LAN and WAN settings.
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7.2 Private Binary Search

We design a suite of binary search protocols with different properties and struc-

ture in the multi-party setting based on secret sharing. In addition, we further

improve our solutions to obtain hybrid schemes which outperform the individ-

ual constructions and lower binary search communication from O(m) in our

prior constructions to O(
√

m) for a dataset of size m. Our performance evalua-

tion demonstrates that our solutions outperform existing ORAM constructions

for dataset sizes up to a billion, even after optimizations to improve perfor-

mance of ORAM schemes specifically in the context of binary search.

7.3 Private and Accurate Floating-point Summation

We propose a superaccumulator based floating-point number summation pro-

tocol by applying the oblivious data access solution. The proposed solution is

the first one that we are aware of that could calculate the faithful rounding of the

exact sum of many private floating-point numbers in secure computation. Our

solution could calculate the exact summation of unlimited number of floating-

point numbers within constant rounds. Performance evaluations show that our

solution outperforms existing work while providing better accuracy.



Bibliography

[1] A. Yao. Protocols for secure computations. In Symposium on Foundations of
Computer Science, pages 160–164, 1982.

[2] A. Yao. How to generate and exchange secrets. In 27th Annual Symposium
on Foundations of Computer Science, pages 162–167. IEEE, 1986.
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G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of Floating-Point
Arithmetic. Springer Science & Business Media, 2009.

[89] L.-K. Wang, C. Tsen, M. J. Schulte, and D. Jhalani. Benchmarks and perfor-
mance analysis of decimal floating-point applications. In 25th International
Conference on Computer Design, pages 164–170, 2007.

[90] M. Tommila. Apfloat for Java. http://www.apfloat.org/apfloat_java/.
Accessed 2015-12-16.

[91] Exact Geometric Computation in LEDA. In SoCG, pages 418–419, 1995.
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