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Abstract

Recent years have witnessed the rise of Internet of Things (IoT), a newly emergent
networking paradigm that connects humans and the physical-world through ubiquitous
sensing, computing, and communicating devices. Driven by the ubiquitous and inter-
connected sensing devices in the Internet of Things, crowd sensing has emerged as a
new way of collecting information from the physical world. Recently, a large variety of
crowd sensing systems have been developed, serving a wide spectrum of applications
that have significant impact on our daily lives, including urban sensing, smart transporta-
tion, environment monitoring, localization, health-care, and many others. However, the
sensory data provided by the participating users are usually not reliable, due to various
reasons such as poor sensor quality, incomplete observations, and background noise.

To identify truthful values from the crowd sensing data, a lot of reliability-aware
data aggregation mechanisms have been developed and they can automatically capture
user reliability in the data aggregation process. Though able to improve the aggrega-
tion accuracy, existing reliability-aware data aggregation mechanisms fail to take into
consideration the privacy and security issues in their design. On one hand, the sensory
data provided by each individual user may contain sensitive information, which may be
disclosed to others during the data aggregation process, resulting in the leakage of users’
privacy. On the other hand, there may exist malicious users in crowd sensing systems
who conduct the data poisoning attacks for the purpose of sabotage or financial rewards,
and the effectiveness of the crowd sensing systems can be largely degraded by these
malicious users.

In this thesis, we take steps to study and address the privacy and security issues
when conducting reliability-aware data aggregation in crowd sensing systems. Specifi-
cally, we first consider a widely adopted reliability-aware data aggregation mechanism
named truth discovery and propose a series of privacy-preserving truth discovery frame-
works for crowd sensing systems. These frameworks can not only accurately calculate
the final aggregated results but also provide strong privacy protection for the users’ sen-
sitive information. Then, we investigate crowd sensing in adversarial environments and
study the data poisoning attacks against the crowd sensing systems employing the truth

xiii



discovery mechanism. We develop an optimal attack framework in which the attacker
can not only maximize his attack utility but also disguise the introduced malicious users
as normal ones such that they cannot be detected easily. Following a similar design
philosophy, we also successfully attack the crowd sensing systems empowered with
the Dawid-Skene model, another widely adopted reliability-aware data aggregation al-
gorithm. The desirable performance of the proposed frameworks is verified through
extensive experiments conducted on real-world crowd sensing systems.

xiv



Chapter 1
Introduction

Today, we are living in an interconnected world. Through ubiquitous sensing, comput-

ing, and communicating devices, now everything in the world is linked to each other,

forming an Internet of Things (IoT) [2, 37]. With more than 30 billion1 connected de-

vices that pervade every corner of the world, IoT is able to facilitate a whole spectrum

of civilian and military applications with enormous societal and economic impacts.

Driven by the ubiquitous and interconnected sensing devices in the Internet of

Things, crowd sensing has emerged as a new way of collecting information from the

physical world. In crowd sensing systems, humans work as sensor carriers or even

the sensors, and the collection of sensory data is outsourced to a large crowd of par-

ticipating users carrying sensing devices. Recently, a large variety of crowd sensing

systems [14–17, 29, 32, 38–41, 47, 49, 55, 68, 81, 86, 87, 90, 107–109, 115] have been de-

veloped and they serve a wide spectrum of applications that have significant impact

on our daily lives, including urban sensing, smart transportation, environment monitor-

ing, localization, health-care, public opinion analysis, and many others. The crowd-

contributed sensory data in these applications have fundamentally changed the ways in

1http://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/

http://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
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which we learn about our world. However, they also pose great challenges on the design

and development of crowd sensing systems.

1.1 Motivation

In crowd sensing applications, the sensory data provided by individual participants are

usually not reliable, due to various reasons such as poor sensor quality, lack of sensor

calibration, background noise, incomplete views of observations, and even the intent to

deceive. Therefore, the power of crowd sensing can be unleashed only by properly ag-

gregating unreliable information from different participating users who inevitably sub-

mit noisy, conflicting and heterogeneous data. When aggregating crowd sensing data, it

is essential to capture the difference in the quality of information among different partic-

ipating users. Some users constantly provide truthful and meaningful data while others

may generate biased or even fake data. In this case, traditional aggregation methods

(e.g., averaging and voting) that regard all the users equally would not be able to derive

accurate aggregated results.

Therefore, an ideal approach should be able to involve user reliability when aggre-

gating sensory data and make the aggregated results close to the information provided

by reliable users. The challenge here, however, is that the user reliability is usually

unknown a priori and should be inferred from collected data. To address this chal-

lenge, a lot of reliability-aware data aggregation mechanisms [22, 48, 60–65, 70, 72, 94,

98, 102, 103, 112] have been developed and they are widely adopted in many crowd

sensing applications. These mechanisms can automatically capture user reliability in

the data aggregation process and bring significant improvement to the aggregation ac-

curacy. However, they fail to consider an important issue in the design of crowd sensing

systems, i.e., the privacy and security concerns related to the sensory data.

All the parties in a crowd sensing system, including not only the participating users

who contribute sensory data but also the cloud server that collects the user-contributed
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data, may be malicious. On one hand, in many crowd sensing applications, the data col-

lected from each individual user may contain private personal information. The server

may want to infer a user’s private information from his sensory data, which makes users

reluctant to contribute their data due to privacy concerns. On the other hand, the open-

ness of the crowd sensing systems and the potential value of the collected sensory data

offer both opportunities and incentives for malicious users to launch attacks. The partic-

ipating users may launch malicious attacks through submitting malicious sensory data

for the purpose of sabotage or financial rewards. Both the privacy and security issues can

largely degrade the effectiveness of the crowd sensing systems in practice. Therefore,

there is a great need for privacy-preserving and security mechanisms to protect users’

private information from being disclosed as well as defend against malicious attacks.

1.2 Thesis Overview

In this thesis, towards the objective of enabling privacy-preserving and secure crowd

sensing in the Internet of Things, we take steps to study and address the privacy and se-

curity issues when conducting reliability-aware data aggregation in crowd sensing sys-

tems. Specifically, we first consider a widely adopted reliability-aware data aggregation

mechanism named truth discovery [60–65,70,72,94,98,102,103,112], and present a se-

ries of privacy-preserving truth discovery frameworks for crowd sensing systems. Then

we investigate the security vulnerability of truth discovery and study the data poisoning

attacks against the crowd sensing systems empowered with this kind of data aggrega-

tion mechanism. Following a similar design philosophy, we also successfully attack the

Dawid-Skene model [22], another widely adopted data aggregation algorithm in crowd

sensing systems. In this section, we provide an overview of each work.

Privacy-Preserving Truth Discovery in Crowd Sensing Systems

As a sophisticated reliability-aware data aggregation mechanism, truth discovery has

drawn significant attention recently. It involves the probability of a user providing accu-
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rate data in the form of user weight when aggregating sensory data, and thus can make

the aggregated results close to the information provided by reliable users. The common

principle shared in truth discovery approaches is that a particular user will have higher

weight if the data provided by him is closer to the aggregated results, and a particular

user’s data will be counted more in the aggregation procedure if this user has a higher

weight. A variety of truth discovery approaches have been proposed to calculate user

weight and aggregated results in a joint manner based on this principle. However, these

approaches fail to take into account the protection of user privacy.

In this work [73,74], we propose a novel privacy-preserving truth discovery (PPTD)

framework, which can protect not only users’ sensory data but also their reliability

scores derived by the truth discovery approaches. The key idea of the proposed frame-

work is to perform weighted aggregation on users’ encrypted data using homomorphic

cryptosystem, which can guarantee both high aggregation accuracy and strong privacy

protection. In order to deal with large-scale data, we also propose to parallelize PPTD

with MapReduce framework. In addition, we design an incremental PPTD scheme for

the scenarios where the sensory data are collected in a streaming manner. Extensive ex-

periments based on two real-world crowd sensing systems demonstrate that the proposed

framework can generate accurate aggregated results while protecting users’ private in-

formation.

A Lightweight Privacy-Preserving Truth Discovery Framework

The PPTD framework can achieve strong privacy guarantee, however, at a cost of sig-

nificant computation and communication overhead. The reason is that each user in this

framework has to conduct considerable amount of ciphertext-based calculations and

communication with the cloud server during the truth discovery procedure. In crowd

sensing systems, the sensing device carried by each participating user usually has lim-

ited energy resources. Therefore, there is a great need to design a privacy-preserving

truth discovery scheme which can not only guarantee high accuracy and strong privacy

protection but also introduce little overhead to the participating users.
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In the light of this need, in this work [77], we propose a lightweight privacy preserv-

ing truth discovery framework, L-PPTD, which is implemented by involving two non-

colluding cloud platforms and adopting additively homomorphic cryptosystem. This

framework not only achieves the protection of each user’s sensory data and reliability

information but also introduces little overhead to the users. In order to further reduce

each user’s overhead in the scenarios where only the sensory data need to be protected,

we propose another more lightweight framework namedL2-PPTD. The desirable perfor-

mance of the proposed frameworks is verified through extensive experiments conducted

on real world crowd sensing systems.

Data Poisoning Attacks in Crowd Sensing Systems

In the aforementioned works, we consider the scenarios where the server that collects

the user-contributed data is malicious, and it may want to infer a user’s private informa-

tion from his sensory data. In fact, in some cases, the participating users who contribute

the sensory data may also be malicious. They may launch malicious attacks for the pur-

pose of sabotage or financial rewards. One important form of attacks in crowd sensing

systems is called data poisoning, where an attacker tries to degrade the effectiveness of

the crowd sensing systems through creating or recruiting a group of malicious users and

letting them submit manipulated sensory data.

Since truth discovery incorporates users’ reliability into the aggregation procedure,

it shows robustness to the data poisoning attacks. However, truth discovery is not per-

fect in all cases. In this work [76], we study how to effectively conduct two types of

data poisoning attacks, i.e., the availability attack and the target attack, against a crowd

sensing system empowered with the truth discovery mechanism. We develop an opti-

mal attack framework in which the attacker can not only maximize his attack utility but

also disguise the introduced malicious users as normal ones such that they cannot be de-

tected easily. The desirable performance of the proposed framework is verified through

extensive experiments conducted on a real-world crowd sensing system.
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Security Vulnerability Analysis for the Dawid-Skene Model

Besides the truth discovery mechanism discussed in above sections, the Dawid-Skene

model [22] is another widely adopted reliability-aware data aggregation algorithm in

crowd sensing systems. By conducting maximum likelihood estimation (MLE) using

the expectation maximization (EM) algorithm, the Dawid-Skene model can jointly esti-

mate each user’s reliability and conduct weighted aggregation. So it has the capability

of identifying truthful information from noisy or conflicting crowd-contributed sensory

data. To well understand the security vulnerability of the Dawid-Skene model to data

poisoning attacks in crowd sensing systems, in this work [75], we investigate how to

successfully attack this type of data aggregation method. Specifically, we follow the

attacking philosophy for truth discovery and design an intelligent data poisoning attack

mechanism, based on which the attacker can not only achieve maximum attack utility

but also disguise the attacking behaviors. Extensive experiments based on real-world

crowd-contributed data are conducted to verify the desirable properties of the proposed

mechanism.

1.3 Thesis Organization

In the next four chapters, I will elaborate on the aforementioned privacy-preserving

frameworks and attack mechanisms, shedding light on their design philosophy and de-

sirable properties. Specifically,

• In Chapter 2, we propose a novel privacy-preserving truth discovery (PPTD)

framework for crowd sensing systems. This framework can achieve the protec-

tion of not only users’ sensory data but also their reliability scores derived by the

truth discovery approaches. In addition, in order to deal with large-scale data and

the scenarios where the sensory data are collected in a streaming manner, we also

design a parallel PPTD scheme and an incremental PPTD scheme, respectively.
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• In Chapter 3, to reduce each user’s overhead while achieving the protection of both

users’ sensory data and their reliability information, we propose a lightweight

privacy-preserving truth discovery framework, L-PPTD, which is implemented

by involving two non-colluding cloud platforms and adopting additively homo-

morphic cryptosystem. For the scenarios where only the sensory data need to be

protected, we propose another more lightweight framework named L2-PPTD.

• In Chapter 4, we consider the security aspect of the crowd sensing systems, and

study how to effectively conduct two types of data poisoning attacks, i.e., the

availability attack and the target attack, against a crowd sensing system empow-

ered with the truth discovery mechanism.

• In Chapter 5, to analyze the security vulnerability of the Dawid-Skene model to

data poisoning attacks in crowd sensing systems, we design an intelligent data

poisoning attack mechanism. Based on this mechanism, the attacker can not only

achieve maximum attack utility but also disguise the attacking behaviors.

We review the related work in Chapter 6, and finally conclude the dissertation in

Chapter 7.



Chapter 2
Privacy-Preserving Truth Discovery

in Crowd Sensing Systems

2.1 Introduction

Although crowd sensing systems can serve a wide spectrum of applications that have

significant societal and economic impacts, the sensory data collected by individual users

are usually not reliable. The reasons include environment noise, the hardware quality,

as well as the ways in which users use the hardware. A possible solution is to aggregate

the sensory data of multiple users who observe the same objects (or events). When

aggregating crowd sensing data, however, the traditional methods (e.g., average and

voting) would not be able to derive accurate aggregated results, since they regard all the

users equally. An ideal approach should have the capability to capture the difference in

the quality of information among different participating users. However, the challenge

here is that the reliability level (referred to as weight) of each user is usually unknown

a priori. To address this challenge, the problem of truth discovery [60–65, 70, 72, 94,

98, 102, 103, 112], which aims at discovering truthful facts from unreliable data, has

recently been widely studied. The common principle of truth discovery approaches is

that a user will be assigned a higher weight if his data is closer to the aggregated results,
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and the data of a user will be counted more in the aggregation procedure if she has a

higher weight.

The truth discovery approaches, though having brought significant improvement to

the aggregation accuracy, fail to take into consideration an important practical issue

in the design of crowd sensing systems, i.e., the protection of user privacy. In many

crowd sensing applications, the final aggregation results can be public and beneficial

to the community or society, but the data from each individual user may contain pri-

vate personal information and thus should be well protected. For example, aggregating

health data, such as treatment outcomes, can lead to better evaluation of new drugs or

medical devices’ effects, but may jeopardize the privacy of participating patients. The

geotagging campaigns can provide accurate and timely localization of specific objects

(e.g., litter, pothole, automated external defibrillator, etc.) by aggregating the reports of

participants, however, at the risk of leaking participants’ sensitive location information.

Through crowd wisdom, even extremely difficult questions can be solved via aggregat-

ing the answers of a large crowd. However, personal information of individual users can

be inferred from their answers.

Sometimes, user reliability is another sensitive information that should also be pro-

tected. On one hand, from user reliability information, together with his observation

values, the attacker may be able to infer the personal information of the user, such as

major, education level, age, gender, language, and even personality. On the other hand,

in practical crowd sensing applications, the participating users usually trade their data

with the system administrator for rewards, and the leakage of user reliability may lead

to malicious manipulation of data price. For these reasons, in some crowd sensing ap-

plications (such as the aforementioned health data aggregation, geotagging, and crowd

wisdom), user reliability should be kept private.

Therefore, it is essential to design a privacy-preserving truth discovery scheme for

the crowd sensing applications where there exists variability in user reliability degrees

and the privacy of users’ data and reliability information is susceptible to leakage. To-
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wards this end, we propose a novel privacy-preserving truth discovery (PPTD) frame-

work. This framework makes use of homomorphic cryptosystem [19], and can guar-

antee both high accuracy and strong privacy. The proposed PPTD framework works as

follows. Each participating user will first send the encrypted summation of distances

between his own observation values and the estimated aggregated values to the cloud

server. Then, the cloud server updates users’ weights in encrypted form without de-

crypting the received distances information, and sends the updated weight to each user.

Next, each user calculates the ciphertexts of weighted data using the received encrypted

weight. Finally, the final results are estimated by the cloud server based on the ci-

phertexts received from users. The advantage of our proposed framework is that it can

accurately calculate the final aggregated results while protecting the privacy of user data,

and at the same time, the weight information are not disclosed to any party.

Additionally, in order to deal with massive data, we design a parallel privacy-

preserving truth discovery scheme using the MapReduce framework [23], and thus the

privacy-preserving truth discovery procedure can be conducted in a parallel and dis-

tributed manner. As for the scenarios where the sensing data are collected in a streaming

manner, we also propose an incremental privacy-preserving truth discovery scheme that

can aggregate the sensory data in real time and introduce less computational overhead

compared with the basic PPTD framework.

2.2 Problem Setting

In this section, we describe the problem settings of our proposed privacy-preserving

truth discovery framework. Our framework contains two different types of crowd sens-

ing parties: cloud server and users. Among them, users are the crowd participants,

who perform sensing tasks with their mobile devices either voluntarily or for financial

incentives, and cloud server is a platform which collects user data and conduct data ag-

gregation. Additionally, we use objects to represent the entities or questions assigned by
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the cloud server and use observation values to denote the sensory readings or answers

provided by crowd users. Also, the true result or answer for each task or question is

represented as ground truth in our problem.

In practical crowd sensing systems, the security threats mainly come from the parties

themselves (i.e., cloud server and users). For the sake of curiosity or financial purpose,

the cloud server may try to deduce the observation and reliability values of each user.

On the other hand, each user may also try to infer the information of other parties.

Thus, it is of paramount importance to preserve the privacy of users’ observation values.

Moreover, in order to prevent any party to maliciously manipulate the data price in the

scenarios where crowd users trade their data with the could server, we propose to protect

the reliability value of each user from being disclosed to any party (including the user

himself). Certainly, our proposed framework can be easily modified to make each user’s

weight known only to himself, which is discussed in detail in Section 2.6. In this chapter,

we assume that all the parties are semi-honest [66], which means all the parties strictly

follow the protocol we design, but each party will try to infer the private information

of other parties based on the intermediate results he obtains during the execution of the

protocol. Additionally, we assume that the parties in our framework have no collusions,

which means they will not collude with each other outside the designed protocol. These

assumptions are reasonable in most crowd sensing scenarios, since 1) the parties want

to get correct results and thus would follow the protocol for their mutual benefits, and

2) crowd users usually do not know each other, and even they know each other they are

probably not willing to disclose private information to others.

We formally define the problem targeted in this chapter as follows:

Suppose there areK users, denoted asK = {1, 2, · · · , K}, and a cloud server S that

released M objects represented asM = {1, 2, · · · ,M}. Let xkm denote the observation

value provided by the k-th user for the m-th object and wk denote the weight of the

k-th user. For each object, there is a ground truth which is not known by all the parties

in the framework. Our goal is to let server S accurately calculate the estimated values
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{x∗m}Mm=1 of the ground truths for all the objects based on the information collected from

users. In this procedure, each observation value (i.e., xkm) should not be disclosed to any

party except the user who provides this value (i.e., the k-th user). Also, the weight

information {wk}Kk=1 should not be disclosed to any party in the system.

To solve this problem, we propose a privacy-preserving truth discovery framework

based on homomorphic cryptosystem, which enables the cloud server to conduct truth

discovery on encrypted sensing data so that the private information could be effectively

protected while the ground truths can be accurately estimated.

2.3 Preliminary

Since truth discovery and homomorphic encryption technology are two important com-

ponents in our proposed framework, we introduce the concepts and general procedures

of them in this section.

2.3.1 Truth Discovery

Towards the goal of resolving conflicts in multiple noisy data sources, truth discovery

has been widely studied in various domains. Although there are differences in the ways

to compute user weights and estimate ground truths, the common procedure of existing

truth discovery approaches can be summarized as follows. A truth discovery algorithm

usually starts with a random guess of ground truths, and then iteratively conducts weight

update and truth update until convergence.

Weight Update: In this step, we assume the estimated ground truth of each object is

fixed. The basic idea is that a user’s weight should be assigned a high value if this user

provides data which is close to the estimated ground truths. Typically, the user weights

are calculated as follows:

wk = f(
M∑
m=1

d(xkm, x
∗
m)) (2.1)



13

where f is a monotonically decreasing function, and d(·) is the distance function which

can measure the difference between users’ observation values and the estimated ground

truths. In this chapter, we adopt the weight calculation function of CRH [61, 65] as f

due to its good practical performance:

wk = log

(∑K
k′=1

∑M
m=1 d(xk

′
m, x

∗
m)∑M

m=1 d(xkm, x
∗
m)

)
(2.2)

The distance function d(·) will be chosen based on the application scenarios. The

proposed framework can handle various applications by plugging different functions. In

this chapter, we discuss two example functions for applications involving continuous or

categorical data, the two most common data types in crowd sensing applications.

For the applications (e.g., environment monitoring) where the sensory data are con-

tinuous (e.g., temperature and humidity), we adopt the following normalized squared

distance function:

d(xkm, x
∗
m) =

(xkm − x∗m)2

stdm
(2.3)

where stdm is the standard deviation of all observation values for object m. For the

applications (e.g., crowd wisdom) where the data are categorical (e.g., multiple-choice

answer), there are usually multiple candidate choices, and only one of them is correct.

In this case, we define an observation vector xkm = (0, ..., 1
q
, ..., 0)T to denote that user

k selects the q-th choice for object m. We then use the squared distance function to

measure the difference between observation vector xkm and the estimated ground truth

vector x∗m:

d(xkm, x
∗
m) = (xkm − x∗m)T (xkm − x∗m) (2.4)

Truth Update: In this step, we assume that the weight of each user is fixed. Then

we can estimate the ground truth for the m-th object as

x∗m ←
∑K

k=1wk · xkm∑K
k=1 wk

(2.5)
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For continuous data, x∗m represents the estimated ground truth value. But for categorical

data, x∗m is actually a probability vector in which each element represents the probability

of a particular choice being the truth. The final estimation should be the choice with the

largest probability in vector x∗m.

The general truth discovery procedure can be described by Algorithm 1. The algo-

rithm starts with randomly guessing ground truth for each object, then iteratively updates

users’ weights and estimated ground truths until some convergence criterion is satisfied.

Usually, the convergence criterion is set depending on the requirements of specific ap-

plications. For example, it can be a threshold of the change in the estimated ground

truths in two consecutive iterations.

Algorithm 1: Truth Discovery Algorithm

Input: Observation values from K users: {xkm}
M,K
m,k=1

Output: Estimated ground truths for M objects: {x∗m}Mm=1

1 Randomly initialize the ground truth for each object;
2 repeat
3 for each user k do
4 Update weight based on estimated ground truths (e.g., Eq. (2.2));
5 end
6 for each object m do
7 Update the estimated ground truth based on current weights (e.g.,

Eq. (2.5));
8 end
9 until Convergence criterion is satisfied;

10 return The estimated ground truths {x∗m}Mm=1;

2.3.2 Cryptographic Tools

Homomorphic Cryptographic Scheme

In our proposed privacy-preserving truth discovery framework, an additive homomor-

phic asymmetric cryptosystem is adopted. As widely known, there are two types of keys

in the asymmetric cryptosystem: public key pk and private key sk. The public key is
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used to encrypt plaintext and the private key is used to decrypt the ciphertext. Consider-

ing a plaintext m ∈ Zn, where n is a large positive integer and Zn is the set of integers

modulo n, we denote the encryption of m as Epk(m). If a cryptographic scheme is said

to be additive homomorphic, there should be two operators ⊕ and ⊗ which satisfy the

following properties:

Epk(m1 +m2) = Epk(m1)⊕ Epk(m2) (2.6)

Epk(a ·m1) = a⊗ Epk(m1) (2.7)

where m1, m2 are the plaintexts that need to be encrypted and a is a constant.

Based on the above properties, we can directly calculate the encrypted sum of plain-

texts from the encryptions of them by conducting operators ⊕ or ⊗.

Threshold Paillier Cryptosystem

Although there are several additive homomorphic cryptographic schemes, we use the

threshold variant of Paillier scheme [21] in our framework, because it not only has ad-

ditive homomorphic properties but also satisfies the design of a threshold cryptosystem,

both of which allow us to conduct secure summation on the data collected from crowd

users.

In this cryptosystem, an user can encrypt the plaintext m ∈ Zn with the public key

pk = (g, n) as

c = Epk(m) = gmrnmod n2 (2.8)

where r ∈ Z∗n (Z∗n denotes the multiplicative group of invertible elements of Zn) is se-

lected randomly and privately by this user. According to Equation (2.6), (2.7) and (2.8),

the homomorphic properties of this cryptosystem can be described as

Epk(m1 +m2) = Epk(m1) · Epk(m2)

= gm1+m2(r1r2)nmod n2
(2.9)
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Epk(a ·m1) = Epk(m1)a = gam1r1
anmod n2 (2.10)

where m1,m2 are the plaintexts which need to be encrypted, and r1, r2 ∈ Z∗n are the

private randoms and a is a constant.

In this chapter, the (p, t)-threshold Paillier cryptosystem is adopted, in which the

private key sk is divided (denoted as sk1, sk2, · · · , skp) and distributed to p parties.

Any single party doesn’t have the complete private key. If one party wants to accurately

decrypt ciphertext c, it has to cooperate with at least t − 1 other parties. So in the

decryption step, each party i(1 ≤ i ≤ p) needs to calculate the partial decryption ci of c

with private key ski as

ci = c2∆ski (2.11)

where ∆ = p!. Then based on the combining algorithm in [21], at least t partial decryp-

tions can be combined together to get the plaintext m.

2.4 Privacy-Preserving Truth Discovery Framework

In this section, we discuss the details of our novel privacy-preserving truth discovery

(PPTD) framework.

2.4.1 PPTD Overview

Figure 2.1 shows the framework of PPTD in crowd sensing systems. Before the truth

discovery procedure, we assume a semantically secure (p, t)-threshold Paillier cryp-

tosystem has been given (e.g., established by a trusted key management center). Here

p is the number of parties including both the cloud server and users, and t is the min-

imum number of parties needed to complete the decryption. Thus, each party in this

framework has known the public encryption key pk = (g, n), while the matching pri-
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vate decryption key has been divided and distributed to all parties (i.e., party i has got

his private key share ski).

Figure 2.1: Privacy-preserving truth discovery framework

As shown in Figure 2.1, after the objects are assigned by the cloud server, the PPTD

parties will iteratively conduct the following two phases:

Phase 1: Secure Weight Update. In this phase, each user firstly calculates the dis-

tances between his observation values and the estimated ground truths provided by the

cloud server according to the distance functions, then encrypts the distance information

and submits the ciphertexts to the cloud server. After receiving the ciphertexts from

all users, the cloud server securely updates the weight in encrypted form for each user.

Then the ciphertext of updated weight is sent to each corresponding user.

Phase 2: Secure Truth Estimation. Based on the encrypted weight received from

the cloud server, each user calculates the ciphertexts of weighted observation values

without decrypting the weight, and then submits them to the cloud server. When the

cloud server receives all the ciphertexts of weighted observation values from crowd

users, it is able to estimate the ground truth for each object.

The above two phases start with a random initialization of the ground truth for each

object, and are then iteratively conducted until convergence. Throughout the PPTD
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procedure, all the operations are conducted on encrypted data. Thus, it is ensured that

the observation values of each user are known only to himself and the user weights are

not disclosed to any party in the crowd sensing system.

2.4.2 PPTD Mechanism

In this part, we will elaborate on the mechanism of the proposed PPTD framework.

Before we get into the details of the aforementioned Secure Weight Update and Secure

Truth Estimation phases, we will first introduce a Secure Sum Protocol designed to

calculate the summation of the data collected from users without disclosing them to any

unintended party of the system.

Secure Sum Protocol

According to Eq. (2.2) and Eq. (2.5), the cloud server needs to calculate the summation

of the data collected from users in order to update user weights and estimate ground

truths. However, the plaintext of each user’s data should not be accessible to the cloud

server due to privacy concerns. To address this problem, we design a secure sum pro-

tocol based on the threshold Paillier cryptosystem [19]. As shown in Protocol 1, the

proposed secure sum protocol can calculate the summation of users’ data without dis-

closing any of them.

Protocol 1: Secure Sum Protocol
Input: The value vk ∈ Zn from each user k ∈ K
Output: The summation

∑K
k=1 vk

1 According to Eq. (2.8), each user k ∈ K encrypts value vk and sends the
ciphertext Epk(vk) to the cloud server S;

2 Server S calculates C = Epk(
∑K

k=1 vk) =
∏K

k=1Epk(vk) based on Eq. (2.9);
3 Server S randomly selects t− 1 users and sends C to them;
4 Each selected user k′ calculates the partial decryption Ck′ of C based on

Eq. (2.11) and sends Ck′ to the cloud server;
5 Server S calculates its partial decryption CS and then combines it with t− 1

other partial decryptions received from users to get the summation
∑K

k=1 vk;
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As we can see, in this protocol what the cloud server received from users are the

encrypted values and partial decryptions. Moreover, all the calculations on the cloud

server are conducted on encrypted data. What the cloud server can know at last is the

summation of all the users’ data, based on which each user’s data can not be inferred.

So the privacy of users is preserved.

Secure Weight Update

The first phase in our proposed framework is the secure weight update for each user. As

aforementioned, the weight information needs to be updated in encrypted form in order

not to be disclosed to any party. A challenge here is that, the cryptosystem we use is

defined over an integer ring, but the values needed to be encrypted in our framework may

not be integers. To tackle this challenge, we introduce a parameter L (a magnitude of 10)

to round the fractional values. For example, the value h can be rounded by multiplying

L as h̃ = bhLc. Here we use h̃ to denote the rounded integer of h and other values in

this chapter will be represented in a similar way. The approximate value of h can be

recovered by dividing L (i.e., h̃/L).

Based on Eq.(2.2), the encrypted weight can be updated as follows

Epk(w̃k) = Epk(bL · (log(
K∑
k′=1

Distk′)− log(Distk))c) (2.12)

where Distk =
∑M

m=1 d(xkm, x
∗
m) is the summation of distances between the k-th user’s

observation values {xkm}Mm=1 and the estimated ground truths {x∗m}Mm=1. As we can see,

in order for the cloud server to update Epk(w̃k), it needs to collect the information about

Distk from users. This procedure can be shown in Figure 2.2. For the sake of simplicity,

we take the k-th user as an example in this figure.

Since the distance functions for continuous data and categorical date are different,

we need to consider them separately when calculating distances. For categorical data,

user k can easily calculate distances based on Eq. (2.4). But for continuous data, we

need to know the standard deviation stdm according to Eq. (2.3), which is difficult to



20

derive without knowing the observation values of other users. Next, we first introduce

the common steps (W1 and W6 in Figure 2.2) for all the data types to update user’s

weight, and then specifically discuss the calculation of stdm for continuous data (W2,

W3, W4 and W5 in Figure 2.2).

Figure 2.2: Secure weight update for user k

Step W1. Cloud server sends the estimated ground truths {x∗m}Mm=1 to user k. If

it is the first iteration, the estimated ground truths will be randomly initialized. If it is

not, the estimated ground truths are obtained from the previous iteration. When user

k receives the estimated ground truths, he will first calculate two values: Distk and

logDistk. Before the two values are submitted, user k needs to encrypt them for the

purpose of privacy. For Distk, user k privately selects a random rk1 ∈ Z∗n, and then

encrypts it as follows based on Eq. (2.8).

Epk(D̃istk) = gD̃istkrnk1 mod n
2 (2.13)

Similarly for logDistk, user k privately selects another random rk2 ∈ Z∗n, and encrypts

it as

Epk( ˜logDistk) = g
˜logDistkrnk2 mod n

2 (2.14)

Step W6. After the encryption in above step, user k submits both Epk(D̃istk) and

Epk( ˜logDistk) to the cloud server S. Upon receiving the ciphertexts from all users, S

calculates sumD =
∑K

k=1 D̃istk/L and log sumD based on the secure sum protocol.
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Then S encrypts log sumD according to Eq. (2.8) as

Epk( ˜log sumD) = g
˜log sumDrns1 mod n

2 (2.15)

where rs1 ∈ Z∗n is the private random selected by server S. With above ciphertexts, S

can update the encrypted weight for user k as follows based on Eq. (2.9), Eq. (2.10) and

Eq. (2.12).

Epk(w̃k) = Epk( ˜log sumD) · Epk(− ˜logDistk)

= Epk( ˜log sumD) · Epk( ˜logDistk)
−1

(2.16)

As for continuous data, as discussed previously, the standard deviation stdm should

be firstly calculated. The calculation steps are described in detail as below (these steps

only need to be performed once throughout the whole truth discovery procedure).

Step W2. According to Eq. (2.8), user k encrypts his observation value for object m

as Epk(x̃km) and sends the ciphertext to the cloud server S.

Step W3. After receiving the ciphertexts from all users, server S calculates sumx =∑K
k=1 x̃

k
m/L and x̄m = sumk/K based on the secure sum protocol, and then sends x̄m

to users.

Step W4. User k calculates dkm = (xkm − x̄m)2 and encrypts dkm as Epk(d̃km). Then k

sends Epk(d̃km) to server S.

Step W5. When server S receives Epk(d̃km) from all users, S calculates sumd =∑K
k=1 d̃

k
m/L and stdm (equals to

√
sumd/K) through the secure sum protocol. Then S

sends stdm to users.

Secure Truth Estimation

After updating user weights, the next thing is to estimate the ground truth for each object.

As shown in Figure 2.3, there are two major steps in this phase, which are detailed as

follows.
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Figure 2.3: Secure truth estimation

Step T1. The cloud server sends the encrypted weight Epk(w̃k) (updated in the

secure weight update phase) to user k. Then user k calculates the ciphertexts of weighted

observation values based on the encrypted weight. For continuous data, user k calculates

the ciphertexts according to Eq. (2.10) using the following formula:

Epk(w̃k · x̃km) = Epk(w̃k)
x̃km (2.17)

For categorical data, xkm is a vector as described in Section 2.3.1, so user k needs to

calculate the ciphertext for each element in this vector as follows:

Epk(w̃k · xkm(i)) =

Epk(0) if xkm(i) = 0

Epk(w̃k) · Epk(0) if xkm(i) = 1
(2.18)

where xkm(i) denotes the i-th element in vector xkm. Please note that Epk(0) can be

dynamically changing because every time the encryption procedure is conducted with a

different random rk ∈ Z∗n.

Step T2. After the calculation in the above step, user k submits the ciphertexts of

weighted data for all the objects to the cloud server S. When receiving ciphertexts from

all the users, S will first calculate the numerator of Eq. (2.5) as follows.

For continuous data, server S calculates the summation of weighted data (i.e.,∑K
k=1(w̃k · x̃km)) with the help of the secure sum protocol, and then derives the ap-

proximation of
∑K

k=1(wk · xkm) (i.e., the numerator) via dividing the summation by L2.
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For categorical data, we need to consider each element in the vector separately.

Specifically, for the i-th element, server S calculates the summation of the weighted data

(i.e.,
∑K

k=1(w̃k · xkm(i)) via the secure sum protocol, and then get the approximation of∑K
k=1(wk ·xkm(i)) (i.e., the numerator). The summations of other elements are calculated

in the same way.

As the denominator of Eq. (2.5), the summation of weights is also needed to esti-

mate the ground truths. This can be easily calculated through the secure sum protocol,

because S has already stored encrypted weights in the weight update phase. Then the

ground truth for each object m ∈ M can be estimated by the cloud server based on

Eq. (2.5).

Please note that the ground truths estimated in this step for categorical data are prob-

ability values, which are used for updating user weights in the next iteration. The final

estimation for object m should be the choice with the largest probability in vector x∗m

obtained in the final iteration.

Combining the secure weight update and secure truth estimation phases, we sum-

marize the proposed privacy-preserving truth discovery procedure in Protocol 2. This

protocol repeats the aforementioned two phases iteratively until some convergence cri-

terion is satisfied. Then the cloud server can output the final estimated ground truth for

each object.

2.4.3 Parallel PPTD

With the proliferation of human-carried sensing devices, an explosive increase of crowd

sensing data is expected in the near future. In order to deal with such kind of massive

data, we extend our proposed scheme in a parallel way using the MapReduce framework,

which contains two major functions: the Map function that processes input values to

generate a set of intermediate key/value pairs, and the Reduce function that merges all

intermediate values associated with the same intermediate key. Here we just borrow the

existing MapReduce framework, in which we do not make research contribution.
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Protocol 2: Privacy-Preserving Truth Discovery Protocol

Input: K users, M objects, observation values {xkm}
M,K
m,k=1 and rounding

parameter L
Output: Estimated ground truths {x∗m}Mm=1

1 The cloud server S randomly initializes the ground truth for each object;
2 The cloud server S sends the estimated ground truths (i.e., {x∗m}Mm=1) and the

rounding parameter L to users;
3 Each user k ∈ K calculates Distk =

∑M
m=1 d(xkm, x

∗
m) and gets the rounded

values (i.e., D̃istk and ˜logDistk) with parameter L. Then user k encrypts
them as Epk(D̃istk), Epk( ˜logDistk) and sends the ciphertexts to the cloud
server;

4 After receiving ciphertexts from all the users, the server S calculates

sumD =
∑K

k=1 D̃istk/L based on the secure sum protocol, then updates the
encrypted weight of each user according to Eq. (2.15) and Eq. (2.16). Also,
the updated ciphertext of weight is sent to each corresponding user;

5 When user k ∈ K receives encrypted weight from the cloud server, the user
calculates ciphertexts of weighted data for continuous data and categorical
data respectively according to Eq. (2.17) and Eq. (2.18). Then these
ciphertexts are sent to the cloud server;

6 After receiving ciphertexts from all the users, the cloud server S estimates
the ground truths {x∗m}Mm=1 based on step T2;

7 Repeat step 2∼6 until the convergence criterion is satisfied and then output
{x∗m}Mm=1;

We only adapt the truth estimation phase to MapReduce framework, and there is

no change in the weight update procedure. In the Map function for estimating ground

truths, the input is a list of records: (m,Epk(w̃k · x̃km), k), where m ∈ M, k ∈ K and

Epk(w̃k · x̃km) is the encrypted weighted data. As shown in Algorithm 2, during the

mapping process, all the input records are re-organized into key/value pairs, where the

key is the ID of each object (i.e., m), and the value is the rest information. Before these

key/value pairs are fed to Reducers, they will be sorted by Hadoop so that the pairs that

have the same key (i.e., the same object ID m) will go to the same Reducer. In the

Reducers, as seen in Algorithm 3, the truth value for each object is estimated based on

step T2 described in Section 2.4.2. Since users’ weight information is also needed, we

use an external file to store the encrypted weights, and all the Reducer nodes can read
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it. Finally, for each object a key/value pair is outputted, where the key is object ID m

and the value is the estimated ground truth. The two procedures (i.e., distributed weight

update and parallel truth estimation) are iteratively conducted until the whole procedure

converges.

Algorithm 2: Map function for estimating truths
Input: A list of records: (m,Epk(w̃k · x̃km), k),m ∈M, k ∈ K
Output: A list with each element in format of

[m, [Epk(w̃k · x̃km), k]],m ∈M, k ∈ K
1 output list← [ ];
2 for each record from input do
3 Parse the record;
4 Append output list with the new record [m, [Epk(w̃k · x̃km), k]];
5 end
6 return output list;

Algorithm 3: Reduce function for estimating truths
Input: A list of records (sorted by object ID m):

[m, [Epk(w̃k · x̃km), k]],m ∈M, k ∈ K
Output: A list with each element in the format of [m,x∗m]

1 output list← [ ];
2 Read encrypted weights of crowd users from file;
3 Calculate the summation of weights based on the secure sum protocol;
4 for all the records with the same objectID m do
5 Calculate the summation of weighted data through the secure sum

protocol;
6 Estimate ground truth x∗m based on step T2;
7 Append output list with the new record [m,x∗m];
8 end
9 return output list;

2.4.4 Incremental PPTD

In many real-world crowd sensing applications, the sensing tasks may last several days

or months and the observation values of different objects are usually collected from
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users in a “streaming” manner. In such scenarios, it is inefficient to infer the ground

truth for each object until all the objects are observed. For example, in transportation

monitoring applications [96], the traffic information is reported by multiple users in real

time, it is inefficient to evaluate the route conditions until all the traffic information at

different time periods is observed by the users. In healthcare applications [36], patients’

health data are usually collected day by day, it is inefficient to analyze these data after

several weeks or several months. In order to address this challenge, a possible way

is to conduct the PPTD scheme once again on the whole data set whenever some new

objects are observed. However, tremendous unnecessary calculations would be involved

to iteratively update the estimated truths of the previous observed objects. To tackle this

problem, we design an incremental privacy-preserving truth discovery (i.e., incremental

PPTD) scheme that can timely estimate the ground truth of the newly observed object

without disclosing the private information of each user and revisiting the old data.

Different from PPTD, we design the incremental PPTD by first conducting the truth

estimation and then updating each user’s weight when a new object is observed. For each

user k, we use Dk =
∑l−1

m=1 d(xkm, x
∗
m) to denote his “old information” with respect to

the previous observed l− 1 objects. Here Dk represents the summation of the distances

between user k’s observations and the estimated truths for the l − 1 objects observed in

the past. When the l-th object is observed, the secure truth estimation phase and secure

weight update phase are conducted as Figure 2.4.

Figure 2.4: Incremental PPTD
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Secure Truth Estimation

In this phase, the ground truth of the newly observed object is estimated based on user

weights which are calculated based on the historical data. This phase contains two steps,

i.e., IT1 and IT2 in Figure 2.4.

Step IT1. Server S sends user k the rounding parameter L and the encrypted weight

Epk(w̃k), which is calculated by server S in the secure weight update phase for the

(l − 1)-th object. Then each user k calculates the ciphertext of the weighted data (i.e.,

Epk(w̃k · x̃kl ) or Epk(w̃k · xkl (i))) for the l-th object according to Eq. (2.17) or Eq. (2.18).

Here we use xkl to denote the observation value of user k for the l-th object, and x̃kl

denotes its approximate value. For continuous data, user k also needs to encrypt his

observation value as Epk(x̃kl ) in order to calculate the standard deviation stdl.

Step IT2. User k submits the ciphertext of weighted data to server S. Similar to

Step T2 in Section 2.4.2, server S calculates the estimated truth (i.e., x∗l ) for the l-th

object based on the secure sum protocol and Eq. (2.5). For continuous data, user k also

needs to upload the encrypted data Epk(x̃kl ), and then the average observation value x̄l

is calculated based on the secure sum protocol.

Secure Weight Update

After the truth for the l-th object is estimated, each user’s weight is securely updated in

this phase. Similar to PPTD scheme, here we also need to consider continuous data and

categorical data separately when calculating distances. We first introduce the common

steps (IW1 and IW4 in Figure 2.4) for the two types of data, and then discuss the specific

steps (IW2 and IW3 in Figure 2.4) to calculate the standard deviation stdl for continuous

data.

Step IW1. Server S sends the estimated truth x∗l to each user. For continuous

data, the average value x̄l are also sent to users. After receiving the value x∗l , user k

first updates Dk as Dk = Dk + d(xkl , x
∗
l ), then calculates the ciphertexts Epk(D̃k) and
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Epk(l̃ogDk) according to Eq. (2.19) and Eq. (2.20):

Epk(D̃k) = gD̃kr′
n
k1 mod n

2 (2.19)

Epk(l̃ogDk) = g
˜logDkr′

n
k2 mod n

2 (2.20)

where r′k1, r
′
k2 ∈ Z∗n are privately selected by user k.

Step IW4. User k submits both Epk(D̃k) and Epk(l̃ogDk) to server S. After receiv-

ing the ciphertexts from all users, S updates the encrypted weight Epk(w̃k) for user k

based on Step W6 in Section 2.4.2.

For continuous data, the standard deviation stdl is calculated as follows.

Step IW2. After receiving the average value x̄l, user k calculates dkl = (xkl − x̄l)2.

Then the ciphertext Epk(d̃kl ) is sent to server S.

Step IW3. When server S receives Epk(d̃kl ) from all users, S calculates stdl based

on the secure sum protocol. Then the standard deviation stdl is sent to each user.

The incremental privacy-preserving protocol is summarized as Protocol 3.

From Protocol 3, we can see when a new object is observed, the ground truth of this

object can be estimated in real time without disclosing each user’s private information.

Since the “old information” of user k has been integrated in the value Dk, there is no

need to revisit the observation values of the past objects when estimating the ground

truth of the new observed object. Although the iterative procedure is not involved in

this scheme and the two phases (i.e., secure truth estimation and secure weight update)

are conducted only once, the weight of each user will converge to stabilization when

the number of objects increases. Additionally, this incremental scheme can be easily

modified to fit the scenario where the objects are grouped into sequential chunks, of

which each may contains multiple objects. In such scenario, we repeat the two phases

for each chunk and update Dk of user k as Dk = Dk +
∑Cε

m=1 d(xkm, x
∗
m), where Cε is

the number of objects in the ε-th chunk.
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Protocol 3: Incremental Privacy-Preserving Truth Discovery Protocol
Input: K users, each user’s encrypted weight (i.e., {Epk(w̃k)}Kk=1) after the

(l − 1)-th object is observed, each user’s observation value {xkl }Kk=1 for
the l-th object, each user’s “old information” Dk and the rounding
parameter L.

Output: Estimated ground truth x∗l of the l-th object.

1 The cloud server S sends the encrypted weight Epk(w̃k) and the rounding
parameter L to user k;

2 Each user k ∈ K calculates the ciphertexts of the weighted data according to
Eq. (2.17) and Eq. (2.18). For continuous data, user k also needs to
calculate the encrypted data Epk(x̃kl ). Then the ciphertexts of the weighted
data and the encrypted data are submitted to server S .

3 After receiving the ciphertexts from all users, server S estimates the ground
truth x∗l based on Step IT2 and sends it to each user. For continuous data,
the average value x̄l should also be calculated and sent to users.

4 Each user k ∈ K updates Dk with Dk + d(xkl , x
∗
l ), then calculates the

ciphertexts Epk(D̃k) and Epk(l̃ogDk) according to Eq. (2.19) and
Eq. (2.20). Here the standard deviation stdl for continuous data is
calculated based on Step IW2 and Step IW3.

5 User k submits both Epk(D̃k) and Epk(l̃ogDk) to server S. Then S updates
the encrypted weight Epk(w̃k) for user k based on Step W6 in Section 2.4.2.

2.5 Privacy Analysis

As previously discussed, the security threats mainly comes from the parties themselves

in practical crowd sensing systems. Thus, the goal of PPTD is to protect the observation

values of each user from being disclosed to other parties, and at the same time, the

weight of each user should not be known by any party. Since our framework is built upon

the proposed secure sum protocol, we start with the privacy analysis of this protocol.

In the secure sum protocol, the data are exchanged only between cloud server and

users, and all the exchanged data are ciphertexts. Although some users obtain the cipher-

text of summation Epk(
∑K

k=1 vk), they cannot decrypt it because of the (p, t)-threshold

Paillier cryptosystem we used and there is no collusion among users. Thus, the users

will learn nothing after the execution of the protocol. Similarly, the ciphertext Epk(vk)

cannot be decrypted by the cloud server, and what the server can know at last is just the
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summation
∑K

k=1 vk, based on which it cannot infer the input value vk of each user. In

this way, the privacy of each user’s input value is guaranteed by this protocol.

Then we can summarize the privacy-preserving goal of our framework as Theorem 1,

followed by the proof.

Theorem 1. Suppose K ≥ 3 and for each object m ∈ M, there are at least two users

k1, k2 ∈ K giving different observation values (i.e., xk1
m 6= xk2

m ). Also assume the parties

are semi-honest and there is no collusion among them. Then after the execution of

PPTD protocol, the observation values of each user will not be disclosed to others and

the weight of each user will not be known by any party.

Proof. Firstly, we prove the observation values of each user will not be disclosed to

others in our framework. We can achieve the goal by proving that there is not an attack

algorithm, based on which one party can infer the private observation values of the users.

For the cloud server, we assume there exists an attack algorithm based on which

the server can infer the observation values of user k1 ∈ K. The input of the algorithm

should be the plaintexts the server knows during the privacy-preserving truth discovery

procedure. These plaintexts are
∑K

k=1 x
k
m, x̄m,

∑K
k=1 d

k
m, stdm,

∑K
k=1Distk,

∑K
k=1wk,∑K

k=1(wk · xkm) and the estimated ground truth x∗m for each m ∈ M. Also, the cloud

server knows the values K and M . According to our assumption, the server can infer

the observation value xk1
m (m ∈ M) of user k1 based on these input values. We also

assume another user k2 ∈ K has the observation value xk2
m (6= xk1

m ) for the object m.

Now, we exchange the observation values of k1 and k2, which means user k1 has the

observation value xk2
m and user k2 has the observation value xk1

m for the objectm after the

exchange. Then, we restart the privacy-preserving truth discovery procedure. However,

the plaintexts known by the server will not be changed based on our framework. That

is to say, the input values of the attack algorithm will not be changed. So based on

this algorithm, the cloud server would still infer the value xk1
m for user k1. However,

now the observation value of user k1 has been changed to xk2
m . Obviously, there is a
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contradiction. Therefore, such an attack algorithm does not exist and the cloud server

cannot infer the observation values of users in our framework.

For each user, he can know the public values x̄m, stdm, x∗m for each m ∈M besides

his private observation values based on our framework. Using the same method above,

we can also prove that this user cannot infer the observation values of others.

Next, we prove the weight of each user (i.e., wk, k ∈ K) will not be disclosed to any

party in our framework.

Based on the privacy-preserving truth discovery protocol, the cloud server updates

the ciphertexts of the weights (i.e., Epk(wk), k ∈ K) instead of the plaintexts of them

in each iteration. Also, the users calculate the weighted data based on the ciphertexts

of weights. Based on the semi-honest and non-collusion assumptions, all the parties

cannot decrypt each encrypted weight. The only plaintexts about the weights are the

summations
∑K

k=1wk and
∑K

k=1wk · xkm, which are known by the cloud server. Since

xkm is only known by the user, the server cannot inferwk based on the above summations.

So the weight information will not be disclosed to any party in this framework.

As for the incremental PPTD scheme, the private information of each user can also

be well protected from being disclosed to others. When the l-th object is observed,

the plaintexts known by the cloud server are
∑K

k=1 x
k
l , x̄l,

∑K
k=1 d

k
l , stdl,

∑K
k=1 Dk,∑K

k=1 wk,
∑K

k=1(wk · xkl ) and x∗l . However, the cloud server can not infer each user’s

private information from these plaintexts according to the proof described above. Ad-

ditionally, each user in this scheme knows the public values x̄l, stdl, x∗l and his own

observation value. However, based on these plaintexts, he can not infer the observation

values of others and the weight information.

2.6 Discussions

Since the cryptosystem adopted here is defined over an integer ring, we use parameter L

to round the fractional values to integers. During the rounding process, numerical errors
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are inevitably introduced. However, the accuracy of the final estimated ground truth will

not be greatly affected if we select appropriate L, which is shown in Section 2.7.

Another issue we are concerned is missing values, which means not all the objects

are observed by all the crowd users. This can be easily handled in our framework. When

different users observe different subsets of the objects, we can normalize the aggregate

deviations of each user by the number of his observations.

Also, to tackle the issue that some users could not respond timely after the sensing

tasks are released, we can set a waiting-time threshold on the cloud server. Based on

the (p, t)-threshold Paillier cryptosystem adopted in this chapter, as long as at least t−1

users could upload their data in time, the privacy-preserving truth discovery procedure

can be completed.

Additionally, our proposed framework can be easily modified to the situation where

the user weight is known only to the user himself. In this case, the weight values are

updated by users themselves. In particular, during the weight update procedure, user

k ∈ K just needs to submit the encrypted summation of the distances Epk(D̃istk). Then

the cloud server calculates
∑K

k=1 D̃istk/L through the secure sum protocol. Based on

this summation, each user can privately update his weight according to Eq. (2.2). In

the truth estimation procedure, user k ∈ K submits the ciphertexts of weighted data

{Epk(w̃k · xkm)}Mm=1 and the encrypted weight Epk(w̃k). Then the cloud server can esti-

mate ground truth for each object via the same method used in PPTD (step T2).

Next, we discuss some limitations of PPTD. In this chapter, we assume that all the

parties are semi-honest and there is no collusion among them. If these assumptions can-

not be guaranteed, the observation values and the weight information of individual users

may be disclosed. For example, if the parties are not semi-honest, the cloud server can

send the ciphertexts of users’ private information (e.g., Epk(x̃km) or Epk(w̃k)) instead of

the encrypted summations to t−1 users and then get these private information according

to Protocol 1. Additionally, if the cloud server colludes with t− 1 users, the private in-

formation of other users can also be disclosed. Thus, how to improve PPTD and enable
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it to resist collusions or dishonest behaviors of the parties is an interesting direction of

future work. Another limitation of this work is the computational and communication

overhead introduced by the adopted cryptosystem. Compared with the truth discovery

approaches (e.g., CRH) that do not take actions to protect user privacy, PPTD requires

each user to conduct ciphertext-based calculations and communication with the cloud

server, and this inevitably introduces more overhead to individual users. So how to make

the proposed framework lightweight and reduce the overhead introduced to the parties

is also a problem worthy of studying in future work.

2.7 Performance Evaluation

In this section, we evaluate the proposed privacy-preserving truth discovery (PPTD)

framework on both real-world crowd sensing systems and synthetic dataset.

2.7.1 Experiment Setup

In this chapter, we consider two different types of data: continuous data and categorical

data. To evaluate the estimation accuracy of PPTD, we use following measures for the

two data types:

• MAE: For continuous data, we use the mean of absolute error (MAE), i.e.,
1
M

∑M
m=1 |x∗m − x̂∗m|, to measure the mean of absolute distance between the es-

timated results and ground truths. Here x̂∗m denotes the ground truth of object

m.

• RMSE: For continuous data, we also use the root of mean squared error

(RMSE), i.e.,
√

1
M

∑M
m=1(x∗m − x̂∗m)2, to measure the accuracy. Compared with

MAE, RMSE can penalize more on the large distance and less on the small

distance.
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• ErrorRate: For categorical data, we calculate the percentage of mismatched val-

ues between estimated results and ground truths as ErrorRate.

The baseline approach we use in this experiment is the state-of-the-art truth discov-

ery scheme, i.e., CRH [61, 65], which does not take any actions to protect user privacy

during the whole procedure.

A (p, bp
2
c)-threshold Paillier cryptosystem is used in our experiment, and here we fix

the key size as 512 (can also be set as other values according to the practical demand).

Our framework was implemented in Java 1.7.0 using the Paillier Threshold Encryption

Toolbox1. The sensing devices we use are Nexus 4 Android phones. The “cloud” is

emulated by a cluster of three Intel(R) Core(TM) 3.40GHz PCs running Ubuntu 14.04,

with 8GB RAM. When implementing parallel privacy-preserving truth discovery frame-

work, we use a 15-node Dell Hadoop cluster with Intel Xeon E5-2403 processor (4 ×

1.80 GHz, 48GB RAM) as the “cloud”.

2.7.2 Experiment on Crowdsourced Indoor Floorplan Construction

System

In this part, we show the experiment results on continuous data collected from a real-

world crowd sensing system to demonstrate the advantages of PPTD. The application

is crowdsourced indoor floorplan construction [10, 12, 33], which has recently drawn

much attention since many location-based services can be facilitated by it. The goal

of such crowd sensing system is to automatically construct indoor floorplan from sen-

sory data (e.g., the readings of compass, accelerometer, gyroscope, etc.) collected from

smartphone users. Clearly, these sensor readings encode the private personal activities

of the phone user, and thus the user may not be willing to share such data without the

promise of privacy protection. For the sake of illustration, here we focus on just one

task of indoor floorplan construction, namely, to estimate the distance between two par-

1http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/

http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/


35

ticular location points in the hallway. We develop an Android App which can estimate

the walking distances of a smartphone user through multiplying the user’s step size by

step count inferred using the in-phone accelerometer.

In our experiment, 10 volunteers are employed as smartphone users and we select

27 hallway segments in a building as the objects. Each party (including the cloud server

and smartphone users) in this experiment holds the public key and the corresponding

private key share which are produced by the cryptosystem. The ground truths of these

hallway segments are obtained by measuring them manually.

Accuracy. We first compare the accuracy of the final estimated ground truths be-

tween PPTD and the baseline approach (i.e., CRH). Since the estimation errors of PPTD

are introduced by the rounding parameter L, we vary L from 100 to 106 and measure the

corresponding accuracy. In the experiment, we randomly initialize the estimated ground

truths, and use a threshold of the change in the estimated ground truths in two consec-

utive iterations as the convergence criterion. The experiment is repeated for 20 times,

and we report the averaged results.
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Figure 2.5: Ground truth estimation errors under different values of the parameter L

Figure 2.5 shows the ground truth estimation errors of our proposed framework and

CRH under different values of the parameter L. The estimation error is measured in

terms of MAE and RMSE, respectively. As seen in the figure, the estimation error of
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PPTD is almost the same as that of CRH unless the rounding parameter L is too small

(i.e., 100 or 101). This is because during the rounding procedure the fractional part (i.e.,

decimal digits) of the original value (e.g., L · logDistk) is dropped. In this sense, the

smaller the parameter L, the more decimal digits of the original value will be lost. To

measure the information loss degree, we calculate the relative estimation errors of PPTD

and CRH in both object truth and user weight. Here we manually decrypt user weights

for the analysis purpose. In particular, we define the relative error of user weight as

|| log wc − log wp||/|| log wc||, where wc and wp are the weight vectors of all the users

obtained from CRH and PPTD, respectively. Similarly, we define the relative error of

the estimated ground truths as || log x∗c− log x∗p||/|| log x∗c ||, where x∗c and x∗p are obtained

from CRH and PPTD respectively. The results are shown in Figure 2.6.
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Figure 2.6: Relative errors under different values of L

As shown in Figure 2.6a and 2.6b, the relative errors in both truth and weight drop as

the parameter L increases. That is to say, we do not need to worry about the estimation

errors produced during the rounding procedure as long as we select a large enough

parameter L.

Additionally, we evaluate the performance of PPTD under varying number of users.

The number of objects is still 27, while the number of users varies from 3 to 10. We also

fix the parameter L as 1010 and use the same convergence criterion as before. Then the

experiment is repeated 20 times and the averaged results are reported.
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Figure 2.7a and 2.7b show that PPTD almost has the same estimation errors as CRH

while the number of users is varying, which means that our proposed framework is

robust against the change of user numbers. Also, we can see that, the estimation errors

decrease with the increase of the number of users. This makes sense because it is hard

to improve upon the users’ individual poor observation values when the number of users

that observe the same objects is small. When the number of users increases, each object

is observed by more and more diversified crowd users, thus it is more and more likely

to cancel out individual users’ biases and errors so as to reach higher accuracy.
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Figure 2.7: Ground truth estimation errors under different numbers of users

Convergence. Next, we show the convergence of the privacy-preserving truth dis-

covery procedure. In this experiment, the rounding parameter L is still set as 1010. We

first set the number of users as 10 and calculate the objective value of the truth discovery

problem, which is defined as the weighted summation of the distances between individ-

ual observations and the estimated ground truths (i.e.,
∑K

k=1wk
∑M

m=1 d(xkm, x
∗
m)). We

repeat the experiment for 5 times with different random initialization values and report

the evolution of the objective values in Figure 2.8a. As we can see, all the objective

values, although under different initializations, converge quickly within just a few it-

erations. Then we evaluate the convergence of the privacy-preserving truth discovery

procedure when the number of users varies. Here we consider four cases where the
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number of users is set as 3, 5, 7 and 9, respectively, and for each case, the initialization

values are randomly selected. The evolution of the objective values for the four cases

are shown in Figure 2.8b, from which we can see all the objective values can converge

within just a few iterations.
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Figure 2.8: Convergence w.r.t Iterations

Computational Cost. In this part, we take a look at PPTD’s computational cost,

which is composed of the cost on the smartphone of each user and the cost on the cloud

server. Here, we also fix the rounding parameter as 1010, which actually has little effect

on the computational time compared with user numbers and object numbers.

On the smartphone of each user, there are two major processing procedures: 1) cal-

culating the encrypted summation of distances, and 2) calculating the ciphertexts of

weighted observation values. In this experiment, we evaluate the running time of each

procedure as well as the total running time under different object numbers ranging from

3 to 27. Figure 2.9a shows the running time per iteration for the two procedures, respec-

tively. We can see that the second procedure (i.e., calculating the ciphertexts of weighted

observation values) varies more when the object number increases. Figure 2.9b gives

the total time of the two procedures in each iteration. When the object number reaches

27, the total running time is only 0.039s, which is sustainable for the phone users. All

the results in Figure 2.9 are averaged values derived from 10 smartphones.
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Figure 2.9: Running time w.r.t Number of objects for continuous data on smartphone

On the cloud server, there are also two major processing procedures in each iteration:

1) updating weights, and 2) estimating ground truths. Here we evaluate the running time

of each procedure, and the total running time under different object numbers as well as

user numbers, respectively. From Figure 2.10a and Figure 2.11a, we can see that most of

the time is spent in updating truth for each object. That is also the reason why we need

to parallelize the truth updating procedure with MapReduce framework when dealing

with massive data. On the other hand, Figure 2.10b and Figure 2.11b demonstrate that

the total running time is approximately linear with respect to both object number and

the user number.
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Figure 2.10: Running time w.r.t Number of objects for continuous data on the cloud
server
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Figure 2.11: Running time w.r.t Number of users for continuous data on the cloud server

As for the baseline approach CRH, each user just needs to upload his sensory data to

the cloud server and then the server conducts truth discovery operations on these data.

So there is no computational cost on the user side. Additionally, since all the calculations

of CRH are based on plaintexts and the operations of PPTD are conducted on encrypted

data, the computational cost of CRH is less than that of PPTD on the cloud server.

However, CRH fails to protect users’ private data and reliability information, which will

raise the privacy concerns of users.

Communication and Energy Overhead. Compared with the baseline approach

CRH, in which each user only needs to communicate with the cloud server once for

uploading his sensory data, PPTD introduces more communication overhead due to the

incorporated privacy-preserving scheme. To evaluate the communication overhead of

PPTD, we measure the number of packets exchanged between the cloud server and all

the crowd users. In this experiment, we use the change of the aforementioned objective

value in two consecutive iterations as the convergence criterion and the threshold is set

as 0.001. Figure 2.12 shows the numbers of exchanged packets over all users during

the whole PPTD procedure, under different user numbers (i.e., K) from 3 to 10. As

seen, the overall communication overhead is roughly O(K). Actually, for each user,

the average number of messages needed to be exchanged with the cloud server can be

roughly calculated by 6(i + 1), where i is the number of iterations during the PPTD
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procedure. Considering that here we set a very conservative threshold which leads to

average 6 iterations (much larger than the usual 2 or 3 iterations as shown in Figure 2.8a),

the communication overhead is well within the realm of practicality.

The energy overhead on the smartphone of each user is mainly caused by the ci-

pher related operations and data transmissions. For the purpose of evaluating the energy

overhead, we measure the average energy consumption percentage (i.e., the energy con-

sumed by PPTD divided by the total energy of the smartphone while it is fully charged)

under different object numbers. Figure 2.13 shows the average energy consumption per-

centage in one iteration for each user. When the object number reaches 27, the energy

consumption percentage is only 0.000198% for each smartphone, which is acceptable

for the phone users. The results in Figure 2.13 are averaged values derived from 10

smartphones in WiFi network environment.
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Figure 2.13: Energy consumption
percentage on smartphone

2.7.3 Experiment on Crowd Wisdom System

In this part, we evaluate the performance of PPTD on categorical data provided by hu-

mans as the sensors. The experiment is conducted on a crowd wisdom system which

can integrate the crowd answers and opinions towards a set of questions. We design and

implement an Android App through which we can send questions and corresponding

candidate answers to the crowd users. Each user who receives the questions can upload
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his answers to the cloud server. However, the uploaded answers for each question may

be conflict due to various reasons. For example, some users may not have the back-

ground knowledge for some specific questions, and different users may have different

understandings for the same question. In order to infer the true answer for each ques-

tion, the cloud server needs to aggregate the answers from different users. To address

the concern of some users that their private personal information could be inferred from

their answers, we employ PPTD upon this crowd wisdom system, encrypting user an-

swers before they are uploaded to the cloud server. Totally, 113 volunteers are employed

as smartphone users and 54 questions are sent to them with candidate answers. For each

question, there are four candidate answers and each user who receives this question

needs to select one of the candidate answers as the correct answer. We use Error Rate

as the evaluation metric and for the sake of evaluation, we have got the ground truth

answer for each question.

Accuracy and Convergence. Since in this experiment, each object (i.e., question)

is not observed (i.e., answered) by all the users, we use the average number of users ob-

serving each object (i.e., the ratio between the number of total answers over the number

of total questions) as the tuning variable when evaluating the accuracy of PPTD. The

error rates of PPTD and CRH are shown in Figure 2.14a, from which we can see that

PPTD produces the same error rates as CRH at all time. Moreover, we did not show the

error rates with respect to the rounding parameter L, since we find that the final aggre-

gated results are not affected by L. This is because in this case, the negligible numerical

errors introduced by L to the intermediate values are simply not large enough to change

the final answers, which are categorical numbers. To evaluate the estimation error of

user weights, we manually decrypt each user’s weight derived by PPTD. Here we still

use the relative error defined in Section 2.7.2 to measure the errors introduced by L.

The results are reported in Figure 2.14b, which show that the estimation errors can be

ignored if parameter L is large enough. Additionally, we also use the threshold of the
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change in the estimated ground truths in two consecutive iterations as the convergence

criterion, and we find both PPTD and CRH converge within two iterations.
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Figure 2.14: Accuracy of PPTD for categorical data

Computational Cost. Next, we evaluate PPTD’s computational cost for categor-

ical data. Similar to the experiment on continuous data, the rounding parameter L is

also fixed as 1010 in this case. Here, we also evaluate the computational cost on user

smartphone and the cloud server, respectively.

In particular, we evaluate the two major procedures on user’s smartphone, and then

give the total running time. In this experiment, the number of the objects observed by

each user varies from 2 to 14. The results are shown in Figure 2.15, from which we can

see the second procedure (i.e., calculating weighted data) costs more time than the first

procedure (Figure 2.15a). This is because most of the operations in the second procedure

are conducted on ciphertexts while the first procedure is mainly composed of plaintext

based operations. Additionally, Figure 2.15b shows that the largest total running time of

the two procedures on user smartphone is no more than 0.45s in each iteration, which

verifies the practicality of our proposed framework.

To evaluate the computational cost on the cloud server, we vary the number of users

from 13 to 113 (the corresponding number of objects varies from 20 to 54, because each

question is only answered by part of the users). Figure 2.16 reports the running time of

each procedure and the total running time in each iteration. From Figure 2.16a we can
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Figure 2.15: Running time w.r.t Number of objects for categorical data on smartphone

see that the computational time of updating truths is far greater than the time of updating

weights for all the scenarios, which is similar to that in the experiment for continuous

data. The evaluation of total running time in each iteration can be seen in Figure 2.16b.

We can see the total running time is 25.74s when the number of users is 113. This total

time is reasonable, considering the number of crowd users in this experiment is ten times

larger than that in the experiment for continuous data.
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Figure 2.16: Running time w.r.t Number of users for categorical data on the cloud server
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2.7.4 Experiment of Parallel PPTD

From above experimental results, we can see most of the computational time on the

cloud server is consumed in updating the ground truths, so we improve PPTD by adapt-

ing this procedure to MapReduce framework. In this part, the efficiency of parallel

PPTD is verified. Here we use a Hadoop cluster as the cloud server. The crowd sensing

system is simulated with 1000 users and 1000 objects, and the observation values are

generated through adding Gaussian noise of different intensities to the ground truths.

For comparison purpose, we also deploy the basic PPTD framework on the same server.
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When evaluating running time under different user numbers and object numbers, we

adopt 10 Reducer nodes for parallel PPTD. Firstly, we fix the user number as 500 and

change the object number from 100 to 1000. The running time of parallel PPTD and

the basic PPTD in each iteration are shown in Figure 2.17. From this figure we can see

the parallel PPTD is increasingly more efficient than the basic PPTD as the number of

objects goes up. When the object number reaches 1000, it takes parallel PPTD only

176.48s to complete the two procedures while the basic PPTD would have to spend

709.25s to finish the same computations. Then, we fix the object number as 500 and

change the user number from 100 to 1000. Figure 2.18 reports the results in this case.
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Similar patterns can be seen. When user number reaches 1000, the parallel PPTD only

spends 170.78s to finish the job, much less than the 655.38s consumed by PPTD. All

the above results confirm the efficiency of parallel PPTD.

Moreover, it is important to study the effect of the node number in the Hadoop sys-

tem on the performance of the proposed mechanism. In this experiment, we fix both user

number and object number as 500. Figure 2.19 shows the running time under different

number of Reducer nodes (results will be similar for the Mapper nodes). As we can see,

with the increase of Reducer numbers, the running time decreases rapidly at first, and

gets flattened very soon. This is because including more Reducer nodes, though improv-

ing the parallelism, will introduce more overhead (e.g., communication). Therefore, it

is not true that more Reducer nodes would always lead to better performance.
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Figure 2.19: Running time w.r.t Number of reducers

2.7.5 Experiment of Incremental PPTD

In this section, we evaluate the performance of incremental PPTD scheme on both con-

tinuous data and categorical data which are collected from the crowdsourced indoor

floorplan construction system and the crowd wisdom system respectively. Here we as-

sume that the objects (i.e., segments in the hallway or questions) are observed in a

“streaming” manner and only one object is observed at each timestamp. The baseline

method we adopted is PPTD, i.e., we conduct the PPTD scheme once again on the whole
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data set whenever a new object is observed. The rounding parameter L is still set as 1010

and we use I-PPTD to denote the proposed incremental PPTD scheme.

Performance on Crowdsourced Indoor Floorplan Construction System

We first compare the accuracy and computational cost of the incremental PPTD scheme

with that of the baseline method (i.e., PPTD). In order to measure the estimation er-

ror of the proposed scheme, we fix the number of users as 10 and calculate MAE and

RMSE for the estimated truths of the 27 objects, and the results are shown in Table 2.1.

Although the estimation error of I-PPTD is a little higher than that of PPTD, the com-

putational cost of I-PPTD is much less than that of the baseline method, which can be

seen from Figure 2.20 and Figure 2.21.

Table 2.1: Accuracy of I-PPTD V.S. PPTD for continuous data

MAE RMSE
I-PPTD 0.7354 0.8342
PPTD 0.7170 0.8218
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Figure 2.20 shows the average running time for each object on the cloud server when

the number of users varies from 3 to 10. Here we conduct PPTD with 10 iterations in

order to guarantee the convergence. From this figure, we can see the average running
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time of I-PPTD is much less than that of PPTD on the cloud server, especially when

the number of users becomes large. This is mainly because PPTD needs to revisit the

old data and be conducted on all observed objects whenever a new object is observed,

while I-PPTD only needs to estimate the truth of the new observed object. Additionally,

at each timestamp, PPTD is iteratively conducted until convergence while I-PPTD only

needs to be conducted once. Figure 2.21 reports the average running time for each

object on smartphone while the number of objects is varying from 3 to 27. Here we also

conduct PPTD with 10 iterations. This figure shows that the average running time of

I-PPTD on smartphone is much less that of PPTD. The reason is similar with the above.

Additionally, the averaging running time of I-PPTD is almost the same while that of

PPTD is increasing when the number of objects varies from 3 to 27. The reason is that

PPTD needs to estimate the truths of all the observed objects while I-PPTD only needs

to estimate the truth for the new observed object at each timestamp.

In this experiment, we also evaluate the convergence of I-PPTD scheme. Here we

manually decrypt user weights and report the results at different timestamps. Figure 2.22

shows the weights of 5 randomly selected users when the timestamp is varying from 1

to 27. From this figure we can see users’ weights gradually become stable as the number

of timestamps increases, which means the proposed I-PPTD scheme can guarantee con-

vergence when sufficient objects are observed. To further illustrate this point, we also

compare the weights of all users calculated by I-PPTD with those calculated by PPTD.

The results are shown as Figure 2.23. Here we report user weights calculated by I-PPTD

at timestamp 5, 15 and 25. We also report the weight values calculated by PPTD scheme

after all the objects are observed. From the result we can see although user weights cal-

culated by I-PPTD deviate from the baseline values at the first few timestamps, they

gradually converge to the values calculated by PPTD as time goes on. That is to say,

I-PPTD can achieve similar accuracy with PPTD when sufficient objects are observed.

Performance on Crowd Wisdom System

In this part, we evaluate the performance of I-PPTD on categorical data. We first eval-
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Figure 2.22: Convergence of I-PPTD on continuous data
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Figure 2.23: User weights calculated by I-PPTD and PPTD

uate the accuracy of I-PPTD by calculating the error rate of the estimated truths. The

number of users is fixed as 113. After observing the 54 questions, we find both the error

rates of I-PPTD and PPTD are 0.074, which verifies that I-PPTD could guarantee high

accuracy while protecting users’ privacy on streaming categorical data.

Similar to the experiment on continuous data, we also evaluate the computational

cost of I-PPTD on categorical data and compare it with PPTD. In order to guarantee the

convergence, we conduct PPTD with 2 iterations whenever a new object is observed in

this experiment. We first evaluate the computational cost of I-PPTD on the cloud server.

We vary the number of users from 13 to 113 and calculate the average running time for

each newly observed object. The results are shown as Figure 2.24, from which we can

see the computational cost of I-PPTD is much less than that of PPTD as the number

of users increases. The reason is similar to that for continuous data. Then we evaluate
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the computational cost of I-PPTD on the user side. We vary the number of objects

observed by each user from 2 to 14 and calculate average running time for each newly

observed object on smartphone. Figure 2.25 reports the results, from which we can see

the computational cost of I-PPTD on the user side is also much less than that of PPTD.

The experimental results on categorical data further verify that I-PPTD scheme is much

more efficient than PPTD scheme when the data is collected in a streaming manner.

13 23 33 43 53 63 73 83 93 103 113

Number of users

0

5

10

15

20

25

R
u

n
n

in
g
 t

im
e 

(s
)

I-PPTD

PPTD

Figure 2.24: Running time of I-
PPTD and PPTD w.r.t Number
of users for categorical data on
the cloud server

2 4 6 8 10 12 14

Number of objects

0

0.1

0.2

0.3

0.4

0.5

R
u

n
n

in
g

 t
im

e 
(s

)

I-PPTD

PPTD

Figure 2.25: Running time of I-
PPTD and PPTD w.r.t Number
of objects for categorical data on
smartphone

1 7 13 19 25 31 37 43 49 55

Timestamp

0

2

4

6

8

10

12

14

16

18

20

22

U
se

r 
w

ei
g

h
t

User 1 User 2 User 3 User 4 User 5

Figure 2.26: Convergence of I-PPTD on categorical data

In order to evaluate the convergence of I-PPTD on categorical data, we randomly

select 5 users and manually decrypt their weights at different timestamps. The result

is shown as Figure 2.26, from which we can see the weight of each user is gradually

converging to stable as the number of observed questions increases. This confirms that
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the proposed I-PPTD scheme can guarantee convergence when sufficient object are ob-

served.

2.8 Summary

In this chapter, we design a novel privacy-preserving truth discovery (PPTD) framework

to tackle the issue of privacy protection in crowd sensing systems. The key idea of PPTD

is to perform weighted aggregation on the encrypted data of users using homomorphic

cryptosystem, and iteratively conduct two phases (i.e., secure weight update and secure

truth estimation) until convergence. During this procedure, both user’s observation val-

ues and his reliability score are protected. In order to process large-scale data efficiently,

a parallelized extension of PPTD is also proposed based on the MapReduce framework.

Additionally, we design an incremental PPTD scheme to deal with the scenarios where

the sensory data of different objects are collected in a streaming manner. Theoretical

analysis demonstrates that the observation values of each user will not be disclosed to

others and the weight of each user will not be known by any party based on the pro-

posed framework. Through extensive experiments on both real-world crowd sensing

systems and synthetic data, we demonstrate that the proposed framework can not only

generate accurate aggregated results but also guarantee the introduced computational

and communication overhead are within the realm of practicality.



Chapter 3
A Lightweight Privacy-Preserving

Truth Discovery Framework

3.1 Introduction

The privacy-preserving truth discovery (PPTD) framework designed in Chapter 2 can

achieve strong privacy guarantee, however, at a cost of significant computation and

communication overhead. The reason is that each user in this framework has to con-

duct considerable amount of ciphertext-based calculations and communication with the

cloud server during the truth discovery procedure. In crowd sensing systems, the sensing

device carried by each participating user usually has limited energy resources. There-

fore, there is a great need to design a privacy-preserving truth discovery scheme which

can not only guarantee high accuracy and strong privacy protection but also introduce

little overhead to the participating users.

In the light of this need, in this chapter we propose a lightweight privacy-preserving

truth discovery framework (L-PPTD) for crowd sensing systems, in which the sensory

data and reliability information of each user are both protected from being disclosed to

others. The proposed framework is implemented by involving two non-colluding cloud

platforms and adopting additively homomorphic cryptosystem. In this framework, the
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aggregated results (referred to as truth) are cooperatively estimated by the two cloud

platforms without disclosing any user’s private information. Additionally, instead of

directly encrypting the data to be uploaded, each user in this framework preserves her

privacy through perturbing the data with some random numbers, and all the ciphertext-

based calculations are moved onto the cloud side, which substantially reduce the over-

head incurred on each user.

Although L-PPTD can achieve tremendous reduction of the overhead on the user

side, each user is still responsible for calculating her weight so as to protect reliability

information. To further reduce the workload of users, we propose a more lightweight

framework (L2-PPTD) suiting for the scenarios where only the sensory data of each user

need to be protected. In this framework, all each user needs to do is just uploading the

perturbed sensory data and random numbers before the truth discovery procedure starts.

3.2 Problem setting

In this section, we formulate the problem addressed by the proposed lightweight privacy-

preserving truth discovery framework. This framework consists of two different types

of parties: data requester and participating users. The data requester is an individual

or organization who posts sensing tasks which usually require the observations on a

collection of objects (e.g., the potholes or litters in geotagging campaigns), while the

participating users are a group of mobile device users who carry out the sensing tasks

and generate sensory data with their mobile devices.

In crowd sensing systems, the sensory data and the reliability information of each

participating user may be disclosed to the data requester or other users during the data

aggregation process, resulting in the leakage of users’ privacy. Here we mainly consider

the attacks coming from the inside malicious parties (data requester or participating

users). For the sake of curiosity and financial purpose, the data requester may try to

infer the sensitive personal information of each participating user. On the other hand,
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each participating user may also want to know the private information of other users.

In this chapter, we still adopt the semi-honest threat model, in which all the parties

will strictly follow the designed protocols, but each of them may backup all the data

she has sent and received, and then try to learn the private information of other parties.

Additionally, we assume there is no collusion in the designed framework, which means

the parties will not collude with each other outside the designed protocols.

The problem addressed in this chapter is formulated as follows: Suppose there are

M objects in the posted sensing task, denoted as O = {o1, o2, ..., oM}, and these objects

will be observed by K participating users represented as U = {u1, u2, ..., uK}. We use

W = {w1, w2, ..., wK} to denote the weights (i.e., reliability) of these users. Let xkm

denote the sensory data of user uk for object om. For every object om ∈ O, there is

a ground truth which is not known by all the parties in this framework. Our goal is

to calculate the estimated values {xm}Mm=1 of the ground truths for all the objects while

protecting the sensory data and reliability information of each user from being disclosed

to others.

3.3 Preliminary

In this section, we will review the concepts and general procedure of truth discovery and

additively homomorphic encryption, which are the two major techniques adopted in our

proposed framework.

3.3.1 Truth Discovery

As described in Section 2.3.1. The truth discovery approaches usually take a two-step

iterative procedure:

Weight Estimation

In this step, each user’s weight will be estimated based on the difference between its

sensory data and the estimated truths. Typically, the weight of a user uk is calculated
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as wk = f(
∑M

m=1 d(xkm, xm)), where f is a monotonically decreasing function, and

d(xkm, xm) is the distance function which is used to measure the difference between

users’ sensory data and the estimated truths.

In the proposed framework, we consider both cases when the sensory data are con-

tinuous or categorical. For continuous data, the squared distance function d(xkm, xm) =

(xkm−xm)2 is adopted. For categorical data, we assume each task has multiple candidate

results or answers. Then the sensory data xkm = (0, ..., 1
q
, ..., 0)T represents user k selects

the q-th result or answer for object om. In this case, the distance function is defined as

d(xkm, xm) = (xkm − xm)T (xkm − xm).

In this chapter, we aim to develop a general framework that is compatible with differ-

ent types of function f . Without loss of generality, we will first use the following loga-

rithmic weight function adopted in the widely used truth discovery method CRH [61,65]

as an example when presenting our framework

wk = log

(∑K
k′=1

∑M
m=1 d(xk

′
m, xm)∑M

m=1 d(xkm, xm)

)
, (3.1)

and then discuss the generalization of the proposed framework to other weight functions.

Truth Estimation

After user weights are calculated, the ground truth for each object om can be estimated

as

xm =

∑K
k=1wkx

k
m∑K

k=1 wk
. (3.2)

When the sensory data is continuous, this value is actually the weighted average of

the users’ observations on object om. But when the data is categorical, xm is a vector in

which each element represents the probability of a particular candidate result or answer

being the truth. The estimated truth of object om will be the result or answer with the

largest value in vector xm.

In truth discovery algorithms, the above two steps will be iteratively conducted until

some convergence criterion is satisfied. The convergence criterion can be a predefined
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iteration number or a threshold of the change in the estimated truths in two consecutive

iterations.

3.3.2 Additively Homomorphic Encryption

LetM denote the message space, an encryption scheme is said to be additively homo-

morphic if the encryption function E satisfies

∀m1,m2 ∈M, E[m1 +m2] = E[m1]⊕ E[m2] (3.3)

∀m3 ∈M, E[a ·m3] = a⊗ E[m3] (3.4)

for some operators ⊕ and ⊗, where a is a constant. In other words, by using the addi-

tively homomorphic cyptosystem, the encrypted sum of messages can be directly calcu-

lated from the ciphertexts of these messages.

In this chapter, we adopt a widely used additively homomorphic cryptosystem,

namely, Paillier’s cryptosystem [80], in which the message m ∈ Zn (Zn is the set of

integers modulo the large positive integer n) can be encrypted as E[m] = gmrnmod n2

with the public key pk = (n, g), where r ∈ Z∗n (Z∗n denotes the multiplicative group of

invertible elements of Zn) is privately and randomly selected by the user who calculates

the ciphertexts. Then, ∀m1,m2,m3 ∈ Zn, the following equations show the additively

homomorphic properties of Paillier’s cryptosystem:

D(E[m1 +m2]) = D(E[m1] · E[m2]) = m1 +m2 (3.5)

D(E[a ·m3]) = D(E[m3]a) = a ·m3 (3.6)

where D(·) is the decryption function with the private key sk.
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3.4 L-PPTD Framework

In this section, we will first introduce the L-PPTD framework, and then analyze its

computational complexity and communication overhead.

In this framework, we aim to protect the sensory data and reliability information of

each user from being disclosed to others while accurately estimating the object truths.

To achieve this goal, two non-colluding cloud platforms are involved as the third parties

in L-PPTD. As shown in Figure 3.1, we use SA and SB to denote the two cloud plat-

forms respectively. The key idea of L-PPTD is to calculate the summed distances (i.e.,∑K
k=1

∑M
m=1 d(xkm, xm)) used to estimate user weights through the cooperation of SA

and SB without letting SA or SB know the raw data of each user. With this distance in-

formation, each user will be able to calculate her weight by herself. After the weight of

each user is derived, the object truth can be estimated via a similar cooperation between

SA and SB. The final estimated object truths will be forwarded to the data requester.

Figure 3.1: The workflow of L-PPTD

3.4.1 The Detailed Procedure of L-PPTD

As shown in Figure 3.1, L-PPTD is mainly composed of two phases: Initialization

Phase and Iteration Phase. Next, we will elaborate on each step in the two phases.
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Initialization Phase

This phase will be conducted only once during the whole truth discovery procedure.

Firstly, cloud SB generates the public key pk and private key sk. The public key can be

known by all the parties while the private key is only known by SB. Then the following

steps are taken.

Step I: Each user uk generates random numbers {αkm}Mm=1, {βkm}Mm=1 and γk, which

are used to perturb her sensory data, weighted data and weight respectively. For cate-

gorical data, αkm and βkm are two vectors in which each element is a random. Then uk

perturbs the sensory data xkm as x̃km = xkm − αkm, and uploads all the perturbed data

{x̃km}Mm=1 to cloud SA.

Step II: Each user uploads all the random numbers generated in step I to cloud SB.

Thus, the random numbers of each user are only known by herself and cloud SB.

Step III: After receiving the random numbers from each user, cloud SB calculates

the ciphertexts {E[αkm]}K,Mk,m=1 and summations {
∑K

k=1 β
k
m}Mm=1,

∑K
k=1 γk. For categori-

cal data, E[αkm] represents a ciphertext vector in which each element is the ciphertext of

the corresponding element in vector αkm. Then the ciphertexts and the summations are

sent to cloud SA.

Please note that when the data needed to be encrypted in this chapter is not integer,

we will round it by multiplying a parameterR (a magnitude of 10) and at last the original

data will be recovered by dividing the same parameter.

Iteration Phase

This phase starts with the random initialization of the object truths on cloud platform

SA.

Step À: Based on the homomorphic property of the Paillier cryptosystem, cloud SA

firstly calculates the ciphertext Cconti for continuous data as
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Cconti =E[
K∑
k=1

M∑
m=1

(xkm − xm)2 −
K∑
k=1

M∑
m=1

(αkm)2]

=
K∏
k=1

M∏
m=1

E[(xkm − xm)2 − (αkm)2]

=
K∏
k=1

M∏
m=1

E[(xkm − αkm − xm)2 + 2αkm(xkm − αkm − xm)]

=
K∏
k=1

M∏
m=1

{E[(x̃km − xm)2] · E[αkm]2(x̃km−xm)}

(3.7)

where E[αkm] is received from cloud SB. Based on the perturbed sensory data x̃km re-

ceived from the k-th user, and the estimated truth xm for each object om calculated in

the previous iteration (xm is randomly initialized in the first iteration), E[(x̃km − xm)2]

is calculated with public key pk.

For categorical data, we assume xkmi, α
k
mi, x̃

k
mi and xmi represents the i-th element

of vector xkm, αkm, x̃km and xm respectively, and the number of elements in each vector is

l. Similarly, The ciphertext Ccate can be calculated by SA as

Ccate =E[
K∑
k=1

M∑
m=1

l∑
i=1

(xkmi − xmi)2 −
K∑
k=1

M∑
m=1

l∑
i=1

(αkmi)
2]

=
K∏
k=1

M∏
m=1

l∏
i=1

E[(xkmi − xmi)2 − (αkmi)
2]

=
K∏
k=1

M∏
m=1

l∏
i=1

{E[(x̃kmi − xmi)2] · E[αkmi]
2(x̃kmi−xmi)}.

(3.8)

At last, the ciphertext Cconti or Ccate together with the estimated object truths {xm}Mm=1

are sent to cloud SB.

Step Á: After receiving the ciphertext, cloud SB decrypts it with his private

key sk and calculates the summation of distances (i.e.,
∑K

k′=1

∑M
m=1 d(xk

′
m, xm)

in Eq. (3.1)) by adding the value
∑K

k=1

∑M
m=1(αkm)2 (for categorical data, the
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value is
∑K

k=1

∑M
m=1

∑l
i=1(αkmi)

2) to the decrypted data. Then the summation∑K
k=1

∑M
m=1 d(xkm, xm) together with the estimated object truths {xm}Mm=1 are sent to

each user.

Step Â: In this step, each user uk first calculates
∑M

m=1 d(xkm, xm) based on the

estimated object truths {xm}Mm=1 received from cloud SB, then estimates her weight wk

according to Eq. (3.1).

Step Ã: After the weight is estimated, each user uk calculates the weighted data

wkx
k
m for object om and perturbs it as wkxkm − βkm, where βkm is the random number

(random number vector for categorical data) generated in the initialization phase. Addi-

tionally, the weight wk is perturbed as wk − γk. Then the perturbed weighted data (i.e.,

wkx
k
m − βkm) and perturbed weight (i.e., wk − γk) are sent to cloud SA.

Step Ä: Based on the information received from all the participating users, cloud

SA first calculates the value
∑K

k=1(wkx
k
m − βkm) for each object om, then derives the

summation of the weighted data as

K∑
k=1

wkx
k
m =

K∑
k=1

(wkx
k
m − βkm) +

K∑
k=1

βkm (3.9)

where the value
∑K

k=1 β
k
m is received from cloud SB in the initialization phase. Simi-

larly, the summation of all users’ weights is calculated as
∑K

k=1wk =
∑K

k=1(wk−γk)+∑K
k=1 γk. With all the above information, SA is able to estimate the object truth xm

according to Eq. (3.2).

In this phase, step À ∼ Ä are repeated until the convergence criterion is satisfied.

The final estimated truth for each object will be sent to the data requester by cloud SA.

Please note that, for categorical data, the final result for each object om should be the

candidate answer with the largest value in the vector xm calculated in the final iteration.

In the procedure of L-PPTD, each user only communicates with the two cloud plat-

forms once respectively in each iteration and all the calculations on the user side are
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based on plaintexts. Thus, very little overhead will be introduced to each user, which is

confirmed by the experimental results presented in Section 3.6.

3.4.2 Security Analysis

The security goal of L-PPTD can be summarized as Theorem 2, followed by the proof.

Theorem 2. Suppose the number of participating users satisfies K ≥ 3 and for each

object, there are at least two users providing different sensory data. If the parties (in-

cluding the two cloud platforms) are semi-honest and there is no collusion among them,

the sensory data and weight information of each user will not be disclosed to any other

party under the L-PPTD framework.

Proof. Firstly, we prove the security of users’ private information on the cloud side.

For cloud SA, besides the ciphertexts {E[αkm]}K,Mk,m=1, he knows the plaintexts {xkm −

αkm}
K,M
k,m=1, {wkxkm−βkm}

K,M
k,m=1, {wk−γk}Kk=1, {

∑K
k=1 β

k
m}Mm=1,

∑K
k=1 γk and {xm}Mm=1.

Since the private key sk is only known by cloud SB, cloud SA cannot decrypt the ci-

phertexts. Although the values {
∑K

k=1 β
k
m}Mm=1 and

∑K
k=1 γk are known by cloud SA,

he cannot learn anything about the individual random numbers just based on these sum-

mations. In this way, as long as the two cloud platforms do not collude with each

other, cloud SA cannot infer the plaintexts of {xkm}
K,M
k,m=1, {wkxkm}

K,M
k,m=1 and {wk}Kk=1.

For cloud SB, he knows the plaintexts of {αkm}
K,M
k,m=1, {βkm}

K,M
k,m=1, {γk}Kk=1, {xm}Mm=1

and
∑K

k=1

∑M
m=1 d(xkm, xm). However, based on these values, he cannot learn anything

about the private information of each user.

On the user side, besides the sensory data {xk′m}Mm=1 and weight wk′ , each user uk′

also knows the plaintexts of {xm}Mm=1 and
∑K

k=1

∑M
m=1 d(xkm, xm), based on which the

value
∑K

k=1

∑M
m=1 d(xkm, xm)−

∑M
m=1 d(xk

′
m, xm) can be calculated. However, since the

number of all users satisfies K ≥ 3, user uk′ cannot infer the private information of any

other individual users. For the data requester, he knows nothing about users’ private

information except the final aggregated results {xm}Mm=1.
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In summary, the sensory data and weight information of each user will not be dis-

closed to other parties under the L-PPTD framework.

3.4.3 Efficiency Analysis

Next, we will discuss the computational complexity and communication overhead of

L-PPTD.

Computational Complexity. On the user side, all the computations are conducted

on the plaintexts, and thus will introduce less overhead compared with the ciphertext-

based calculations. In the initialization phase, each user only needs to generate some

random numbers and then perturb her sensory data. The computational complexity is

O(M) for each user in this phase. In the iteration phase, each user uk calculates the

weight wk based on
∑M

m=1 d(xkm, xm), the perturbed weighted data {wkxkm − βkm}Mm=1

and the perturbed weight wk − γk. The computational costs of these calculations are

O(M), O(M) and O(1) respectively in each iteration.

On the cloud side, we mainly consider the overhead introduced by the ciphertext-

based calculations, which dominate the overall computational cost when the key size is

fixed. In each iteration, cloud SA has to conductO(KM) encryptions in order to encrypt

the values {(x̃km− xm)2}K,Mk,m=1, and O(KM) ciphertext multiplications and exponentia-

tions to calculate Cconti or Ccate. For cloud SB, he needs to take O(KM) encryptions to

encrypt the random numbers {αkm}
K,M
k,m=1 in the initialization phase and conduct decryp-

tion once in each iteration.

Communication Overhead. Since the proposed framework is used in crowd sens-

ing systems, in which the mobile devices usually have limited energy resources, we

hope that each user communicates with the clouds as little as possible. Thus, here we

mainly analyze the amount of communication between the parties in L-PPTD. In addi-

tion to the analysis provided here, we also conduct real-world experiments to measure

the communication overhead in Section 3.6.
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In L-PPTD, each user needs to upload the perturbed data to cloud SA and the ran-

dom numbers to cloud SB, both of which are conducted only once during the whole

truth discovery procedure. In every iteration, each user first receives the summation∑K
k=1

∑M
m=1 d(xkm, xm) and the estimated object truths from cloud SB, then uploads the

perturbed weight and perturbed weighted data to cloud SA. So the total number of com-

munication times between each user and the two cloud platforms is 2(t+ 1), where t is

the number of iterations. For the cloud platforms, cloud SB needs to send the ciphertexts

and summations of the random numbers to cloud SA in the initialization phase. In each

iteration, cloud SA sends the ciphertext Cconti or Ccate together with the estimated truths

to cloud SB. So the total number of communication times between cloud SA and cloud

SB is t+ 1.

3.4.4 Generalization

Although the logarithmic weight function is adopted in this chapter, L-PPTD can also

incorporate other types of weight function, such as the reciprocal function wk = dk
−p

and the affine function wk = 1−pdk, where dk =
∑M

m=1 d(xkm, xm) and p is a parameter

chosen based on the specific application scenarios. In L-PPTD, besides the summation∑K
k=1 dk received from SB, each user uk can calculate the value dk by herself. So as long

as the weight function f (presented in Section 3.3.1) does not involve other information

about all users except the summation
∑K

k=1 dk, it can be calculated on the user side.

3.5 L2-PPTD Framework

Although little overhead is introduced on the user side, each user in L-PPTD framework

is still involved in the calculation of her own weight and weighted data. To make the

proposed framework more efficient in the scenarios where only the sensory data of each

user need to be protected, we propose an even more lightweight framework, called L2-

PPTD, in which the users need not to be involved in the iterative procedure. Similar
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to L-PPTD, L2-PPTD also contains two phases (i.e., initialization phase and iteration

phase) as shown in Figure 3.2.

Figure 3.2: The workflow of L2-PPTD

3.5.1 The Detailed Procedure of L2-PPTD

In the L2-PPTD framework, each user only needs to take part in the initialization phase.

Both the weight estimation and truth estimation are completed on the cloud side.

Initialization Phase

This phase is also conducted only once during the whole truth discovery procedure.

Different from L-PPTD, both of the two cloud platforms SA and SB need to generate

their own public keys and private keys. We use (pkA, skA) and (pkB, skB) to denote the

key pairs of SA and SB respectively.

Step I: Each user uk generates a random number αkm for each object om (for cate-

gorical data, αkm is a vector in which each element is a random). Then she perturbs the

sensory data xkm as x̃km = xkm−αkm, and uploads all the perturbed data {x̃km}Mm=1 to cloud

SA.

Step II: Each user uk uploads the random numbers {αkm}Mm=1 to cloud SB.

Step III: Cloud SA first encrypts each perturbed sensory data x̃km with his own public

key pkA, then sends all the ciphertexts {EA[x̃km]}K,Mk,m=1 (EA is the encryption function
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based on pkA) to cloud SB. For categorical data, EA[x̃km] is a ciphertext vector in which

each element is the ciphertext of the corresponding element in vector x̃km.

Step IV: Cloud SB encrypts each random number αkm with his own public key pkB,

and sends all the ciphertexts {EB[αkm]}K,Mk,m=1 (EB is the encryption function based on

pkB) to cloud SA.

Iteration Phase

This phase also starts with the random initialization of the object truths on cloud SA.

Step À: For continuous data, cloud SA calculates the ciphertext Ck
conti for each user

uk as

Ck
conti =EB[

M∑
m=1

(xkm − xm)2 −
M∑
m=1

(αkm)2]

=
M∏
m=1

{EB[(x̃km − xm)2] · EB[αkm]2(x̃km−xm)}.

(3.10)

For categorical data, SA calculates the ciphertext Ck
cate for each user uk as

Ck
cate =EB[

M∑
m=1

l∑
i=1

(xkmi − xmi)2 −
M∑
m=1

l∑
i=1

(αkmi)
2]

=
M∏
m=1

l∏
i=1

{EB[(x̃kmi − xmi)2] · EB[αkmi]
2(x̃kmi−xmi)}.

(3.11)

Then, all the ciphertexts {Ck
conti}Kk=1 or {Ck

cate}Kk=1 are sent to cloud SB (here the esti-

mated object truths are not sent).

Step Á: After receiving the ciphertexts from cloud SA, cloud SB decrypts them with

his private key skB and calculates the summation of distances (i.e.,
∑M

m=1 d(xkm, xm))

for each user uk by adding the value
∑M

m=1(αkm)2 or
∑M

m=1

∑l
i=1(αkmi)

2 to the decrypted

data. Then, cloud SB estimates the weight of uk according to Eq. (3.1).

Step Â: When the sensory data is continuous, based on the estimated weights, cloud

SB first calculates the value
∑K

k=1wkα
k
m for each object om and encrypts it with SA’s
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public key pkA asEA[
∑K

k=1 wkα
k
m]. Then, cloud SB calculates the encrypted summation

of weighted data for each object om as

EA[
K∑
k=1

wkx
k
m] =EA[

K∑
k=1

wk(x
k
m − αkm) +

K∑
k=1

wkα
k
m]

=EA[
K∑
k=1

wkx̃
k
m] · EA[

K∑
k=1

wkα
k
m]

=
K∏
k=1

{EA[x̃km]wk} · EA[
K∑
k=1

wkα
k
m].

(3.12)

When the sensory data is categorical, EA[
∑K

k=1wkx
k
m] is a ciphertext vector in which

each element is calculated similarly with Eq. (3.12). Then, the ciphertexts (ciphertext

vectors for categorical data) of all objects together with the summation of all users’

weights (i.e.,
∑K

k=1wk) are sent to cloud SA.

Step Ã: After receiving the data from cloud SB, cloud SA decrypts the ciphertexts

and gets the summation
∑K

k=1wkx
k
m for each object om. Then, the truth of each object

is estimated according to Eq. (3.2).

Step À ∼ Ã in this phase will also be iteratively conducted until the convergence

criterion is satisfied. The final estimated truths are then sent to the data requester. In this

framework, although the reliability information (i.e., weight) of each user is known by

cloud SB, much less overhead will be introduced on the user side since the users only

take part in the initialization phase.

3.5.2 Security Analysis

Theorem 3. Suppose there are at least two users providing different sensory data for

each object. If the parties (including the two cloud platforms) are semi-honest and there

is no collusion among them, the sensory data of each user will not be disclosed to any

other party under L2-PPTD framework.
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Proof. In L2-PPTD, since each user does not receive any information about other par-

ties, we just need to prove the sensory data of each user would not be disclosed to the

cloud platforms and the data requester.

For cloud SA, the values he knows include the ciphertexts {EB[αkm]}K,Mk,m=1,

{Ck
conti}Kk=1 (or {Ck

cate}Kk=1) and the plaintexts {xkm − αkm}
K,M
k,m=1, {

∑K
k=1 wkx

k
m}Mm=1,∑K

k=1 wk, {xm}Mm=1. Without the private key skB, above ciphertexts cannot be de-

crypted by SA. Since the weight of each user estimated on cloud SB is not sent to

cloud SA, SA cannot infer the individual values wk, wkxkm just based on the summations

{
∑K

k=1wkx
k
m}Mm=1 and

∑K
k=1wk. Additionally, as the two cloud platforms do not col-

lude with each other, the sensory data of each user will not be inferred by cloud SA from

the values {xkm − αkm}
K,M
k,m=1.

For cloud SB, he knows the ciphertexts {EA[xkm − αkm]}K,Mk,m=1,

{EA[
∑K

k=1wkx
k
m]}Mm=1 and the plaintexts {αkm}

K,M
k,m=1, {

∑M
m=1 d(xkm, xm)}Kk=1,

{wk}Kk=1. Since the object truths {xm}Mm=1 estimated on cloud SA are not sent

to cloud SB, SB can not learn the individual sensory data xkm from the values

{
∑M

m=1 d(xkm, xm)}Kk=1. Additionally, SB cannot decrypt the ciphertexts without SA’s

private key. So each user’s sensory data will not be known to cloud SB. Additionally,

similar to L-PPTD, the data requester can only know the final aggregated results

{xm}Mm=1 in L2-PPTD.

In summary, the sensory data of each user will not be disclosed to other parties under

the L2-PPTD framework.

3.5.3 Efficiency Analysis

Computational Complexity. The participating users in L2-PPTD are only involved in

the initialization phase and the computational cost (based on plaintexts) is O(M) for

each user. For cloud SA and cloud SB, both of them are involved in the initialization

phase and iteration phase. In the initialization phase, they both have to take O(KM)

encryptions. In each iteration, cloud SA has to conduct O(KM) encryptions, O(M)
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decryptions,O(KM) ciphertext multiplications and exponentiations. On the other hand,

Cloud SB needs to conduct O(K) decryptions, O(M) encryptions, O(KM) ciphertext

multiplications and O(KM) ciphertext exponentiations to calculate the weights and

ciphertexts {EA[
∑K

k=1wkx
k
m]}Mm=1.

Communication Overhead. In L2-PPTD, since the participating users are only

involved in the initialization phase, the number of communication times between each

user and the cloud platforms is only 2 during the whole truth discovery procedure. As for

cloud SA and SB, both of them need to send data once to each other in the initialization

phase and each iteration, so the communication overhead between the two clouds is

2(t+ 1), where t is the number of iterations.

3.5.4 Generalization

Since the weight of each user in L2-PPTD is estimated based on plaintexts on cloud SB,

which has all the values {
∑M

m=1 d(xkm, xm)}Kk=1 needed to estimate the users’ weights,

any weight function f can be used in this framework.

3.6 Performance Evaluation

In this section, we evaluate the performance of the proposed framework on real world

crowdsensing systems. Both continuous and categorical sensory data are considered

here. The cloud platforms in this experiment are emulated by two Intel(R) Core(TM)

3.4GHz computers running Ubuntu 14.04, with 16GB RAM. We use Nexus 5 Android

phones as the mobile sensing devices. The frameworks are implemented with the Pail-

lier encryption tool1 and the key size is set as 512 bits. Additionally, we use the rounding

parameter R = 107 to round the fractional data. The baseline methods are the original

truth discovery method CRH [61, 65] and the privacy-preserving truth discovery frame-

work PPTD [73, 74].
1http://www.cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/

http://www.cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/
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3.6.1 Experiment on Crowdsourced Indoor Floorplan Construction

System

We first evaluate the performance of the proposed framework on one real-world crowd-

sensing application, i.e., crowdsourced indoor floorplan construction [11, 33]. In such

crowdsensing systems, although the indoor floorplan can be automatically constructed

from the sensory data (e.g., compass, accelerometer, gyroscope) collected by smart-

phone users, the sensor readings may disclose a user’s private personal information.

For the sake of illustration, here we only focus on estimating the distance (continuous

data) between two particular location points in a hallway. 10 smartphone users are em-

ployed as the participating users and 20 hallway segments in a building are selected as

the objects. We develop an Android App that can estimate the walking distances of a

smartphone user through multiplying the user’s step size by step count inferred using the

in-phone accelerometer. The ground truths are obtained by measuring these segments

manually.

Accuracy. We first compare the accuracy of the final estimated object truths between

the proposed method and the baseline approach. In this experiment, the root of mean

squared error (RMSE) is used to measure the deviation between the estimated results

and the ground truths. Here the number of objects is fixed as 20 and we vary the number

of users from 3 to 10. The results are shown in Figure 3.3. As seen, our proposed

frameworks have almost the same estimation accuracy as CRH regardless of the number

of users.

Convergence. In order to evaluate the convergence of the proposed algorithms, we

measure the distance between the estimated object truths in two consecutive iterations

using a convergence value defined as ||xt−xt−1||2, where xt (t ≥ 1) is the vector of es-

timated truths in iteration t (the values in x0 are randomly initialized). The convergence

values of L-PPTD are shown in Figure 3.4. Here we calculate the convergence values

with 5 different initial truth vectors (i.e., x0). As we can see, the L-PPTD algorithm

converges quickly in just a few iterations. L2-PPTD has similar convergence pattern.



70

3 4 5 6 7 8 9 1 00 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5
1 . 6
1 . 7
1 . 8

RM
SE

N u m b e r  o f  u s e r s

 L - P P T D
 L 2 - P P T D
 C R H

 

 

Figure 3.3: Accuracy for the in-
door floorplan construction sys-
tem

1 2 3 4 5 6 7 8 9 1 0
0
2
4
6
8

1 0
1 2
1 4
1 6

Co
nv

erg
enc

e v
alu

e

I t e r a t i o n  t

 I n i t i a l  t r u t h  v e c t o r 1
 I n i t i a l  t r u t h  v e c t o r 2
 I n i t i a l  t r u t h  v e c t o r 3
 I n i t i a l  t r u t h  v e c t o r 4
 I n i t i a l  t r u t h  v e c t o r 5

Figure 3.4: Convergence for
the indoor floorplan construc-
tion system

Computational Cost. Here we evaluate the running time of the proposed frame-

works on both the user and the cloud sides. The results are compared with that of the

baseline method PPTD.

Table 3.1 shows the running time on one user’s smartphone while the number of

objects is varying from 4 to 20. Since the users are not involved in the iteration phase of

L2-PPTD, there is no result for that phase in Table 3.1. From this table, we can see the

running time of the proposed frameworks is much less than that of PPTD. The reason

is that all the computations on the user side are based on plaintexts in our frameworks

while the users in PPTD need to do some encryptions. Additionally, the results in this

table also show that L2-PPTD is more lightweight than L-PPTD.

Table 3.1: Running time on smartphone for the indoor floorplan construction system

Number of objects 4 8 12 16 20
PPTD/iteration (×10−2s) 1.3 2.0 2.8 3.4 5.1

L-PPTD Initialization phase 3.0 4.6 6.0 6.7 9.3
(×10−6s) Each iteration 0.9 1.1 1.5 2.1 2.6

L2-PPTD (×10−6s) 2.6 3.0 3.8 4.1 4.9

Figure 3.5 shows the running time on the cloud platforms with the user number vary-

ing from 3 to 10. The results in one iteration and the initialization phase are provided in

Figure. 3.5a and Figure 3.5b, respectively. Since cloud SA in L-PPTD does not have to

do any computation in the initialization phase, there is no result for SA in Figure 3.5b.
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From Figure 3.5a, we can see the running time of our frameworks on both cloud SA and

SB are less than that of PPTD. This is mainly because of the threshold-based decryption

scheme used in PPTD. Although the initialization phase is involved in our frameworks,

it does not introduce much computational cost, which can be seen from Figure 3.5b.
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Figure 3.5: Running time on cloud platforms for the indoor floorplan construction sys-
tem

Communication Overhead. Here we evaluate the data size each user needs to send

or receive in the proposed frameworks. In Table 3.2, we provide a comparison between

the proposed frameworks and PPTD. As can be seen, the data needed to be transmitted

in each iteration of L-PPTD is much less than that of PPTD. The reason is that in the

proposed frameworks, users do not need to send or receive any ciphertext, which is

usually much larger than plaintext. Since each user is not involved in the iteration phase

of L2-PPTD and the initialization phases of the two frameworks are only needed to be

conducted once, the total communication overhead of our scheme are also much less

than that of PPTD. Additionally, the results further verify the conclusion that L2-PPTD

is more lightweight than L-PPTD since there is no communication overhead on the

smartphone in each iteration of L2-PPTD.
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Table 3.2: Communication overhead on smartphone for the indoor floor plan construc-
tion system (KB)

Number of objects 4 8 12 16 20
PPTD/iteration 1.83 3.15 4.37 5.58 6.90

L-PPTD
Initialization phase 0.05 0.09 0.14 0.21 0.25

Each iteration 0.10 0.18 0.26 0.33 0.41
L2-PPTD 0.04 0.09 0.14 0.19 0.24

3.6.2 Experiment on Crowd Wisdom System

In this experiment, we evaluate the proposed frameworks on crowd wisdom system in

which the sensory data are categorical. Each smartphone user in this system receives

questions from the cloud to which she uploads her answers. The cloud infers the true

answer for each question through aggregating the answers from smartphone users. How-

ever, some users may concern that their personal information may be inferred from their

answers. Here we implement the proposed frameworks on this system. 100 smartphone

users are employed as the participating users and 54 questions (each has 4 candidate

answers) are used as the objects.

Accuracy and Convergence. In this part, we measure the accuracy of the proposed

frameworks with Error Rate, which is defined as the percentage of mismatched values

between the estimated results and the ground truths. Since some objects (i.e., questions)

are not answered by all the users in this experiment, we vary the average number of

users that answer each question and then calculate the Error Rate. The results of the

two frameworks and CRH are shown in Figure 3.6. We can see that the Error Rates

of the proposed frameworks are the same with that of CRH in all scenarios, which

verifies the accuracy of our proposed frameworks for categorical data. Additionally, the

convergence value defined before is also adopted here to measure the convergence. We

find both our frameworks and CRH converge within two iterations.
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Figure 3.6: Accuracy for the wisdom system

Computational Cost. Here we also evaluate the running time of the proposed

frameworks on both smartphone and cloud platforms. In this experiment, we record

the running time on smartphone while the number of objects is varying from 2 to 14,

which is the maximum number of questions answered by a single user. The results are

shown in Table 3.3, from which we can see the computational cost of our frameworks

on smartphone is much less than that of PPTD.

Table 3.3: Running time on smartphone for the crowd wisdom system

Number of objects 2 5 8 11 14
PPTD/iteration (×10−2s) 1.8 3.9 5.8 8.0 12.7

L-PPTD Initialization phase 3.5 10.2 12.6 17.6 23.3
(×10−6s) Each iteration 1.3 2.9 7.3 6.2 8.2

L2-PPTD (×10−6s) 1.8 4.6 7.1 9.4 11.6

For the cloud platforms, Figure 3.7a and Figure 3.7b show the running time in each

iteration and the initialization phase respectively. As seen, the running time of our

frameworks on both cloud SA and SB is less than that of PPTD.

Communication Overhead. The size of data needed to be transmitted on each

smartphone is shown in Table 3.4, from which we can see the communication overhead

on smartphone in each iteration ofL-PPTD is much less than that of PPTD. Additionally,

the data transmitted by each user in L2-PPTD is less than that of both L-PPTD and

PPTD.
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Figure 3.7: Running time on cloud platforms for the crowd wisdom system

Table 3.4: Communication overhead on smartphone for the crowd wisdom system (KB)

Number of objects 2 5 8 11 14
PPTD/iteration 3.1 6.9 10.6 14.4 18.1

L-PPTD
Initialization phase 0.09 0.24 0.38 0.52 0.66

Each iteration 0.11 0.21 0.32 0.43 0.51
L2-PPTD 0.07 0.18 0.28 0.39 0.49

3.6.3 Experiment on Simulated Crowd Sensing System

In order to evaluate the scalability and efficiency of the proposed frameworks, we con-

duct further experiments on a simulated crowd sensing system, in which there are 300

participating users and 1000 objects. We generate the sensory data of users through

adding Gaussian noise with different intensities to the ground truths. Table 3.5 shows

the running time of the frameworks on smartphone with varying object number ranging

from 200 to 1000. From the table, we can see our proposed frameworks can keep high

efficiency even when the number of objects is very large. Especially for L2-PPTD, when

the number of objects is 1000, the running time of L2-PPTD on the smartphone is only

2.15× 10−4s during the whole truth discovery procedure.

Next, we fix the number of objects as 500 and change the number of users from 30

to 300 in order to evaluate the computational cost of the cloud platforms. The results
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Table 3.5: Running time on smartphone for the simulated crowd sensing system

Number of objects 200 400 600 800 1000
PPTD/iteration (s) 0.43 0.83 1.47 2.29 2.88

L-PPTD Initialization phase 0.78 1.62 2.40 3.18 3.95
(×10−4s) Each iteration 0.24 0.51 0.64 0.86 1.14

L2-PPTD (×10−4s) 0.43 0.91 1.32 1.69 2.15

shown in Figure 3.8 further verify that the two frameworks in this chapter are more

efficient on the cloud platforms than PPTD.
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Figure 3.8: Running time on cloud platforms for the simulated crowd sensing system

Table 3.6 reports the communication overhead on the smartphone while the number

of objects observed by each user is changing from 400 to 1000. When the number

of objects is 1000, the communication overhead in each iteration of L-PPTD is only

19.6KB while that in PPTD is 314.2KB. Additionally, the communication overhead of

L2-PPTD is only 13.5KB during the whole truth discovery procedure when the number

of objects is 1000, which meansL2-PPTD is a more lightweight scheme for participating

users.
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Table 3.6: Communication overhead on smartphone for the simulated crowd sensing
system (KB)

Number of objects 400 600 800 1000
PPTD/iteration 126.1 188.8 251.6 314.2

L-PPTD
Initialization phase 6.4 9.9 13.1 16.4

Each iteration 7.7 11.6 15.5 19.6
L2-PPTD 5.1 8.1 10.8 13.5

3.7 Summary

In this chapter, we propose a lightweight privacy-preserving truth discovery (L-PPTD)

framework, which is implemented by involving two non-colluding cloud platforms and

adopting additively homomorphic cryptosystem. This framework can not only protect

the sensory data and reliability information of each participating user but also substan-

tially reduce the overhead on the user side. Additionally, to further reduce each user’s

overhead in the scenarios where only the sensory data need to be protected, a more

lightweight truth discovery (L2-PPTD) framework is also developed.



Chapter 4
Data Poisoning Attacks in Crowd

Sensing Systems

4.1 Introduction

Although crowd sensing provides an effective way to obtain useful information from

the physical world, the sensory data collected from participating users are not always

trustworthy. Due to the openness of the crowd sensing systems, the malicious parties

can easily conduct malicious attacks. One important form of attacks is called data poi-

soning, where an attacker tries to degrade the effectiveness of the crowd sensing systems

through creating or recruiting a group of malicious users and letting them submit mali-

cious data. In this chapter, we focus on two types of data poisoning attacks: the avail-

ability attack and the target attack. In the availability attack, the attacker tries to disturb

the final results as much as possible through manipulating the malicious users’ sensory

data. In the target attack, the attacker aims to skew the final results to predetermined

target values.

If the attacker can create or recruit many malicious users, the attack goal is relatively

easy to achieve, especially if the malicious users outnumber the normal users. However,

when the attacker has limited resources, which is more often in real life, the attack strat-



78

egy becomes very important. Suppose the observations from users are categorical (e.g.,

the model and make of the car that hit the old lady and ran), then one intuitive attack

strategy is to let all the malicious users report the answer with the second highest vote

count (for the availability attack), or provide votes to the target answer (for the target

attack). This strategy may be the optimal choice if the aggregation results are derived

by majority voting. However, the story is much more complicated if the truth discovery

approach is used for aggregation. Thanks to the ability of distinguishing users with dif-

ferent reliability degrees, the truth discovery approach can easily detect the malicious

users, since they always disagree with the majority even when there is no chance to win,

and therefore, assign low weights to the malicious users. Consequently, the impact of

the malicious users will be greatly reduced, and the attack goal cannot be achieved.

Although truth discovery methods can tolerate the malicious behaviors of the users to

some degree and effectively improve the aggregation results, it is not perfect in all cases.

In this chapter, we propose an optimal attack framework that can take down a sensing

system even with truth discovery empowered. Compared with the aforementioned naive

attack strategy, the strategy derived from the proposed optimal attack framework makes

the malicious users behave “smarter”. They can successfully disguise themselves as

normal users. If there is little hope to achieve the attack goal on some objects, they will

tend to agree with the normal users on those objects to gain higher weights, and in turn,

can exert stronger impact on other objects.

In our design, the optimal attack strategy is found by solving a bi-level optimiza-

tion problem where the objective is to maximize the attack utility, in other words, the

total number of the objects whose true values are skewed. As the attack goal is either

achieved or not on one object, the attack utilities are discrete values, making it hard to

solve the optimization problem. To handle this challenge, we use a continuous and dif-

ferentiable sigmoid function to approximate the discrete attack utilities. Then we derive

the optimal attack strategy by iteratively solving the upper-level and lower-level opti-
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mization problems, where the former adopts the gradient ascent method and the latter is

solved by block coordinate decent method.

4.2 Problem Setting

The crowd sensing system considered in this chapter consists of a cloud server and

some participating users. The cloud server is a platform which holds some sensing

tasks. In each sensing task, usually there are multiple objects needed to be observed.

The participating users are the mobile device users who carry out the sensing tasks and

provide their observations to the cloud server. After collecting the observations from

all the users, the cloud server needs to estimate the true information (i.e., truth) of each

object by conducting the truth discovery algorithm.

Suppose there is an attacker who aims to attack the crowd sensing system empow-

ered with the truth discovery algorithm. As shown in Figure 4.1, the attacker cannot

manipulate the observations of the normal users who carry out the sensing tasks with-

out any malicious behavior, but he can create or recruit a group of malicious users and

conduct attacks by carefully designing their observations. When conducting the avail-

ability attack, the attacker wants to maximize the error of the truth discovery algorithm

running on the crowd sensing system, and eventually render the discovered truths use-

less. When conducting the target attack, the attacker aims to skew the final estimated

object truths calculated by the cloud server to certain target values. In this chapter, we

assume that the attacker has complete knowledge of the truth discovery algorithm and

the sensory data from normal users. This assumption enables a robust assessment of

the vulnerability of the crowd sensing system. Additionally, it is entirely possible that

the attacker can get the normal users’ data through eavesdropping the communications

between normal users and the cloud server.

We formally define the problem addressed in this chapter as: Suppose the cloud

server outsources a sensing task to a group of participating users. In this sensing task,
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Figure 4.1: The crowd sensing system under attack

there are M objects which are observed by K normal users. We use W = {wk}Kk=1

to denote the weights (i.e., reliability degrees) of the normal users. The sensory data of

normal users are denoted asX = {xkm}
M,K
m,k=1, in which xkm denotes the observation of the

k-th normal user for them-th object. The ground truth of each object is unknown by any

party in the crowd sensing system, and the cloud server needs to calculate the estimated

values X∗ = {x∗m}Mm=1 of the ground truths for all the objects. Assume that there are K ′

malicious users that are created or recruited by the attacker in the crowd sensing system,

and their weights are denoted as W̃ = {w̃k′}K
′

k′=1. We use X̃ = {x̃k′m}
K′,M
k′,m=1 to denote the

observations of all the malicious users and x̃k′m is the observation of the k′-th malicious

user for the m-th object. Our goal in this chapter is to find an optimal attack strategy

(i.e., an optimal X̃) such that the attack goal of the attacker can be achieved as much as

possible.

4.3 Preliminary

Although different truth discovery approaches have been designed for different scenar-

ios, they share the same basic idea: A user ought to be assigned a high weight if his

observations are close to the aggregated results, and the observations of a user ought to

be counted more in the aggregation procedure if he has a high weight. In this chapter,

we still consider the widely adopted truth discovery method CRH [61, 65], in which an
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optimization framework is proposed to minimize the weighted deviation from the users’

observations to the estimated truths:

min
X∗,W

f(X∗,W ) =
K∑
k=1

wk
∑
m∈Ok

d(xkm, x
∗
m)

s.t.
K∑
k=1

exp(−wk) = 1,

(4.1)

where Ok is the set of objects observed by the k-th normal user (in this section, we

assume that there are no malicious users in the crowd sensing system); d(·) is the loss

function to measure the distance between users’ observations and the estimated truths.

In this chapter, we consider the scenario where the sensory data are categorical.

That is, for each object, the user would choose an answer from one of the C candidate

answers. We use xkm = (0, ..., 1
q
, ..., 0)T to denote that the k-th user selects the q-th

candidate answer for the m-th object. Then the distance between the observation vector

xkm and the estimated truth vector x∗m is defined as:

d(xkm, x
∗
m) = (xkm − x∗m)T (xkm − x∗m) =

C∑
c=1

(xkmc − x∗mc)2, (4.2)

where xkmc and x∗mc represent the c-th value in vector xkm and vector x∗m, respectively.

CRH aims to learn the the estimated values X∗ of the truths and user weights W

together by optimizing the objective function in Eq. (4.1). In order to achieve the goal,

block coordinate descent approach [5] is adopted and the following two steps are itera-

tively conducted until the convergence criterion is satisfied.

Step I: Truths Update. In this step, the users’ weights W are fixed, and the estimated

object truths X∗ are updated according to:

x∗m =

∑
k∈Um wkx

k
m∑

k∈Um wk
, (4.3)

where Um is the set of normal users who observe the m-th object.
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Clearly, the estimated object truth x∗m is a vector of continuous values. It can be

viewed as a probability vector in which each element represents the probability of

the corresponding candidate answer being true. For example, suppose x∗m equals to

(0.1, 0.7, 0.1, 0.1), then it implies that with 70% probability the second candidate an-

swer is the true answer for the m-th object, and the probabilities of the others are all

10%. In this case, we assign the final estimated truth as the candidate answer with the

largest value in vector x∗m.

Step II: User Weights Update. In this step, the estimated object truths X∗ are fixed,

and the participating users’ weights W are updated according to:

wk = log(

∑K
l=1

∑
m∈Ol d(xlm, x

∗
m)∑

m∈Ok d(xkm, x
∗
m)

). (4.4)

where Ol is the set of objects observed by the l-th normal user.

4.4 Optimal Attack Framework

In this section, we present our optimal attack framework against the crowd sensing sys-

tems with truth discovery empowered. We first analyze the effect of malicious users

on the truth discovery framework in Section 4.4.1. Then two types of data poisoning

attacks (i.e., the availability attack and the target attack) are discussed in Section 4.4.2

and 4.4.3, respectively.

4.4.1 Truth Discovery with Malicious Users

We use X̂∗ = {x̂∗m}Mm=1 to denote the estimated object truths after the data poisoning

attack. After taking the malicious users into account, the truth discovery framework in
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Eq.(4.1) becomes:

min
X̂∗,W,W̃

f(X̂∗,W, W̃ ) =
K∑
k=1

wk
∑
m∈Ok

d(xkm, x̂
∗
m) +

K′∑
k′=1

w̃k′
∑
m∈Õk′

d(x̃k
′

m, x̂
∗
m)

s.t.
K∑
k=1

exp(−wk) +
K′∑
k′=1

exp(−w̃k′) = 1,

(4.5)

where Õk′ is the set of the objects observed by the k′-th malicious user. Here we decom-

pose the participating users into normal and malicious ones for the purpose of analyzing

the effect of malicious users on the estimated object truths. However, note that from the

cloud server’s perspective, it is not aware of the attack and cannot differentiate the two

types of users when conducting truth discovery. Based on the block coordinate descent

method which is adopted in the original truth discovery framework, the optimal solution

{X̂∗,W, W̃} can be calculated by iteratively conducting the following two steps until

the convergence criterion is satisfied.

Step I: Truths Update. In this step, we first fix the weights of normal and malicious

users (i.e., W and W̃ ), then update the estimated object truths X̂∗ according to

x̂∗m =

∑
k∈Um wkx

k
m +

∑
k′∈Ũm w̃k′x̃

k′
m∑

k∈Um wk +
∑

k′∈Ũm w̃k′
. (4.6)

where Ũm is the set of malicious users who observe the m-th object. As described

in Section 4.3, x̂∗m is a vector in which each element represents the probability of the

corresponding candidate answer being true after the attack. The c-th element in this

vector is updated as

x̂∗mc =

∑
k∈Um wkx

k
mc +

∑
k′∈Ũm w̃k′x̃

k′
mc∑

k∈Um wk +
∑

k′∈Ũm w̃k′
. (4.7)

where x̃k′mc is the c-th value in vector x̃k′m.
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Step II: User Weights Update. In this step, the estimated object truths X̂∗ =

{x̂∗m}Mm=1 are fixed. Then we update the weights of normal and malicious users (i.e.,

W and W̃ ) as

wk = log(

∑K
l=1

∑
m∈Ol d(xlm, x̂

∗
m) +

∑K′

l′=1

∑
m∈Õl′

d(x̃l
′
m, x̂

∗
m)∑

m∈Ok d(xkm, x̂
∗
m)

), (4.8)

w̃k′ = log(

∑K
l=1

∑
m∈Ol d(xlm, x̂

∗
m) +

∑K′

l′=1

∑
m∈Õl′

d(x̃l
′
m, x̂

∗
m)∑

m∈Õk′
d(x̃k′m, x̂

∗
m)

). (4.9)

where Õl′ is the set of objects observed by the l′-th malicious user.

From the above equations, we can see the estimated object truths X̂∗ = {x̂∗m}Mm=1

are only dependent on the observations of malicious users (i.e., X̃ = {x̃k′m}
M,K′

m,k′=1) once

the data of normal users are given. In this way, the attacker can attack truth discovery

algorithm by elaborately designing the observations of malicious users.

4.4.2 Availability Attack

In the availability attack, the attacker aims to maximize the error of the crowd sensing

systems where the observations from multiple users are aggregated by the truth discov-

ery algorithm, and eventually render them useless. In other words, the attacker tries to

make the deviation between the outputs of truth discovery before and after the availabil-

ity attack as much as possible. More specifically, if the final truth discovery result on an

object is changed after the attack, it means that the attack on this object succeeds. Oth-

erwise, the attack on this object fails. In this section we discuss how to find the optimal

attack strategy from the perspective of the attacker so that the attack can succeed on as

many objects as possible.

Given the number of malicious users created or recruited by the attacker and the

objects they can observe, the attacker needs to find the optimal assignments for each
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malicious user’s observations to conduct the availability attack. Let’s denote the final

estimated answers for the m-th object before and after the attack as x∗fm and x̂∗fm respec-

tively. We can formulate the goal of the availability attack into an optimization problem

as follows:

max
X̃

M∑
m=1

1(x̂∗fm 6= x∗fm ) (4.10)

s.t. {X̂∗f ,W, W̃} = argmin
X̂∗f ,W,W̃

f(X̂∗f ,W, W̃ )

s.t.
K∑
k=1

exp(−wk) +
K′∑
k′=1

exp(−w̃k′) = 1,

where X̂∗f = {x̂∗fm }Mm=1 are the final estimated answers after the attack and 1(·) is the

indicator function. In this optimization problem, the truth discovery framework Eq.(4.5)

becomes a constraint. This is a bi-level optimization problem [3]. The optimization

over malicious observations X̃ is the upper-level problem, and the optimization over

{X̂∗f ,W, W̃} given X̃ is the lower-level problem. x∗fm is the final aggregation result

(calculated based on normal users’ data) before the attack, and it is a constant once the

normal users’ sensory data are given. x̂∗fm depends on the attack strategy (i.e., X̃) and

can be different as the attack strategy varies.

For each object, the malicious users need to pick one candidate answer. An intuitive

attack strategy is to choose the answer with the second highest probability to be true.

The reason is simple, this answer has the most chance to win over the answer with

the highest probability. However, this attack strategy may not be the optimal choice

under truth discovery mechanism. Let’s consider the following example: If the margin

between the answers with the highest and the second highest probability is too large

for an object (e.g., 100 votes V.S. 2 votes), it is impossible for the limited number of

malicious users to change the aggregation result on this object. Moreover, since the

malicious users always disagree with the majority, the truth discovery algorithm can

detect them easily and assign them with low weights. Consequently, the impact of the
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malicious users on other objects also decreases, and thus may fail on all objects. To

address this challenge, we take the truth discovery framework as a constraint in our

designed optimization problem (4.10). Then the weights of malicious users will be

taken into account during the procedure of finding the optimal attack strategy. As a

result, we may find a better attack strategy compared with the intuitive one. The optimal

attack may sacrifice on some of the objects where there is little chance to succeed, and

agree with the majority users on those objects. The benefit of doing so is that the truth

discovery algorithm may consider them as normal users or even good users and increase

their weights, and eventually increase their impact on other objects.

Since the answer with the second highest probability has the most chance to win

over the answer with the highest probability, we only consider the change on these two

answers. We reformulate problem (4.10) as:

max
X̃

M∑
m=1

1

2
{1− sgn[(x∗mc2 − x

∗
mc1

) · (x̂∗mc2 − x̂
∗
mc1

)]} (4.11)

s.t. {X̂∗,W, W̃} = argmin
X̂∗,W,W̃

f(X̂∗,W, W̃ )

s.t.
K∑
k=1

exp(−wk) +
K′∑
k′=1

exp(−w̃k′) = 1

{x̃k′mc}
K′,M,C
k′,m,c=1 ∈ {0, 1} (4.12)

where c1 and c2 indicate the answers with the highest and the second highest element

in the probability vector (i.e., x∗m) output by the truth discovery algorithm before the

attack. Constraint (4.12) is used to limit each element x̃k′mc to 0 or 1. This optimization

problem reflects the following idea: After the attack, if the answer with the second

highest probability does not win over the answer with the highest probability, the attack

fails on this object. Consequently, there is no gain in the objective value.
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In the objective function (4.11), (x∗mc2 − x
∗
mc1

) < 0 when the normal users’ data are

given. Then we can know:

sgn[(x∗mc2 − x
∗
mc1

) · (x̂∗mc2 − x̂
∗
mc1

)] =


1 if x̂∗mc2 < x̂∗mc1

0 if x̂∗mc2 = x̂∗mc1

− 1 if x̂∗mc2 > x̂∗mc1 .

(4.13)

However, Eq. (4.13) is not continuous, and this makes it difficult to solve the above

optimization problem. A potential way to address this challenge is to approximate the

objective function (4.11) by a continuous and differentiable function. Considering that

function u1(x) = 1
2
(1 − sgnx) can be well approximated by function u2(x) = 1 −

1
1+exp(−θx)

when θ (i.e., the steepness of the curve) is set to an appropriate value, we

approximate the objective function (4.11) by the following objective function:

max
X̃

M∑
m=1

{1− 1

1 + exp[−θ(x∗mc2 − x∗mc1)(x̂∗mc2 − x̂∗mc1)]
}. (4.14)

From the perspective of the attacker,
∑M

m=1{1 −
1

1+exp[−θ(x∗mc2−x
∗
mc1

)(x̂∗mc2−x̂
∗
mc1

)]
}

in the objective function (4.14) can be treated as his utility, and he needs to find an

appropriate attack strategy such that the utility can be maximized.

When solving the above optimization problem, we still have another challenge, i.e.,

the value of each element (i.e., x̃k′mc) in X̃ is categorical, which makes it difficult to solve

the upper-level problem. Here we treat each observation of malicious users (i.e., x̃k′m) as a

probability vector and relax the value of x̃k′mc to the range (0, 1). In this way, we can solve

the optimization problem according to the gradient-based methods. Please note that the

summation of all the elements in vector x̃k′m should be 1, and the candidate answer with

the largest value in this vector will be submitted to the cloud server. Then the following
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optimization problem needs to be solved in order to maximize the attacker’s utility.

max
X̃

g(X̃) =
M∑
m=1

{1− 1

1 + exp[−θ(x∗mc2 − x∗mc1)(x̂∗mc2 − x̂∗mc1)]
}

+ δ1

K′∑
k′=1

∑
m∈Õk′

C∑
c=1

log x̃k
′

mc + δ2

K′∑
k′=1

∑
m∈Õk′

C∑
c=1

log(1− x̃k′mc) (4.15)

s.t. {X̂∗,W, W̃} = argmin
X̂∗,W,W̃

f(X̂∗,W, W̃ ) (4.16)

s.t.
K∑
k=1

exp(−wk) +
K′∑
k′=1

exp(−w̃k′) = 1

C∑
c=1

x̃k
′

mc = 1, k′ = 1, ..., K ′ and m = 1, ...,M. (4.17)

The objective function g(X̃) contains three terms: The first term is the utility of the

attacker. The second and the third terms work as the barriers to limit the sensory data of

malicious users to the range (0, 1). Parameters δ1 and δ2 are used to adjust the trade-off

between these three terms. Here we use the barriers instead of constraint {x̃k′mc}
K′,M,C
k′,m,c=1 ∈

(0, 1) in the optimization problem to reduce the computation complexity. The optimal

solution of the above problem is very close to that of the original optimization problem

when parameters δ1 and δ2 are small, and θ is large. Constraint (4.17) can guarantee the

summation of the elements in the probability vector (i.e., x̃k′m) equals to 1.

Next, we discuss how to solve this optimization problem. Inspired by the dual ascent

method [7], we first get the Lagrangian form of the upper-level problem:

L1(X̃,Ψ) =
M∑
m=1

{1− 1

1 + exp[−θ(x∗mc2 − x∗mc1)(x̂∗mc2 − x̂∗mc1)]
}

+ δ1

K′∑
k′=1

∑
m∈Õk′

C∑
c=1

log x̃k
′

mc + δ2

K′∑
k′=1

∑
m∈Õk′

C∑
c=1

log(1− x̃k′mc)

+
K′∑
k′=1

∑
m∈Õk′

ψk
′

m(
C∑
c=1

x̃k
′

mc − 1), (4.18)
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where Ψ = {ψk′m}
M,K′

m,k′=1 are the Lagrangian multipliers. The solution we adopted here is

a two-phase iterative procedure:

Phase I: In this phase, we first fix the Lagrange multipliers Ψ = {ψk′m}
M,K′

m,k′=1, which

are calculated in the previous iteration. Then we solve the following optimization prob-

lem:

max
X̃

L1(X̃,Ψ)

s.t. {X̂∗,W, W̃} = argmin
X̂∗,W,W̃

f(X̂∗,W, W̃ )

s.t.
K∑
k=1

exp(−wk) +
K′∑
k′=1

exp(−w̃k′) = 1.

(4.19)

The method used to solve optimization problem (4.19) is also a two-step iterative proce-

dure. Here we call this procedure the inner iterative procedure in order to differentiate

it from the two-phase iterative procedure mentioned above. The two steps of the inner

iterative procedure are summarized as follows:

Step À: We fix the malicious users’ observations X̃ , which are calculated in the pre-

vious iteration of the inner iterative procedure. Then we solve the lower-level problem

to get the optimal solution {X̂∗,W, W̃}, which is the truth discovery problem discussed

in Section 4.4.1.

Step Á: We adopt the gradient ascent method to solve the upper-level problem. More

specifically, in iteration r of the inner iterative procedure, x̃k′mc1 and x̃k′mc2 in vector x̃k′m

are updated as

x̃k
′(r+1)
mc ← x̃k

′(r)
mc + α1

r · Ox̃k′mc
L1(X̃,Ψ), c ∈ {c1, c2} (4.20)
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where α1
r is the step size in iteration r of the inner iterative procedure. For gradient

Ox̃k′mc
L1(X̃,Ψ), it is calculated as

Ox̃k′mc
L1(X̃,Ψ) =

M∑
m′=1

{ exp(θd1d2)θd1

[1 + exp(θd1d2)]2
·
∂x̂∗m′c1
∂x̃k′mc

}

−
M∑

m′=1

{ exp(θd1d2)θd1

[1 + exp(θd1d2)]2
·
∂x̂∗m′c2
∂x̃k′mc

}

+
δ1

x̃k′mc
− δ2

1− x̃k′mc
+ ψk

′

m,

(4.21)

where d1 = x∗m′c2 −x
∗
m′c1

and d2 = x̂∗m′c2 − x̂
∗
m′c1

. Here
∂x̂∗
m′c1

∂x̃k′mc
and

∂x̂∗
m′c2

∂x̃k′mc
are calculated

based on Eq. (4.7):

∂x̂∗m′c1
∂x̃k′mc

=


w̃k′∑

k∈Um wk+
∑
k′∈Ũm w̃k′

m = m′ and c = c1

0 others.
(4.22)

∂x̂∗m′c2
∂x̃k′mc

=


w̃k′∑

k∈Um wk+
∑
k′∈Ũm w̃k′

m = m′ and c = c2

0 others.
(4.23)

The reason why we only update x̃k′mc1 and x̃k′mc2 is that only the two answers (i.e., c1

and c2) with the highest and second highest probability in vector x∗m are considered when

we assign the observations for the malicious users. The malicious users who observe the

m-th object should select one of the answers (i.e., c1 or c2) as his observation for this

object in order to achieve the attack goal.

Step À and step Á in the inner iterative procedure will be conducted until the con-

vergence criterion is satisfied. Here the convergence criterion is that all the gradients

{Ox̃k′mc
L1(X̃,Ψ)}M,K′

m,k′ are less than a threshold.

Phase II: We adopt the gradient descent method to update the Lagrangian multipliers

Ψ = {ψk′m}
M,K′

m,k′=1 based on X̃ calculated in phase I. More specifically, in iteration t, ψk′m
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is updated as

ψk
′(t+1)
m ← ψk

′(t)
m − α2

t · (
C∑
c=1

x̃k
′

mc − 1) (4.24)

where α2
t is the step size in iteration t.

The above two phases will be iteratively conducted until the Lagrangian multi-

pliers {ψk′m}
M,K′

m,k′=1 converge. We can get malicious users’ observation vectors X̃ =

{x̃k′m}
M,K′

m,k′=1. Then the k′-th malicious user selects the candidate answer with the largest

value in vector x̃k′m as the final observation of the m-th object, and submit it to the cloud

server. The procedure is summarized as Algorithm 4.

Algorithm 4: Optimizing X̃ for the availability attack
Input: The number of objects: M ; the number of normal users: K; the normal users’

observations: X; the number of malicious users: K ′; the objects observed by the
malicious users: {Õk′}K

′
k′=1.

Output: The optimal attack strategy X̃opt

1 Initialize the malicious users’ observations X̃ and the Lagrange multipliers Ψ;
2 X̃opt ← ∅;
3 while Ψ = {ψk′m}

M,K′

m,k′=1 does not converge do
4 while the gradients do not satisfy the convergence criterion do
5 Calculate the optimal solution {X̂∗,W, W̃} based on Eq.(4.7), Eq.(4.8) and

Eq.(4.9);
6 Update X̃ based on Eq.(4.20);
7 end
8 Update Ψ based on Eq.(4.24);
9 end

10 for each x̃k
′
m ∈ X̃ do

11 x̃
k′(opt)
m ← the candidate answer with the largest value in vector x̃k

′
m;

12 X̃opt ← X̃opt ∪ {x̃k
′(opt)
m };

13 end
14 return The optimal attack strategy X̃opt;
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4.4.3 Target Attack

In the target attack, the attacker tries to skew the estimated truths of some objects (called

the target objects) to certain target answers through poisoning the sensory data. The

target answers are usually predetermined by the attacker. When conducting the target

attack, if the final truth discovery result on a target object is changed to the target answer

after the attack, it means that the attack on this object succeeds. Otherwise, the attack

on this object fails.

Given the limited capability of the attacker, in this section we discuss how to find

the optimal attack strategy so that the attack can succeed on as many target objects as

possible. Suppose that the attacker wants to attack M (M ≤ M ) objects among all the

objects observed by the normal users. The target answer and the final estimated answer

for the m-th target object after the attack are denoted as x∗fm and x̂∗fm respectively. We

can formulate the goal of the target attack into an optimization problem as follows:

max
X̃

M∑
m=1

1(x̂∗fm = x∗fm ) (4.25)

s.t. {X̂∗f ,W, W̃} = argmin
X̂∗f ,W,W̃

f(X̂∗f ,W, W̃ )

s.t.
K∑
k=1

exp(−wk) +
K′∑
k′=1

exp(−w̃k′) = 1,

where X̂∗f = {x̂∗fm }Mm=1 are the final estimated object answers after the attack and

{x̂∗fm }Mm=1 ∈ X̂∗f .

When conducting the target attack, the malicious users need to pick one candidate

answer for each target object. An intuitive attack strategy is to choose the target answer.

However, this strategy may not be the optimal choice under truth discovery framework.

The reason is similar to that in the availability attack. The weights of malicious users can

be greatly decreased since they would disagree with the majority of the normal users. A

better strategy may sacrifice on some of the target objects where it is unlikely to skew the



93

estimated truths, so that the weights of malicious users can be increased, and eventually

their impact on other objects can be improved. Here we assume that each malicious

user only observes the target objects. Since we only consider the change between the

target answers and the answers with the highest probability values in the estimated truth

vectors before the attack, we reformulate problem (4.25) as

max
X̃

M∑
m=1

1

2
{1− sgn[(x∗mc1 − x

∗
mcT

) · (x̂∗mc1 − x̂
∗
mcT

)]} (4.26)

s.t. {X̂∗,W, W̃} = argmin
X̂∗,W,W̃

f(X̂∗,W, W̃ )

s.t.
K∑
k=1

exp(−wk) +
K′∑
k′=1

exp(−w̃k′) = 1

{x̃k′mc}
K′,M,C
k′,m,c=1 ∈ {0, 1},

where X̂∗ is the set of probability vectors output by truth discovery algorithm. In the

objective function (4.26), cT and c1 represent the target answer and the answer with the

highest value in the probability vector calculated before the attack. This optimization

problem reflects the idea that if the object truth does not switch from the answer with

the highest probability value to the target answer after the attack, the attack fails on this

target object.

Similar to the availability attack, in order to solve this optimization problem, we

approximate the objective function (4.26) by:

max
X̃

M∑
m=1

{1− 1

1 + exp[−θ(x∗mc1 − x
∗
mcT

)(x̂∗mc1 − x̂
∗
mcT

)]
}, (4.27)

where θ denotes the steepness of the curve. Then we can formulate the following opti-

mization problem to achieve the attacker’s goal.

max
X̃

h(X̃) =
M∑
m=1

{1− 1

1 + exp[−θ(x∗mc1 − x
∗
mcT

)(x̂∗mc1 − x̂
∗
mcT

)]
}
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+ δ1

K′∑
k′=1

M∑
m=1

C∑
c=1

log x̃k
′

mc + δ2

K′∑
k′=1

M∑
m=1

C∑
c=1

log(1− x̃k′mc) (4.28)

s.t. {X̂∗,W, W̃} = argmin
X̂∗,W,W̃

f(X̂∗,W, W̃ )

s.t.
K∑
k=1

exp(−wk) +
K′∑
k′=1

exp(−w̃k′) = 1

C∑
c=1

x̃k
′

mc = 1, where k′ = 1, ..., K ′ and m = 1, ...,M.

Similar to the optimization problem formulated in the availability attack, this prob-

lem is a bi-level optimization problem and the objective function h(X̃) contains three

terms: The first term represents the utility of the attacker. The second and the third terms

are the barriers used to limit each element in the malicious users’ observation vectors to

the range (0, 1). The solution for this optimization problem is also a two-phase iterative

procedure which is similar to that for the availability attack.

4.5 Experiments on the Crowd Wisdom System

We build a crowd wisdom system to evaluate the performance of the proposed attack

framework. In this system, the cloud server publishes some multi-choice trivia questions

using the Android App we developed, and the users can view and submit their answers

using the App. After receiving the answers from the users, the cloud server applies the

truth discovery approach (i.e., the CRH framework) to infer the true answer for each

question. The attack occurs after the data of the normal users are submitted to the cloud

server but before the truth discovery procedure starts. In our experiment, 30 smartphone

users are employed as the normal users and 19 questions are used as the objects. Each

question has 4 candidate answers and the users can only choose one answer for each

question. The participants are not required to answer all questions. Instead, they can

choose any questions as they will.
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4.5.1 Availability Attack

In the availability attack, the attacker tries to maximally disturb the truth discovery re-

sults. In this experiment, a fixed number of malicious users can be created, and each

of them can observe a randomly selected subset of objects. We compare the proposed

availability attack framework with the following attack strategy.

Baseline. The attacker first runs the truth discovery algorithm (CRH) on the ob-

servations provided by the normal users. Then the attacker sets each malicious user’s

observation on a given object as the candidate answer which has the second highest

probability value based on the truth discovery result on this object. For example, for one

question, CRH outputs the aggregation result as (0.6, 0.1, 0.2, 0.1). Then the malicious

users who are assigned to this question will provide observations as (0, 0, 1, 0). This

baseline method is intuitive since this candidate answer is more likely to win over the

estimated object truth before the attack than other candidate answers. In fact, it is the

optimal attack strategy if the aggregation method is voting (that is, for each object, the

candidate answer which has the highest vote counts is the aggregation result).

For the proposed attack framework, the optimal observations for each malicious user

are calculated according to Algorithm 4. We set θ = 100 and initialize the observations

of malicious users on an object as the truth discovery results from the normal users’

observations on that object. In order to evaluate the performance of the availability

attack strategies, we adopt two metrics: the utility defined in Eq. (4.14), and the change

rate. For the latter, it is defined as the percentage of the objects which has different

final aggregation results before and after the attack. It is equivalent to the utility defined

in Eq. (4.10). All the experiments are conducted 20 times and we report the average

results.

The Effect of the Percentage of Malicious Users

Here we assume that each malicious user can observe 10 randomly selected objects.

Then we vary the percentage of malicious users from 0.03 to 0.3 and calculate the at-

tacker’s utility and the change rate. The results are shown in Figure 4.2, from which we
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can see that the proposed optimal attack framework outperforms the baseline method in

all cases. This figure also shows that the advantage of the proposed attack framework

is marginal when the percentage of malicious users is 0.03. This is because the number

of malicious users in this case is too small, and it is hard to change the aggregation re-

sults much. However, the advantage of the proposed attack framework becomes bigger

when the percentage of malicious users gradually increases. To change the aggregation

results on 20% of the objects, the proposed attack framework only needs less than 12%

of malicious users whereas the baseline method needs about 21% of malicious users.

For the proposed attack framework, the increment of change rate slows down after the

malicious users occupy 15% of the total users, but the utility keeps increasing steadily.

The reason is that the change of an estimated object truth is either 0 (not changed) or

1 (changed), while the utility is a continuous value. For example, the estimated object

truth vector that changes from (0.7, 0.2, 0.1, 0) to (0.5, 0.4, 0.1, 0) does not increase the

change rate, but increases the utility.
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Figure 4.2: Utility and Change rate w.r.t. the percentage of malicious users for avail-
ability attack

The Effect of the Number of the Observed Objects

With the fixed number of malicious users, if one malicious user can observe more ob-

jects, he can make impact to more objects, and thus achieve higher impact to the overall

sensing system. In this experiment, we examine the effect of the number of the objects

a malicious user can observe. Here we fix the percentage of malicious users to be 10%.

Then we vary the number of objects that each malicious user can observe from 2 to
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18. The results are reported in Figure 4.3. The results clearly demonstrate the advan-

tage of the proposed attack framework over the baseline method. With the increment

of the observed objects, the malicious users exert more and more impact on the sensing

system, and the advantage of the proposed attack framework over the baseline method

also increases. Figure 4.3 shows that to achieve 20% change rate, the malicious users of

the proposed attack framework only need to observe on 10 objects, while the malicious

users of the baseline method needs to observe on 18 objects.
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Figure 4.3: Utility and Change rate w.r.t. the number of the objects which are observed
by each malicious user

Comparison on Weights of the Malicious Users

The reason that the proposed attack framework outperforms the baseline method lies

in the fact that the effect of user reliability estimation in the truth discovery algorithm

is considered. The proposed attack framework will let the malicious user “fake” like a

normal user or even a good user on some objects to enhance its weight. Whereas for the

baseline method, the malicious users always disagree with the majority of the normal

users, and thus the suspicious behavior may be detected by the truth discovery algorithm

and cause the decrease in the weights.

In this experiment, we examine the weight distributions for both the normal users and

the malicious users. We choose the following two settings: the percentage of malicious

users is set as 0.15 (i.e., 6 malicious users), and we let them observe 5 objects and 15

objects respectively. In Figure 4.4, we plot the weights for all users after the proposed

attack framework attacks the sensing system, and the weights for all users after the
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baseline method attacks the sensing system for the aforementioned two scenarios. From

Figures 4.4a and 4.4c, we can see that the malicious users from the proposed attack

framework all have high weights comparing with the normal users. This means that

the malicious users successfully blend into the normal users. Therefore, it is hard for

the truth discovery algorithm to detect the attack. In contrast, the malicious users from

the baseline method all have very low weights comparing with the normal users, as

shown in Figures 4.4b and 4.4d. The two figures confirm our expectations that the truth

discovery algorithm finds these malicious users since they behave differently from the

normal users. The low user weights not only limit the impact of the malicious users, but

also make them vulnerable to straightforward defense mechanism.
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Figure 4.4: The weight of each user for availability attack. (a) and (b) show the user
weights when each malicious user observe 5 objects. (c) and (d) show the user weights
when each malicious user observe 15 objects.
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4.5.2 Target Attack

In the target attack, the attacker tries to skew the truth discovery results to the target

values on certain objects. To make the problem more interesting, we assume that the

target values are not the same as the values that have the highest probabilities derived by

the truth discovery algorithm before attack; and to make the target attack different from

the availability attack, we further assume that not all the target values are the same as

the values with the second highest probabilities. We compare the proposed target attack

framework with the following attack strategy.

Baseline. For the target objects, the attacker sets the malicious users’ observations

as the target choices.

For the proposed attack framework, we set θ = 100 and initialize the observations of

malicious users on an object as the truth discovery results from the normal users on that

object. In order to evaluate the performance of the target attack strategies, we adopt two

metrics: the utility defined in Eq. (4.27), and the change rate. For the latter, it is defined

as the number of objects that are successfully changed to the target value divided by the

total number of target objects. It is equivalent to the utility defined in Eq. (4.25).

The Effect of the Percentage of Malicious Users and the Number of Target Objects

In this experiment, we examine how the percentage of malicious users and the number

of the target objects affect the attack results. We vary the percentage of malicious users

from 0.03 to 0.27 with 10 and 15 target objects. The results are plotted in Figure 4.5.

We can still observe that the proposed attack framework outperforms the baseline

method in all cases. The proposed attack framework can usually use one or two fewer

malicious users to achieve the same change rate comparing with the baseline method.

The effect of the percentage of malicious users in the target attack is similar to that

of in the availability attack: the more malicious users, the higher the utility and the

change rate. Increasing the number of the target objects, however, makes the attack

goal harder to achieve. This is because that under our problem settings, the target attack

is significantly more difficult than the availability attack, since the target values may be
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supported by much fewer normal users. Therefore, when there are more target objects,

the attacker needs to add more malicious users to achieve the same change rate.
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Figure 4.5: Utility and Change rate w.r.t. the percentage of malicious users for target
attack. (a) and (b) show the results when 10 objects are attacked. (c) and (d) show the
results when 15 objects are attacked.

Comparison on Weights of the Malicious Users

Next, we explore the user weight distributions in the target attack. The following two

settings are compared: the percentage of malicious users is set as 0.15, (i.e., 6 malicious

users), and we let the number of target objects to be 10 and 15 respectively. In Fig-

ure 4.6, we plot the weights for all users after the proposed attack framework attacks the

sensing system, and the weights for all users after the baseline method attacks the sens-

ing system. From Figures 4.6a and 4.6c, we can see that the weights of the malicious

users from the proposed attack framework are similar to the weights of the normal users,

so they again successfully blend into the normal users. The reason is that for some target

objects where the target values are too hard to achieve, the malicious users may disguise

their purpose by agreeing with the normal users. In contrast, the malicious users from

the baseline method all have very low weights (Figures 4.6b and 4.6d), as they always
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choose the choices that are not supported by the normal users. The results suggest that

the malicious users from the baseline method are more vulnerable to straightforward

defense mechanisms.

0 6 12 18 24 30 36

User ID

1

2

3

4

5

W
ei

g
h

t

Normal users

Malicious users

(a) Optimal attack strategy

0 6 12 18 24 30 36

User ID

1

2

3

4

5

W
ei

g
h

t

Normal users

Malicious users

(b) Baseline method

0 6 12 18 24 30 36

User ID

1

2

3

4

5

W
ei

g
h

t

Normal users

Malicious users

(c) Optimal attack strategy

0 6 12 18 24 30 36

User ID

1

2

3

4

5

W
ei

g
h

t
Normal users

Malicious users

(d) Baseline method

Figure 4.6: The weight of each user for target attack. (a) and (b) show the results when
10 objects are attacked. (c) and (d) show the results when 15 objects are attacked.

4.6 Summary

In this chapter, we study two types of data poisoning attacks, i.e., the availability at-

tack and the target attack, against a crowd sensing system empowered with the truth

discovery mechanism. We first analyze the pitfalls when attacking such a crowd sens-

ing system and then design an optimal attack framework to derive the (approximately)

optimal attack strategy, based on which the attacker can not only maximize his attack

utility but also successfully disguise the attack behaviors. The proposed optimal attack

framework is tested on a real-world crowd sensing system. The experimental results

demonstrate that compared with the naive baseline schemes, the proposed attack frame-

work can achieve higher attack utility and at the same time, let the malicious users gain

higher reliability degrees such that they cannot be detected easily.



Chapter 5
Security Vulnerability Analysis for

the Dawid-Skene Model

5.1 Introduction

In Chapter 4, we investigate data poisoning attacks against the crowd sensing systems

empowered with truth discovery mechanism. In this chapter, we study the crowd sensing

systems employing another widely adopted reliability-aware data aggregation method,

i.e., the Dawid-Skene model [22], and analyze its security vulnerability to data poison-

ing attacks. Here we consider a scenario in which the attacker aims to maximize the

error of the final results through creating or recruiting a group of malicious users and

letting them provide manipulated data. This attack goal can be easily achieved if the at-

tacker has the capability of creating or recruiting an overwhelming number of malicious

users. However, in practice, the attacker usually has limited resources and he can only

control a few malicious users. In such cases, the attack strategy plays an important role.

A naive attack strategy is to let the malicious users always disagree with the normal

users. If some straightforward aggregation methods, such as majority voting, are used

to aggregate the data, this naive attack model may be the optimal choice, since every

malicious user exerts the most influence in the aggregation. However, the story would
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become much more complicated if the Dawid-Skene model is employed. In the Dawid-

Skene model, each user is associated with an underlying confusion matrix, which can

reflect the reliability degree of this user. After the labels are collected from the users,

the final results and the users’ confusion matrices are jointly estimated based on the

maximum likelihood principle. As a result, users with low reliability degrees will have

low impact in the aggregation. In this case, if an attacker adopts the aforementioned

naive attack, in which the malicious users always disagree with the normal users, the

malicious users are very likely to be assigned a significantly low reliability degree by

the Dawid-Skene model, and thus will not be able to make any difference in the final

aggregated results.

To attack a crowd sensing system with the Dawid-Skene model empowered, we

propose an intelligent data poisoning attack mechanism that takes into account the ma-

licious users’ reliability degrees. In this mechanism, the malicious users behave more

“intelligently”, i.e., try to improve their reliability degrees by agreeing with the normal

users on some objects whose values are unlikely to be overturned. Compared with the

aforementioned naive strategy, the proposed intelligent attack model can not only dis-

guise the malicious users, but also enable them to launch more effective attacks on the

objects that are more vulnerable to attack.

Towards this end, we formulate a bi-level optimization problem. The objective in

the optimization problem is to maximize the attacker’s utility, which is the combination

of the number of the successfully attacked objects and the malicious users’ reliability

degrees. Since the number of the successfully attacked objects is discrete, it is hard to

directly solve the optimization problem. To address this challenge, a continuous and

differentiable sigmoid function is adopted to approximate the discrete component in the

objective function. We solve the bi-level optimization problem by iteratively solving

the upper-level and lower-level subproblems, which are solved by the projected gradient

ascent and expectation-maximization (EM) methods, respectively.



104

5.2 Problem Setting

In this chapter, we consider a crowd sensing scenario in which a cloud server and some

participating users are involved. The cloud server is a platform which can outsource the

sensing tasks to the participating users. The sensing task is to collect labels for a pool of

objects, each of which belongs to one of two possible categories (e.g., same/different;

positive/negative; etc.). To ensure the quality of the final result, each object will be

observed by multiple participating users, who are the individuals that carry out the crowd

sensing tasks, and each user will provide labels for a number of objects. After collecting

the labels from the participating users, the cloud server aggregates these labels to derive

the true label of each object.

The security threats considered in this chapter mainly come from an attacker who

aims to attack the crowd sensing system for malicious purposes. The goal of the at-

tacker is to maximize the error of the derived true labels, and meanwhile disguise his

malicious behaviors so that the attack cannot be detected easily. We assume that the

attacker can recruit or create multiple participating users (called malicious users) and

arbitrarily manipulate their labels, but he cannot influence the behaviors of the normal

users who carry out the sensing tasks without any malicious purpose. If there is no

limitation on the ability of the attacker, he can achieve the attack goal easily through

creating a large number of malicious users. However, in practice, the attacker usually

has limited resources and can only recruit or create a few malicious users. In such cases,

it is essential for the attacker to design a sophisticated attack strategy (i.e., the labels

provided by the malicious users) such that the attack goal can be maximally achieved.

In order to assess the vulnerability of the crowd sensing system in the worst case, we

also assume that the attacker has full knowledge of the aggregation method and the la-

bels from normal users. This assumption is reasonable as it is possible for the attacker

to learn the labels of normal users through eavesdropping the communications between

the cloud server and the normal users.



105

Problem formulation. Suppose the cloud server releases a sensing task which con-

tains a set of objects O = {o1, o2, ..., oM}, and these objects are queried to K normal

users which are represented as U = {u1, u2, ..., uK}. The labels provided by these nor-

mal users are denoted as X = {xkm}
M,K
m,k=1, in which xkm is the label provided by user uk

for object om. For each object om, there is a true label x∗m which is unknown a priori

and needs to be estimated by the cloud server based on the labels collected from all the

users. We use X∗ = {x∗m}Mm=1 to denote the set of true labels for all objects. Assume

that the attacker can createK ′ malicious users represented as Ũ = {ũ1, ũ2, ..., ũK′}. The

set of labels provided by all the malicious users is denoted as X̃ = {x̃k′m}
M,K′

m,k′=1, and x̃k′m

is the label provided by malicious user ũk′ for object om. Our goal in this chapter is to

find an optimal attack strategy (i.e., an optimal X̃) from the perspective of the attacker

such that the attack goal can be maximally achieved.

5.3 Preliminary

In the Dawid-Skene model, each participating user is associated with an unknown con-

fusion matrix which reflects the user’s ability (or reliability degree) when carrying out

the sensing task. Each diagonal element in this matrix represents the probability that

the user provides the true label for a particular object, while each off-diagonal element

represents the probability that a particular wrong label is provided. After the labels are

collected from all the users, the maximum likelihood estimation method is adopted to

jointly estimate each object’s true label and each user’s confusion matrix.

In this chapter, we consider the binary case, i.e., we assume that each object has

only two possible labels: 0 and 1. Based on the Dawid-Skene model, each user uk

provides label for object om according to parameters αk = Pr(xkm = 1|x∗m = 1) and

βk = Pr(xkm = 0|x∗m = 0), where αk and βk are the diagonal elements in user uk’s

confusion matrix. They are also treated as uk’s ability parameters or reliability degrees.

The larger αk and βk are, the higher the probability that user uk provides a true label.
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Additionally, this model assumes that the probability that an object drawn at random

has true label 1 is p, which is usually unknown a priori. Denote Θ = {p, {αk, βk}Kk=1}

as the set of all the model parameters. The Dawid-Skene model adopts the maximum

likelihood estimation method to estimate Θ. However, due to the latent variables X∗ are

unknown a priori, it is hard to directly conduct the estimation.

To address the above challenge, the Dawid-Skene model adopts the EM algo-

rithm [24] which contains an expectation step (E-step) and a maximization step (M-

step). In the E-step, the objects’ true labels are derived based on the estimated model

parameters Θ, and in the M-step, the parameters Θ are calculated based on the derived

true labels. The details of the two steps are described as follows.

E-step: In this step, the model parameters Θ are fixed. For each object om, we

calculate ωm = Pr{x∗m = 1|X} based on the Bayes theorem:

ωm = Pr{x∗m = 1|X; Θ} =
Pr{X|x∗m = 1} · p

Pr{X|x∗m = 1} · p+ Pr{X|x∗m = 0} · (1− p)

=

∏
k∈Um α

xkm
k (1− αk)1−xkm · p∏

k∈Um α
xkm
k (1− αk)1−xkm · p+

∏
k∈Um β

1−xkm
k (1− βk)xkm · (1− p)

,

(5.1)

where Um represents the set of normal users who provide labels for object om.

Here ωm is the posterior probability that the true label of the object om is 1. With

the calculated Ω = {ωm}Mm=1, the expected value of the log likelihood function can be

expressed as

Q(Θ) =E[logL(Θ;X,X∗)] = E[log
M∏
m=1

L(Θ;Xm, x
∗
m)]

=
M∑
m=1

{ωm log[
∏
k∈Um

α
xkm
k (1− αk)1−xkm · p]

+ (1− ωm) log[
∏
k∈Um

β
1−xkm
k (1− βk)x

k
m · (1− p)]},

(5.2)

where Xm represents the set of labels for object om.
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M-step: In this step, the posterior probabilities {ωm}Mm=1 are fixed. The model

parameters Θ are estimated by maximizing the expected value of the log likelihood

function Q(Θ), and they are updated as follows:

p =

∑M
m=1 ωm
M

, (5.3)

αk =

∑
m∈Ok ωm · x

k
m∑

m∈Ok ωm
, (5.4)

βk =

∑
m∈Ok(1− ωm) · (1− xkm)∑

m∈Ok(1− ωm)
, (5.5)

where Ok represents the set of objects queried to uk.

The above two steps are iteratively conducted until the convergence criterion is sat-

isfied. Finally, if ωm is larger than 0.5, the true label of the object om is assigned as 1,

otherwise, it is assigned as 0.

5.4 The Intelligent Attack Mechanism

In order to achieve the attack goal as much as possible, it is essential for the attacker

to find an optimal attack strategy with the limited resources (i.e., the number of created

or recruited malicious users and the number of observed objects). We first investigate

the Dawid-Skene model under the adversarial environment in Section 5.4.1, and then

discuss how to design an optimal attack strategy from the perspective of the attacker in

Section 5.4.2.

5.4.1 Dawid-Skene Model with Malicious Users

In the adversarial environment, the malicious users may blend into the crowd sensing

system and provide manipulated labels to the cloud server in order to distort the final
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aggregated results. In this section, we decompose the participating users into normal and

malicious ones, and investigate the relationship between the final aggregation results

and the labels provided by malicious users. Please note that the cloud server in the

crowd sensing system cannot differentiate the two types of participating users when

aggregating the collected labels.

As described in the problem setting, we assume that the attacker creates K ′ ma-

licious users to conduct the data poisoning attacks against the crowd sensing system.

The attacker cannot influence the behaviors of the normal users, but he can arbitrar-

ily manipulate the labels of malicious users. We denote the ability parameters of

malicious user ũk′ in the Dawid-Skene model as α̃k′ = Pr(x̃k
′
m = 1|x∗m = 1) and

β̃k′ = Pr(x̃k
′
m = 0|x∗m = 0). We use Θ̃ = {p, {αk, βk}Kk=1, {α̃k′ , β̃k′}K

′

k′=1} to denote the

set of the model parameters and {αk, βk}Kk=1 are the ability parameters of the normal

users. Suppose X̂ is the set of the labels provided by all the participating users, includ-

ing the normal and malicious ones. The E-step and M-step in the Dawid-Skene model

after data poisoning attacks can be described as follows:

E-step: For each object om, we calculate ω̃m = Pr{x∗m = 1|X̂} based on the Bayes

theorem:

ω̃m = Pr{x∗m = 1|X̂; Θ̃}

=
Pr{X̂|x∗m = 1} · p

Pr{X̂|x∗m = 1} · p+ Pr{X̂|x∗m = 0} · (1− p)

=
Ãm1

Ãm1 + Ãm0

,

(5.6)

where

Ãm1 =
∏
k∈Um

α
xkm
k (1− αk)1−xkm ·

∏
k′∈Ũm

α̃
x̃k
′
m

k′ (1− α̃k′)1−x̃k′m · p (5.7)

Ãm0 =
∏
k∈Um

β
1−xkm
k (1− βk)x

k
m ·

∏
k′∈Ũm

β̃
1−x̃k′m
k′ (1− β̃k′)x̃

k′
m · (1− p). (5.8)
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Here we use Ũm to denote the set of malicious users who provide labels for object om.

ω̃m represents the posterior probability that the true label of object om is 1 after the data

poisoning attacks.

M-step: In this step, we fix the the posterior probabilities {ω̃m}Mm=1 and update the

model parameters Θ̃ = {p, {αk, βk}Kk=1, {α̃k′ , β̃k′}K
′

k′=1} as follows:

p =

∑M
m=1 ω̃m
M

, (5.9)

αk =

∑
m∈Ok ω̃m · x

k
m∑

m∈Ok ω̃m
, βk =

∑
m∈Ok(1− ω̃m) · (1− xkm)∑

m∈Ok(1− ω̃m)
, (5.10)

α̃k′ =

∑
m∈Õk′

ω̃m · x̃k
′
m∑

m∈Õk′
ω̃m

, β̃k′ =

∑
m∈Õk′

(1− ω̃m) · (1− x̃k′m)∑
m∈Õk′

(1− ω̃m)
, (5.11)

where Õk′ represents the set of objects observed by ũk′ .

The above equations show that once the labels of normal users (i.e., X) are

given, the final estimated true labels of the objects and the ability parameters (i.e.,

{αk, βk}Kk=1, {α̃k′ , β̃k′}K
′

k′=1) of the participating users are only dependent on the mali-

cious users’ data. Different values of the malicious users’ labels can lead to different

estimated results. Based on this fact, the attacker can conduct data poisoning attacks

through carefully designing the malicious users’ labels such that the goal of the attacker

can be optimally achieved.

5.4.2 Optimal Attack Strategy

In this chapter, the attacker conducts the data poisoning attacks for the purpose of maxi-

mizing the error of the final aggregated results, and at the same time tries to disguise his

attack behaviors as much as possible. We can understand the goal of the attacker in two

aspects. On one hand, the attacker aims to maximize the deviation between the outputs

of the Dawid-Skene model before and after the data poisoning attacks. In other words,
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the attacker wants to maximize the number of the successfully attacked objects, where

we say an object is attacked successfully if the estimated true label is changed from one

label to the other after taking the malicious users’ labels into account. On the other hand,

the attacker wants to disguise the malicious users as normal users in the crowd sensing

system such that the attack behaviors cannot be detected easily. One way to achieve the

disguise is to get high values on the malicious users’ ability parameters (or reliability

degrees), i.e., {α̃k′}K
′

k′=1 and {β̃k′}K
′

k′=1. Since the users with large ability parameters will

be treated as high-quality users in the Dawid-Skene model, the crowd sensing system

then cannot distinguish the malicious users from the normal users. In this section, we

stand on the attacker’s position and discuss how to find an optimal attack strategy so that

the goal of the attacker can be achieved as much as possible.

Suppose the attacker is able to create or recruit K ′ malicious users, and for each ma-

licious user, the observed objects are given. When conducting the data poisoning attacks

to break the crowd sensing system, the attacker needs to find the optimal assignments

for the malicious users’ labels. An intuitive strategy is let the malicious users provide

the label which is not likely to be true for each observed object. This strategy may work

well when the aggregation method is majority voting. But for the Dawid-Skene model,

it is not the optimal choice, especially when only a few malicious users are created or

recruited. Due to the fact that malicious users always disagree with the majority, the

Dawid-Skene model will assign low ability values to these malicious users, and conse-

quently, their impact will also be decreased. In such way, the malicious users can be

detected easily and the attack may fail on all the objects. Thus the ability parameters

of malicious users (i.e., {α̃k′}K
′

k′=1 and {β̃k′}K
′

k′=1) should be taken into account when

finding the optimal attack strategy.

In order to address the above challenge, we formulate the goal of the attacker as the

following

max
X̃

M∑
m=1

1(x∗am 6= x∗bm) + λ
K′∑
k′=1

(α̃k′ + β̃k′) (5.12)



111

s.t. {X∗a, Θ̃} = argmax
X∗a,Θ̃

logL(Θ̃; X̂,X∗a)

{x̃k′m}
M,K′

m,k′=1 ∈ {0, 1}

whereX∗a = {x∗am}Mm=1 denotes the set of the estimated true labels after the data poison-

ing attacks and x∗bm denotes the estimated true label for object om before the attacks (i.e.,

calculated based on the labels of normal users). Once the normal users’ labels are given,

x∗bm is a constant. The objective function contains two components. The first component,

i.e.,
∑M

m=1 1(x∗am 6= x∗bm), where 1(·) is the indicator function, represents the number of

the successfully attacked objects. In the second component,
∑K′

k′=1(α̃k′ + β̃k′) is the

summation of the malicious users’ ability parameters, and λ is a parameter used to trade

off the two components. The summation of the two components can also be treated

as the utility of the attacker. The intuition of the objective function is to maximize the

number of the successfully attacked objects and the malicious users’ ability values si-

multaneously, where the first component is the goal of the attack and the latter ensures

that the malicious users cannot be detected easily. In this optimization problem, the

Dawid-Skene model becomes a constraint. This is a bi-level optimization problem [3].

The optimization over the labels of the malicious users (i.e., X̃) is the upper-level prob-

lem, and the optimization over {X∗a, Θ̃} is the lower-level problem.

In the Dawid-Skene model, the final estimated true labels of the objects are depen-

dent on the posterior probabilities Ω = {ωm}Mm=1 or Ω̃ = {ω̃m}Mm=1: if ωm (or ω̃m) is

larger than 0.5, x∗bm (or x∗am ) is assigned as 1, otherwise, it is assigned as 0. Thus we can

reformulate optimization problem (5.12) as follows:

max
X̃

M∑
m=1

1

2
{1− sgn[(ωm − 0.5) · (ω̃m − 0.5)]}+ λ

K′∑
k′=1

(α̃k′ + β̃k′)

s.t. {Ω̃, Θ̃} = argmax
Ω̃,Θ̃

logL(Θ̃; X̂, Ω̃) (5.13)

{x̃k′m}
M,K′

m,k′=1 ∈ {0, 1},
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where

sgn[(ωm − 0.5) · (ω̃m − 0.5)] =


1 if (ωm − 0.5) · (ω̃m − 0.5) > 0

0 if (ωm − 0.5) · (ω̃m − 0.5) = 0

− 1 if (ωm − 0.5) · (ω̃m − 0.5) < 0.

(5.14)

Once the labels of normal users are given, the posterior probability ωm for object om

is a constant. ω̃m, α̃k′ and β̃k′ are dependent on the labels of the malicious users (i.e.,

the attack strategy X̃) and they can be different when the malicious users vary their

labels. In this way, ω̃m, α̃k′ and β̃k′ can be expressed as the functions of X̃ according to

Eq. (5.6) and Eq. (5.11). Then problem (5.13) becomes:

max
X̃

M∑
m=1

1

2
{1− sgn[(ωm − 0.5) · ( Ãm1

Ãm1 + Ãm0

− 0.5)]}

+ λ
K′∑
k′=1

(

∑
m∈Õk′

ω̃m · x̃k
′
m∑

m∈Õk′
ω̃m

+

∑
m∈Õk′

(1− ω̃m) · (1− x̃k′m)∑
m∈Õk′

(1− ω̃m)
)

s.t. {Ω̃, Θ̃} = argmax
Ω̃,Θ̃

logL(Θ̃; X̂, Ω̃) (5.15)

{x̃k′m}
M,K′

m,k′=1 ∈ {0, 1}.

Since the objective function in problem (5.15) is not continuous, it is hard to directly

solve this optimization problem. In order to address this challenge, we approximate the

objective function in problem (5.15) by the following one:

max
X̃

M∑
m=1

{1− 1

1 + exp[−θ(ωm − 0.5) · ( Ãm1

Ãm1+Ãm0
− 0.5)]

}

+ λ
K′∑
k′=1

(

∑
m∈Õk′

ω̃m · x̃k
′
m∑

m∈Õk′
ω̃m

+

∑
m∈Õk′

(1− ω̃m) · (1− x̃k′m)∑
m∈Õk′

(1− ω̃m)
). (5.16)

The basic idea behind the approximation is that function h1(x) = 1
2
(1 − sgnx) can be

approximated by function h2(x) = 1 − 1
1+exp(−θx)

when x ∈ (−1, 1). The parameter
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θ in h2(x) represents the steepness of the curve. The curves of the two functions when

θ = 100 are shown in Figure 5.1. We can see h2(x) is a good approximation of h1(x).

Additionally, the continuous property of h2(x) allows us to solve the optimization prob-

lem based on the objective function (5.16).

(a) h1(x) (b) h2(x) with θ = 100

Figure 5.1: Curves of h1(x) and h2(x)

Another challenge when solving the above optimization problem is that each element

in X̃ has a categorical value (0 or 1). This introduces difficulties when solving the upper-

level problem. In this chapter, we relax the values of the elements in X̃ to the range

[0, 1] such that the optimization problem can be solved according to the gradient-based

methods. In other words, we treat x̃k′m as the probability that malicious user ũk′ provides

label 1 for object om. Finally, the value of x̃k′m will be transformed to categorical data:

if the probability is larger than 0.5, x̃k′m is assigned as 1, otherwise, it is assigned as 0.

Then the attacker needs to solve the following optimization problem in order to get the

optimal attack strategy:

max
X̃

f(X̃) =
M∑
m=1

{1− 1

1 + exp[−θ(ωm − 0.5) · ( Ãm1

Ãm1+Ãm0
− 0.5)]

}

+ λ

K′∑
k′=1

(

∑
m∈Õk′

ω̃m · x̃k
′
m∑

m∈Õk′
ω̃m

+

∑
m∈Õk′

(1− ω̃m) · (1− x̃k′m)∑
m∈Õk′

(1− ω̃m)
)

s.t. {Ω̃, Θ̃} = argmax
Ω̃,Θ̃

logL(Θ̃; X̂, Ω̃) (5.17)

{x̃k′m}
M,K′

m,k′=1 ∈ [0, 1].
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Next, we discuss how to solve the above optimization problem. The solution we

adopted here is a two-step iterative procedure.

Step 1: In this step, we first fix the labels of malicious users, i.e., X̃ , which are

estimated in the previous iteration. If it is the first iteration, the elements in X̃ can be

initialized randomly or be set as some particular values. Then we solve the lower-level

problem through conducting the E-step and M-step described in Section 5.4.1 to get the

optimal parameters {Ω̃, Θ̃}. Please note that all the elements in X̃ need to be trans-

formed to the categorical values (i.e., 1 or 0) before solving the lower-level problem.

Step 2: In this step, we fix the parameters {Ω̃, Θ̃} calculated in Step 1, and then

adopt the projected gradient ascent method to solve the upper-level problem. More

specifically, in iteration t, we update x̃k′m as follows:

x̃k
′(t+1)
m ← Proj[0,1](x̃

k′(t)
m + st · Ox̃k′m

f(X̃)) (5.18)

where st is the step size in iteration t and Proj[0,1](·) is the projection operator onto the

range [0, 1]. The gradient Ox̃k′m
f(X̃) is calculated as follows:

Ox̃k′m
f(X̃) =− exp(θd1d2)

[1 + exp(θd1d2)]2
· θd1 ·

∂d2

∂x̃k′m
(5.19)

+ λ(
ω̃m∑

m̄∈Õk′
ω̃m̄

+
ω̃m − 1∑

m̄∈Õk′
(1− ω̃m̄)

)

where d1 = ωm − 0.5, d2 = Ãm1

Ãm1+Ãm0
− 0.5. Through combining with Eq. (5.7) and

Eq. (5.8), we can calculate ∂d2

∂x̃k′m
as

∂d2

∂x̃k′m
=

∂Ãm1

∂x̃k′m
· Ãm0 − ∂Ãm0

∂x̃k′m
· Ãm1

(Ãm1 + Ãm0)2
(5.20)
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where

∂Ãm1

∂x̃k′m
= p

∏
k∈Um

α
xkm
k (1− αk)1−xkm

∏
k̄′∈Ũm\{k′}

α̃
x̃k̄
′
m

k̄′
(1− α̃k̄′)1−x̃k̄′m ·

[α̃
x̃k
′
m

k′ (1− α̃k′)1−x̃k′m log(α̃k′)− α̃x̃
k′
m

k′ (1− α̃k′)1−x̃k′m log(1− α̃k′)], (5.21)

∂Ãm0

∂x̃k′m
= (1− p)

∏
k∈Um

β
1−xkm
k (1− βk)x

k
m

∏
k̄′∈Ũm\{k′}

β̃
1−x̃k̄′m
k̄′

(1− β̃k̄′)x̃
k̄′
m ·

[−β̃1−x̃k′m
k′ (1− β̃k′)x̃

k′
m log(β̃k′) + β̃

1−x̃k′m
k′ (1− β̃k′)x̃

k′
m log(1− β̃k′)]. (5.22)

The above two steps will be iteratively conducted until the convergence cri-

terion is satisfied. In this chapter, we define the convergence criterion as√∑K′

k′=1

∑M
m=1(x̃

k′(t+1)
m − x̃k

′(t)
m )2 < δ, which represents the change of X̃ in two con-

secutive iterations being less than a threshold δ. After the attacker get the final X̃ , the

elements in X̃ will be transformed to 0 or 1 and then provided to the cloud server as the

labels of the malicious users. The submitted labels X̃ will be treated as the optimal at-

tack strategy of the attacker. The optimization procedure is summarized as Algorithm 5.

5.5 Attack with Limited Knowledge

In order to assess the vulnerability of the crowd sensing system in the worst case, we

consider the full knowledge scenario in the above mechanism and assume that the at-

tacker has complete knowledge of the labels from the normal users (i.e., normal labels)

for all objects. In fact, the proposed mechanism can also be employed to implement

an effective attack even when the attacker only has limited knowledge of the objects’

normal labels.

Suppose the attacker only knows the normal labels for M ′ (M ′ < M ) objects rep-

resented as O′ = {o′1, o′2, ..., o′M ′}. We denote the set of the normal labels for the M ′
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Algorithm 5: Optimal attack against the Dawid-Skene model
Input: The number of objects: M ; the number of normal users: K; the normal users’

labels: X; the number of malicious users: K ′; the objects observed by the
malicious users: {Õk′}K

′
k′=1

Output: The optimal attack strategy: X̃

1 Initialize the optimal attack strategy X̃;
2 repeat
3 Estimate the optimal parameters {Ω̃, Θ̃} through conducting the EM algorithm

described in Section 5.4.1;
4 for each x̃k

′
m ∈ X̃ do

5 Update x̃k
′
m according to Eq. (5.18);

6 end
7 until The convergence criterion is satisfied;
8 Transform the elements in X̃ to 0 or 1;
9 return The optimal attack strategy X̃;

objects as X ′ = {x′km}
M ′,K
m,k=1, which is a subset of X . Since the attacker has no knowl-

edge of the objects except those in O′, a good choice for him in such a scenario is to

let the malicious users only provide manipulated labels for the objects in O′ and try to

maximize the error of the final results for the M ′ objects. In order to achieve the goal,

the attacker could treat X ′ as the surrogate data of X and employ the above proposed

mechanism to derive the attack strategy. In other words, the attack strategy in such a

scenario can be derived by solving the following optimization problem:

max
X̃′

M ′∑
m=1

1(x′
∗a
m 6= x′

∗b
m) + λ

K′∑
k′=1

(α̃k′ + β̃k′) (5.23)

s.t. {X ′∗a, Θ̃} = argmax
X′∗a,Θ̃

logL(Θ̃; X̂ ′, X ′
∗a

)

{x̃′
k′

m}
M ′,K′

m,k′=1 ∈ {0, 1},

where X̃ ′ = {x̃′
k′

m}
M ′,K′

m,k′=1 is the attack strategy, i.e., the labels provided by the mali-

cious users for the objects in O′. X ′∗a = {x′∗am}M
′

m=1 and X ′∗b = {x′∗bm}M
′

m=1 represent

the estimated true labels for the M ′ objects based on X̂ ′ = X ′ ∪ X̃ ′ and X ′ respec-

tively. Although the attack strategy X̃ ′ derived based on Eq. (5.23) may not be as good
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as X̃ based on the full knowledge X , it is the optimal choice for the attacker in the

limited knowledge scenario. The performance of the proposed mechanism with limited

knowledge is evaluated in Section 5.6.5.

5.6 Performance Evaluation

We conduct experiments based on real-world crowd-contributed datasets to verify the

performance of the proposed intelligent attack mechanism.

5.6.1 Experiment Setup

In this section, we introduce the adopted real-world crowd-contributed datasets, the

baseline methods which are compared with the proposed mechanism, and the perfor-

mance measure.

Datasets

To verify the advantages of the proposed intelligent attack mechanism, we adopt the

following real-world crowd-contributed datasets.

Duchenne Smile Dataset [105]. In this dataset, the task is to judge whether the

simile in a face image (an object) is Duchenne (enjoyment smile) or Non-Duchenne.

The authors in [105] create tasks on the Amazon Mechanical Turk platform, and collect

the labels from the participating users. The number of the objects in this dataset is 2,134.

Totally, there are 64 normal users and they provide 17,729 labels.

Product Dataset [101,118]. Each object in this dataset contains two products (with

descriptions), the task is to judge whether the two products are the same or not. The par-

ticipating users need to identify whether the two descriptions describe the same product

or not, and then provide their labels. In this dataset, there are 8,315 objects which are

observed by 176 normal users. Totally, these participating users provide 24,945 labels.

Sentiment Dataset [118]. Each object in the dataset is a tweet related to a company.

The participating users need to identify whether the tweet has positive sentiment or not
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to the company. The authors in [118] create 1,000 objects and collect labels from 85

normal users through the AMT platform. Totally, there are 20,000 labels in this dataset.

Baseline Methods

We compare the proposed attack mechanism with two baseline methods: Baseline rand

and Baseline inversion.

In the Baseline rand method, the attacker does not consider any strategy, and he just

randomly sets the labels of each malicious user on a given object. This method introduce

less overhead to the attacker, as he does not need to take effort to obtain and analyze the

crowd-contributed data collected from the normal users.

In the Baseline inversion method, the attacker first conducts the Dawid-Skene model

on the labels provided by the normal users and get the estimated true label for each

object. Then he sets each malicious user’s label on a given object as the candidate

answer which is different from the estimated true label. This method is an intuitive

attack strategy, in which the attacker tries to maximize the number of bad labels injected

into the crowd-contributed data.

Performance Measure

In order to evaluate the performance of the proposed attack mechanism, we compare the

aggregation results before and after the data poisoning attacks, and adopt the change rate

as the measure metric. The change rate is defined as ||X
∗a−X∗b||
M

, whereX∗a = {x∗am}Mm=1

and X∗b = {x∗bm}Mm=1 are the estimations for the objects’ true labels after and before

the data poisoning attacks. Since the goal of the attacker is to maximize the error of

the aggregation results and meanwhile maximally raise the reliability degrees of the

malicious users, thus, the larger the change rate, the better the method.

5.6.2 The Effect of the Percentage of the Malicious Users

When conducting the data poisoning attack, we assume that the attacker cannot manip-

ulate the labels of normal users, but he can create or recruit multiple malicious users.
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Figure 5.2: Change rate w.r.t. the percentage of the malicious users. (a): Duchenne
Smile Dataset. (b): Product Dataset. (c): Sentiment Dataset.

Thus, the number of the malicious users created or recruited by the attacker plays an

important role in the attack. If the attacker is able to create or recruit overwhelming

number of malicious users, the goal of the attacker can be easily achieved with the in-

tuitive attack strategy, i.e., the Baseline inversion method. However, in practice, the

attacker can only create or recruit a limited number of malicious users due to the limita-

tion of his ability. In this experiment, we consider the scenarios where the percentage of

malicious users is low, and evaluate the performance of the proposed mechanism when

the percentage is varying.

SupposeN is the number of labels provided by the normal users for all objects. Here

we assume that each malicious user can observe N/K objects, which is the average

number of the objects observed by each normal user. For each malicious user, the N/K

observed objects are randomly selected. In this chapter, we set the parameters θ and λ as

100 and 1, respectively. Then we vary the percentage of the malicious users from 0.03 to

0.27. All the experiments are conducted 50 times and we report the average results. The

change rate for the three real-world crowd-contributed datasets is shown in Figure 5.2,

in which we represent the proposed mechanism as The intelligent attack. From this

figure, we can see the proposed attack mechanism performs better than the baseline

methods in all cases. When the percentage of the malicious users is very low (e.g., 3%),

since the malicious users are too few to change the final aggregation results much, the

advantage of the proposed mechanism is small. However, when the percentage of the
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malicious users increases, the advantage of the proposed attack scheme becomes bigger.

For example, when the percentage of malicious users is 27%, the proposed mechanism

successfully attacks nearly 50% of the objects in the Duchenne Smile datasets while the

baseline methods only obtain marginal utility.

5.6.3 The Effect of the Number of the Observed Objects

When the percentage of the malicious users is given, the number of the objects queried

to each malicious user is another important factor in the attack. In this experiment,

we study the performance of the proposed mechanism when the number of the objects

observed by each malicious user varies.

Here we consider a scenario where the percentage of the malicious users is very low

and we set the value as 3%, i.e., the attacker creates or recruits 2, 6 and 3 malicious

users to the three datasets, respectively. For the Duchenne Smile dataset and the Product

dataset, we vary the number of objects observed by each malicious user from 50 to 500,

and for the Sentiment dataset, the number of the queried objects varies from 100 to 700.

The change rate for the three datasets is shown in Figure 5.3. The results in this figure

clearly verify that the proposed attack mechanism outperforms the baseline methods in

all cases. When the number of the objects observed by each malicious user increases,

the advantage of the proposed attack mechanism also increases. The reason is that with

the increment of the number of the observed objects, the malicious users can exert more

impact on the final aggregation results based on the proposed mechanism. Additionally,

this figure also shows that the proposed mechanism can achieve good utility even with

very few malicious users. Take the Duchenne Smile dataset as an example, when each

malicious user provides 250 labels (less than the average number of that from normal

users), the proposed mechanism can successfully attack more than 10% of the objects

with only 2 malicious users.
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Figure 5.3: Change rate w.r.t. the number of the objects observed by each malicious
user. (a): Duchenne Smile Dataset. (b): Product Dataset. (c): Sentiment Dataset.

5.6.4 Comparison on the Ability Parameters of the Malicious Users

Besides maximizing the error of the aggregation results, the attacker also tries to maxi-

mize the malicious users’ reliability degrees (or ability) such that they can be treated as

high-quality users and thus be disguised well. In fact, the proposed mechanism outper-

forms the baseline methods mainly because we take the effect of the malicious users’

reliability degrees into account. The malicious users can disguise themselves as good

users on some objects to enhance their reliability degrees. For the baseline methods,

since the malicious users always disagree with the normal ones or randomly provide

their labels, the attack behaviors may be detected by the Dawid-Skene model and the

malicious users will be assigned with low reliability degrees.

In this experiment, we investigate the distribution of the participating users’ ability

parameters, i.e., α = {αk, α̃k′}K,K
′

k,k′=1 and β = {βk, β̃k′}K,K
′

k,k′=1, which can be treated as the

reliability degrees of these users based on the Dawid-Skene model. For each dataset, the

percentage of the malicious users is fixed as 5%. We report the results of the parameters

α and β for the three datasets after the data poisoning attacks in Figure 5.4, Figure 5.5

and Figure 5.6, respectively. The results show that the malicious users from the proposed

mechanism have high reliability degrees (both α and β) comparing with the normal

users. This means that the malicious users blend into the normal users successfully and

they will be treated as high-quality users according to the Dawid-Skene model. This

also verifies that the proposed mechanism can well disguise the malicious behaviors of
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the attacker while maximizing the error of the aggregated results. In contrast, in the

Baseline inversion method, since the malicious users always disagree with the normal

users, they will be assigned significantly low reliability degrees, which not only limit

the performance of the malicious users, but also make them easy to be detected. As

for the Baseline rand method, since the malicious users randomly select their labels,

the values of the ability parameters will be around 0.5. Although the malicious users

from the Baseline rand method can disguise themselves to some extent, their reliability

degrees are not large enough to impact the aggregated results.
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Figure 5.4: The ability parameters of the normal and malicious users for the Duchenne
Smile dataset

5.6.5 The Effect of the Attacker’s Knowledge

As described in Section 5.5, the proposed mechanism can also be employed when the

attacker only has limited knowledge of the objects’ normal labels. In this experiment,

we evaluate the performance of the proposed mechanism with respect to the value of
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Figure 5.5: The ability parameters of the normal and malicious users for the Product
dataset
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Figure 5.6: The ability parameters of the normal and malicious users for the Sentiment
dataset
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M ′/M , i.e., the percentage of the objects whose labels from the normal users can be

known by the attacker. Here we still consider a scenario where the percentage of the

malicious users is very low (3%). We also assume that each malicious user can observe

N/K objects, which are randomly selected from O′. Then we vary the value of M ′/M

from 0.3 to 1 and calculate the change rate for the three real-world datasets. We conduct

the experiment for 50 times and report the average results in Figure 5.7, from which we

can see the proposed mechanism outperforms the baseline methods in all cases, and the

advantage of the proposed mechanism becomes bigger when the attacker’s knowledge

increases. These results verify that the proposed mechanism can still achieve good utility

when the attacker only has limited knowledge of the objects’ normal labels.
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Figure 5.7: Change rate w.r.t. the percentage of the knowledge known by the attacker.
(a): Duchenne Smile Dataset. (b): Product Dataset. (c): Sentiment Dataset.

To further evaluate the performance of the proposed mechanism in the limited

knowledge scenarios, we investigate the distribution of the users’ ability parameters

when the attacker only has partial knowledge of the normal labels. Here we consider

three cases in which the percentage of the known objects (i.e., M ′/M ) is set as 0.3,

0.5 and 0.7, respectively. In Figure 5.8 we report the results of the parameters α and

β derived from the proposed mechanism on the the Duchenne Smile Dataset. The re-

sults show that the malicious users keep the high reliability degrees, which means that

the proposed mechanism can well disguise the attack behaviors in the limited knowl-

edge scenarios. As for the baseline methods, the results of them on the Duchenne Smile

dataset are similar to those in Figure 5.4.
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Figure 5.8: The users’ ability parameters calculated by the intelligent attack mechanism
in the limited knowledge scenarios for the Duchenne Smile Dataset

5.7 Summary

In this chapter, we study the data poisoning attacks against the crowd sensing systems

with the Dawid-Skene model empowered. Specifically, we design an intelligent attack

mechanism, based on which the attacker can not only achieve maximum attack utility

but also intelligently disguise the introduced malicious users as normal ones or even

good ones. The experimental results based on real-world datasets demonstrate that the

proposed attack mechanism can achieve higher attack utility with very few malicious

users and at the same time, is harder to be detected by the defense mechanisms.



Chapter 6
Related Work

In this chapter, we provide a brief overview of the literature in related fields. Specifically,

we first introduce the literature related to privacy-preserving truth discovery. Then we

discuss existing work regarding the data poisoning attacks.

6.1 Privacy-Preserving Truth Discovery

As an effective technique to extract reliable information from crowd sensing systems,

truth discovery has drawn more and more attention [48, 60–65, 65, 70, 72, 94, 98, 102,

103,111,112] in recent years. Compared with the naive averaging or voting approaches,

these schemes can provide more reliable aggregated results by estimating and incorpo-

rating user reliability into the aggregation process. However, none of these schemes

take actions to protect user privacy, which is a key concern in many crowd sensing sys-

tems [31].

The importance of privacy protection has long been recognized in many fields [18,

42, 78]. The representative strategies to tackle various privacy concerns include 1)

anonymization [18, 83, 95], which removes identification information from all the in-

teractions between the participant and other entities, 2) data perturbation [52,53], which

achieves privacy protection by adding artificial noise to the data before sharing them
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with others, and 3) the approaches based on cryptography or secure multi-party com-

putation [35, 50], in which the sensitive data are encrypted and in many cases the par-

ties need to cooperate with each other to decrypt the final results. Recently, privacy-

preserving problem is also studied with respect to crowd sensing applications. For ex-

ample, [43, 54, 91, 92] present anonymization based schemes to protect user’s private

information from being disclosed. Although these schemes can guarantee the users’

privacy in some cases, they are not suitable for truth discovery scenarios, where in-

stead of the anonymity of each user, what we need to preserve is the confidentiality

of his observation values from which sensitive personal information (including user

identity) may be inferred. Moreover, some perturbation based methods are also pro-

posed [30, 82, 85, 97, 114]. However, it is difficult to integrate these schemes with truth

discovery approaches, because the artificial noise added to each user’s data would make

it difficult to accurately estimate his reliability. Thus, cryptography based schemes are

good choices, as they can guarantee the confidentiality of the observation values with-

out introducing additional noise. Since some computations need to be conducted on

encrypted data in truth discovery procedure, such schemes should have homomorphic

properties [27]. Recently, the fully homomorphic encryption scheme [34] has drawn

much attention due to the ability of taking arbitrary computations on encrypted data, but

the prohibitively high computation cost makes it impractical to be used in crowd sensing

applications.

Although our proposed schemes are based on the traditional Paillier cryptosystem

which cannot conduct arbitrary computations over encrypted data, we use it in a novel

manner that well captures the specific algebra operations in truth discovery procedure

without significant overhead. In addition, paper [51] proposes a homomorphic encryp-

tion based approach to protect user privacy in crowdsourcing applications. However, it

addresses a different scenario and mainly focuses on categorical data. In contrast, our

schemes can deal with not only categorical data but also other data types. Finally, Cata-

lano et al. propose a two-server based protocol [8] for the delegation of computation
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on encrypted data. The frameworks presented in Chapter 3, though also involving two

cloud servers, are designed for different problem settings and application scenarios.

6.2 Data Poisoning Attacks in Crowd Sensing Systems

The data poisoning attacks, also known as false data injection attacks, have recently

been widely studied in crowd sensing and crowdsourcing applications [9, 25, 26, 28, 45,

58,84,88,99,100,104,113,116]. The data poisoning attacks and related defense schemes

are also studied in the applications other than crowd sensing and crowdsourcing, such

as electric power grids [69] and network coding [56]. Besides, there also has been prior

research exploring the data poisoning attacks on machine learning algorithms [1, 4, 6,

44, 57, 71, 106]. However, these previous works do not investigate how to effectively

attack the crowd sensing systems empowered with truth discovery mechanism or the the

Dawid-Skene model [22], which could tolerate the malicious users to some degree and

are hard to be attacked.

Although different variants have been developed and the theoretical analysis has

been conducted for the truth discovery mechanism [60, 61, 63, 65, 94, 102, 103, 110] and

the Dawid-Skene model [13, 20, 59, 67, 79, 89, 93, 117, 119], these works do not take

into consideration the sophisticated data poisoning attacks. In this thesis, our proposed

data poisoning attack mechanisms can effectively maximize the utility of the attacker

and disguise the the malicious behaviours. Thus, the above methods cannot defend

against our designed attacks effectively. The most relevant papers to our work are [45,

46], in which the proposed schemes can identify the malicious users who conduct the

sophisticated data poisoning attacks. However, based on these schemes, the users who

agree with the majority will be classified as normal ones. Since the malicious users

in our proposed mechanisms can disguise themselves by agreeing with the majority on

some items, these methods will fail to detect them.
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Conclusions

The pervasive sensing devices in the era of Internet of Things have given rise to crowd

sensing, a newly-emerged sensing paradigm where the collection of sensory data are

outsourced to a crowd of users participating in the sensing task. Although crowd sens-

ing can serve a wide spectrum of applications having significant impact on our daily

lives, the privacy and security issues in these applications have largely degraded its ef-

fectiveness in practice. On one hand, the server that collects the sensory data may want

to infer a user’s sensitive personal information from the collected data. On the other

hand, the participating users may launch malicious attacks and submit malicious sensory

data. Therefore, there is a great need for privacy-preserving and security mechanisms to

protect user privacy as well as defend against malicious attacks.

Towards the objective of enabling privacy-preserving and secure crowd sensing in

the Internet of Things, in this thesis, we first propose a series of privacy-preserving truth

discovery frameworks for crowd sensing systems. Then, we study the data poisoning at-

tacks against the crowd sensing systems empowered with the truth discovery mechanism

and the Dawid-Skene model.

• Privacy-Preserving Truth Discovery for Crowd Sensing Systems. In order to

address the participating users’ privacy concerns while identifying truthful values

from the crowd sensing data, we first propose a novel privacy-preserving truth
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discovery (PPTD) framework, which can protect not only users’ sensory data but

also their reliability scores derived by the truth discovery approaches. The key

idea of the proposed framework is to perform weighted aggregation on users’

encrypted data using a homomorphic cryptosystem. To deal with large-scale data,

we also propose to parallelize PPTD with MapReduce framework. Additionally,

we design an incremental PPTD scheme for the scenarios where the sensory data

are collected in a streaming manner. Although the proposed PPTD framework can

achieve strong privacy guarantee, however, at a cost of significant computation

and communication overhead. To address this challenge, we then propose two

lightweight privacy-preserving truth discovery frameworks (i.e., L-PPTD and L2-

PPTD), which are implemented by involving two non-colluding cloud platforms

and adopting additively homomorphic cryptosystem. These two frameworks not

only achieve the protection of each user’s private information but also introduce

little overhead to the users.

• Data Poisoning Attacks in Crowd Sensing Systems. Besides the privacy aspect,

we also investigate the security aspect of the crowd sensing systems. Specifically,

we study two types of data poisoning attacks, i.e., the availability attack and the

target attack, against a crowd sensing system empowered with the truth discov-

ery mechanism. We first analyze the pitfalls when attacking such a crowd sensing

system and then design an optimal attack framework to derive the (approximately)

optimal attack strategy. Through manipulating the malicious users’ sensory data

based on the derived attack strategy, the attacker can not only maximize his at-

tack utility but also successfully disguise the attack behaviors. In addition, we

study the security vulnerability of the Dawid-Skene model to data poisoning at-

tacks in crowd sensing systems. Following a similar attacking philosophy for the

truth discovery mechanism, we design an intelligent data poisoning attack frame-

work that can effectively take down a crowd sensing system empowered with the

Dawid-Skene model.
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