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Abstract

In the last decade, the research community has witnessed the success of machine learn-
ing techniques in a large variety of long-standing applications. The success of these
techniques is largely driven by the ubiquitous massive data, which are typically collected
from multiple data sources. However, the multi-source data usually contains erroneous
information and some errors may be caused by intentional manipulation by adversar-
ial attackers. These issues may cause the failure of machine learning models. Thus,
it is crucial to analyze the veracity of the multi-sourced data and study the potential
vulnerabilities in the multi-sourced data. In this dissertation, we propose: (1) a series
of multi-sourced data reliability analysis methods to discover trustworthy information
from correlated data and textual data; and (2) multiple data poisoning attack approaches
to help understand the impacts of vulnerabilities in the multi-sourced data on real-world
machine learning tasks.

In multi-sourced data reliability analysis, it is critical to identify reliable sources
that provide highly-trustworthy information and leverage the data from these reliable
sources to better discover trustworthy information. Existing multi-sourced data relia-
bility analysis methods usually make an independent assumption of the data sources,
and are generally designed for structured data. In Part I of this dissertation, we develop
multiple probabilistic models to resolve these limitations. Particularly, to handle source
correlations, the proposed model takes the estimated source correlations as prior, and
models the trustworthiness of each piece of information by fusing the trustworthiness of
the information provider and its influencers. To identify the reliability of unstructured
data like text, we propose another probabilistic model that jointly infers the key fac-
tors in the data and estimates the reliability of different data sources. For both models,
we conduct extensive experiments on multiple real-world datasets to demonstrate their
usefulness and advantages.

Apart from multi-sourced data reliability analysis, we also investigate the impacts
of vulnerabilities in the multi-sourced data on real-world machine learning tasks. In
Part II of this dissertation, we develop data poisoning attack approaches that inject ad-
versarial samples to multi-sourced data to manipulate the knowledge graph embedding

vii



methods, recommendation models, and outcome interpretation methods. Such adversar-
ial analysis can help understand the impact of vulnerabilities on these machine learning
models. Specifically, the proposed attack strategies against knowledge graph embed-
ding methods generate data samples that can manipulate the embedding of knowledge
graph entities and further influence the plausibility of arbitrary target facts in the knowl-
edge graph. We also propose a general reinforcement learning-based attack framework,
which can manipulate the recommendation results of various representative next-item
recommendation models. Moreover, we explore the vulnerability of machine learning
outcome interpretation models and investigate whether attacks can manipulate the in-
terpretations of target samples by injecting well-crafted samples to the training set. All
these attack strategies and frameworks are tested on real-world benchmark datasets. The
experimental results clearly demonstrate that attackers can indeed craft vulnerabilities in
the multi-sourced data to manipulate the results produced by existing machine learning
models.
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Chapter 1
Introduction

The past decade has witnessed the astonishing success of a large variety of data mining

and machine learning models in a variety of real-world tasks, such as image classifica-

tion, question answering, and recommendation systems. The success of these models

is largely owing to the rapidly growing big data. To obtain the data effectively and ef-

ficiently, researchers from both industry and academia collect it from a collection of

platforms and individuals. However, the data collected from multiple data sources may

consist of erroneous information due to transmission errors, device malfunction, or even

intentional manipulation. Such untrustworthy or even manipulated data may cause the

failure of downstream models and produce implausible decisions for model users. Thus,

it is important to: (1) analyze the trustworthiness of multi-source data; and (2) under-

stand the possible vulnerabilities that lead to the failure of machine learning models

in the multi-source data. In the rest of this chapter, for both of these tasks, we first

provide a brief background introduction, which motivates the research presented in the

dissertation, then we summarized the specific tasks that are included in the rest of this

dissertation.
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1.1 Trustworthiness Analysis of Multi-Sourced Data

In many real world scenarios, descriptions on the same set of objects or events are col-

lected from multiple information sources. These sources are of different reliabilities and

the trustworthiness of the information from these sources are also different. Before using

the data in downstream models, it is crucial to analyze the multi-sourced data and dis-

cover the trustworthy information. In recent years, an advanced technique named truth

discovery [18, 35, 36, 42, 46, 47, 82, 83, 87, 89, 92], which integrates multi-sourced infor-

mation by estimating the reliability of each source, has been proposed. Truth discovery

techniques are motivated by a general principle: if a source provides many true claims,

the trustworthiness of the source is high; and if a claim is supported by many trustworthy

sources, this claim is likely to be true. Following this principle, the trustworthy infor-

mation are inferred from the multi-sourced data by taking the source reliabilities into

consideration. In this dissertation, we advance the current truth discovery techniques

from the following perspectives:

1. Truth Discovery with Correlated Data Sources: Most truth discovery methods

assume that sources make their claims independently, which may not be true in

real practice. As a matter of fact, influences among sources are ubiquitous and

the claims made by one source may be influenced by others. Although there is

some work that considers source correlation, those methods are designed to handle

categorical claims, which is not general enough to represent the complicated real

world applications. Motivated by this gap, we propose a novel model to handle

data correlations for different data types during truth discovery process.

2. Truth Discovery for Unstructured Text Data: Most existing truth discovery

methods are designed for structured data, and cannot meet the strong need to

extract trustworthy information from raw text data as text data has its unique char-

acteristics. The major challenges of inferring true information on text data stem

from the multifactorial property of text answers (i.e., an answer may contain mul-
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tiple key factors) and the diversity of word usages (i.e., different words may have

the same semantic meaning). To tackle these challenges, we propose truth discov-

ery techniques that are specifically designed for unstructured text data.

1.2 Vulnerabilities Analysis in Multi-Sourced Data

In this dissertation, we also analyze the possible vulnerabilities in the multi-sourced

data that lead to the failure of machine learning models. Typically, these vulnerabilities

are exposed by data samples constructed by the adversarial attacks to make the down-

stream machine learning models produce specific decisions. To validate the existence

and demonstrate the impacts of such vulnerabilities, we conduct the study from the per-

spective of adversarial attacker and propose a series of attack approaches that construct

vulnerabilities in the multi-sourced data. The proposed work falls into the category of

data positing attacks [5,50,51,69], whose objective is to construct vulnerabilities in the

training data of machine learning models to enforce a nefarious model. In this disser-

tation, we investigate data poisoning attacks on several representative machine learning

applications:

1. Data Poisoning Attack against Knowledge Graph Embedding: Knowledge

graph embedding (KGE) is a technique for learning continuous embeddings for

entities and relations in the knowledge graph. Despite its effectiveness in a benign

environment, KGE’s robustness to adversarial attacks is not well-studied. Existing

attack methods on graph data cannot be directly applied to attack the embeddings

of knowledge graph due to its heterogeneity. To fill this gap, we propose a col-

lection of data poisoning attack strategies, which can effectively manipulate the

plausibility of arbitrary targeted facts in a knowledge graph by adding or deleting

facts on the graph.

2. Data Poisoning Attack against Next Item Recommendation: Online recom-

mendation systems make use of a variety of information sources to provide the
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items that users are potentially interested in. However, due to the openness of

the online platform, recommendation systems are vulnerable to data poisoning

attacks. Existing attack approaches are either based on simple heuristic rules or

designed against specific recommendation approaches. The former often suffers

from unsatisfactory performance, while the latter requires strong knowledge of

the target system. In this dissertation, we focus on a general next-item recommen-

dation setting and propose a practical poisoning attack approach named LOKI

against blackbox recommendation systems.

3. Data Poisoning Attack against Outcome Interpretations: Recently how to in-

terpret the outcome of a machine learning model has attracted much attention.

Although the effectiveness of outcome interpretation approaches has been shown

in a benign environment, their robustness against data poisoning attacks (i.e., at-

tacks at the training phase) has not been studied. As the first work towards this di-

rection, we aim to answer an important question: Can the outcome interpretation

output of target samples be easily manipulated by injecting adversarial samples

with unnoticable changes into the training set? To answer this question, we pro-

pose a data poisoning attack framework named IMF (Interpretation Manipulation

Framework). The framework can effectively manipulate the interpretations of

target samples produced by representative outcome interpretation methods while

the prediction results of these target samples remain unchanged. The proposed

framework crafts poisoning samples to encircle the target sample in the feature

space and to force the interpretation result to be similar to the one that the at-

tacker desires. The effectiveness and efficiency of the proposed attack strategies

are verified by extensive evaluations on a real-world dataset.



Part I

Trustworthiness Analysis of

Multi-Sourced Data



Chapter 2
Truth Discovery with Correlated

Data Sources

2.1 Introduction

The past decades have witnessed an explosion of data collected from a variety of chan-

nels, such as web-scale search engines, crowd-sourcing platforms, and social media

platforms. Integrating data from disparate sources can lead to novel insights in scien-

tific, industrial, and governmental domains. However, claims about the same entity may

conflict each other due to recording errors, noise, machine failures, malicious attacks,

etc. Therefore, to get the most trustworthy information (i.e. the true facts), the aggrega-

tion of multi-source data needs to be applied so that the noise from individual sources

can be mitigated.

To simplify the design, many existing truth discovery methods make an assumption

that data sources provide their claims independently. However, in real life, explicit and

implicit influences among sources are ubiquitous, which makes this assumption invalid.

For example, on social media platforms, a person can be easily influenced by others

when he/she makes a claim towards an entity or an event. Therefore, the claim may come

from not only his/her own knowledge but also the knowledge of his/her friends. In such
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cases, the provided claims are no longer independent. When estimating the true facts,

we need to consider the trustworthiness of the source itself and its related sources. If the

influences among sources are ignored and the provided claims are treated as independent

ones, it is likely that the estimation of source trustworthiness is inaccurate, and thus the

performance of truth discovery is degraded. Therefore, it is crucial to take these inter-

source influences into consideration to more accurately estimate source trustworthiness

for truth discovery tasks. There is some truth discovery work that considers source

correlations [18, 77]. However, these methods are limited in the data types that can

be applied to. Specifically, they all treat claims as categorical, which cannot represent

the complicated real-world applications. As shown in [35, 36, 91], numerical data and

heterogeneous data are also common in truth discovery problems, and treating them as

categorical data is inappropriate.

To tackle these challenges, we propose a novel approach named Influence-Aware

Truth Discovery (IATD), an unsupervised full Bayesian model which can utilize the

pre-known source correlations as the prior. Different from existing truth discovery work,

IATD introduces the concept of “claim trustworthiness”, which fuses the trustworthiness

of the source which provides the claim and the trustworthiness of its influencers by an

ensemble parameter. Such a design enables us to precisely model the degree of inter-

source influences as well as their relations towards source trustworthiness estimation.

Using different distributions, we manage to utilize the fused “claim trustworthiness” for

the generation of claims which are of different data types.

2.2 Problem Definition

Before describing our proposed model, we start by introducing some terminologies,

followed by the formal problem definition.

Definition 1. An entity is an item of interest. The set of M entities is denoted as V =

{v}M1 .
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Definition 2. A source is the place where information about entities is collected. The

set of sources is denoted as S = {s}N1 .

Definition 3. A claim is defined as a piece of information provided by a source towards

an entity, and the set of claims is denoted as C. We use C·,v to denote the set of claims

for entity v, and cs,v denotes the claim from source s on entity v.

Definition 4. A truth is the most trustworthy piece of information for an entity. The set

of truths is denoted as T = {t}M1 .

Definition 5. An influence set As,v is a set of sources that may influence source s, when

s makes a claim on entity v.

Definition 6. (Problem definition)

Given a set of sources S = {s}N1 , a set of entities V = {v}M1 , a set of claims CN,M
s=1,v=1

and a set of influencers for every claim AN,Ms=1,v=1, the goal of our proposed model is to

learn the estimated truths for entities T = {t}M1 as well as the trustworthiness for the

sources.

Note: In this chapter, we only consider the single truth scenario, i.e., for each entity,

there is only one truth.

2.3 Methodology

In this section, we describe the IATD model in details. We first provide a high-level

overview of the proposed model. This is followed by a detailed mathematical specifi-

cation. Finally, we provide a comprehensive description of the model fitting procedure

based on Expectation Maximization.

2.3.1 Overview

The IATD model specifies a two-stage generative process of claims. The first stage

specifies the generation of sources’ individual trustworthiness as well as the influence-
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Table 2.1: Notations

Notations Meaning
N the number of sources in the dataset
M the number of entities in the dataset
λ global influence smoothing parameter
σs individual source deviation for source s
bv entity-specific bias variable for entity v

g(c), g(n) pre-tuned global deviation bias for categorical and nu-
merical data respectively

γv the number of possible discrete values for entity v with
categorical claims

Cs,· the set of claims given by source s
C·,v the set of claims on entity v
cs,v the claim given by source s on entity v
tv estimated truth of entity v
εs,v the deviation value of the claim given by source s on

entity v
As,v the set of sources which may influence s, when making

claim cs,v
αe, βe parameters for Inverse-Gamma prior of source deviation
µb, σ

2
b parameters for Gaussian prior of entity-specific difficulty

variable
µt, σ

2
t parameters for Gaussian prior of the true value of numer-

ical entities

aware trustworthiness fusion given the influencer set for each claim. The second stage

specifies the generation of heterogeneous claims, given the “claim trustworthiness” of

each claim. Here, we describe the intuition behind the modeling before detailing the

IATD model.

Trustworthiness Generation: According to our investigation of the real world

data, we find that source’s final decisions are usually based on the combination of its

own trustworthiness and its trusted sources’ trustworthiness. A source may make its

claims based on its own trustworthiness, but may be influenced by the sources it trusts

at the same time. In our model, we introduce the “claim trustworthiness”, which fuses
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the trustworthiness of current source and the trustworthiness of potential influencers

linearly by an ensemble parameter. This can better explain the phenomenon when the

credibility of multiple claims from a single source is inconsistent sometime. Moreover,

in our model, if a source makes true claims for some entities, the trustworthiness of this

source and its influencers will be increased. On the contrary, if a source makes false

claims for some entities, this source and its influencers will all suffer a decrease in their

trustworthiness. In this chapter, in order to fit both categorical and numerical data, we

evaluate the source trustworthiness using a variable σ, which models the claim deviation

tendency of a source. The value of σ is inversely proportional to the trustworthiness

degree of a single source.

Truth Generation: In IATD, we discuss two typical types of entities, i.e. categor-

ical and numerical. For entities with categorical claims, the true values are modeled as

random variables following uniform distributions, as we assume there is a single true

value for each entity and the false values should be uniformly distributed. For enti-

ties with numerical claims, we model the true values as a random variable following

Gaussian distributions. These distributions are commonly used to model categorical

and numerical data, respectively.

Claim Generation: Once we get the claim trustworthiness and truth for each claim,

we can utilize these variables to model the generation process for claims. For both types

of claims, we assume that the claim from a source is associated with: (1) the claim devia-

tion, and (2) the difficulty of the entity. For entities with categorical claims, we consider

the posterior of a claim to be true, given the estimated truth. If the claim deviation is

high, the probability of the claim being true should be small, and vice versa. For entities

with numerical claims, we model the generation of claim using a Gaussian distribution,

whose mean is the truth, and the variance parameter is the claim deviation. This indi-

cates that high trustworthiness claims have smaller deviations from the truth. Moreover,

for different entities, the difficulty of obtaining true claims may differ. Therefore, we

introduce the entity-specific difficulty parameter to model this phenomenon.
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Figure 2.1: Plate notation for the proposed IATD Model.

Fig. 2.1 shows the graphical structure of the model, and Table 2.1 lists the descrip-

tions of the variables. The generative process is shown as follows:

• For the s-th source (s = 1, 2, · · · , N)

– Draw σ2
s ∼ Γ−1(αe, βe).

• For the v-th entity (v = 1, 2, · · · ,M)

– For an entity with categorical claims v, draw a true fact tv ∼ U(γv).

– For an entity with numerical claims v, draw a true fact tv ∼ N (µt, σ
2
t ).

• For each claim cs,v



12

– For an entity with categorical claims v, draw a claim cs,v ∼ logistic(−εs,v +

bv + g(c)).

– For an entity with numerical claims v, draw a claim cs,v ∼ N (tv, (εs,v + bv +

g(n))2).

2.3.2 Model Specification

In this section, we provide a detailed description of the proposed model. We first specify

the generation of sources’ individual trustworthiness and “influence-aware trustworthi-

ness fusion”. Then we describe the generation of different claims separately based on

claim trustworthiness.

2.3.2.1 Trustworthiness Modeling

The source and claim trustworthiness are modeled via deviation variables σ as fol-

lows. For each source s, we draw σ2
s from an Inverse-Gamma distribution with hyper-

parameters (αe, βe), where αe and βe are shape and rate parameters respectively. There-

fore,

σ2
s ∼ Γ−1(αe, βe) ∝ (σ2

s)
−αe−1 exp(−βeσ−2s ). (2.1)

Mathematically, σ2
s is the variance variable for Gaussian distribution and the value

of σ2
s is inversely proportional to the trustworthiness of a source. When parameter αe >

1 the Inverse-Gamma distribution concentrates mostly around its mode βe
αe+1

. This

generally means that the deviation of most sources should be around a certain value and

there are a few with much higher or lower deviation in our assumption.

Given the definition of individual deviation for every source, we can further model

the phenomenon that a source s gets influenced by others when generating claims for

entity v. To model the claim deviation, we introduce an auxiliary variable εs,v, which

denotes the deviation of source swhen it offers a claim on entity v (i.e. claim deviation).

This variable reflects both the deviation of the source itself and the deviation of sources
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it relates. Let σs and σj denote the source deviation of s and j, and As,v be the set

of sources that may influence s when s makes a claim on entity v. We can model the

trustworthiness fusion as follows:

1. If we can infer that a user is influenced by others, then εs,v is defined as:

εs,v =
λ

|As,v|
∑
j∈As,v

σj + (1− λ) · σs. (2.2)

2. If there is no evidence that the source is influenced (i.e. As,v = Φ), then

εs,v = σs. (2.3)

Note that the value of the auxiliary variable ε can be calculated directly given two de-

viation variables σs and σj . Therefore, it does not lead to the increase the number of

parameters.

Further, as the difficulties of obtaining the value of entities may be different, we

introduce an entity-specific bias variable bv to make some adjustments. bv is drawn

from a Gaussian distribution:

bv ∼ N (µb, σ
2
b ), (2.4)

where µb and σ2
b are the parameters of the Gaussian distribution.

2.3.2.2 Claim Modeling

Given the claim trustworthiness εs,v and entity-specific bias bv, we now describe the

posterior probability of observed claims on entity v from the source s, i.e., cs,v, given

the latent true fact tv. The intuition is straightforward: the sources of low deviation often

provide more trustworthy claims. Since the claim generation process for categorical and

numerical claims are different, we handle them using different formulations.

Categorical Claim Modeling: For categorical claims, we model the probability of

a claim cs,v being true using a Bernoulli distribution. Intuitively, the probability that
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source s offers a true claim to entity v relies on: (1) the claim deviation, and (2) the

difficulty of obtaining the true value of the entity. Specifically, the probability is defined

as:

p(cs,v = x|tv = x, εs,v, bv) = h(−εs,v + bv + g(c)), (2.5)

where h(·) is a logistic function, and g(c) is a pre-tuned global bias for entities with

categorical claims. We can see that if the claim deviation εs,v is small, the probability of

cs,v being a true claim is large, and vise versa.

We assume the probability that source s offers an incorrect claim to entity v is from

a Uniform distribution, so the probability that source s offers an incorrect claim to entity

v is modeled as:

p(cs,v 6= x|tv = x, εs,v, bv) =
1− h(−εs,v + bv + g(c))

γv − 1
. (2.6)

Combining Eq. (2.5) and Eq. (2.6), we can get the probability that source smakes the

claim cs,v, given the claim deviation εs,v, the truth estimation tv, and the entity-specific

bias variable bv:

p(cs,v|tv = x, εs,v, bv)

= h(−εs,v + bv + g(c))δ(cs,v ,tv)

×
(

1− h(−εs,v + bv + g(c))

γv − 1

)1−δ(cs,v ,tv)

,

(2.7)

where δ(·, ·) is the Kronecker delta function.

Numerical Claim Modeling: For entities with numerical claims, we draw a true

claim from a Gaussian distribution

tv ∼ N (µt, σ
2
t ), (2.8)
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where µt controls the prior estimate of the truth and σ2
t captures the prior deviation.

The probability of source s offering a correct claim to entity v is modeled as a Gaussian

distribution with the mean of the estimated truth tv, and the deviation of (εs,v+bv+g
(n))2,

i.e.,

p(cs,v|tv = x, εs,v, bv) ∼ N (tv, (εs,v + bv + g(n))2)

∝ (εs,v + bv + g(n))−1 exp

(
− (cs,v − tv)2

2(εs,v + bv + g(n))2

)
,

(2.9)

where g(n) is a pre-tuned global bias for entities with numerical claims.

The truth of entity v, the claim deviation εs,v, and the v’s bias variable bv jointly

capture the precision of the claim. When claim deviation εs,v and/or bias variable bv get

smaller, the claim cs,v should be closer to the truth, and vise versa.

2.3.3 Discussion

Here we describe the influence derivation, which can have effects on the final perfor-

mance.

Let cs,v, which is provided by source s towards entity v, be the claim we are currently

working on. Influence derivation is to determine the set of sources that potentially in-

fluence s when s provides claim cs,v. For brevity, we only introduce a general and

straightforward way for influence derivation. Let As,v be the source set who may influ-

ence s, when it makes claim cs,v. If there is a directed relation from s to j and they make

the same false claim on entity v, we treat s to be influenced by j, when s provides its

claim cs,v, i.e.,

j ∈ As,v ⇐⇒


∃ s→ j,

cs,v = cj,v,

cs,v 6= t̂v,

(2.10)

where t̂v is the estimated truth for entity v.
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Note that more sophisticated influence detection methods can be deployed here. For

simplicity, we choose this approach.

2.3.4 Model Fitting

The fitting process is to estimate the value of hidden source deviation σs and the true

fact t of each entity, given the set of claims and source correlations. The negative log-

likelihood of observations, latent variables, and parameters given the hyper-parameters

can be written as:

L =− log(p(C, t, ε, b|αe, βe, σ2
b , µt, σ

2
t ))

=−
N∑
s=1

p(σ2
s |αe, βe)−

M∑
v=1

p(tv|µt, σ2
t )−

M∑
v=1

p(bv|µb, σ2
b )

−
N∑
s=1

M∑
v=1

p(cs,v|εs,v, tv, bv)

(2.11)

For entities with numerical claims, Eq. (2.11) is formulated as:

L ∝
N∑
s=1

M∑
v=1

(
(cs,v − tv)2

2(bv + εs,v + g(n))2
+ log(bv + εs,v + g(n))

)

+
N∑
s=1

(
2(1 + αe) log σs + βeσ

−2
s

)
+

M∑
v=1

(bv − µb)2

2σ2
b

+
M∑
v=1

(tv − µt)2

2σ2
t

.

(2.12)

For entities with categorical claims, Eq. (2.11) is formulated as:

L ∝
N∑
s=1

M∑
v=1

(
− δ(cs,v, tv) · log(h(−εs,v + bv + g(c)))

− (1− δ(cs,v, tv)) · log(1− h(−εs,v + bv + g(c)))

)
+

N∑
s=1

(
2(1 + αe) log σs + βeσ

−2
s

)
+

M∑
v=1

(bv − µb)2

2σ2
b

.

(2.13)
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To fit such models with latent variables, we refer to EM algorithm. In E-Step, the

algorithm takes the expectation of complete data likelihood with respect to the poste-

rior of latent variable t, and in M-Step it maximizes the expectation of complete data

likelihood from E-Step to update model parameters σs, σj , and bv.

E-Step. For entities with categorical claims, the major computational bottleneck in

E-Step is that the posteriors of latent variables are not available in a closed form. Hence,

we take recourse to Monte Carlo methods, which perform Gibbs sampling to randomly

sample variables from their posterior distributions. Specifically, we sample tv as:

p(tv = x|εs,v, bv, g(c))

∝ p(tv = x)
Nv∏
s=1

p(cs,v|tv = x, εs,v, bv, g
(c)).

(2.14)

Eq. (2.14) can be calculated directly using Eq. (2.7).

For entities with numerical claims, we can get the closed-form expression of tv by

solving ∂L
∂tv

= 0 using Eq. (2.12), which is:

tv =
µtσ

−2
t +

∑Nv
s=1 cs,v(εs + bv + g(n))−2

σ−2t +
∑Nv

s=1(εs + bv + g(n))−2
. (2.15)

Given the value of latent variables, we can derive the expression of complete data

likelihood.

M-Step. In M-Step, we need to find the parameters that maximize the likelihood

computed in the E-Step. As the deviation variables σs and σj are above zero, the opti-

mization problem should be formulated as:

min
σs,σj ,b

L

s.t. σs > 0, σj > 0.

(2.16)

Intuitively, we can solve that optimization objective by adapting Gradient approaches

directly. However, to decrease the computation cost, we propose to solve the following
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optimization problem on each claim separately, which approximates the problem in Eq.

(2.16):

min
σs,σj ,b

Ls,v

s.t. σs > 0, σj > 0.

(2.17)

Here, for entities with numerical claims, Ls,v is formulated as:

Ls,v ∝
(cs,v − tv)2

2(bv + εs,v + g(n))2
+ log(bv + εs,v + g(n))

+
1

|Cs,·|

(
2(1 + αe) log σs + βeσ

−2
s

)
+

1

|C·,v|
(bv − µb)2

2σ2
b

+
1

|C·,v|
(tv − µt)2

2σ2
t

.

(2.18)

For entities with categorical claims, Ls,v is formulated as:

Ls,v ∝ − δ(cs,v, tv) · log(h(−εs,v + bv + g(c)))

− (1− δ(cs,v, tv)) · log(1− h(−εs,v + bv + g(c)))

+
1

|Cs,·|

(
2(1 + αe) log σs + βeσ

−2
s

)
+

1

|C·,v|
(bv − µb)2

2σ2
b

.

(2.19)

It is difficult to derive the optimal closed-form solution for those variables. There-

fore, we use Projection Gradient (PG) method for model fitting. PG is an extension of

gradient descent method, and is commonly used for solving linearly constrained prob-

lems. In Eq. (2.17), the optimization problem projects σs (or σj) onto (0,∞). In our

implementation, σs (or σj) is mapped as following:

P(σ) =

σ if σ > 10−5

10−5 if σ ≤ 10−5
.
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Given the projection function P , the update of σ is defined by:

σ(k+1)
s ← P (σ(k)

s − ηk
∂Ls,v
∂σ

(k)
s

), (2.20)

σ
(k+1)
j ← P (σ

(k)
j − ηk

∂Ls,v
∂σ

(k)
j

), (2.21)

where P (·) denotes the projection from Rn onto R+.

For bv, as there is no constraint, we can simply deploy gradient descent for parameter

update.

b(k+1)
v ← b(k)v − ηk

∂Ls,v
∂b

(k)
v

. (2.22)

To speed up the PG, one crucial part is the tuning of step length ηk. It keeps changing

in each iteration. There are a variety of strategies for searching ηk and we use the

algorithm in [43].

2.4 Experiments

In this section, we present and analyze the experimental results on both real-world and

simulated data. The results show that the proposed IATD method outperforms state-

of-the-art truth discovery approaches. We first state the overall experiment settings in

Section 2.4.1. Then we demonstrate and analyze the results on real-world and simulated

data respectively.

2.4.1 Experiment Settings

Baseline Methods: To evaluate the effectiveness of the proposed model, we compare

it with the following baseline methods:

• Voting: The truth estimates are obtained by the value which has the highest num-

ber of occurrences in the claim set.
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• GTM [91]: GTM is a full Bayesian approach designed for truth discovery on

numerical data.1

• Invest [61]: In this method, sources distribute their reliability scores uniformly on

the claims they provide, and then collect their credibility from the confidence of

those claims.

• Pooled Invest [61]: This method is a variant of Invest. The difference is that the

confidence of claims is linearly scaled for Pooled Invest.

• 2-Estimate [21]: 2-Estimate is an approach based on the assumption that “there

is a single true value for each entity”. Therefore, 2-Estimate models the comple-

mentary votes.

• 3-Estimate [21]: 3-Estimate extends 2-Estimate by considering the difficulty of

obtaining the true claim for an entity.

• TruthFinder [87]: TruthFinder is a Bayesian-based approach, which computes the

probability of a claim being true given the sources. Claim similarity is modeled

as an implication function.

• AccuSim [18]: AccuSim is a Bayesian approach that is similar to TruthFinder.

However, it considers complementary votes for claims, which is similar to 2-

Estimate. AccuSim also considers claim similarity.

• CRH [36]: CRH is an optimization framework which handles different data types

jointly. The goal of the optimization problem is to minimize the weighted loss of

the aggregation results.

• IATD-ni: This is a variant for the proposed IATD, which does not take inter-source

influence information into consideration.
1Note: This approach is used on numerical data only, as it is incompatible with categorical data.



21

The parameters of baseline methods are set according to their authors’ suggestions.

Evaluation Metrics: To evaluate the performance of truth discovery methods, two

classical metrics are employed for different types of data. For both metrics, a lower

value indicates a better performance.

• Error Rate: This metric is used for performance evaluation on categorical data.

It is defined as the percentage of false values using an approach according to the

ground truth.

• MNAD: This metric is used for performance evaluation on numerical data. MAD

(Mean Absolute Deviation) is a quantity on how close truth estimates are to the

ground truth. As numerical data may have different scales, we normalize MAD

using the standard variance of each data type. MNAD can be formulated as:

MNAD =
1

M

M∑
v=1

|tv − truthv|
std(c1,v, c2,v · · · , cN,v)

,

where truthv stands for the ground truth for entity v, and the other notations are

listed in Table 2.1.

2.4.2 Experiments on Real-World Data

Datasets: In order to evaluate the performance of the proposed model, we use two

real-world datasets for experiments:

• Flight Dataset: This dataset [37] consists of 37 sources, which is collected from

multiple websites. There are six different attributes in this dataset including:

scheduled departure/arrival time, actual departure/arrival time, and actual de-

parture/arrival gate. The former four attributes are numerical, while the last two

attributes are categorical.

• Stock Dataset: This dataset [37] consists of 55 sources, which is collected from

web search results. Specifically, Volume, Shares outstanding, and Market cap are
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Table 2.2: Statistics of the Real-world Datasets

Flight Dataset Stock Dataset
# of Claims 2,790,734 11,748,734
# of Entities 204,422 326,423
# of Truths 16,572 29,198

treated as numerical data, while the other attributes are treated as categorical. The

statistics of these datasets are shown in Table 2.2.

The task for our experiment is to estimate the true value for each entity in these two

datasets.

In our experiment, for entities with categorical claims, we set αe = 4.5, βe =

20, µb = 0, σ2
b = 1 and g(c) = 3 for the Flight dataset, and αe = 10, βe = 10, µb =

0, σ2
b = 10 and g(c) = 10 for the Stock dataset. For entities with numerical claims,

we set αe = 4.5, βe = 100, µb = 0, σ2
b = 1 and g(n) = 0 for the Flight dataset, and

αe = 0.05, βe = 0.10, µb = 0, σ2
b = 10 and g(n) = 0 for the Stock dataset. µt and σ2

t are

parameters related to the conditions of different datasets. In the preprocessing step, we

shift the mean values of numerical data to 0. Hence, µt is set to be 0 for both datasets.

We set σ2
t = 1 for the Flight dataset and σ2

t = 100 for the Stock dataset.

Correlation Extraction: The Flight dataset and Stock dataset do not have explicit

correlations. However, investigations in previous work indicate that there are implicit

correlations among sources [37]. Therefore, we adopt a correlation extraction method

based on source similarities. In this method, if two sources make many similar false

claims, they are regarded to be correlated, which is one of the most important intuitions

for correlation extraction. We extract the source correlations according to the claim

history and calculate the Jaccard distance between each pair of sources. The similarity

is defined as:

sim(i, j) =
|Wi ∩Wj|
|Wi ∪Wj|

=
|Wi ∩Wj|

|Wi|+ |Wj| − |Wi ∩Wj|
,
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Table 2.3: Performance on Real-World Datasets

Flight Dataset Stock Dataset

Method Error Rate MNAD Error Rate MNAD

IATD 0.0674 2.7160 0.0689 2.6734

IATD-ni 0.0795 2.7179 0.0789 2.6734

CRH 0.0823 4.8613 0.0700 2.6445
GTM N/A 7.6703 N/A 2.8081

Voting 0.0859 N/A 0.0817 N/A

Invest 0.0919 6.4153 0.0983 2.8081

Pooled Invest 0.0925 5.8562 0.0990 2.7940

2-Estimate 0.0885 7.4347 0.0726 2.8509

3-Estimate 0.0881 7.1983 0.0818 2.7749

TruthFinder 0.0950 8.1351 0.1194 2.7140

AccuSim 0.0881 7.3204 0.0726 2.8503

where Ws is the set of entities on which source s makes wrong claims based on Voting.

Then, we can use a threshold to determine the existence of correlations between two

sources. The threshold is set to be 0.2 for the Flight dataset 0.08 for the Stock dataset.

That is to say, on the Flight dataset, if sim(i, j) > 0.2, these sources are regarded

as correlated. Otherwise, they are treated as independent. On the Stock dataset, if

sim(i, j) > 0.08, these sources are regarded as correlated. Otherwise, they are treated

as independent.

Overall Performance: The results of all the methods in terms of Error Rate and

MNAD are shown in Table 2.3. From the table, we can see that the proposed IATD

generally outperforms the baseline methods.

The reason that the proposed IATD approach can work comparable or better than

other truth discovery approaches is due to the fact that influences are more precisely

modeled. If we visualize the Jaccard distances between sources (Fig. 2.3), we can find

that many sources are correlated. Therefore, the chance that these correlated sources

influences each other when making claims is high. In contrast to baseline methods,

the proposed IATD model takes these inter-source influences into consideration, which
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enables us to get more precise and interpretable estimates of source trustworthiness.

Thus we can achieve a better performance in truth estimation.
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Figure 2.2: Performance w.r.t. influence ratio λ on the two real-world datasets.

Impact of Global Influence Factor λ: Global influence factor λ is used to adjust

how much a source gets influenced by its related sources when it provides a specific

claim. In order to better demonstrate the effect of λ, we show the variation of Error rate

and MNAD with different values of influence parameter λ in Fig. 2.2. From Fig. 2.2,

we can observe that the proposed IATD model performs differently with respect to the

values of λ on the two datasets. The different trends imply that the datasets may have

different correlation patterns (which is also suggested by Fig. 2.3). Based on the results
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Figure 2.3: Visualization of source correlations on the Flight and Stock dataset.

from Fig. 2.2, a relatively large λ (close to 1) generally gives better results. This indi-

cates that if two sources are correlated, they may influence each other strongly. These

experiments illustrate that to enhance the performance of truth discovery, inter-source

influences need to be utilized properly.

2.4.3 Experiments on Synthetic Data

In order to demonstrate the advantages of our proposed model comprehensively, we

conduct experiments on simulated dataset.

Simulation Settings: Each synthetic dataset contains 10000 entities, where 7000

entities are numerical and 3000 entities are categorical. Different levels of noise are

added to the ground truth to simulate sources with different levels of trustworthiness.

In this section, we set the trustworthiness of a source to be consistent when it gener-

ates numerical and categorical claims. Specifically, we generate 10 high-quality sources

(σ2 = 1) and 10 low-quality sources (σ2 = 10). For a specific source s, when simu-

lating numerical claims, we sample the noise from a Gaussian distribution. The mean

of this Gaussian distribution is zero and the deviation is set based on the level of source

trustworthiness. When simulating categorical claims, we first sample a factor z from
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Figure 2.4: Comparison of performance on the two scenarios.

the same Gaussian distribution, and then compare it with a confidence threshold δ. If

|z| ≥ δ, we assign a random false choice to the claim; otherwise, the correct choice is

assigned to the claim.

Two scenarios are considered in this experiment. For both scenarios, we test the

proposed method with three levels of dependency. That is, we randomly allocate [20%,

50%, 80%] of all the sources as independent sources, with others as influenced sources.

For the influenced sources, we consider two scenarios with different ratios of influenced

claims. For Scenario 1, the influenced sources provide 20% of their claims indepen-

dently. For Scenario 2, the influenced sources provide 80% of their claims indepen-

dently. Such settings are based on the Pareto Law2. The task for this section is to

estimate the true value for each entity in the dataset.

2For many events, roughly 80% of the effects come from 20% of the causes.
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Results and Discussions: We choose IATD-ni as the baseline method for this part to

demonstrate the effectiveness of utilizing inter-source influences in truth discovery. The

results on the synthetic datasets are shown in Fig. 2.4. From the figures we can see that

IATD method works consistently better than IATD-ni regardless the ratios of influences

among sources and claims. Comparing the two scenarios, the results provided by IATD

method are similar, while IATD-ni suffers a bigger performance degradation when there

are more influenced claims. This again proves the importance of utilizing influences in

truth discovery tasks, and demonstrates that the proposed method successfully models

the source correlations and influences.

2.5 Summary

As an emerging topic, truth discovery has shown a great potential in a wide range of

applications thanks to its ability to estimate the truths and source trustworthiness si-

multaneously. Many existing truth discovery methods assume that sources make claims

independently, which may be violated in real world, as source correlations are ubiqui-

tous. For those methods who do consider source correlations, they limit the claims to be

categorical type. To better fit the real world applications, in this chapter, we propose a

probabilistic model that can handle both challenges. By taking the source correlations as

prior knowledge for influence derivation, the proposed influence-aware truth discovery

model can estimate the trustworthiness of a source more accurately. Moreover, claims

of both numerical and categorical types are modeled in a unified manner. Experimental

results on two real world datasets prove the effectiveness of the proposed IATD model.

Furthermore, experimental results on the simulated datasets illustrate the nice properties

of the proposed IATD model under different scenarios.



Chapter 3
Truth Discovery for Unstructured

Text Data

3.1 Introduction

In the big data era, tremendous data can be accessed on various online platforms, such as

Amazon Mechanical Turk, Stack Exchange and Yahoo Answers. However, such multi-

sourced data are usually contributed by non-expert online users, thus there may exist

errors or even conflicts in the data. Therefore, how to automatically infer trustworthy

information (i.e., the truths) from such noisy and conflicting data is a challenging prob-

lem.

To address this challenge, truth discovery methods have been proposed [16, 18, 21,

35–38, 42, 46, 47, 61, 62, 68, 80, 81, 89], which aim to estimate trustworthy informa-

tion from conflicting data by considering user reliability degrees. Truth discovery ap-

proaches follow two fundamental principles: (1) If a user provides much trustworthy

information or true answers, his/her reliability is high; (2) If an answer is supported by

many reliable users, this answer is more likely to be true. Though yielding reasonably

good performance, most existing truth discovery methods are designed for structured

data, and are difficult to be directly applied to text data, which are unstructured and
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Figure 3.1: An Illustration of questions, answers, answer factors and keywords.

noisy. This significantly narrows the application domain of these truth discovery meth-

ods, as a large ratio of the multi-sourced data are text. Actually, there are several unique

characteristics of natural language that hinder the existing truth discovery methods from

being successfully applied to text data.

Figure 3.1 gives an illustration of these two characteristics of text data. First, the

answer to a factoid question 1 may be multifactorial, and it is usually hard for a given

text answer to cover all the factors. For the question ‘What are the symptoms of flu?’, the

correct answer should contain the following factors: fever, chills, cough, nasal symptom,

ache, and fatigue. Even if the answer provided by a user covers two factors, such as

cough and chills, the existing truth discovery methods may determine this answer to

be totally wrong and assign a low reliability degree to this user. This is because these

methods treat the whole answer as an integrated unit. However, if we take the fine-

grained answer factors into consideration, the answer provided by this user is partially

correct, which implies that we should give some credits to the user by increasing his/her

reliability degree. Thus, how to identify partially correct answers and model factors of

text answers is critical for the task of truth discovery on text data.

The second characteristic of text data is the diversity of word usages. Answers pro-

vided by online users may convey a very similar meaning with different keywords. For

example, users may use words such as tired or exhausted to describe the symptom of

1Note: This chapter merely focuses on finding trustworthy answers for factoid questions. Factoid
questions are defined as questions that can be answered with simple facts expressed in short text an-
swers. [27]
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fatigue. However, existing truth discovery approaches may treat them as totally different

answers. Thus, it is of great importance to model the diversity among answers in the

text data when inferring trustworthy information.

In order to tackle the aforementioned challenges for inferring trustworthy informa-

tion from text data, in this chapter, we propose a model named “TextTruth”, which takes

the keywords in each answer as inputs and outputs a ranking for the answer candidates

based on their trustworthiness. Specifically, we first transform the keywords in text an-

swers into pre-trained computable vector representations. Due to the fact that an answer

may contain multiple factors, the “answer-level” or coarse-grained representations may

not be able to capture the partially correct answers. Thus, we need to convert the whole

answer into fine-grained factors. Then, we model the diversity of answers by clustering

the keywords with similar semantic meanings. By doing so, we can estimate the trust-

worthiness of each answer factor instead of the whole answer and infer the correctness

of each factor in the answer.

3.2 Problem Definition

In this chapter, we consider a general truth discovery scenario for factoid text questions

and answers. Before introducing the problem formulation, we first define some basic

terminologies that will be used in the rest of the chapter:

Definition 1 (Question). A question q contains Nq words and can be answered by users.

Definition 2 (Answer). An answer given by user u to question q is denoted as aqu.

Definition 3 (Answer Keyword). Answer keywords are domain-specific content words /

phrases in answers. The m-th answer keyword of the answer given by user u to question

q is denoted as xqum.

Definition 4 (Answer Factor). Answer factors are the key points of the answers, which

are represented as clusters of answer keywords. The k-th answer factor in the answers

to question q is denoted as cqk.
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For each question, there can be different answers provided by different users. These

answers may consist of complex sentences with multiple factors and can be partially

correct. This setting can support a broad range of text data. Formally, the problem

discussed in this chapter can be defined as:

Definition 5 (Problem Definition). Given a set of users {u}U1 , a set of questions {q}Q1
and a set of answers {aqu}Q,Uq,u=1,1, where U denotes the number of users and Q stands

for the number of questions. The goal of this chapter is to extract highly-trustworthy

answers and highly-trustworthy key factors in answers for each question.

3.3 Methodology

In this section, we first offer an overview of the proposed TextTruth model, and then

explain in detail each component of it.

3.3.1 Overview

When applying truth discovery methods to find the trustworthy answers to complex

natural language questions, semantic correlations among answers should be taken into

consideration, so that user reliability can be accurately estimated. However, learning

accurate vector representations for the whole answers is difficult especially when the

context corpus of these answer paragraphs is not sufficiently large. Moreover, due to

the complexity of natural language, the meaning of an answer is too complicated to be

represented by a single vector. To tackle such challenges, we rely on more fine-grained

semantic units (i.e., answer factors) in each answer to determine the trustworthiness of

each answer.

In this chapter, for each question, we first extract the keywords in each answer and

learn their vector representations. Then we cluster these word/phrase-level keywords

into semantic clusters (i.e., factors). These factors represent all the possible key points in

the answers to a question and can be used to determine the trustworthiness of an answer.
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For the keywords within each cluster, as they share very similar semantic meanings,

their trustworthiness should be almost the same. In addition, users may have different

reliabilities, which can be reflected in the answers they provided.

Based on the above ideas, we propose a two-step method to estimate the trustwor-

thiness of each answer. In the first step, we specify a probabilistic model to model the

generation of keywords with user reliabilities taken into consideration in Section 3.3.2.

The generative model, which consists of three major components, jointly learns the an-

swer factors and their truth label. The generative model first generates a mixture of

answer factors and their semantic parameters. After that, the model generates two-fold

user reliability variables, which model the comprehensiveness and accuracy of answer

factors provided by a specific user. These two variables capture a whole spectrum of the

user reliability. Finally, the model selects an answer factor based on the semantics, the

trustworthiness of the answer factor as well as the reliability of the user that provides

the answer, and generate the keyword embedding vector via a von Mises-Fisher (vMF)

distribution. The vMF distribution is centralized at the semantic centroid of that answer

factor. This way, the design of answer factor and user reliability takes the multifactorial

characteristics of answers into consideration. Meanwhile the keyword embedding vec-

tor generation also captures the diversity of word usages. These designs make the model

capable of capturing the unique characteristics of text data. In section 3.3.3, we design a

straightforward scoring mechanism to evaluate the trustworthiness score of each answer.

We provide the parameter estimation of the proposed method in Section 3.3.4.

3.3.2 Generative Model

We develop a probabilistic model to jointly learn the answer factors and the truth labels

of each answer factor for every question. For an answer aqu, we extract domain-specific

answer keywords and get their normalized 2 vector representations [52]. The set of all

the vector representations is denoted as {vqum}, which also serves as the observation of

2The normalized vector of v is given by v̂ = v
|v| , where |v| is the l2-norm of v.
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Figure 3.2: Plate notation for the proposed TextTruth Model.

the probabilistic model. Figure 3.2 shows the plate notation of the proposed model. The

generative model consists of three major components, which are listed as follows:

I. Answer Factor Modeling: The model first generate the mixture of factors accord-

ing to the Dirichlet distribution, which is commonly used to generate mixture models.

Formally, the mixture distribution πq is generated as:

πq ∼ Dirichlet(β). (3.1)

Here, β is a Kq-dimensional vector, where Kq denotes the number of factors in the

answers to question q.

For the k-th answer factor under question q, we model its trustworthiness via a binary

truth label tqk. Specifically, the model first generates the prior truth probability γqk. It
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determines the prior distribution of how likely each factor is to be true, from a Beta

distribution with hyper-parameter α(a)
1 and α(a)

0 :

γqk ∼ Beta(α
(a)
1 , α

(a)
0 ). (3.2)

Then the truth label tqk is generated from a Bernoulli distribution with parameter γqk:

tqk ∼ Bernoulli(γqk). (3.3)

Finally, to model the semantic characteristic of each answer factor, we define the cen-

troid parameter µqk and concentrate parameter κqk of vMF distributions from its conju-

gate prior distribution Φ(µqk, κqk;m0, R0, c) [58], i.e.:

µqk, κqk ∼ Φ(µqk, κqk;m0, R0, c), (3.4)

where Φ(µqk, κqk;m0, R0, c) is defined as:

Φ(µqk, κqk;m0, R0, c) ∝ {CD(κqk)}c exp(κqkR0m
T
0µqk).

Here, CD(κ) = κD/2−1

ID/2−1(κ)
, and ID/2−1(·) is the modified Bessel function of the first kind.

In practice, there may be few answers that are totally irrelevant to the question. Since

the answer factors in irrelevant answers are usually supported by very few users, they

will not be regarded as trustworthy.

II. User Reliability Modeling: The reliability of each user is inferred according to the

answers they provide. As aforementioned, the answer of a user u may merely cover part

of the trustworthy answer factors, and at the same time may consist of untrustworthy

answer factors. For instance, some users may only provide the factors that they are very

confident of. On the contrary, other users may cover a broad collection of answer factors

with different trustworthinesses in their answers. This naturally motivates us to use a

two-fold score like [92] to model the reliability of a user.
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Suppose we know all the answer factors and their truth labels in advance, for all the

questions and their answers, we use TPu and FPu to denote the number of trustworthy

and untrustworthy answer factors that are covered by the answers from user u (i.e., the

number of true positive and false positive factors), respectively. Similarly, we use FNu

and TNu to denote the number of trustworthy and untrustworthy answer factors that

are not covered by the answers from user u (i.e., the number of false negative and true

negative factors), respectively. Based on these statistics, we can intuitively use the false

positive rate (defined as: FPu
FPu+TNu

), and the true positive rate (defined as: TPu
TPu+FNu

) to

fully characterize u’s reliability.

Let’s resume the discussion of the proposed model. During the generative process,

the answer factors and their truth labels are not known in advance. Inspired by [92],

we also define two-fold user reliability variables φ0
u and φ1

u to model the false posi-

tive rate and the true positive rate of factors that are covered by the answers of user

u. Specifically, for each user u, we generate φ0
u and φ1

u from two Beta distributions

with hyper-parameters (α0,1, α0,0) and (α1,1, α1,0), respectively. Here, α0,1 and α0,0 are

the prior false positive count and true negative count, respectively. Similarly, α1,1 and

α1,0 stand for the prior true positive count and the false negative count of each source,

respectively. Formally:

φ0
u ∼ Beta(α0,1, α0,0) (False Positive Rate)

φ1
u ∼ Beta(α1,1, α1,0) (True Positive Rate).

(3.5)

III. Observation Modeling: As aforementioned, we use the vector representations of

keywords as observations. For the m-th word representation from user u for question q,

we specify the following generation process.

Firstly, we define a binary indicator yu,qk, which denotes whether the k-th factor of

the answers to question q should be covered by user u, based on the reliability of u. For

question q, if its truth label tqk = 1, the probability of user u covering the k-th factor

in its answer follows a Bernoulli distribution with reliability parameter φ1
u. Otherwise,
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if its truth label tqk = 0, the probability follows a Bernoulli distribution with reliability

parameter φ0
u. Formally, this process can be written as:

yu,qk ∼ Bernoulli(φ0
u) If tqk = 0,

yu,qk ∼ Bernoulli(φ1
u) If tqk = 1.

(3.6)

To this point, we have determined the set of answer factors that should be covered by

the answer aqu, with the reliability of u taken into consideration.

Then, for the m-th keyword in the answer aqu, its factor label zqum is drawn from a

probability density function defined as:

P (zqum = k|πq, yu,qk) ∝

πqk if yu,qk = 1,

0 if yu,qk = 0.
(3.7)

The density function jointly considers the answer factor mixture distribution and the set

of binary indicators yu,q·. This means that both semantics and user reliabilities are used

to determine the factor label of a specific answer keyword.

With the factor labels determined, the model samples keywords vectors that describe

the semantic meaning of its corresponding factor. Note that this procedure should not

involve the reliability of a user. The vector representation of a keyword (i.e. vqum) is

randomly sampled from a vMF distribution with parameter µqk, κqk:

vqum ∼ vMF(µqk, κqk). (3.8)

Specifically, for a D-dimensional unit semantic vector v that follows vMF distribu-

tion, its probability density function is given by:

p(vqum|µqk, κqk) = CD(κqk) exp(κqkµ
T
qkvqum). (3.9)
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Algorithm 1: Generative Process of TextTruth
for each question q do

Draw mixture πq ∼ Dirichlet(β);
for each answer factor k do

Draw centroid and concentration: µqk, κqk ∼ Φ(m0, R0, c);
Draw truth parameter: γqk ∼ Beta(α

(a)
0 , α

(a)
1 );

Draw a truth label: tqk ∼ Bernoulli(γqk);
end

end
for each user u do

Draw: φ0
u ∼ Beta(α0,1, α0,0), φ1

u ∼ Beta(α1,1, α1,0);
end
for each answer aqu do

for each answer factor k do
Draw binary label: yu,qk ∼ Bernoulli(φ

tqk
u );

end
for each keyword m do

Draw a answer factor label: P (zqum = k|π, yu,qk);
Draw keyword embedding: vqum ∼ vMF(µqzqum , κqzqum);

end
end

The vMF distribution has two parameters: the mean directionµqk and the concentra-

tion parameter κqk(κqk > 0). The distribution of vqum on the unit sphere concentrates

around the mean direction µqk, and is more concentrated if κqk is larger. In our sce-

nario, the mean vector µ acts as a semantic focus on the unit sphere, and produces

relevant semantic embeddings around it. The superiority of the vMF distribution over

other continuous distributions (e.g., Gaussian) for modeling textual embeddings has also

been shown in the field of clustering [3] and topic modeling [22].

The overall generative process is summarized in Algorithm 1.

3.3.3 Trustworthy-Aware Answer Scoring

Intuitively, the trustworthiness of an answer should be evaluated by the volume of correct

information it provides. Hence, we propose a straightforward scoring mechanism to
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evaluate the trustworthiness score of each answer. Given the inferred truth labels for

each answer factor of question q, we score the answers according to the number of

answer keywords in the answer aqu that are related to the factor with truth label tqk = 1,

i.e.:

scorequ =

Kq∑
k=1

Nu,qkI(tqk = 1), (3.10)

where Kq is the number of answer factors for question q, Nu,qk denotes the number of

keywords that are provided by user u and are clustered into factor k. I(tqk = 1) = 1 if

tqk = 1, and I(tqk = 1) = 0 if tqk = 0. Note that there are many alternative ways of

designing scoring functions.

3.3.4 Model Fitting

In this section, we present the approach to estimating the latent variables and the user

reliability parameters.

Latent Variable Estimation: We use MCMC method to infer the latent variables t, z, y

and κ. As one can see, the values of y and z have a large impact on the final results,

and they may be sensitive to the initialization. Therefore, we make an approximation in

latent variable estimation to make the process stable. The detailed steps are specified in

the following paragraphs.

First, using conjugate distributions, we are able to analytically integrate out the

model parameters and only sample the cluster assignment variable z. This is done as

follows:

P (zqum = k | zq,¬um,β,m0, R0, c)

∝ P (zqum = k | zq,¬um,β)

× P (vqum|vq,¬um, zqum = k,zq,¬um,m0, R0, c),

(3.11)

where vq,¬um stands for the set of all the keywords in the answers for question q, except

the m-th keyword from user u.
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Then we can derive the expressions for the two terms in Eq. (3.11). The first term

P (zqum = k | zq,¬um,β) can be written as:

P (zqum = k|zq,¬um,β) ∝ Nqk¬um + βk (3.12)

whereNqk,¬um denotes the number of answer keywords under the k-th factor of question

q except current keyword vqum. The second term in Eq. (3.11) is similar to the form of

vMF Mixture Model, which can be written as:

P (vqum|vq,¬um, zqum = k,zq,¬um,m0, R0, c)

∝ CD(κqk)CD(||κqk(R0m0 + vqk¬um)||2)
CD(||κqk(R0m0 + vqk)||2)

,
(3.13)

where vqk denotes the sum of all the vector representations of keywords in factor k for

question q. The concentration parameters κqk are sampled from the following distribu-

tion:

P (κqk|κq¬k,m0, R0, c) ∝
(CD(κqk))

c+Nqk

CD(κqk||R0m0 + vqk||2)
. (3.14)

The conditional distribution of κqk is again not of a standard form, we use a step of

Metropolis Hasting sampling (with log-normal proposal distribution) to sample κqk. To

this point, we get the full expression of Eq. (3.11). In the circumstance when the model

fitting efficiency becomes a concern, the sampling process specified by Eq. (3.11) can be

approximated via the method specified in [72], which also produces satisfactory results.

Here, we make an approximation by removing the impact of y in terms of determin-

ing the value z. For the answer provided by user u for questions q, yu,qk is determined

via:

yu,qk =

0 If @ m satisfies zqum = k

1 Otherwise.

(3.15)
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Finally, we move on to sample the truth label for each answer factor under each

question tqk via the following posterior distribution:

P (tqk = x | tq,¬k, zq,yq, α0,0, α0,1, α1,0, α1,1, α
(a)
0 , α

(a)
1 )

∝ α(a)
x

∏
u∈Uq

αx,yu,qk + nu,x,yu,qk
αx,0 + αx,1 + nu,x,0 + nu,x,1

,
(3.16)

where Uq is the set of users that provide answer for question q. Here, x ∈ {0, 1}. nu,0,0,

nu,0,1 , nu,1,0 and nu,1,1 denote the number of true negative, false positive, false negative

and true positive factors provided by user u, respectively.

User Reliability Estimation: With t, y, κ and z determined, we are able to obtain

the closed-form solution for φ0
u and φ1

u by setting the partial derivatives of the negative

log-likelihood respective to φ0
u and φ1

u to zero:

φ0
u =

α0,1 + nu,0,1
α0,0 + α0,1 + nu,0,1 + nu,0,0

, (3.17)

φ1
u =

α1,1 + nu,1,1
α1,0 + α1,1 + nu,1,0 + nu,1,1

, (3.18)

where nu,0,0, nu,0,1 , nu,1,0 and nu,1,1 are user reliability statistics, which denote the

number of true negative, false positive, false negative and true positive factors provided

by user u, respectively. Moreover, these statistics also allow us to calculate other user

reliability metrics, e.g., precision score of a user:

precu =
α1,1 + nu,1,1

α0,1 + α1,1 + nu,0,1 + nu,1,1
. (3.19)

This score is also used in the experiment section to validate the estimated user reliability.
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3.4 Experiments

In this section, we empirically validate the performance of the proposed method from

the following aspects: Firstly, we compare the performance of the proposed method

with the state-of-the-art truth discovery methods as well as a couple of retrieval based

schemes to demonstrate the advantage of utilizing fine-grained semantic units of an-

swers for better answer trustworthiness estimation. After that, we provide a case study

to show that the results produced by the proposed method are highly interpretable. Fi-

nally, we validate the estimated user reliabilities with groundtruth to further prove that

the proposed method can make a good estimation of user reliabilities.

3.4.1 Datasets

SuperUser Dataset & ServerFault Dataset: These two datasets are collected from the

community question answering (CQA) websites SuperUser.com and ServerFault.com,

respectively. These two websites are mainly focused on the questions about general

daily computer usages and server administration, respectively. The task on these datasets

is to extract the most trustworthy answer to each question. We use the answers’ votes

from SuperUser.com and ServerFault.com as the groundtruths for evaluation.

Student Exam Dataset [55]: This dataset is collected from introductory computer sci-

ence assignments with answers provided by a class of undergraduate students in the

University of North Texas. 30 students submit answers to these assignments. For each

assignment, the students’ answers are collected via an online learning environment. The

task on this dataset is to extract Top-K (K is set to 1-10 in this chapter) trustworthy stu-

dent answers for each question. The groundtruth answers are given by the instructors.

All the answers are independently graded by two human judges, using an integer scale

from 0 (completely incorrect) to 5 (perfect answer). The statistics of these three datasets

are shown in Table 3.1.
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Table 3.1: Data Statistics.
Item SuperUser ServerFault Student Exam
# of Questions 3379 7621 80
# of Users 1036 1920 30
# of Answers 16014 40373 2273

Pre-Processing: For all the datasets, we discard all code blocks, HTML tags, and stop

words in the text. Answer keywords are extracted using entity dictionary and Stanford

POS-Tagger3. To train word vector representations, we utilize all the crawled texts

as the corpus. Skip-gram architecture in package gensim4 is used to learn the vector

representation of every answer keyword. The dimensionality of word vectors is set to

100, context window size is set to 5, and the minimum occurrence count is set to 20. For

more details on the embedding algorithm, please refer to [52].

3.4.2 Experiment Protocols

3.4.2.1 Comparison Methods

We compare the proposed TextTruth model against several state-of-the-art truth discov-

ery and retrieval-based answer selection approaches.

Bag-of-Word (BOW) Similarity: The bag-of-word vectors of questions and their

answers are extracted. Answers are ranked according to the similarity values between

the question vector and its corresponding answer vectors.

Topic Similarity: We utilize Latent Dirichlet Allocation (i.e. LDA [6]) to extract

a 100-dimension topic representation for each question and its corresponding answers.

Similar to BOW, answers are ranked according to the cosine similarity to the question.

CRH [36] + Topic Dist.: CRH is an optimization based truth discovery framework

which can handle both categorical and continuous data. The goal of the optimization

problem is to minimize the weighted loss of the aggregation results. In the experiment,

3https://nlp.stanford.edu/software/tagger.shtml
4https://pypi.python.org/pypi/gensim, an implementation of Word2Vec
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we use the topic distributions as the representations of the whole answers to be fed to

CRH.

CRH [36] + Word Vec.: This baseline approach is similar to CRH + Topic Dist.

except that the inputs are changed to the average word vectors of answers. These word

vector representations are learned as in [52].

CATD [35] + Topic Dist.: CATD is another optimization based truth discovery

framework which considers the long-tail phenomena in the data. The optimization ob-

jective is similar to that of CRH. However, the upper bounds of user reliability are used

for weight loss calculation. Similar to CRH + Topic Dist., we use the topic distributions

as the representations of the whole answers to be fed to CATD.

CATD [35] + Word Vec.: This baseline approach is similar to CATD + Topic Dist.

except that the inputs are changed to the average word vectors of answers. The word

vector representations are the same as those in CRH + Word Vector.

For each baseline approach, we implement it and set its parameters according to the

method recommended by the original paper.

3.4.2.2 Evaluation Metrics

Due to the differences in dataset characteristics, evaluation metrics for three datasets are

slightly different. On CQA datasets, we report the precisions of returned best answers

from each method for each question. On student test dataset, we report the average

score of returned top-K (K is set to 1-10 in this chapter) trustworthy answers from each

method for each question.

3.4.3 Performance and Analysis

The results are shown in Figure 3.3 and Table 3.2. For student exam dataset, we only

show the results on exam 1 3 data. The results on rest exams follow the same tendency.

As one can see, the proposed method TextTruth consistently outperforms all the base-

line methods. By outperforming various retrieval-based approaches and state-of-the-art
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Table 3.2: Results on ServerFault Dataset & SuperUser Dataset.
Method ServerFault SuperUser
BOW Similarity 0.2077 0.1944
Topic Similarity 0.2462 0.2462
CATD + Topic Dist. 0.2311 0.2308
CATD + Word Vec. 0.1821 0.2234
CRH + Topic Dist. 0.2453 0.2453
CRH + Word Vec. 0.1847 0.2231
TextTruth 0.3985 0.4019

truth discover approaches, the proposed TextTruth demonstrates its great advantages on

natural language data.

The reasons why the proposed TextTruth surpasses all the baseline methods are as

follows. First, retrieval-based approaches (i.e., BOW Similarity and Topic Similarity)

rank the answers merely based on the semantic similarity between the question and an-

swers. However, a question itself does not necessarily cover all the semantics that should

be covered in ideal answers. Therefore, retrieval-based methods only discover relevant

answers instead of trustworthy answers. On the other hand, although existing truth dis-

covery methods can capture user reliability for answer ranking, the performance is not

very satisfactory. This is because these truth discovery approaches treat the answers

as an integrated semantic unit, and ignore the fact that the semantic meaning of each

answer may be complicated. Therefore, single vector representations fail to capture the

innate correlations among these answers. To make things worse, CRH and CATD regard

the weighted aggregation of these single vector representations as the “true” semantic

representation to evaluate user reliabilities. However, answers from different users may

involve distinct aspects of answers. Therefore, aggregating semantic representation of

answers with distinct aspects only produces an inaccurate representation, which cannot

be used to correctly estimate the reliabilities of users. The inaccurate user reliability

estimation would further lead to incorrect aggregated results.

In contrast to existing approaches, the proposed TextTruth regards each answer as a

collection of fine-grained semantic units (i.e., factors), which are represented by sepa-
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(c) Exam 3
Figure 3.3: Performance on Exam Datasets.

Table 3.3: Case Study of Real Question and Answers.
Content

Question What is a tree?
Groundtruth Answer A collection of nodes, which has a special node called

root, and the rest of the nodes are partitioned into one
or more disjoint sets, each set being a tree.

Top Answer 1 A tree is a finite set of one or more nodes with a spe-
cially designated node called the root and the remain-
ing nodes are partitioned into disjoint sets where each
of these sets is a tree.

Top Answer 2 A a finite collection of nodes, where it starts, with
an element, called the root,, which has children, and
its children have children until you get to the leaves
which are the last elements and have to children

Untrustworthy Answer It is a list of numbers in a list made by comparing
values of nodes already in the tree and adding to the
appropriate spot. Its a list made up of nodes with left
and right points.

rated keyword vector representations. Based on these semantic units, TextTruth discov-

ers the innate factors of each answer by grouping keywords into factors, and evaluates

the trustworthiness of each answer on the top of these factors. As mentioned in the above

paragraph, the major reason why existing truth discovery methods cannot produce sat-

isfactory results is that these methods cannot aggregate the semantic representation of

answers with distinct aspects effectively. Instead, the proposed TextTruth evaluate the

users’ reliabilities according to whether their answers contain keywords from the fac-
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tors that are regarded to be correct (or incorrect). Therefore, the trustworthiness of each

answer is better evaluated, which leads to the best result.

3.4.4 Case Study

To better evidence the analysis above, we give a case study on a question in the exam

dataset. The question is related to the data structure. The result of the case study is

shown in Table 3.3. In Table 3.3 words in blue color are keywords that are estimated to

be trustworthy, while words in red color are keywords that are estimated to be untrust-

worthy or unrelated. The groundtruth answer is provided by the instructors.

As one can see, the proposed method can automatically select keywords that are

meaningful to the questions, such as “node”, “tree” and “root”. Moreover, we can ob-

serve that the top-ranked answers have more true keywords than low-ranked untrustwor-

thy answers. These phenomena again demonstrate that the results of the proposed model

are both effective and interpretable. The case study also demonstrates why existing ap-

proaches fail to produce satisfactory results. First, the question itself merely consists of

one keyword ‘tree’. Therefore, retrieval-based methods, rank ‘Untrustworthy Answer’

over ‘Top Answer 2’, because it contains exactly the same keyword that exists in the

question. This indicates that we cannot rely merely on relevance to find trustworthy

answers. Second, we can see that the correct keywords involve multiple aspects (i.e.,

factors). These factors shape a comprehensive description of a tree. Such phenomenon

is very common in natural language questions and answers, but cannot be successfully

handled by the existing methods. That is why the proposed method can produce better

results than the state-of-the-art truth discovery methods.

3.4.5 User Reliability Validation

The quantitative results and the case study shown above have demonstrated that the

proposed method can outperform other baseline methods. In this section, we further
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Figure 3.4: Estimated User Reliability V.S. Ground Truth User Score.

exhibit the estimated user reliabilities by the proposed approach. As there are no direct

user reliability values on the CQA dataset, we only investigate the estimated user relia-

bilities on the student exam dataset. Specifically, we use the average score of a student’s

answer to each question as the groundtruth reliability. Intuitively, the learned two-fold

user reliability parameters (i.e., φ0 and φ1) are not directly proportional to the true user

reliability; we use the metric prec defined in Eq. (3.19) for user reliability validation.

Due to space limitation, we only show one example, which comes from the mid-result

of TextTruth on exam 10, in Figure 3.4. In Figure 3.4, each point denotes a user. The

Y-axis is the user reliability groundtruth and the X-axis is the estimated user precision

score. As one can see, the estimated user reliability score (X) typically increases when

the groundtruth user reliability (Y) increases which means that the proposed TextTruth

successfully captures the reliabilities of users.

3.5 Summary

Truth discovery has shown its effectiveness in a wide range of applications with struc-

tured data. However, existing methods all suffer on unstructured text data, due to the

semantic ambiguity of natural languages and the complexity of text answers. To tackle

these challenges, in this chapter, we propose a probabilistic model named TextTruth

that takes vector representations of key factors extracted from answers as inputs and
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outputs the ranking of answers based on the trustworthiness of key factors within each

answer. Specifically, the model jointly learns the clustering label and truth label for

each answer factor cluster through modeling the generative process of answer factors’

embedding representations. Experimental results on three real-world datasets prove the

effectiveness of the proposed TextTruth model. Furthermore, case studies illustrate that

the learned labels are interpretable.
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Chapter 4
Data Poisoning Attack against

Knowledge Graph Embeddings

4.1 Introduction

Knowledge graphs have become a critical resource for a large collection of real world

applications, such as information extraction [53], question answering [86] and recom-

mendation system [88]. Due to its wide application domains, both academia and indus-

try have spent considerable efforts on constructing large-scale knowledge graphs, such

as YAGO [26], Freebase [8], and Google Knowledge Graph1. In knowledge graphs,

knowledge facts are usually stored as (head entity, relation, tail entity) triples. For in-

stance, the fact triple (Albert Einstein, Profession, Scientist) means that Albert Einstein’s

profession is a scientist.

Although such triples can effectively record abundant knowledge, their underlying

symbolic nature makes them difficult to be directly fed to many machine learning mod-

els. Hence, knowledge graph embedding (KGE), which projects the symbolic enti-

ties and relations into continuous vector space, has quickly gained significant atten-

tion [9, 44, 57, 76, 84]. These compact embeddings can preserve the inherent charac-

1https://developers.google.com/knowledge-graph/



51

teristics of entities and relations while enabling the use of these knowledge facts for

a large variety of downstream tasks such as link prediction, question answering, and

recommendation.

Despite the increasing success and popularity of Knowledge graph embeddings,

their robustness has not been fully analyzed. In fact, many knowledge graphs are built

upon unreliable or even public data sources. For instance, the well known Freebase

harvests its data from various sources including individual, user-submitted wiki con-

tributions2. The openness of such data unfortunately would make KGE vulnerable to

malicious attacks. When being attacked, substantial unreliable or even biased knowl-

edge graph embeddings would be generated, leading to serious impairment and finan-

cial loss of many downstream applications. For instance, a variety of recommendation

algorithms (e.g., [79, 88]) utilize KGEs of products as external references. If KGEs are

manipulated, the recommendation results will be biased. This phenomenon can largely

hurt user experiences. Therefore, there is a strong need for the analysis of the vulnera-

bility of knowledge graph embeddings.

In this chapter, for the first time, we systemically investigate the vulnerability of

KGE, through designing efficient adversarial attack strategies. Due to the unique char-

acteristics of knowledge graph and its embedding models, existing adversarial attack

methods on graph data [7, 74, 94] cannot be directly applied to attack KGE methods.

First, they are all designed for homogeneous graphs, in which there is only a single type

of nodes or links. However, in a knowledge graph, both the entities (nodes) and the

relations (links) between entities are of different types. Second, existing attack meth-

ods for homogeneous graphs usually have strict requirements on the formulation of the

targeted methods. For instance, the attack strategies proposed in [7, 74] can only work

for the embedding methods that can be transformed into matrix factorization. How-

ever, the KGE methods are diverse and may not be able to be transformed into matrix

factorization problems.

2https://www.nytimes.com/2007/03/09/technology/09data.html
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Our proposed attack strategies can guide the adversary to manipulate the training

set of KGE by adding and/or deleting some specific facts to promote or degrade the

plausibility of specific targeted facts, which can potentially influence a large variety

of applications that utilize the knowledge graph. The proposed strategies include both

direct scheme which directly manipulates the embeddings of entities involved in the

targeted facts and indirect scheme which utilizes other entities as proxies to achieve the

attack goal.

4.2 Problem Definition

Let us consider a knowledge graph KG, with a training set denoted as {(ehn, rn, etn)}Nn=1

and a targeted fact triple (eh,targetx , rtargetx , et,targetx ) that does not exist in the training set.

The goal of the attacker is to manipulate the learned embeddings, which would degrade

(or promote) the plausibility of (eh,targetx , rtargetx , et,targetx ) measured by a specific fact

plausibility scoring function f . Without loss of generality, we focus on degrading the

targeted fact. We also assume that the attacker has a limited attacking budget. In this

chapter, the attacking budget is the number of perturbations per target. Formally, the

attack task is defined as follows:

Definition 6 (Problem Definition). Consider a targeted fact triple

(eh,targetx , rtargetx , et,targetx ) that does not exist in the training set, we use eh,targetx to

denote the embedding of the head entity eh,targetx , et,targetx to denote the embedding of the

tail entity et,targetx and rtargetx to denote the embedding of the relation rtargetx from the orig-

inal training set. Our task is to minimize the plausibility of (eh,targetx , rtargetx , et,targetx ),

i.e., f(eh,targetx , rtargetx , et,targetx ), by making perturbations (i.e., adding/deleting facts) on

the training set. We assume the attacker has a given, fixed budget and is only capable

of making M perturbations.

Due to the discrete and combinatorial nature of the knowledge graph, solving this

problem is highly challenging. Intuitively, in order to manipulate the plausibility of a
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specific targeted fact, we need to shift either the embedding vectors related to its entities

or the embedding vectors/matrices related to its relations. However, in a knowledge

graph, the number of facts that a relation type involves is much larger than the number

of facts that an entity type involves. For instance, in the well-known knowledge graph

Freebase, the number of entities is over 30 million, while the number of relation types

is only 1345. This leads to the fact that the innate characteristics of each relation type is

far more stable than that of entities and is difficult to be manipulated via a small number

of modifications. Hence, in this chapter, we focus on manipulating the plausibility of

targeted facts from the perspective of entities. To achieve the attack goal, in the rest of

this section, we propose a collection of effective yet efficient attack strategies.

4.3 Direct Attack

Given the uncontaminated knowledge graph, the goal of direct attack is to determine a

collection of perturbations (i.e., fact adding/deleting actions) to shift the embeddings of

the entities involved in the targeted fact to minimize the plausibility of the targeted fact.

First, we determine the optimal shifting direction that the entity’s embedding should

move towards. Then we rank the possible perturbation actions by analyzing the training

process of KGE models and designing scoring functions, which estimate the benefit of

a perturbation, i.e., how much shifting can be achieved by this perturbation along the

desired direction. We name the score as perturbation benefit score and calculate such

score for every possible perturbation. Finally, we conduct the Top-M perturbations with

highest perturbation benefit scores, where M is the attack budget.

Suppose we want to degrade the plausibility of the fact (eh,targetx , rtargetx , et,targetx ).

For simplicity, let’s focus on shifting the embedding of one of the entities in

(eh,targetx , rtargetx , et,targetx ), say head entity eh,targetx , from eh,targetx to eh,targetx +ε∗x, without

loss of generality. Here, ε∗x denotes the embedding shifting vector. The fastest direction

of decreasing f(eh,targetx , rtargetx , et,targetx ) is opposite to its partial derivative with respect
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to eh,targetx . Let εh be the perturbation step size, the optimal embedding shifting vector

is:

ε∗x = −εh ·
∂f(eh,targetx , rtargetx , et,targetx )

∂eh,targetx

. (4.1)

As mentioned in the problem definition, in order to shift eh,targetx by ε∗x, the adver-

sary is allowed to add perturbation facts to the knowledge graph or delete facts from the

knowledge graph. Given the optimal embedding shifting vector ε∗x, we then find a rank-

ing of the all the perturbation (add or delete) candidates. We discuss the two schemes in

detail as follows.

4.3.1 Direct Deleting Attack.

Consider the uncontaminated training set, under the direct adversarial attack scheme, in

order to shift the embedding of eh,targetx to eh,targetx +ε∗x, we need to select and delete one

or more facts that directly involve entity eh,targetx . Intuitively, the fact to delete should

have a great influence on the embedding of eh,targetx , while at the same time not hinder

the process of shifting the embedding of eh,targetx to eh,targetx + ε∗x. To design a scoring

criterion that captures these intuitions, let us look into the training process of KGE

model. Consider the specific deletion candidate (eh,targetx , ri, e
t
i) that involves eh,targetx .

During training, the sum of the fact plausibility scores of the observed training samples

is maximized. On one hand, the more plausible the fact (eh,targetx , ri, e
t
i) is, the more it

contributes to the final embedding of eh,targetx . Hence, the perturbation benefit score of

deleting (eh,targetx , ri, e
t
i) should be proportional to f(eh,targetx , ri, e

t
i). On the other hand,

if the plausibility of fact (eh,targetx , ri, e
t
i) is large after eh,targetx is shifted to eh,targetx +

ε∗x (i.e., f(eh,targetx + ε∗x, ri, e
t
i) is large), it means that the fact (eh,targetx , ri, e

t
i) has a

great positive impact on the embedding shifting and should not be deleted. Hence, the

perturbation benefit score of deleting (eh,targetx , ri, e
t
i) should be inversely proportional

to f(eh,targetx + ε∗x, ri, e
t
i). Formally, let the set of all the delete candidates be: DD =

{(ehi , ri, eti) | ehi = eh,targetx and (ehi , ri, e
t
i) ∈ KG}, which intuitively denote the set of
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facts that involve eh,targetx as the head entity in the training set. The perturbation benefit

score of deleting a specific perturbation fact (eh,targetx , ri, e
t
i) can be estimated as:

η−(eh,targetx , ri, e
t
i) =f(eh,targetx , ri, e

t
i)

− λ1f(eh,targetx + ε∗x, ri, e
t
i),

(4.2)

where eh,targetx , ri, and eti denote the embeddings of eh,targetx , ri and eti on the uncontam-

inated training set.

4.3.2 Direct Adding Attack.

Now we discuss how to conduct direct adding perturbation. To shift the embed-

ding of exh,target by ε∗, we just need to add new facts that involve eh,targetx to make

f(eh,targetx , rj, e
t
j) less plausible. The set of all the possible adding candidates can

be denoted as DA = {eh,targetx } × {(rj, etj) | ∀rj ∈ KG and etj ∈ KG}, where

{(rj, etj) | ∀rj ∈ KG and etj ∈ KG} denotes all the possible “relation-tail entity” com-

binations in the knowledge graph and × stands for Cartesian product. In practice, for

better efficiency, we can downsample a subset from all the possible “relation-tail entity”

combinations. Formally, the perturbation benefit score of a specific candidate to add

(i.e., (eh,targetx , rj, e
t
j)) can be estimated as:

η+(eh,targetx , rj, e
t
j) =λ2f(eh,targetx + ε∗x, rj, e

t
j)

− λ3f(eh,targetx , rj, e
t
j),

(4.3)

where eh,targetx , rj , and eti denote the embeddings on the uncontaminated training set.

4.4 Indirect Attack

Although the direct attack strategy is intuitive and effective, it is possible to be detected

by data sanity check. In this section, we move on to introduce a more complicated yet
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more stealthy adversarial attack scheme, i.e., indirect attack. Suppose a KGE user want

to query the plausibility of a potential fact (h, r, t). Due to the huge scales of real-world

knowledge graphs, even in the most optimistic situation, we may merely carry data

sanity test on the facts related to h and t. However, for indirect attack, instead of adding

or deleting the facts that involve the entities in the targeted fact, we propose to perturb

the facts that involve other entities in the knowledge graph and let the perturbation effect

propagate to the targeted fact. Thus, detecting these perturbations requires data sanity

tests on facts that involves every entity that are hops away from h and t. When the

number of hops increases linearly, the data sanity cost will have a exponential growth.

Even though there is an Oracle that can find these anomalous facts effectively, defenders

cannot determine the targeted fact(s) of these perturbations. For a better description, we

provide the following toy example, which is used throughout this section.

Example 1. Suppose we want to degrade the plausibility of the targeted fact

(eh,targetx , rtargetx , et,targetx ) via shifting the embedding of the targeted entity eh,targetx by

ε∗x, without loss of generality. Under indirect attack scheme, we perturb the facts that

involve the K-hop neighbors of eh,targetx . These K-hop neighbors are called proxy en-

tities. Then the entities between the K-hop neighbors (proxy entities) and eh,targetx are

intermediate entities to propagate the influence of the perturbations to eh,targetx . The

propagation path can be illustrated as follows:

eh,targetx

rx,1←−→ ex,1
rx,2←−→ ex,2 · · ·

rx,K←−→ ex,K

where we use
rx,·←−→ to denote the directional relation and use notation ex,· to denote

the entities on the path. A specific ex,· can work as both the head entity and the tail

entity. The notations in the path above are adopted in the rest of this section.

When the perturbations on the proxy entity cause an embedding shift on itself, the

embeddings of its neighboring entities will also be influenced. The influence will prop-

agate back to the embedding of the targeted entity ultimately.
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However, finding the effective perturbations on the proxy entities, which are K-hop

away from the targeted entity, is indeed a challenging task. The task involves two key

problems: (1) Given a specific propagation path, how can we determine the desired

embedding shifting vectors on its intermediate entities and its proxy entity, in order to

accomplish the embedding shifting goal on the targeted entity? (2) How do we select the

propagation paths to propagate the influence of perturbation to the targeted entity? In

the rest of this section, we discuss strategies to solve these key problems and propose a

criterion to evaluate the benefit of an indirect perturbation (i.e., the perturbation benefit

score).

For the first problem, given a specific path, in order to conduct a perturbation that

makes the embedding of eh,targetx shift towards the desired direction (i.e., the direction of

ε∗x), we decide the shifting goal for each entity on the path in a recurrent way. Suppose

we want to shift eh,targetx by ε∗x via the intermediate entities along the path specified in

Example 1. The entity that directly influences eh,targetx is its neighbor ex,1 and what

we need to do is to determine the ideal embedding shifting vector ε∗x,1 on ex,1, so that

the desired embedding shift on eh,targetx (i.e., ε∗x) is approached to the greatest extent.

Formally, ε∗x,1 should satisfy:

ε∗x,1 = arg max
ε

f(eh,targetx + ε∗x, rx,1, ex,1 + ε)

− f(eh,targetx , rx,1, ex,1 + ε)

s.t. ||ε||2 = εh,

(4.4)

where εh is the perturbation step size, ex,1 denotes the embedding of ex,1, and rx,1 de-

notes the embedding of rx,1. As a result, the embedding of eh,targetx will have a larger

tendency to move towards eh,targetx + ε∗x than towards eh,targetx , during the training pro-

cess on the contaminated training data. When ε∗x,1 is determined, we can further get

the embedding shifting vector for ex,2, · · · , ex,K , which are denoted as ε∗x,2, · · · , ε∗x,K ,

respectively. This process is similar as above.
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With the embedding shifting vectors on the proxy entities of each path determined,

we calculate the scores η− and η+, defined in Eq. (4.2) and (4.3) for all the possible

add/delete perturbations. These scores are later used to calculate the perturbation benefit

score under indirect attack schemes.

For the second problem, we look into the training objective function. Suppose we

want to shift the embedding of ex,k−1 via its neighbor ex,k, when the embedding shift on

ex,k is ε∗x,k. To estimate the influence of such embedding shift on ex,k−1, we isolate all

the facts that involve ex,k−1 in the training objective function, force a embedding shift

εx,k on ex,k and ignore the negative sampling terms. Formally, the objective function

becomes: mineex,k−1

∑
(ehi ,ri,e

t
i)∈D

\ex,k
ex,k−1

L(ehi , ri, e
t
i)+L(ex,k−1, rx,k, ex,k+εx,k), where

D
\ex,k
ex,k−1 stands for the set of all the observed facts, which involve ex,k−1 except the fact

(ex,k−1, rx,k, ex,k), in the training set. L denotes the loss function for a single fact. ex,k+

εx,k in L(ex,k−1, rx,k, ex,k + εx,k) indicates that the embedding of ex,k is already shifted.

Clearly, if we fix the embeddings of all the relations and entities except ex,k−1, the impact

of shifting ex,k to ex,k + εx,k is highly correlated with the number of facts that involves

ex,k−1, i.e., |Dex,k−1
|. That is to say, the more neighbors an entity has, the less it will be

influenced by a specific perturbation on one of its neighbors.

Based on above discussions, we propose an empirical scoring function to evalu-

ate the perturbation benefit score of every possible perturbation. We still consider

the scenario specified in Example 1. Suppose we conduct an add/delete perturbation

(ex,K , rx,K , ex,K+1) on the proxy entity ex,K . The perturbation benefit score of this indi-

rect perturbation is defined as:

ψ(ex,K , rx,K , ex,K+1)

= η(ex,K , rx,K , ex,K+1)− λ log
( 1

K

K−1∑
k=1

|Dex,k−1
|

+ max({|Dex,k−1
|}K−1k=1 )

)
,

(4.5)
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where max({|Dex,k−1
|}K−1k=1 ) stands for the maximum number of facts that involves each

entity k on the path. η is the same as η+ under add perturbation scheme and is the

same as η− under delete perturbation scheme. λ is a trade-off parameter. The first

term estimates the direct perturbation benefit of the perturbation in terms of shifting the

proxy entity as desired. The second term evaluates the capability of the intermediate

entities on the path in terms of propagating the influence to the targeted entity. As the

influence may be diluted by the facts that involve each entity ex,k on the path. A smaller

averaged number of facts that involves each entity ex,k on the path indicates a larger

capability of the path in terms of propagating the influence. Moreover, we also consider

the maximum number of facts that involves each entity ex,k on the path. This is to avoid

the case when some intermediate entities, whose embedding is difficult to shift, “block”

the propagation path. In practices, we can first utilize the second term to determine the

best P paths in terms of propagating the influence from proxy entities to the targeted

entity and then choose what facts to add or delete upon these proxy entities in the best

P paths. 3

4.5 Experiments

4.5.1 Datasets.

In this chapter, we use two common KGE benchmark datasets for our experiment:

FB15k and WN18. FB15k is a subset of Freebase, which is a large collaborative knowl-

edge base consisting of a large number of real-world facts. WN18 is a subset of Word-

net 4, which is a large lexical knowledge graph. Both FB15k and WN18 are first intro-

duced by [9]. The training set and the test set of these two datasets are already fixed.

We randomly sample 100 samples in the test set as the targeted facts for the proposed

attack strategies.

3This strategy is used in the experiments of this chapter.
4https://wordnet.princeton.edu/
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4.5.2 Baseline & Targeted Models.

Since there are no existing methods that can work under the setting of this chap-

ter, we compare the proposed attack schemes with several naive baseline strategies.

Specifically, we design random-dd (random direct deleting), random-da (random di-

rect adding), random-id (random indirect deleting), random-ia (random indirect adding)

as comparison baselines for our proposed direct deleting attack, direct adding attack,

indirect deleting attack, indirect adding attack, respectively. The difference between

the baseline and its corresponding proposed methods is that the perturbation facts to

add/delete are randomly selected. For the targeted KGE models, we choose three most

representative TransE [9], TransR [44] and RESCAL [57] as attack targets.

4.5.3 Metrics.

In order to evaluate the effectiveness of the proposed attack strategies. We compare the

plausibility change of the targeted fact before and after the adversarial attack. Specifi-

cally, we follow the evaluation protocol of KGE models described in the previous works

like [9]. Given a targeted fact (eh, r, et), we remove the head or tail entity and then

replace it with all the possible entities. We first compute plausibility scores of those

corrupted facts and then rank them by descending order; the rank of the correct entity is

stored. After that, we use MRR (Mean Reciprocal Rank of all the ground truth triples)

and H@10 (the proportion of correct entities ranked in top 10, for all the ground truth

entities.) as our evaluation metrics. The smaller MRR and H@10 are on the contami-

nated dataset, the better the attack performance is.

4.5.4 Results and Analysis

In this section, we report and analyze the attack results of the proposed attack strategies

under different settings. To avoid confusion, the performance of direct adding attack,
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Clean random-da Direct Add
MRR H@10 MRR H@10 MRR H@10

TransE 0.26 0.49 0.24 0.46 0.24 0.42
FB15K TransR 0.24 0.52 0.23 0.42 0.21 0.41

RESCAL 0.19 0.42 0.20 0.40 0.17 0.39
TransE 0.39 0.70 0.30 0.68 0.21 0.53

WN18 TransR 0.44 0.73 0.41 0.71 0.22 0.51
RESCAL 0.41 0.72 0.44 0.69 0.30 0.57

Table 4.1: Overall Results of Direct Adding Attack

Clean random-dd Direct Delete
MRR H@10 MRR H@10 MRR H@10

TransE 0.26 0.49 0.26 0.54 0.19 0.37
FB15K TransR 0.24 0.52 0.25 0.49 0.18 0.41

RESCAL 0.19 0.42 0.19 0.38 0.13 0.30
TransE 0.39 0.70 0.36 0.71 0.11 0.26

WN18 TransR 0.44 0.73 0.43 0.68 0.11 0.24
RESCAL 0.41 0.72 0.40 0.67 0.02 0.05

Table 4.2: Overall Results of Direct Deleting Attack

direct deleting attack, indirect adding attack, and indirect deleting attack are reported

separately in Table 4.1, 4.2, 4.3 and 4.4.

4.5.5 Overall Attack Performance.

Let us first discuss the performances of the direct attack schemes on two datasets. For

the direct deleting attack scheme, we set the attack budget for each targeted fact to

4 and 1 on FB15K and WN18 dataset, respectively. For the direct attacking attack

scheme, the attack budgets for each targeted fact are 8 and 6 for FB15K and WN18

dataset, respectively. These budgets are low enough to make the whole attack process

unnoticeable. From the results, we can clearly see that the plausibilities of these targeted

facts significantly degrade as desired. We can conclude that these KGE models are quite

vulnerable to even a small number of perturbations generated by well-designed attack

strategies. For comparison, we have also tested the baseline methods random-da and
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Clean random-ia Indirect Add
MRR H@10 MRR H@10 MRR H@10

TransE 0.26 0.49 0.25 0.50 0.23 0.47
FB15K TransR 0.24 0.52 0.25 0.51 0.22 0.49

RESCAL 0.19 0.42 0.19 0.40 0.17 0.36
TransE 0.39 0.70 0.42 0.71 0.32 0.67

WN18 TransR 0.44 0.73 0.40 0.73 0.34 0.69
RESCAL 0.41 0.72 0.41 0.69 0.39 0.63

Table 4.3: Overall Results of Indirect Adding Attack

random-dd, which cannot achieve satisfactory attack performances. This demonstrates

the effectiveness of the proposed strategies. Moreover, we observe that the effectiveness

of the proposed strategies is more significant on WN18 dataset than on FB15K dataset.

This is because the average number of facts that each entity involves in WN18 dataset is

significantly smaller than that in FB15K dataset. Hence, the graph structure of FB15K

is more stable and robust. Then, let us move on to the discussion of indirect attack

schemes. For the indirect adding attack, we set the attack budget for each targeted

fact to 60 and 20 for FB15K and WN18 dataset, respectively. For the indirect deleting

attack, the attack budgets for each targeted fact are set to 20 and 5 for FB15K and

WN18 dataset, respectively. The reason why indirect attacks need more attack budgets

to get comparable results is that only a small portion of the influence caused by the

perturbations on proxy entities is propagated to the targeted entity. In contrast, nearly all

of the influence of the perturbation is exerted on the targeted entity under direct attack

schemes. Like direct attack schemes, these indirect attack schemes also demonstrate

their effectiveness. For instance, under the indirect deleting attack scheme, the H@10

and MRR metrics of the targeted facts decrease by approximate 0.03 on FB15K dataset.

Thus, the indirect deleting attack schemes can also be used in practices to make the

attack process more stealthy.
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Clean random-id Indirect Delete
MRR H@10 MRR H@10 MRR H@10

TransE 0.26 0.49 0.27 0.50 0.22 0.44
FB15K TransR 0.24 0.52 0.25 0.53 0.21 0.48

RESCAL 0.19 0.42 0.20 0.36 0.16 0.34
TransE 0.39 0.70 0.44 0.74 0.35 0.68

WN18 TransR 0.44 0.73 0.45 0.74 0.41 0.71
RESCAL 0.41 0.72 0.42 0.70 0.38 0.64

Table 4.4: Overall Results of Indirect Deleting Attack
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Figure 4.1: Analysis of the Number of Perturbations

4.5.6 Analysis of the Number of Perturbations.

When conducting the data poisoning attack, one of the most important factors is the

number of perturbations (i.e. attack budget). Due to space limit, we merely plot perfor-

mances of direct attack schemes against TransE w.r.t. the number of perturbations (i.e.,

attack budgets) on WN18 dataset in Figure 4.1. From Figure. 4.1, we can clearly see that

the proposed attack strategies consistently degrade the plausibility of the targeted facts

under both setting. When the number of perturbations keeps increase, the growth of

attack performance becomes slower. This is because when the number of perturbations

is small, the selected perturbations are usually of high value in terms of manipulating
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the plausibility of the targeted facts. When the number of perturbations keeps increase,

the high-value perturbations are used up. Hence, the performances become stable.

4.6 Summary

We present the first study on the vulnerability of existing KGE methods and propose a

collection of data poisoning attack strategies for different attack scenarios. These attack

strategies can be efficiently computed. Experiment results on two benchmark dataset

demonstrate that the proposed strategies can effectively manipulate the plausibility of

arbitrary facts in the knowledge graph with limited perturbations. Moreover, the pertur-

bation generation processes are quite efficient and can be parallelized. As future work

we aim to derive defence strategies for KGE models so that these models are more robust

against adversarial attacks.



Chapter 5
Data Poisoning Attack against

Next-Item Recommendation

5.1 Introduction

It is commonly assumed that online recommendation systems are honorable and unbi-

ased. They recommend users the items that match their personal interests. However,

the openness of recommendation systems and the potential benefit of manipulating rec-

ommendation systems offer both opportunities and incentives for malicious parties to

launch attacks. Recent studies [32, 34, 54, 59, 85] have demonstrated that recommen-

dation systems are vulnerable to poisoning attacks. In these poisoning attacks, well-

crafted data is injected into the training set of a recommendation system by a group of

malicious users. Such poisoning attacks make the system deliver recommendations as

attackers desire.

Existing poisoning attacks can be categorized into two types. The first type of work

is generally based on manually designed heuristic rules. For example, [59] design rules

that leverage the following intuition: items that are usually selected together by users are

treated as highly correlated by recommendation systems. To promote a target item to tar-

get users, attackers utilize controlled users to fake the co-occurrence between the target
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item and popular items. Nevertheless, such heuristic rules are not able to cover various

patterns of behavior in the recommendation data. Therefore, the performances of these

attack methods are usually unsatisfactory. The other line of methods are designed for

certain types of recommendation methods like matrix factorization based models [34].

However, the architecture and the parameters of the recommendation systems in real-

world platforms are generally unknown to the attackers. Usually, the only information

that the attackers can rely on to infer the characteristics of the recommendation systems

is the recommendation results of the users they controlled, and the frequency of these

interactions is often limited. Thus, there is still a noticeable gap before these attacks

methods can be deployed in real practice.

In this work, we propose a novel practical adversarial attack framework against so-

phisticated blackbox recommendation systems. We focus on one of the most common

next-item recommendation setting, which aims to recommend top-K potentially pre-

ferred items for each user. The proposed reinforcement learning based framework LOKI

learns an attack agent to generate adversarial user behavior sequences for data poisoning

attacks. Unlike existing attack methods designed for certain types of recommendation

methods, reinforcement learning algorithms can utilize the feedback from the recom-

mendation systems, instead of comprehensive knowledge of architecture and parame-

ters, to learn the agent’s policy. Nevertheless, in practice, the attacker cannot control the

target recommendation system to be retrained to get the feedback and update the attack

strategy. In addition, recommendation system service providers generally restrict feed-

back frequency, but a reinforcement learning based framework requires a large number

of feedback to train a policy function. Due to this discrepancy, we cannot directly rely on

the feedback from the target recommendation system to train a policy within a tolerated

time period.

To tackle this challenge, we propose to construct a local recommender simulator to

imitate the target model, and let the reinforcement framework get reward feedback from

the recommender simulator instead of the target recommendation system. The local
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recommender simulator is constructed by constructing an ensemble of multiple repre-

sentative recommendation models. The intuition behind such a design is that if two

recommenders can both get similar recommendation results on a given dataset, then the

adversarial samples generated for one of the recommenders can be used to attack the

other. Such transferability makes the recommender simulator a good substitute for the

target recommendation system in terms of guiding the attack agent. Moreover, even with

the help of a local simulator, it is still time-consuming to retrain the recommendation

systems within the simulator using the contaminated data for attack outcome. To alle-

viate this problem, we design a component named outcome estimator, which is based

on the influence function. The outcome estimator can efficiently estimate the influence

of the injected adversarial samples on the attack outcomes. These designs ensure that

the proposed adversarial attack framework for recommendation systems is practical and

effective.

5.2 Problem Definition

To facilitate the discussions in the rest of this chapter, we specify and formulate the

next-item recommendation task as follows:

Definition 7 (Next Item Recommendation). Let U be the set of users and V be the set of

items, we use xu = [x1u, x
2
u, · · · , xmuu ] to denote a sequence of items that user u has cho-

sen before in a chronological order in which xvu ⊆ V . mu denotes the number of items

chosen by user u. Given existing sequences, the goal of the next-item recommendation

is to output a K-sized ordered item list, which predicts the next item that the user will

choose.

With the aforementioned definition, let us detail the threat model of the attack against

the next-item recommendation.

Attack Goal: An attacker’s goal is to promote a set of target items to as many target

users as possible. Specifically, suppose the system recommends K items to each user,
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the attacker’s goal is to maximize averaged display rate, which denotes the fraction of

target users whose top-K recommendations results include the target items. Note that an

attacker could also demote a target item. Demotion can be viewed as a special case of

promotion as an attacker can promote other items such that the target item is demoted

in recommendation lists. Thus, in this chapter, we focus on promotion attacks.

Attack Approach: To achieve the attack goal, we consider the most general sce-

nario in which the attackers can inject controlled users into the recommendation system.

These controlled users visit or rate to well-selected items, which are named as proxy

items, step-by-step. Thus, the well-crafted activities of each controlled user form a be-

havior sequence. To make the injection unnoticeable, the number of visits or ratings

each controlled user conducts is limited to at most M .

The Knowledge and Capability of the Attacker: In this chapter, we assume that

the attacker is granted the following knowledge and capability.

1. The attacker can access the full activity history of all the users in the recommen-

dation system.

2. The attacker has limited resources so the attacker can merely inject a limited num-

ber of controlled users which can easily be bought from the underground market1.

3. The attacker does not know the details about the target recommendation system,

for instance, the parameters and the architecture of the recommendation model.

Such setting is also known as blackbox setting.

4. The attacker can only receive a limited number of feedback (e.g., display rates)

from the blackbox recommendation model.

5. The attacker does NOT know when the target blackbox recommendation model is

retrained.
1https://www.buzzfeednews.com/article/leticiamiranda/amazon-marketplace-sellers-black-hat-

scams-search-rankings
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Figure 5.1: Overview of the proposed framework LOKI.

5.3 Methodology

In this section, we first provide an overview of the proposed reinforcement learning

based framework. Then we describe the detailed design of each component of the frame-

work.

5.3.1 Framework Overview

Intuitively, data poisoning can be regarded as the creation of new sequential patterns

that involve the target items in the training set of the target recommendation system. In

a crafted sequential adversarial sample, the user behavior history is inherently crucial in

determining the next behavior. These sequential adversarial samples together contribute
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to the manipulation goal. Generating adversarial samples is essentially a multi-step de-

cision process, in which the generator ought to select specific actions for the controlled

users to maximize attack outcome. This fits the reinforcement learning setting. From the

perspective of reinforcement learning, the goal is to learn a policy function to generate

sequential adversarial user behavior samples, which can maximize the averaged display

rate of the target users.

Based on the aforementioned motivation, we propose a reinforcement learning based

framework to learn the policy function. The overall architecture of the proposed frame-

work LOKI is illustrated in Figure 5.1. The target blackbox recommendation system is

deployed on an e-commerce platform. The proposed framework consists of three com-

ponents: (1) recommender simulator, (2) outcome estimator, and (3) adversarial sample

generator. In the following sections, we describe the details of these components one-

by-one.

5.3.2 Recommender Simulator

The idea of constructing surrogate models and utilizing the transferability property of

adversarial samples to attack the target machine learning models is adopted by multi-

ple attack approaches [4, 17, 60]. In this chapter, the proposed recommender simulator

simulates the recommendation preference of the target model. The simulator consists

of multiple separated recommendation models, which are trained on the same dataset.

Recommendation results from these models are aggregated via weighted voting. Sup-

pose M different recommendation models are deployed to recommend items for user

u and the rank of item i in the m-th model is denoted as rankm(i). The higher item i

ranks, the smaller rankm(i) is. Here, we define the preference score of item i in the

simulator via Eq. (5.1). All the items are then ranked according to this scoring function:

score(i) = − 1

M

M∑
m=1

wm · rankm(i), (5.1)
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where wm stands for the weight of the m-th recommendation model. Ideally, these

weights are used to adjust the simulator to match the characteristics of the target recom-

mender.

5.3.3 Outcome Estimator

As mentioned in Section 5.3.1, we need to utilize the manipulation outcome of the cur-

rent adversarial samples as reward feedback to update the policy network of the ad-

versarial sample generator. The most straightforward way to obtain the outcome is to

retrain the entire model. However, retraining the online recommendation system is pro-

hibitively slow (from a few hours to days for a single retraining). To make the attack

methodology practical, we propose to use influence function for an efficient estimation

of the manipulation outcome, motivated by robust statistics.

Formally speaking, the parameter estimator of the recommendation models on the

clean dataset is: θ̂ := argminθ
1
N

∑N
i=1 L(zi; θ), where θ denotes the parameter vector,

L stands for the loss function of the recommendation model. zi denotes a sample in

the dataset, and N stands for the total number of samples in the training set. For col-

laborative filtering models, a sample is a single user-item pair (u, v). For session-based

recommendation models, given the behavior sequence xu = [x1u, x
2
u, · · · , xmu ] of a user

u, each training sample is made up of a subsequence and the ground truth next item, i.e.,

([x1u], x
2
u), ([x1u, x

2
u], x

3
u), · · · , ([x1u, x

2
u, · · · , xn−1u ], xnu).

Now let us move on to the discussion of the influence function. Suppose we up-

weight a sample zδ by a small ε in the training set, the new estimation of θ is given

as: θ̂zδ := argminθ
1
N

∑N
i=1 L(zi; θ) + εL(zδ; θ). When ε → 0, according to the classic

results in [13], the influence of upweighting zδ on the parameter θ is given by:

dθ̂zδ
dε

= θ̂zδ − θ̂ ≈ −H−1θ̂ ∇θL(zδ; θ̂), (5.2)
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whereHθ̂ := 1
N

∑N
i=1∇2

θL(zi, θ), denotes the Hessian matrix of the loss function. Given

the fact that the number of users is large in the recommendation datasets, injecting a data

sample is the same as upweighting the sample by ε ≈ 1
N

.

Here, the key computation bottleneck lies in the calculation of the huge inverse

Hessian matrix H−1θ . Given a sample zj , we use implicit Hessian-vector products

(HVPs) [1, 30] to efficiently approximate −H−1θ ∇θL(zj, θ̂).

Based on an approximate estimate of the sample upweight’s influence on parameter

θ̂, we further calculate the influence on the prediction scoring function w.r.t. the per-

turbation. Specifically, suppose we want to promote an product v′ to user u′, we can

treat this as a target sample ztestu′v′in the test set. The influence on the prediction scoring

function w.r.t. can be written as:

dftest(z
test
u′v′ ; θ̂)

dε
=
dftest(z

test
u′v′ ; θ̂)

dθ̂zδ
· dθ̂zδ
dε

≈−∇θftest(z
test
u′v′ ; θ̂)H

−1
θ̂
∇θL(zδ; θ̂),

(5.3)

where ftest is the prediction scoring function used by the recommender system in the test

phase. This result is further used to design rewards for efficient agent policy training.

5.3.4 Adversarial Sample Generator

The adversarial attack against a local recommender simulator is essentially interpreted

as a multi-step decision problem. In this section, we translate this decision problem into

a Markov Decision Process (MDP). MDP is defined as a tuple (S,A,P ,R, γ), where

S is a set of states, A is a set of actions, P is the transition probabilities, R is the

immediate reward, and γ is the discount factor. In the context of this chapter, the MDP

can be specified as follows:

• Action space A: As mentioned in Section 5.3.1, the attacker determines specific

items organized in a proper sequence for each controlled user. Instead of tak-

ing the set of all the possible items as action space, we divide the item set into
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Figure 5.2: Generation of adversarial samples.

groups and use the set of all the groups as action space. The main reason for using

coarse groups instead of items for action space is due to the concern in learning

efficiency. Learning action strategies for every single item is not only costly but

also unnecessary for the attack goal. This is because adversarial samples do not

need to follow the exact sample pattern. Here we define one of the groups as

the collection of all the target items, one of the groups as the collection of all

the items already selected by the target users. The remaining groups are obtained

by item clustering, in which each group represents items with similar properties.

This item clustering takes the feature vectors of all the items and an integer c

as input and divides the items into c clusters. Here, we utilize non-negative ma-

trix factorization [33] to extract item features and use K-means [48] algorithm

for clustering. After item groups are obtained, during the phases of training and

testing the agent, group-level actions are sampled step-by-step from the policy,

forming a group-level action sequence. Then sequential poisoning samples are

sampled step-by-step from the corresponding group indicated by the current step

of the group-level action sequence. This process is illustrated in Figure 5.2. The

left side of Figure 5.2 shows the process of clustering items into groups and the

right side illustrates the process of generating the poisoning samples.

• State S: The state is defined as the action subsequence before current step t and

the actions all come from the action space mentioned above.
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• Reward R: As aforementioned, the purpose of the attacker is to manipulate the

local recommender simulator and further the target recommender. Hence, the RL

framework should learn a policy that promotes the estimated prediction scores of

target items given by the target users as much as possible. Thus, we design the

reward as the weighted averaged influence on the prediction scoring function, i.e.,

Eq. (5.3), of all the target samples. The weights are assigned manually to indicate

the importance of each recommendation simulator.

Here, we apply Deep Q-Network (DQN) to estimate the action-value function. The

representation of the existing sequence, i.e., state, is modeled via a GRU (Gated Re-

current Unit) layer, and the representation of each type of actions is extracted via a

embedding layer. Finally, we deploy a fully connect layer which takes the final output

of the GRU layer as input and output the estimated action-values.

The DQN is trained via an iterative algorithm. In each iteration, there are two stages,

replay memory generation stage and parameters update stage. In replay memory gener-

ation stage, the agent generates a group-level action at according to an ε-greedy policy

and current state st. Then the item-level sequences are generated by sampling items

from the corresponding group suggested by each step in the group-level sequence. After

that, the agent observes the reward rt from the outcome estimator and updates the state.

For parameter update stage: the agent samples a (st, at, rt, st+1) from replay memory,

and then updates the parameters.

In this section, we test the proposed LOKI on real against different recommendation

methods. The experimental results show that the proposed method outperforms existing

attack strategies. Besides, we systematically study the effect of some key factors.

5.3.5 Datasets

To demonstrate the performance of the proposed poisoning attack framework, we adopt

the Amazon Beauty, which is one category of the widely used recommendation dataset

series named Amazon [25]. The dataset used in this chapter mainly focuses on hair
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and skin care products and is extracted from large corpora of product reviews crawled

from Amazon.com. The number of users and items in the dataset are 22,363 and 12,101,

respectively. The number of total user activities (i.e., purchase and review) is 146,031.

On average, each user is involved in 6.53 activities and each item is involved in 12.06

activities. We followed the similar preprocessing procedure introduced in [28, 75] and

filter out the users with less than five activities and items with less than five feedbacks.

5.3.6 Experimental Settings

5.3.6.1 Baseline Attack Methods

As aforementioned, there is no existing work solving exactly the same task considered

in this chapter. Although there are some existing attack approaches [34] against recom-

mendation methods, they are mostly designed for whitebox setting and require a strong

knowledge of the architecture and parameters of the corresponding model. Therefore,

these methods cannot be used in the blackbox setting discussed in this chapter. Hence,

we compare the proposed LOKI with several existing heuristic-based attack strategies.

• None: This denotes the circumstance when no attack is conducted.

• Random: In this baseline method, the attacker mixes the target items and the

randomly picked items to form a repository for each controlled account. In each

step, the controlled user picks items at random from the item repository without

repetition.

• Popular: This is a variant of [85]. In this baseline method, attackers inject fake

co-visitations between the popular items and the target items, to promote the target

items.
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5.3.6.2 Target Recommendation Methods

In this section, we consider the following target methods for performance comparisons.

The parameters of these target methods are set following the suggestion in the original

papers.

• BPRMF [65] is a factorization based personalized ranking approach. It is a state-

of-the-art method for non-sequential item recommendation on implicit feedback

data.

• FPMC [66] is a classic hybrid model combing Markov chain and matrix factor-

ization for next-basket recommendation. FPMC can model the user’s long-term

preference and the short-term item-to-item transition.

For each user u in the dataset, suppose the length of u’s sequence is Tu, we hold

the first Tu − 2 actions in the sequence as the training set and use the next one

action as the validation set to search for the optimal hyperparameter settings for these

recommendation models. The attack methods aim to manipulate the prediction of the

next item, i.e. item Tu.

To simulate the interactions between the target blackbox recommendation system

and the recommender simulator, we adopt the “leave-one-out strategy”. That is to say

we use a specific recommendation model as the target, which is blind to the attacker,

and use the aggregation of all the methods as the recommender simulator. The number

of target items and target users in this chapter are both fixed to be 20.

5.3.6.3 Evaluation Metric

We use the averaged display rate, which denotes the fraction of target users whose top-

K recommendation results include the target items, as our evaluation metric. The larger

the display rate is, the better the attack approach performs.
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Figure 5.3: Overall performance of all the attack methods.

5.3.7 Result Analysis

Figure 5.3 summarizes the results for all the attack methods. Here, we fix the percent-

age of controlled users to 3% and the number of actions per user to 15. The number of

returned items is fixed to 10. In terms of attack outcome, the proposed LOKI achieves

the best performance and the improvement is significant. For example, on compared

with the best baseline, the proposed LOKI’s display rate increases by over eight times

on average. Among the baseline methods, Random simply lets the target items occur in

the poisoning sequences without actually creating any new pattern that favors the rec-

ommendation of the target items. Thus, Random has the worst performance. Popular

fakes the co-visitations between the popular items and the target items without consider-

ing whether these popular items indeed overlap with the preferences of the target users.

Thus, they cannot get a satisfactory performance too.

Compared with these baselines, the proposed LOKI takes advantage of the feedback

from the local simulator to train an attack agent. The learned agent is capable of creating

more complex patterns to achieve data poisoning goals. We also notice that the more

complicated the target model is, the higher increase in performance metric the proposed

LOKI achieves. For instance, the performance gap is larger when attacking FPMC than

attacking BPRMF. This is because advanced methods are able to capture more compli-

cated user patterns within user behavior sequences. The capability to capture various
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Figure 5.4: Impact of the percentage of the controlled users.
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Figure 5.5: Impact of the number of activities per controlled user.

user patterns leads to better prediction performance in general, but at the same time,

enables more room for the attack improvement by the proposed LOKI with its ability

of creating new patterns to poison the recommendation. That is to say, in some cir-

cumstances, the proposed LOKI can create certain sequential patterns. However, since

relatively simple methods cannot capture these crafted patterns, these methods are less

sensitive to the adversarial samples generated by the proposed LOKI.
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5.3.8 Parameter Analysis

After discussing the overall experimental results and the characteristics of vulnerable

users, we demonstrate the impact of two attack budgets, i.e. (1) the percentage of con-

trolled users recruited by the attacker; (2) the number of activities that each controlled

user conducts.

Impact of the Percentage of the Controlled Users. In this experiment, we consider

the case where the percentage of the controlled user is low, and evaluate the performance

of LOKI when this percentage is varied. Here “percentage” is calculated as the number

of the controlled users over the number of normal users. The number of activities per

controlled user is fixed to 15 and the recommendation system returns top 10 items. The

display rate for the real-world datasets is shown in Figure 5.4. From the figure, we

can clearly see that the proposed LOKI outperforms the baselines in all cases and can

successfully promote the target items. For instance, when attacking against FPMC, the

display rate increases to 0.055 even when the percentage of the controlled users is as

low as 3%. Thus, we can conclude that the attack proposed in this chapter is effective

even with a scant attack budget.

Impact of the Number of Activities per Controlled User. When the percentage of

controlled users is given, the number of activities each controlled user conducts is an-

other important attack factor. In this experiment, we fix the percentage of the controlled

users to be 3% and vary the number of activities each controlled user conducts from 5 to

15 for all the datasets. The recommendation system returns top 10 items. The results are

shown in Figure 5.5. These results show that the proposed LOKI outperforms the base-

line methods in all cases. With the number of activities per user increasing, the display

rates also increase. This is because a larger number of activities grant the controlled

users more capability to inject the manipulated bias information to the system. If we

look at the distribution of the length sequential user behavior samples in the Amazon

dataset, for example, the distribution derived from the dataset in Figure 5.6, we can see

that the distributions before and after the injection are similar. Hence, injecting such
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Figure 5.6: Distributions of the length of sequential user behavior samples before and
after the injection on Amazon Beauty dataset.

generated sequential samples into the dataset is unnoticeable from the perspective of the

online platform operators in practice.

5.4 Summary

In this work, we propose a data poisoning attack against blackbox next-item recom-

mendation system. The poisoning attack problem is formulated as a multi-step decision

problem and is solved via deep reinforcement learning method. In practice, this task

could be further complicated by the huge scale of recommendation dataset, the costly

training time, and the access restrictions of real recommendation systems. The proposed

framework leverages the influence approximation technique and the recommender sim-

ulator. Experimental results indicate that the proposed framework consistently outper-

forms all the baselines in terms of promoting the target items to the target users. We

also study the impact of different factors on the poisoning results. In the future, we will

investigate the defense strategies against the vulnerability discussed in this chapter.



Chapter 6
Data Poisoning Attack against

Outcome Interpretations

6.1 Introduction

Recently lots of efforts have been devoted to the development of effective approaches

that improve the interpretability of predictive models. Existing work can be roughly

categorized into intrinsic model interpretation [14, 23, 31] and outcome interpreta-

tion [20, 45, 45, 67, 70, 93]. The former tries to provide explanations about the model

structure that allows users to understand the logic of the model while the latter reveals

the reasons why a particular outcome prediction is made based on the model. In this

paper, we focus on the outcome interpretation. Given a specific decision made by a

predictive model, an outcome interpretation approach seeks a human-understandable

interpretation for the decision. For instance, the input sample (i.e., an image) is fed into

a predictive model to receive the prediction of its class (i.e., dog). The interpreter uti-

lizes the intermediate results produced by the model to interpret why this image is about

a dog.

The interpreter derives the importance degrees of the features according to their

influence on the prediction result. In this example, the most important features are the
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pixels that form the dog’s head in the image. This interpretation result indicates that

the dog’s head is the most important region that leads to the predicted class (i.e., dog)

according to the predictive model.

Although these approaches can generate meaningful outcome interpretations, they

also open up new possibilities for adversaries to conduct attacks. That is to say, the

interpretation result of a targeted test sample may be reshaped as the attacker desires.

Needless to say, such attacks can lead to unaffordable consequences as a wrong interpre-

tation result may mislead end users’ decisions. Especially when the victim model and

the interpretation approaches are adopted in life-critical applications, such as medical

diagnoses, such attacks may result in severe damages. In this chapter, we perform the

first systematic investigation of data poisoning attacks towards the outcome interpreta-

tion of predictive models. The proposed framework formulates the poisoning attack as

an optimization problem, which intends to use the crafted poisoning samples to encircle

the target sample in the feature space and “drag” the interpretation of the target sample

towards the result that the attacker desires.

6.2 Methodology

In this section, we describe the proposed Interpretation Manipulation Framework (IMF)

for crafting training stage poisoning samples to manipulate the outcome interpretations

of target test samples. We formulate the interpretation manipulation problem as an opti-

mization problem.

6.2.1 Background: Outcome Interpretation

We first formulate the outcome interpretation task and briefly introduce several repre-

sentative approaches.

The outcome interpretation task involves an input sample x, a machine learning

model f(x; θ) parameterized by θ and an outcome interpreter G(x; f ; θ), which is cou-
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pled with f and also use the parameters of f(x; θ). In this dissertation, we focus on

the machine learning models for classification tasks, in which the classifier takes the

sample x as input and outputs a class c. The probability of assigning sample x to class

c is denoted as fc(x; θ). With these notations and concepts, we formulate the outcome

interpretation task as follows:

Definition 8 (Outcome Interpretation Task). Outcome interpreter provides a human-

understandable interpretation of the classifier’s prediction for a specific sample. In this

dissertation, we assume such interpretations are given in the form of saliency maps. The

interpreter G generates an attribution map m = G(x; f ; θ), with its i-th element m[i]

quantifying the importance of x’s i-th feature with respect to the model prediction f(x).

Some interpreters can also outputs the interpretation with respect to a specific class c,

we denote these interpreters as Gc(x; f ; θ).

In this dissertation, we consider several major types of outcome interpreters: (1)

back-propagation guided interpreters, (2) representation guided interpreters.

Back-Propagation-Guided Interpreters. Back-propagation-guided interpreters

utilize the gradient (or its variants) of the model prediction with respect to the input

feature of a given sample to evaluate the importance of each input feature. The intuition

behind this category of methods is that larger gradient magnitude indicates a higher rel-

evance of the feature to the prediction. In this section, we consider gradient saliency

(BackProp) [70] and DeepLIFT [45] as the representative methods of this category. For

instance, BackProp considers a linear approximation of the model prediction (probabil-

ity) fc(x) for a given input x and a given class c, and derives the interpretation map as:

GBackProp
c (x; f ; θ) =

∣∣∣∣∂fc(x)

∂x

∣∣∣∣ (6.1)

Representation-Guided Interpreters. Representation-guided interpreters leverage

the feature maps at intermediate layers of DNNs to generate attribution maps. We con-

sider class activation mapping (CAM) [93] as a representative interpreter of this class.
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For image data, we use ak[i, j] to denote the activation value at the spatial position (i, j)

of channel k in the last convolutional layer. The global average pooling of the k-th

channel is defined as:

Ak =
m∑
i=1

n∑
j=1

ak[i, j], (6.2)

where m and n denotes the width and length of Ak. Let wk,c be the parameter of the

connection between the k-th input and the c-th output of the final linear layer. The class

activation map is defined as:

GCAM
c (x; f ; θ)[i, j] =

∑
k

wk,cak[i, j], (6.3)

where GCAM
c (x; f ; θ)[i, j] denotes the activation value at position [i, j].

6.2.2 Threat Model

We have briefly described the representative approaches for the outcome interpretation

task. Now let us detail the threat model of the poisoning attack against these approaches.

Attack Goal & Approach: The goal of the attacker is to manipulate the specific

target samples’ interpretation results but at the same time keep the classification results

of these samples unchanged. To achieve the attack goal, we consider the most general

scenario in which the attackers can modify samples in the training set of a specific

machine learning system.

The Knowledge of Attackers: Here, we follow the white-box setting, in which the

attacker has the knowledge of the architecture and parameters of both the target inter-

preter and the corresponding machine learning model. Moreover, the attacker can access

a random portion of training samples to craft poisoning samples. These are common set-

tings of existing work investigating data poisoning attacks. We also assume the number

of training samples the attacker can poison is small.
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Given the general threat model, the problem we investigate in this dissertation can

be formally defined as follows:

Definition 9 (Problem Definition). Consider a machine learning model f(x; θ) param-

eterized by θ for the classification task, which takes a sample x as input and outputs

the extracted feature. The extracted feature is followed by a softmax layer to produce a

logit label yx. The goal of interpretation poisoning is to craft training-stage poisoning

samples {pi}ki=1 to manipulate the outcome interpretation of the target sample t with

the classification results of the target sample unchanged. In the rest of this dissertation,

we use g to denote the attacker’s desired interpretation result for the target sample t.

6.2.3 IMF for Crafting Poisoning Samples

The IMF proposed in this dissertation follows the feature “encirclement” strategy. The

feature “encirclement” strategy exploits the imperfections in the feature extraction lay-

ers of the deep models. Particularly, we first sample some base samples with the same

class label as the target test sample t from the training set. Then we conduct perturba-

tions on these base samples to craft poisoning samples. We choose to modify existing

training samples instead of directly generating poisoning samples because in many cases

it is difficult to generate realistic samples like images from scratch. In order to make the

modification unnoticeable, the perturbed poisoning samples should be still geometri-

cally close to the original base samples.

Moreover, we propose to let the poisoning sample be close to the target sample in

feature space. The intuition behind this design is that the training samples that are close

to a test sample in feature space, would be given similar interpretation as the test sam-

ple. Following this idea, we can manipulate the interpretation of the target test sample

indirectly by perturbing the selected training samples (i.e., poisoning samples) to make

them (1) close to the target sample in feature space, and (2) have desired interpretations.
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Formally, we define the following optimization objective to craft a single poisoning

sample1:

min
pi
||Gc(pi; f ; θ)− g||2 + λ1||pi − bi||2

+ λ2||pi − t||2,
(6.4)

where bi is the i-th base sample and t is the target sample. g denotes the desired in-

terpretation of t specified by the attacker. pi denotes the target interpreter which may

utilize the intermediate results of f and therefore can also be treated as parameterized

by θ. λ1, λ2 are coefficients.

The ideas behind each term within Eq. (6.4) are as follows. The first term forces the

interpretation of the crafted poisoning sample to be close to that specified by the attacker,

and the second term forces the poisoning sample to be close to the selected base sample.

Thus, the crafted sample can make the interpreter produce results as the attacker desires

while not being visually noticeable. The third term let the crafted poisoning samples

surround the target sample in the feature space. Therefore, the poisoning samples can

influence the interpretation of the target sample.

6.3 Experiments

In this section, we conduct a series of experiments to evaluate the effectiveness of the

proposed attack approach.

1In practice, we may need a batch of poisoning samples to achieve the attack goal. The method for
crafting these poisoning samples is identical.
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6.3.1 Datasets

We evaluate the effectiveness of the proposed IMF on a real-world dataset name Dog

vs. Cat2: This is a dataset released by Microsoft Research for Kaggle competition. The

dataset contains 25,000 images, including 12,500 images of dogs and 12,500 images of

cats. All the images are resized to 80× 80 pixels

In this section, we randomly divide these datasets into training, validation, and test

set using 80/10/10 split. The poisoning samples crafted by the attack approach are

injected into the training sets to manipulate the interpretations of certain target samples,

which are randomly selected from the test set. The number of target samples is set to

20. It is worth emphasizing that the test set in this dissertation is merely used as a pool

to pick target samples and has nothing to do with the attack outcome evaluation. For

this dataset, we the representative ResNet-18 [24] as the classifier. The ResNet achieves

0.952 prediction accuracy on the Dog vs. Cat dataset.

6.3.2 Target Interpretation Methods

We adopt BackProp [70], CAM [93] are selected as target interpretation methods. The

details of these methods are already mentioned early in the chapter. We adopt their

open-source implementation from the original authors.

6.3.3 Evaluations

According to the threat model, the poisoning attack proposed in this dissertation aims

at manipulating the interpretation of the target sample with the classification result of

the sample unchanged. In the rest of this chapter, the attack goal is to let the interpreter

highlight the area in the middle of the image. Such a target is practical since it can

mislead the end-user of the interpreter so that they are unable to justify which part of

the image is critical for the classifier to make its decisions. We visualize the normal

2https://www.kaggle.com/c/dogs-vs-cats/data
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Figure 6.1: An example of the manipulated interpretations. (Better be viewed with
color).

interpretations and the manipulated interpretations of several test samples in Figure 6.1

as a case study. In Figure 6.1 the important areas of CAM and BackProp are highlighted

as warm-colored areas, and white-colored areas, respectively. 3

From these visualization results, we can observe that the interpretations are shifted

towards the desired interpretation, i.e., the middle areas are more highlighted. For in-

stance, in the first row of the case study, the ear should be the critical part for the clas-

sifier and humans to tell the image is cat or dog. However, after the manipulation, the

interpretation becomes distracted. Actually, the interpretation result also highlights the

leg of the cat, which is implausible. Another example is that the manipulated Backprop

interpretation in the second row highlights a larger area in the middle of the image. Such

an interpretation can also confuse the users of the interpreter.

Finally, we want to emphasize that to get the manipulation above, we merely need to

modify 60 in 20000 of the training samples. Such poisoning samples injection behavior

3Note: We threshold the results of BackProp for better demonstration.
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is stealth enough to avoid sanity detections. Hence, we can conclude that the poisoning

samples generated by the proposed approach are highly effective and practical.

6.4 Summary

In this chapter, we presented the first systematic study on the vulnerability of outcome

interpretations against data poisoning attacks. The poisoning samples crafted by IMF

encircle and shift the target sample in the feature space. To evaluate the effectiveness

of the proposed framework, we conducted experiments on a real-world dataset against

representative interpretation models. Experimental results and case studies demonstrate

the effectiveness of the proposed attack framework. In the future, we plan to (1) con-

duct human evaluation to test whether the manipulated interpretation indeed mislead the

perception of human beings; and (2) explore possible defense strategies to mitigate the

impact caused by poisoning attacks.



Part III

Literature Reviews and Conclusions



Chapter 7
Related Work

7.1 Truth Discovery

Truth discovery approaches are proposed to solve the problem of multi-source data ag-

gregation based on source reliability estimation. Those approaches assume that if a

source provides many trustworthy claims, this source is reliable, and if a claim is sup-

ported by many reliable sources, this claim is more trustworthy. Typically, they itera-

tively calculate source reliability and claim trustworthiness. In this section, our literature

review focuses on truth discovery for correlated data and text data.

Truth Discovery for Correlated Data: Most of these approaches [18,21,36,87,91]

assume that sources make their claims independently. There is some truth discovery

work [18, 63, 64, 77] that considers source correlation. In [18, 63], source correlations

are inferred based on the intuition that “if two sources provide the same false values, it

is very likely that one copies from the other”. However, these models do not precisely

demonstrate how potential correlation can impact the estimation of sources’ trustwor-

thiness, and cannot directly handle data of numerical type. In [64] Qi et. al. propose a

probabilistic model, which reveals the latent group structure among dependent sources.

Different from our method, this approach assigns source weights at the group level in-

stead of the individual level. In the field of social sensing, Wang et. al. [77] propose
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Apollo to determine the correctness of reported observations in social media, consid-

ering both source reliabilities and correlations. However, their problem settings are

different from ours. Apollo can only be used for binary claims (e.g. an event exists or

not), and cannot be directly used in general truth discovery contexts.

Truth Discovery for Text Data: There is also some existing work that focuses on

unstructured text inputs. For example, [19] specifies a confidence-aware source reli-

ability estimation approach, which takes the SVO triples extracted from webpages as

inputs. However, the ultimate goal of that paper is to reduce conflicting information in

the process of knowledge base construction, which is different from our dissertation.

In [77, 78], the authors transform twitter texts into structured data and apply truth dis-

covery methods to find trustworthy tweets. However, in [77,78], the semantic meanings

of texts are not taken into consideration during the truth discovery process. In [39, 40],

the authors study the task of verifying the truthfulness of fact statements utilizing Web

sources. These work and this paper both conduct trustworthiness analysis in the pro-

posed methods. However, the truthfulness verification task is different from ours, and

the methods in [39, 40] assume the access to external supporting information that is

not required by our proposed method. To the best of our knowledge, the only previous

work that incorporates semantic meanings into the truth discovery procedure is [41].

However, this work can only handle single word answers and the problem settings are

different from this dissertation which handles multi-factor answers.

7.2 Adversarial Attacks

Data poisoning attacks against machine learning algorithms have become an important

research topic in the field of adversarial machine learning. This type of attack takes

place during the training stage of machine learning models. The attacker tries to con-

taminate the training data by injecting well-designed samples to force a nefarious model

on the learner. Data poisoning attacks have been studied against a wide range of learn-
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ing systems including SVM [5] neural networks [30,56], latent Dirichlet allocation [50],

matrix factorization-based collaborative filtering [34] and autoregressive models [2,12].

Existing work has almost exclusively focused on (1) whitebox settings, where the at-

tacker observes the model architecture; (2) continuous data like image or acoustic data.

In this section, we review existing work that is very close to the problems discussed in

this dissertation.

Adversarial Attacks on Graphs: There are limited existing works on adversarial

attacks for graph learning tasks: node classification [15, 94], graph classification [15],

link prediction [11] and node embedding [7, 74]. The first work, introduced by [94]

linearizes the graph convolutional network (GCN) [29] to derive the closed-form ex-

pression for the change in class probabilities for a given edge/feature perturbation and

greedily pick the top perturbations that change the class probabilities. [15] proposes a

reinforcement learning based approach where the attack agent interacts with the tar-

geted graph/node classifier to learn the policy of selecting the edge perturbations that

fool the classifier. [11] adopts the fast gradient sign scheme to perform evasion attack

against the link prediction task with GCN. [74] and [7] propose data poisoning attack

against factorization-based embedding methods on homogeneous graphs. They both

formulate the poisoning attack as bi-level optimization problems. The former exploits

the eigenvalue perturbation theory [71], while the latter directly adopts iterative gradi-

ent method [10] to solve the problem. To the best of our knowledge, there is no existing

investigation on adversarial attack for heterogeneous graphs, in which the links and/or

nodes are of different types, like knowledge graphs.

Poisoning Recommendation Systems: Similar to general data poisoning attacks,

poisoning recommendation systems aims to spoof a recommendation system via in-

jecting adversarial samples, such that the system recommends as the attacker desires.

The first study on poisoning recommendation systems [59] was carried out more than

a decade ago. In early work, the proposed attacks are usually heuristics-driven. For

instance, in random attacks [32], the attacker randomly selects some items for each
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injected controlled user and then generates a rating score for each selected item from

a normal distribution, whose mean and variance are the same as those of the uncon-

taminated dataset. These methods rely on user-item ratings which do not exist in the

next-item recommendation setting. Poisoning attacks [34, 85] that were proposed re-

cently generate fake behavior that is optimized according to a particular type of recom-

mendation system. Specifically, Li et al. [34] proposed poisoning attacks for matrix-

factorization-based recommendation systems. Yang et al. [85] proposed poisoning at-

tacks for association-rule-based recommendation systems, in which each user injects

fake co-visitations between items instead of fake rating scores of items. Unlike these

methods, the framework proposed in this dissertation does not require the details of the

target system as prior knowledge. Hence, the proposed framework can be used in a

broader spectrum of contexts.

Adversarial Attack against Model Interpretation. Attacking the model interpre-

tation as a new topic is not intensively studied. To the best of our knowledge, there are

only two existing papers [73, 90] investigating this specific problem. Zhang et al. [90]

propose an attack approach named ADV 2, which is built upon the classic PGD [49]

framework, to craft adversarial samples that can conduct evasion attacks against four

outcome interpretation methods. Subramanya et al. [73] proposes an optimization prob-

lem to craft the adversarial patch and paste the patch on the clean image. The patch

suppresses Grad-CAM activation at the location of the patch. The major difference be-

tween these methods and the method proposed in this dissertation is that these methods

focus on testing phase (evasion) attack, but the method proposed in this dissertation is

designed for training phase (data poisoning) attack.



Chapter 8
Conclusions

The ever-growing mass of data motivates the success of machine learning methods in

recent years. Such data enables researchers from both academia and industry to develop

sophisticated models, which have obtained state-of-the-art performance on a large vari-

ety of applications. To obtain such massive data effectively and efficiently, researchers

propose to leverage the power of the crowd and collect the data from multiple data

sources. However, the quality of the multi-sourced data cannot be guaranteed. To make

things worse, some well designed malicious data samples in the multi-sourced data may

even force the machine learning models to make implausible decisions. Hence, filter-

ing out the untrustworthy information from the multi-sourced data and understanding

the possible vulnerabilities within the multi-sourced data can not only improve the per-

formance of machine learning models but also enhance the robustness of models. In

this dissertation, we take further steps in both of the aforementioned aspects, i.e., (1)

trustworthiness analysis of multi-sourced data and (2) vulnerabilities analysis in multi-

sourced data. Particularly, the problems investigated in this dissertation and the conclu-

sions are as follows:
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8.1 Trustworthiness Analysis of Multi-Sourced Data

Most truth discovery methods assume that sources make their claims independently,

and are mainly designed for structured data. These existing methods cannot handle

the ubiquitous influences among sources, and cannot meet the strong need to extract

trustworthy information from raw text data. In this dissertation, we propose two new

truth discovery methods to deal with the aforementioned limitations.

First, we propose an unsupervised probabilistic model named IATD, which takes

source correlations as prior for influence derivation. To model influences among

sources, we introduce “claim trustworthiness”. The framework fuses the trustworthi-

ness of the source which provides the claim and the trustworthiness of its influencers.

Besides, the proposed model can handle different data types using different distributions

in the probabilistic model.

Second, we recognize the major challenges of inferring true information on text data

stemming from the multifactorial property of text answers (i.e., an answer may contain

multiple key factors) and the diversity of word usages (i.e., different words may have

the same semantic meaning). To tackle these challenges, in this dissertation, we propose

a novel truth discovery method, named “TextTruth”, which jointly groups the keywords

extracted from the answers of a specific question into multiple interpretable factors,

and infers the trustworthiness of both answer factors and answer providers. After that,

the answers to each question can be ranked based on the estimated trustworthiness of

factors. The proposed method works in an unsupervised manner, and thus can be applied

to various application scenarios that involve text data.

8.2 Vulnerabilities Analysis of Multi-Sourced Data

Apart from the research on the topic of truth discovery, another perspective of this dis-

sertation is analyzing the vulnerabilities of multi-sourced data. In this dissertation, we

design multiple train-phase attack strategies against three real-world applications, i.e.,
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knowledge graph embeddings, recommendation systems, and outcome interpretation

approaches, to test their robustness.

First, we investigate the robustness of knowledge graph embeddings. Due to their

heterogeneity, existing attack methods on graph data cannot be directly applied to the

attack on the embeddings of knowledge graphs. To fill this gap, we propose a collection

of data poisoning attack strategies, which can effectively manipulate the plausibility of

arbitrary targeted facts in a knowledge graph by adding or deleting facts on the graph.

Second, we challenge the vulnerability of recommendation systems facing advanced

data poisoning attacks. As one can see, the training data of the recommendation sys-

tems comes from multiple data sources (i.e., users). Due to the openness of the on-

line platform, recommendation systems are vulnerable to data poisoning attacks. In

this dissertation, we focus on a general next-item recommendation setting and propose

a practical poisoning attack approach named LOKI against blackbox recommendation

systems. The proposed LOKI utilizes the reinforcement learning algorithm to train the

attack agent, which can be used to generate user behavior samples for data poisoning.

To make the attack practical, we propose to let the agent interact with a recommender

simulator instead of the target recommendation system and leverage the transferability

of the generated adversarial samples to poison the target system. We also propose to

use the influence function to efficiently estimate the influence of injected samples on the

recommendation results, without re-training the models within the simulator.

Finally, in this dissertation, we present the first systematic study on the vulnerability

of outcome interpretations against data poisoning attacks. We propose an optimization-

based framework named IMF to generate adversarial poisoning samples for a variety of

interpretation methods. The poisoning samples crafted by IMF encircle and shift the

target sample in the feature space. As a result, the interpretation result of the target

sample is manipulated as the attacker desires while the prediction result of the target

sample remains unchanged.
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8.3 Summary and Future Work

This dissertation has already investigated multiple important problems on the veracity

and vulnerability of multi-sourced data. These studies not only directly put forward ef-

fective techniques to diagnose the trustworthy and security issues in multi-source data,

but also inspires the research community to explore more tasks regarding the vulnerabil-

ities of machine learning techniques. Particularly, besides the problems discussed in this

dissertation, there are still many more important problems to explore. For instance, an-

alyzing the veracity of multi-sourced data with different modalities, proposing practical

defense strategies to mitigate the impact of vulnerabilities, and conducting theoretical

analysis on the fundamental reasons that cause these vulnerabilities, are all very impor-

tant tasks. We believe that these studies can benefit and safeguard the performance of

various real-world machine learning applications.
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