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Abstract

A high quality malware detection tool must utilize a feature set that provides high clas-

sification accuracy but is also difficult for malware developers to mask with obfuscation.

We propose that the use of string structures provides this type of feature as it can clas-

sify malicious code with high accuracy even in the presence of obfuscation. Obfuscation

itself provides malware developers tools and techniques to hide malicious intent. This

significantly degrades the ability of many malware detection tools to accurately classify

malware as occurrences of malicious intent used as classification features are no longer

present or purposefully misrepresented. String structures capture how strings are created

and employed by mobile applications and are themselves resilient to different forms of

obfuscation. This is because string structures are not focused on the literal content of the

string and are focused instead on the set of operations needed to create the string which is

more difficult to meaningfully obfuscate. We provide an analysis of multiple obfuscation

tools, both academic and open source, and examine how different types of applied obfus-

cation change an application’s code structure. Our research shows that these changes do

not significantly affect string structures nor the most important features from this set used

for malware classification. Our research furthers the field of malware analysis in two ways.

First, it provides string computations as a new, obfuscation resilient feature for classifica-

tion of malware and benign applications. This feature type can be used either independently

or as a complement to other feature types for more accurate classification of malware. Sec-

ond, it provides a set of metrics that may be used to measure obfuscation resiliency in

xi



terms of the feature set used for classification. Currently, obfuscation resiliency is tied to

accuracy measures for obfuscated applications but ignores how the underlying feature set

changes and its implications. Our metrics allow this change to be measured and compared

across different obfuscation tools and their obfuscators.
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Chapter 1

Introduction

1.1 Introduction

Android is one of the most popular platforms for mobile computing and Android’s official

app store, Google Play. However, this popularity has also resulted in a dramatic increase

in malicious apps targeting Android devices. As of 2019, security experts [78] have iden-

tified over 31 million unique, malicious mobile apps. To combat this increase in malware

the security community has developed many static analysis tools for identifying malicious

Android apps. By identifying malware statically, these tools can offer enhanced security

for end users who download and use Android apps. Many different types of analyses have

proven to be useful such as data and control flow analysis [44, 90, 15], call graph analy-

sis [73], sensitive API analysis [111, 45], extraction of strings constants [102, 65], as well

as analyzing strings to extract API usage and permissions [103].

String analysis, which focuses on identification of string values within a program, is a

common technique used in the detection of malware. For example, being able to identify

static string values provides insight into which SQL queries are performed by an application

(app) and can be used to identify SQL injection attacks [58, 106, 50]. This analysis of literal

values includes classification of apps as malware or benign based upon assessment of the

1



complete set of literal values present in apps [65].

What all these approaches share is a desire to understand the content of strings; what

their values are and what can be understood from these values. Our string analysis is fo-

cused on the structure of the strings - how strings are constructed, manipulated, and where

in the program they are created as well as used. Our observation is that malicious code

on Android uses complex string operations to hide the intent of the computation and evade

detection by anti-virus software. Our research focuses on malicious behavior defined by

string operations. We show that analysis of string structures can be useful to distinguish

between malicious and benign apps. This occurs because Android apps heavily rely on

strings in order to perform potentially sensitive or malicious tasks, such as reading contact

information and device IDs, accessing storage, calling hidden APIs, leveraging reflection

to hide which code is being called, and using remote servers. Importantly, these string

structures offer obfuscation resilience. We show that when obfuscated by reflection, indi-

rection, etc., string computations remain a resilient and effective feature set with which to

classify malware and benign apps. This is an important characteristic as malware detec-

tion algorithms must generate a feature set that is both effective at classification but is not

significantly disrupted when different obfuscators (reflection, indirection, etc.) are applied

to the set of apps being classified. Here, a disruption introduced by obfuscation would be

complete removal of the feature or changes in the frequency of the feature that make it less

reliable as a discriminator to assist in malware classification.

Our string analysis system has three components: (1) a static analysis that extracts

strings, computations that use them, and computations that construct them, (2) a feature

space generator for extracted string computations, and (3) a k-fold cross validation training

and test methodology that supplies the feature spaces to a machine learning (ML) classifier.

Our static analysis examines apps and extracts all string computational structures - storing

them as graphs. The feature space generator creates a feature set that records the frequen-

cies of critical structural elements as well as sequences of the structural elements for the

2



computation structures, stores associated graphs in a graph databases, and provides analy-

ses over the graphs using graph queries. The classifier component uses gradient boosting

with a k-fold cross validation test and evaluation methodology. Our analysis clearly shows

that use of gradient boosting with the computational structures treated as features is an ef-

fective, generic, and obfuscation resilient mechanism to differentiate malware from benign

apps.

Contributions The contributions of this work include:

• An interprocedural static analysis for extracting strings, where they are used, and the

structure of the computation that generates them, for Android.

• A generic approach to classify app behavior as malware or benign based on strings

and their associated computations. The classification results demonstrate how com-

putational structures can be used as features to label an app as benign or malicious

with high precision and recall. Importantly, it is done (1) without developing an ex-

pert system dependent on manually generated feature sets, and (2) with no reliance

on the string literal values themselves. We devise mechanisms for automatically ex-

tracting best-possible features for classification from the results of our static analysis.

• Analysis results from modern malware. Often, malware analysis relies on data sets

that collected years in the past, leaving it difficult to say how results compare with

what is currently seen in the world today. Results are reported against malware and

benign Android apps in use during 2018 and 2019.

• Analysis is performed in the presence of different types of obfuscations. We show

that when reflection, goto, and indirection obfuscation are applied to a set of apps,

the extracted feature set composed of obfuscated string computations continues to

perform exceptionally well at classification. The obfuscators used have been iden-

tified by prior researchers as the most complex forms of obfuscation and thus most

likely to degrade string computations as a feature set [59, 84].

3



• Lastly, the obfuscation analysis includes a rigorous analysis of changes to the fea-

tures most important for classification. This reveals how obfuscators change feature

sets and why accuracy remains the same or dips. Included is a comparison against

another state-of-the-art malware detection tool to understand how its most important

classification features are impacted by the same types of obfuscation.

4



Chapter 2

Related Work

2.1 Related Work

Application of string analysis for mobile apps has a rich research background as there is

a clear value in enhanced string creation understanding for determining app intent or for

use in verification techniques. It should be noted that most of what is referred to as string

analysis is focused upon the different values that a string expression may take during the

execution of a program [24] as opposed to the set of operations used to create the string

itself.

2.1.1 String Analysis Focused on Values

The first holistic examination of string analysis in Java applications was performed by

[33] with Java string analysis (JSA). This work focuses on the values that may occur as

a result of a string expression, for example statically determining the value of string that

represents a SQL insert statement. JSA creates a directed flow graph which is turned into

a context free grammar (CFG). The CFG can be examined to identify the values of strings

at different program execution points. Violist [68, 67] extended the work of JSA and was

developed to represent string creation ops for both intraprocedurally and interprocedurally
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created strings. It focuses on the introduction of configuration options that allow users to

unroll loop structures and find values of strings at specific points of program execution. An

implementation of JSA was also developed to check for errors in dynamically generated

SQL query string for Java Web applications.

BEK [61] is an example of an automata-based string analysis algorithm. It enables

precise analysis of Web sanitizer behavior that examine untrusted user supplied data to

stop cross site scripting attacks. It uses a finite state automata to model the functionality

of the sanitizer and can take a target string that is the desired malicious output text for the

sanitizer, run the sanitizer in reverse, and then determine if it is a valid output as well as

the form of the original string. This is a relevant example as it demonstrates how a vast

majority of string analysis focuses on the values of literals and how the values themselves

change at different points during program execution.

Our work differs from JSA and BEK in that we focus on the structure of the graph used

to generate the string value as opposed to the string value itself and the consumer of the de-

veloped string (i.e. URL connection, reflection call, etc.). Our analysis algorithm develops

a graph representation for each string created by an app and persists this graph representa-

tion for later analytics. The graph representations can be stored in a singular graph based

data store where the outputs of multiple apps are meant to co-located. Analytics routines

may easily be developed that pull back the graph representations for all strings supplied to

URL connections or calls to Reflection to understand critical differences in the complexi-

ties of string creation in benign versus malware apps. This capability can identify similar

or like approaches to string creation but also can identify new or novel approaches to the

creation of strings that can potentially identify new malware that are different from known

malware. This capability was identified as a critical need in malware analysis by [17].

Research exists [60] on extensions to DBDroidScanner that focus heavily on the anal-

ysis of string operations for strings used in attacks on databases in benign Android apps.

The approach performs a rigorous analysis of how string operations related to URI and SQL
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calls are constructed. It discusses the structure of string, called Symbolic Finite Transduc-

ers, that symbolically execute the string’s creation. Here, the research is focused on the

string literal value and much less on the operation used in that literal value’s creation.

[65] provides an extensive examination of a string literals where the literals themselves

are treated as n-grams. N-grams are a concept used in computational linguistics for pre-

dicting the next item in a sequence. The research created n-grams of size one, two, and

three and then performed classification on the different sized feature sets. This analysis

is analogous to ours in the sense that it performs classification solely on the string literal

values of all the string computations we would compute.

Researchers have also developed many static tools to examine sensitive data usage in

apps where this data utilizes strings: FlowDroid [15], StubDroid [13], CHEX [73], An-

droidLeaks [105], SCanDroid [51]. Barros et al. [22] present static analysis of implicit

control flow for Android apps to resolve Java reflection and Android intents. Slavin et

al. [93] propose a semi-automated framework for detecting privacy policy violation in An-

droid app code based on API mapping and information flows. Yang et al. [108] develop a

control-flow representation based on user-driven callback behavior for data-flow analyses

on Android apps. Apposcopy [47] presents a semantics based approach to identify malware

that is sensitive to the use of obfuscation. AppContext [109] extracts context information

based on app contents and information flows and differentiates benign and malicious be-

havior. However, it requires manually labeling of a security-sensitive method call based

on existing malware signatures. Type-based analyses have been used to detect privacy dis-

closure in Android apps as well [63, 64]. IccTA [69] and Epicc [81] are frameworks that

perform ICC analysis to detect privacy leaks that may be careless or malicious in nature.

BlueSeal [90] proposes a new permission mechanism that leverages static data flow anal-

ysis to discover sensitive data usage and improves Android app security. We believe our

structure analysis of strings is complimentary to many of these approaches and is unique

in that it analyzes the structure of the computation as opposed to only checking for the
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presence of a particular feature.

2.1.2 Analysis of Obfuscation in Android Apps

A recent study of scholarly research into obfuscation [62] reviews 357 papers through 2018.

It identifies the main reasons obfuscation is applied are to protect intellectual property in

benign apps, or to hinder the process of extracting actionable information in the case of

malware apps. The research also lists what specific characteristics of obfuscation have

been proposed and studied by these papers. These characteristics may be binned into the

following categories:

• Target of transformation,

• Level and stage, and

• Cost and effectiveness of the approach.

Our research focuses on the first item - target of transformation. While a great deal of

research has been performed on the introduction of obfuscation and its ability to confound

classification, little research has been focused on understanding the complexity obfusca-

tion adds in terms of specific changes to the target structures of the code. Further, current

research does not examine code transformations between different obfuscators and the im-

pact these changes have on the extracted feature sets used for classification. We provide a

summary of major obfuscation research areas in the following subsections.

2.1.3 Detecting Obfuscation in Android Apps

AndrODet [76] is obfuscation detection tool that can identify renaming, string encryption,

and control flow obfuscation in Android apps. AndrODet achieves an accuracy of 92.02%

for identifier renaming detection, 81.41% for string encryption detection, and 68.32% for

control flow obfuscation detection. AndrODet uses an online machine learning approach -
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continually learning from a stream of obfuscated and unobfuscated app examples. This pro-

vides a more robust implementation than a batch machine learning process which generates

a static model at the end of the training step. Such a model is limited by the characteristics

of the training set. AndrODet itself uses the byte code directly to train and test the model,

versus an intermediary form or the original Java code.

A recent technique to understand obfuscation is the use of machine learning to clas-

sify obfuscation tool outputs. This can be done to identify specific obfuscator techniques

reflection, indirection, etc. or the obfuscation tool used[104]. Machine learning was em-

ployed with excellent result to predict which tool was used to obfuscate a particular An-

droid app. The algorithm itself uses SVM for classification which provides good results

but lacks explainability of these results. That is, the classifier can be trained to learn the

differences between obfuscated and unobfuscated code but cannot explain the complexity

of the differences or any specific details about the structural changes made to code. As with

AndrODet, this research directly utilizes the bytecode for classification of obfuscated code.

Both of these research examples demonstrate how analysis of Android malware is

spurred in part by its representation as bytecode [76]. This bytecode presents much more

semantic information than machine level code and therefore makes it easier to analyze.

Multiple tools exist to extract bytecode from apps and in some cases re-represent in inter-

mediary from - including DexDump [41], Dex2Jar [40], Androguard [6], Apktool [9],

and Soot [101]. Easy access to these tools feeds directly into the explosion of analysis

tools focused on identification of behavioral characteristics of Android apps, both benign

and malicious.

2.1.4 Measuring Obfuscation

An early examination of obfuscation [48] examined 240 apps under seven different types

of obfuscation. This work is important as it is one of the first to tackle how to measure

the complexity introduced by obfuscation using a variety of techniques. It provides the
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following set of measures:

• Cyclomatic Complexity and Dependency Degree (CCD): Method corresponds to the

number of the linearly independent circuits in the control flow graph (CFG) [75]

• Dependency Degree metric (DD): Defined with help of the dependency graph,which

is constructed for the given CFG as follows. [23]

• Weighted Methods pro Class (WMC): the number of the methods defined in a class.

[32]

• Depth of Inheritance Tree (DIT): the number of classes along the path from the given

class to the root in the inheritance tree. [32]

• Number of Children (NOC): the number of direct subclasses.

• Coupling Between the Object classes (CBO): the number of coupled classes. [32]

Here, two classes are considered coupled, if one of them uses methods or instance

variables of the other one.

• Response Set for a Class (RFC): the number of declared methods plus the number of

methods the declared ones call. [32]

• Lack of Cohesion in Methods (LCOM): Method analysis indicates long, incohesive

methods with high degree of goto usage.[32]

All of these measure types give sheer numbers while none dive into the specifics of how

the obfuscation tools work beneath. That is, anyone of these measures could be extremely

high but if the underlying pattern used by the obfuscator is easily understood then the

obfuscations value is lessened as it is easier to understand and subsequently defeated. An

early study into Android [29] performed a holistic view of obfuscation where obfuscation

was introduced and then measured in terms of these types. The work demonstrates that
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these metrics can be used to successfully measure the net impact of obfuscation in Android

apps.

A thorough examination of control flow obfuscation that is closer to the assessment of

obfuscation our research targets is provided in [21]. This work examines multiple obfus-

cation tools and then measures the: (1) size before and after obfuscation, (2) net increase

per app, and (3) a dynamic analysis for the running time of some of the obfuscated meth-

ods. Figure 2.1 shows how complexity is measured with multiple runs of obfuscation and

a complexity increment measured at the completion of each run. The analysis does an out-

standing job of showing the impact of obfuscation tools and different obfuscators in terms

of net size and running time. However, this research does not examine the complexity

introduced into the code. That is, if an app increases by 20% in size, what is that 20%

attributed to? What is the nature of the structural patterns and how are they employed?

Figure 2.1: Net Measure of Code Complexity Increase in Obfuscated Code

Research has been performed into code comprehension and creating metrics to repre-

sent the decrease in comprehension of code is [18]. These metrics mainly focus on net

measure of complexity and avoid a detailed analysis of the new structure of the code.

Research also exists into the impact of obfuscation on code packing. Obfuscation anal-

ysis techniques exist that identify how an app is unpacked and loaded by the respective

VM as malware developers take advantage of this to hide malicious code[66]. This area of

research is not applicable to our obfuscation analysis as it focuses mainly on dynamic anal-

ysis and understanding how apps load into the VM and advertised entry points. These entry

points are examined to identify when obfuscation is employed to hide malicious behavior
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and intent.

2.1.5 Machine Learning for Malware Detection

Machine learning techniques are also very popular among researchers for detecting mali-

cious Android apps. Classification of malware utilizing machine learning algorithms has

matured to the degree that research is being performed to classify the types of machine

learning algorithms being used. This research [4, 72] typically provides a hierarchy of the

types of machine learning algorithms employed by current research, an example of such a

hierarchy is provided in 2.2 as a Venn diagram, taken from Liu. It presents different types

of machine learning where brackets are research that employs it for malware classification.

Central to this diagram is the use of decision trees, both individually or as part of an ensem-

ble machine learning approach. Our research employs decision trees as well and we explain

later why decision trees work so well utilizing string structure as features for classification.

Figure 2.2: Venn Diagram of Machine Learning as Applied to Android Malware Classifi-
cation

Most of these solutions identified in [72] train the classifier only on malware samples

and can therefore be very effective to detect other samples of the same family. For example,
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DREBIN [11] extracts features from a malicious app’s manifest and disassembled code to

train their classifier, where as MAST [30] leverages permissions and Android constructs as

features to train their classifier. Shen et al. [89] analyze the structure and behavioral features

along with Complex-Flows to classify benign and malware apps. We believe these coarse

features are a great mechanisms to filter many apps prior to leveraging techniques like our

own, which require more analysis of the app internals. There are many other systems, such

as Crowdroid [27], and DroidAPIMiner [1], that leverage machine learning techniques to

analyze statistical features for detecting malware. Similarly, researchers developed static

and dynamic analyses techniques to detect known malware features. Apposcopy [46] cre-

ates app signatures by leveraging control-flow and data-flow analysis. RiskRanker [55]

performs several risk analyses to rank Android apps as high-, medium-, or low-risk. Sebas-

tian et al. [83] analyze dynamic code loading in Android apps to detect malicious behavior.

[43], [34] and [56] are all signature-based malware detection techniques and are designed

to detect similar malware apps. [56] is of particular interest as it aims to represent know

malware signatures as strings instead of hashes. Moonsamy et al. [79] provided a thorough

investigation and classification of 123 apps using static and dynamic techniques over the

apps’ Java source code. To the best of our knowledge we are the first to consider leveraging

the structure of computation, and specifically the structure of computation of strings, as a

feature for classification. We believe our approach is orthogonal to others proposed and our

feature set can be combined with other proposed features to further improve classification.

2.1.6 Analysis of Impacts of Obfuscation on Classification

Research exists that accesses the impact of obfuscation on features used for classifica-

tion. DroidSieve [96] identifies that extraction of lightweight syntactic features, otherwise

known as signatures, are used heavily for successful malware classification. However, they

are brittle in the sense that these signatures are susceptible to obfuscation. For example,

individual API calls are excellent at classification of malware but are susceptible to obfus-
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cation. The research creates two classes of features that should be resilient to obfuscation.

First is resource-centric features like certificates, native code, etc. The second, and more

germane to string analysis, are syntactic features. These include [96]:

• DEX-based Features. Tag each method based on the libraries it invokes from the

Android Framework.

• Intents and Permissions. Scan the code to identify any explicit intents, which are

used to start services within the same app.

• Evasion Techniques. Search for techniques that are frequently used to confuse anal-

ysis systems, i.e., native code, cryptographic libraries, or reflection.

DroidSeive then extracts these features and demonstrates that they are useful for mal-

ware classification - even when obfuscation is used upon syntactic features. The above

listed features do work for classification in the presence of obfuscation for reflection, en-

cryption and dynamically-loaded native code. However, the authors do not list what specific

tools were used for obfuscation - rather indicating that the apps examined were obfuscated

a priori. Our research seeks to understand the specific impacts of tools - namely how would

specific obfuscators impact features used for classification, how detrimental is this impact,

and can they degradation be overcome.

There are many examples of the application of machine learning classification on An-

droid app string literals that are highly successful with accuracy rates typically above

98% [12, 71, 39]. Though successful, this feature set is especially vulnerable to encryption

obfuscation as document by [74, 28]. This research shows it relatively easy to employ

a basic string encryption technique to quickly drop the accuracy of classification using to

string literals to no better than a coin flip.

A thorough taxonomy of obfuscators is provided in [36, 85]. Obfuscators are the type

of obfuscation (reflection, indirection, etc.) while the obfuscation tools apply the obfusca-

tor. A thorough analysis of the effects of obfuscation tools and obfuscators when applied
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to Android apps subsequently analyzed by commercial and academic malware detection

tools is provided in [84, 59]. The analyses demonstrate that obfuscation can defeat these

detection tools but do not provide a detailed analysis of the differences in specific features

that would lead to this degradation. An analysis of reflection [10] as applied by the com-

mercial tool Proguard is the best example of a detailed analysis of how underlying code is

changed by an obfuscation tool. The analysis does not include an assessment of how these

changes effect feature sets used by tools that perform malware classification.

Researchers have investigated how to deobfuscate known obfuscated apps. Dong et

al [42] provides mechanisms for the deobfuscation of encryption, reflection, identifier re-

naming, and encryption. Their results focus on singular changes in the source code versus

control flow changes that show how sequences of code are transformed. Of note, the au-

thors show how encryption works. They indicate that encryption keys may be included as

part of the application - easy to use - or more commonly dynamically generated at run-

time. This leaves static analysis unable to determine what the value of encrypted strings

are. For reflection, they identified that malware and benign apps use reflection at the same

rate. The main difference between the two classes is the complexity of how reflection is

employed - where malware uses more complex patterns specifically to make static analysis

more difficult for intent discovery. This characteristic is also seen in the complexity of

renaming.
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Chapter 3

Motivation

3.1 Motivation

String constants are of interest to developers of malware detection tools. For example,

VirusTotal’s [97] analyzed malware reports include a section titled ”Interesting Strings”

and the online malware detection service HybridAnalysis [5] provides a search capability

specifically tailored for strings. Both examples provide only the literal values found in apps

statically. Our string computations provide the critical backstory for these literals - how

they were created and where they are used. They can serve as a compliment to the string

literals provided by both services. Additionally, there are many string values that cannot

be analyzed statically but are critically important in order to understand the behavior of

malware.

We consider the following three real-world examples discovered in the course of our

research to illustrate how uses of strings in computation and the structure of the computa-

tion to generate strings can be leveraged to identify malicious behavior. These examples

are from a set of malware apps first identified in 2018 by VirusTotal. VirsutTotal URLs for

each app are included in the References and provide fine grained detail for each app. In

addition, the string literal values can be searched and found on HybridAnalysis.
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1 public final String toString() {
2 StringBuilder sb = new StringBuilder("TxLocation{");
3 sb.append("level=").append(this.d).append(",");
4 sb.append("name=").append(getName()).append(",");
5 sb.append("address=").append(getAddress()).append(",");
6 sb.append("provider=").append(getProvider()).append(",");
7 sb.append("latitude=").append(getLatitude()).append(",");
8 sb.append("longitude=").append(getLongitude()).append(",");
9 sb.append("altitude=").append(getAltitude()).append(",");

10 sb.append("accuracy=").append(getAccuracy()).append(",");
11 sb.append("cityCode=").append(getCityCode()).append(",");
12 sb.append("areaStat=").append(getAreaStat()).append(",");
13 sb.append("nation=").append(getNation()).append(",");
14 sb.append("province=").append(getProvince()).append(",");
15 sb.append("city=").append(getCity()).append(",");
16 sb.append("district=").append(getDistrict()).append(",");
17 sb.append("street=").append(getStreet()).append(",");
18 sb.append("streetNo=").append(getStreetNo()).append(",");
19 sb.append("town=").append(getTown()).append(",");
20 sb.append("village=").append(getVillage()).append(",");
21 sb.append("bearing=").append(getBearing()).append(",");
22 sb.append("time=").append(getTime()).append(",");
23 sb.append("}");
24 return sb.toString();
25 }

Figure 3.1: Assembly of Location Information

3.1.1 Example 1: Obtain Geolocation Information

The app DualSpace [100] is used to coordinate multiple social media accounts for a user

and is both a complement and competitor to the app WhatsApp. It was first identified in

September 2018 with 16 of the VirusTotal’s 63 detection engines flagging it as malware.

These engines list it as belonging to malware families focused on Adware. Its specific risks

include that it checks GPS information, contains a Linux executable, uses reflection, and

accesses telephone details like imei and Mac address. We reviewed the string computations

generated by our analysis of DualSpace and identified multiple computations that were

suspect related to collected GPS information. We provide decompiled code for one such

GPS-centric string computation in Figure 3.2.
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The code listing shows how DualSpace collects as much information about a user’s

location as possible, using a StringBuilder object to hold the information as it is accu-

mulated. This behavior may seem benign on the surface but DualSpace’s download page

sheds light on the application’s true intention. The following is an excerpt from the down-

load page:

DualSpace applied for as much system permissions as we can to ensure

that applications cloned in Dual Space will run normally. For example, if

Dual Space is not permitted to acquire camera permission, you will be unable

to use camera function in some apps that run in Dual Space. Dual Space does

not collect your personal information to protect privacy [94]

This disclaimer indicates that the app simply needs to obtain the permissions to run the

clone application - not for itself. However, this harvesting of user location information is

inside the DualSpace code itself. It has no need to collect this information as each cloned

social media app is able to collect it independently.

3.1.2 Example 2: Useless String Ops

The app App1SQL [98] was first identified in June 2018 with 32 of the VirusTotal’s 63

detection engines flagging it as malware. These engines list it as belonging to various mal-

ware families including Trojan Downloader, Riskware, Spyware and PUA. We reviewed the

string computations generated by our analysis of App1SQL and identified multiple compu-

tations that were suspect. We provide decompiled code for one such computation in Figure

3.2 via an abbreviated extract of the app’s actual code.

Line 1 shows that App1SQL extends the SQLiteOpenHelper class and one of its con-

structors that accepts a string as its second argument. Line 12 shows where this class, a,

is initialized for use in the class b. The string passed in as the second argument comes

from passing the Context object to the method a of class f. Here, method a calls method
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1 public final class a extends SQLiteOpenHelper {
2 public a(Context context, String str, CursorFactory cf, int

i) {
3 super(context, str, null, 2);
4 }
5 } //end class a

6

7 public class b{
8 public static a a(Context context) {
9 ...

10 synchronized (b.class) {
11 try {
12 a = new a(context, f.a(context), null, 2);
13 } catch (Throwable th) {
14 Class cls = b.class;
15 }
16 }
17 return a;
18 } //end class b

19

20

21 public class f{
22 public static String a(Context con) {
23 return new StringBuffer(b(con)).reverse().toString();
24 }
25

26 private static String b(Context context) {
27 String str = bj.b;
28 if (b.b((Object) str)) {
29 return str;
30 }
31 return "zdlVOdEpGZmV5Sm5ZVzFsWDI1a";
32 }
33 } //end class f

Figure 3.2: Useless String Operations.

b, shown on line 26, which does nothing with the Context object itself (a red herring)

and either returns a string returned from another method or the hard coded string value,

”zdlVOdEpGZmV5Sm5ZVzFsWDI1a”. This string value is then turned into a String-

Buffer, its sequence reversed, and it is next turned back into a String. All of these

operations are performed to simply obtain the name of the SQLite database this application

will use. This is a complex set of string operations purposefully enacted to confuse what
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the name of the installed database is. Our string analysis was able to capture the structure

of these string operations for this example and is explained further in Section 4.1.

3.1.3 Example 3: Dynamic Code Loading

The app App2Dex [99] was first identified in June 2018 with 36 of the VirusTotal’s 63

detection engines flagging it as malware. These engines list it as belonging to various mal-

ware families including Trojan Downloader, Riskware, Spyware and SMS payment thief.

We reviewed the string computations our analysis generated for App2Dex and quickly iden-

tified multiple computations that were suspect. We provide decompiled code for one such

computation in Figure 3.3 via an abbreviated extract of the app’s actual code.

Figure 3.3 shows how the app uses the class DexClassLoader - a class included in the

Android API that can be used to execute code not installed as part of an application [7]. The

class b has a method named a that at line 5 uses a DexClassLoader object to dynamically

load code. The computational path it uses to derive the name of the class it wishes to

instantiate is incredibly convoluted to follow manually but easily connected by our string

computations. It supplies the string argument to loadClass of DexClassLoader by

calling b.a with the value ”2ab7d44a89503834ffc598” (abbreviated from its much longer

original value). The method b.a uses multiple nested calls at line 20 that eventually lead

to a call to method a at line 27. Here, the initial string passed in as the first argument to

b.a is transformed into a byte[], which is then decrypted (this method is not shown)

and passed as an argument to the String constructor, which itself is then passed back

as the string value to instantiate as a class. This is a perfect example of an extremely

complex string construction that goes to extreme lengths to hide the name of the class it is

dynamically instantiating. Our algorithm generated a string computation that was able to

track the string that is the first argument to the method called within loadClass at line 5

to its translation into a byte[] at line 28.

These three examples demonstrate that a manual examination of a string’s computation
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1 public class c{
2 private boolean a(Context context, File file) {
3 ...
4 DexClassLoader dexClassLoader = this.b;
5 this.c = dexClassLoader.loadClass(
6 b.a("2ab7d44a89503834ffc598", bj.b));
7 Class cls = this.c;
8 this.e = cls.getMethod(
9 b.a("aeaa0994519899d5a82e2d", bj.b), new Class[0]);

10 ...
11 }
12 }
13

14 public class b{
15 public static String a(String str, String str2) {
16 try {
17 if (str2.trim().length() < 2) {
18 str2 = b;
19 }
20 return new String(a(a(str), str2));
21 } catch (Exception e) {
22 c.a().a(e);
23 return "208";
24 }
25 }
26

27 private static byte[] a(String str) {
28 byte[] bytes = str.getBytes();
29 int length = bytes.length;
30 byte[] bArr = new byte[(length / 2)];
31 for (int i = 0; i < length; i += 2) {
32 bArr[i / 2] =
33 (byte) Integer.parseInt(new String(bytes, i, 2), 16);
34 }
35 return bArr;
36 }
37 }

Figure 3.3: DexClassLoader Example

provides valuable insight into the behavior of an app. We will show that the structure of

this computation can be leveraged to distinguish malware from benign applications. Our

research focused on creating classifiers to automate this manual process. These classifiers

will use the computational structures as features and avoid entirely the use of string values,
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or literals, for classification. Our system implementation sought to answer the following

set of baseline research questions:

• Research Question 1: How do ML models generated from our string computations

classify malware and benign apps when compared with state-of-the-art malware de-

tection tools or against classification using string literals solely?

• Research Question 2: How well do combined approaches work when we add our

string computations as another feature for state of the art malware detection tools or

combine them with the string literals?

• Research Question 3: How does obfuscation impact our classification results, as well

as the results for the state of the art or string literals?

• Research Question 4: What features from the string computation feature space are

most important in the classification of malware and benign apps?

• Research Question 5: How would results differ for classification if string computa-

tion subgraphs were used for classification as opposed to the entire string computa-

tion?

• Research Question 6: What would classification results look like if we simply counted

the use of string API calls (i.e. calls to String, StringBuilder, StringBuffer, etc.)?

Would this simple approach do better or worse than classifying upon the string com-

putations themselves?
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Chapter 4

Algorithm Implementation

4.1 Analyzing Strings

We implement our string analysis as a flexible system capable of quickly processing and

analyzing apps. Figure 4.1 shows the major components of our system and their integration.

The following subsections provide detail on each of these components.

4.1.1 Structural Analysis of Strings

Input to our system is a set of Android apps to be analyzed. Finding all strings within an app

statically can be viewed as a specialized form of constant propagation [107, 102]. This is

the starting point of our analysis and provides us with a set of statically computable string

constants. Obviously, not all strings can be generated statically as they may depend on

dynamically computed values, user input, and other I/O operations. We leverage interpro-

cedural control and dataflow analyses augmented with the ability to reason about common

string manipulations (e.g. concatenation, substrings, conversions of literals to strings) and

some common libraries (e.g. string builder) to identify all computations used to create a

string.

We maintain a complete listing of all the String, StringBuilder, and StringBuffer APIs
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Figure 4.1: String Analysis System

and record when a string operation is performed and how this operation is linked to pre-

ceding and trailing string operations. We do not analyze the internals of the string ma-

nipulation libraries themselves. Abstractly, this provides a graph that contains control and

data dependencies (computation structure) for generating a string, or set of strings in the

case of control flow operations like branches. We call the set of strings a string com-

putation graph could generate at runtime a string family. Figure 4.2 provides a pictorial

representation of how the interprocedrual analysis works using a code snippet taken from

com.symantec.mobilesecurity .

The interprocedural analysis uses as input decompiled code provided by Soot, a Java

instrumentation framework [101]. The atomic units of the decompiled code are called

Units in Soot’s vocabulary. Each method contains a set of Units that embody bytecode

operations of the method. We use the backward flow analysis framework provided by Soot

to iterate through the method’s Units—starting at a unit that uses a string or is an output

of our constant propagation and then visiting all units in the method in the reverse order of

the method’s control flow. While doing so, our string analysis identifies those Units where

string objects are used, and performs dependency analysis to identify other Units which the

current Unit is control or data dependent upon. Effectively, we compute a backward slice

originating from the usage of the string (Line 1 for the string extracted from builder1 and

Line 6 for the string extracted from builder2). The backward slice captures all statements

necessary to compute the string transitively, so for the use in Line 7 the backward slice

would contain Lines 2, 1, and 5. For use in Line 6 the backward slice would contain Lines
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1 StringBuilder builder1 = new StringBuilder();
2 builder1.append("expiry_date");
3 StringBuilder builder2 = new StringBuilder();
4 builder2.append("active_date");
5 ContentValues content = new ContentValues();
6 content.put(builder2.toString(), "val2");
7 content.put(builder1.toString(), "val1");

Figure 4.2: Interprocedural Constant Propagation

Figure 4.3: String Computation Graph Structure

4, 3, and 5. We filter the backward slice for each string to only contain string operations

(we would filter out Line 5) but maintain their relative positions in the slice, effectively

creating a graph. Each graph represents a set of strings that share a common computation

structure that the program can compute at runtime.

4.1.2 Representing and Reasoning About Stings as Graphs

Figure 4.3 pictorially shows the resultant string computations we extract and the graphs

we use to represent them. Note, some of the graph content generated by our algorithm is

reordered and condensed for read-ability in this figure. This graph is from App1SQL de-

scribed in section 3.1 with accompanying code. We read the graph from left to right. At

upper left is a gray rectangular box that represents a root node for a string computation,

listing the name of the method where the string is created or used. Here, we have detected

that a string is created in the method a a(Context con) that returns an object of type
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a. The sequence of blue and yellow nodes connected to the StringComputation represents

the Soot units used to build this portion of the string within the method. All of the code

used by the method to construct the string is captured as a node in our graph structure.

Blue nodes are normal Soot units, yellow nodes reflect interprocedural pointers to another

StringComputation, and greens are conditionals. We see the first Soot unit added creates a

String with some content that is interprocedurally obtained. Our graph structure contains

an edge that connects the Soot unit with another StringComputation, in this case the string

created in String a(Context con). As we trace down this graph we see its first Soot

unit is an interprocedurally connected one. We also see that there are additional Soot nodes

beneath this StringComputation. We see a series of nodes that take a String, turn it into a

StringBuffer, call reverse() on the buffer, and then turn back into a String. We last

look at the two StringComputation at far right. They both represent content that is returned

from String b(Context con). In the upper case it is a hard coded String value and

in lower case it is a value harvested from a class variable from bj. The lower StringCompu-

tation represents the fact that an if statement occurred on which str is control dependent

on prior to the return – the subgraph rooted at an if node contains operations on the string

representing the then clause and the else clause, if present. In this particular example we

omit the sub-graph rooted at the if node for readability of the figure.

Our persistence step, shown in Figure 4.1 as the storage of string computation graphs,

provides us a composite graph database across all apps examined. The graph database is

populated with thousands of graphs like the one presented in Figure 4.3. This allows us to

quickly develop graph queries that analyze and extract new feature sets, decoupling string

meta-analysis from the static analysis performed within Soot.

We use an advanced graph query engine called SPARQL to pull critical information

back from our string analysis outputs. SPARQL is a W3C standard for querying required

and optional graph patterns along with their conjunctions and disjunctions [37]. We lever-

age SPARQL’s advance capabilities to perform graph pattern matching to find patterns of
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1 SELECT ?stringComp (COUNT(?stringComp2))
2 WHERE
3 {
4 ?stringComp <has_part> ?sootUnit .
5 ?stringComp <type_of> StringComp .
6 ?sootUnit <next>+ ?sootUnit2 .
7 ?sootUnit2 <has_interprocedural_part> ?stringComp2 .
8 FILTER NOT EXISTS(?stringComp ˆ<has_part> ?stringComp3)
9 }

Figure 4.4: SPARQL Example

interest. Figure 4.4 shows a graph query that pulls out portions of the graph presented in

Figure 4.3. This query returns all string computations that have interprocedural points and

that are itself a root node (or starting point). SPARQL is somewhat analogous to SQL

with a SELECT and WHERE clause. The example provided here condenses some of the

variable and relationship names for readability. The SELECT clause pulls out all string

computations and then counts the number of interprocedural points that are one hop out

from the current string computation graph. Lines 4 and 5 instruct SPARQL to find nodes

that are of type StringComputation and that point to a Soot unit node. Line 6 is a critical

step. It finds the next Soot unit connected to the first one. Here, using SPARQL’s advanced

property paths, we can recursively search and find all nodes that are connected to the first

Soot unit node with the edge name next, all enabled by the + syntax. Line 7 finds the root

node of the interprocedurally connected sting computation. Line 8 is critical as it excludes

any pointers to the root string computation - avoiding reporting on string computations that

are interprocedurally connected but are not a root node.

4.1.3 Feature Set Development

API Usage Count Matrix: Our first set of features simply counts the occurrences of Java

string API calls per application under evaluation. We reviewed Java’s API documentation

and multiple open source articles on how Strings are created in Java to understand all the

different possible ways a string comes into existence. This led us to capture as features
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Table 4.1: Example Core String Feature Set

String(byte[]) String(byte[], int)
App1 0 0
App2 4 1
App3 1 2

all the information related to the String, StringBuilder, and StringBuffer APIs as well as

instances of creation of byte[] and char[] arrays. These array structures are often start-

ing points to strings not created from String literals. These string operations fall into the

following categories:

• Initializations - These include the initialization of String, StringBuilder, String-

Buffer, CharSequence, char[], and byte[]. The later two are included as they may

be used as inputs to string initialization operations and our graph analysis collects

and connects them to constructors when that is the case.

• Appends - These include the append operations of StringBuilder, StringBuffer, and

the + operators used to concatenate Strings and StringBuilders.

• Modifications - These include the modification operations of StringBuilder and String-

Buffer such as insert, replace, and remove.

• Ancillary - These include all other operations in the StringBuilder, StringBuffer, and

String classes.

We develop a matrix of 126 features where each column represents a Soot decompila-

tion unit from one of these categories of string operations. When we say feature, we mean

a call to a method in one of these APIs. Table 4.1 provides an example for two features, the

String constructor that accept byte[] and byte[],int respectively. We simply count

how many times the app uses either one of these String constructors. Here, App1 never

uses the constructor while the remaining Apps do.
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We use this approach for two reasons. First, it provides us with a relatively small feature

set that is rich with the structural elements that compose our string computations. Recent

research performed by Garcia et al. [52] demonstrates that highly effective classifiers can

be developed using such smaller sized feature sets specifically to avoid the scalability is-

sues of larger feature set. Second, it provides a simple baseline for later classification as

we can compare classification using string computations versus just simply counting the

occurrence of string API calls and classifying on those calls.

Complete Graph Matrix: Our goal is to run ML algorithms on the extracted string com-

putations and develop a model that will classify an app as malware or benign. We have a

single SPARQL query that pulls out each string computation from the graph database. This

query is configured to avoid pulling out intraprocedural string computations that are part of

larger interprocedural string computations. This reduces the feature space as well as avoids

double counting intraprocedural string computations that are a part of larger interproce-

dural string computation structures. We then apply graph pattern matching to identify the

structural string computations that are identical within an app as well as across the entire

corpus of apps.

We then construct a matrix where each header represents a string computation and the

matrix rows represent the apps. This is shown in Figure 4.1. The cells record how many

times that row’s app exhibits that string computation. We leverage the matrix as the primary

datastructure for storing features as well as their static counts per app that will be utilized

by our classifier and principle component analysis (PCA).

The size of the string computations themselves in terms of the number of vertexes

can range from one vertex, in the case of some string literals, to hundreds of vertexes,

representing complex string families. We sampled 2,000 malware apps from our data set,

described later in 7.1, and identified the average app contained 1,821 string computation

graphs and the average size of graphs in terms of number of vertexes is 7.7. Figure 4.5

provides the frequency of computation sizes across the 2,000 examined apps whose vertex
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counts per string computation are between 20 and 100. We see that smaller size string

computations dominate but there are still thousands of string computations whose size is

greater than 50 vertexes - demonstrating the complexity of the string computations and

their resultant string families.

Figure 4.5: Frequency of String Computation Sizes

Subgraph Matrix: We next create a matrix that using subgraphs as opposed to the

complete graph as the feature. That is, we create a matrix where each row represents an

app and the columns represent subgraphs of three or six, sequential, connected Soot units.

We record the number of times an app exhibits each subgraph pattern in the matrix. The

subgraphs themselves are created as follows. We take all the string computations for an app

and chunk the graphs into subgraphs with three vertexes and two connecting edges and then

six vertexes and five connected edges. For example, for the StringComputation presented

in the center of Figure 4.3 we would create one subgraph with three vertexes as follows in

Figure 4.6:

1 Vertex 1:{StringBuffer: StringBuffer reverse()}
2 Vertex 2:{StringBuffer: String toString()}
3 Vertex 3:{return String}

Figure 4.6: Three Vertex Subgraph Example
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Breaking the computations into smaller subgraphs allows us to normalize the string

computations while still capturing the critical sequence of structural information. Note, all

information related to Soot’s record keeping is stripped from these subgraphs as well as

any reference to actual string values or literals. Thus, the subgraphs contain pure structural

information and nothing else.

This approach leads to matrices with large numbers of columns. For example, an anal-

ysis of 200 malware and 200 benign apps generated over 273,000 distinct subgraphs with

three vertexes, meaning our matrix also has this many columns. We apply a sparsity metric

to reduce the number of columns with sparsity set to 80%. That is, we only include a sub-

graph as a feature if 80% of the total apps for the analysis exhibit the feature. This greatly

reduces the number of columns for our matrix. The number of features is typically between

250 and 400 for an analysis of 2,000 total apps.

Complete Graph Matrix: Our final feature set include complete graphs as features. That

is, we treat each string computation graph as feature. In terms of the feature matrxi, each

column header represents a string computation, each row an app, and each cell is the count

of how many times that application exhibits the string computation. Counts of zero indicate

the application does not exhibit the string computation. As with the subgraphs approach,

this lead to a huge number of features in the feature space. We apply the same sparsity

metric as applied to subgraphs to winnow the feature set to between 250 and 400 features

dependent on the set of malware and benign applications under examination.

One note on the complete graph matrix. We only include interprocedural graphs or in-

traprocedrual graphs that are not a part of any interprocedural graphs. If a interprocedural

graph is composed of four intraprocedural graphs we will not consider the four intrapro-

cedural graphs in our feature matrix. We seek to only include in this feature set complete

graph structures, not the individual intraprocedural parts in the case of interprocedurally

defined string computations.
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4.1.4 Classification

The last step is to perform classification where apps are labeled as either malware or benign.

We use three classification algorithms with multiple configurations to determine which

works best. These are gradient boosting, SVM, and k-nearest neighbors (K-NN), discussed

in more detail in Section 5 and again in 7.1 when machine learning processes are run on

obfuscated applications.
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Chapter 5

Results

We address each of our research questions defined in 3.1 in this section. Our results show

that string computations are an effective mechanism for classification of malware and be-

nign apps. Importantly, the computations themselves only include structure information

about how the strings are created - not the literal string values which proves detrimental

when apps are obfuscated using encryption techniques. We begin with a discussion of our

statistical analysis approach followed by an examination of each of the research questions

in turn.

5.1 Setup

We perform evaluations on our string computations using gradient boosting[49], SVM and

K-NN. Note, we report results only on gradient boosting (GB). All described experiments

were run using all three classifiers. We found that SVM and K-NN had lower F-measure

universally than GB and therefore omit their results as they provide no additional insight

over what GB provides. GB itself uses an ensemble of regression trees (or decision trees)

and is able to learn higher order interactions between features. This ability to learn the

interaction between features is likely the reason why it outperforms both SVM and K-NN.

This characteristic is also evident in Kaggle, Google’s online community for data scientists
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Table 5.1: Overview of Data Sets Used for Classification

Type Year # Apps
benign 2019 16,281

2018 14,257
malware 2019 7,717

2018 6,256

and machine learners. GB dominates winners circles for Kaggle competitions that involve

structured datasets [3].

We optimize the hyperparameters GB uses as follows. Trees are grown starting with a

tree depth of zero and grow greedily [31]. We run GB with tree depths of 10, 15, 20, 25, and

32 using 100 and 200 rounds of training. We report results in terms of the best combination

of tree depth and rounds. We utilize 10-fold cross validation, repeated 4 times, and report

on the average of these four runs.

We access accuracy of the classification using the standard F-measure metric described

as:

F = 2 ∗ precision ∗ recall
precision+ recall

Here, precision represents TP / (TP+FP) and recall represent TP / (TP+FN). TP is the

number of malicious samples correctly classified, FP is the number of benign samples

identified as malicious, and FN is the number of malware samples identified as benign. TN

is the number of benign samples correctly classified.

5.2 Characterization of the Datasets

Table 5.1 shows the number of apps analyzed by year for the malware and benign cate-

gories. We choose a set of apps that reflected recent malware, between January 2018 and

December 2019. We obtained apps from two locations. First is Androzoo [2], a collection

of Android Applications collected from several sources, including the official Google Play
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app market. This site now contains over 10 million Android apps freely available to re-

searchers for download. We also used VirusTotal [97], a virus detection service developed

by Google and that contains millions of apps - both malware and benign.

Benign Apps We downloaded apps from Androzoo that met two criteria. First, the dex

size of the application needed to be at least 5MB in size. It is important to note that the dex

size of an app is only a small portion of the total app size as it does not include metadata,

media, and other files packaged inside an app. We wanted to include apps with more com-

plexity and avoid smaller, trivial apps that were devoid of many features and tend to result

in over specialized classification models. This was done to create a balanced representa-

tion for our baseline analysis where we compare classification using string computations

against other techniques. Second, the app had to originate from Google Play as it employs

the best security examination of apps posted to its site. For example, Google play removed

700,000 apps in 2017 it self-identified as malware [80]. Selecting apps only from Google

plays gives us the best chance to have a truly benign data set with no unidentified malware

present within. As an additional mechanism to establish ground truth, we ran our benign

set through VirusTotal and removed any apps that were flagged as suspicious.

Malware Apps We downloaded apps from both Androzoo and VirusTotal that met two

criteria. First, the dex size of the application needed to be at least 1MB in size. We did

this to avoid smaller malware apps that simply lacked many features to classify upon or

are trivially identifiable. Second, we limited the apps to only malware that was initially

identified on the Google Play platform itself. This allowed us to test our approach on

malware purposefully developed to be similar to offerings on Google Play in an attempt to

trick users into downloading the apps.

One note with respect to the benign and malware apps used in the analysis. The set

collected from both Androzoo and VirusTotal contain apps that are freely available. That

is, the apps did not have to be purchased. Our results are therefore limited by the fact that

only freely available apps were used and we cannot report on differences for string analysis
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for purchased apps.

Obfuscated Apps We next take a subset of apps for both malware and benign and run

them through two obfuscation tools. We choose as as our obfuscation tools: (1.) The Au-

tomatic Android Malware Obfuscator (AAMO) [84] which has been used to demonstrate

how virus detection tools perform against obfuscation, (2.) DroidChameleon[86] also used

to demonstrate the performance of virus detection tools in the presence of obfuscation, and

(3.) Obfuscapk[35], a recent open source obfuscation tool with a large community follow-

ing. We configured the obfuscators to use obfuscation techniques that Hammad et al. [59]

identified as challenging for virus detection methods.

Figure 5.1: PCA First Two Components

We next applied PCA to the data sets using the feature set described in Section 4.1. Our

feature matrix composed of string computations is high-dimensional data, where a sample

of 1000 apps from either the pool of benign or malware apps would identify over 5000 fea-

tures. We used PCA to visualize the relationship between the features as well as understand

the main variance in the data. 5.1 identifies that: (1) benign apps and malware apps tend

to be located in different areas of the component space, and (2) benign apps and malware

apps tend to cluster in these different areas. PCA shows us that there is high likelihood
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that the sting computations will lend themselves well as feature for classification. This data

is a good visualization of the intuition behind why our approach works at distinguishing

malware from benign apps. We present concrete results in the following section.

5.3 RQ1: Comparison to State of the Art

Our first research question establishes a baseline against which to judge malware classifi-

cation using string computations as features. We first compare against RevealDroid which

generates a small, simple set of features that are selectable by users [52]. It’s specified goal

is to provide a feature set that is family agnostic as well as obfuscation resilient. Reveal-

Droid is used in numerous studies as a baseline for malware classification, especially in the

presence of obfuscation [70, 95]. We downloaded and installed RevealDroid, ensuring that

it output the maximum set of features. Its typical F-measure ranges between 93% to 97% -

this value dependent on the corpus of apps under evaluation and may range higher of lower

in specific use cases [52].

We next compare against the compliment of our string computations; the string liter-

als themselves. Our string computations capture the structure of code execution used to

construct strings while literals are just the static values of the string themselves that are

computable during a static analysis - such as a message that is written to a log, content of a

SQL query, etc. Researchers [65, 102] have utilized string literals to do classification with

very good results - reaching F-measures of 97%. Similarly most modern anitvirus software

leverages string literals.

We randomly choose as input 8,000 apps from our dataset, 4,000 malware and 4,000

benign. We report on how our string computations, RevealDroid, and string literals perform

in terms of precision, recall, and F-measure in Table 5.2.

RQ1 Answer: The results demonstrate that string computations by themselves perform

competitively against classification using RevealDroid or string literals. Our approach is
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Table 5.2: Baseline Comparison

Tool Precision Recall F-measure
String Computations 96.62 97.27 96.94

RevealDroid 91.42 96.96 94.11
String Literals 94.30 96.12 95.20

roughly 3% better than RevealDroid and 2% better than string literals. This shows string

computations can be an effective feature upon which to classify malware and benign apps.

The result also demonstrates that the behavior of strings - how strings are created and used

- is different between malware and benign applications.

5.4 RQ2: Comparison of Combined Approaches

We next examine how the approaches work when combined. That is, when string computa-

tions are added as another feature for both the RevealDroid ML analysis as well the string

literals analysis. Figure 5.2 shows how to generate a new ML model by combining feature

sets. To the left is the feature set for string computations and to the right is the feature

set for RevealDroid. As both report results in terms of a matrix where each row is an app

and each column a feature, we simply join on the app IDs to create a single matrix. This

approach is especially applicable to RevealDroid as it readily accepts the incorporation of

new features. For example, an analysis was performed by its creators where results from

FlowDroid [14] were included as another feature upon which to perform classification [53].

The combined analysis for string literals now includes the literal value along with the string

computation that generated the literal value.

As before, we randomly choose as input 8,000 apps, 4,000 malware and 4,000 benign,

from the pool of apps. We report on how our combined approach of string computations

and RevealDroid and string literals in terms of precision, recall, and F-measure in Table 5.3.

RQ2 Answer: The results demonstrate that in both cases the combination of string

computations with RevealDroid or with string literals does better than either alone. This
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Figure 5.2: Combined String Computation and Reveal Droid Matrix

Table 5.3: Combined Approach

Combination Precision Recall F-measure
RevealDroid and Computations 95.30 97.26 96.27

Literals and Computations 95.68 97.08 96.37

is expected for RevealDroid as it focuses on extraction of a generic set of attributes for

high fidelity malware classification across multiple families. String computations are great

example of a generic attribute as, regardless of the family of malware, all must use strings

to access sensitive operations. This outcome also expected for string literals. Apps cre-

ate many string computations internally where the literal value is only known at runtime.

Combining the literal values with the string computations increases the overall F-measure.

In both cases the F-measure’s of the combined approach are very near the best F-measure

for classification with string computations only.

5.4.1 RQ3: Obfuscations Impact on Results

This experiment answers the question of how our approach, as well as RevealDroid and

string literals, performs with respect to obfuscated apps. We utilize three tools to perform

obfuscation: (1) DroidChameleon [86], an obfuscation tool with various trivial and non-

trivial techniques to obfuscate malware applications, (2) AAMO [84] which also allows
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for an equivalent set of trivial and non-trivial techniques for obfuscation of malware, and

(3) Obfuscapk [8], a modular python based obfuscation tool with advanced obfuscators

specifically intended to defeat Android malware detection techniques. All tools are freely

available and easily scriptable. DroidChameleoon and AAMO were used previously to ob-

fuscate apps and test the resilience of malware detection tools using different combinations

of trivial and non-trivial obfuscations [59, 20]. Obfuscapk was released in late 2019 on

Github and has a growing community of users.

We base our experiment off of the study conducted by Hammad et al. [59], which pro-

vides statistics on obfuscation settings that are most effective at reducing the accuracy of

malware detection across a host of industry standard, malware detection tools. Based on

the recommendations and results presented in [59], we apply the following obfuscations

separately using all three obfuscation tools with the last obfuscator only available on Ob-

fuscapk:

• Control Flow Manipulation (CFM) - Changes the method’s control by adding condi-

tions and iterative constructs as well as introducing new methods.

• Member Reordering (MR) - Changes the order of instance variables or methods in a

classes.dex file to defeat malware detection tools that look for sequences of members

in a class.

• Reflection (REF) - Perform transformations that convert direct method invocations

into reflective calls using the Java reflection API.

• String Encryption (ENC)- This encrypts string literal values found in dex files. Ob-

fuscapk will also encrypt supporting app files such as assets or included, native li-

braries.

• Advanced Reflection (AREF)- This obfuscator uses reflection to invoke dangerous

APIs of the Android Framework. It is a novel reflection approach used only by Ob-

fuscapk that focuses on hiding Android API calls which many malware detection
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Table 5.4: GB for Obfuscated Apps

Tool CFM MR REF ENC AREF
DroidChameleon

String Computation 96.58 96.12 95.38 96.33
RevealDroid 94.11 94.45 93.63 94.08

Literals 94.88 95.09 95.22 0
AAMO

String Computation 95.28 96.85 96.10 96.72
RevealDroid 94.30 94.55 93.85 94.17

Literals 95.11 94.02 95.20 0
Obfuscapk

String Computation 94.0 96.66 96.98 96.37 96.75
RevealDroid 94.8 94.84 94.62 90.3 90.62

Literals 94.62 94.1 94.80 0 94.22

tools use to cluster malware. It is a technique used by no other open source obfusca-

tion tools and demonstrates how obfuscators themselves continually evolve.

Note that many of the apps we attempted to obfuscate with the tools simply failed to

obfuscate. This is due to the fact that obfuscation tools, especially freely available ones,

are notorious for having failures when applying different types of obfuscation [53]. On

average, roughly 30% of the apps we used for the evaluations of RQ1 and RQ2 could

not successfully be obfuscated by either DroidChameleon or AAMO for each of the ob-

fuscation types applied. Obfuscapk had a much higher success rate at obfuscation versus

DroidChameleon and AAMO, failing on less than 5%.

We first obfuscated the apps using the CFM, MR, REF, ENC, and AREF obfuscators

separately for each obfuscation tool - AREF only applicable to Obfuscapk. We then ran

each obfuscated app through our string computation algorithm, RevealDroid, as well as

extracted out the string literals using the linux strings command. We then choose as

input to the GB classifier 4,000 random apps, 2,000 malware and 2,000 benign, and report

on results in Table 5.4 in terms of F-measure only for brevity.

RQ3 Answer: We see that some obfuscators do have an effect on the outputs of the

different analysis tools. First is the ENC obfuscator which has a tremendous, detrimental
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impact on string literal analysis. When we attempt to run the GB classifier on the ENC

string literals for any obfuscation tool, it fails to complete as it simply can find no features

that are common across two or more apps to even begin the analysis. This is because a

unique key is used for each app to encrypt its string literals and therefore there is no com-

monality in features across the apps. It demonstrates how simple string literal encryption

can defeat malware classifiers that focus on the occurrence of tokens (or signatures) to clas-

sify apps. The ENC obfuscator has no impact on our string computations as we disregard

string literals completely or on RevealDroid for AAMO and DroidChameleon as it does not

use string literals extracted from dex files as a feature. However, the literal encryption for

Obfuscapk does impact RevealDroid. This is because Obfuscapk also encrypts string liter-

als in files outside the dex file. As RevealDroid relies on some of these strings as features,

its performance degrades when they are encrypted uniquely across each app.

Another obfuscator that impacts results is Obfuscapk’s AREF. Its ability to obfuscate

specific Android API calls - those made to sensitive or dangerous libraries - impacts classi-

fication using RevealDroid features. F-measure for RevealDroid drops to 90% when AREF

is used. This is because RevealDroid focuses on API calls to specific Android libraries and

AREF purposefully obfuscates portions of this feature set. It reduces the total number of

identifiable API calls and thus alters the dependency of the feature to app type as demon-

strated by the drop in F-measure. Obfuscapk’s developers designed this obfuscator for this

specific case. However, its application is skillful as Obfuscapk’s developers only obfus-

cate a small set of targeted API calls as reflecting on the entire Android API would makes

apps unacceptably slow. Also note that AREF has little impact on string computations. As

the API calls are themselves turned into strings they become another feature for our string

computations to classify upon.

Note, we acknowledge that it would be possible to design an obfuscation technique to

fool our analysis. Indeed, Obfuscapk developers recognized that some malware detection

tools focus on a select set of Android API calls as a signature and developed a specific ob-

42



1 PackageManager pm = Context.getPackageManager()
2 String packageName = pm.getPackageName()
3 PackageInfo pi = pm.getPackageInfo(packageName, ...)

Figure 5.3: PackageManager Example

fuscator to impact it. A similar analysis of our string computations might lead an obfuscator

designed to develop a specific obfuscator to impact it as well.

5.5 RQ4: Analysis of Variable Importance to Results

This question answers which variables are most important to the GB model for differentia-

tion of malware from benign apps. GB provides a mechanism that explains which features

impacted the created models most, ranking them from most to least important. In our case

it shows which string computations are most influential to our the model. We use the R,

caret package’s built in varImp() function to return the most important features for GB

models for our string computations run on the unobfuscated apps. Figure 5.3 provides a

snippet of the string computation that is most important in classification of malware and

benign apps.

5.6 RQ4 Answer:

The importance factors indeed shed light on why strings are important to malware. Con-

sider Figure 5.3 that shows how a string computation is used to interact with PackageM-

anager. A very common behavior for malware when first installed is to perform a listing

of installed packages and then send the list to the command and control server [77]. An ex-

ample of malware that uses the PackageManager string computation to perform a listing

of installed packages is the Anubis banking malware that reappeared in July of 2019 [82].

Also note that there is no associated string literal for the string computation.
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5.7 RQ5: Comparison to ML Classification on Subgraphs

The goal of this research question is to understand if it more effective to classify on com-

plete string computations or to break the string computations into subgraphs with a set num-

ber of vertexes and classify on the subgraph patterns. The potential value of these subgraph

patterns is that they better normalize the feature set across the apps. For example, if mal-

ware developers independently utilize smaller patterns in building and utilizing strings for

malicious intent, then smaller sized subgraphs would capture these patterns and accuracy

of the results would increase. An example might be to append information to a String-

Builder object and then immediately call reverse() before calling toString().

To test this idea we randomly choose as input 8,000 apps from our dataset, 4,000 mal-

ware and 4,000 benign. The string computations for the 8,000 apps are broken into sub-

graphs of size three vertexes and then six vertexes. These are the smaller sized subgraphs

we hope will capture fine grained examples of malicious behavior across malware devel-

opers. A GB model was built for both and we report on how our string computations, and

string computations broken into subgraphs of size three and six vertex perform in terms of

precision, recall, and F-measure in Table 5.5.

Table 5.5: Subgraph Comparison

Tool Precision Recall F-measure
String Computations 96.62 97.27 96.94

Three Vertex 92.17 96.41 94.08
Six Vertex 90.72 92.25 91.60

5.8 RQ5 Answer:

We see that subgraph string computations do no reach the same f-measure as does using

the complete string computations. Breaking the computations into smaller sizes creates no

advantage with respect to ML classification. This is likely because the smaller graph sizes
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in effect remove some of the important features for classification - in effect normalizing

features across the two classes too well and removes larger string computations useful for

classification.

5.9 RQ6: Comparison to Ml Classification on String API

Calls

This question seeks to answer if a simpler approach toward string analysis might achieve

the same or better results than string computations. If we simply count the number of

times string related APIs are called by an app - can that set of features outperform ML

using string computations? The graph computation vertexes represent operations per-

formed by the Java string APIs (i.e. java.lang.String, java.lang.StringBuffer,

and java.lang.StringBuilder) as strings are built and used. We create a matrix

that sums the number of times an app makes a call to one of these APIs methods (i.e.

java.lang.String reverse(), java.lang.StringBuilder append(float), etc.)

This matrix simply reports on how often apps call the string API methods and has 117

features in total. Table 5.6 provides an example of this matrix. There are four apps.

For App1 it makes 44 total calls to java.lang.String reverse() and 12 calls to

java.lang.StringBuilder append(float) and so on for all the methods available

in the Java string APIs.

Table 5.6: Matrix of Aggregate String Computations Per App

AppID String reverse() StringBuilder append(float) ...
App1 44 12
App2 0 17
App3 10 0
App4 0 1

The advantage here is that it is significantly simpler to count the occurrences of string

API calls than to create string computations. It is very similar to the approach used by
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RevealDroid to simply count API calls they have identified to be sensitive in the Android

system libraries. We randomly choose as input 8,000 apps from our dataset, 4,000 malware

and 4,000 benign in terms of precision, recall, and F-measure in Table 5.7.

Table 5.7: Counts Comparison

Tool Precision Recall F-measure
String Computations 96.62 97.27 96.94

API Counts 91.31 92.49 91.78

5.10 RQ6 Answer:

Our results show that classification using API counts alone exceeds 90% f-measure but is

worse that classification that utilizes string computations. The results are of interest be-

cause, despite not being as good as string computations, it is clear that there is a difference

in how benign and malware apps use the string APIs. It helps validate the results we see

for string computations.

5.11 Summary

Our initial set of research questions and answers established that string computations are

an effective feature set to utilize in the classification of Android benign and malware apps.

They perform well against other state-of-art techniques and are resilient to different forms

of obfuscation. The latter point identified a new set of research questions that focused on

a more thorough analysis of the impacts of obfuscation - both on our string computations

and state-of-the-art techniques. In 6.1 we analyze how string computations are impacted by

different obfuscation tool’s implementation of obfuscators like reflection or call indirection.

Obfuscators do have different implementations and these differences impact how string

computations are generated. In 7.1 we examine how the different obfuscation tools and

their obfuscators impact the most important features used for classification. We perform a
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novel analysis that answers why string computations are obfuscation resilient. It reviews

obfuscation’s impact on the most important features used for classification. The analysis

shows how different obfuscation tool’s implementations of specific obfuscators are not

problematic for harvesting the string computations most effective at malware classification.
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Chapter 6

Obfuscation Impacts on Code

6.1 Obfuscation

Malware detection algorithms focus on development of a feature set useful in the detec-

tion of malware. Obfuscation is the malware developer’s complement to this approach. It

attempts to hide, or obfuscate, features of the application that would differentiate it from

benign applications - those with no intent to harm users who install the app. Creators of

malware detection algorithms are aware of this and attempt to account for fact. Typically,

they perform machine learning classification on their tool’s generated feature set utilizing

a set of apps that are clean (or unobfuscated) and then obfuscated. This analysis approach

is shown in [52, 16, 91] and many others. The outcomes of the approach are also very

similar; results for clean and obfuscated apps show only a small decrease in accuracy for

classification of the obfuscated set. The malware detection algorithm is termed ’obfusca-

tion resilient’ based on the perceived insignificance of the accuracy decrease.

However, this approach is not rigorous enough as it lacks a detailed examination of the

features themselves. How did the obfuscation impact the features output by the detection

algorithm? Further, how was the feature set most important to classification impacted by

the obfuscator? This type of analysis is needed as it is precisely what a malware devel-
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Table 6.1: GB for Obfuscated Apps

Tool CFM MR REF ENC AREF
DroidChameleon

String Computation 96.58 96.12 95.38 96.33
RevealDroid 94.11 94.45 93.63 94.08

Literals 94.88 95.09 95.22 0
AAMO

String Computation 95.28 96.85 96.10 96.72
RevealDroid 94.30 94.55 93.85 94.17

Literals 95.11 94.02 95.20 0
Obfuscapk

String Computation 94.0 96.66 96.98 96.37 96.75
RevealDroid 94.8 94.84 94.62 90.3 90.62

Literals 94.62 94.1 94.80 0 94.22

oper will do. They will understand the detection tool and analyze the feature set extracted

to determine how their malware is being detected. Current, state-of-the-art, obfuscation

tools now include obfuscators not meant to simply obfuscate the semantics of the code but

specifically to defeat malware detection tools based on their understanding of detection al-

gorithm feature sets. Obfsucapk [35] includes an obfuscator targeted to alter the feature

sets most commonly relied upon by malware detection tools by hiding calls to Android

sensitive operations. This is a significant milestone; an obfuscation tool that directly ap-

peals to malware developers needs. Malware detection researchers must now consider their

feature set not only in terms of the current state-of-the-art obfuscators but how resilient the

feature set is when it is examined and understood by malware and obfuscator developers.

Consider the results provided earlier in our analysis of malware detection tools when

obfuscators are applied. We present a summary of these results in the table Table 6.1 for

three different obfuscators with different types of obfuscation where gradient boosting is

used as the ML algorithm for classification.

There are three examples in this table where an analysis of the feature set explains the

result shown for an obfuscator. A trivial example is the impact of string literal encryption

on the ML model’s performance. It has little impact on string computations but has a
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significant impact on RevealDroid and string literals. The reason is obvious for string

literals - a unique key is generated for each application to encrypt the string literals within

the Java code as well as in the Android asset files. This guarantees that the encrypted string

literals equate to different values across the encrypted apps. The table shows that a gradient

boosting model cannot be developed for encrypted string literals as there is no commonality

between the encrypted string literals across apps.

RevealDroid also suffers from basic string encryption. However, it is not entirely be-

cause of encryption applied to the Java code itself. RevealDroid harvests features from

asset files within the Android app and the encryption used by Obfuscapk encrypts these

asset files as well as the original source code. This provides a near six percent drop in

precision for RevealDroid.

Advanced reflection, a sub-class of reflection implemented by Obfuscapk, is an exam-

ple of a targeted obfuscator specifically engineered to degrade the features most important

for malware classification by detection algorithms. Its developers [19] established a static

runtime model of the Android’s framework to study its internals and identify the frame-

work’s protected resources. It is these protected resources that malware detection devel-

opers focus upon - and that Obfuscapk purposefully attempts to obfuscate. RevealDroid

shows a six percent drop.

We next perform a deep dive analysis of different obfuscation tools and obfuscators

to understand, specifically, how they impact our string computation feature set. This in-

formation will help us to interpret the results provided in section 7.1 where we examine

classification results when obfuscation is applied across thousands of apps.

6.1.1 Obfuscators Utilized

Two obfuscators were used for the analysis - Obfuscapk and AAMO. These obfuscators

provide a set of characteristics necessary for a rigorous analysis. Both Obfuscapk and

AAMO offer advanced obfuscator routines that other, freely available obfuscators do not -
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such as DroidChameleon. These include reflection and indirection. Garcia [53] performed

a survey of obfuscators and their impact on classification. They identified that few tools

exist that offer these capabilities outside of commercial tools. Georgiu[35], one of Obfus-

capk’s creators, also identified a lack of open source obfuscators with advanced obfusca-

tion capabilities and pointed to AAMO as one of the only other freely available candidates.

Tools do exist in the commercial space with these capabilities, such as DEXGuard, but are

not available for this research. Reasons include cost of the tools and permissibility of use.

DEXGuard was contacted to see if an academic version of the tool is available and they

replied it was not and, further, that their license prohibits academic analysis of the tools to

be published in journals or conferences.

Both AAMO and Obfuscapk have a development community that is open to questions

and willing to provide detailed replies in a timely manner. Obfuscapk is provided on github

and all questions submitted to the project were answered in under six hours. The authors

of AAMO replied to emails about functionality of the code base within one day of sub-

mission. This responsiveness makes a tremendous difference in analysis as questions arise

about obfuscator functionality that need input from the authors of the obfuscation tools.

DroidChameleon authors were contacted multiple times about code functionality and were

unresponsive. Therefore this tool was not considered to be part of the evaluation as ques-

tions that needed clarification to accurately assess the tool and reports of its use in other

academic research could not be verified.

A Soot backward flow analysis was implemented to capture the output of both obfusca-

tion tools. The exiting string analysis implementation was modified to capture control flow

graphs for each method identified as reachable by Soot. These graphs were serialized and

then written to disk. This technique allowed for an app to be examined and persisted prior

to obfuscation and then, again, after the application of obfuscation. A set of comparator

utilities were created to:

• Identify methods in the original and obfuscated apps that had identical control flows,
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• Identify methods in the original and obfuscated apps that had different control flows

as well as indicate where the differences occurred,

• Identify methods in the original app not in the obfuscated app, and

• Identify methods in the obfuscated app not in the original app.

This core set utilities proved extremely useful in analysis and examination of original

and obfuscated apps.

6.1.2 Analysis

A data set consisting of applications that were non-obfuscated were needed as ground truth

for the obfuscation examination. These needed to be applications that were not obfuscated,

whose third party libraries were not obfuscated, and for which the original code was known.

The last point was necessary as compilation into DEX code using current Android Studio

applies light obfuscation via the R8 compiler [54]. For example, it shortens the name of

classes and members for smaller overall DEX size. Selection of an arbitrary application

from Google Play, for example, might exhibit this type of obfuscation and it would be

difficult to determine if the obfuscation is from the R8 compiler or from a commercial

product. Compiling from the original source code found on git alleviates this problem and

allows the original form of the code on the date of the compilation.

The analysis utilized four applications made available on github by Facebook. These

apps are found at the following URL: https://github.com/facebook/facebook-android-sdk

with tutorials provided for application developers on how to integrate Facebook function-

ality into Android applications. The apps themselves contain reasonable amounts of busi-

ness logic, are easy to follow, and clearly are of benign origin. Facebook provides the set

of unobfuscated code we require, both in terms of the main code of the application and

the supporting third party libraries most of which are from Facebook. Table 6.2 provides

statistics relevant to the deep dive apps. The total lines of active code measures how many
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Table 6.2: Statistic for Deep Dive Apps

Name Lines of Code Reachable Methods # SCs
HelloFacebookSample 127,988 8,827 2,870
MessengerSendSample 83,584 5,783 1,883

RPSSample 185,487 12,788 3,072
SwitchUserSample 121,243 8,112 2,579

lines of code exist within the entire app. The number of reachable methods in terms of

graph reachability for the apps’ call graph. Reachability [87] is well researched. Though

an app may call a method, it may not be reachable as part of Soot’s static analysis as the

method was called via Java reflection or possibly dynamically loaded. The total number of

string computations generated by the apps is also included. These statistics will serve as a

baseline for later analysis.

Randomness and Limitations of Introduced Obfuscation

The first question answered by the research is a generic question related to obfuscators;

do obfuscators introduce obfuscation randomly, or is repeatable, deterministic process?

Intuitively it would seem that obfuscators would introduce obfuscation randomly in an

effort to make it difficult to reverse engineer outputs. The analysis did the following:

1. Each of the four apps used for the deep dive analysis were obfuscated using each

obfuscator. The results were saved.

2. Step one was repeated and the results saved to a different location.

3. The obfuscated apps were compared against each other. That is, the two HelloFace-

bookSample apps obfuscated with reflection were compared against each other.

4. The analysis looked at the number of lines of code, reachable methods, and generated

string computations.

The results were identical for both obfusators and for each type of obfuscation such as

reflection or goto. The only identifiable difference were the random names applied to newly
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introduced methods. This proves that for these two obfuscation tools, application of ob-

fuscation is deterministic and identical. Each obfuscation tool’s source code was examined

to understand why this is the case. Both tools utilize smali[57], an assembler/disassembler

for the DEX format used by Dalvik. Smali is utilized by many tools, including Soot itself,

to disassemble code. The disassembled code is provided by smali as files where the ob-

fuscator tools iterate over each line of smali code and perform operations upon it. In this

respect, smali itself is deterministic and will always present the disassembled code for an

app in the exact same order.

There is still an opportunity for the obfuscation tools themselves to add randomness in

spite of smali’s deterministic disassembly. Both obfuscation tool’s source code was exam-

ined and neither did this. Figure 6.1 demonstrates how AAMO iterates through the smali

code, identifies opportunities for injection, and then injects. No randomness is involved in

when, in this case, reflection is applied. Of course, it is possible for a developer to introduce

their own randomness for when obfuscation is applied but, out-of-the-box, the obfuscation

tools always obfuscate in a deterministic fashion.

There are also limitations to the application of obfuscation both in terms of its intro-

duction into code and performance. All obfuscation tools are constrained by the fact that

the total number of references that can be invoked by code with the DEX bytecode file is

65,536 [54]. That is, an Android app may only reference 65,536 methods if it uses a single

DEX file. Obfuscapk is aware of this limitation and, as a rule, monitors how many new

method references have been introduced and simply does not allow that number to exceed

the upper limit. AAMO ignores this limitation and will create apps that violate this limit.

This is problematic as it leads to creation of apps that cannot be successfully processed by

Soot. To fix this issue the AAMO code was modified to ensure that it obeyed the upper

limit for introduced, new methods.

A separate and more pragmatic limitation is the effect of obfuscation on application

performance. The inclusion of reflection is known to slow applications but other impacts
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1

2 def change_all_method(smali_file, new_method,
all_method_list):

3 """Redirect all the method calls"""
4 for smali_line in u.open_file_input(smali_file): # For

each line
5 class_match = re.search(...) # Match the class

declaration
6 if class_match is not None:
7 class_name = class_match.group(’className’) # Find

the class name
8 invoke_match = re.search(...)
9 if invoke_match is not None:

10 if not is_init(invoke_match.group(’invokeMethod’)):
11 change_match_line(smali_line, ...)
12 else:
13 print smali_line, # Print the line unchanged
14 else:
15 print smali_line, # Print the line unchanged

Figure 6.1: Access of Disassembled Code in Obfuscation Tools

exist as well - including exhaustion of system resources if introduced obfuscation is too

complex [26]. The developers of Obfuscapk are aware of these limitations and add in

obfuscation to a level that does not significantly degrade application performance [35].

The developers of AAMO do not provide such controls outright but it is relatively easy to

modify the source and limit the amount of introduced obfuscation to a target level.

Analysis of Reflection Obfuscator

Both Obfuscapk and AAMO provide a reflection obufscator. Documentation for Obfuscapk

and a review of its source code base indicate that it will apply obfuscation as follows [35]:

• The method has public visibility,

• The method is not a constructor,

• The method is not part of the Android framework, the reason for this discussed in the

AdvancedReflection subsection, and
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• There are enough method invocations remaining.

In contrast AAMO indicates that it performs reflection only on static method calls,

replacing the static calls with reflection calls. This difference demonstrates that obfuscation

tools may use a kind of obfuscation, for example reflection, but its implementation may be

drastically different.

The analysis begins with Obfuscapk’s reflection focused first on the lines of active

code and reachable methods. Table 6.3 provides reachability results and net changes for

Obfuscapk reflection. The table shows an increase for all four applications in the amount

of active code and demonstrates that use of reflection requires introduction of code that, in

this case, exceed the amount of code removed due to reachability.

Results also demonstrate that thousands of methods are removed from Soot analysis

as their reachability is broken by the introduction of Java reflection. Obfuscapk only in-

troduces two new methods into each application. These new methods are proxy methods

that centralize the introduction of reflection into the applications. Figure 6.2 shows the

mechanics of this proxy process. A new class named ApiReflection has a large static

intitializer where the obfuscator places method calls for reflection in a List object. A

single accessor method accepts the location of the method to be called within the list and

this accessor method is placed in the app’s classes where the newly introduced reflection is

called. The accessor method accepts an integer argument that is the precise location in the

List of the method to be reflected upon. Interestingly, the import section of the Java code

for ApiReflection may become enormous as it includes imports for classes across the

entire app.

Figure 6.2: Obfuscapk Proxy Method to Call Reflection
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Table 6.3: Obfuscapk Reflection Impact on Lines of Active Code and Methods

HFS MSS RPS SUS
Lines Active Code in Original 127,988 83,584 185,487 121,243
Lines Active Code in Obf 129,360 82,160 185,207 121,792
# Methods in Original 8,827 5,783 12,788 8,112
# Methods in Obf 7,425 4,281 11,196 6,639
# Original Method Not Reachable 1,404 1,504 1,594 1,475
# Methods in Common 7,423 4,279 11,194 6,637
# Methods in Common Changed 1,518 1,135 2,331 1,476
# New Methods in Obf 2 2 2 2

Obfuscapk’s reflection introduction impacts the string computations extracted from the

apps. Table 6.4 shows how string computations are impacted across the four apps. There

is a notable jump in the number of string computations in the obfuscated apps versus the

original apps. This is directly attributable to how Obfuscapk calls reflection using the

ApiReflection class. In the case of these specific apps, thousands of new string compu-

tations are added as each method is now a string literal that will be invoked via reflection.

These new computations are not overly complex - simply two vertex graphs with one node

the string literal value, the other its addition to the Method object it is added to. Also note

the last two rows of the table which examines the effect of reflection on string computations

where the Java reflection is introduced. The total number of string computations extracted

from the methods that changed are nearly identical. This is due to how Obfuscapk intro-

duces the reflection. The existing string computations in the obfuscated app are the same

as those in the unobfuscated app with the exception that certain vertexes are swapped from

their former calls to new calls in the ApiReflection class. Figure 6.3 demonstrates this

effect. The top code sample is from the obfuscated HFS app, the bottom its original form.

The red boxes show the same string literal created in both. String computations will, in

both cases, be extracted the same way. There is no splitting of computations or removal.

However, there are a few edge cases that add string computations. For example, if reflec-

tion accepts a StringBuilder object and a string literal to append to it, the string literal

will be viewed as a new string computation though it is unified with the StringBuilder
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object via the reflective call.

Table 6.4: Obfuscapk Reflection Impact on String Computations

Reflection HFS MSS RPS SUS
String Computations in Original 2,870 1,889 3,083 2,588
String Computations in Obf 5,731 4,568 5,962 5,409
# String Computations Original Removed 175 374 188 215
# String Computations New Methods 3,035 3,049 3,067 3,035
# String Computations Orig Changed Methods 800 583 882 761
# String Computations Obf Changed Methods 801 587 882 762

Figure 6.3: Obfuscapk Reflection Impact on Maintained String Computations

AAMO’s reflection results on lines of active code and reachability are shown in 6.5.

Significantly less methods are not reachable when compared with Obfuscapk. This is due

to AAMO’s focus on only statically called methods as reflection candidates; there are less

targets in total where reflection may be introduced. AAMO differs drastically in the number

of new methods introduced. Whereas Obfuscapk introduced only two new methods for

each app, AAMO introduces hundreds of new methods. This is due to its implementation
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approach. Each new reflection call is its own method as demonstrated in Figure 6.4. Each

reflection call wraps a single call from the original app and adds it to a new, uniquely

generated method name. All the newly introduced methods are in the same Java class as

the location of the single, original call. The implementation approaches of both AAMO

and Obfuscapk are important because of their differences. Despite both using reflection

obfuscation, the changes to the structure or the underlying code are quite different though

resulting in the same effect.

An interesting side note is that AAMO also introduces a small amount of indirection as

part of the reflection obfuscator. Results were run multiple times to verify this was the case.

This indirection will introduce new methods that simply redirect calls in the code but these

new methods do not include reflection. It is not clear why AAMO does this and it may

be due to reuse of the indirection code base and then focusing on those newly introduced

methods to find static methods where reflection may be introduced.

Table 6.5: AAMO Reflection Impact on Lines of Active Code and Methods

HFS MSS RPS SUS
Lines Active Code in Origina l 127,988 83,584 185,487 121,243
Lines Active Code in Obf 130,077 81,748 186,861 121,951
# Methods in Original 8,827 5,783 12,788 8,112
# Methods in Obf 9,352 6,009 13,401 8,398
# Original Method Not Reachable 29 149 228 71
# Methods in Common 8,798 5,634 12,560 8,041
# Methods in Common Changed 143 111 188 86
# New Methods in Obf 554 375 841 357

Figure 6.4: AAMO Example New Reflection Method

AAMO’s reflection introduction impacts the string computations extracted from the

apps, shown in Table 6.6. The reflection introduced by AAMO is less than Obfuscapk as
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Table 6.6: AAMO Reflection Impact on String Computations

Reflection HFS MSS RPS SUS
String Computations in Original 2,870 1,889 3,083 2,588
String Computations in Obf 3,025 1,925 3,394 2,592
# String Computations Original Removed 1 78 35 51
# String Computations New Methods 144 114 311 49
# String Computations Orig Changed Methods 46 43 110 31
# String Computations Obf Changed Methods 58 43 145 37

it only reflects on statically defined methods. New string computations are introduced in

the new method calls. The last two rows list the number of string computations extracted

from methods in common. The numbers are close as AAMO works similarly to Obfuscapk

and simply reflects on a single operation - which leads to no breakage in the existing string

computation graphs. However, some of the string computations will become interprocedu-

ral in nature as they now point to the newly introduced methods and, as with Obfuscapk,

in a few cases string literals will be viewed as new computations though the reflective call

will unify them with the object passed.

Analysis of Advanced Reflection Obfuscator

The analysis includes a review of Obfuscapk’s advanced reflection obfuscator. As noted

earlier, this obfuscator focuses on a subset of API calls to perform reflection upon in an

effort to fool malware detection tools. AAMO has no equivalent obfuscator for this. The

analysis of advanced reflection’s impact on the lines of active code and reachable methods

is provided in Table 6.7.

Of interest are the number of methods in the original app and the obfuscated as well as

the number of original methods not reachable. There are only two new methods added and

no methods are removed from reachability. In the prior examples, introduction of reflection

specifically removed methods from reachability - why is that not the case here? First, re-

member that advanced reflection only operates on methods in the Android package. These

libraries are typically found on the Android device itself and not packaged with the app.
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Table 6.7: Obfuscapk Advanced Reflection Impact on Lines of Active Code and Methods

HFS MSS RPS SUS
Lines Active Code in Original 127,988 83,584 185,487 121,243
Lines Active Code in Obf 128,414 83,960 186,081 121,673
# Methods in Original 8,827 5,783 12,788 8,112
# Methods in Obf 8,829 5,785 12,790 8,131
# Original Methods Not Reachable 0 0 0 0
# Methods in Common 8,827 5,783 12,788 8,112
# Methods in Common Changed 1,490 1,080 2,282 1,458
# New Methods in Obf 2 2 2 2

Table 6.8: Obfuscapk Advanced Reflection Impact on String Analysis, String Literals, and
RevealDroid

Reflection HFS MSS RPS SUS
String Computations in Original 2,870 1,889 3,083 2,588
String Computations in Obf 2,885 1,901 3,098 2,603
# String Computations Original Removed 0 0 0 0
# String Computations New Methods 15 12 15 15
# String Computations Orig Changed Methods 820 641 879 775
# String Computations Obf Changed Methods 820 641 879 775

Second, Soot will only analyze class files found within the app itself. It therefore has no

knowledge of the Android class files - whether it deals with the original or obfuscated app.

The two, newly introduced methods are the same proxy methods described in Obfuscapk’s

reflection obfuscator. This result also proves that advanced reflection works as advertised;

apply reflection only to classes in the Android package structure.

The analysis next reviews the string computations introduced by advanced reflection,

shown in Table 6.8. As there are no methods removed due to reachability, none of the

string computations in the original app are removed from its obfuscated form. Few new

string computations are added, under 15 for each application. This is due to the nature

of advanced reflection focusing a small subset of Android API calls that perform sensitive

operations. As these applications are example apps developed by Facebook, they contain

some of these sensitive calls but not nearly as many in an arbitrary app downloaded from

an app provider like Google Play.
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Analysis of Goto Obfuscator

Both Obfuscapk and AAMO provide a goto obufscator. Documentation for Obfuscapk and

a review of its source code base indicate that it will apply obfuscation as follows [35]:

• Inserts a goto instruction pointing to the end of the method,

• Inserts another goto pointing to the instruction after the first goto, and

• Modifies the control-flow graph by adding two new nodes.

Interestingly, this is exactly the same implementation for goto obfuscation implemented

by AAMO [84]. Here, in contrast to reflection, the two obfuscation tools have chosen

the same approach to implement an obfuscator. The result is that both approaches have

identical results with respect to method reachability, demonstrated in Tables 6.9 and 6.10.

Table 6.9: Obfuscapk GoTo Impact on Lines of Active Code and Methods

AAMO HFS MSS RPS SUS
Lines Active Code in Original 127,988 83,584 185,487 121,243
Lines Active Code in Obf 136,631 89,258 198,128 129,177
# Methods in Original 8,827 5,783 12,788 8,112
# Methods in Obf 8,827 5,783 12,788 8,112
# Original Methods Not Reachable 0 0 0 0
# Methods in Common 8827 5,783 12,788 8,112
# Methods in Common Changed 8,460 5,489 12,301 7,747
# New Methods in Obf 0 0 0 0

Table 6.10: AAMO GoTo Impact on Lines of Active Code and Methods

AAMO HFS MSS RPS SUS
Lines Active Code in Original 127,988 83,584 185,487 121,243
Lines Active Code in Obf 136,631 89,258 198,128 129,177
# Methods in Original 8,827 5,783 12,788 8,112
# Methods in Obf 8,827 5,783 12,788 8,112
# Original Methods Not Reachable 0 0 0 0
# Methods in Common 8827 5,783 12,788 8,112
# Methods in Common Changed 8,460 5,489 12,301 7,747
# New Methods in Obf 0 0 0 0
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Table 6.11: Goto Impact on String Computations

HFS MSS RPS SUS
String Computations in Original 2,870 1,889 3,083 2,588
String Computations in Obf 2,870 1,889 3,083 2,588
# String Computations Original Removed 0 0 0 0
# String Computations New Methods 0 0 0 0
# String Computations Orig Changed Methods 2,627 1,727 2,793 2,314
# String Computations Obf Changed Methods 2,627 1,727 2,793 2,314

Goto impact on string computations is minimal. For brevity, its impact for both Ob-

fuscapk and AAMO is provided in a single Table, 6.11, as the results for both tools are

identical. As goto obfuscation is injected at the very beginning and at the very end of

the method, there is no opportunity to break or remove string computations. They remain

perfectly in tact. There appears to be little value in the introduction of goto obfuscation.

This result also brings up a compelling question - why is goto introduced to Android

apps so ineffective? In C, the use of an unconditional goto can introduce problems in

following the control flow of an application. Application of an unconditional goto should

create the same issues in Java. There are two reasons why this is not the case, one related

to the Java programming specification itself and the other related to Dalvik bytecode and

its implementation of goto.

The Java specification reserves the goto keyword but does not implement it[38]. It only

offers a conditional goto in the form of break statements. Developers typically use the

default case for the break and do not specify a label for a redirect despite break statements

being developed to allow conditional gotos that redirect. If obfuscation is applied at the

level of Java source code level, then unconditional goto is simply not feasible.

However, most obfuscation tools work at the Dalvik bytecode level. The use of goto

in Dalvik bytecode is allowed and often used. Nothing would prohibit an obfuscation

developer from introducing a goto statement in the bytecode itself. In fact, this is exactly

what Obfuscapk and AAMO do to implement goto. We provide in Figure 6.5 an example

of the Dalvik bytecode for an Obfuscapk goto obfuscated method. We see a goto statement
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1 public boolean onHoverEvent(android.view.MotionEvent
r8) {

2 r7 = this;
3 goto L_0x0067
4 L_0x0003:
5 ...
6 L_0x0067:
7 goto L_0x0003

Figure 6.5: Goto Implementation in Bytecode

at top in line 3, the statement points to another goto at bottom, line 7, with that goto

pointing to a code point at top. After this jumping, the code execution begins as would

be normal for the method. Note, an infinite loop is avoided as the return for the method

avoids calling the goto at end once again. The example shows that obfuscation developers

can implement a goto. When Soot performs its backward flow analysis of the app, it finds

these goto statements and outputs them as Soot units as they are, in actuality, legitimate

Java conditional gotos.

Goto obfuscation can be implemented at the bytecode level that is purely unconditional,

though significant technical challenges exist for obfuscation tool developers. [21] identi-

fies that, though unconditional goto obfuscation is possible in Dalvik bytecode, there is a

problem described as the register-type conflict problem. Specifically, ”A complex control-

flow obfuscation on Dalvik bytecode may split method instructions into different code seg-

ments, relocate and link them. Such actions will generally cause the verifier to report a

register-type conflict[21].” This presents a problem for obfuscation developer as they need

to understand how the Dalvik verifier works - for which there is no documentation. [21]

implemented a solution to introduce unconditional goto. Their results were preliminary,

appear successful, but the source code for their obfuscation tool was not released.

Obfuscapk does implement the use of unconditional goto in its reorder obfuscator. We

ran the obfuscator on the four example apps and in all cases the APK it output had two

issues. First, the output APK could not be disassembled by Soot. Each time, Soot threw

the same exception, shown in Figure 6.6. Note the stack trace and the call on line 4. This is
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1 java.lang.NullPointerException
2 at soot.DEXpler.DEXType.toSoot(DEXType.java:130)
3 at soot.DEXpler.DEXType.toSoot(DEXType.java:105)
4 at

soot.DEXpler.DEXBody$RegDbgEntry.<init>(DEXBody.java:179)

5 at soot.DEXpler.DEXBody.<init>(DEXBody.java:308)
6 at soot.DEXpler.DEXMethod$1.getBody(DEXMethod.java:119)
7 at

soot.SootMethod.retrieveActiveBody(SootMethod.java:402)

Figure 6.6: Soot Exception Upon Introduction of Unconditional Goto

1 private void calculatePageOffsets(...) {
2 r11 = this;
3 goto L_0x03da
4 L_0x0004:
5 float r6 = r6 + r4
6 goto L_0x014d
7 L_0x0009:
8 int r4 = r4 + 1
9 goto L_0x02c8

10 L_0x000f:
11 int r7 = r7 + 1
12 goto L_0x02f1

Figure 6.7: Unrecoverable Java Source Code

in-line with [21]’s assessment that brute force introduction of unconditional goto will lead

to registry conflict error. It is impossible to say if what Obfuscapk generated as an APK

would run on the Android VM. Also, it is impossible to retrieve the original Java source

code when unconditional gotos are introduced into the code. We ran the reorder obfuscated

apps through JADX to decompile into original Java source and where unconditional gotos

were added into the bytecode, original source code could not be rendered as there is no

equivalency with the Java specification. Figure 6.7 shows an example of Java source code

that cannot be successfully rendered. The introduction of multiple unconditional gotos has

made it impossible to generate Java source.
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Analysis of Indirection Obfuscator

Both Obfuscapk and AAMO provide an indirection obufscator. Documentation for Obfus-

capk and a review of its source code base indicate that it will apply obfuscation to modify

the control-flow graph as follows with the express goal of not impacting code semantics

[35]:

This technique modifies the control-flow graph without impacting the code semantics: it

adds new methods that invoke the original ones. For example, an invocation to the method

m1 will be substituted by a new wrapper method m2, that, when invoked, it calls the original

method m1.

AAMO[84] takes a similar approach for indirection and indicates it functions as fol-

lows:

This obfuscator aims to evade signatures based on the application’s call graph. In

practice, we redirect each method call to proxy methods that call the original method.

These proxies share the same prototype of the original method, including parameters order

and type, return type, invocation type, and registers. Return values, if any, are returned by

the proxy methods. Each proxy method is a public static method.

The analysis begins with an examination of Obfuscapk’s indirection obfuscator on

method reachability with results provided in Table 6.12. The number of methods in the

obfuscated application sometimes differ dramatically from the original, with one includ-

ing twenty five thousand methods in total - nearly five times the number of methods in

the original. Other applications have only a few hundred more methods than the original.

It demonstrates that Obfuscapk’s implementation of indirection is opportunistic and will

maximize its introduction into an app when possible. The results also show that no meth-

ods from the original application are lost due to reachability. Again, this is an expected

result as indirection essentially adds proxy methods for the original methods. Additionally,

nearly all the original methods change. Figure 6.8 provides an example of an indirection

introduction by Obfuscapk that proxies a method call to a logging function. The indirec-
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tion added by Obfuscapk, as well as AAMO, are nearly all single method propagations as

shown in the figure.

Table 6.12: Obfuscapk Indirection Impact on Lines of Active Code and Methods

HFS MSS RPS SUS
Lines Active Code in Original 127,988 83,584 185,487 121,243
Lines Active Code in Obf 138,772 179,500 199,267 131,167
# Methods in Original 8,827 5,783 12,788 8,112
# Methods in Obf 9,421 25,035 13,102 8,628
# Original Methods Not Reachable 0 0 0 0
# Methods in Common 8,827 5,783 12,788 8,112
# Methods in Common Changed 8,460 5,489 12,301 7,747
# New Methods in Obf 594 19,252 314 516

Figure 6.8: AAMO Example New Reflection Method

Examination of the string computations is provided in Table 6.13. The results show that

new string computations are introduced as a result of indirection but the number of string

computations in the original methods modified by indirection are identical. Obfuscapk’s

definition indicates that proxy methods are introduced and this impacts string computations

in two ways. First, it sometimes changes the type of vertexes in a string computation with

calls that were formerly intraprocedural switching to interprocedural as it must call the

indirection method. Second, there is an edge case that also splits the string computations.

Both these issues will be problematic for machine learning classification - discussed later

in Section 6.1.3 along with an approach to correct the problem.

We next examine AAMO’s indirection obfuscator with method reachability results pro-

vided in Table 6.14. It shows that AAMO introduces much more indirection into the apps,

adding tens of thousands of new methods and losing no original method reachability.

Lastly, we examine AAMO’s indirection impact on string computations, with results

provided in Table 6.15. We see that it generates string computations in much the same way
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Table 6.13: Obfuscapk Indirection Impact on String Computations

HFS MSS RPS SUS
String Computations in Original 2,870 1,889 3,083 2,588
String Computations in Obf 3,170 5,479 3,097 2,782
# String Computations Original Removed 0 0 0 0
# String Computations New Methods 167 3,339 25 97
# String Computations Orig Changed Methods 2,627 1,727 2,793 2,314
# String Computations Obf Changed Methods 3,003 2,140 3,072 2,685

Table 6.14: AAMO Indirection Impact on Lines of Active Code and Methods

AAMO HFS MSS RPS SUS
Lines Active Code in Original 127,988 83,584 185,487 121,243
Lines Active Code in Obf 201,114 199,543 244,962 195,167
# Methods in Original 8,827 5,783 12,788 8,112
# Methods in Obf 25,862 30,370 24,936 25,582
# Original Methods Not Reachable 0 0 0 0
# Methods in Common 8,827 5,783 12,788 8,112
# Methods in Common Changed 8,460 5,489 12,301 7,747
# New Methods in Obf 17,035 24,587 12,148 17,470

that Obfuscapk does. Also, some of its generated string computations have the same two

characteristics as described for Obfuscapk indirection string computations.

Table 6.15: AAMO’s Indirection Impact on String Computations

Indirection HFS MSS RPS SUS
String Computations in Original 2,870 1,889 3,083 2,588
String Computations in Obf 5,343 5,426 4,265 5,078
# String Computations Original Removed 0 0 0 0
# String Computations New Methods 2,685 3,285 1,465 2,757
# String Computations Orig Changed Methods 2,627 1,727 2,793 2,314
# String Computations Obf Changed Methods 2,658 2,141 2,800 2,321

6.1.3 Semantic Graph Equivalence

Obfuscation impacts string computations in three ways. These include:

• String computations are simply removed due to reachability of their parent method

being removed via reflection obfuscation,
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• Intraprocedural string computations may maintain the same isomorphic form be-

tween the original and obfuscated form by the types of vertices may be changed

via indirection obfuscation, and

• Intraprocedural string computations may be broken apart via indirection obfuscation.

The first impact is difficult to remediate. It would require an analysis of string compu-

tations, identification of those that invoke Java reflection, identification if the string literals

for the methods to be called are present, and then propagate these references to a modified

version of Soot that treats the methods as reachable.

The latter two impact items can be addressed relatively easily. We review both cases in

Figure 6.9. The upper portion shows the original code from the HelloFacebookSample. We

focus on the string created for the IlleagleArgumentException. It shows four string

parts combined with the Java + operator. The string analysis algorithm will create a four

vertex string computation - one for each part. Underneath, Java translates the + operator

into a StringBuilder object and performs four appends.

The lower portion of the figure shows the obfuscated form of the same exception string

after application of Obfuscapk indirection. We see multiple implications for the string com-

putations. First, a string computation is created that is four vertices in size - similar to the

string computation in the original code. However, each vertex represents an interprocedural

call, the Obfuscapk indirection proxy method, as opposed to a StringBuilder append.

So, the isomorphic form is the same, but the type of each vertex changes.

Second, four new string computations are generated. Each argument passed to the

proxy method is itself a string computation and not associated with the StringBuilder

object also passed, though they are connected in the proxy method. Note, both Obfuscapk

and AAMO chose to pass string literals to the proxy method as opposed to adding them in

directly in the proxy method. Had the authors of these obfuscations chosen this approach

we would have only two new string computations.
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Figure 6.9: Modifications Performed on String Computations by Obfuscation

We can correct both these issues using the persisted string computation graphs. At first,

we attempted to correct the issues using only SPARQL queries and its update operator to

correct links in the string computations. This proved too difficult and a separate algorithm

was created to correct these issues and create a string computation isomorphically identical

to that found in the original. We present the logic of the algorithm in Figure 6.10. The

algorithm accepts a graph model and finds all string computations that are candidates for

graph correction. A key aspect is that the candidate string computations have interproce-

dural calls to other string computations that are in the same Java class. Other obfuscators

outside of Obfuscapk and AAMO could implement an indirection obfuscator that moves

proxy methods to classes outside the originator class - requiring more examination to deter-

mine if a semantic correction can legitimately be applied. The algorithm reconstitutes the

string computation found in the original app. However, it does not attempt to remove the

newly introduced string computations. This task could be implemented as well. Applica-

tion of the algorithm as a post-processing step was able to semantically corrected hundreds

of string computations in each of the four apps obfuscated by both Obfuscapk and AAMO.

The semantic graph equivalence algorithm demonstrates the resilience of string com-
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Figure 6.10: Semantic Remediation of String Computations Modified by Obfuscation

putations as a feature undeterred by obfuscation. With an investigation of the obfuscators

functionality, we were able to create a simple algorithm to modify graph computations for

isomorphic and semantic equivalence across the original and obfuscated form.

71



Chapter 7

Obfuscation Impacts Classification

Features

7.1 Features

The analysis performed in Section 6.1 examined how obfuscation applied by two state-

of-the-art obfuscators changed the control flow of applications and that change’s impact

on generated string computations. This provides an initial perspective as to how our fea-

ture sets will change as a result of the application of different obfuscators. Our goal in

this chapter is to provide explainability for classification results in terms of changes to the

generated feature sets resulting from application of the obfuscators reflection, goto, and

indirection. The analysis advances the current state of the art for determination of whether

a malware detection tool is obfuscation resilient. The typical approach taken by researchers

[53, 110] who develop Android malware detection is: (1.) Apply obfuscation to the set of

apps examined, (2.) Rerun the classification algorithm used, and (3.) Explain results in

terms of accuracy alone as opposed to accuracy and a detailed assessment of the impact the

obfuscator had on the feature set generated, especially those features most important for

classification. We focus on the explainability of machine learning in terms of impact to the

72



features most critical to classification. We advance the current state-of-the-art by introduc-

tion of metrics for importance feature retention and removal rates for those features most

critical to classification. These metrics present a new and important mechanism for evalua-

tion of obfuscation resilience that both explain dips in accuracy when specific obfuscators

are applied as well as provide indicators as to whether malware developers could easily

thwart malware detection algorithms with further customizations to obfuscators. That is,

could an obfuscator like indirection be changed to significantly drop the accuracy of a genre

of malware detection algorithms without impact to the running time or system resources

used by the obfuscated app.

Our research into classification of the string computations led us to use gradient boost

(GB) as it consistently performed better than SVM of k-NN clustering algorithms for clas-

sification of our malware and benign sets. GB involves creating a number of hypotheses ht.

and combining them to form a more accurate composite hypothesis [92]. When supplied

an input feature of x the boosted classifier will output the additive form:

H(x) =
∑
t

αtht(x).

Here, αt represents the weight to be given to each decision tree or hypothesis, ht. An

example of the decision trees are shown in Figure 7.1 and provides a simplified example of

decision trees of depth three. Each non-leaf node represents a feature and some decision

related to it. Here, the decisions are how often the features are present in the input between

a set of ranges. For example, the root node may represent the decision ”Is feature n greater

than zero.” If the answer is yes, the appropriate path is taken in the decision tree and leads

to the next decision ”Is feature m between 10 and 50.” The GB algorithm evaluates 1000s

of potential trees with the output model utilizing 100’s of best performing decision trees.

The typical depth of a tree is 10 and the number of leaf nodes per tree between 8 to 32

nodes.
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Figure 7.1: Examples of GB Decision Trees

7.1.1 Feature Importance

Our analysis was performed on the University of Buffalo’s Center for Computation Re-

search (CCR). This resource provides the ability to run up to 1,000 concurrent processes.

We developed scripts to test the different obfuscators and for each obfuscator different sets

of hyperparameters. The hyperparameters evaluated included number of trees, tree depth,

and learning rate. Learning rate controls the weighting of new trees added to the model

[25] and requires particular care as selection of learning rates at high values may yield

high accuracy but an overtrained model. In general, learning rates higher than 0.1 have the

potential for overtrained models and we utilized learning rates 0.1 or lower. We ran 100s

of scripts on CCR that ran GB with different hyperparameter configurations and reports

results in terms of the hyperparameters that offered the highest accuracy.

A common complaint about ML models is that they are black boxes - excellent at the

assigned classification tasks they are developed for but sub-par at explaining why it clas-

sified. A recent push in ML application across all sciences is to include an explainability

assessment for results[88]. GB offers build in explainability for its generated models. It

provides an importance metric the ranks individual features that have the most influence

on a models decision trees, providing this ranking from most influential to least influential.

An important feature is typically present across multiple trees and its impact on classifying

an arbitrary app as malware or benign can be specified as a percentage in relation to all
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the other features. Specifically, importance is calculated for a single decision tree by the

amount that each attribute split point improves the performance measure, weighted by the

number of observations the node is responsible for [25].

We examined the GB models with the best accuracy for classification of malware and

benign apps for both the string computations and RevealDroid features sets. We identified

the top 16 important features based on weight in terms of number of correct observations

the feature is responsible for. This provides us with the top 16 most important features out-

put by our string computations and RevealDroid. The models were trained and tested on the

same set of apps to guarantee commonality for later analysis between string computations

and RevealDroid.

Table 7.1 provides the top 16 most important string computations, ranked in descending

order, for the GB model that best classified the un-obfuscated apps described in Section

5.2. A description of the string constructed by the string computation is provided. We

see that the string computation types used most often for successful classification span a

wide spectrum and tell the story of how malware utilizes strings under the hood across

different malware families. These include string computations weighted toward collection

and storage of sensitive information. For example, features 1, 4, 5, 8, 13, 14, and 16

all involve StringBuilder operations that append content to strings. This content is

written to log files, or Json objects, or to harvest information from an HTML response. We

also see string computations focused on the Android device itself. For example, accessing

the PackageManager to find out package info, obtaining phone information using the

TelephonyManager class, or identifying the CPU based on OS build.

Note, the size of the string computations themselves can vary. We provide two examples

in Figure 7.2. To the left we see a larger string computation, linked to feature 13, that writes

content to a logging file. To the right is a much smaller string computation that accesses

the PackageManager to find information about an installed package.

We next examined the top 16 most important RevealDroid features used by its GB
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Table 7.1: Top 16 Most Important String Computation Features Summarized

Feature Description
1 Sequence of multiple appends to StringBuilder
2 String used to obtain Package Manager and identify installed apps
3 String to identify CPU based on OS build
4 Sequence of appends to StringBuilder for JSON object
5 StringBuilder operations adding multiple char objects to String
6 Examination of String to identify if CharSequence is present in String
7 String that helps to determine the external storage state
8 Sequence of appends to StringBuilder byte
9 Use of TelephonyManager to obtain phone information

10 String object created via initialization utilizing byte[] array
11 String object created via initialization utilizing a char[] array
12 String object that identifies system bootloader
13 Sequence of appends to StringBuilder supplied to logging util
14 StringBuilder operations involving Jsoup library – used to parse HTML
15 String .equals() operations
16 Sequence of appends to StringBuilder focused on int values and booleans

model to most successfully classify malware and benign applications, provided in Table

7.2. We see that these features tend to deal with sensitive operations - for example iden-

tifying the location of a phone, accessing network or Bluetooth information, or accessing

the phone’s file system to write or read information.

RevealDroid importance features for our developed model fall into two categories.

The basic form for each category is shown in Figure 7.3. To the left is the token an-

droid.net.wifi. This feature is a pure count of the following. For each class in that

namespace, shown toward center, each API call for the class is counted for a app. For exam-

ple, if the app uses the ScanResult class and calls the getWifiStandard() method two

times and isPasspointNetwork() three times, it will have a count of two - indicating

that two methods or fields from the class are used. RevealDroid also performs a basic form

of information flow analysis where it attempts to identify sinks and sources. This is what is

embodied to the right by the token BLUETOOTH INFORMATION. RevealDroid maintains a

listing of API calls that are likely source or sink points for for exfiltration of sensitive infor-

mation. A subset of these API calls are shown to the right. If an app exhibits one of these
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Figure 7.2: Examples of String Computation Graphs for Importance Features

calls - it is presumed to have a source in this case. RevealDroid collects what it believes

are potential sinks and counts these. We see the importance features for RevealDroid are a

mixture of the pure API calls and potential sources and sinks of critical information.

Figure 7.3: Examples of RevealDroid Importance Features

7.1.2 Accuracy of String Computation and RevealDroid when Obfus-

cated

We next took the unobfuscated apps and obfuscated them using reflection, goto, and in-

direction for both Obfuscapk and AAMO. In addition, we ran Obfuscapk’s advanced re-

flection obfuscator. We then classified the obfuscated apps using two approaches. Both

have been used in previously published research and serve as baseline metrics with which

to measure how obfuscation impacts models trained on unobfuscated apps [53, 110]. The
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Table 7.2: Top 16 Most Important RevealDroid Features

Feature Description
1 android.view
2 android.location
3 android.net.wifi
4 LOG
5 android.content
6 NETWORK
7 android.view.inputmethod
8 android.bluetooth
9 android.opengl

10 FILE
11 AUDIO
12 NETWORK INFORMATION
13 android.support.v4.net
14 BLUETOOTH INFORMATION
15 android.support.v7.text
16 android.speech.tts

methodologies are:

• Train on Original, Test on Transformed: Trained classifiers on a dataset that con-

tains the original apps and then tested those classifiers on the obfuscated versions of

the same apps.

• Train on Original, Test on Unseen Transformed: Refrain from training classifiers

on any apps that we transformed (i.e., original, malicious apps before obfuscation);

however, we test on the transformed, obfuscated apps.

The intuition is that the first case is easy and the second case hard. If the classification

rates for the first case significantly drop when tested on apps the model was trained on -

then clearly the feature set used is not obfuscation resilient. The second case is significantly

harder. How will the model perform when it needs to classify apps it has never seen that

have been obfuscated? This is the true measure of obfuscation resilience. Table 7.3 reports

results for both methodologies. The first row of results is the accuracy of the best model

for the unobfuscated apps. The next two sets of rows test each methodology fore each
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individual obfuscator, that is for reflection, goto, and indirection. We report results in

terms of accuracy and provide the train and test sizes. Note - it was difficult to get exactly

the same test and train sizes across each type of obfuscator as AAMO and Obfuscapk

failed on certain applications but the test and train sets are relatively close in size across all

obfuscators.

Table 7.3: Accuracy of String Computations and RevealDroid on Different Obfuscators

Test Set Obfuscation Type Accuracy SC Accuracy RV Train Size Test Size
Un-Obfuscated 97.31% 94.11% 8,600 2,150
AdvRef Obfuscapk 96.70% 93.48% 8,340 2,085
Ref Obfuscapk 96.11% 93.89% 8,542 2,136
Ref AAMO 96.62% 94.11% 8,221 2,055

Orig Goto Obfuscapk 96.02% 93.71% 8,601 2,150
Goto AAMO 96.79% 94.01% 8,477 2,119
Indir Obfuscapk 95.90% 93.92% 8,312 2,078
Indir AAMO 95.28% 93.44% 8,437 2,109
AdvRef Obfuscapk 95.80% 89.20% 8,340 2,085
Ref Obfuscapk 96.25% 92.90% 8,542 2,136
Ref AAMO 95.45% 93.14% 8,221 2,055

New Goto Obfuscapk 96.10% 93.89% 8,601 2,150
Goto AAMO 95.98% 93.45% 8,477 2,119
Indir Obfuscapk 92.12% 91.40% 8,312 2,078
Indir AAMO 94.98% 94.82% 8,437 2,109

The results demonstrate that, as hoped, accuracy remains close to the original for the

first methodology. We see a slight drop off for both the string computations and Reveal-

Droid but nothing that exceeds greater than two percent. However, the results for the second

methodology tell a different story. We see that for certain obfuscators, accuracy can dip as

much as 5% for both tools when a higher bar for obfuscation resiliency is presented.

We leverage the importance features reported by GB to develop a novel metric that

enables us to directly correlate this dip in accuracy to the most important features used for

classification. Our methodology to develop this metric is as follows. We run the obfuscation

tools with each obfuscator. We record the names of the apps that were in the test set,

represented as test test. We then develop two functions, the first, 1 is the number of features
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removed, RM(x) where x represents one of the 16 importance features. For each feature

we sum the number of times the features is present in the unobfuscated app subtracted for

the times present in the obfuscated app. We then calculate a percent retained, 2 by dividing

that total by the sum of the number of times the feature is present in the unobfuscated app.

RM(x) =

∑
test(origcount(x, test))−

∑
test(obfcount(x, test))∑

test(origcount(x, test))
.(1)

RT (x) = 1−RM(x).(2)

In the following sections we examine each obfuscator and report results on the retention

and removal rates for both string computations and RevealDroid. We report for each of

the 16 importance features the % of the feature that was removed by obfuscation and the

% that was retained in terms of the test of apps that was supplied for classification. These

sections report a mixture of both anticipated and unanticipated results. Critically, the results

demonstrate that a proclamation of obfuscation resilience requires a thorough examination

of the obfuscation output to understand the true impact on the feature sets.

7.1.3 Advanced Reflection Analysis

Our analysis starts with an examination of the impact Obfuscapk’s advanced reflection

obfuscator has on the 16 importance features for both the string computations and Reveal-

Droid. This obfuscator applies reflection but focuses on a subset of critical or sensitive

Android API specific operations to obfuscate. Figure 7.4 shows the result on the malware

set and Figure 7.5 shows the result on the benign set. The blue portion of each bar in-

dicates the percent of that feature that was retained after obfuscation and the red portion

indicates the percent that was lost. Of the 16 importance features only one is impacted - fea-

ture 9. This features creates a string that harvest device information utilizing the Android

TelephonyManager class. We consulted the listing of method signatures Obfuscapk’s
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advanced reflection targets for reflection obfuscation which is available on its git site. This

listing indicates that TelephonyManager and its method call getDeviceId() are a tar-

get for obfuscation. We see that occurrences of this feature are completely removed in the

obfuscated malware sample and removed in nearly 60% of the obfuscated benign sample.

The feature itself is heavily weighted toward being present in malware, with over 500 mal-

ware apps exhibiting the string computation feature while only 10 of the benign apps had

it present. This example answers the critical question of how the obfuscation impacts the

feature set and, importantly, those features most important for classification. It should be

noted that this obfuscation did not significantly impact the ability to classify obfuscated

apps using string computations as features.

We next review the impact of advanced reflection on the RevealDroid set of importance

features. Figures 7.6 and 7.7 show the results for the malware and benign sets respec-

tively. We see that three importance features are severely degraded by advanced reflection.

This keeps in line with the classifier results where accuracy dipped to 89% for Reveal-

Droid in the presence of advanced reflection. A review of the importance features explains

why. Figure 7.8 depicts why the degradation occurs. The left shows names spaces whose

classes advanced reflection targets via the obfuscation. The right shows the RevealDroid

importance features most impacted by advanced reflection. The sets of API calls that Re-

vealDroid focuses on are the exact calls that advanced reflection obfuscates. Obfuscapk’s

creators intended for this to work exactly this way - tricking malware detection tools by

removing some of the calls to those classes’ sensitive methods.

7.1.4 Reflection Analysis

Next we review the impact of reflection obfuscation as applied by both Obfuscapk and

AAMO. Figures 7.9 and 7.10 show Obfuscapk’s reflection impact on string computations

while Figures 7.10 and 7.11 show AAMO’s impact. Both obfuscation tools apply reflec-

tion liberally with no specific classes or methods targeted. AAMO has the limitation that
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Figure 7.4: Obfuscapk Advanced Reflection Impact on String Computation Malware Im-
portance Features

Figure 7.5: Obfuscapk Advanced Reflection Impact on String Computation Benign Impor-
tance Features
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Figure 7.6: Obfuscapk Advanced Reflection Impact on RevealDroid Malware Importance
Features

Figure 7.7: Obfuscapk Advanced Reflection Impact on RevealDroid Benign Importance
Features
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Figure 7.8: Degraded Reveal Droid Importance Features Mapped to Advanced Reflection
Targets

it can only perform reflection upon statically defined methods. The result of reflection ob-

fuscation is that some string computations are lost due to reachability issues. The features

removed are from methods no longer reachable by the call graph and therefore removed

from examination. This is the intent of reflection obfuscation; confuse the execution of the

control flow graph to make the code less understandable. Also note that Obfuscapk reflec-

tion limits the amount of reflection introduced to ensure that apps are still runnable and fast

with respect to usability. Impact on the classification rates is minimal - with at most a two

percent reduction in overall accuracy for string computations.

We next turn to RevealDroid and examine how it performs in the presence of Obfus-

capk and AAMO reflection. Figures 7.13 and 7.14 show performance when Obfuscapk is

applied. In some cases reflection introduction has moderate impacts on some of the im-

portant RevealDroid features, for example features 1 and 5. Figures 7.15 and 7.16 show

performance when AAMO is applied. RevealDroid features do better, with only slight

degradation. All of these results are in line with what was initially expected; the obfus-

cators apply reflection liberally and are not targeting any one feature. The classification

results therefore show only a slight dip in performance with neither string computation or

RevealDroid showing more than a 2 percent dip in classification performance.
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Figure 7.9: Obfuscapk Reflection Impact on String Computation Malware Importance Fea-
tures

Figure 7.10: Obfuscapk Reflection Impact on String Computation Benign Importance Fea-
tures
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Figure 7.11: AAMO Reflection Impact on String Computation Malware Importance Fea-
tures

Figure 7.12: AAMO Reflection Impact on String Computation Benign Importance Features

86



Figure 7.13: Obfuscapk Reflection Impact on String Computation Malware Importance
Features

Figure 7.14: Obfuscapk Reflection Impact on String Computation Benign Importance Fea-
tures
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Figure 7.15: AAMO Reflection Impact on RevealDroid Malware Importance Features

Figure 7.16: AAMO Reflection Impact on RevealDroid Benign Importance Features
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7.1.5 Goto Analysis

We next move to goto analysis. In our deep dive analysis of the goto obfuscator for the

four example applications, we saw no impact on string computations. There in fact no

impact on the feature sets extracted neither across string computations or RevealDroid for

both Obfuscapk and AAMO. This was discussed earlier where it was identified that the

manner in which goto is implemented by both AAMO and Obfuscapk has no impact on

string computations or RevealDroid. Our first set of analysis results did show slight dips

for some of the goto features and we believed we had identified an interesting edge case.

However, these dips were indicative of apps whose processing was stopped by the CCR

cluster before they could complete due to jobs exceeding their time allotment. These cases

were easily identified and removed from our analysis across all the obfuscators examined.

7.1.6 Indirection Analysis

Our last set of analyses focuses on how indirection impacts the importance features. In-

direction has the potential to be problematic as it introduces new method calls into the

control flow specifically to evade signature based detection techniques that focus on the

call graph. We first examine the impact of of Obfuscapk in Figures 7.17 and 7.18 and

AAMO in Figures 7.19 and 7.20 on the string computations. Rather than report results

in terms of removed features we report in terms of broken features and changing the bar

coloration to gray. We do this because the string computations are not completely removed

due to reachability, rather they are broken by the introduction of indirection with single

string computation graphs being broken into 1 or more string computations. In Section

6.1.3 we provide an algorithm to remediate most of the broken string computations. Indi-

rection creates the greatest problem for classification by string computations as it breaks

enough critical features to dip accuracy by 4% versus the unobfuscated apps. However,

these broken string computations can be reconstituted using the semantic remediation al-
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gorithim as a last step prior to persisting the graph database output by our string analysis

algorithm. Addition of such a post processing step makes sense as we seek to put string

computations into a semantically equivalent form - which semantic remediation does. Cor-

recting the broken string computations would likely increase the accuracy of the classifier

when examining apps obfuscated by indirection.

We next move to an analysis of indirection obfuscation’s impact on the RevealDroid

importance features. We see that accuracy for indirection dips by nearly 4% for Obfuscapk

indirection. The graphs yield an interesting finding. Intuitively, we would expect little

to no variance in the number of features extracted by RevealDroid as indirection simply

introduces new methods - not obfuscate API calls. However, we see that feature counts

both go up and go down.

We focus first on the increase in feature counts - what is happening? RevealDroid

counts API calls to sensitive Android APIs but Obfuscapk is not creating new APIs. How-

ever, consider the code snippet of included in Figure 7.21 which is an actual indirec-

tion call added by Obfuscapk. Point 1 of the Figure identifies the package name, an-

droidx.appcompat.widget. This is a package structure RevealDroid harvests. Point

2 identifies the class, AppCompatCheckedTextView, a class that RevealDroid is inter-

ested in. At this point, RevealDroid will harvest any calls to methods of that class. This

means it will also count the Point 3 method - EcPGfVmAIy1uVYD(). This method is added

by Obfuscapk indirection and decidedly not a part of the AppCompatCheckedTextView

class API. However, RevealDroid is not aware of this and simply counts it as yet another

method invocation of that class. In some classes, hundreds of new methods are introduced

by indirection leading to wildly inaccurate count totals in terms of RevealDroid’s harvest

targets.

We also note a decrease in the count totals of some features and examined what might

contribute to this. A review of RevealDroid’s logs indicates a common message as its Soot

implementation attempts to process methods added by indirection - ”Method has no active
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Figure 7.17: Obfuscapk Indirection Impact on String Computation Malware Importance
Features

Figure 7.18: Obfuscapk Indirection Impact on String Computation Benign Importance Fea-
tures
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Figure 7.19: AAMO Indirection Impact on String Computation Malware Importance Fea-
tures

Figure 7.20: AAMO Indirection Impact on String Computation Benign Importance Fea-
tures
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Figure 7.21: Example of Indirection Increasing Number of Sensitive API Calls

body.” This is a message well known to even novice Soot users and is indicative of Soot

being aware of a method in the call graph but unable to find its source code. This was

not a problem for our implementation of Soot which which was able to successfully find

and process the indirection method bodies. It may be the case that RevealDroid needs to

upgrade to the most recent version of Soot.

Indirection introduced by AAMO demonstrates the same characteristics as that intro-

duced by Obfuscapk, but not as extreme. We see the reduction in importance variable and

a slight increase.
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Figure 7.22: Obfuscapk Indirection Impact on RevealDroid Malware Importance Features

Figure 7.23: Obfuscapk Indirection Impact on RevealDroid Benign Importance Features
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Figure 7.24: AAMO Indirection Impact on RevealDroid Malware Importance Features

Figure 7.25: AAMO Indirection Impact on RevealDroid Benign Importance Features
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Chapter 8

Conclusions

We have identified three major findings as a part of this research. These are summarized

following.

8.1 String Computations are a Useful Feature for Classi-

fication and Obfuscation Resilient

String computations are incredibly resilient as a feature for classification of malware and

benign apps. The computations are a snapshot of an app’s control flow with respect to string

creation and this snapshot is useful in the classification of malware and benign apps. The

results demonstrate clear differences with respect to how malware and benign applications

employ strings. In the case of malware these string computations often insect with sensitive

information on Android devices, from using strings as a repository to store critical informa-

tion before exfiltration from the device to capture of information about the device hardware

done in order to help running processes evade detection by virus detection software.

String computations are also obfuscation resilient. We see that across multiple types of

obfuscators (reflection, goto, and indirection) string computations remained in tact. In cases

where the computations were broke by the introduction of obfuscation such as indirection,
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it was reasonably easy to reconstruct their original form solely from the persisted string

computations. This point is vitally important as it can be expanded in the future to create

fuzzy matching between graph patterns to identify semantic equivalence between mostly

similar string computations for a more robust feature set. Additionally, in the case where

string computations were removed entirely due to reachability, as is the case for reflection,

enough string computations remained in tact to keep accuracy rates close between when

ML models were tested on unobfuscated and obfuscate apps. This indicates that string

computation differences between benign and malware apps exist across the application,

and are not centralized in a few, sensitive methods.

Taken as whole, string computations tell the story of an app and its behaviour. Reading

a listing of string computations for an app quickly provides insight into what it is doing

and how risky it is. Throughout the research we commonly scanned through the listing

of string computations for malware and benign apps and easily identified differences in

behavior simply through this manual inspection. An interesting future research task would

be translation of the string computations themselves into a narrative that is human readable

for virus detection developers to review. Such content could be added to a the VirusTotal

description of a malware app and give more semantic information about behavior than is

currently provided.

Persisting graph computations is also incredibly useful. Traditional static analysis ap-

proaches compute data flows of interest during the static analysis, answer specific ques-

tions, and discard the analysis itself. However, there is immense value in persisting the

graph computations as a host of add on questions can quick and easily be asked and an-

swered without the need to rerun the complete static analysis. It also allows us to un-

derstand how string computations are connected across different apps. We noted in our

analysis that string computations began to become connected across apps when string com-

putations were stored in a single, persisted graph store.
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8.2 Obfuscation Resilience Requires an Examination of

Feature Impact

Any claim of obfuscation resilience by a malware detection tool requires both accuracy

results to show resiliency and a thorough examination of the impact of features used for

classification. This analysis of importance features must report how those features are

impacted by the obfuscation.

Understanding how features change in the presence of obfuscation is exactly what mal-

ware developers do. They will download malware detection tools, understand the features

exhibited in their applications that enable detection and perform trial and error with dif-

ferent types of obfuscation until those features are sufficiently masked. This is exactly the

case for Obfuscapk where the reflection obfuscator is refined to make it more effective. De-

velopers of malware detection algorithms must now go an additional step and understand

how obfuscation changes the features and whether a competent obfuscator developer could

use this information to create a more effective obfuscator.

8.3 Obfuscation is Applied Greedily

The obfuscators evaluated apply obfuscation greedily, one step at a time. They disassemble

an app’s code and iterate through it one line at a time. When an opportunity to apply a

specific type of obfuscation, it is taken. However, the obfuscation’s application is with

respect to that single line, a fact that has significant implications.

First, it leads to obfuscated apps that may on the surface look significantly opaque but in

reality are not. The apparent complexity of the application is the result of a single operation

performed on a single line of code iteratively, across the entire application. When one

understand how these single operations are applied, it is reasonably easy to translate them

back to their original form. Even when multiple obfuscators are executed in a sequence, it
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is still straight forward to reverse the code back to the original form. We demonstrated this

with our semantic remediation which easily corrected broken string computations once the

logic of the underlying obfuscation was understood. However, we did need to perform a

rigorous analysis of the obfuscation tool to gain this understanding of how obfuscation was

applied.

Second, the obfuscation tools we examined dud not try to maintain the state of the

code to create truly complex obfuscation. That is, the tools did not maintain the control

flow graph for a method to understand larger patterns that may be obfuscated upon. This

would be an interesting research question related to obfuscation and a potential area where

machine learning could be employed to learn large segments of code where more complex

obfuscation may be applied.
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