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Abstract

There is an emerging trend in modern infrastructure, which is also known as Software-

Defined Infrastructure (SDI), pushing a shift of computing from static and hardware-based control

systems to dynamic and easily-reconfigurable software-defined systems. However, the development

of corresponding security mechanisms that are suitable to protect modern infrastructure is lagging

behind.

In the network level, traditional network security functions, such as firewalls and Network

Intrusion Detection Systems (NIDS), are implemented on vendor proprietary appliances. Those

hardware-based appliances are placed at fixed locations and with fixed capacity. As a result, they

are limited in elasticity. However, altering traditional network security functions to make them

provide well-suited protection to modern infrastructure requires significant efforts. In the host level,

traditional security functions are primarily built upon simple binary security directives, usually

recognized as deny and allow. The poor expressiveness of security directives used by traditional

security functions greatly hinders the innovations on host security functions. In addition, a unified

interface that offers an easy way to reconfigure both network and host security functions is missing.

In this dissertation, our research goal is to fill the gap between the dynamic nature of SDI

and the ossified traditional security functions through enabling programmable security, which fea-

tures elastic, programmatically-extensible, and easily-reconfigurable security functions. To achieve

the research goal, we propose to develop a framework called ProSec for supporting programmable

security in the network level and host level. In the network level, two critical network security func-

tions, the programmable firewall and programmable NIDS, are designed and implemented, leverag-

ing two emerging networking paradigms, Software-Defined Networking (SDN) and Network Function

Virtualization (NFV). In the host level, ProSec abstracts the activities in operating systems with a

flow-based model, called System Flow, which is anticipated to offer richer expressiveness to security
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directives. To demonstrate the usefulness of System Flow, we develop an Internet of Things (IoT)

malware infection detection and an IoT malware infection prevention security function based on

System Flow. Finally, as a use case study, we develop a cross-level IoT malware defense security

function, taking the advantages of both network-level and host-level security functions to defense

IoT malware.
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Chapter 1

Introduction

1.1 Problem Motivation

Software-Defined Infrastructure (SDI) [83] has become a popular design paradigm of modern

infrastructure in today’s data centers, enterprise compute clusters, and public or private clouds. In

the industry, many large service providers have announced their interests or solutions to deploying

SDI [159, 169, 157, 160]. Among the examples of SDI are Software-Defined Networking (SDN) [106],

Network Function Virtualization (NFV) [69], and Software-Defined Radios (SDR) [148]. The key

idea of SDI is the introduction of a software-defined control layer, which is highly programmable.

Thanks to SDI, the computing resources throughout the entire infrastructure can now be

elastically controlled, easily reconfigured, and programmatically extended. For example, NFV im-

plements network security functions as software instances that can be created or destroyed rapidly

to handle attack traffic volume variations on demand; SDN can dynamically redistribute the traf-

fic to support flexible placement of network security function via a well-defined interface, such as

OpenFlow [106], which makes the reconfiguration of the entire network much easier; besides, SDN

and NFV provide open standards that allow the operators to extend applications through a pro-

grammatic way.

Although SDI brings significant benefits to modern infrastructure and attracts great atten-

tion from industry service providers, the corresponding security mechanisms that are suitable to pro-

tect the modern infrastructure are still underdeveloped. In the network level, traditional hardware-

based network functions are often placed at fixed network entry points and have a constant capacity
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with respect to the maximum amount of traffic they can process. Such rigid nature renders them

awkward in protecting SDI. In the host level, many existing host security approaches [155, 147, 154]

mainly base on simple (binary) access control actions, i.e., explicitly allowing or denying specific

system events or activities. The limitation of expressiveness in security directives greatly hinders

the innovation on host security functions.

1.2 Research Motivation

In the network level, some pioneered researches [135, 140, 165, 59] have made use of the

advantages of SDN and NFV. However, the great challenges inherent in the management, design,

deployment, and execution of network security functions prevents the full use of the benefits of

SDN and NFV. In particular, the design of two critical network security functions, the firewalls and

NIDSes, must be improved. First, when the firewalls and NIDSes are overloaded from large traffic

loads, they require scale out [130, 64]. Similarly, when firewalls and NIDSes are underloaded, they

require scale in. This scaling of the two network security functions must be safe and efficient. A

safe scaling of firewalls and NIDSes prevents any loss of legal traffic, the allowance of illegal traffic,

and ensures the effective detection of any potential attacks. An efficient scaling of firewalls and

NIDSes ensures a bounded latency overhead caused by scaling and consumes minimum compute

and network resources. Second, traditional NIDSes [30, 29] are typically designed as a monolithic

piece of software, which can lead to inflexibility and a significant waste of resources [172].

In the host level, prevention of suspicious or malicious system activities mainly by enforcing

simple access control (i.e., allow or deny), such as the process-level firewall [155] and information

flow control systems [10, 1], may hinder further innovating in security applications under some

circumstances. For instance, if we monitor a pending access originated from a suspicious process

to a file that contains sensitive information, the simple access control actions can only block such

access to prevent potential compromise, which may hinder further investigations of the harmfulness

of the process and its attack patterns. To facilitate innovative security practice, more expressive

security directives must be offered to enable more fine-grained response to threats in addition to

simple access control. Ideally, such security directives should be reusable as a countermeasure library

that could be coupled with different host security functions.
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1.3 Research Objective

In this dissertation, our research goal is to fill the gap between the dynamic nature of SDI

and the ossified traditional security functions by enabling network-level and host-level programmable

security, which features elastic, programmatically-extensible, and easily-reconfigurable security func-

tions. Through the research, we will answer the following research questions.

• Enable network-level programmable security

− RQ1: How can we elastically scale the firewall in a safe and efficient way?

− RQ2: How can we virtualize the NIDS in a safe and efficient way?

• Enable host-level programmable security

− RQ3: How can we enable expressive security directives for host security functions?

− RQ4: Can we build host security functions with expressive security directives?

• Enable cross-level security interaction

− RQ5: Can we build security functions that take the advantages of the network-level and

host-level programmable security at the same time?

1.4 Overview of Research Tasks

To achieve the research goal, we propose to develop a framework called ProSec to sup-

port network-level programmable security, host-level programmable security, and cross-level security

interactions. ProSec consists of three piece of work shown in Figure 6.3.

1.4.1 Task1: Enable safe and efficient virtual firewall elasticity control

(RQ1)

In the network level, we start from the most widely used network security function, the

firewalls. To make use of the benefits of SDN and NFV introducing more flexibility to firewalls

with respect to processing capacity and placement location, we will implement firewalls as software
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Figure 1.1: ProSec consists of three major piece of work, enabling network-level programmable
security, host-level programmable security, and cross-level security interaction, respectively. The
black blocks indicate the components that will be contributed by this dissertation.

instances (a.k.a virtual firewalls), which can be created or destroyed rapidly on demand. We identi-

fied four key challenges – semantic consistency, correct flow update, buffer overflow avoidance, and

optimal scaling – that must be solved in order to safely and efficiently scale virtual firewalls.

To address the challenge of semantic consistency, we will apply packet space analysis to iden-

tify intra-dependencies of firewall rules. A group-based migration strategy will be applied to guar-

antee the semantic consistency of security policies. To find correct flow update, intra-dependencies of

flow rules and inter-dependencies between firewall rules and flow rules will be identified, which help

locate the subset of flow rules to update and the correct update operations (e.g., change, insertion).

To avoid buffer overflow, we will model migration process and predict the amount of in-flight traffic

generated during the migration. Firewall rules that may cause buffer overflow during migrating

are not selected to move. To achieve optimal scaling-out of virtual firewalls, we will adopt a three-

step heuristic approach to minimize resource usage. To achieve optimal scaling-in, integer linear

programming (ILP) will be used to ensure maximum resources can be released.

1.4.2 Task2: Achieve safe and efficient NIDS virtualization (RQ2)

NIDS is another critical network security function that monitors the traffic in a network

to detect malicious activities or security policy violations. As NIDSes are much more complicated

than firewalls, it is difficult to virtualize NIDSes leveraging SDN and NFV. Especially, in edge com-

puting [132, 114] where computing resources are limited and computing environments are diverse,

traditional NIDSes can hardly be tailored to reduce the footprint while provide proper protection
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since they are designed as a monolith. We identified tow key challenges, effective intrusion detec-

tion and non-monolithic NIDS provisioning, that must be addressed to achieve safe and efficient

virtualization of NIDSes.

To address the effective intrusion detection challenge, we will classify detection states of

virtualized NIDSes into local and global detection states to minimize the amount of detection states

shared between instances. The local detection states are only accessed within a single instance, while

the global detection states can be shared among multiple instances. We would like to provide a

guideline to classify detection states, and employ static program analysis and NIDS domain-specific

knowledge to automatically achieve detection state classification. To address the non-monolithic

NIDS provisioning challenge, virtual NIDSes will be provisioned as microservices [51]. We will de-

compose NIDSes into three microservices, header-based detection, protocol parse, and payload-based

detection. Each microservice can be instantiated independently, provisioned at different locations

with a different number of instances, and configured to execute different detection programs. Multi-

ple microservices can be chained up in different ways as “microservice chains” that provide flexible

detection capabilities. To automate the decomposition, we will design an algorithm that leverages

program slicing technique to automatically partition a detection logic so that the detection logic can

be transparently executed by microservices.

1.4.3 Task3: Enable expressive security directives for host security func-

tions (RQ3)

In the host level, we expect the security directives can support more fine-grained response

actions to the events in a host. In addition, those expressive security directives should be reused to

implement different host security applications regardless the low-level operating system details.

To make the security directives support more fine-grained response actions, we will define the

security directives in a “Match-Action” paradigm. The match field of a security directive indicates

what events this security directive responds to. The action field depicts what actions will be taken

against the matched events. A list of actions will be defined in this research based on existing

commonly used host security applications. To make those expressive security directives reusable by

different host security applications, we will abstract the operating system events using a flow-based

model, called system flow. Based on system flow, the events in a host will be formalized with a
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three-tuple, including the source that generates the events, the destination that the event goes to,

and the operation enforced by the source.

1.4.4 Task4: Case study: defending malware in IoT with ProSec (RQ4

& RQ5)

To demonstrate the benefits provided by ProSec, we first develop an IoT malware infec-

tion detection approach and an IoT malware infection prevention approaches that utilize the new

fine-grained response actions to the events in a host. The IoT malware infection detection approach

relies on a model that is trained based on benign and infection samples. To satisfy the limited re-

source requirement of IoT devices, we implement a malware infection detector monitoring the events

abstracted by system flow that can be run on small computing devices, such as Raspberry Pi. The

IoT malware infection prevention approach is implemented based on the system flow model. Then,

we implement a port scan detection and prevention approach at the network level. In particular,

we add port scan detection logic into virtual NIDSes, and use virtual firewall to block the detected

port scan traffic. Finally, we develop a cross-level IoT malware defense approach that enable the

collaboration between network and host security functions. Through a northbound interface, vir-

tual NIDSes in the network can send their detection results to the cross-level IoT malware defense

security function. The cross-level IoT malware defense security function then enforce access control

rule in both network and host levels. Once the cross-level IoT malware defense security function

receives port scan alerts from virtual NIDSes, it will update the firewall rules in virtual firewalls.

The system flow rules of the infected host will be updated as well to prevent the IoT malware from

accessing network resources.
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Chapter 2

Background and Related Work

2.1 Researches on Network Security Functions

2.1.1 Firewall Policy Analysis

Detecting and solving anomalies in firewall policies concerns with ensuring the semantic cor-

rectness of firewall policies. The major purposes of firewall policy analysis are detecting anomalies

reducing firewall rule table size. Lihua Yuan et al. present a toolkit in [168] to detect misconfigu-

rations in firewall policies using static analysis. Ehab S. Al-Shaer et al. propose a tool in [32] to

detect the anomalies between two firewall rules. Hongxin Hu et al. identify four typical firewall

policies anomalies and invent a novel presentation method to assist the firewall operators to detect

and solve the firewall anomalies in [75]. Except for anomalies in firewall policies, when the access

control logic gets complex and consists of a large number of overlapping firewall rules, there may be

redundant firewall rules. Alex X. Liu et al. proposes an algorithm to minimize the size of firewall

rule table in [98]. The same authors later apply their algorithm on packet classifiers on ternary

content-addressable memory [97]. To evaluate firewall optimization techniques, a benchmarking

framework has been proposed in [111]. Zhang et al. [171] demonstrated that careless policy updates

may result in security violations. They presented safe and efficient policy update algorithms for

firewall policy updates. But the proposed algorithms are only able to deal with policy updates on a

single firewall.
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2.1.2 Scalable NIDSes

Existing work of NIDSes is devoted to developing scalable architectures for NIDSes [139, 46,

150]. The authors of [46] propose a concurrency model for stateful deep packet inspection to enable

NIDSes to run with multiple threads in parallel for better scalability. Their approach attempts to

avoid inter-thread communication to reduce the performance overhead induced by detection state

sharing. However, such an approach proposes to maintain detection states in each instance sepa-

rately, without any sharing. Unfortunately, for complex detection logics, it is impractical to achieve

effective intrusion detection only relying on traffic distribution. NIDS Cluster [150] and multi-core

architecture for NIDS [139] enable information exchange between NIDS nodes or threads to achieve

effective intrusion detection. However, both of them fail to give any analysis or classification to the

detection states. In particular, NIDS Cluster relies on users to manually determine which detection

states need to be shared.

Another line to scale the NIDSes is to use GPU to process the traffic in parallel. But

this approach can work only on signature-based NIDSes, which process the traffic by byte-level

string matching. Cheng-Huang Lin et al. proposes an algorithm to accelerate the string matching

on GPU [94]. Giorgos Vasiliadis et al., proposes a novel architecture for Snort, one of the most

widely-used open source signagure-based NIDSes, to be deployed with GPUs in [152].

2.1.3 Network Security Functions Employing SDN & NFV

In Bohatei [59], Seyed Kaveh Fayaz et al. address the limitations of traditional DDoS

defense systems with respect to flexibility and elasticity. Bohatei utilizes NFV to dynamically

launch virtual machines at different locations to handle DDoS attack traffic and leverages SDN to

redistribute the traffic that optimize the bandwidth consumption. However, Bohatei is specific for

DDoS attacks and cannot tackel other types of attacks. Tianlong Yu et al. in PSI [165] propose a

security architecture for enterprise networks leveraging NFV and SDN to provide better isolation

between security functions, support context-aware security policies, and agilely change its security

policies.But the design of each specific network security function remains unsolved in this work.

Seung Won Shin et al. develop a platform on top of SDN controller to support modular composable

security service development in [135]. However, this work can only accommodate security services

that are implemented as SDN applications. John Sonchack et al. in OFX [140] propose to extend
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the SDN switches so that they can run compiled network security functions that are defined in the

SDN controller.

2.2 Researches on Host Security Functions

2.2.1 Provenance Analysis Systems

Many prior works record system events into audit logs [6, 90, 66, 56] and leverage forensic

analysis to investigate and reconstruct intrusions and attacks [81, 87, 137]. Recently, system-level

data provenance techniques [136] are used to investigate system-wide attacks. Many prior works

are proposed to efficiently collect system run-time information for a holistic view of the operations

of a system over time. The collected information will further be analyzed at run-time or offline to

investigate suspicious/malicious activities. For example, PASS [117] and Hi-Fi [125] can efficiently

capture and store system-level provenance. Linux Provenance Modules (LPM) [35] allows developers

to write custom provenance rules to constrain system information flows. These systems are limited to

coarse-grained provenance, which could generate many false dependencies. To reduce false positives

and logging sizes, DataTracker [142] utilizes dynamic information flow tracking for finer granularity

and Rain [79] adopts record-and-reply technology to determine attack causalities.

In contrast, network provenance systems [80, 162, 174, 173] utilize the interaction between

networked hosts since they lack detailed system-level information. For example, Rtag [80] proposes a

cross-host information flow tagging and tracking that enables practical attack investigations across

multiple hosts in infrastructure by taking advantage of system-call-level provenance information.

However, those approaches are not designed to provide a framework to program security apps to

dynamically respond to security dynamics in infrastructure.

2.2.2 Information Flow Control Systems

Some previous works, such as SELinux [10], HiStar [170], Flume [89], Asbestos [55] and

Weir [118], propose to enforce Decentralized Information Flow Control (DIFC) at the OS level by

using labels to define security and integrity contexts and restrict information flows between kernel

objects. Those works abstract information flow in a graph-based representation to detect mali-

cious/suspicious activities in a system. In addition, dynamic taint tracking systems are proposed to
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solve security problems. Some of them [53, 164, 52, 175] detect data misuses by tainting/coloring

sensitive data and resources in the system. However, such information flow control based solutions

based on the information flow abstraction only have single-system visibility and limited programma-

bility for system security applications (e.g., the detection of data misuse). In addition, some works

such as Silverline [116] and PivotWall [120] extend information flow tracking on system resources

with network-level visibility/control, which provide cross-host visibility. Yet, their approaches are

not designed to support a programmable framework for diverse security applications throughout the

infrastructure.

2.2.3 System Resource Access Control

There are a couple of prior works proposed to enable access control towards critical system

resources. Existing Unix/Linux systems embed security kernel modules (e.g., AppArmor [1]) to

allow users to write mandatory access control (MAC) policies to prevent unwanted accesses to

protected system resources. Also, several system security applications are proposed to defend against

unauthorized accesses to resources via race conditions, e.g., TOCTOU attacks [36, 42, 47, 147]

and Link Following attacks [154, 40]. For enabling fine-grained access control, the process-level

firewall [155, 153] is proposed to prevent system resource attacks by enforcing more fine-grained

access control. However, compared with , they have some major limitations: first, they cannot

effectively defend against cross-host attacks due to their limited view of events from a single system;

second, they only provide limited threat response strategies and can not support advanced security

intents, e.g., cyber deception defense.

2.2.4 Security Monitoring Systems

Many security monitoring systems monitor security incidents in infrastructure and re-

port/alert indicators of compromise. However, compared with , they mostly focus on single-system

events and do not enforce real-time detection of attacks. Alert correlation is proposed by many exist-

ing works [126, 149, 57] and Security Information and Event Management (SIEM) systems, such as

Splunk [11], LogRhythm [8] and IBM QRadar [4], which correlate log events collected from various

sources by using different indicators of compromise. Also, some previous studies [54, 108, 124, 58]

also target real-time attack story constructions from system-level logs. However, collecting logs
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from various network/security devices and networked hosts, as well as analyzing and storing the

logs, are complex, expensive, and non-trivial tasks that need significant efforts from security ex-

perts. Instead, can program the entire operations without log-related burden and enable rapid

threat responses against detected threats in addition to real-time analysis of threat.

2.3 Researches on Malware Detection

2.3.1 Network-based Solution

Network-based security solution has been commonly used for protecting IoT systems [76,

49, 110, 119]. Gu [68] presented BotHunter, a dialog correlation method that utilizes malware-

specific signatures to recognize the malware infection for botnet detection in traditional networks.

However, IoT network traffic is device-specific and depends on different environmental settings.

Due to the diversity of IoT devices and manufacturers, it is impractical or non-scalable to create

malware signatures [166]. It is also challenging to define normal baselines of IoT networks for

anomaly detection. In addition, IoT Botnets have continued to evolve and adapt to the advanced

techniques. For example, a newer version of Mirai, DvrHelper is the first malware designed to

bypass an anti-DDoS solution by using challenge-response policies and shared Google reCAPTCHA

response token [22]. Although new network-based detection methods for IoT malware are constantly

being proposed [110, 107, 119], they still cannot collect more detailed activities that occur in IoT

devices. Our detection approach is able to discovery detailed information about infection activities

of IoT malware, which could be a promising complement to existing network-based solutions.

2.3.2 Host-based Solution

To secure IoT devices, the preferred solution is to update and patch buggy firmware for

these vulnerable devices. However, due to lack of suitable facilities, it is difficult to keep track of

the available patches and apply them to all unpatched devices. Also, not all devices are compatible

with the available updates due to their outdated hardware. Considering the constraints of limited

resources, only a few studies have focused on host-based IoT security solution. Sun [144] proposed

a cloud-based detection with reversible sketch for resource-constrained IoT devices to improve the

security of the devices. Abbas [31] proposed a low complexity signature-based method for IoT
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devices that only identifies and stores a subset of signatures to detect a group of malware. Su

[143] proposed a light-weight detection method for IoT malware, based on a local and cloud-based

malware detector. However, all those solutions require the installation of software in IoT devices,

not all devices can afford such runtime overhead.
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Chapter 3

Safe and Efficient Virtual Firewall

Elasticity Control
1

3.1 Introduction

Traditional hardware-based firewall appliances are placed at fixed locations with fixed ca-

pacity. Such nature makes them difficult to protect today’s prevailing virtualized environments.

Two emerging networking paradigms, SDN and NFV, offer the potential to address these limita-

tions. NFV envisions to implement firewall function as software instance also known as virtual

firewall. Virtual firewalls provide great flexibility and elasticity, which are necessary to protect vir-

tualized environments in SDI. In this task, we implement firewalls as software instances and build

an innovative virtual firewall controller, VFW Controller, to enable safe, efficient and cost-effective

virtual firewall elasticity control. VFW Controller addresses four key challenges with respect to

semantic consistency, correct flow update, buffer overflow avoidance, and optimal scaling in virtual

firewall scaling. To demonstrate the feasibility of our approach, we implement software firewall in-

stances using the Click element. Then we implement the core components of VFW Controller on

top of ClickOS [105], an operating system optimized for NFV. We test our virtual firewall and VFW

Controller in an SDN environment.

1This work has been published in Proceedings of the 24th Network and Distributed System Security Symposium
(NDSS 2017).
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3.2 Research Challenges

The four technical challenges that must be addressed to achieve safe, efficient, and optimal

virtual firewall scaling are as follows.

• Semantic Consistency The split and mergence of firewall rules in virtual firewall scaling

must not change the semantics of security policies. Otherwise safety is violated. Keeping

the semantic consistency after rounds of splits and mergences is non-trivial, because firewall

rules are often logically entangled with each other resulting in complicated rule dependencies.

Sometimes rule dependencies are intentionally introduced by system administrators to obtain

fewer firewall rules [75] [168].

• Correct Flow Update When migrating firewall rules and states to new/remaining firewall

instances, network flow rules in SDN switches must be correctly updated to re-route corre-

sponding traffic to new/remaining instances. Incorrect flow update may cause some traffic

is missent to an instance that does not have the firewall rules intended for the traffic, hence

violates safety. Finding correct flow update is difficult, since flow rules in an SDN switch may

be dependent [84] [85] and the traffic space defined by the flow rules often does not exactly

match that defined by the firewall rules.

• Buffer Overflow Avoidance A safe scaling also requires buffering in-flight traffic during a

migration [63] [64]. In-flight traffic refers to the traffic that arrive at the source instance after

the matching firewall rules and states have been migrated, or the traffic that arrive at the

destination instance before corresponding firewall rules and states become ready. However,

buffer space is not unlimited. We also observe that migration of different firewall rules incurs

different amount of in-flight traffic. Therefore, care must be taken while selecting firewall rules

to migrate so that buffer overflow.

• Optimal Scaling Compute and network resources for building virtual firewalls are neither

unlimited nor free. Resource optimization is an important goal that needs to be achieved

in virtualized environments. Creations of virtual firewalls consume compute resource, and

flow rule updates are constrained by the limited capacity of the Ternary Content Addressable

Memories (TCAMs) used for holding rules in each SDN switch. It is NP-hard to achieve

optimization of resource usage during virtual firewall scaling.
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Figure 3.1: VFW Controller components and workflow.

3.3 Methodology

3.3.1 High-level View of Virtual Firewalls

The components and workflow of our virtual firewall are shown in Figure 3.1. The vir-

tual firewall consists of software instances that run in the data plane and a controller called VFW

Controller that run on a centralized server.

Software instances are provisioned on top of a virtualization layer, such as virtual machines

or containers. They are responsible to processing the network traffic and enforce firewall rules. VFW

Controller monitors each virtual firewall and detects traffic overload and underload conditions.

Once a condition is detected, VFW Controller first performs Dependency Analysis, Flow Update

Analysis, and Buffer Cost Analysis. Those analysis results are utilized by Optimal Scaling Calcu-

lation. Then, Provision Control and Migration and Update Control interact with the compute and

network resources and execute virtual firewall scaling.

Dependency Analysis in VFW Controller identifies three dependency relations: (1) the

dependency relations of firewall rules on the virtual firewalls; (2) the dependency relations of the

flow rules in SDN switches; and (3) the inter-dependency relations between the firewall rules and

the flow rules. Understanding the dependency relations of the firewall rules is critical to ensure

the semantic consistency after scaling. The dependency relations of the flow rules and the inter-

dependency relations serve to find the flow rules to be updated. Dependency Analysis divides both

firewall rules and flow rules into groups based on their dependency relations.
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Flow Update Analysis determines the correct update of flow rules and the update cost for

each firewall rule group. Buffer Cost Analysis predicts the amount of in-flight traffic generated by

the migration of each firewall rule group. This prediction is necessary to avoid buffer overflow.

Optimal Scaling Calculation component considers previous analyses and uses a three-step

heuristic approach to determine, in the case of overload, (1) the minimum number of new instances

to be created; (2) selective firewall rule groups to be migrated to each new instance; and (3) flow

rules to be updated. This approach also achieves minimum update cost and no buffer overflow. In

the case of underload, Optimal Scaling Calculation component uses an ILP approach to determine

(1) which instances are to be killed among all underloaded instances; (2) how to redistribute firewall

rule groups; and (3) corresponding flow rule updates. The ILP approach guarantees that the most

resources are released after the mergence of instances.

Provision Control creates or deletes instances according the calculation results from Optimal

Scaling Calculation component. Migration and Update Control coordinates the migration of firewall

rules and states, and flow rule updates.

3.3.2 Dependency Analysis And Semantic Consistency

To analyze the dependency, we first define some concepts that are used by dependency

analysis.

Definition 1 (Packet space). Packet space of a rule r, denoted as PS(r), is defined as

a 5-dimensional hyperspace with dimensions being protocol, source IP, source port, destination IP,

destination port.

Definition 2 (Direct dependency). Two rules ri and rj in a rule set R are directly dependent

iff PS(ri) ∩ PS(rj) 6= ∅, where PS(ri) is the packet space defined by ri, and PS(rj) is the packet

space defined by rj.

Definition 3 (Indirect dependency). Two rules ri and rj in a rule set R are indirectly

dependent iff PS(ri) ∩ PS(rj) = ∅ and there exists a subset R ⊆ R\{ri, rj} such that PS(ri) ∩

PS(R) 6= ∅ and PS(rj) ∩ PS(R) 6= ∅.

We identify the relation between a firewall rule group V and a flow rule group F is one of

the following:

• Independency iff PS(V ) ∩ PS(F ) = ∅. We denote independency as V indF .
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Algorithm 1: Partitioning of a rule set to disjoint groups.

Input: R, a set of ordered rules to be partitioned;
G = ∅, a set, initially set to be empty, to store
rule groups.

Output: G, the set of rule groups;
1 foreach r ∈ R do
2 Γ = ∅; /* A set to store preceding rules that has dependency relation

with r . Initially ∅. */

3 if G = ∅ then
/* That is to say r is the first rule in R */

4 Γ.Append(r);

5 else
6 PS(r)←− PacketSpace(r);
7 foreach G ∈ G do
8 foreach ri ∈ G do
9 PS(ri)←− PacketSpace(ri);

10 if PS(r) ∩ PS(ri) 6= ∅ then
11 Γ.Append(G);/* Sequentially append each rule in group G to

Γ. */

12 G.Remove(G);/* Remove group G from G. */

13 break;

/* Now all the rules that precede r and have dependency relation

with r are stored in Γ. */

14 Γ.Append(r); /* Append r to Γ. */

15 G.Add(Γ); /* Add Γ as a new group to G. */

16 return G;

• Congruence iff PS(V ) = PS(F ). We denote congruence as V conF .

• Superspace iff PS(V ) ⊃ PS(F ). We denote superspace as V supF .

• Subspace iff PS(V ) ⊂ PS(F ). We denote subspace as V subF .

• Intersection iff PS(V ) ∩ PS(F ) ⊂ PS(V ) and PS(V ) ∩ PS(F ) ⊂ PS(F ). We denote inter-

section as V intF .

Definition 4 (Inter-dependency). A firewall rule group V and a flow rule group F are

inter-dependent if PS(V ) ∩ PS(F ) 6= ∅.

Definition 5 (Direct association). Two firewall rule groups Vi and Vj in a firewall rule set

V are directly associated iff there exists a flow rule group F in a flow rule set F such that Vi and F

are inter-dependent, and Vj and F are inter-dependent. We use the notation Vi
dir-assoVj to denote

Vi and Vj are directly associated.
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Figure 3.2: Example of firewall rule associations and classes.

Definition 6 (Indirect association). Two firewall rule groups Vi and Vj in a firewall rule

set V are indirectly associated iff they are not directly associated and there exists V̄ ⊆ V\{Vi, Vj},

such that Vi and V̄ are directly associated, and Vj and V̄ are directly associated.

Definition 7 (Firewall Rule Class). A firewall rule class is the union of firewall rule groups

that are directly or indirectly associated.

According to the definition, we now have identified the dependencies within the firewall

policies. To ensure the semantic consistency, we employ a group-based migration strategy to move

the firewall rules during virtual firewall live migration.

Group-Based Migration Strategy: To guarantee semantic consistency, firewall rules in

a group are migrated to the same destination virtual firewall instance and are in the same order as

they are in the source virtual firewall instance. The destination virtual firewall instance can only

start to process traffic matching rules in a group until all the rules and flow states associated with

the group are ready on the destination instance.

3.3.3 Flow Update Analysis

We first define two types of operations on the flow rules.

Let Vi ∈ V be the firewall rule group to be migrated from a source virtual firewall VFW1 to

a destination virtual firewall VFW2. The key SDN switch is the last SDN switch, through which all

the traffic matching Vi will pass before diverging on their paths to reach VFW1 and VFW2. In what
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Algorithm 2: Classification of firewall rule groups to classes.

Input: V = {V1, ..., Vm}, a set of firewall rule groups; F = {F1, ..., Fn}, a set of flow
groups;

C = ∅, a set of firewall rule classes which is initially set
to be empty;

Output: C;
/* Identify direct associations. */

1 foreach F ∈ F do
2 V̄ = ∅; /* A set to store firewall rule groups that are directed

associated via F, initially set to be empty; */

3 foreach V ∈ V do
4 if V and F are inter-dependent then
5 V̄ .Append(V );/* Each firewall rule in V is sequentially appended

to V̄ . */

6 if V̄ 6= ∅ then
7 C.Add(V̄ );/* V̄ is added to C as a class. */

/* Identify indirect associations. Any two classes that intersect are

united to make a bigger class. */

8 foreach V̄i ∈ C and V̄j ∈ C do
9 if V̄i ∩ V̄j 6= ∅ then

10 V̄i.Append(V̄j); /* Each firewall rule in V̄j is sequentially appended

to V̄i. */

11 C.Remove(V̄j);

12 return C;

follows, we denote such key SDN switch as SW. Figure 3.3 shows SW switches in different cases:

(a) VFW1 and VFW2 are on the same server; (b) VFW1 and VFW2 are in different servers on the

same rack; and (c) VFW1 and VFW2 are in different racks. In case (a), the SW is an open vSwitch

on the server. In case (b), the SW is the Top-of-Rack (ToR) switch that connects the two servers.

In case (c), the SW is the Aggregation Switch that connects the two racks. We consider case (a)

will be the most common, as it introduces the least traffic overload and update efforts. Only when

two virtual firewalls cannot be placed on the same sever due to resource inadequacy, they will be

placed on separate servers.

Let F = {F1, ..., Fn} be the set of flow groups (obtained using the partition algorithm in §??)

on SW. To find the updates on F, VFW Controller iterates through F = {F1, ..., Fn} sequentially,

and compares the inter-dependency relation between Vi and each Fj ∈ F to determine the updates.

We identify two types of update operations: CHANGE and INSERT.

• If Vi
indFj , no update is required.
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Figure 3.3: SW in three different cases with respect to a classic 3-tire cloud architecture.

• If Vi
conFj or Vi

supFj , only CHANGE operation is required. For every flow rule f ∈ Fj ,

if its forwarding actions contain ‘send to VFW1’, the forwarding action is changed to ‘send

to VFW2’. Note that the same flow rule may contain forwarding actions for the routing

intentions of other applications (see the example flow rule f3 in Figure ??). Flow update

should not change any of those actions.

• If Vi
subFj or Vi

intFj , both CHANGE and INSERT operations are required. Comparisons

between PS(v), the packet space defined by each v ∈ Vi, and PS(f), the packet space defined

by each f ∈ Fj , will be performed in order to find the correct update.

(1) If PS(v) ∩ PS(f) = ∅, f needs no update.

(2) If PS(v) ⊇ PS(f), then CHANGE operation is performed to change the ‘send to VFW1’

action of f to ‘send to VFW2’.

(3) If PS(v) ⊂ PS(f), then INSERT operation is performed. A new flow rule f ′ is inserted

right before f to express that traffic matching v is sent to VFW2. Take the v and f below

for example.

v tcp 10.10.2.* * 192.1.1.9 80 deny

f * 10.10.2.* * 192.1.1.* 80

send to

VFW1 and

IDS1

Then f ′ below is inserted right before f .

f ′ tcp 10.10.2.* * 192.1.1.9 80

send to

VFW2 and

IDS1
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(4) If PS(v)∩PS(f) ⊂ PS(v) and PS(v)∩PS(f) ⊂ PS(f), INSERT operation is performed.

A new flow rule f ′ is inserted right before f . Each field of f ′ is the same as f , except that

the protocol, source IP, source port, destination IP, destination port fields of f ′ are the

intersection of the respective fields of v and f , and the forwarding action of f ′ is ‘send to

VFW2’. For example, for the following v and f

v * 10.10.2.* * 192.1.1.9 80 deny

f * 10.10.2.1 * 192.1.1.* 80

send to

VFW1 and

IDS1

the new flow rule f ′ is:

f ′ * 10.10.2.1 * 192.1.1.9 80

send to

VFW2 and

IDS1

Definition 8 (Update Cost). The update cost of a firewall rule group is the total number

of new flow rules inserted in SW during its update to support the migration of Vi.

Let γi be the update cost of Vi, then we have

γi =

n∑
j=1

αij

There are two ways to reduce the total update cost:

• Select firewall rule groups that cause smaller update cost for migration.

• Analyze the relationships between firewall rule class and flow rule group. The comparison we

have performed in previous section is pairwise between a firewall rule group Vi and a flow

group Fj .

We observed that new flow rules are inserted only when Vi
subFj or Vi

intFj . If there is a

class V̄ that consists of Vi and other firewall rule groups and V̄ supFj , then no new flow rules will be

inserted. To see why, consider a simple case as follows. Two firewall rule groups V1 and V2 are to be

migrated. Fj ∈ F is one flow rule group in SW and we have V1
intFj and V2

intFj , and V1∪V2
supFj .

Both INSERT and CHANGE operations are required for the migration of V1 and V2. Let α1j be

the number of new flow rules that will be inserted to Fj in order to support the migration of V1,
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Figure 3.4: Packet paths during the migration.

and α2j be the number of new flow rules needed in order to support the migration of V2. Thus the

total number of new flow rules to be inserted to Fj is α1j + α2j . Let V̄ = V1 ∪ V2, because V̄ supFj ,

then no INSERT operation is required to support the migration of V̄ , hence the total number of

new flow rules to be inserted is 0. Based on such observation, we propose the following class-based

migration strategy in VFW Controller to reduce the total update cost.

Class-Based Migration Strategy: If the update cost of migrating a class V̄ = ∪m′i=1Vi is smaller

than the sum of the update cost of each Vi that constitutes V̄ , then V̄ is migrated as a big group to

the same destination virtual firewall to reduce update cost.

3.3.4 Buffer Cost Analysis

Definition 9 (Buffer Cost). The buffer cost of a firewall rule group is the amount of

in-flight traffic that are generated during the migration of the group.

Figure 3.4 shows the packet paths during the migration of Vi. In Figure 3.4, we focus on

the following time points.

• t0: is the time that VFW1 starts to transfer the firewall rules and flow states specified in

fspace;

• t1: is the time that SW finishes the update;

• d1: is the transmission delay between SW and VFW1;

• d2: is the transmission delay between SW and VFW2;

22



• d3: the transmission delay between VFW1 and VFW2;

• b1: is the average time that VFW1 spends processing a packet; and

• b2: is the average time that VFW2 spends processing a packet.

At SW , the traffic matching Vi that arrives before t1 is sent to VFW1, and after t1 it is

sent to VFW2. Let Γ be a set comprising the matching traffic that arrives during (t0− d1, t1). Γ is

shown as the blue part in Figure 3.4. Traffic in Γ is sent to VFW1.

At VFW1, the firewall rules and flow states defined in fspace are sent to VFW2. Traffic in Γ

starts to arrive after t0, and the last packet in Γ arrives before t1+d1. VFW1 processes all the traffic

in Γ. VFW1 finishes processing Γ before t1 + d1 + b1. If any traffic in Γ whose processing causes

the state of a flow to evolve, VFW1 will send the traffic to VFW2 for reprocessing in order to keep

state consistency. For generality, we assume all the traffic in Γ are sent to VFW2 for reprocessing.

This assumption will lead to an estimate of buffer cost that is larger than the actual cost in some

cases. Given that we want to avoid buffer overflow, over-estimates are preferable.

At VFW2, traffic directly sent from SW starts to arrive after t1 + d2. However, the

traffic directly from SW must be buffered until VFW2 has received and reprocessed all the traffic

in Γ. The last packet in Γ arrives at VFW2 before t1 + d1 + b1 + d3 and it is processed before

t1 + d1 + b1 + d3 + b2. Therefore, traffic that is directly sent from SW and arrives at VFW2 during

(t1 + d2, t1 + d1 + b1 + d3 + b2) is buffered.

Suppose there are ki flows matching Vi and the rate (bits per second) of flow j is λj . Then

we estimate the buffer cost of Vi as

βi = (

ki∑
j=1

λj)× {(t1 + d1 + b1 + d3 + b2)− (t1 + d2)}

= (

ki∑
j=1

λj)× (d1 + b1 + d3 + b2− d2)

(3.1)
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3.4 Optimal Scaling

3.4.1 Virtual Firewall Modeling

The runtime throughput of a virtual firewall, η, is a function of Λ, the aggregated rate of

the incoming traffic flows.

η(Λ) =


Λ if Λ ≤ c

c if Λ > c

When Λ > c, packet loss may be expected at a virtual firewall, because the rate of traffic coming to

the virtual firewall exceeds the rate of traffic leaving. Service Level Agreement (SLA) on performance

generally requires the processing capacity of a virtual firewall to meet a predefined value Φ, that is,

c(S) ≥ Φ. Since c decreases as S increases, Φ essentially places an upper bound on S. The upper

bound is c−1(Φ). Therefore, c(S) ≥ Φ is equivalent to S ≤ c−1(Φ).

3.4.2 Optiaml Scaling Out

After a virtual firewall is detected overloaded, VFW Controller runs Dependency Analysis,

Flow Update Analysis, Buffer Cost Calculation, and has the following parameters:

• A set of m firewall rule groups V = {V1, V2, ..., Vm} with group Vi having a rule size of si, an

update cost of γi, a buffer cost of βi, and ki matching traffic flows with the flow rates of λi1,

λi2, ..., λiki .

• A processing capacity of c(
∑m
i=1 si), and a runtime throughput of η.

• An overload condition that c(
∑m
i=1 si) < Φ or η > 0.9c(

∑m
i=1 si).

Then, VFW Controller adopts a three-step heuristic approach to work out the minimum number of

new instances to create and the firewall rule group distribution.

Step 1: VFW Controller estimates the minimum number of new instances to create. Let

n be the number.

n =


b
∑m

i=1

∑ki
j=1 λij−0.9c(

∑m
i=1 si)

Φ c if η > 0.9c(
∑m
i=1 si)

b
∑m

i=1 si−c
−1(Φ)

c−1(Φ) c if S > c−1(Φ)
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In the case when η > 0.9c(
∑m
i=1 si), the amount of traffic that should be shunted away from the

overloaded virtual firewall is
∑m
i=1

∑ki
j=1 λij − η, which will be undertaken by the new instances,

each of which must guarantee a processing capacity of Φ as dictated by the SLA. In the case when

S > c−1(Φ), the number of firewall rules that must be migrated is
∑m
i=1 si − c−1(Φ), which will be

split among the new instances, each of which is constrained by an upper bound c−1(Φ). The floor

operation in the estimate above implies that the estimate may be smaller than required.

Step 2: VFW Controller applies ILP to solve for firewall rule distribution. Let x =

{x11, ..., xmn} be a set of unknown variables, where xij ∈ {0, 1} is an indicator of migrating firewall

rule group Vi to new instance j. The ILP formulation to solve x is below:

min
∑m
i=1

∑n
j=1 xijγi

s.t.

(1) xij ∈ {0, 1} for 1 ≤ i ≤ m, 1 ≤ j ≤ n

(2)
∑n
j=1 xij ≤ 1 for all 1 ≤ i ≤ m

(3)
∑m
i=1 xijβi ≤ B for all 1 ≤ j ≤ n // Prevent buffer overflow on each new instance.

(4)
∑m
i=1 xijsi ≤ c−1(Φ) for all 1 ≤ j ≤ n // Each new instance must satisfy the SLA.

(5)
∑m
i=1 xij(

∑ki
l=1 λil) ≤ 0.9c(

∑m
i=1 sixij) for all 1 ≤ j ≤ n // Each new instance must not

be overloaded.

(6) (
∑m
i=1

∑ki
j=1 λij −

∑m
i=1

∑n
j=1

∑ki
l=1 xijλi,l) ≤

0.9c(
∑m
i=1 si −

∑m
i=1

∑n
j=1 xijsi) // After scale out, the old firewall is not overloaded.

This constraint is used when overload condition (i) occurs.

or

(6’) (
∑m
i=1 si −

∑m
i=1

∑n
j=1 xijsi) ≤ c−1(Φ) //After scaling out, the old virtual firewall must

satisfy the SLA. This constraint is used when overload condition (ii) occurs.

Solving the above ILP formulation, we obtain x. If xij = 1 then firewall rule group Vi is to be

migrated to new instance j. If xij = 0 for all j, then firewall rule group Vi stays on the old virtual

firewall. If the above ILP formulation has no solution, which implies that the estimate of n at Step

1 is smaller than required, then go to Step 3.

Step 3: Increase n by one and perform Step 2 again until a solution is found.
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3.4.3 Optimal Scaling-In

When more than one virtual firewall are underloaded, VFW Controller merges them. VFW

Controller applies the following ILP formulation to determine the maximum number of virtual

firewalls to be killed while meeting the following constraints:

• Each remaining virtual firewall must not be overloaded after the mergence.

• Each remaining virtual firewall must not have its buffer space overflowed.

• Each remaining virtual firewall must satisfy the SLA.

• The total update cost in the mergence is bounded by a predefined value γ.

Suppose there are n underloaded virtual firewalls. underloaded virtual firewall j has:

• A set of mj firewall rule groups Vj = {V j1 , V
j
2 , ..., V

j
mj} with group V ji having a rule size of sji ,

an update cost of γji , a buffer cost of βji , and kji matching traffic flows with the flow rates of

λji1, λji2, ..., λj
ikji

.

• A processing capacity of c(
∑mj

i=1 s
j
i ), and a runtime throughput of ηj .

Let x = {x11, ..., xnn} be a set of unknown variables, where xqj ∈ {0, 1} is an indicator of merging

underloaded virtual firewall j onto q. The ILP formulation to solve x is presented below:

max
∑n
j=1

∑n
q=1 xqj

s.t.

(1) xqj ∈ {0, 1} for all 1 ≤ q ≤ n, 1 ≤ j ≤ n

(2) xqq = 0 for all 1 ≤ q ≤ n

(3)
∑n
q=1 xqj ≤ 1 for all 1 ≤ j ≤ n

(4)
∑mq

i=1 s
q
i +

∑n
j=1

∑mj

i=1 xqjs
j
i ≤ c−1(Φ) for all 1 ≤ q ≤ n

(5)
∑mq

i=1

∑kqi
l=1 λ

q
il +

∑n
j=1

∑mj

i=1

∑kji
l=1 λ

j
ilxqj ≤

0.9c(
∑mq

i=1 s
q
i +

∑n
j=1

∑mj

i=1 xqjs
j
i ) for all 1 ≤ q ≤ n

(6)
∑n
j=1

∑mj

i=1 xqjβ
j
i ≤ B for all 1 ≤ q ≤ n

(7)
∑n
q=1

∑n
j=1

∑mj

i=1 xqjγ
j
i ≤ γ

Solving the above ILP formulation, we obtain all xqj . If xqj = 1, then virtual firewall j is merged

onto q. If
∑n
q=1 xqj = 0, then virtual firewall j remains. The maximum number of virtual firewall

to be killed is
∑n
j=1

∑n
q=1 xqj .
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3.5 Implementations

We have implemented a prototype of VFW Controller on top of ClickOS [105]. ClickOS is a

Xen-based NFV platform optimized for fast provision of virtualized network functions in large scale.

ClickOS creates small VMs (each less than 12MB) and boots one instance within 30 milliseconds. We

have enhanced ClickOS to provide stateful virtual firewalls using Click modular router software [88].

Click provides rich networking processing elements, which can be leveraged to construct a wide

range of virtual middleboxes. We have used three elements, IPfilter, IPClassifier and IPFragmenter,

provided by Click to implement firewall packet processing function. We have also developed new

Click elements for firewall rule management, buffer management, and interfaces for migrating rules

and states. In particular, we have developed a programming interface on top of XL [13] 2, which

VFW Controller uses to exert migration controls on individual virtual firewalls. Such a control

automation is essential to fully take advantage of virtual firewall benefits. Our VFW implementation

provides useful insights to implement and control other virtualized network functions as well.

Key functions of VFW Controller have been realized as individual modules. In particular,

we have implemented a Dependency Analysis module based on Header Space Library (Hassel) [3],

which is a tool for static header space analysis, a Flow Update Analysis module to find the correct

flow updates and calculate update costs, a Buffer Cost Analysis module to calculate buffer costs, and

an Optimal Scaling Calculation module that realizes the approaches for optimal scaling by calling a

Matlab ILP solver. VFW Controller also includes a Floodlight module that implements Floodlight

SDN controller functions [9]. VFW Controller uses Floodlight REST APIs to communicate flow

updates to Floodlight module, which programs SDN switches through an OpenFlow interface. The

same channel is also used by SDN switches to send network traffic statistics back to VFW Controller.

To improve the performance of VFW Controller, our implementation uses both online and

prior processing. All the analyses, including dependency analysis, flow update analysis, update cost

calculation, and buffer cost calculation are carried out prior. VFW Controller maintains a copy of

firewall rules for each virtual firewall and the flow rules in its database for prior analyses. Results

from the analyses are stored and retrieved whenever scaling is to be performed. Overload/underload

detection, optimal scaling calculation, virtual firewall creation/deletion, migrations of firewall rules

and flow states, and flow updates are carried out online.

2XL is a toolstack that provides the capability to provision guest VM in Xen.
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3.6 Evaluation

We evaluate our virtual firewall with the following goals:

• Demonstration of the relationship between virtual firewall performance and the rule size (Fig-

ure 3.5). This justifies VFW Controller’s choice of rule split over rule copy.

• Study of the rule dependency relations in firewall policies (Table 3.1). This justifies the neces-

sity of dependency analysis.

• Demonstration of virtual firewall’s capability to quickly scale (Figure 3.6).

• Quantifying the impact of firewall rule migration on virtual firewall throughput (Figure 3.7).

• Evaluating the performance of optimal scaling calculation (Figure 3.8).

3.6.1 Experiment Setup

Our experiments were conducted using CloudLab [2], an open cloud platform providing

various resources (server, storage, and network) for experimenters to run cloud software stacks such

as OpenStack and CloudStack. In our experiments, we deployed a client machine that generated

traffic, a server machine that received traffic, and a firewall machine created by VFW Controller to

process the traffic between the client and the server. The client generated synthetic workloads using

scapy 3, a powerful interactive packet manipulation program.

3.6.2 Performance of Virtual Firewalls

its firewall rule size S. We used three traffic datasets captured from real-world networks:

1) the CAIDA UCSD anonymized Internet trace [16] is a representative of Internet traffic; 2) the

LBNL/ICSI enterprise trace [5] is a typical traffic collected from an enterprise network; and 3) the

Campus network trace that was collected from our campus network gateway. Against each of the

dataset, we conducted experiments to study how the firewall rule size affects the performance of a

virtual firewall. In each experiment, we let S increase from 1 to 3000, which we considered as a

maximum number of rules in a single VFW. Then we measured the processing capability for each

S value and repeated each measurement 100 times to calculate the average processing capacity, as

3http://www.secdev.org/projects/scapy/.
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shown in Figure 3.5(a). The average processing capacity linearly decreases as S increases over all

datasets. The LBNL enterprise traffic contains packets with greater length of payload, thus bares a

more significant impact on performance. We applied polynomial curve fitting linear regress on the

CAIDA trace, which was captured by April 2016 and represents the most up-to-date characteristic

of today’s Internet traffic, and obtained the function c(S) as

c(S) = −0.0043S + 6.2785 (3.2)

This function fits the corresponding CAIDA curve in Figure 3.5(a) with R2 = 0.9864. R2 is a measure

of goodness of fit with a value of 1 denoting a perfect fit. c(S) will be used by the evaluation of

optimal scaling calculation.

In the experiment, we also recorded the average time a virtual firewall instance spent to

process a packet for each of the real-world dataset, as shown in Figure 3.5(b). As S increases, the

average processing time shows an linear increase, which eventually incurs the latency of the passed

packets. These results of this experiment can be used for buffer cost calculation.

3.6.3 Rule Dependencies in Firewall Policies

In this experiment, we studied 8 real-world firewall policies from different resources. Most

of them are from campus networks and some are from major ISPs. We partitioned each policy to

disjoint groups using the Algorithm 1. The experimental results are listed in Table 3.1. The first two

columns of the table show the policies we used and their rule numbers. The third column gives the

number of groups identified in each policy, and the fourth column shows the number of the firewall

rules in the largest group of each policy. This experiment demonstrates that rule dependencies are

common in real-world firewall policies. Therefore, the dependency analysis in VFW Controller is

necessary. We also noticed from our study that the largest group we encountered contains only 18

firewall rules (from Policy H in Table 3.1).

3.6.4 Elasticity of Virtual Firewalls

In this experiment, we demonstrated VFW Controller’s ability to elastically scale out an

overloaded virtual firewall. We designed three scenarios. In scenario (1), a single virtual firewall was

created and configured with 400 firewall rules to process the traffic between the client and the server.
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Figure 3.5: Relationship between virtual firewall performance and rule size.
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Table 3.1: Rule dependencies in real-world firewall policies.

Policy Rule (#) Group (#)

Largest
Group
Member
(#)

A 12 2 3
B 18 3 5
C 25 3 6
D 52 7 7
E 83 9 7
F 132 10 9
G 354 10 12
H 926 13 18

In scenario (2), two single virtual firewalls were created to work in parallel process the same traffic.

The 400 firewall rules in scenario (1) were split and installed in those two virtual firewalls. In both

scenarios, the virtual firewalls worked in standalone mode, which meant they were not connected to

VFW Controller and no scaling would be performed. In scenario (3), a single virtual firewall with

the same configuration as that in scenario (1) was created to work in standalone mode at first, then

switched to connected mode, which meant the virtual firewall was connected to VFW Controller and

was scaled out. We compared the runtime throughput of the virtual firewalls in the three scenarios

as shown in Figure 3.6.

Figure 3.6(a) shows the runtime throughput of the three scenarios when the client generated

4 UDP flows with an aggregated traffic rate of about 2.8 Gbps. In scenario (1), the single virtual

firewall achieved a maximum throughput (i.e. processing capacity) of about 1.5 Gbps. Significant

packet loss was experienced. In scenario (2), the two virtual firewall were able to handle the incoming

traffic, producing a runtime throughput of about 2.8 Gbps. No packet loss occurred. In scenario

(3), we intentionally let a single virtual firewall to work from time t = 0s to t = 5s. Packet loss

occurred during this time period. Then we connected this virtual firewall to VFW Controller and

it was scaled into two virtual firewall instances. The scaling-out took a short period of time (< 1

second), after which we observed the aggregated runtime throughput increased to around 2.8 Gbps.

We also evaluated VFW Controller against TCP traffic. Figure 3.6(b) shows the runtime

throughput of the three scenarios when the client established 2 TCP connections with the server.

We observed a boost of runtime throughput between t = 5s and t = 6s.

In summary, the above results demonstrated that VFW Controller can quickly scaled out
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Figure 3.6: VFW Controller for VFW elasticity.

32



an overloaded virtual firewall and solved the overload condition.

3.6.5 Impact of Migration

During the migration, the in-flight traffic are buffered until the migration completes, there-

fore the runtime throughput of a virtual firewall is expected to degrade during the migration. Ac-

cording to equation (3.1), if more traffic flows are associated with the migrated firewall rules, more

in-flight traffic will be buffered. Therefore larger the degradation will be and longer the degrada-

tion will last. In this experiment, we quantified both the duration and magnitude of throughput

degradation. We set up two scenarios to test UDP and TCP flows, respectively.

In scenario (1), the client kept sending UDP traffic destined to the server. The UDP packets

were routed through a virtual firewall created by VFW Controller. In Figure 3.7 (a), the solid black

line, as a base line, shows the throughput of the virtual firewall when no migration occurred. The

dotted lines in Figure 3.7(a) show the runtime throughput of the virtual firewall when migrating

200, 600, 1200 firewall rules, respectively. The migrations were scheduled at t = 6s. We fabricated

firewall rules so that each firewall rule has one matching flow. The duration and magnitude of

throughput degradation increased as the number of migrated firewall rules (or the number of UDP

flows) increased. However, the degradation lasted for a very short period of time (≈0.75s with 1200

flows) and the throughput bounced back very quickly. In scenario (2), the client sent TCP traffic.

Figure 3.7(b) shows that the degradation of throughput of the virtual firewall when processing TCP

traffic. As the number of firewall rules (or TCP flows) increases, the degradation lasted longer and

was bigger. The degradation in the case of TCP traffic lasted slightly longer than that of UDP,

because TCP depends on congestion avoidance mechanisms to control its traffic rate, which means

TCP flows take more time to recover from a throughput degradation than UDP flows. For both

UDP and TCP flows, the throughput began to bounce back in less than 0.1 second after it reaching

the lowest point (see Figures 3.7(a) and (b)).

To sum up, the duration and magnitude of throughput degradation increase as the number

of migrated firewall rules (or the number of flows) increase. And the degradation shows an bigger

impact on TCP flows than UDP flows.
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Figure 3.8: Performance of provision plan calculation.

3.6.6 Performance of Optimal Scaling Calculation

We introduced a three-step heuristic approach in VFW Controller to calculate an optimal

solution for scaling out an overloaded virtual firewall. The performance of this approach depends

almost fully on the ILP formulation and solving used in the second step. Therefore, we mainly

tested the performance of our ILP formulation and solving. The ILP performance is influenced by

(i) m, the number of firewall rule groups on the overloaded virtual firewall; and (ii) n, the number

of new virtual firewall instances to be created. In our experiment, we measured the time to find the

optimal solution for varied m and n values. We let n range from 2 to 6, and m range from 100 up

to 1000. Figure 3.8(a) shows our experiment results. The time to find an optimal solution increases

as m or n increases, however, the time is very short. Even for m = 1000, our approach needs less

than 0.11 second.

Figure 3.8(b) depicts the time that our approach consumed to find an optimal solution for

scaling in when the number of underloaded virtual firewall instances is changed. Our approach is

very efficient. Even when 100 virtual firewall instances are detected to be underloaded, our approach

takes less than 0.08 second to find an optimal scaling-in solution.
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3.7 Conclusion

In this research task, we implement firewall as software instances that can be create and

destroy quickly. To ensure the rapid live migration of virtual firewall instances, we design VFW

Controller, a virtual firewall controller, which enables safe, efficient and optimal virtual firewall

scaling. To demonstrate the feasibility of our approach, we have implemented the core components

of VFW Controller on top of ClickOS. Our evaluation shows that the virtual firewall we developed

in this task can safely and efficiently scale.

36



Chapter 4

Safe and Efficient NIDS

Virtualization
1

4.1 Introduction

Traditional NIDSes are generally implemented on vendor proprietary appliances or mid-

dleboxes with poor versatility and flexibility. The Emerging SDN and NFV technologies give the

potential to virtualize NIDSes and elastically scale them to deal with attack traffic variations. How-

ever, such an elasticity feature must not come at the cost of decreased detection effectiveness and

expensive provisioning. In this research task, we propose an NIDS architecture, vNIDS, to enable

safe and efficient virtualization of NIDSes. vNIDS addresses two key challenges with respect to

effective intrusion detection and non-monolithic NIDS provisioning in virtualizing NIDSes. The

former challenge is addressed by detection state sharing while minimizing the sharing overhead in

virtualized environments. In particular, static program analysis is employed to determine which

detection states need to be shared. vNIDS addresses the latter challenge by provisioning virtual

NIDSes as microservices and employing program slicing to partition the detection logic programs so

that they can be executed by each microservice separately. Besides, we implement a prototype of

vNIDS and design experiments to demonstrate the feasibility of our approach.

1This work has been published in Proceedings of the 25th ACM Conference on Computer and Communications
Security (CCS 2018).
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4.2 Research Challenges

The two research challenges that must be addressed to achieve safe and efficient NIDS

virtualization are as follows.

• Effective Intrusion Detection: NFV enables flexibly provisioning an NIDS as multiple

instances that could run at different locations, and SDN can dynamically distribute network

traffic to each instance. Some detection logics in NIDSes must take account of multiple network

flows to identify malicious activities. For example, a scanner detector [28] must maintain a

counter to count the number of flows generated by the same host to determine whether a host

is a scanner. However, each NIDS instance may receive only a part of flows originated from the

same scanner and maintains a counter individually. To ensure intrusion detection effectiveness,

NIDS instances must share detection states with each other. Traditional NIDSes are usually

provisioned with a fixed number of instances at a fixed location. This static setup mitigates the

difficulty of detection state sharing between NIDS instances. In contrast, virtualized NIDSes

pursue to place their instances flexibly at different locations and with different numbers. This

flexibility feature makes sharing detection states among virtualized NIDS instances extremely

costly and difficult. Therefore, ensuring the effectiveness of intrusion detection for virtualized

NIDSes becomes more challenging than traditional NIDSes.

• Non-monolithic NIDS Provisioning: Existing virtualization solutions enabling elastic se-

curity [165] consider a virtualized network function as a monolithic piece of software running

in a virtual machine or container. However, simply provisioning all the components of virtual-

ized NIDSes within a virtual machine or container is not efficient. First, since a monolithically

virtualized NIDS requires more resources than any one of its components, the virtual machine

that runs a monolithically virtualized NIDS should be allocated with more resources than

the one that runs only some components. Second, monolithically virtualized NIDSes lack the

ability to scale each component individually, thus have to scale out the entire instance even

though only one component is overloaded, resulting in over-provisioning of other components.

Third, it is difficult to customize a virtualized NIDS if it is provisioned as monolith. However,

NIDS customization is critical in terms of resource efficiency for advanced network attack de-

fense [165, 167, 59]. However, due to the complexity of modern detection logics, decoupling
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Figure 4.1: High-level view of vNIDS architecture.

NIDSes as non-monolithic pieces that are suitable to be deployed in virtualized environments

remains challenging.

4.3 Methodology

4.3.1 High-level View of vNIDS

Our design of vNIDS is demonstrated in Figure 4.1. vNIDS consists of vNIDS controller

and vNIDS microservice instances. The users interact with vNIDS through the controller. The

microservice instances are responsible for processing the traffic.

vNIDS controller: There are two major modules in the vNIDS controller: the Effective

Intrusion Detection module (EIDM) and Non-monolithic NIDS Provisioning module (NNPM). EIDM

implements a detection state classification engine, which is run off-line to classify the detection states

of DLPs into global and local detection states. The detection state taxonomy is sent to the State

Management component (SMC). The SMC interacts with the shared data store and is responsible
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for managing the detection states of instances. If the virtualized NIDSes scale-in/-out, the SMC

should also address the state migration. NNPM implements the DLP partitioning algorithm, which

is run off-line to partition a DLP into header-based and payload-based DLPs. The Provision Control

component (PCC) in the NNPM takes charge of microservice instance provisioning, installs the DLPs

into the instances, and demands the SDN controller to update the flow rules in network forwarding

devices accordingly. Each time the PCC creates or destroys instances, it should inform the SMC to

update the shared data store.

vNIDS microservice instances: The microservice instances in vNIDS are instantiated

from the three microservices. Instances belonging to the same microservice share their global states

through the shared data store. Instances belonging to different microservices can be chained up as

“microservice chains”. Each instance in a “microservice chain” only executes a part of the detection

logic of the chain. This design enables more fine-grained customization of virtualized NIDSes by

composing the “microservice chains” with different microservices. The results of a microservice can

be attached to the traffic and passed to the next microservice.

Provisioning virtualized NIDSes with microservices is more efficient from the following per-

spectives. First, microservices are smaller than monolithic NIDSes and can be provisioned separately.

Therefore, microservices can scale faster and independently. Second, since microservices require less

resources to instantiate, they can make better use of fractional resources than monolithic NIDSes.

Third, a microservice can be modified and updated without interfering other microservices. In addi-

tion, different microservices can be instantiated at different locations (for resource optimization [38])

and provisioned on demand based on different security contexts [165].

4.3.2 Effective Intrusion Detection

4.3.2.1 Detection State Scope Analysis

Based on how a detection state is used, the scope of the detection state stored by a variable

can be defined in three levels.

• Per-packet scope. We call detection states with this scope per-packet detection states. The per-

packet detection states are only utilized within a single iteration of packet processing, thus are

created and destroyed within a single iteration of packet processing. For example, a variable used

to compute the checksum of a packet is considered as a per-packet detection state.
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• Per-flow scope. We call detection states with this scope per-flow detection states. The per-flow

detection states are utilized by multiple packets from the same flow. Therefore, these states persist

beyond a single iteration of packet processing. However, these states must be created after a flow

initiates and destroyed before a flow terminates. Otherwise there are memory leaks 2, since other

flows can never access theses detection states. For example, a variable used to count the bytes of

a flow is considered as a per-flow detection state.

• Multi-flow scope. We call detection states with this scope multi-flow detection states. The lifetime

of multi-flow detection states persists beyond the duration of a single flow. Therefore, they are

created before a flow initiates or destroyed after a flow terminates. For example, a variable used

to count how many IP addresses have been scanned by a scanner is considered as a multi-flow

detection state.

4.3.2.2 Detection State Classification

We explain in detail the major four steps of our algorithm that infers the scope of detection

states as follows.

Step1: computing the CFG of the DLP and NE. Every time the NIDS receives a packet, it

starts from a packet receive function call (e.g, pcap next or recv) and ends at the destroy statement

of the packet. We therefore consider a packet receive function call as the entry statement for the

CFG.

Step2: identifying the packet and flow record destroy statements. We manually check the

code of IP reassembly implementation, which is available as standard libraries in many operating

systems. For any specific NE, once identified, this information can be reused by all DLPs.

Step3: computing dominators of the packet and flow record destroy statements. Computing

dominators of a given node in a CFG is a mature technique [91] in the graph theory domain.

Step4: determining the scope of each detection state. There are three cases of the destroy

statement of a variable. (1) If the destroy statement of a variable is a dominator of the packet destroy

statement, this variable is a per-packet detection state. (2) If the destroy statement of a variable

is a dominator of the flow record destroy statement, this variable is a per-flow detection state. (3)

If the destroy statement of a variable is neither a dominator of the packet destroy statement nor a

dominator of the flow record destroy statement, this variable is a multi-flow detection state.

2An allocated memory location that will never be freed causes a memory leak.
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After we infer the scope of each detection state by analyzing the CFG of the DLP and NE,

we define the per-packet and per-flow detection states as local detection states and define multi-flow

detection states as global detection states. We justify this definition in the next section.

4.3.2.3 Ensuring Effective Intrusion Detection

To ensure effective intrusion detection, we must ensure that all the traffic under process can

access to all the detection states relevant to the traffic. We achieve this goal by: 1) distributing the

traffic of the same flow to the same instance, and 2) enabling only global detection states shared by

multiple instances.

Since advanced network forwarding devices now have programmability thanks to SDN, dy-

namically redistributing traffic is feasible. When virtualized NIDSes dynamically scale (by creating

or destroying instances), network traffic can be redistribute among the instances at per-flow gran-

ularity. That is, leveraging SDN, we can dynamically update the forwarding rules in the network

forwarding device to always deliver the traffic of the same flow to the same instance.

Actually, we are trying to make a trade-off between the complexity of distribution algorithm

(i.e., how to distribute the traffic to ensure detection effectiveness) and the overhead of detection

state sharing (i.e., enabling information exchange among instances). On the one hand, we utilize

the flexible per-flow forwarding capability of SDN to simplify the traffic distribution for virtualized

NIDSes. On the other hand, the intrusion detection effectiveness is guaranteed by sharing only

multi-flow detection states.

We can enable detection state sharing among instances by maintaining global detection

states in the shared data store, such as RAMCloud [121], FaRM [50] and Algo-logic [17]. The

authors of StatelessNF [82] have shown the feasibility of using RAMCloud as the shared data store

for network functions. By classifying the detection states into local and global detection states in our

approach, we only put global detection states on the shared data store to minimize the performance

overhead.

4.3.3 Non-monolithic NIDS Provisioning

In this section, we first present how to identify the two partition points to decompose

virtualized NIDSes into three microservices. Then we design an algorithm to partition the DLPs

such that they can be enforced by non-monolithic virtualized NIDSes.
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4.3.3.1 Decomposing NIDSes as Microservices

Logic structure of NIDSes: Typically, the logic structure of NIDSes consists of three

major components: the network protocol stack (NPS), application protocol parsers (APP), and the

detection logic (DL). NIDSes firstly acquire and validate the network traffic through the NPS. This

component is responsible for reading the packet from the driver, checking the checksum, reassembling

the IP fragments, etc. It is implemented in the NE. Then, the outputs of the NPS are passed to

the APPs. The APPs parse the payload of the traffic and extract the semantics of the conversation

between two end points of the network. The outputs of the APPs are then processed based on

various DLs.

For the purpose of reducing the development cost while maximizing the extensibility, the

NPS and APPs are usually reused by different DLs. NIDS users are allowed to add their new APPs,

while NPS is not likely to be changed by the users. For example, the Bro network security moni-

tor [27] has integrated the IP/TCP network protocol stack and a number of predefined application

protocol parsers3. Then, users only need to program their detection logic using a scripting lan-

guage [24] provided by Bro. Users can also add their own APPs through specific program languages

such as BinPAC [123]. Another example is Libnids [23], which has implemented a library for devel-

oping the NIDSes. The IP/TCP NPS has already been included in the library, but the users need

to implement their own APPs and DLs through the C interface stubs. Therefore, for generality, we

consider APPs as a part of NE and only DL is implemented by the DLPs.

Types of DL: We observed that there are three types of DLs based on what information

the DL needs to conduct the detection task.

• Type-I: These DLs only need header information to complete their detection tasks. For example,

the Flow Monitor implements the DL that only monitors the statistics of the flows, such as byte-

per-flow and packet-per-flow statistics. Another example is the DL of HTTP Monitor, which

first filters out the HTTP traffic by the port numbers and then compute the statistics of traffic

generated by each Web server.

• Type-II: These DLs only need payload information to complete their detection tasks. For example,

all the signature-matching DLs only need to check the payload of the packets.

• Type-III: Theses DLs need both header and payload information to complete their detection

3In the Bro community they are called as protocol analyzers.
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Figure 4.2: Different DLs can be implemented by different microservice chains.

tasks. For example, the Cookie Hijacking DLP first looks at the cookie, which is payload infor-

mation. Then it checks the IP address, which is a header information.

Decomposing monolithic NIDSes: Based on the logic structure of NIDSes and the

classification of DLPs, we decompose NIDSes as three microservices: header-based detection, protocol

parse and payload-based detection. The logic structure of NIDSes indicates three major processing of

the packets. The first processing is executed by the NPS, which is the basic component of all network

functions. We reuse this processing in all the microservices. The second processing is executed by

APPs, which parse the traffic according to various application protocol specifications. We define

the this processing as a dedicated microservice called protocol parse, which is devoted to parsing

the traffic according to various application protocol specifications. The third processing, which is

specified by users, implement various DLs. Based on the types of DLs, we can actually classify all

the DLPs into header-based DLPs, which implement Type-I DLs, and payload-based DLPs, which

implement both Type-II and Type-III DLs. We define the header-based detection microservice

devoted to executing the header-based DLPs. an the payload-based detection microservice devoted

to executing the payload-based DLPs.

4.3.3.2 Microservice chaining

Instances instantiated from different microservices can be chained as “microservice chains”.

A microservice chain implements a complete detection task, for example, detecting whether a specific
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host is a scanner, or whether a cookie has been reused. Each instance in the chain takes over a part

of the detection task. Intermediate results generated by the previous instance can be encapsulated

in the traffic (using some encapsulation techniques such as FlowTags [60], NSH [127], Geneve [67],

etc.) and passed to the next instance in the chain.

We have studied six different types of DLs, which can be summarized into 4 cases when com-

posed as microservice chains. Their DLPs are listed in Table 4.1. Different DLs can be implemented

with different microservice chains. Figure 4.2 depicts that the six DLs can be summarized into four

cases. Each case can be implemented by one microservice chain. For example, the Cookie Hijacking

DL (case 3) can be implemented with protocol parse and payload-based detection microservices, while

Scanner DL (case 2) can be implemented with header-based detection and payload-based detection

microservices.

Though microservice chains can be composed flexibly, there still some constrains of how the

microservice chains can be composed. First, the header-based detection microservice can be located

before the protocol parse and payload-based detection microservices, because header-based microser-

vice does not need payload information. Second, the protocol parse microservice should be located

before the payload-based detection microservice, since the latter needs the payload information gath-

ered by parsing the traffic.

4.3.3.3 Detection Logic Program Partitioning

As we have outlined, NIDSes can be decomposed as three microservices. However, it remains

the challenge to partition the user defined DLPs into header-based and payload-based DLPs that

can be executed separately by the header-based detection and payload-based detection microservices.

In this section, we present an algorithm that can automatically partition the user-defined DLPs by

utilizing the program slicing technology [74, 131, 158].

Program slicing is a program analysis technique that can determine: 1) which statements

are influenced by a given variable at a given point (forward slicing); and 2) which statements can

influence the value of a variable at a given point (backward slicing). The inputs of the program

slicing are the program dependency graph (PDG), variables of interest, and the point where the

variable is considered. The outputs of the program slicing are the statements of interest. PDG

is a directed graph whose vertices represent statements and edges represent dependencies between

statements. There are some program slicing tools available. In this work, we implement our DLPs in
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C and utilize Frama-C [20] to conduct program slicing on the DLPs. We achieve DLP partitioning

through five major steps as shown in Figure 4.3.

Step1: Generating PDG. We conduct static program analysis to generate the program de-

pendency graph of the inputed DLP. The PDG of a program involves two dependency information

between the statements of a program–the control dependency and the data dependency. The con-

trol dependency, usually represented by control flow graphs, reflects the execution conditions and

sequences between statements. The data dependency reflects the declaration and reference relation-

ship between variables. There are tools that can be used to generate the PDG of a program. For ex-

ample, Frama-C [20] can generate the PDG of C program and a commercial product CodeSurfer [19]

can generate the PDG of C++ program.

Step2: Computing slices. After we get the PDG of the DLP, we utilize program slicing
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tools to isolate the statements of payload-based DL from other statements. The key insight is that

payload-based DL relies on payload information thus is influenced by inputs containing payload

information. If an input is a direct reference of some header fields, this input only provides header

information, otherwise it also contains payload information. Based on the above insight, we compute

a forward program slice from the input of the DLP for the inputs that contain payload information.

we call the resulting statements as the payload-based DLP slice. All the statements in the payload-

based DLP slice are affected by the payload information. Therefore, we should let the payload-based

detection microservice execute these statements.

Step3: Constructing header-based DLP. Since we have isolated the statements that are

influenced by payload information, the remaining statements are independent to the payload infor-

mation. These remaining statements can be executed by the header-based detection microservice.

Algorithm 3 depicts the algorithm to identify the statements of the header-based DLP. Lines 1-4

identify the inputs containing payload information. Lines 5-7 compute the payload-based DLP slice.

Line 8 computes the statements of the header-based DLP.

Then, one question remains: how can we address the packet if the processing of the packet

reaches a point where the statements in the payload-based DLP slice must be executed? Note that

those statements in the payload-based DLP slice cannot be executed in the header-based detection

microservice, since payload information is not available in that microservice. We solve the problem

by introducing the forward statement. We replace all the statements in the payload-based DLP

slice with the forward statement. The forward statement is actually an interface to the NE, similar

to the “system call” in the operating systems. Once the packet processing reaches the forward

statement, it causes a trap into the NE. Then, the NE handlers the packet by encapsulating it with

some metadata and sends it to the network. The metadata includes two pieces of information: 1)

the points where the execution is interrupted; and 2) the intermediate results associated with the

processing of this packet. We can get information 1) by labeling the forward statement (e.g., using

its line number). We can get information 2) by tracking which variables have been updated by the

current packet processing. Note that this information should not be too much, since we only need to

track the variables that are also used by the payload-based DLP. Lines 9-12 of Algorithm 3 computes

which variables should be tracked.

Step4: Constructing payload-based DLP. As we have already computed the payload-based

DLP slice. We can use that slice as a starting point to construct the payload-based DLP. There
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Algorithm 3: Identifying statements of header-based DLP and variables to be
tracked by header-based DLP

Input: F : a set of header fields;
prog: origin detection program

Output: header-based DLP statements and variables to be tracked
1 PI = {} /* a set storing inputs containing payload information */

2 foreach input in Inputs(prog) do
3 if input /∈ F then
4 PI = PI ∪ {input}

5 Slice = {} /* a set storing statements in resulted slices */

6 foreach input in PI do
7 Slice = Slice ∪ ForwardSlicing(prog, entry, input)

8 S = Statements(prog)− Slice
9 V = {} /* a set storing variables that should be tracked by header-based

DLP. */

10 foreach v in V ariables(Slice) do
11 if v ∈ V ariable(S) then
12 V = V ∪ {v}

13 return S and V

are two major concerns with the construction: 1) how can we get access to the intermediate results

produced by the header-based DLP? and 2) how can we retrieve the execution from the previous

break points? For concern 1), we add an initialization statement at the beginning of the payload-

based DLP slice for every variable that are also used by the header-based DLP. Recall that we have a

contract that the forward statement in the header-based DLP will encapsulate intermediate results

of those variables used by both DLPs. As a result, those variables are initialized at the beginning of

the payload-based DLP slice. For concern 2), we add a switch-case statement right after all the

initialization statements. The switch-case statement checks the label that is set by the forward

statement in the header-based DLP. According to the label, the switch-case statement jumps to

the right points to start execution.

Step5: Emitting the code. This step is a reverse of Step1. Once we have constructed the

PDG of header-based and payload-based DLPs, there is little challenge to emit the code for both

DLPs. Many program analysis tools also support the reversing procedure to emit the code from a

computed PDG.
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4.3.4 Implementations

We have implemented a prototype of vNIDS based on Xen [13] hypervisor. The vNIDS

controller is implemented in the Dom0 of Xen, which has the ability to monitor and manage the vir-

tual machines provisioned in Xen. We utilized Floodlight [9], an industry-scale SDN controller, and

Open vSwitch [25] to construct our SDN environment. In particular, the vNIDS controller interacts

with Floodlight to achieve per-flow traffic distribution. The three microservices are implemented

based on the Click modular router software [88]. Click provides rich networking processing elements,

which can be leveraged to construct a wide range of network functions.

vNIDS controller: We have implemented the DLP partitioning algorithms and detection

state classification engine based on Frama-C [20], a static program analysis tool framework for C.

The DLP partitioning algorithms and detection state classification engine are run off-line. Each

time the user specifies new DLPs, the DLP partitioning algorithms will be run to partition the DLP

into two header-based and payload-based DLPs that can be installed into the header-based detection

and payload-based detection microservices, respectively. The detection state classification engine

takes the two small DLPs and outputs DLPs with classified detection sates. We have developed a

programing interface on top of XL to support provision control and state management.

vNIDS microservice instances: We have developed three new elements for Click to en-

able the three microservices. The major functionalities of the three microservice include i) handling

the messages from the controller; ii) integrating RAMCloud [134] to support detection state shar-

ing between instances; and iii) executing DLPs or protocol parsers (we have implemented HTTP,

SSH, DNS, and FTP protocol parsers for our virtualized NIDS). We have written six DLPs as Click

elements for various detection purposes. Table 4.1 shows the descriptions of the six DLPs that we

have written for our virtualized NIDS. In particular, DNS Tunneling DLP, Cookie Hijacking DLP,

Trojan DLP and Scanner DLP are representatives of the DLPs handling traffic of different appli-

cation protocols. Flow Monitor DLP and HTTP Monitor DLP are commonly used traffic monitors

that collect traffic statistics and conduct some detection tasks based on the statistics.

4.4 Evaluation

We evaluate our virtual NIDS with the following major goals:
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Detection Programs Descriptions

DNS Tunneling
DLP [18]

Detects potential DNS tunnels based on
the DNS request frequency, packet length
and domain name characteristics.

Cookie Hijacking
DLP [15]

Detects whether an HTTP cookie has
been reused by different users.

Trojan DLP [46]
Combines SSH, HTTP and FTP traffic to
detect whether a host has been infected
by Trojans.

Scanner DLP [28]

Detects whether a hosts has generated a
large amount of small flows to different
hosts in a short period of time. And searches
signatures in the flows generated by scanners.

Flow Monitor DLP
Monitors the bytes, packets and average
byte per packet information of each flow.

HTTP Monitor DLP
Monitors the data being transferred
through HTTP traffic and sort the hosts
based on the volume of HTTP traffic.

Table 4.1: Detection programs that we have written for our virtualized NIDS.

• Demonstrating the intrusion detection effectiveness of vNIDS. We run our virtualized NIDS

and compare its detection results with those generated by Bro NIDS based on multiple real-

word traffic traces (Figure 4.4).

• Evaluating the performance overhead of detection state sharing among instances in different

scenarios: 1) without detection state sharing; 2) sharing all detection states; and 3) only

sharing global detection states. The results are shown in Figure 4.5.

• Evaluating how fast each microservice can execute and scale compared with monolithically

provisioned NIDSes. We compare the processing capacity and launch time of each microservice

with those of the monolithically virtualized NIDS (Figure 4.6).

• Demonstrating the flexibility of vNIDS regarding placement location. In particular, we quan-

tify the communication overhead between virtualized NIDS instances across different data

centers that are geographically distributed (Figure 4.8).

• Demonstrating the flexibility of vNIDS regarding processing capacity. We compare vNIDS

with Bro Cluster with respect to processing capacity and resource usage when the network

traffic volume is changed (Figure 4.9).
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4.4.1 Data Collection & Attack Trace Generation

Our dataset consists of two parts, the background traffic and the labeled attack traffic.

The background traffic are from three different sources: i) the CAIDA UCSD anonymized Internet

trace [16], which is a representative of Internet traffic; ii) the LBNL/ICSI enterprise trace [5], which

is a typical traffic trace collected from an enterprise network; and iii) the campus network trace

that was collected from our campus network gateway. The labeled attack traffic is generated by

conducting penetration tests in an isolated environment. We have generated four attack traces for

our DLPs.

• The DNS.trace contains DNS tunneling traffic generated by 20 different hosts. Therefore, we

count the number of “malicious activity” in this trace as 20. We use scapy [26], a powerful

interactive packet manipulation program, to generate the traffic.

• The Cookie.trace contains HTTP traffic with 100 different cookies that have been reused by

multiple hosts. Therefore, we count the number of “malicious activity” in this trace as 100.

We use Firesheep [14], an extension of FireFox, to generate the traffic.

• The Trojan.trace contains 20 victim hosts intruded by our penetration. The penetration

follows the description in [46]. Basically, an attacker connect to the victim through SSH;

then the attacher downloads a ZIP toolkit from a website; finally, the attacker escalates the

privilege and upload a ZIP data file to a remote FTP server. Therefore, we count the number

of “malicious activity” in this trace as 20.

• The Scanner.trace contains the traffic from 20 hosts that try to scan other hosts in the

network. Therefore we count the number of “malicious activity” in this trace as 20. We use

Nmap [21] to generate the scanning traffic.

We merged the above four traces as the Attack.trace. Then, we merged the Attack.trace

with three different real-world background traffic as: CAIDA+Attack.trace, LBNL+Attack.trace,

and Campus+Attack.trace. The merged traces are then replayed to the NIDS. We observe the

output logs to determine how many attacks have been detected by the NIDS.
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4.4.2 Detection Effectiveness of vNIDS

In this experiment, we evaluate the detection effectiveness of vNIDS. Our evaluation was

based on the DNS Tunneling, Cookie Hijacking, Trojan, and Scanner DLPs. For each dataset, we

have compared the detection results in four scenarios:

• We used the outputs of Bro NIDS as our base line of the experiment results (Bro).

• We implemented a version of the four DLPs that shares all the detection states and use them

in our virtualized NIDS. Each DLP is run with multiple instances (Share All).

• We ran the detection state classification component in the vNIDS controller to generate an-

other version of the four detection programs that enable state sharing between instances. Each

DLP is run with multiple instances (vNIDS ).

• We implemented a version of the four DLPs without state sharing between instances and

directly run each DLP with multiple instances (No Sharing).

In our experiments, we first ran the Bro NIDS over the three datasets and take the outputs

of Bro as the baseline of the detection results. We didn’t find DNS, Cookie or Trojan malicious

activities in any of the three real-world traces. The malicious activities detected by these DLPs are

all from our Attack.trace. We found malicious activities for Scanner DLP in all three real-world

traces. The malicious activities detected by the Scanner DLP are from real-world traces and our

Attack.trace.

Then, we ran the Share All NIDS over the three datasets. The traffic is distributed to two

instances randomly at per-flow granularity. The number of the malicious activities reported by the

NIDS is the same as Bro NIDS. This implies that, by sharing all detection states, our virtualized

NIDS can ensure the effectiveness.

Next we ran the vNIDS over the three datasets. The traffic is distributed to two instances

randomly at per-flow granularity. We also observed the same number of malicious activities reported

by the NIDS. This implies that vNIDS can also ensure the detection effectiveness by only sharing

the global detection states.

Finally, to demonstrate the limitations of NIDSes without sharing detection states, we run

the No Sharing NIDS. The traffic is distributed to two instances randomly at per-flow granularity. At

this time, we observed a degradation of detection rate for all the three datasets. The comparison of
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detection rates of NIDSes in four scenarios is shown in Figure 4.4. Figures 4.4-a, 4.4-b, and 4.4-c are

based on the three traces, CAIDA+Attack.trace, LBNL+Attack.trace and Campus+Attack.trace,

respectively.

We further examined the reasons for detection rate degradation in this scenario. We found

that it was caused by distributing traffic relevant to the same malicious activity to different instances.

For example, for the Scanner DLP, we totally observed 58 hosts that are conducting scanning through

the Bro NIDS in the CAIDA+Attack.trace. The No Sharing NIDS only reported 45 hosts. We

manually checked the flow rules used to distribute the traffic and examined the flows generated from

the 13 hosts that are not detected. We found that those 13 hosts were not reported because their

flows are almost evenly distributed to the two instances. For each instance, the scanning speed of

those hosts is below the threshold.

As a summary, this experiment demonstrated that vNIDS can address the effective intrusion

detection challenge for virtualized NIDSes and achieve equivalent outputs as traditional NIDSes.

4.4.3 Detection State Sharing Overhead

In this experiment, we have evaluated the overhead of detection state sharing in three

scenarios described in the previous section: Share All, vNIDS and No Sharing.

We replayed the same traffic trace to the virtualized NIDS in three scenarios and observed

the processing time of each packet. We chose the processing time as the evaluation metric because

this time reflects how fast a packet can be processed. If a packet takes too much time to be processed,

the NIDS instance cannot keep up with the packet transmission rate thus may drop packets.

Figure 4.5 (a) presents the packet processing time of each DLP. On the one hand, the

results of this experiment demonstrated that sharing all detection states introduced non-trivial

performance overhead to the virtualized NIDSes. On the other hand, for DNS Tunneling, Cookie

Hijacking, Trojan, and Scanner DLPs, we observed that vNIDS saved 70.71%, 54.22%, 70.34% and

69.96% of the processing time compared with the approach that shares all detection states, shown

in Figure 4.5 (b). Specially, vNIDS saved 92.23% and 99.55% packet processing time for the Flow

Monitor and HTTP Monitor DLPs, respectively, because all the detection states employed by these

two DLPs are local detection states. vNIDS keeps all of their detection states locally to each instance

to significantly reduce the processing time of each packet. The Evaluation results demonstrated that

sharing all detection states introduces non-trivial performance overhead and vNIDS enables only
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global detection state to be shared to minimize performance overhead significantly.

4.4.4 Microservice Efficiency

In this experiment, we have evaluated the efficiency of virtualized NIDSes provisioned as

microservices. First, we evaluated how fast each microservice instance can launch with various de-

tection programs installed and compared them with the launch time of the monolith NIDS instance.

Then, we compared the processing capacity of each microservice instance with that of monolithic

NIDS instance. The launch time is used to estimate how fast the microservice instance can scale

out by launching new instances. The processing capacity reflects the number of CPU cores required

to achieve a specific performance requirement. The greater the processing capacity, the less CPU

core is required to achieve a specific performance requirement, therefore, the instance requires less

resources to run.

We have implemented our microservices based on Click elements. For the monolithic NIDS,

we include all the elements of three microservices and instantiate them within a single instance.

Notice that, there are four cases (Figure 4.2) with respect to composing microservice chains. In our

experiment results, if a microservice is not included in microservice chain, we set the processing time

of that microservice as 0.

Based on the evaluation results shown in Figure 4.6 (a), we observed that, for all the

detection programs, the launch time of each microservice instance was less than the launch time

of the monolithic NIDS instance, though the sum of the launch times of all microservice instances

was greater than the launch time of monolithic NIDS instance. This is because each microservice

instance includes less Click elements than the monolithic NIDS instance but some elements have

been reused by multiple . The results of this experiment demonstrated that microservice instances

can launch faster than monolithic NIDS instances thus can scale faster.

We also compared the processing capacity of each microservice instance with that of the

monolithic NIDS instance. Figure 4.6 (b) shows the comparison results. We observed that all the

microservice instances have greater processing capacity than the monolithic NIDS instance. That

means, every microservice instance requires less resource than the monolithic NIDS instance to

achieve equal processing capacity. Therefore each microservice instance can be provisioned with less

resource than the Monolithic NIDS instance.
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4.4.5 Flexibility of Placement Location

In this experiment, we evaluated the flexibility of vNIDS regarding placement location. The

experimental environment was built on CloudLab involving two data centers (Site-1 ) and (Site-2 )

that are geographically distributed. In the experiment, we wanted to demonstrate that under the

situation where some applications (Applications B) have migrated from Site-1 to Site-2, vNIDS

have advantages over traditional NIDSes due to their flexibility of placement location. Figure 4.7

demonstrates the different behaviors of two types of NIDSes.

Originally, all applications are running Site-1 and the NIDS is provisioned at Site-1 to

protect those applications. If Applications B are migrated to Site-2 due to resource management

or optimization purpose, as traditional NIDSes are difficult to migrate, in this case the network

traffic relevant to Applications B must be rerouted from Site-2 back to Site-1 for processing. In

contrast, vNIDS can flexibly provision new instances at Site-2 to process the traffic of Applications

B. The only concern is the communication traffic, the volume of which we have quantified in this

experiment, between virtualized NIDS instances located at different sites.

During the experiment, we divided each of our dataset into two parts, representing the traffic

of Applications A and Applications B respectively. Then we replayed the two parts of each dataset

at two sites respectively. In the traditional NIDS case, traffic replayed at Site-2 was rerouted to

Site-1 and we evaluated the bandwidth required by the rerouting. In the vNIDS case, traffic was

replayed at Site-1 and Site-2 separately and was processed by instances at corresponding sites. We

evaluated the bandwidth required by the communication between instances in the two sites.

The required bandwidth between Site-1 and Site-2 for traditional NIDS and vNIDS respec-

tively is shown in Figure 4.8. We tested the three real-world datasets (without synthetic attack

traces injected) and found that the bandwidth required by vNIDS is much less than traditional

NIDS. Especially, for Campus.trace, traditional NIDS requires 1000x more bandwidth than vNIDS.

This is because vNIDS only needs to exchange global detection states between the two sites, while

traditional NIDS needs to reroute all the network traffic between the two sites. Another important

observation is that for all three real-world datasets, the communication bandwidth between virtu-

alized NIDS instances surprisingly low – only hundreds of Kbps – for the three datasets. This is

because the amount of global detection states is relatively small.
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4.4.6 Flexibility of Processing Capacity

In this experiment, we evaluated the flexibility of vNIDS regarding processing capacity and

compared it with Bro Cluster. We only used Campus.trace, which has the highest traffic rate, for

this experiment. We ramped the traffic sending rate gradually from 0 up to 10Gbps in 100 seconds

and observed the throughput of Bro Cluster and vNIDS. We deployed 5 instances for Bro Cluster

in the experiment because each Bro Cluster instance, estimated against our dataset, can roughly

handle 1Gbps traffic. In contrast, vNIDS scaled according to the traffic volume. Once existing

virtualized NIDS instances are about to overload, we created a new instance and redirected some

traffic to the new instance.

Figure 4.9 depicts our observation of this experiment. Figure 4.9-a indicates that the

throughput of Bro Cluster and vNIDS steadily increased as the traffic volume grew. Once the traffic

volume reached the maximum processing capacity of Bro Cluster, the throughput of Bro Cluster is

limited to less than 6Gbps. For vNIDS, as it can quickly launch new instances, its throughput grew

consistently with the traffic volume. Figure 4.9-b depicts the number of provisioned instances for

Bro Cluster and vNIDS over time. Bro Cluster provisioned static number of instances. Virtualized

NIDS, in contrast, provisioned its instances according to the traffic volume. As the traffic volume

grew, vNIDS provisioned an increasing number of instances to handle the traffic. We saw that when

the traffic volume was under 5Gbps, the Bro Cluster is over-provisioning, while the traffic volume

exceeded 5Gbps, the Bro Cluster became under-provisioning (overloaded in Figure 4.9-a).

4.5 Conclusion

In this task, we have propose vNIDS, a new NIDS architecture, to achieve safe and effi-

cient virtualization of NIDSes. We have carefully designed solutions in vNIDS to address two key

challenges including effective intrusion detection and non-monolithic NIDS provisioning in NIDS

virtualization. We have implemented a prototype of vNIDS, involving three microservices and the

vNIDS controller, and evaluated them with six detection logic programs based on real-world traf-

fic traces. Our evaluation results have demonstrated the safety and efficiency of vNIDS for NIDS

virtualization.
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Figure 4.4: Detection rate of known malicious activities for Bro, vNIDS, Sharing all states, and No
sharing solutions. The experiments are based on three different real-world traffic with generated
attack traces: (a) CAIDA+Attack.trace; (b) LBNL+Attack.trace; and (c) Campus+Attack.trace.
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DNS Cookie Trojan Scanner FlowM HTTPM
1

10

100

1000

10000

P
ro

c
e

s
s
in

g
 C

a
p

a
c
it
y
 

 (
K

p
p

s
)

(b)

Header-based

Parse

Payload-based

Monolithic

DNS Cookie Trojan Scanner FlowM HTTPM

200

400

600

800

1000

L
a

u
n

c
h

 T
im

e
 

 (
m

ill
is

e
c
)

(a)

Header-based

Parse

Payload-based

Monolithic

Figure 4.6: Launch time (a) and processing capacity (b) of header-based detection, protocol parse,
payload-based detection, and Monolithic NIDS instances.

58



Mirrored 

Traffic

(a) Traditional NIDS
Applications A

Internet

Site-1 Site-2

A
A

A

Traditional NIDS 

Instances
Internet

Site-1 Site-2

A
A

A

Virtualized NIDS 

Instance-B

B
B

B

B
B

B

Applications B Applications A Applications B

(b) vNIDS

Rerouted 

Traffic

Mirrored 

Traffic

Mirrored 

Traffic
Communication 

Traffic

Virtualized NIDS 

Instance-A

Figure 4.7: (a) Traditional NIDS requires rerouting traffic of Applications B back to Site-1 for
processing. (b) vNIDS can provision its instances flexibly at Site-2, if Applications B have migrated
to Site-2.

CAIDA.trace Campus.trace LBNL.trace
1

10

100

1000

10000

100000

1000000

R
e

q
u

ir
e

d
 B

a
n

d
w

id
th

 (
K

b
p

s
)

409Kbps 452Kbps 427Kbps

169Mbps
409Mbps

1Mbps

vNIDS

Traditional NIDS

Figure 4.8: Required bandwidth between Site-1 and Site-2 for vNIDS and traditional NIDS respec-
tively.

59



0 10 20 30 40 50 60 70 80 90 100
Time Elapsed (Sec)

0

2

4

6

8

10

N
u

m
b

e
r 

o
f 

In
s
ta

n
c
e

Under-provisioning

Over-provisioning

(b)

Bro Cluster

vNIDS

0 10 20 30 40 50 60 70 80 90 100
Time Elapsed (Sec)

0

2

4

6

8

10

R
u

n
ti
m

e
 T

h
ro

u
g

h
p

u
t 

(G
b

p
s
)

(a)

Bro Cluster

vNIDS

Figure 4.9: (a) Runtime throughput of vNIDS and Bro Cluster. (b) Number of instances of vNIDS
and Bro Cluster.

60



Chapter 5

Expressive Security Directives for

Host Security Functions

5.1 Introduction

we have altered the design of two critical security functions, firewalls and NIDSes, in the

network level by leveraging the advances of SDN and NFV. In the host level, the situation seems

better as security functions are already implemented in software. Nevertheless, the shortcoming of

the security functions in the host is that most of them can only support simple binary access control

actions, such as allowing or denying. This calls for the work that provides more expressive security

directives for network security functions.

Inspired by the SDN flow rules, we define the host security directives in a ”Match-Action”

paradigm called system flow rule. A system flow rule consists of two fields, match field and action

field. The match field will match against an event. The action field describes the response action of

the security directive. The system flow rule is stored in a system flow rule table, which is implemented

in the kernel of operating systems.

To allow those expressive security directives to be used by various host security functions,

we abstract the events in the host with a flow-based model called system flow. The events that are

covered in this dissertation are resource access including the following two types.

• A process accesses a file. This type of events will be able to capture any illegal file operations.
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• A process accesses a network socket. This type of events will be able to capture any in-going

and out-going traffic of a process.

The events are formalized with a three-tuple, including the source, destination, and operation. The

source indicates which process initiate this event. The destination indicates which file or network

socket this event targets to. The operation depicts how the process access a file or socket. In this

dissertation, we will cover six operations, read, write, open, close, create, and delete a file or socket.

There are two research challenges for this research task.

• C1: How to abstract system activities and model system capabilities for unified programma-

bility?

• C2: How to enable complicated, practical security functions to the flow model for diverse

threat response?

5.2 Methodology

5.2.1 System Flow Overview

Inspired by SDN, we introduce a novel flow-based model for system activity abstraction,

called system flow. An SDN data plane utilizes a flow table to match network packets characterized

by various patterns (e.g., src/dst IP and src/dst port) and to provide aggregated views on the network

traffic. It facilitates communication management amongst a set of (heterogeneous) network devices.

Whereas, system flow defines a set flow rules that manage the access to various system resources,

such as file, memory, pipe, socket, etc., during a certain time interval. System flow constructs a

flow table with a flow match in an entry characterized by src/dst system objects/resource, system

operations, and metadata. Note that, based on this flow definition, system flow provides system-

oriented aggregated views on the system activities, just as SDN supplies common low-level network

views and building blocks via a southbound interface upon which developers can write arbitrary

controller applications that can modify the underneath flow tables.

Figure 5.1 depicts the overview of system flow model. In general, the whole system flow

model works in the kernel space. At the very top, it provides OS-specific hooks for system calls,

which are the only ways user-space processes interact with the system resource. Once those hooks

capture the interactions (system calls), they extract the parameters and send them to an Event
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Generator. The Event Generator then encapsulates the interactions with events, which is then sent

to the Flow Table Manager. The Flow Table Manager maintains a flow rule table and matches the

events against the flow rules. After that, Flow Table Manager notifies the Action Scheduler with

the matched flow rules. The Action Scheduler responses to the actions in those flow rules according

to the priorities of them. At this moment, there are two possible fates of the actions. One is that

the action is delivered back to the hooks from where the events are generated so that the hooks will

determine whether they should proceed. The other is that the action is delivered to host security

functions where the actions receives further processing, which is defined by the logic of host security

functions. In this case, security functions may update the flow rule table via Flow Table Manager.
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Event Generator Action Scheculer

Process
Process
Proceses
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Figure 5.1: Overview of system flow.

5.2.2 Event Generator

In infrastructure, host systems may include a variety of critical activities, which should be

monitored or controlled according to different security policies. Hence, we define a general concept of

system events to model such critical system activities. In this section, we particularly adopt system

events to cover interactions between processes and different system resources (e.g., file, socket, and
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IPC) as listed in Table 5.1.

Table 5.1: Supported system events
Type Description

file ioctl control attribute of file
file read read file
file write write to file

file append append to file
file create create file
file delete delete file
file getattr get file attribute
file setattr set file attribute

file lock lock file
file unlock unlock file
file open open file
file close close file

socket ioctl control attribute of socket
socket read read socket
socket write write to socket

socket append append to socket

socket getattr get socket attribute
socket setattr set socket attribute
socket create create socket
socket delete delete socket
socket bind bind to socket

socket connect connect to socket
socket listen listen to socket

ipc create create ipc object
ipc delete delete ipc object
ipc read create ipc object
ipc write delete ipc object

ipc getattr get ipc object attribute
ipc setattr set ipc object attribute

memory map create a shareable memory region
memory protect modify protection flags of memory
memory allocate allocate new virtual memory mapping in mm structure

process create create a new process
process execve load executable program for a program

In the case where developers need extra events, they can also define their own system

events. The Event Generator component is used to generate system events by intercepting system-

level activities (e.g., system calls) from hooks in host systems. It also interprets the semantics of

system events by parsing parameters from those hooks if necessary. In addition, Event Generator

also provides an interface, called sysflow generate event, to allow users to generate their own system
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events.

In many cases, the security application developers encounter semantic gaps for system ob-

jects, i.e., they can hardly specify the identifier of system objects. For example, a security application

developer may not know the identifiers (i.e., UUID and inode number) of tax files in the file system

of the victim host when they want to write security apps to prevent the ex-filtration attacks. In-

stead, they may be aware of the file name and possibly the path. To bridge the semantic gap, Event

Generator enables an identifier binding and resolution service for system objects.

At run-time, Event Generator maintains the profile table for system objects (Table 5.2).

For example, Event Generator will keep the executable name of a process in addition to the process

identifier. When receiving the requests to update flow rules that include attributes of system objects

instead of identifiers, the Event Generator will refer to the profile table to retrieve the identifier of

the system object. We note that, in some cases, the map from the attributes of a system object to

its identifier is not unique. For example, the process name may map to multiple running processes.

In this case, we will install flow rules for each of them. In addition, the binding service will also

monitor the change of the mapping from non-identifier profiles to the identifier (e.g., from name to

UUID and inode number for a file) at run-time and update the inductive flow rule accordingly.

Table 5.2: Example system object attributes.
System Object Example Profile

Process pid, ppid, pname, stime, etime, etc
File uuid, inode number, fname, path, etc
Socket uuid, inode number, local/remote addr/port, etc
Memory virtual address, physical address, etc

5.2.3 Flow Table Manager

5.2.3.1 System Flow Rule

We introduce system flow rules to model system security capabilities upon a sequence of

system events. The system flow rule is formally defined by the syntax in Figure 5.2. System flow

rules are used to capture system security intents, which include match, action, priority. A match

is a predicate to match a sequence of system events that have the same attributes, i.e., source,

destination, or type. The source of a system flow is an identifier for the initiator of the flow, which is

an identifier of a system application. The destination of a system flow is an identifier for the receiver
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Figure 5.2: Syntax of system flow rule.

of the flow, which is an identifier of system resources, such as files, memories, etc. The type of

system flow is used to classify the different interactions between system applications and resources,

e.g., writing a file. Note that a system flow can be used to represent an exact system event or a

group of system events with the same pattern by using a wildcard notation (*). For example, a

system flow can be specified as {src : ∗, dst : file1, type : file op write} to match system events

representing any process writes to file1.

Table 5.3: Security actions that we define.
Name Descriptions

Allow permit matched system events pass through
Deny prevent matched system events pass through
Encode push contextual tag into outgoing packets
Decode check contextual tag from incoming packets
Redirect redirect matched system events to a new destination
Quarantine restrict a process under a specific running context
Report report alerts to administrators
Log log matched events based on conditions
Message pop up a prompting window to notify the host user.

A system flow rule uses a list of primitive actions (as listed in Table 5.3) to specify how

the system events should be processed. The intuitive primitive actions are allow and deny, which

are used to enforce explicit access control upon matched system events. quarantine aims to con-

straint/isolate a specific process under a fine-grained resource context and access. Also, log can be

used to record system events for further analysis, e.g., digital forensics. encode is to push contextual
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tag into outgoing network packets, and decode is to check the contextual tag from incoming network

packets, which can be used to enforce cross-host information flow tracking. Furthermore, redirect

aims to change the system flow to a new location, which is helpful to enforce a deception-based

defense. Besides, alert and message are proposed to notify administrators or host users of suspi-

cious/abnormal events. We note that the defined security actions are basic security primitives that

we abstract from many existing system security applications. In addition, a system flow can also use

external primitive action that is customized by a security application developer. An integer-based

priority is used to disambiguate rules with overlapping patterns. If a system event matches multiple

system flow rules, only the highest-priority rule is applied. In this case, the priority can be used to

explicitly specify the matching order to resolve potential conflicts from a set of system flow rules.

The system flow rule can be used to enforce a wide variety of basic security intents. For

example, a system flow rule “src: *, dst: file 1, type: file open, priority:0, actions: block” can be

used to disallow any open operations on a specific file.

5.2.3.2 Efficient Flow Rule Management

The low-level security intents is embedded in a table of system flow rules, called system flow

rule table. We note that the flow rule in system flow rule table can have two types of match patterns,

i.e., exact match and wildcard match. In order to support both of them, an intuitive solution for

system flow rule table is to use a bit-wise classification, i.e., we compare the incoming system events

with all system flow rules in the table bit by bit. However, in such a solution, the time complexity

for flow table lookups and updates is O(R), where R is the number of system flow rules resided in

a running system. As a result, security intent enforcement will incur a high latency.

In order to support an efficient flow table update and query, we adopt Tuple Space Search

(TSS) classification algorithm [141]. The key insight of TSS classification is to realize a flow table

as a set of hash tables. In each hash table, it stores the hashed key for each specific system flow rule

with the same mask. Suppose all the flows in a system flow rule table matched on the same fields

in the same way, e.g., all flows match the source and destination system object but no other fields.

In such a case, TSS implements a flow table as a single hash table. If a new flow with a different

match is added, TSS generates another hash table that handles the new match for the flow. To

denote matched fields, we use a 3-bit mask to specify the range of each hash table. Based on the

TSS algorithm, Flow Table Manager can provide an efficient flow table management, e.g., flow rule
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update/lookup, with time complexity of O(1). 1

5.2.4 Action Scheduler

5.2.4.1 Built-in Security Actions

We next discuss the implementation of built-in security actions in our System Flow model

(listed in Table 5.3). We must note that the implementation of built-in security actions is OS-specific,

depending on how the host OS can support certain operations, such as access to files, memory, and

socket. For discussion purpose, we assume that our built-in security actions will be implemented on

the Linux OS.

The allow and deny directives allows and denies, respectively, certain operations, including

open, read, and write a file. These two directives can be easily enforced through the file permission

or inode permission hooks in Linux Security Module (LSM). The quarantine directive is used to set

up a group of system flow rules with allow and deny actions. The redirect directive is intended for

redirecting operations to another object. For example one can redirect the ”open file” operation

to a decoy file so that a process will open the decoy file instead of the original file. However,

the enforcement of redirect action is quite challenging due to only relying on the existing hooks of

LSM. Therefore, we place an additional hook to handle the redirect action. Since a process in the

user space manipulates a file through a file descriptor, we place a hook (fd bind) before the file

descriptor is bound to a specific inode. By invoking the fd bind hook, one can enforce the redirect

action via replacing the inode of the original file with the inode of any other files according to

the security intents. The encode directive is for tagging the outgoing packets, and we can get the

tagging information from the incoming packets by decode directive. In order to associate process

identifiers with their outgoing packets, we embed two new hooks in LSM from Linux kernel functions

(i.e., ip queue xmit() for encode and ip rcv() for decode), which can help correlate process identifiers

with their outgoing packets. Then, the encode and decode leverage packet tags (using IP TOS field

in outgoing or incoming packets) to exchange contexts cross multiple hosts. The alert directive

is implemented as flow rule status report messages that notify security administrators. The log

directive is implemented to write to a system log file, “/var/log/messages”, in Linux, and other

system log files for other operating systems.

1The flow rule lookup with TSS needs T hashed memory accesses, where T is a constant value (i.e., 8 in the work)
of the number of tuples. The flow rule update with TSS needs 1 hashed memory accesses.
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5.2.4.2 Security Action Scheduling

For a specific incoming system event, System Flow can specify multiple security actions

based on user-defined control logic. By default, the Action Scheduler will response to all of those

actions in parallel to improve its efficiency. That is, the Action Scheduler will create multiple copies

of action responses and feed them to different destinations. If the action is for access control only

and can be enforced by the hooks directly, Action Scheduler will feed this action response back to

the hooks. In this case, the hooks will determine whether they should go forward to allow the access

or return a permission error to block the access. In another case, if the action response needs further

processing with certain host security functions, Action Scheduler will feed this action response to

the corresponding security functions simultaneously.

5.2.5 Host Security Functions

The insight of Host Security Functions is to provide a dedicated mechanism that can main-

tain a global view of different events across the system. The security functions can maintain states

between events, implement comprehensive logic that is necessary for sophisticated security applica-

tions. For example, many system security applications may locate suspicious/malicious incidents by

inspecting a sequence of system calls, e.g., detection of TOCTTOU attacks [36, 42, 47, 147] and Link

Following attacks [154, 40]. In those case, security functions can be developed to maintain statistics

of a serials of system calls. And if if necessary, those security functions can dynamically update the

system flow rules via Flow Table Manager. To update the system flow rules in the system flow rule

table, security functions must specify the flow rules that they want to update by following the flow

rule syntax defined in Figure 5.2.

5.3 Evaluation

In this section, we present our experimental results from evaluating the performance of

our System Flow model for micro-benchmark tests and scalabillity tests. The tests are conducted

under Linux OS. In the following evaluations, we leverage baseline to refer to systems running an

unmodified Linux kernel.
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5.3.1 Micro-Benchmark Results

We used LMBench [7] and Unix-Bench [138] to evaluate the run-time performance of system

calls, file operations, memory latencies, and socket I/O throughput. Table 5.4 and Table 5.5 depict

the comparison between the baseline and System Flow with a variety of applications deployed.

Based on the results of LMBench, two of the three primary file operations (i.e., read, and

write) introduce reasonably low overhead (with less than 4%). Based on the results of Unix-Bench,

most of the operations introduce low overhead (with less than 4%) except the system call overhead,

which is 10.38%. This is because the hooks are implemented in the system calls. Overall, the results

indicate that System Flow mainly impacts the file open/close operations, mmap latency and system

calls. But for other file or socket operations, System Flow only introduces negligible overhead.

Table 5.4: LMbench results for System Flow.
System Operation Baseline System Flow

Latency of system operations in ms (smaller is better)
file read 0.1913 0.1979 (+3.45%)
file write 0.1879 0.1914 (+1.86%)

file open/close 0.4875 0.5612 (+15.12%)
file create (0k) 2.9717 3.0629 (+3.06%)
file create (10k) 6.6968 7.1788 (+7.20%)
file delete (0k) 4.9388 5.0660 (+2.58%)
file delete (10k) 3.4770 3.6923 (+6.19%)

syscall 0.0359 0.0367 (+2.23%)
mmap latency 3418.0 3940.0 (+15.27%)
pipe latency 2.0840 2.1471 (+3.03%)

Socket throughput pps (larger is better)
socket I/O 885 883 (-0.22%)

5.3.2 Scalability with Flow Rules

Moreover, we tested the scalability of our System Flow model using different numbers of

system flow rules. Figures 5.3, 5.4, and 5.5 depict the cumulative distribution function (CDF) of

the performance of three most frequently used operations, file read, file write, and socket I/O. We

increased the number of system flow rules from 1000 up to 100,000 in our experiments. The actions of

these rules are all allow and most of them will only match specific system objects (e.g. specific file).

The testing results show that the number of system flow rules does not make significant differences

to the performance of file read, file write, and socket throughput since the flow table is implemented
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Table 5.5: UnixBench resulted sources for System Flow.
Benchmarks Baseline System Flow

Dhrystone 2 using register variables 4380.1 4379.2 (-0.02%)
Double-Precision Whetstone 447.5 440.3 (-1.62%)

Execl Throughput 1565.8 1548.4(-1.12%)
File Copy 1024 bufsize 2000 maxblocks 2867.2 2839.3 (-0.97%)
File Copy 256 bufsize 500 maxblocks 1922.8 1912.0 (-0.56%)

File Copy 4096 bufsize 8000 maxblocks 5259.3 5092.7 (-3.18%)
Pipe Throughput 1595.0 1582.0 (-0.92%)

Pipe-based Context Switching 1202.9 1177.7(-2.10%)
Process Creation 1611.6 1569.1(-2.65%)

Shell Scripts (1 concurrent) 2935.2 2903.8(-1.07%)
Shell Scripts (8 concurrent) 2697.9 2679.1(-0.70%)

System Call Overhead 3837.5 3439.1(-10.38%)
System Benchmarks Index Score 2122.5 2097.1(-1.20%)

through a hash table.

In addition, we tested the memory overhead introduced by the System Flow through the top

Linux command with different numbers of system flow rules. The result shows the memory usage is

about 400 KB for 1000 flow rules and it grows linearly with the number of system flow rules inserted.

Hence, System Flow is scalable to contain system flow rules for various system security intents.
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Figure 5.3: CDF of the latency of file read operation with various numbers of system flow rules
installed.
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Figure 5.4: CDF of the latency of file write operation with various numbers of system flow rules
installed.
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Figure 5.5: CDF of the socket throughput with various numbers of system flow rules installed.

5.4 Conclusion

In this task, we present a novel system security development framework for programmable

security control of host system activities at run time. System flow model abstracts low-level system

activities into a flow-based abstraction, provides dynamic flow-level control at run time, and offers

a unified programmable interface for developers to develop various host security functions. The

evaluation shows that our system flow model is useful to design diverse system security apps and
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only introduces minor run-time overhead.
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Chapter 6

Case Study: Defending malware in

IoT with ProSec

6.1 Introduction

Linux has been widely used, especially, nowadays by the overwhelming number of the so-

called “Internet of Things” (IoT) devices. The rocketed population, poor security, and 24/7 online

properties make Linux-based IoT devices ideal targets for attackers. We have witnessed a number

of catastrophes caused by large groups of compromised IoT devices in the past years. However, due

to the budget constraints and security vulnerabilities of Linux-based IoT devices, protecting them

from being compromised presents one of the greatest challenges. Recent research has recognized

three main stages of IoT device compromise–intrusion, infection, and monetization.

In this chapter, we develop an approach to Linux-based IoT malware defense as a use case

utilizing ProSec. This use case will demonstrate the usefulness of ProSec by showing how some

domain-specific requirements can be satisfied easily through ProSec. First, the majority of IoT

malware intrusion is based on vulnerable passwords, which makes it difficult if not impossible to

distinguish legitimate login from intrusion by only looking at the network traffic. Therefore, it is

critical to consider both network-level and host-level information to detect IoT malware. Second,

most IoT devices are resource and budget constrained. As a result, state-of-the-art host-based secu-

rity approaches can hardly be deployed due to their high-performance demands. Third, IoT malware
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monetizes in various ways, such as launching DDoS attacks, stealing data, and cryptocurrency min-

ing, which may cause real-world damages or financial loss. What makes matters worse, it presents

a great challenge to detect and block those harmful activities before they actually take place, which

requires the so-called early detection.

Our defense approach is developed based on ProSec. In the first place, we try to detect

and prevent malware in the early stage, which is before the compromised IoT devices are monetized.

To achieve this goal, a host-based infection detector and infection prevention mechanism are used to

detect infection attempts and prevent detected infections from proceeding, respectively. As a second

line to defense IoT malware, a virtual NIDS and virtual firewall are deployed to detect and block

network traffic that is generated during by malware in the monetization stage.

To evaluate our defense approach, we have deployed it to high-fidelity software (virtual)

IoT devices (as honeypots) on public clouds across several geographically different locations for one

week. And we also quantify the performance overhead of our defense approach on real IoT devices.

6.2 Host-based IoT Malware Infection Detection

6.2.1 Understanding IoT Malware Infection

6.2.1.1 Identifying IoT Malware Infection Process

A recent research on IoT malware provides a deep understanding on Mirai [33]. Authors

of [33] revealed that Mirai comes with a separate loader program, which asynchronously infects

vulnerable IoT devices by logging in through brute-force attempts, determining system environment,

downloading and executing architecture-specific binaries, and finally deleting downloaded binaries.

We further investigate the source code of Mirai and recognize that a number of shell commands are

used to perform the above operations as shown in Fig. 6.1 (left). Another research devoting to a

different IoT malware, Hajime [73], also reveals similar infection behaviors, which include logging in,

and downloading and executing malicious binaries in the target system via shell commands. Besides,

a prior study based on an online honeypot system, IoTPot [122], discovers that during the infection

stage, IoT malware executes a sequence of shell commands to detect system architecture, download

and execute malicious binaries, and remove the downloaded binaries.

Based on those key investigations, we find that a general IoT malware infection process can
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Figure 6.1: Shell commands executed during Mirai infection (left), and the five phases of IoT malware
infection process that we identified (right).

be divided into 5 basic phases – Settlement, Environment Preparation, Payload Delivery, Payload

Execution, and Persistence & Covert. Fig. 6.1 (right) illustrates the 5 phases in sequence. In the

first phase, Settlement (1), malware tries to find a writable place as the working directory. Then,

during the Environment Preparation (2) phase, malware collects necessary information from the

system. After that, during the Payload Delivery (3) phase, malware delivers malicious payload

to the target system. The following phase is Payload Execution (4) where malware executes the

delivered payload on the target system. After the payload has been successfully executed, malware

seeks ways to persist and covert footprint in the Persistence & Covert (5) phase. More importantly,

we also observe that an IoT malware infection process is accomplished by executing a serials of shell

commands and these commands must be executed in a certain sequence. For instance, as shown in

Fig. 6.1 (left) for commands executed during the Mirai infection, wget must be after cd because the

malware needs to enter a writable directory before it can download a file; chmod must be after wget

or tftp because malicious payloads need to be delivered before changing their permissions; and rm

should be after ./ because malicious payloads must be executed before they are removed. To verify

the infection process identified in Fig. 6.1 (right), we collect the source code of 3 IoT malware and

reverse-engineering reports of 18 different families of IoT malware online and compare the infection

process with them. A summary of the comparison is listed in Table 6.1, which illustrates that the

76

Hongxin Hu



Table 6.1: Summary of the phases of infection process involved in 3 open-source IoT malware and
18 reverse-engineering reports.

Source P1 P2 P3 P4 P5
Wifatch [161] × X X X X
LightAidra [92] × X X X ×
Mirai [109] X X X X X
Psyb0t [78] × × X X X
Chuck Norris [78] X × X X ×
Kaiten [71] X X X X X
Darlloz [48] X X × X ×
BASHLITE [77] X X X X ×
XOR.DDoS [101] X X X X X
IRCTelnet [103] × X X X X
LizKebab [102] × X X X ×
Remaiten [100] × X X X X
TheMoon [99] X X X X X
NyaDrop [104] X X × X X
Hajime [151] X X X X ×
Amnesia [163] × × × X X
BrickerBot [129] × X × × X
PERSIRAI [146] × × X X X
IMEIJ.A [145] × × X X ×
DvrHelper [22] × X × X ×
Okiru [41] × × X X ×

infection of these malware can be well covered by the infection process we identified.

Unfortunately, the leaked source code [161, 109] and reverse-engineering reports [71, 77]

of IoT malware are still very limited. Prior studies on IoT malware infection process are also

rare. What’s worse, they either lack details of how the infection process work [109, 161, 71, 77] or

dedicate on specific IoT malware [33, 73]. To fully understand how IoT malware infection proceeds,

it is crucial to know in detail what commands are executed and in what sequence they are executed

during each infection phase. This motivates us to seek a more comprehensive study over large-scale

data that could contain a rich number of shell commands used for IoT malware infection.

6.2.1.2 Large-scale Data Collection and Analysis

We further collect a large-scale dataset from VirusShare [12], which is a repository of mal-

ware samples to provide security researchers, incident responders, and forensic analysts with access

to samples of live malicious code. The repository contains a large number of diverse malware sam-

ples, whose active time ranges from 2012 to 2020. In VirusShare, we find two types of files that

can offer shell commands, which are needed in our comprehensive study. One type is the malicious
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ELF (binary) file, which may invoke shell commands. The other type of file containing shell com-

mands is the Linux shell script. More interestingly, after manually checking the shell scripts we

extracted from VirusShare, we find that most of them are for infection purposes and can be aligned

with the infection process we identified in § 6.2.1.1.

1) Data Retrieval: We collect all the files on VirusShare with timestamp spanning from 2012-

06-15 to 2020-01-08. We leverage the file utility tool to extract ELF files. To extract shell scripts,

we parse all downloaded files using base64, file, and bashlex [34], an open-sourced bash shell

parser. We then query VirusTotal [156], a hub of more than 70 antivirus scanners and URL/domain

blacklisting services, for each ELF file and shell script to make sure that they are reported as

malicious. We consider the report as malicious if there is at least one scanner or service indicating it

as malicious. As a result, we finally obtain 48,099 valid ELF files, out of which 40,318 are malicious

ELF files, and 3,620 valid Linux shell scripts, out of which 3,439 are infection shell scripts.

2) Shell Script Analysis: We manually review all the shell scripts in our dataset to under-

stand the logic of each script. In particular, we extract and get the statistics of the shell commands

invoked by the scripts. We also refer to online manual pages [95, 39] to understand the capability

of each shell command. As such, we confirm that all the shell scripts in our dataset can align with

a part or all of the phases of IoT malware infection we have identified. An example of the shell

commands invoked by an infection shell script is shown in Fig. 6.2 (upper). We can clearly recognize

that there are five different shell commands being invoked in this shell script. According to the

capabilities of those commands, we are able to align them with four phases (1, 3, 4, and 5) of the

infection process sequentially.

cd / var / t mp; wget  ht t p: / / 185. 244. 25. 230/ bi ns/ mi ps; chmod 777 mi ps; . / mi ps; r m - r f  mi ps

cd / t mp| | cd / var / r un| | cd / mnt | | cd / r oot | | cd / ;wget  ht t p: / / 165. 227. 51. 81/ ear yzq;chmod +x ear yzq;. / eqr yzq; r m - r f  ear yzq

invoked by infection scr ipt

P1: Settlement P3: Payload Delivery P4: Payload Execution P5: Persistence &  Cover t

invoked by malicious ELF file

Figure 6.2: Examples of shell commands invoked by an infection shell script (upper) and a malicious
ELF file (bottom) in our dataset.

3) Malicious ELF File Analysis: To extract the commands from malicious ELF files, we take

a three-step approach. First, we leverage radare2 [128] to disassemble each ELF file and extract the
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Table 6.2: Top 20 commands invoked by malicious ELF files, infection scripts, and overall files in
our dataset.

ELF Files Percentage Scripts Percentage Overall Percentage
sh 18.56% cd 51.12% cd 33.89%
cd 17.21% chmod 10.69% rm 10.33%
rm 12.92% ./ 10.50% chmod 9.76%
chmod 8.86% wget 7.74% sh 9.43%
wget 6.31% rm 7.67% wget 7.01%
tftp 5.91% cat 3.31% ./ 5.94%
pkill 3.18% tftp 2.63% tftp 4.30%
history 3.02% curl 1.40% cat 1.77%
busybox 2.14% busybox 1.09% pkill 1.63%
service 2.10% echo 1.02% busybox 1.62%
ftpget 2.09% cp 0.37% history 1.55%
./ 1.51% chattr 0.37% ftpget 1.14%
iptables 1.48% mv 0.23% service 1.07%
sshd 1.02% ulimit 0.22% curl 1.00%
perl 0.97% grep 0.17% iptables 0.76%
su 0.69% touch 0.16% echo 0.75%
cc 0.63% ftpget 0.16% sshd 0.52%
curl 0.60% killall 0.13% perl 0.50%
kill 0.56% md5sum 0.08% cp 0.40%
killall 0.53% mkdir 0.08% su 0.35%

strings from the disassembled code. This yields 32 million valid strings. Second, we review the strings

from 800 different malicious ELF files manually and compare them with the commands extracted

from infection scripts to identify patterns of command strings. Third, we automate the command

extraction using these identified patterns. We finally find that 46.64% malicious ELF files invoke

shell commands and 40.99% execute Linux shell scripts. In addition, command strings extracted

from malicious ELF files are very similar with those in infection scripts. Fig. 6.2 demonstrates two

examples extracted from infection scripts (upper) and malicious ELF files (bottom), respectively.

They share the same infection phases but with slightly variants within each phase. Next, we compare

the similarities of commands invoked by malicious ELF files and infection scripts.

4) Command Distribution Comparison: We compare the distribution of shell commands

found in malicious ELF files and infection shell scripts. We find that the commands invoked by both

types of files are quite concentrated. Table 6.2 lists the top-20 commands of both types of files in

our dataset. We calculate the invocation percentage of each command by counting the times of each

command being invoked divided by the total times of all commands being invoked. The percentages

drop to 0.53%, 0.08%, and 0.35% for the 20th command in malicious ELF files, infection shell scripts,

and overall files, respectively. In Table 6.2, commands shared by malicious ELF files and infection
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scripts take 75.32% of all the command invocations in the overall dataset. This result implies that

malicious ELF files and infection shell scripts invoke the same set of shell commands in most times.

One major difference is that malicious ELF files invoke the sh command extensively but the infection

scripts don’t. We then look into how the sh is invoked by malicious ELF files and find that most

of them are trying to execute some shell scripts. This means malicious ELF files in some cases may

also try to execute a shell script to complete the infection process.

6.2.1.3 Understanding IoT Malware Infection Process

Based on the analysis of malicious ELF files and infection scripts in the large-scale dataset,

it turns out that each malware infection phase may invoke multiple shell commands and one shell

command may also be invoked in multiple phases. It is the capability of a shell command that

determines when and how the command is invoked in malware infection. To better understand

when and how shell commands are used by each malware infection phase, we first introduce the

notion of infection capability : an abstraction of a sort of shell commands that can achieve certain

goals during the malware infection. Then we explain the malware infection process based upon the

infection capabilities exploited by each infection phase. Focusing on the infection capability rather

than each specific command makes our understanding more general. This generality allows future

work to add new commands or remove outdated commands to keep the knowledge base up-to-date.

We abstract the shell commands in our dataset into 25 infection capabilities, each of which

aims to achieve certain goals in malware infection process. For instance, lots of malware will down-

load files from a server on the Internet in 3. There are a set of shell commands, such as wget,

tftp, curl, and git, that can achieve this goal. Then we abstract these commands, which have the

capability to download files from a remote server, as Download (DW) infection capability. Table 6.3

summarizes the infection capabilities we abstracted along with corresponding explanations. To fur-

ther verify the infection capabilities we have abstracted, we thoroughly investigate 3 open-source

IoT malware and 18 reverse-engineering reports of IoT malware listed in Table 6.1. We found that

those infection capabilities can cover all the IoT malware we investigated.

We next provide more details about how infection capabilities are exploited in each phase

of malware infection. We hope that the knowledge we compile and offer here can help the security

community to better understand how the infection process works and will serve as a reference for

future research focusing on the malware infection.
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Table 6.3: A list of infection capabilities we abstracted and corresponding explanations.
Capabilities Abbr. Explanation

Change Permission CH Change the permission of files
Remove History RM Remove activity history to evade forensic
Disable Security DS Disable security mechanisms
Download DW Download files from the Internet
Find Place FP Try to find a working place
Copy File CP Copy files
Create and Write CW Create and write to new files
Decompress DCP Decompress files
Decode DCD Decode from encoded files
Compile Code CC Compile source code
Process Text PT Search, cut, sort texts
Kill Process KILL Kill processes
Exclude Others EXO Avoid others to infect or login
Network Probe NP Probe internal or external networks
Implant Backdoor IBD Launch a deamon to enable access later
Execute EXE Execute files
Collect Information CI Collect information from the system
Manage System MSYS Change users and environment variables
Manage Software MSOFT Update or install software
Manage Resource MRES Set/reset resource hard and soft limit
Get Time GT Get timestamp of files
Change Time CT Change timestamp of files
Programming PR programming commands, e.g., break; continue
Agnostic AGN Any commands do not align to the above
Unrecognized UN Any commands not including in our base

Table 6.4 lists the 5 malware infection phases and the infection capabilities exploited by

each phase along with exploitation percentages. In the table, we also list the top commands (up to

5) that are abstracted as each infection capability. For a complete list of shell commands abstracted

as each infection capability, please refer to Table ?? in Appendix ??. We further visualize the

relationships between infection phases and infection capabilities in Fig. ?? in Appendix ??. There

are three special infection capabilities:

• Unrecognized (UN). We use unrecognized infection capability to abstract any new commands that

are not included in our dataset. Thus, this infection capability is not exploited in any malware

infection phase.

• Agnostic (AGN). We use agnostic infection capability to abstract the commands that may be

executed in any phases whenever it is necessary. Among the examples are sleep (wait for certain

time), pwd (print working directory), clear (clear screen contents), etc.
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Table 6.4: Infection capabilities exploited in each phase, exploitation percentage, and top commands
(up to 5).

Phase Capabilities Percentage Top Commands

P1

CW 2.10% echo open printf mkfifo
AGN 0.70% lp md5sum
FP 89.49% cd ls
CP 6.77% cat cp mv read head
PR 0.67% enable exit set unset test

P2

CI 26.91% ps id du df file
PT 31.61% tr sed grep wc awk

AGN 10.74% lp md5sum yes clear sleep
NP 0.30% nmap zmap dig
PR 10.31% enable exit set unset test

MRES 4.45% ulimit
DS 0.08% ufw, accton

P3

AGN 1.55% lp md5sum yes clear sleep
DCD 0.15% base64
CP 14.94% cat cp mv read head
DW 78.38% wget tftp ftpget curl ftp
DCP 0.25% tar gzip unzip gunzip
CC 2.12% cc gcc make ldconfig
PR 1.49% enable exit set unset test

P4

AGN 0.85% lp md5sum yes clear sleep
CH 31.57% chmod chattr chown umask usermod

EXE 58.77% sh ./ busybox service perl
MSYS 3.95% iptables su sudo reboot defaults

PR 0.81% enable exit set unset test
MRES 0.35% ulimit

MSOFT 1.46% mkdir ln yum mktemp export

P5

PT 4.67% tr sed grep wc awk
AGN 1.59% lp md5sum yes clear sleep

MSOFT 2.74% mkdir ln yum mktemp export
IBD 3.12% sshd httpd squid
GT 0.19% date
CT 0.50% touch

EXO 0.86% passwd chpasswd iptables-restore
PR 1.52% enable exit set unset test
DS 0.01% ufw accton

KILL 13.37% pkill killall kill
RM 70.71% rm history
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• Programming (PR). We use Programming infection capability to abstract the commands that

are used for general programming purpose. Among the examples are break, continue, local,

set, etc. Commands with this infection capability may also be used in any phases whenever it is

necessary.

Next, we will go through the 5 phases of the infection process and explain how each infection

capability is exploited in each phase.

1) Settlement: The initial step of the infection process is to find a working place as a

playground where succeeding commands can be executed. Usually the default working place is the

home directory of the login user. Other than the default home directory of the login user, we also

find many infection attempts seek different working places. Some of the most commonly trials are

/tmp, /var, /etc, /run, and /.

There are three infection capabilities being exploited in this phase. First, malware may

exploit the find place (FP) infection capability to check the existence of a path, for example, using

cd and ls commands. As is shown in Table 6.4, FP is the most widely exploited infection capability

taking 89.49% command invocations. Second, malware can exploit the copy file (CP) infection

capability to copy or move a file to a certain place to check whether a place is writable. Finally,

malware may also exploit the create and write (CW) infection capability to create and write to

a file at a specific path so as to determine the write permission of that place. It is worth noting

that malware finds the proper working place via a trial and error manner, which is quite suspicious

because a legitimate administrator should have the idea where the best working place is.

2) Environment Preparation: Once malware gains a foothold of a system, the next step

is to prepare the target environment so that succeeding actions can proceed. During this phase,

3 infection capabilities are exploited, involving collect information (CI), process text (PT), and

network probe (NP). In particular, the CI and NP are usually followed by PT, which achieves

the goal of trimming, searching, sorting, or counting on the text information. Table 6.4 shows that

CI and PT dominate the infection capabilities exploited in this phase, taking 28.19% and 33.11%,

respectively. We further categorize the information collected during this phase into 7 categories:

• Operating System. This information includes the type and version of the operating system, system

variables, and system up time.

• File System. This information includes the type of file system, existence of certain paths, and
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permissions of certain paths and files.

• Processes. This information includes process identification (PID), files opened by a process, run-

ning services, and how much processing units available in the system.

• User Groups. This information includes user id and user group id. Sometimes, if the command is

not running with the root privilege, malware will terminate the infection.

• Networking. This information includes IP address, MAC address, host name, reachability of

another network, opening ports, and opening sockets in the system.

• Hardware. This information includes CPU architecture, available memory and disk volume, and

peripherals.

• Security. This information includes availability of iptables and ufw.

3) Payload Delivery: After the environment preparation, malware seeks ways to deliver

malicious payloads to the target system to make the system suitable for various monetization pur-

poses. There are two major steps to deliver malicious payloads to the target system. First, malware

downloads some files from a server on the Internet. Then, malware releases or makes the payloads

from the downloaded files. To achieve those two steps, 5 infection capabilities are exploited in this

phase.

To download files from a remote server, malware exploits the download (DW) infection

capability, which takes 78.38% of command invocations in this phase as listed in Table 6.4. Further-

more, we find that there are three types of files downloaded to the target system, including binaries,

scripts, and source codes. To release or make the payloads, 4 infection capabilities are exploited,

including CP, decompress (DCP), decode (DCD), and compile code (CC). In this phase, CP is the

second commonly used (14.94%) infection capability that allows malware to copy the downloaded

files to proper places. In addition, we find three ways that malware releases or makes the payloads

from downloaded files.

• Decompressing. Compression is a method that can bypass naive detection approaches. Commonly

seen compressed files include tar, gz, zip, and gzip. Malware exploits DCP to release the

payloads from compressed files.
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• Decoding. Another more sophisticated technique is encoding the payloads, such that they can

bypass some of the detection approaches. The encoding/decoding tool we find in our dataset is

base64. Malware exploits DCD to release payloads from encoded files.

• Compiling. We find a few malware downloads source code files and call compiling tools such as

gcc and ldconfig on the target system to make the payload. We abstract those commands as

CC, which is exploited by malware to make payloads from the source code files.

4) Payload Execution: The core of the infection process is to execute malicious payloads

that will serve various monetization purposes. In the Payload Execution phase, malware exploits

5 infection capabilities, including manage software (MSOFT), manage system (MSYS), manage

resource (MRES), change permission (CH), and execute (EXE).

Before malware starts to execute malicious payload, it may prepare the environment by

exploiting MSOFT to install dependencies, exploiting MSYS to create folders and user accounts,

and exploiting MRES to raise the limit of the resources that a process can utilize. Once the

malicious payloads are available and the environments are ready, malware exploits CH to change

the permission of the malicious payload to make it executable or belonging to specific users. We

observe that 31.57% command invocations exploit CH as listed in Table 6.4. Malware finally exploits

EXE to execute malicious payloads in the target system. There are 58.77% command invocations

that exploit EXE. The methods to execute malicious payloads are categorized into four categories:

• Direct Execution. The most direct way is to run the executable via the ./ syntax. This method

applies to malicious payloads that can be executed directly from a shell.

• Interpreters. Some malicious payloads are loaded and run by interpreters, such as perl, Python,

php, Go, etc. This method requires that proper interpreters are installed and available in the

system.

• Background Utilities. Some utilities are designed to allow programs to be executed in background

or to be launched from a remote server. Those utilities include nohup, screen, sshpass, ssh, and

nc.

• Scheduling Utilities. There is another body of tools that may be used to load and run malicious

payloads in a more stealthy way. Those utilities are designed to schedule a program to run in

certain time frames. Those utilities are service, nice, and crontab.
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5) Persistence & Covert: In this phase, malware tries to persist in the system and hide its

footprint.

For persistence, malware exploits five infection capabilities, including implant backdoor

(IBD), exclude others (EXO), kill process (KILL), disable security (DS), and MSOFT. There

are four strategies commonly used by malware to persist. First, malware may exploit IBD to run

legitimate services, such as httpd and sshd, as daemons in the background. Malware may exploit

MSOFT to install those services if they are not installed. Second, malware may exploit the EXO

to prevent other malware from accessing the device. A typical operation is to change the creden-

tials using chpasswd and passwd. Third, malware may exploit KILL to terminate competitors and

benign processes to make more system resources available. Notably, there are 13.37% command

invocations are for this purpose as listed in Table 6.4. Finally, some malware may exploit DS to

disable security mechanisms, including iptables and ufw.

To hide its footprint, malware exploits 3 infection capabilities, get time (GT), change time

(CT), and remove history (RM). There are two strategies used by malware to hide their footprints.

The most widely used strategy is to remove the history by exploiting RM, which takes 70.71% of

all command invocations in this phase. Malware may remove the payloads after execution. We

also observe that malware may remove the command history in the system. Another strategy is

to modify the time stamps of certain files. Those files are under /bin, /usr/bin, and /sbin. The

reason is that some malware may access or modify those files. Changing the time stamps of those

files will keep this kind of operations undiscovered.

6.2.2 Modeling IoT Malware Infection Process

In order to use the knowledge of malware infection that we have built for detecting mal-

ware infection, we need to formalize the infection process with a model. However, shell commands

extracted from malicious ELF files lose the execution logic information, and thus we cannot obtain

the exact invocation sequence of the extracted commands 1. Therefore, we leverage the infection

scripts, which contain complete execution logic, from our dataset to model the IoT malware infection

process.

Since our model will be used for malware infection detection, a baseline is required to

1We also tried to run malicious ELF files in existing Linux-based sandboxes [43, 96, 72]. Unfortunately, they could
not be correctly run on those sandboxes.
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distinguish infection activities from benign activities. To determine the baseline between infection

and benign activities, we collect benign shell scripts from GitHub [65] and use them to assist our

modeling. In particular, we develop a GitHub crawler, which collects 244,162 repositories that have

more than 50 stars as of 2020-01-22. Since our focus is Linux shell commands, we reduce our scope

to 1,987 repositories that are labeled with the shell scripting language. We finally extract 9,341 shell

scripts and further verify – through base64, file, bashlex, and VirusTotal – that 3,890 are valid

and benign shell scripts.

An overview of our modeling approach is illustrated in Fig. 6.3. The output of our modeling

is a weighted infection state machine (WISM) that models the malware infection. Our modeling

approach consists of 3 major steps. First, we develop our own tool to generate command flow

graph (CFG) for all the infection scripts and benign scripts in our dataset. Second, we build an

infection state machine (ISM) based upon the CFGs of all the infection scripts. Finally, we conduct

a correlation analysis based on the CFGs of infection scripts and benign scripts. The correlation

analysis tracks the command flows in all CFGs and assigns a weight to each state transition in the

ISM. The weights are maximized for infection scripts while minimized for benign scripts. As a result,

we obtain a WISM.

6.2.2.1 Generating Command Flow Graphs

The CFG is a representation, using graph notation, of all paths containing shell commands

in sequence that might be traversed through a shell script during its execution. In our generated

CFGs, each node represents a shell command and each directed edge represents a transfer from

one command to another one. Unfortunately, we cannot find any mature tools that can be used to

generate CFGs for Linux shell scripts. We develop our own tool to generate the CFGs based on

Bashlex [34], which is an open-sourced parser for bash scripts.

In this work, we generate a CFG for each individual infection or benign script. Fig. 6.4

illustrates two infection scripts (script-a and script-b) and their corresponding CFGs. Each CFG is

stored as a file using the networkx Python library. Those CFGs will be referenced when we build

ISM and WISM.
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Figure 6.3: Modeling approach overview. Firstly, we generate the CFGs of infection and benign
scripts in our dataset (1). Then we build an ISM that represent the behavior patterns of malware
infection (2). After that, we assign weights to the ISM through a correlation analysis (3). The
generated WISM works as a general model of malware infection.

88



rm

killall

rm rm

rm exit

start

killall

CFG-b

rm

echo exit

cat echocat

start CFG-a RM KILL

CW

CP

AGN

rm

killall

exit

echo

exit

cat

echo cat

rm killall

cat

echo ISM

Command 
Capabilities

Scr ipt-b

r m - f  . / out put . t xt  ; r m - f  . / svcnam. t xt  ;
r m - f  . / out put 2. t xt  ; r m - f  . / dat apool . bk ;
k i l l al l  - 9 - w dat apool . sh 1>/ dev/ nul l  2>&1;
f or  KI LLER i n . / bi n/ *  ; do 
  k i l l al l  - 9 - w $KI LLER 1>/ dev/ nul l  2>&1 ;
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user =$1;
pass=$2;
i f  [  !  - f  " $user s"  - o !  - f  " $pass"  ] ; t hen
  echo " Fi l e not  f ound" ;
  exi t ;
f i
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  f or  m_pass i n $( cat  $pass) ; do
    echo " $m_user  $m_pass"  >> pass_f i l e
  done
done
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Figure 6.4: Building the ISM from shell commands in infection scripts. Refer to Table 6.3 for
abbreviations of the capabilities in the ISM.

6.2.2.2 Building Infection State Machine

We use an ISM to represent the behavior patterns of malware infection. We formally define

our ISM as a 5-tuple (Σ, S, s0,∆, F ) where:

• Σ is the set of all the shell commands that we cover;

• S is the set of states, each of which is mapped to an infection capability in Table 6.3;

• s0 is the initial state, which also belongs to S but is not mapped to any infection capability;

• ∆ is the state-transition function: ∆ : S × Σ→ S; and

• F is the set of final states.

We only build a single ISM from all the infection scripts. As an example, Fig. 6.4 depicts the CFGs

of two infection scripts and the ISM built from those two scripts.

In the ISM, we consider each node as a state where a specific infection capability has been

exploited during the infection. Each state in our ISM is mapped to an infection capability except

for the initial state, s0. For example, a state that maps to RM means that if the infection goes

into this state, the RM infection capability has been exploited. Therefore, some shell commands,

such as rm and history, must be invoked. We associate a directed edge with a command, which is

abstracted as certain infection capability. For example, a directed edge coming into the RM state

is associated with the rm command in Fig. 6.4 because in the infection scripts we observe the RM

infection capability is exploited by invoking the rm command.
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Algorithm 4: Building ISM from CFGs

Input: C: a list of all CFGs;
Trans: translation table mapping commands to capabilities;

Output: ISM : the built ISM;
1 ISM = {} /* a set containing the edges along with the nodes of ISM */

2 foreach c in C do
3 foreach edge in c do
4 if Trans[edge] /∈ ISM then
5 ISM = ISM ∪ {Trans[edge]}

6 return ISM

To automatically build the ISM from all the infection scripts, we develop a tool that takes

the CFGs as inputs and yields an ISM. The algorithm we used is presented in Algorithm 4. The

Trans is a hash function that translates an edge in the CFG to an edge in the ISM. The core of the

hash function is the infection capabilities we identified. Formally, the edge in the CFG is defined as

a tuple (src, dst) where src and dst are two consecutive commands. The edge in the ISM is defined

as a 3-tuple (s1, σ, s2) where s1 ∈ S and s2 ∈ S are two neighboring states and σ ∈ Σ is the label

of the transition between the two states. Trans is a function: Trans : (src, dst) → (s1, σ, s2). By

using the Trans function, we can translate an edge in the CFG into an edge in the ISM. In lines 4

and 5 of Algorithm 4, we add all edges (which are translated from the CFGs) that are not in the

ISM into the ISM. This procedure is applied to the CFG of each infection script (line 2 ). Each

state in the ISM is mapped to an infection capability and each edge in the ISM is associated with a

command. A state transition in the ISM means an infection capability is exploited. To trace what

infection capabilities have been exploited and in what sequence they are exploited, a sequence of

state transitions must be considered.

6.2.2.3 Correlation Analysis

1) Key Idea: Our correlation analysis tracks a sequence of state transitions in the ISM to

determine whether there is an infection. The key idea is to assign each state transition in the ISM

with a weight and maintain a counter for the weights over a temporal window. Once the counter

exceeds a threshold, an infection is detected. To determine the weight for each state transition, we

employ a hill-climbing algorithm [37].

2) Risk Score: Let’s denote a WISM as θ, a serials of state transitions that are triggered

by a sequence of N commands as T = (t1, t2, ...tN−1), and 0 ≤ θti ≤ 1 as the weight that will be
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assigned to the state transition ti in WISM. Then, the risk score of a sequence of N commands is

defined as

R(T, θ) =
1

N

N∑
i=1

θti (6.1)

With the above definition, we can calculate a risk score given a WISM and a sequence of commands.

3) Assigning Weights: To obtain a WISM that best models the infection process, we

minimize the risk score for a sequence of commands invoked by benign scripts and maximize the

risk score for a sequence of commands invoked by infection scripts. Therefore, we can formulate the

weight assignment as an optimization problem that maximizes the following objective function:

f(M,B, θ) =
∑

R(TM
i , θ)−

∑
R(TB

j , θ) (6.2)

where M is a set of sequences of commands invoked by infection scripts, TM
i is a serials of state

transition triggered by the ith sequence of commands invoked by infection scripts, B is a set of

sequences of commands invoked by benign scripts, TB
j is a serials of state transitions triggered by

the jth sequence of commands invoked by benign scripts.

We then employ a hill-climbing algorithm to solve the optimization problem. The hill-

climbing algorithm relies on a feedback loop to gradually improve the quality of weights in the

WISM. For each iteration, the algorithm adjusts all the weights of the WISM with a small amount

(0.01 in our case). The initial weights of each state transition are set to the frequency of the

corresponding consecutive commands in the infection scripts. Over a sufficiently large number of

iterations (100,000 in our case), we observe the convergence and obtain the weights for our WISM.

4) Command Sequences: The command sequences used by the hill-climbing algorithm are

generated from our infection scripts and benign scripts. However, it is infeasible to enumerate all

possible paths of a CFG because of the path explosion issue. To address the path explosion issue, we

relax our model by ignoring the paths that cover multiple iterations of the loops. First, we utilize

the simple paths methods in the networkx library to extract the paths from the entry point to each

endpoint in the CFG. Then, for each loop, we add extra paths that involve only two iterations of

the loop. We finally extract 4 million sequences of commands from all the CFGs. We then use these

command sequences for the correlation analysis.
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6.2.3 Infection Detector Development

We develop an infection detector, Soter, based on the infection model we build. The design

objective of Soter is lightweight, so that it can be deployed in resource-constrained Linux-based

IoT devices, such as a D-Link IP camera [44] that only equips with 32MB random access memory

(RAM) and 4MB flash memory. Specifically, Soter should meet the following requirements:

• Trivial Modification. Since the operating systems for IoT devices are often customized to fit a

variety of IoT device specifications, Soter should add as little code as possible to maximize its

compatibility. In addition, Soter should not depend on external tools or security frameworks,

such as KProbe, inotify, and Linux Security Module (LSM), because those dependencies are not

always supported by IoT devices.

• Storage Efficiency. Unlike commodity PCs and servers, IoT devices usually equip with limited

storage. Even worse, the amount of free memory that can be used for security purposes is extremely

small. For instance, the D-link DCS-932L IP camera has 4MB flash memory installed. But less

than 400KB free flash memory is available after installing some standard packages, such as light

sensor and MJPG streaming. Therefore, Soter should be able to be deployed in such a limited

space.

• Computation Efficiency. Due to the limited computation capability, IoT devices are not suit-

able for computational-intensive tasks. Soter should utilize as fewer computation resources as

possible to accomplish the detection task.

6.2.3.1 Design Choices

To achieve trivial modification, we design Soter as two logically separated parts, hook and

classifier. The hook, which is embedded into the source code of the Linux kernel, aims to capture the

commands that are executed. We modify the execve system call to intercept its parameters. From

the parameters, we can determine which commands are executed and what options are passed to

the commands. We skip the shell built-in commands, such as break, continue, set, and declare,

because it is difficult to trace those built-in commands efficiently and they are for general program-

ming purposes. Therefore, we only need to add a callback function in the SYSCALL DEFINE3 function

in fs/exec.c. To raise an alert, we invoke the printk function to emit alerts to the log system (e.g.,
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Table 6.5: A breakdown of space consumed by each asset of the infection detector.
Assets Size (bytes) Description

command.h 108 Encode all commands as enum type.
capability.h 700 Encode all capabilities as enum type.
hash.h 2,275 Mapping between commands and capabilities.
transitions.h 10,512 Encode states and edges of IWSM as an array.
Total 13,595 Space consumed by all above data structures

/var/log/syslog). In order to maximize the compatibility, we implement the classifier as a Load-

able Kernel Module (LKM), which can be modified, compiled, and installed without recompiling the

operating system kernel. To update classifier, one only needs to modify and compile the LKM to

generate a .ko file. Then the .ko file can be distributed to Linux-based IoT devices and deployed

via insmod. Neither a bootstrap nor a reboot is required to deploy classifier, which includes all the

detection logic of Soter.

To achieve storage efficiency, we encode the WISM, infection capabilities, and corresponding

commands as C arrays in .h files. To further reduce the size of Soter, transitions in WISM with

0 weights are not encoded. As such, Soter finally consumes less than 14KB to store the WISM,

infection capabilities, and corresponding commands. A breakdown of the assets and corresponding

sizes are listed in Table 6.5. To minimize the run-time footprint, we neither use any memory from

the heap (e.g., allocated via kmalloc) nor employ recursive procedures in Soter. The memory

allocated to Soter only includes those hard-coded C arrays. An extra array is used to maintain

a temporal window of command sequence with a length of 34. In summary, the estimated space

complexity of Soter is O(1).

To reduce computational overhead, the detection logic of Soter should run in the kernel

space as an LKM, which avoids context switching between the user space and the kernel space.

The major challenge of implementing the detection logic in the kernel space is that not all CPU

architecture supports floating-point calculation in the kernel space. Even worse, a significant body

of CPU architecture does not support 64-bit multiplication. In order to allow Soter to run on as

many CPU architectures as possible while to avoid introducing too much implementation complexity,

we make a trade-off between the precision and the complexity. We scale all the weights – which

are floating-point numbers between 0 and 1 – of the WISM to integer numbers that are between

0 to 232. This transformation loses some precision of the weights, but it allows the weights to be

presented as integers that can be multiplied in the kernel space.
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6.2.3.2 Implementation

Soter is implemented and runs completely in the kernel space and detects malware infection

in real-time. Fig. 6.5 provides an overview of Soter. The hook is implemented as a C function

pointer that points the entry point of the classifier. The classifier consists of the WISM, a threshold

tester, and an alert function. Every time a command triggers the hook through execve system call,

Soter will recalculate the risk score of commands within a temporal window based on WISM. If

the risk score exceeds a threshold, an alert is raised.

No

Score > 
Threshold? Yes

 execve( )  {     }  ( Hook)

/var/logs/syslog

Aler t()

return

Infection Detector (Host Secur ity Function)

Kernel Space

User Space
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Infection Detected!

Commands Invoked

 Event  Gener at or

Fl ow Tabl e Manager

Act i on Schedul er

Flow Rule Table
Match Action Pr io

Weighted Infection 
State Machine

cd ... ... ./ rm

temporal window

Figure 6.5: Overview of Soter implementation.

There are two parameters that need to be defined for Soter: i) the threshold; and ii) the

temporal window size. When we decide the threshold, we make use of infection scripts and benign

scripts in our dataset. For each script, we compute the risk scores of all the command sequences

in that script. Then, we choose the highest risk score as the risk score of that script. After that,

we compute the Cumulative Distribution Function (CDF) of risk scores for both infection scripts

and benign scripts. The resulted CDF is shown in Fig. 6.6. By observing the CDFs, we estimate

a threshold that satisfies a certain level of true alert rate while maintaining a relatively low false

alert rate. For our implementation, we choose 0.67 as the threshold to achieve a reasonably high
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true alert rate while remaining relatively low false alert rate. To determine the temporal window

size, we count the length of all the command sequences we extracted from our infection samples.

We observe that all the command sequences are shorter than 34. As a result, we decide to use 34

as the maximal length for Soter. When Soter is running, a 34-length window will slide over the

command sequence. This parameter is adjustable by reloading Soter.
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Figure 6.6: CDFs of risk scores of all benign scripts and all infection scripts.

6.2.4 Evaluation

In this section, we evaluate Soter and our infection detection modeling from following

aspects:

• Effectiveness of Soter. We deployed a large scale of software IoT devices as honeypots across

the globe and tested Soter in those software IoT devices. (§ 6.2.5)

• Generalization of our modeling approach. We evaluated how general our modeling ap-

proach is by testing the trained model with the samples that have not been used for training and

investigated the trade-offs between false positive and false negative. (§ 6.2.6)

• Performance overhead of Soter. We measured the CPU and memory usage of Soter on

three types of physical IoT devices, which are representatives of low-end, mid-end, and high-end

IoT platforms (§ 6.2.7).
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6.2.5 Effectiveness Evaluation of Soter

6.2.5.1 Online Deployment

In order to evaluate the effectiveness of Soter in realistic environment, we would like to run

Soter in IoT devices at scale and observe the detection performance of Soter for infections in the

wild. Unfortunately, it turns out deploying hardware IoT devices in large scale is challenging due to

two major reasons. First, the Internet access fee for IoT devices is expensive because each individual

device must be assigned with a public IP to attract infections. Second, ensuring the reliability of

low-level infrastructure introduces high maintenance overhead, such as periodically checking the

underlying Internet connections, power supply, and hardware devices.

As an alternative, we turn to software (virtual) IoT devices rather than hardware IoT devices

for large-scale deployment. A body of work [122, 45, 62] has proved that software IoT devices are

feasible and cost-efficient ways for IoT device deployment at scale. For example, HoneyCloud [45]

demonstrates how to deploy high-fidelity software IoT devices on public clouds across the globe in

large scale.

To prevent attackers from identifying our software IoT devices as honeypots, we enhanced

the fidelity of software IoT devices from three aspects. First, since we use QEMU emulator to

provision the software IoT devices, we specifically tuned the CPU and memory capabilities to best

match that of real IoT devices, the Raspberry Pi in our experiments. Second, we used OpenWrt,

one of the most popular Linux-based operating systems for IoT devices, in our software IoT devices.

Furthermore, we forge /proc/cpuinfo to make it look like a commercial CPU used by real IoT

devices. Third, we enabled the httpd service and installed the MJPGE streaming [112] and Motion

package [115] in the software IoT devices to emulate essential functionalities of IP cameras. To

preserve the detection results and the logs necessary for our analysis, we employed the Rsyslog [133]

utility to transfer and save all the detection results and logs from the software IoT devices to a

remote log server in real time. To prevent our software IoT devices from being used by attackers

to launch attacks or infect more IoT devices, we ran Snort on the host virtual machines (outside of

software IoT devices) to monitor inbound and outbound traffic. We setup forwarding rules to block

dangerous outbound traffic, which is determined according to the Snort log.

To evaluate the effectiveness of Soter, we deployed software IoT devices as honeypots at

scale across the globe following the guidance introduced in [45] and installed Soter in those software
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Table 6.6: Software IoT device deployment statistics.
Region Site Deployed Device Valid Login

North America

Ashburn 9 3,866
New York 6 2,603
Los Angeles 6 2,613
Clemson 6 875
Utah 6 91
Wisconsin 6 697
Des Moines 1 1,834
Seattle 1 578
Chicago 3 1,619
Toronto 4 4,936
Washington 1 1,650

Europe

Helsinki 3 2,981
Brussels 3 1,777
London 4 3,612
Berlin 3 2,331
Amsterdam 4 3,367
Zurich 3 2,486
Paris 1 537
Dublin 1 2,362

Asia Tokyo 4 3,397
Hong Kong 4 5,027
Taipei 3 2,226
Seoul 1 1,982
Singapore 4 5,247

Australia Sydney 18 7,666
South America Sao Paulo 17 7,504
Total 122 73,864

IoT devices. As listed in Table 6.6, we deployed 122 software IoT devices on 4 public clouds –

Google Cloud Platform (GCP), Amazon Web Services (AWS), Microsoft Azure, and CloudLab¸ –

distributing at 26 different sites (shown in Fig. 6.7) for 30 days. All the software IoT devices attract

73,864 successful logins.

6.2.5.2 Real-time Detection Results

Among all successful logins, 59,506 execute at least one Linux command after login thus are

considered as valid logins. To further verify that a valid login is actually a valid infection process, we

parsed the logs generated by the software IoT devices. We found that not all valid logins are followed

by a valid infection process because those logins execute files that do not exist in the system. There

are two main reasons resulting in this phenomenon. The first reason is that the malware is running

incorrectly on our software IoT devices due to wrong assumptions of the target system (e.g., malware
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Figure 6.7: Geo-distribution of our deployed software IoT Devices.

authors may assume certain configurations are made and certain utilities are available). The second

reason is that since we rebooted and reset our software IoT devices periodically, the malware thinks

it has already infected the target thus is trying to execute files it has downloaded before. Therefore,

we excluded cases where a file is executed before it is downloaded.

Table 6.7 lists the detecting results of Soter over the valid infections. We observed 55,949

valid infections, among which Soter raises 55,155 alerts. Since those software IoT devices are

deployed as honeypots, all access to those devices is considered illegitimate. As a result, the FNR

is 1.41% and TPR is 98.58%. We further investigated the false negative samples and found some

new infection patterns that are not in our dataset2. For example, we observed some malware

samples download malicious payloads and execute the same payloads for multiple times. Between

two consecutive executions, they invoke wget to download more files. Finally, they remove all

downloaded files. We thought the consecutively downloaded files may convey fragmented information

that will be used by the malicious payloads. Among those false negative samples, we also found

incomplete infections. For example, we found some malware samples login to invoke ls, cat, or

uname, and then logout without invoking other shell commands. We thought this happens because

the malware samples check the system information and may find that the system is not their target.

In addition, we explored how many unique infections have been detected by Soter by

looking at the risk score of each infection alert. We observed 873 different risk scores in our alerts,

which means Soter detects 873 unique infections. For a false negative sample, since the detector

2We will integrate these new infection patterns into our infection model. A more detailed discussion is in § ??.
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Table 6.7: Real-time detection results of Soter. FN: False Negative; FNR: False Negative Rate;
TPR: True Positive Rate.

Total Alert FN FNR TPR
Valid Infections 55,949 55,155 794 1.42% 98.58%
Unique Infections 917 873 44 4.80% 95.20%

Table 6.8: Details of each sample set used in our evaluation.
Sample Sets Volume Description
training b 3,112 benign scripts for weight and threshold assign.
training m 2,751 infection scripts for weight and threshold assign.
testing b 778 unseen benign scripts to test our model
testing m 688 unseen infection scripts to test our model
Total b 3,890 all benign scripts use for the evaluation
Total m 3,439 all infection scripts used for the evaluation

does not raise an alert, we considered the highest risk score that it can reach instead. As a result,

we observed 44 different risk scores. Soter achieves 4.80% FNR or 95.20% TPR w.r.t. unique

infections as shown in Table 6.7.

6.2.6 Generalization Evaluation of Modeling Approach

In this evaluation, we evaluated how general our modeling approach is by testing the trained

model against unseen samples. In particular, we split the shell scripts in our dataset randomly into

training set (80%) and testing set (20%) and made sure samples in the testing set do not appear

in the training set. During the correlation analysis and threshold determination (a.k.a. training

process), only the training set is used and the testing set always remains unseen to the detection

model. During the testing process, the testing set is used to test the prediction performance of the

trained model. Table 6.8 lists the details of all the sets we used in this evaluation. The total b and

total m are sets of benign and infection scripts, respectively. The training b and training m are sets

of benign and infection scripts used for training. The testing b and testing m are sets of benign and

infection scripts used for testing.

The testing results are presented in Fig. 6.8(a). Most of the infection scripts yield a high

risk score close to 1 while the majority of benign scripts gain a low risk score close to 0. Using

the threshold 0.67, which is determined during the training process, our model achieves 1.79% false

positive rate (FPR) and 95.45% true positive rate (TPR), with an overall accuracy of 96.92% and

F-score of 0.97.
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Next, we manually investigated the scripts that are falsely classified by our model. We

found that the false positive samples are caused by extensively downloading and executing binaries,

which is similar to the behavior of infection scripts. If the remote servers from where the binaries are

downloaded are malicious, those samples may actually be for infection purposes. The false negative

samples are mainly caused by extensive usage of commands – such as declare, continue, and break

– that are abstracted with the programming (PR) infection capability. This capability allows the

script to implement complex programming logic, which is not necessary to a successful infection.

Furthermore, we performed the receiver operating characteristic (ROC) analysis of our

model based on the testing sets. The ROC curve shows the relationship between the FPR and

the TRP. It provides a means of reviewing the performance of a model in terms of the trade-off

between FPR and TPR. In our case, the ROC curve shown in Fig. 6.8(b) implies that the TPR

grows rapidly when the FPR still remains low. The speed slows down when TPR is higher than 0.9

where the corresponding FPR is around 0.005. The area under the curve (AUC) for our model is

0.973, which indicates a good balance between false positives and false negatives.
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Figure 6.8: The testing results (a) and the ROC curve (b) of our infection detection model over
infection scripts unseen during the training process.

6.2.7 Performance Overhead Evaluation of Soter

In this experiment, we quantified and evaluated the performance overhead of Soter on

three popular IoT platforms:
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• D-Link DCS-932L IP Camera (DCS-932L), equipping with MIPS 24KEc processor, 32MB SDRAM

and 4MB flash memory, representing a low-end, resource-constrained platform.

• Raspberry Pi Compute Model 3 (CM3), equipping with ARM Cortex-A53 quad-core processor,

1GB DRAM and 8GB micro-SD card, representing a mid-end, generic multi-purpose platform.

• SolidRun HummingBoard Edge (HBE), equipping with ARM Cortex-A9 quad-core processor,

2GB DRAM and 16GB micro-SD card, representing a high-end, powerful computing platform.

We installed OpenWrt on DCS-932L, Raspbian on CM3, and Debian on HBE. All those

Linux versions are officially supported by the device vendors, respectively. In addition, we installed

and ran different applications on the three devices to emulate a regular workload. We installed light

sensor [93] and MJPGE streaming [112] packages on DCS-932L that allow it to capture and send

frames continuously to a remote receiver. We installed the Motion package [115] on CM3 that allows

it to work as a Digital Video Recorder (DVR). We configured HBE to make it as an edge node that

forwards network traffic. As a baseline, we first set up all the devices without Soter and observed

the CPU and memory usage. As a comparison, we then installed Soter in the devices and observed

the CPU and memory usage again.
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Figure 6.9: Average CPU loads of three types of IoT platforms without human interaction (a) and
with human interaction (b).

We quantified the CPU overhead using the CPU load average [70] within one minute. The

CPU load average represents the total queue length of the active processes within a recent past time

period (e.g., one minute in our experiment). If this number is greater than 1, it means at least one
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active process on average is in the queue waiting to use CPU. In contrast, if this number is less than

1, it means less than one active process on average is in the queue waiting to use the CPU. Fig. 6.3.2.1

presents the results of the CPU load average in two scenarios. Fig. 6.9(a) shows the results when the

devices are running without human interaction and Fig. 6.9(b) shows the results when users login

to the system and perform regular operations such as copying files, removing files, opening files, etc.

In the first scenario, Soter introduces 3.73%, 3.61%, and 3.85% CPU load average for DCS-932L,

CM3, and HBE, respectively. In the second scenario, Soter introduces 1.73%, 2.20%, and 2.54%

CPU load average for DCS-932L, CM3, and HBE, respectively. In both scenarios, Soter introduces

no more than 3.85% CPU load average, meaning that the length of the active process waiting queue

only increases 3.85% on average due to Soter.

To measure the memory overhead, we added extra code in the kernel to trace how much

memory is allocated to the process of Soter. Then, we compared that with free memory information

obtained from /proc/meminfo. The results from different types of IoT platforms are quite similar,

showing that Soter occupies 2.7MB memory. This amount is only a small portion of the available

memory even for low-end IoT platforms like DCS-932L, which has around 12MB free memory in our

experiments.

6.3 IoT Malware Infection Prevention

We develop an infection prevention approach, Process Gaurd, as a host security function

that can prevent infection process from being proceed. Similar to Soter, the design objective

of Process Gaurd is also weightweight so that it can also be deployed in resource-constrained

Linux-based IoT devices, working togather with the infection detector.

6.3.1 Design Choices

To achieve trivial modification, Process Gaurd only includes a single component, the flow

rule generator. The flow rule generator does not rely on any external libraries or frameworks except

our system flow model. Since Process Gaurd will be invoked after the execution of Soter, taking

the results of Soter as its input, it is registered as one of the host security functions. During the

execution, Process Gaurd will generate corresponding system flow rules and update the system

flow table via Flow Table Manager.
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To achieve storage efficiency, Process Gaurd is implemented as a stateless security func-

tion without storing any states. The only memory space required by Process Gaurd is on the

stack to create a system flow rule, which is then send to Flow Table Manager and destroyed after

execution.

The computation overhead is also very limited since there is no loop or any computationally

intensive task is conducted. The only computation task conducted by Process Gaurd is the

extract the information that is required when it generates the system flow rule.

6.3.2 Implementation

Process Gaurd is implemented and runs completely in the kernel space and update the

system flow table in real-time. Figure 6.10 provides an overview of Process Gaurd. Note that,

Process Gaurd must be scheduled after Soter. The scheduling is achieved via Action Scheduler

in our system flow model. To implement such a scheduling sequence, a system flow rule needs to be

defined and installed in the system flow table. The system flow rule we used for this purpose is de-

picted in figure 6.11. For the match field, the source and the destination are wildcard meaning that

this rule applies to all processes to all system resources and the operation type is process op execve

meaning that this rule applies to process execve event. For the action field, there are two actions

specified and they are connected with the � operator, which means they must be response sequen-

tially and the results from the first action are passed to the second action processing. The priority

of the rule is set to 1000, which is a default priority for system flow rules.

Once is scheduled, Process Gaurd will generate system flow rules to prevent the process,

which has triggered the infection detector raise an infection alert, from being accessed any other

system resources. The corresponding system flow rule for this intention is depicted in figure 6.12. For

the match field, the source is extracted from the information passed in from Soter. The destination

and operation types are wild card meaning that this rule applies to any system resources regarding

to any operation types. For the action field, there is only a deny action meaning that this rule

will block any process that generate the matched events. In this case, the block action response is

directly responded to the hooks by Action Scheduler.
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Figure 6.10: Overview of infection preventor implementation.

mat ch=<* ,  * ,  pr ocess_op_execve>; act i ons=( ext er nal ( 1) >>ext er nal ( 2) ) ; pr i or i t y=1000

Figure 6.11: The system flow rule that is defined to implement the scheduling sequence that Process
Gaurd is invoked after Soter.

mat ch=<$pi d,  * ,  * >; act i ons=( deny) ; pr i or i t y=10000

Figure 6.12: The system flow rule that will be generated by Process Gaurd. $pid is the process
id passed from Soter.

6.3.2.1 Evaluation

We conducted experiments using the configurations and real IoT devices described in § 6.2.7

to evaluate the performance overhead of both infection detector (Soter) and infection preventor.

We quantified the CPU overhead using the CPU load average [70] within one minute. The

CPU load average represents the total queue length of the active processes within a recent past time

period (e.g., one minute in our experiment). If this number is greater than 1, it means at least one

active process on average is in the queue waiting to use CPU. In contrast, if this number is less

than 1, it means less than one active process on average is in the queue waiting to use the CPU.
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Fig. 6.3.2.1 presents the results of the CPU load average in two scenarios. Fig. 6.13(a) shows the

results when the devices are running without human interaction and Fig. 6.13(b) shows the results

when users login to the system and perform regular operations such as copying files, removing files,

opening files, etc. In the first scenario, our infection detector and infection preventor introduce

5.29%, 4.93%, and 5.49% CPU load average for DCS-932L, CM3, and HBE, respectively. In the

second scenario, our infection detector and infection preventor introduce 4.05%, 4.12%, and 5.08%

CPU load average for DCS-932L, CM3, and HBE, respectively. In both scenarios, our infection

detector and infection preventor introduce no more than 5.49% CPU load average, meaning that

the length of the active process waiting queue only increases 5.49% on average due to our infection

detector and infection preventor.
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Figure 6.13: Average CPU loads of three types of IoT platforms without human interaction (a) and
with human interaction (b).

6.4 Cross-level IoT Malware Defense

In the experiments we have conducted in our evaluation of host-based IoT malware infection

detector and prevention approach, we find that there are some cases where the host-based IoT

malware prevention security function fail to stop the infection process. In this section, we develop a

cross-level IoT malware defense approach that makes use of both network and host security functions.

The objective of the cross-level IoT malware defense is to mitigate the real-world damage and

financial loss caused by compromised IoT devices.
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6.4.1 Problem Statement

The host-level IoT malware infection detection and prevention security functions feature

early and lightweight detection and prevention. Because they will be deployed in resource-constrained

IoT devices. However, we found that the host-level IoT malware infection detection and prevention

security functions cannot always guarantee block of all malicious operations in the early stage.

As we further investigate the reasons behind, we can identify two major reasons. The first

reason is that some infection process cannot be captured by our infection detector because they are

emerging infection patterns and are not included in our dataset. As a result, the infection prevention

security function cannot prevent such infection process. The second reason is that the prevention

security function will only block the process that raises infection alerts. For those processes, which

don’t trigger infection alerts, our infection prevention security function will not block. However,

our infection detector cannot raise an alert for every process that may potentially be related to an

infection process because some of those processes may also be utilized by legitimate users. Blocking

all related processes may result in a system crash. As such, some of those processes may be exploited

by malware infection to conduct malicious activities, such as port scan.

In order to further mitigate real-world damage and financial loss, and at the same time, with-

out impacting the system, network-level detection and prevention mechanisms are necessary. Un-

fortunately, solely relying on network-level detection and prevention mechanisms can hardly achieve

early detection because they lack the detailed activities taking place a the host-level. Therefore, the

host-level detection and prevention security functions and network-level detection and prevention

security function need to collaborate with each other to achieve early detection as well as maximize

the prevention rate.

6.4.2 Infrastructure-wide Architecture

A cross-level IoT malware defense security function is deployed in a centralized controller

to enable collaboration between host-level security functions (Soter and Process Gaurd) and

network-level security functions (virtual NIDS and virtual firewall) as is shown in Figure 6.14. In

the network, an SDN switch is used to support dynamic traffic delivery for network-level security

functions. Two network security functions are employed by the cross-level IoT malware defense. The

virtual NIDS is used to detect any network traffic that appears to be port scanning. The virtual

106



Centralized Controller (Server)

Gateway

Host (IoT Device)

Virtual NIDS Virtual FirewallSystem Flow

Infection 
Detector

Infection 
Preventor

SDN Switch

Cross-level IoT Malware 
Defender

Figure 6.14: Infrastructure-wide architecture of cross-level IoT malware defense approach.

firewall is used to enforce access control rules on the network traffic. Once the virtual NIDS detects

any port scan traffic, it will raise an alert to the cross-level IoT malware defense security function (1

in Figure 6.14). The latter then install a firewall rule into the virtual firewall to block the port scan

traffic (2 in Figure 6.14). In the host, in this case, an infection detector (Soter) and a infection

prevention mechanism (Process Gaurd) are employed by the cross-level IoT malware defense.

The Soter is used to detect any infection attempts and Process Gaurd is used to enforce access

control rules on processes related to malware infection. In the case where cross-level IoT malware

defense security function receives alerts from virtual NIDS, it updates the system flow rule table by

installing a new flow rule with an action that quarantines all processes, which access the sockets for

a certain period of time (3 in Figure 6.14).

6.4.3 Implementation

The cross-level IoT malware defense security function is implemented on a dedicated server

through high-level programming languages, in our case, Python and Java. The cross-level IoT

malware defense security function consists of three key components, alert parser, network flow rule

generator, and system flow rule generator as is shown in Figure 6.15. The northbound interface

is responsible for receiving NIDS alerts and sending system or network flow rules to the system

flow and virtual firewall respectively. Once a NIDS alert is received, it is firstly parsed by the alert

parser to extract traffic information, such as IP addresses and port numbers. Those information is
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then send to the network flow rule generator and system flow rule generator to construct proper

flow rules. The generated network flow rule and system flow rule are shown in Figure 6.16 and

Figure 6.16 respectively. In Figure 6.16, the source IP and destination port of the match field is

provided through the alert parser. In Figure 5.1, the quarantine parameter of the action field is a

predefined value indicating how long the quarantine will last.

Update System/Network 
Flow Rules

Cross-level IoT Malware Defense (Cross-level Secur ity Function)

Alert Parser
Network Flow 
Rule Generator

System Flow 
Rule Generator

Northbound Interface

Receive NIDS 
Alerts

Figure 6.15: Key components of cross-level IoT malware defense security function.

mat ch=<$si p,  * ,  * ,  $dpor t >; act i ons=( deny) ; pr i or i t y=1000

Figure 6.16: Network flow rule generated by cross-level IoT malware defense security function to
block scanning traffic.

mat ch=<* ,  * ,  socket _wr i t e_oper at e>; act i ons=( quar ant i ne( 3600) ) ; pr i or i t y=1000

Figure 6.17: System flow rule generated by cross-level IoT malware defense security function to
quarantine all processes that access sockets.

6.4.4 Evaluation

In this section, we evaluate the effectiveness of our cross-level IoT malware defense security

function. In particular, we will investigate whether the network-level security functions can col-

laborate with host-level security function to improve the prevention rate compared with that only

deploying host-level security functions.
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We used the honeypot environment developed in § 6.2.5 to provision software IoT devices as

hosts. We deployed zeek NIDS as the virtual NIDS and Open vSwitch (OVS) as the virtual firewall

to achieve network-level access control. The corss-level IoT malware defense security function is

implemented using Java and Python and is run on a dedicated server connected to the same OVS.

In the experiments, we deployed 43 IoT devices on CloudLab at 15 different sites (shown in Fig. 6.18)

for 14 days and attracted 11157 valid IoT malware logins. The detailed statistics of our deployment

is listed in Table 6.9.

Table 6.9: Software IoT device deployment statistics.
Region Site Deployed Device Valid Login
North America Lowa 12 3398

Los Angeles 3 708
South Carolina 3 761

Oregon 3 834
Northern Virginia 3 759

Europe Finland 3 749
London 3 691
Zurich 3 703

Belgium 3 662
Asia Taiwan 2 523

Singapore 1 212
Tokyo 1 179
Osaka 1 572
Seoul 1 206

Australia Sydney 1 200
Total 43 11157

The host-level infection detection and prevention performance are listed in Table 6.10. As

a result, among the 8534 valid infections, the cross-level IoT malware defender successfully defends

8392 IoT malware. In particular, the host-level infection detector achieves a FNR of 0.76% or TPR

of 99.24%. The host-level infection preventor achieves a prevention rate of 98.34% We deterime the

host-level prevention failure by counting the number of port scans that have occur because port scan

happens after an infection. We totally observed 77 port scan alerts or 0.90% scan rate. The infection

activities related to those port scans have been detected by our infection detector but the infection

preventor fails to prevent the port scans. This is because the infection preventor can only prevent

commands from executions after the infection detector makes decision. We found that those failures

are caused by commands executed before infection detector can raise an alert. In summary, 1.66%

of infections are failed to be prevented at the host level, including undetected infections, which takes
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Figure 6.18: Geo-distribution of our deployed software IoT Devices.

Table 6.10: Real-time detection results of cross-level IoT malware defender. FN: False Negative;
FNR: False Negative Rate; TPR: True Positive Rate; HP: Host-level Prevention; HPR: Host-level
Prevention Rate; PS: Port Scan; PSR: Port Scan Rate; CP: Cross-level Prevention Rate

Total Alert FN FNR TPR HP HPR PS PSR CP CPR
Valid
Infections

8,534 8,469 65 0.76% 99.24% 8,392 98.34% 77 0.90% 8,469 99.24%

Unique
Infections

145 133 12 8.28% 91.72% 133 91.72% - - 133 91.72%

0.76% of all valid infections.

To test the response time of cross-level IoT defender, we measure the time between a port

scan starts and the time a system flow rule has been installed into the host. The response time to

all the port scan cases is shown in Figure 6.19. All the responses are less than 6 seconds with the

minimal of 2.524 seconds and the maximum of 33.954 seconds. Among all detected port scan cases,

the average time our cross-level IoT malware defender takes to response is 5.32 seconds.

6.5 Conclusion

In this task, we deeply studied IoT malware infection process to build a knowledge base

for IoT malware infection detection, which can achieve early and lightweight detection. We further

developed IoT malware infection detection and prevention security functions based upon the system
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Figure 6.19: Cross-level defender response latency to each port scan incident.

flow model. Finally, we developed a cross-level IoT malware defense approach that allows host-level

IoT malware infection detection and prevention security functions to collaborate with network-level

port scan detection an prevention security functions. Our evaluation shows that the cross-level IoT

malware defense security function can take advantages of network-level and host-level programmable

security at the same time.
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Chapter 7

Discussion

In this chapter, we will discuss potential limitations of the research conducted in this dis-

sertation and point out the promising directions for this work.

7.1 Network-level Security Functions

In the network level, two security functions are redesigned to support programmability.

In this dissertation, the techniques behind to support such programmability are SDN and NFV.

However, the redesign of current network security functions presented in this dissertation addresses

challenges that are independent to specific SDN and NFV implementations (e.g., OpenFlow and

ClickOS). Instead, those challenges are related to specific network security functions. For the vir-

tual firewall elasticity control, splitting firewall rules with firewall rule semantic consistency and

updating flow rules correctly are two major challenges closely related to the virtual firewall while

avoiding buffer overflow and optimal scaling are two key challenges to enable programmable network

security functions. For the virtual NIDS, how to maintain effectiveness and efficiency of the new

(programmable) NIDS requires domain knowledge of NIDS to choose appropriate designs.

In addition, the features stressed by the new design are also general to any network security

functions, not limiting to the firewall and NIDS. That is programmable security functions should be

not only scalable but also flexible. With the above design requirements in mind, in this dissertation,

we demonstrate what potential challenges may be faced for different network security functions

and what tools may be used to address those challenges. Especially, we hope that the micro-service
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architecture used by the virtual NIDS could be an example for future comprehensive network security

function development since according to our comparison, micro-service based virtual NIDS has better

performance efficiency than the traditional NIDS.

7.2 Host-level Security Functions

In the host level, a flow-based model is employed to enable expressive security directives.

Even though the current implementation of system flow is on the top of Linux operating systems,

we consider that the design of system flow is general. This generality comes from our abstraction

of system events from low-level system activities (i.e., system calls). Our abstraction bridges the

semantic gap between different types and versions of operating systems to make system flow a

uniform framework for different operating systems. The clear separation between the low-level

system activities and the security directives, in addition, makes system flow easily portable to other

operating systems as long as corresponding plugins are implemented. One of the meaningful future

work is to extend system flow to support more operating systems, e.g, Windows and Mac OS.

The current development practice of host-level security functions on top of system flow

leverages C programming language due to its generality. Inspired by abstractions in programmable

network (e.g., Frenetic [61], Pyretic [113], Kinetic [86], and FRESCO [135]), one natural future

direction of system flow is to provide a higher-level declarative programming interface, e.g., a domain-

specific language (DSL), to hide tedious programming-language-related implementation details to a

compiler and run-time system.

7.3 IoT Malware Defense

In this dissertation, we propose to use a weighted infection state machine for IoT malware

infection detection because this method is sufficiently lightweight to run on IoT devices. As any

detection approaches may face, our lightweight infection detector suffers some false alarms. After we

carefully check with the false alarms, we find that those false alarms are caused by novel infection

patterns that have not been included in our dataset. To remediate this, we can enable retaining our

detection model using the new patterns collected during our large-scale online deployment. Since the

classifier of our infection detector is implemented as a LKM, we can easily modify, recompile, and
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reinstall it without rebooting the device. To further improve the detection accuracy of our infection

detector, we may use deep learning approaches to model the infection process in the future. In

addition, we can also augment our current dataset by making the samples in our dataset more

balance. For example, we can use generative adversarial network (GAN) to augment our dataset

with more infection samples that are not often seen in the wild.
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Chapter 8

Conclusion

This dissertation devotes to exploring a framework to enable programmable security in

modern software-defined infrastructures.

In the network level, we significantly redesigned two key security functions, the firewall and

NIDS, such that they are more programmable. They now features not only scalable but also flexible.

These improvements make the new firewall and NIDS more suitable to protect the networks in SDI.

It is worth-noting that we employed the micro-service architecture when we redesign the NIDS. As a

result, the micro-service architecture makes the new NIDS more efficient when deployed on a cloud

environment.

In the host level, we proposed and presented the design a flow-based model, system flow,

which enables expressive security directive. In addition, we have implemented the proposed model

in Linux OS and conducted performance evaluation on it. The evaluations results imply that only

a little performance overhead is introduced into the original OS.

We finally developed a cross-level IoT malware defense security function based upon ProSec.

The developed IoT malware defense security function can achieve a high detection rate (more than

98%) and preventions rate (more than 99%) according to our comprehensive evaluation with large-

scale virtual devices. The defense is quite responsive thanks to the programmability nature of

ProSec, which is less than 6 seconds on average.

In summary, the contributions made by this dissertation are as follows.

• Developing a virtual firewall and evaluating its performance in SDI
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• Developing a virtual NIDS and evaluating its performance in SDI

• Developing a system flow model and system flow rule table in Linux

• Implementing a malware infection detector based upon system flow model.

• Implementing a cross-level malware defense approach based upon the unified programming

interface

Moreover, we expect the virtual firewalls and virtual NIDSes can provide suitable protections

for SDN- and NFV-based networks, which are widely applied in SDI. We also envision the expres-

sive security directions can make host security functions programmatically-extensible. Finally, we

hope that our success in development of the cross-level IoT malware defense security function with

ProSec can be an excellent use case example that can be referred by developers in the community

to build more innovative security functions in the future.

116



Bibliography

[1] Apparmor linux application security. https://wiki.ubuntu.com/AppArmor.

[2] CloudLab. http://www.cloudlab.us/.

[3] Header Space Library (Hassel). http://stanford.edu/~kazemian/hassel.tar.gz.

[4] IBM QRadar SIEM. https://www.ibm.com/us-en/marketplace/ibm-qradar-siem.

[5] LBNL/ICSI Enterprise Tracing Project. http://www.icir.org/enterprise-tracing/.

[6] Linux Audit. . https://linux.die.net/man/8/auditd.

[7] LMbench. http://lmbench.sourceforge.net/.

[8] LogRhythm. . https://logrhythm.com/.

[9] Project Floodlight. http://www.projectfloodlight.org/projects/.

[10] Selinux. https://github.com/SELinuxProject.

[11] Splunk. https://www.splunk.com/.

[12] VirusShare web site. https://virusshare.com/.

[13] Xen Toolstack. http://wiki.xen.org/wiki/XL.

[14] Firesheep. http://codebutler.com/firesheep, 2010.

[15] Bro Script for Detecting Cookie Hijacking. http://matthias.vallentin.net/blog/2010/

10/taming-the-sheep-detecting-sidejacking-with-bro/, 2011.

[16] The CAIDA UCSD Anonymized Internet Traces 2016-0406. http://www.caida.org/data/

passive/passive_2016_dataset.xml, 2016.

[17] Algo-logic systems. http://algo-logic.com/, 2017.

[18] Bro Script for Detecting DNS Tunneling. https://github.com/hhzzk/dns-tunnels, 2017.

[19] CodeSurfer. https://www.grammatech.com/products/codesurfer, 2017.

[20] Frama-c Software Analyzers. https://frama-c.com/, 2017.

[21] Nmap Security Scanner. https://nmap.org/, 2017.

[22] The Reigning King of IP Camera Botnets and its Challengers.
http://blog.trendmicro.com/trendlabs-security-intelligence/reigning-king-ip-camera-botnets-
challengers/, 2017.

117

https://wiki.ubuntu.com/AppArmor 
http://www.cloudlab.us/
http://stanford.edu/~kazemian/hassel.tar.gz
https://www.ibm.com/us-en/marketplace/ ibm-qradar-siem
http://www.icir.org/enterprise-tracing/
.
http://lmbench.sourceforge.net/
.
http://www.projectfloodlight.org/projects/
https://github.com/SELinuxProject 
https://www.splunk.com/
https://virusshare.com/
http://wiki.xen.org/wiki/XL
http://codebutler.com/firesheep
http://matthias.vallentin.net/blog/2010/10/taming-the-sheep-detecting-sidejacking-with-bro/
http://matthias.vallentin.net/blog/2010/10/taming-the-sheep-detecting-sidejacking-with-bro/
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://algo-logic.com/
https://github.com/hhzzk/dns-tunnels
https://www.grammatech.com/products/codesurfer
https://frama-c.com/
https://nmap.org/


[23] An implementation of an E-component of Network Intrusion Detection System. http://

libnids.sourceforge.net/, 2018.

[24] Bro Scripting Language. https://www.bro.org/sphinx/scripting/, 2018.

[25] Open vswitch. https://www.openvswitch.org/, 2018.

[26] Scapy Project. http://www.secdev.org/projects/scapy/, 2018.

[27] The Bro Network Security Monitor. https://www.bro.org/, 2018.

[28] Port Scanner. https://en.wikipedia.org/wiki/Port_scanner, 2019.

[29] Snort Network Intrusion Detection & Prevention System. https://snort.org/, 2019.

[30] The Bro Network Security Monitor. https://www.zeek.org/, 2019.

[31] Muhamed Fauzi Bin Abbas and Thambipillai Srikanthan. Low-Complexity Signature-Based
Malware Detection for IoT Devices, pages 181–189. Springer Singapore, Singapore, 2017.

[32] Ehab S Al-Shaer and Hazem H Hamed. Discovery of policy anomalies in distributed firewalls.
In Ieee Infocom 2004, volume 4, pages 2605–2616. IEEE, 2004.

[33] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al. Un-
derstanding the mirai botnet. In 26th {USENIX} Security Symposium ({USENIX} Security
17), pages 1093–1110, 2017.

[34] Bashlex - Python parser for bash. https://github.com/idank/bashlex, 2020.

[35] A. BATES, D. J. TIAN, K. R. BUTLER, and MOYER. Trustworthy whole-system provenance
for the Linux kernel. In USENIX Conference on Security Symposium (SEC), 2015.

[36] Matt Bishop and Michael Dilger. Checking for Race Conditions in File Accesses. In Computer
Systems, 1996.

[37] Edmund K Burke and Yuri Bykov. The late acceptance hill-climbing heuristic. European
Journal of Operational Research, 258(1):70–78, 2017.

[38] P Busschbach. Network functions virtualisation-challenges and solutions. Alcatel-Lucent Corp.,
France, Strategic White Paper, 2013.

[39] Busybox man pages - user commands. https://busybox.net/downloads/BusyBox.html, 2020.

[40] Suresh Chari, Shai Halevi, and Wietse Venema. Where Do You Want to Go Today? Escalating
Privileges by Pathname Manipulation. In Network and Distributed System Security (NDSS)
Symposium, 2010.

[41] Huawei Home Routers in Botnet Recruitment. https://research.checkpoint.com/good-zero-
day-skiddie/, 2017.

[42] C. Cowan, S. Beattie, C. Wright, and G. Kroah-hartman. Raceguard: Kernel protection from
temporary file race vulnerabilities. In USENIX Security Symposium (SSYM), 2001.

[43] Cuckoo Sandbox Book. http://docs.cuckoosandbox.org/en/latest/, 2015.

[44] D-Link DCS-932L IP camera. https://linkstore.cl/adjuntos/991200-DCS-932L.PDF, 2020.

118

http://libnids.sourceforge.net/
http://libnids.sourceforge.net/
https://www.bro.org/sphinx/scripting/
https://www.openvswitch.org/
http://www.secdev.org/projects/scapy/
https://www.bro.org/
https://en.wikipedia.org/wiki/Port_scanner
https://snort.org/
https://www.zeek.org/


[45] Fan Dang, Zhenhua Li, Yunhao Liu, Ennan Zhai, Qi Alfred Chen, Tianyin Xu, Yan Chen, and
Jingyu Yang. Understanding fileless attacks on linux-based iot devices with honeycloud. In
17th Annual International Conference on Mobile Systems, Applications, and Services, pages
482–493, 2019.

[46] Lorenzo De Carli, Robin Sommer, and Somesh Jha. Beyond pattern matching: A concurrency
model for stateful deep packet inspection. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1378–1390. ACM, 2014.

[47] Drew Dean. Fixing Races for Fun and Profit: How to use access. In USENIX Conference on
Security Symposium (SEC), 2004.

[48] Hey Zollard, leave my Internet of Things alone! http://www.deependresearch.org/2013/12/hey-
zollard-leave-my-internet-of-things.html, 2013.

[49] Rohan Doshi, Noah Apthorpe, and Nick Feamster. Machine learning ddos detection for con-
sumer internet of things devices. arXiv preprint arXiv:1804.04159, 2018.
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