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Abstract

Secure multi-party computation (SMC) allows its participants to securely compute func-

tionality without revealing their private input and has broad application across a diverse

spectrum. In general, to prove the security of a cryptographic construction standard

security model, one must consider participants as semi-honest or with malicious intent.

However, we treat the problem outside of traditional security models even in the presence

of malicious participants. We strengthening the security of SMC protocol with the ability

to guarantee that the participants provide truthful inputs in the computation. In other

words, we focus on enforcing input correctness.

To begin this examination, we combine SMC techniques based on secret-sharing with

signatures in order to enforce input correctness in the form of certification. We modify two

signature schemes, the Camenisch-Lysyanskaya scheme and ElGamal scheme, to achieve

private verification and efficiency of batch verification. Consequently, this shows the

potential for integration with two prominent SMC protocols.

Next, we utilize a certificate issued by a certification authority to verify the user’s

input correctness and consequently use it in the secure computation. In this work, we

treat the enforcing correctness of evaluator’s inputs to the two-party computation based

ix



on a garbled circuit evaluation in the presence of malicious participants. For the purpose

of discourse, we modify the oblivious transfer (OT)/OT extension and construct new

protocol with the goal of achieving efficient computation.
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Chapter 1

Introduction

1.1 Introduction

Secure multi-party computation (SMC) protects the confidentiality of private data during

computation in distributed or outsourced settings while allowing two or more participants

to jointly evaluate a function. This is a mature research field with a variety of applications

for secure evaluation of arbitrary functions by two or more computational parties that

does not allow access to all inputs in the clear. The rapid development of this field in

recent years has greatly reduced SMC overhead and accordingly, the development of SMC

solutions is on the rise [5, 6, 30].

A standard formulation of SMC allows a set of participants to jointly evaluate some

function f on the private input in1, . . ., ink (k ≥ 1) from different sources by m (≥ 2)

computational parties and to produce s (≥ 1) outputs which get revealed to the designated

parties. For the security reason, the input of each participant should not be exposed to

other participants and be able to share the desired results as agreed in advance. Standard

1



security definitions model the participants as either semi-honest or malicious. In the

semi-honest model, the participants correctly follow the prescribed computation even if

he is corrupted. Conversely in the malicious model, the corrupted parties can arbitrarily

deviate from the computation in the attempt to learn unauthorized information about

other parties’ inputs. Output correctness guarantees must also hold in these respective

models. However, these definitions provide no guarantees with respect to what inputs

are entered into the computation. Therefore, a malicious participant can modify its real

input thereby attempting to harm security or correctness. For example, the participant

can perturb his input in such a way that all output recipients receive incorrect information,

but is able to compensate for the error and learn the correct result. Alternatively, the

participant can modify his input in such a way as to learn the maximum amount of

information concerning private data of others’, beyond what would have been available if

the computation was run on truthful inputs ([4] gives an example of this kind of attack

in the context of computing with genomic data). These attacks are beyond the scope of

standard SMC security models and cannot be mitigated.

In this work, we study input enforcement which enforces the correct (i.e., truthful)

input to be used in the SMC via input certification. At the time of computation initiation,

a party supplying input accompanies it with a certificate and proves that the data input

into the computation is identical to what has been certified. It goes without saying that

the certificate and its verification must maintain data confidentiality. There are many

types of data which can be generated or can be verified by an authority (such as the

government, a medical facility, etc.) that issues private certification to the user at that

time.
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Past research has addressed the topic of enforcing input correctness via input certi-

fication for specific SMC applications (e.g., anonymous credentials [10] or set operations

[12, 17]), and more recently for general functions [4, 27, 47]. In that kind of research,

almost all of the efforts have been focused on the general case for secure two-party compu-

tation based on garbled circuits (GCs). This presents an interesting quandary to explore

because GC evaluation does not naturally combine with signature or certification tech-

niques. This also presents the issue that this dilemma deserves attention beyond GCs.

With this in mind, we will treat the problem of input certification in the multi-party set-

ting based on secret sharing. Because both secret sharing and signature schemes exhibit

algebraic structure, the use of signatures appears to be a natural choice in enabling input

certification in secret-sharing based SMC. Note that, unlike many other conventional uses

of signatures, this problem setting requires more security. Signature verification needs to

be performed privately without revealing any information about the signed message to the

verifier. Another important consideration is that in many SMC applications, the size of

the input is large (e.g., genomic data). Because signatures are built using rather expensive

public-key techniques, which in the privacy-preserving setting often needs to be combined

with zero-knowledge proofs, we are interested in improving signature verification time

using batch verification of multiple signatures.

In Chapter 3, we study two types of signatures in the context of this problem, CL-

signatures and ElGamal signatures.: (i) CL-signatures [8, 9] which were designed for

anonymity applications and achieve both message privacy and unlinkability of multiples

showings of the same signature and (ii) conventional ElGamal signatures [18]. After for-

mulating the necessary security guarantees of private signature verification, we show that
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the signature showing in [9] can be simplified to meet new definition of message privacy,

and then construct a batch verifier for the resulting signature. In the case of ElGamal sig-

natures, we first modify a provably secure ElGamal signature scheme from [40] to achieve

private verification and consequently construct a batch verifier for the resulting algorithm.

The batch verifiers use the Small Exponents Technique [3] to randomize multiple signa-

tures to ensure that batch verification can succeed only when all individual signatures are

valid.

The last part of Chapter 3 deals with combining the developed signature schemes

with SMC techniques securely in the malicious model. We identify two prominent con-

structions of SMC based on the secret sharing: (i) Damg̊ard-Nielsen solution [15] of low

communication complexity where the number of corrupted parties is below k/3 and (ii)

an improvement to SPDZ [14] with a very fast online phase that tolerates any number of

corruptions. We next show how to modify the input phase to use new signatures with an

additional optimization of utilizing a single commitment to multiple signatures instead of

using individual commitments. Finally, we implement the new ElGamal-based signature

scheme and SPDZ-based use of certified inputs for a varying number of messages (SMC

inputs), and show the corresponding result of efficient performance. The techniques are

general enough to be applicable to other signature algorithms (such as ElGamal-based

DSA and others).

We will also examine how to use the construction of certification with respect to the

oblivious transfer protocol, which is the most fundamental primitive and widely used

by people for SMC. It is GC-based protocol two-party protocol between a sender and

a receive. The sender has a pair of strings and the receiver has selection bits. As a
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result of the protocol, the receiver gets only one string depending on his choice, and the

sender must not know which string the receiver has come to know. It is more interesting

because it is difficult to integrate with other cryptographic schemes, unlike signature-

based cryptosystem. The starting point of second topic is the work of Zhang et al. [47]

for two-party setting. In the setting of two-party case, we also assume that there exists

a certification authority that can issue the certification of user’s data. The certification

must not reveal any information about the certified data and after the certification step

is completed, we use this certification in the secure two-party computation.

In Chapter 4 we discuss two possibilities: (i) The case where the evaluator’s input

is small, i.e., m ≤ κ for a computational security parameter κ and (ii) The case where

the evaluator’s input size is large, i.e., m > κ. For the first case, our starting point

is Naor-Pinkas OT [38], and for the second case we use an OT extension that results

in a more efficient solution. Our construction consists of two steps: input certification

step and secure two-party computation. We modify Naor-Pinkas OT [38] adding the

certification step and further advance Asharov et al.’s OT extension protocol [1]. After

that, we construct an OT extension protocol that allows for certification to be reusable

for multiple circuits.

1.2 Related work

Past publications on certified inputs concerning SMC that we examined were mentioned

above, (i.e., techniques for specific applications [10, 12, 17] as well as techniques for GCs

[4, 27, 47]). Additionally, work on using game theory to incentivize rational players to
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enter their inputs truthfully (see, e.g., [25, 44] among others) was discussed as well. In

this section, we will examine these publications in the scope of two sections: in terms of

signature scheme; and GC-based construction.

1.2.1 Signature scheme with certified input

The first systematic treatment of batch signature verification appears in [3], although

interest in batch verification of signatures and other cryptographic operations goes further

back. Modern techniques for batch verification include: [7, 19] among others, although

none of them target private verification (defined in section 2.1) which is a central pillar

to this work.

Aggregate signatures benefit our work as it allows a number of different signatures

to be compiled into a single short signature to save bandwidth in resource-constrained

environments. We hope to build on the aggregate signature schemes that were developed

for CL signatures previously [31]. However, there are two central differences to note in

this work: (i) aggregate signatures have strictly weaker security guarantees than batch

verification [7] because verification of an aggregate signature can succeed even if the indi-

vidual signatures included in it do not verify, and (ii) message privacy was not considered.

Case in point, Guo et al. [24] uses privacy features of CL signatures and constructs an

aggregate CL signature, but the difference in the security guarantees still stands.

1.2.2 Oblivious transfer protocol with certified input

The idea and applications of GC were first presented by Yao in 1986 [46]. It is known that

GC can safely evaluate any computable function in a two-party setting. The structure
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introduced by Yao is safe from semi-honest participants, and includes solutions to deal

with some malicious behavior. Initially published construction including [22, 23] used

zero knowledge proofs of knowledge to cope with malicious participants and a cut-and-

choose technique was used as an alternative to handle the malicious model in garbled

circuit-based structures [33, 35, 42].

In our study, we focus on the input correctness in the malicious case. This dilemma

has had several publications published to solve input consistency problems. For example,

input consistency problems have arisen when multiple circuits in a Garbled circuit have

had to evaluate same inputs, and solutions based on cut-and-choose techniques have been

addressed in several publications [35, 37, 45]. In another study of this issue, Kolesnikov et

al. [29] proposed a solution that allows a malicious participant to perform multiple secure

two-party computations using a semi-honest server assistant at low cost. In this solution

they used an efficient consistency check method across multiple two-party executions.

Other related studies (see, e.g., [25, 43, 44] among others) apply game theory to function

design to incentivize participants to enter correct input. These techniques however, are

not widely applicable to general functionalities.

In a recent work on enforcing input correctness, Zhang et al. [47] utilized certification

authority (CA) to certify user’s input, which consequently is used in secure garbled circuit

evaluation two-party computations. Zhang focused on enforcing correctness of the gar-

bler’s inputs via certification in the presence of malicious participants and showed how to

integrate certificates into secure computations, guaranteeing correctness of the garbler’s

input. This paper is used as a starting point for this work. We study how to use the

certificate produced by CA to force the correct evaluator’s input in GC based two-party
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computation and tie it with secure function evaluation.

Lastly, the publication on oblivious transfer by Naor and Pinkas [38] examines effi-

cient non-interactive oblivious transfer protocol without random oracle. We combine the

certification produced by CA with this protocol to enforce evaluator’s input correctness

when the input size is small. For the case that the input size is greater than the secu-

rity parameter, we improve the consistency check step of OT extension technique in [1],

consequently tying the concept of certification with it to enforce the input correctness of

evaluator in the malicious model.

8



Chapter 2

Preliminaries

In this chapter, we describe notations and definitions that are used throughout the dis-

sertation. We also present the cryptographic background and primitives we use, and

construct our protocol based on these.

2.1 Definitions

A function ε : N → R≥0 is negligible if for every positive polynomial p(·) there exists an

integer N such that for all κ > N ε(κ) < 1
p(κ) . We denote a negligible function by negl.

The notation G = 〈g〉 means that g generates group G. We rely on groups with pairings,

defined as follows.

Definition 2.1.1 (Bilinear map). A one-way function e : G ×G → G is a bilinear map

if it satisfies following properties:

- Efficient : G and G are groups of the same prime order q and there exists an efficient

algorithm for computing e.
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- Bilinear : For all g, h ∈ G and a, b ∈ Zq, e(g
a, hb) = e(g, h)ab.

- Non-degenerate: If g generates G, then e(g, g) generates G.

We assume that there is a trusted setup algorithm Setup that, on input 1κ for a security

parameter κ, outputs the setup for group G = 〈g〉 of prime order q ∈ Θ(2κ) that has a

bilinear map e, and e(g, g) generates G of order q. That is, (q,G,G, g, e) ← Setup(1κ).

2.2 Signature Scheme

A signature scheme consists of three algorithms; which are Key generation, Signing and

Verification. We first define a signature scheme and describe a security of a signature

scheme in terms of negligible function.

Definition 2.2.1 (Signature scheme). A signature scheme consists of following three

algorithms:

- KeyGen is a probabilistic polynomial-time (PPT) algorithm that, on input a security

parameter 1κ, generates a public-private key pair (pk, sk).

- Sign is a PPT algorithm that, on input a secret key sk and message m from the

message space, outputs signature σ.

- Verify is a deterministic polynomial-time algorithm that, on input a public key pk,

a message m and a signature σ, outputs a bit.

Security of a signature scheme is defined as ”difficulty of existential forgery under

a chosen-message attack by any PPT adversary”. Let Π = (KeyGen, Sign,Verify) be a

signature scheme and consider the following experiment:
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Experiment ForgeSigA,Π(κ):

1. The challenger creates a key pair (pk, sk) ← KeyGen(1κ) and gives pk to A.

2. A has oracle access to Signsk(·). For each message m that A queries the oracle, m is

stored in list Q and A learns σ = Signsk(m). A eventually outputs a pair (m∗, σ∗).

3. The experiment outputs 1 if both Verifypk(m
∗, σ∗) = 1 and m∗ /∈ Q. Otherwise, it

outputs 0.

Using this experiment, we can define the security of a signature scheme as follows.

Definition 2.2.2 (Security of a signature scheme [28]). A signature scheme Π = (KeyGen,

Sign,Verify) is existentially unforgeable under an adaptive chosen-message attack if for all

PPT adversaries A there is a negligible function negl such that

Pr[ForgeSigA,Π(κ) = 1] ≤ negl(κ).

2.2.1 CL signature Scheme A

Next we will build on Camenisch-Lysyanskaya signature Scheme A from [9] (CL Scheme

A for short), defined as follows:

Key generation: On input 1κ, execute (q,G,G, g, e) ← Setup(1κ), choose random x, y ∈

Zq and compute X = gx, Y = gy. Set sk = (x, y) and pk = (q,G,G, g, e,X, Y ).

Signing: On input message m ∈ Zq, secret key sk = (x, y) and public key pk =

(q,G,G, g, e,X, Y ), choose random a ∈ G and output σ = (a, b, c) = (a, ay, ax+mxy).
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Verification: On input message m, pk = (q,G,G, g, e,X, Y ), and signature σ = (a, b, c),

check whether e(a, Y ) = e(g, b) and e(X, a) · e(X, b)m = e(g, c). If both equalities

hold, output 1; otherwise, output 0.

Proof of signature: The prover and verifier have pk = (q,G,G, g, e, X,Y ). The prover

also has m ∈ Zq and the corresponding signature σ = (a, b, c) = (a, ay, ax+mxy).

1. The prover chooses random r′, r′′ ∈ Zq, computes blinded signature σ̃ =

(ar
′′
, br

′′
, cr

′′r′) = (ã, ãy, (ãx+mxy)r
′
) = (ã, b̃, ĉ), and sends it to the verifier.

2. Let vx = e(X, ã), vxy = e(X, b̃), and vs = e(g, ĉ). The prover and verifier

engage in the following ZKPK: PK{(μ, ρ) : v−1
x = vμ

xyv
ρ
s}.

3. The verifier accepts if it accepts the proof above and e(ã, Y ) = e(g, b̃).

Unforgeability of CL Scheme A is shown under the LRSW assumption [36], demonstrating

that the zero-knowledge property of proving possession of a signature uses no additional

assumptions other than hardness of discrete logarithm.

2.2.2 ElGamal Signature Scheme

We also build on ElGamal signature scheme [18]. Because the original construction allows

for existential forgeries, we will use a provably secure variant by Pointcheval and Stern [40,

41]. The setup assumes an α-hard prime number p for some fixed α, defined as having

p − 1 = qR where q is prime and R ≤ |p|α. This is necessary when considering the

difficulty of discrete logarithm and is more general than requiring the use of prime order

q. This signature scheme uses a hash function H which Pointcheval and Stern prove to

be unforgeable in the random oracle model (i.e., H is modeled as a random oracle).
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Key generation: On input: a security parameter 1κ, choose a large α-hard prime p and

a generator g of Z∗
p. Then choose random x ∈ Zp−1 and compute y = gx mod p. Set

sk = x and pk = (p, g, y).

Signing: On input: message m, secret key sk = x and public key pk = (p, g, y), choose

random k ∈ Z
∗
p−1, compute t = gk mod p and s ≡ (H(m||t) − xt)k−1 (mod p − 1),

where || denotes concatenation, then output σ = (t, s).

Verification: On input: message m, public key pk = (p, g, y), and signature σ = (t, s),

check whether 1 < t < p and gH(m,t) ≡ ytts (mod p). If both conditions hold,

output = 1; otherwise, output = 0.

2.3 Batch Verification

Batch verification [3] is a method for verifying a set of signatures on different messages

signed by the same or different signers. This method is intended to be more efficient

than verifying each signature independently. This work is primarily interested in batch

verification of signatures produced by the same signer. Batch verification is defined as:

Definition 2.3.1 (Batch verification of signatures [7]). Let Π = (KeyGen, Sign, Verify)

be a signature scheme and κ be a security parameter. Let (pk1, sk1), . . . , (pkn, skn) be

key pairs of n signers P1, . . . , Pn produced by KeyGen(1κ) and PK = {pk1, . . . , pkn}. Let

Batch be a PPT algorithm that takes a set of tuples (pki,mi, σi) and outputs a bit. Then

Batch is a batch verification algorithm if the following holds:

- If pki ∈ PK and Verify(pki,mi, σi) = 1 for all i ∈ [1, n], then Batch((pk1,m1, σ1),
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. . . , (pkn,mn, σn)) = 1.

- If pki ∈ PK for all i ∈ [1, n] and Verify(pki,mi, σi) = 0 for at least one i ∈ [1, n],

then Batch((pk1,m1, σ1), . . ., (pkn,mn, σn)) = 1 with probability at most 2−κ.

Note: Even if only one verification fails, the verifier should detect that with the probability

at least 1− 2−κ. Also this verification is faster than the independent verification.

2.4 Zero-knowledge Proof of Knowledge and Commitment

Scheme

In our construction, we rely on zero-knowledge proofs of knowledge (ZKPKs) and com-

mitment scheme for framework. A ZKPK is a two-party interactive protocol between a

prover and a verifier, during which the prover convinces the verifier that a certain state-

ment is true without revealing anything else about the values used in the statement. We

use a notation PK{(Variables) : statement} to present a ZKPK of given statements for

the variables. Here, the variables are private to the prover and the statements are given

to both the prover and the verifier. Informally, a ZKPK should satisfy the following

properties:

- Completeness: If the statement is true, then an honest verifier will be convinced of

the statement’s validity after interacting with an honest prover.

- Soundness: If the statement is false, then no cheating prover can convince an hon-

est verifier that the statement is true, except with a negligible probability (in the

security parameter).
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- Zero-Knowledge: If the statement is true, then no cheating verifier can learn any-

thing other than the fact that the statement is true.

If this proof is successful, the verifier will accept that the given statement is true even

if variables are unknown to the verifier. However, we are interested in simple statements

over discrete logarithms such as those described, e.g., in [11, 13].

A commitment scheme carries out the following functions: it allows one to commit

to message m in such a way that the commitment reveals no information about m and,

given a commitment on m, it is not feasible to open it to a value other than m. In

other words, once the value m has been committed to, it cannot be changed and kept

private until the user reveals it. These properties are known as hiding and binding. A

commitment scheme is defined by Commit and Open algorithms that are correspondingly

known as commitment and opening algorithms. We note that Commit is a randomized

algorithm and for that reason, use notation com(m, r) to denote a commitment to m

using randomness r.

Next, we utilize a well-known Pedersen commitment scheme [39] based on discrete

logarithms. The setup consists of a group G of prime order q and two generators g and

h. To commit to message m ∈ Zq, one chooses random r ∈ Zq and set com(m, r) = gmhr.

To open the commitment, the user reveals r. This commitment scheme is information-

theoretically hiding and computationally binding (when the discrete logarithm of h to the

base g is not known to the user) under the discrete logarithm assumption.
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2.5 Signature Scheme with Privacy

Specifically, we are interested in signature schemes which allow for private verification

of signature validity without revealing any information about the signed message. We

refer to such schemes as signature schemes with privacy and refer to the corresponding

verification process as private verification to distinguish it from the conventional signature

verification process. This property implies that the signature itself reveals no information

about the signed message. The rest of this section provides the necessary definitions for

signature schemes with privacy. We start by re-defining the traditional formulation of a

signature scheme as follows:

Definition 2.5.1 (Signature scheme with privacy). A signature scheme with privacy

consists of the following polynomial-time algorithms:

- KeyGen is a PPT algorithm that, on input a security parameter 1κ, generates a

public-private key pair (pk, sk).

- Sign is a PPT algorithm that, on input a secret key sk and message m from the

message space, outputs signature σ and optional auxiliary data xσ.

- PrivVerify is a potentially interactive algorithm, in which both the prover and the

verifier hold a public key pk. The prover has access to m and (σ, xσ) output by

Sign, then supplying a message encoding xm and a (possibly modified) signature σ̃

to the verifier. Lastly the verifier outputs a bit.

This definition brings up the interesting case of allowing for two possibilities: either

xσ produced during signing can be used to form xm used during verification, or xσ is
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empty and anyone with access to σ and m can compute a suitable (possibly randomized)

xm for signature verification.

Again to ensure unforgeability, PrivVerify must verify signature σ̃ similar to the way

Verify would and must enforce that the prover knows the message m (encoded in xm) to

which the σ̃ corresponds. Because xm in our work always takes the form of a commitment

to m, com(m, r), we explicitly incorporate this in new security definition.

The security (unforgeability) experiment of a signature with privacy is similar to the

conventional definition of ForgeSig with two conceptual differences: (i) After producing

the challenge pair (σ̃∗, xm∗), the adversary A is required to prove in zero-knowledge that

xm∗ corresponds to a message, a signature on which has not been queried before. (ii)

The signature forging experiment now invokes modified verification algorithm PrivVerify

instead of Verify. The signature is verified against a committed value xm∗ = com(m∗, r),

but the prover is also required to prove the knowledge of message m∗ itself encoded in

the commitment. Thus, we obtain the following:

Experiment ForgePrivSigA,Π(κ):

1. The challenger creates a key pair (pk, sk) ← KeyGen(1κ) and gives pk to A.

2. A has oracle access to Signsk(·). For each message m that A queries the oracle, m

is stored in list Q and A learns (σ, xσ) = Signsk(m).

3. The challenger and A engage in PrivVerify, as part of which A reveals the challenge

pair (xm∗ , σ̃∗). A proves in ZK that it knows the opening of the commitment

xm∗ = com(m∗, r) and that m∗ 
∈ Q.
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4. Output 1 if PrivVerify returns 1 and all other checks succeed; otherwise, output

returns 0.

To model private verification, we define the following message indistinguishability

experiment for a signature scheme with privacy Π = (KeyGen, Sign,PrivVerify):

Experiment MesIndA,Π(κ):

1. The challenger creates a key pair (pk, sk) ← KeyGen(1κ) and gives pk to A.

2. A has oracle access to Signsk(·) and learns the algorithm’s output for messages of

its choice. A eventually outputs a pair (m0,m1).

3. The challenger draws a random bit b ∈ {0, 1}. Upon A’s request, it executes

(σb, xσb
) ← Signsk(mb). It computes xmb

and returns (σ̃b, xmb
) where σ̃b is de-

rived from σb. If xmb
and/or σ̃b are probabilistic, A can request multiple encodings

(σ̃
(i)
b , x

(j)
mb) for the same signature and i, j ∈ N. These signature verification queries

are repeated the desired number of times.

4. A eventually outputs a bit b′. The experiment outputs 1 if b = b′, and 0 otherwise.

Definition 2.5.2 (Private Verification). Signature Scheme Π = (KeyGen, Sign, PrivVerify)

is said to achieve private verification if for all PPT adversaries A there is a negligible

function negl such that Pr[MesIndA,Π(κ) = 1] ≤ 1
2 + negl(κ).

On the relationship of private verification and proving possession of a signature in

zero-knowledge. Prior work on using signatures in privacy-preserving contexts [8, 9] allows

for proving possession of a signature in ZK. Their definition implies that no information
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about the signed message is revealed and two instances of proving knowledge of a signature

cannot be linked to each other. Our new definition of private verification is weaker in the

sense that we do not attempt to hide whether the same or different signature is verified at

two different times, but ultimately we fully protect the signed data itself. Unlinkability of

signature showings is generally not needed in this application, as a user can use its data

(e.g., DNA data) in multiple computations and does not need to hide the fact that the

same data was used (which can be determined from the computation itself). Therefore,

we need only to protect information about the signed values and this difference allows for

a faster signature verification process while maintaining the necessary level of security.

When we consequently discuss batch verification of signatures with privacy, we modify

the interface of Batch to match that of PrivVerify.

2.6 Security Models

In this section, we describe the ideal/real simulation paradigm discussed later in Chapter

4. We construct protocols for a secure computation of a functionality in the presence

of malicious adversaries based on the general simulation-based definition [21]. While we

consider the two party case that the participants are (P1, P2), this can be extended to

the multi-party cases. Again for security reasons, we do not want participants to get any

information except their own inputs and results in the computation.

First, we will describe definitions in order to define a secure computation. We call

f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ a functionality, that is for input (x, y) the desired

output f(x, y) is a pair of variables. Two-distribution X and Y is considered computa-

19



tionally indistinguishable, if for every non-uniform polynomial-time algorithm D, there

exists a negligible function negl such that:

∣∣∣Pr[D(X) = 1]− Pr[D(Y ) = 1]
∣∣∣ ≤ negl(κ)

and denote X
c≡ Y .

Next, we define the security of two party computation protocol between P1 and P2

using a simulation paradigm in a standard real-ideal model setting in the presence of

malicious participants. In this simulation, we define an ideal model and define the security

such that the execution of a protocol in the real model can be simulated by the ideal model.

The Ideal Model: In the ideal model, we assume that there is a trusted third party (TP)

and it helps the computation of f . In the execution of protocol, each party holds an input,

denoted x and y and sends it to the TP. An honest party always sends his truthful input

but a malicious party may either send some arbitrary input x′ ∈ {0, 1}|x|, y′ ∈ {0, 1}|y| or

abort depending on their real input to the TP. If the TP received an input (x, y) then we

must answer P1 with f1(x, y) to P2 with f2(x, y). Otherwise, the TP answers to one of

two/both parties ⊥. In this case, it may stop the process. Note, an honest party always

outputs the result received from the TP. On the other hand, a malicious party may output

an arbitrary function of its initial input and the message received from the TP.

The Real Model: In the real model, the real protocol is executed and a malicious party

may follow any probabilistic polynomial-time algorithm. The protocol π is executed to

compute the functionality f .
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In the ideal model, let S = (S1, S2) be a pair of non-uniform probabilistic expected

polynomial-time machines. S1 and S2 are two parties of the protocol. We can say that the

pair is admissible if at least one of i ∈ {1, 2}, Si is honest and follows the ideal execution.

Then the joint execution of f in the ideal model on input (x, y) is denoted IDEALf,S(x, y)

and defined as the result of the protocol executed by S1 and S2.

By using the definition of ideal and real models, we can define security of protocols.

Take the assertion that a secure two-party protocol in the real model follows the ideal

model in which a TP exists. This means that execution of a secure protocol of admissible

pairs in the ideal model could simulate admissible pairs in the real model’s executions.

The execution of the protocol π in the real model should not reveal any information that

is not revealed from the ideal model. Defining the secure computation of a function f is

as follows.

Definition 2.6.1. Let f be a functionality and let π be a two-party protocol that com-

putes f . Protocol π is said to securely compute f in the malicious model if for every

admissible non-uniform probabilistic polynomial-time machines A = (A1,A2) in the real

model, there exists a pair of admissible non-uniform probabilistic polynomial-time ma-

chines S = (S1,S2) in the ideal model such that:

{IDEALf,S(x, y)} c≡ {REALπ,A(x, y)}

Where x, y ∈ {0, 1}∗.
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2.7 Oblivious Transfer

Oblivious transfer (OT) is the key element of Gargled Circuit, which can be used to obtain

a wire label that corresponds to the input of an evaluator. OT is two-party protocol

that at the begins with the sender having an input and at the end of the protocol,

the receiver obtaining some output according to the sender’s input to his input bit. In

this work, we consider 1-out-of-2 OT protocol, that is the sender’s input is two strings

(a0, a1) and the receiver obtaining either a0 or a1 and learning nothing about the other

string. The OT functionality is defined as a function f with two inputs (a0, a1) and

b where f((a0, a1), b) = (λ, ab) and λ is a empty string. This definition posits that

sender outputs nothing, whereas receiver outputs the string according to his input bit

b, correspondingly learning nothing about a¬b. The OT extension allows a number of

OTs to be executed with small additional overhead per OT, after a certain number of

regular and costly OT protocols (depending on the security parameter) have taken place.

There are several publications containing [2, 26, 38, 42] about OT/OT extensions and

they are the cornerstone of our construction.

We use the notation OTm
l to express the m independent oblivious transfers of l-bits

strings. The functionality OTm
l is defined as followed:

Inputs: The sender holds m pairs of l-bit strings, (a0i , a
1
i ) for 1 ≤ i ≤ m. The receiver

holds m bits b = b1 . . . bm.

Outputs: The receiver outputs abii for 1 ≤ i ≤ m and the sender outputs nothing.

We can analyze the security of the protocol by comparing what an adversary can do with
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the protocol and what can be done in the ideal scenario. [32, 34]

Definition 2.7.1. Let f be the function realizing oblivious transfer computation and let

π be a two-party protocol that computes f . Protocol π is said to be a secure oblivious

transfer protocol if for every pair of admissible non-uniform probabilistic polynomial-time

machines A = (A1,A2) for the real model, there exists a pair of admissible non-uniform

probabilistic expected polynomial-time machines S = (S1,S2) for the ideal model. This

holds for every a0i , a
1
i ∈ {0, 1}∗ of the same length and every bi ∈ {0, 1} where i = 1, . . . ,m

for some m ∈ N,

{IDEALf,S((a0i , a
1
i )

m
i=1, b)}

c≡ {REALπ,A((a0i , a
1
i )

m
i=1, b)}

OT is run between two parties: sender S and receiver R. In our case, in addition

to supplying its regular input b, the receiver R also provides auxiliary input known to

S, which depends on b. We denote this auxiliary input as γ(b). R engages in multiple

invocations of OT with different senders S on the same input pair 〈b, γ(b)〉. However,

again considering the presence of malicious participants that posit that senders can be

corrupt and colluding, and the security guarantees of the original OT/OT extension must

hold. Now, we re-define the secure oblivious transfer protocol with the additional input

that correspond to receiver’s input b. This definition is followed below:

Definition 2.7.2. Let f be the function realizing oblivious transfer computation and let

π be a two-party protocol that computes f . The input of the sender is A = (a0i , a
1
i )

m
i=0 and

the input of the receiver is b = b1 . . . bm. Additionally, the extra input γ(b) is accessible
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for both parties. The protocol π could be executed multiple times by one user and the

user can use the outputs of each execution at once. We denote
⋃
, the union of the view

if the protocol is executed multiple times for one receiver’s input and combine the view

of each execution. Let k ∈ N be the number of executions of protocol π. The Protocol

π is said to be a secure oblivious transfer protocol if for every pair of admissible non-

uniform probabilistic polynomial-time machinesAj = (Aj
1,A2) for j = 1, . . . , k for the real

model, there exists a pair of admissible non-uniform probabilistic expected polynomial-

time machines Sj = (Sj
1 ,S2) for j = 1, . . . , k for the ideal model. This accounts for every

Aj =
(
(a0i , a

1
i )

m
i=0

)
j
∈ {0, 1}∗ of the same length for j = 1, . . . , k and every bi ∈ {0, 1}

where i = 1, . . . ,m for some m ∈ N, thereby showing that the union of real views of

multiple execution is computationally indistinguishable with the union of simulated views,

i.e.,

{
⋃

j=1,...,k

IDEALf,Sj
(〈Aj , γ(b)〉, 〈b, γ(b)〉)} c≡ {

⋃

j=1,...,k

REALπ,Aj (〈Aj , γ(b)〉, 〈b, γ(b)〉)}

2.8 Computational Diffie-Hellman Assumptions

Consider a group Zq and its generator g. The Computational Diffie-Hellman assumption

(CDH) states that given (g, ga, gb) with random a, b ∈ Zq, there is no probabilistic poly-

nomial time machine which can compute gab. This means that probabilistic polynomial

time machines have a negligible probability of calculating gab correctly from (g, ga, gb) for

a, b ∈ Zq. In Chapter 4, we rely on the CDH assumption to analyze the security of the

construction.
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Chapter 3

Signature Schemes with Certified

Inputs

In this chapter, we study two type of signatures, the CL signatures [8, 9] and conventional

ElGamal signatures [18]. CL signature is designed for anonymity applications and achieves

both message privacy and unlinkability of multiple uses of the same signature. After

stating the necessary security guarantees of private signature verification, we show that

signature showing in [9] can be simplified to meet the definition of message privacy. Next, a

batch verifier is constructed for the resulting signature. In the case of ElGamal signatures,

we first modify a provably secure ElGamal signature scheme from [40] to achieve private

verification and consequently construct a batch verifier for the resulting algorithm. The

batch verifiers in this work use the small exponents technique [3] to randomize multiple

signatures to ensure that batch verification can succeed only when all individual signatures

are valid.
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3.1 Constructions based on CL Signatures

In this section, we start by demonstrating that the CL signatures protocol satisfies the

conditions of signature privacy and discuss the cost of verifying multiple signatures using

that construction. We consequently proceed with simplifying CL Scheme A’s verification

and construct the corresponding batch verifier.

3.1.1 CL Scheme A

Recall that a signature scheme with privacy is defined as Π = (KeyGen, Sign,PrivVerify).

To use CL Scheme A in this context, we leave KeyGen and Sign unmodified, except that

KeyGen additionally computes h = gu for a random u ∈ Zq and stores it in the public key,

i.e., pk = (q,G,G, g, h, e,X, Y ). PrivVerify is realized as follows:

PrivVerify: The prover holds signature σ = (a, b, c) on private message m ∈ Zq and both

parties hold pk. The prover computes xm = com(m, r) = gmhr using random

r ∈ Zq and sends xm to the verifier. The remaining steps are the same as in the

proof of signature in Scheme A above, except that the ZKPK in step 2 is modified

to: PK{(μ, ρ, γ) : xm = gμhγ ∧ v−1
x = vμ

xyv
ρ
s}.

Note, that the signing algorithm is not modified and in the verification protocol we only

extend the ZKPK statement. Because the original proof of signature protocol was shown

to be a proof of knowledge and the signature was shown to be unforgeable, this modified

scheme satisfies signature unforgeability and also achieves the private verification property

we defined.
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Theorem 3.1.1. CL Scheme A above is a signature scheme with privacy.

Proof. The original proof of signature protocol in [9] was shown to be zero-knowledge,

meaning that no information about the original signature σ or the corresponding message

m is revealed. We only modified the ZKPK statement to prove well-formedness of the

commitment com(m, r) (i.e., the fact that the prover knows m), which also reveals no

information about m. Furthermore, when PrivVerify is executed multiple times using the

same original signature σ, with the verifier learning no additional information.

To facilitate close comparison of different algorithms, we spell out the computation

used in the ZKPK of PrivVerify above. This will allow us to determine the exact number of

operations (such as modulo exponentiations and pairing function evaluations) needed. In

this ZKPK, the prover first chooses random v1, v2, v3 ∈ Zq, computes T1 = gv1hv3 , T2 =

vv1
xyv

v2
s , and sends T1, T2 to the verifier. The verifier chooses a challenge e ∈ Zq at

random and sends it to the prover. The prover responds by sending r1 = v1 + em mod q,

r2 = v2+er′ mod q, and r3 = v3+er mod q. Finally, the verifier accepts if gr1hr3 = T1x
e
m

and vr1
xyv

r2
s = T2v

−e
x .

When certified inputs are used in SMC, we need to evaluate the time of signature

verification and integration into an SMC protocol. Thus, we consider signature issuance

as a one-time cost and concentrate on verification. Then to use this scheme with secure

computation, the cost of (independent) private verification of n signatures is 3n modulo

exponentiations (mod exp) for signature randomization, 2n mod exp for creating com-

mitments (n of which are for messages and are thus short), and 10n mod exp and 5n
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pairings for proving the knowledge of signatures. This gives us 15n mod exp (n of which

are short) and 5n pairings and serves as the baseline for comparison.

3.1.2 Modified CL Scheme A

We next introduce a simplification to CL Scheme A of the previous subsection to allow for

more efficient private verification in the context of SMC. To construct a signature scheme

with privacy Π = (KeyGen, Sign,PrivVerify), we retain KeyGen and Sign algorithms of the

previous subsection (i.e., the public key is augmented with h), but modify the verification

algorithm PrivVerify as follows:

PrivVerify: The prover has private message m ∈ Zq and the corresponding signature

σ = (a, b, c) = (a, ay, ax+mxy); both parties hold pk = (q,G,G, g, h, e,X, Y ).

1. The prover forms a commitment to m as xm = com(m, r) = gmhr using ran-

domly chosen r ∈ Zq and sends xm to the verifier.

2. The prover chooses random r′ ∈ Zq, computes randomized signature σ̃ :=

(a, b, cr
′
) = (a, b, c̃), and communicates it to the verifier.

3. Let vx = e(X, a), vxy = e(X, b), and vs = e(g, c̃). The prover and verifier

execute ZKPK: PK{(μ, ρ, γ) : xm = gμhγ ∧ v−1
x = vμ

xyv
ρ
s}.

4. If the verifier accepts the proof in step 3 and e(a, Y ) = e(g, b), output 1;

otherwise, output 0.

In this verification, part of signature randomization is removed, which means that the

verifier will be able to link two showings of the same signature together. This change,
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however, does not affect the unforgeability property of the scheme. The privacy property

can be stated as follows.

Theorem 3.1.2. Modified CL Scheme A above is a signature scheme with privacy.

Proof. Let A be a PPT adversary attacking new modified CL Scheme A. Recall that A

has the ability to query the signing oracle and obtain signature on messages of its choice.

Once A submits the challenge (m0,m1), it will be given pairs (σ̃
(i)
b , x

(j)
mb), where b is a

random bit, σ̃
(i)
b = (a, ay, ar

′
i(x+mbxy)) = (a, b, c̃(i)) for random r′i ∈ Zq, and x

(j)
mb = gmbhrj

for random rj ∈ Zq, for any combination of i and j and the number of queries polynomial

in κ. In other words, A has access to a signature with different randomizations (using

r′is) and different commitments to mb (using rjs for randomness).

Before we proceed with further analysis, note that the ZKPK in PrivVerify is zero-

knowledge and thus does not reveal information about mb to A. Furthermore, other

signatures on m0 and m1 that A can obtain using its access to the signing oracle doesn’t

contribute additional information (and use unrelated randomness) and thus do not help in

answering the challenge. Therefore what remains is to analyze c̃(i) and x
(j)
mb values. Now

note that each c̃(i) and x
(j)
mb are random elements in G because r′i, rj are chosen uniformly

and independently at random. This means that if we modifyA’s view to replacemb in c̃(i)s

and x
(j)
mbs with a random value, this modified view will be identically distributed to that

of the original A’s view. To expand on this, suppose that we modify the signature scheme

to use a random value z instead of the actual message and the commitment is formed

consistently to use the same z as well. Let’s call the resulting scheme Π′. Clearly, we

have that Pr[MesIndA,Π′(κ) = 1] = 1
2 . Because the views of A are identical in the security
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experiments for Π and Π′, we obtain that |Pr[MesIndA,Π′(κ) = 1] − Pr[MesIndA,Π(κ) =

1]| = 0. This means that A cannot learn any information about mb during verification in

Π and the security property follows.

When we use this scheme for secure computation, we reduce the randomization cost

by 2n mod exp. Thus the cost of private verification of n signatures is 13n mod exp (n

of which are short) and 5n pairings.

3.1.3 Batch Verification of Modified CL Scheme A

The next step is to design batch verification for verifying n signatures. Because for this

application we are primarily interested in verifying multiple signatures issued by the same

signer (e.g., information about one’s genome represented as a large number of individual

values), we present batch verification of signatures issued using the same key. We use

a version of the small exponent test [3] that instructs the verifier to choose security

parameters lb such that the probability of accepting a batch that contains an invalid

signature is at most 2−lb (e.g., lb is set to 60 or 80 in prior work).

Batch: The prover holds signatures σi = (ai, bi, ci) on messages mi ∈ Zq for i = 1, . . . , n,

and both parties hold pk = (q,G,G, g, h, e,X, Y ).

1. The prover forms commitments xmi = com(mi, ri) = gmihri using randomly

chosen ri ∈ Zq for i = 1, . . ., n and sends them to the verifier.

2. The prover chooses random r′i ∈ Zq, computes blinded signatures σ̃i = (ai, bi, c
r′i
i ) =

(ai, bi, c̃i) for i = 1, . . . , n, and sends them to the verifier.
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3. The verifier chooses and sends random δ1, . . . , δn ∈ {0, 1}lb to the prover.

4. The parties compute v̂x = e(X,
∏n

i=1 a
δi
i ), v̂xyi = e(X, bδii ) and v̂si = e(g, c̃i

δi)

for i = 1, . . ., n, and engage in the ZKPK: PK{(μ1, . . . , μn, ρ1, . . . , ρn, γ1, . . . , γn) :

v̂−1
x =

∏n
i=1 v̂

μi
xyi v̂

ρi
si ∧ xm1 = gμ1hγ1 ∧ · · · ∧ xmn = gμnhγn}.

5. If this proof passes and e(
∏n

i=1 a
δi
i , Y ) = e(g,

∏n
i=1 b

δi
i ), the verifier outputs 1;

otherwise, the verifier outputs 0.

Theorem 3.1.3. Batch above is a batch verifier for Modified CL Scheme A.

Proof. First, we show that success of PrivVerify on (pk,mi, σi) for all i ∈ [1, n] implies

that Batch also outputs 1 on pk, (m1, σ1), . . ., (mn, σn). When all PrivVerify output 1, for

each i = 1, . . ., n v−1
x = vmi

xy v
ri
s , which is expanded as

e(X, ai)
−1 = e(X, bi)

mi · e(g, c̃i)ri

Then e(X, aδii )
−1 = e(X, bδii )

mi · e(g, c̃iδi)ri for all i and consequently

n∏

i=1

e(X, aδii )
−1 =

n∏

i=1

e(X, bδii )
mie(g, c̃i

δi)ri

Because
n∏

i=1
e(X, aδii ) = e(X,

n∏
i=1

aδii ), we obtain equivalence with

v̂−1
x =

n∏

i=1

v̂mi
xyi v̂

ri
si

To show the other direction, assume that Batch accepts. We know that c̃i, ai, bi ∈ G,
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thus c̃i = gγi , ai = gsi , bi = gti for some γi, ai, bi ∈ Zq. Then

v̂−1
x =

n∏

i=1

v̂mi
xyi v̂

ri
si =

n∏

i=1

e(X, bδii )
mi · e(g, c̃iδi)ri

=

n∏

i=1

e(X, gtiδi)mi · e(g, gγiδi)ri

=
n∏

i=1

e(g, g)xtiδimi · e(g, g)γiδiri

=
n∏

i=1

e(g, g)δi(xtimi+γiri)

Because

v̂−1
x = e(X,

n∏

i=1

aδii )
−1 = e(gx,

n∏

i=1

gsiδi)−1 =
n∏

i=1

e(g, g)−xsiδi

so

e(g, g)−x
∑

i siδi = e(g, g)
∑

i δi(xtimi+γiri)

and consequently

∑

i

xsiδi +
∑

i

δi(xtimi + γiri) ≡ 0 (mod q)

Let us set βi = x(si + timi) + γiri, then

∑n

i=1
δiβi ≡ 0 (mod q) (3.1.1)

Now suppose that Batch returned output 1, while for at least one i PrivVerify returns 0

on the corresponding input (pk,mi, σi). Without loss of generality, let i = 1. This means

that e(X, a1)
−1 
= e(X, b1)

m1 · e(g, c̃1)r1 and consequently β1 = x(s1 + t1m1) + γ1r1 
= 0.
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Because G and G are cyclic groups of prime order q, β1 has an inverse α1 such that

β1α1 ≡ 1 (mod q).

We re-write equation (3.1.1) as δ1β1 +
∑n

i=2 δiβi ≡ 0 (mod q), and substitute β1 with

α−1
1 to obtain δ1α

−1
1 +

∑n
i=2 δiβi ≡ 0 (mod q). This gives us

δ1 ≡ −α1

∑n

i=2
δiβi (mod q) (3.1.2)

Let E be an event such that PrivVerify(pk,m1, σ1) = 0, but Batch(pk, (m1, σ1), . . ., (mn, σn)) =

1. Also, let vector � = (δ2, . . . , δn) and |�| denote the number of possible values of �.

By equation (3.1.2), when � is fixed, there exists only one value of δ1 that results in event

E happening. In other words, for a fixed � the probability of E given a randomly chosen

δ1 is Pr[E |�′] = 2−lb . Thus, we bound the probability of E for randomly chosen δ1 by

summing over all possible choices of �, i.e., Pr[E] ≤ ∑|�|
i=1(Pr[E |�] · Pr[�]). We obtain

Pr[E] ≤ ∑2lb(n−1)

i=1 (2−lb · 2−lb(n−1)) =
∑2lb(n−1)

i=1 (2−lbn) = 2−lb .

As before, we spell out the ZKPK computation in the Batch protocol: The prover

chooses random vi, v
′
i, v

′′
i ∈ Zq and computes Ti = gvihv

′′
i for i = [1, n] as well as T =

∏n
i=1(v

vi
xyiv

v′i
si ), and sends Tis and T to the verifier. After receiving challenge e ∈ Zq from

the verifier, the prover responds with ui = vi + emi mod q, u′i = v′i + er′i mod q, and

u′′i = v′′i + eri mod q for all i. The verifier accepts if guihu
′′
i = Tix

e
mi

for i = 1, . . . , n and

∏n
i=1(v

ui
xyiv

u′
i

si ) = Tv−e
x .

33



The cost of using this construction for n certified inputs in SMC is n mod exp for

signature randomization, 2n mod exp for creating commitments (n of which are short),

12n+1 mod exp (3n of which are short) and 2n+3 pairings for the ZKPK. This gives us

15n + 1 mod exp (4n of which are short) and 2n + 3 pairings, significantly reducing the

number of pairing operations, which we consider to be the costliest operation, compared

to private verification of individual messages.

Because of the way inputs are entered in the computation for the SMC constructions

considered in Section 3.3, a single commitment to all inputs of a participant is permissible.

Thus, instead of using separate commitments for each mi, we could form a single com-

mitment to n messages com(m1, . . . ,mn, r) = gm1
1 · · · gmn

n hr and modify the ZKPK to use

it instead of the individual commitments. This reduces the cost of forming commitments

to n short and one regular mod exp, and the cost of ZKPK is reduced by 3n− 3 mod exp

(i.e., only one v′′ needs to be formed and we compute only one Ti instead of n of them).

This gives us the total of 11n+ 5 mod exp (4n of which are short) and 2n+ 3 pairings.

3.2 Construction based on ElGamal Signature

In this section, we show how to modify (provably secure) ElGamal signature schemes

to achieve private verification and consequently provide a batch verifier for the resulting

construction.

3.2.1 Modified ElGamal Scheme

The starting point was provably secure ElGamal [40] described in section 2.2.2. To enable

private verification, the idea is to use signatures on commitments to messages instead of on

34



messages themselves. We also modify the setup to work in a group of prime order q, i.e.,

a subgroup of Z∗
p, instead of entire Z∗

p. This simplifies the design and opens up additional

possibilities, without compromising security guarantees. In particular, the small exponent

test used for batch verification is not applicable to groups of non-prime order [3]. The

signature scheme Π = (KeyGen, Sign,PrivVerify) is given as:

KeyGen: On input a security parameter 1κ, choose a group G of large prime order q and

its generator g. Then choose random x, u ∈ Zq and compute y = gx and h = gu.

Set sk = x, pk = (q,G, g, y, h).

Sign: On input message m, secret key sk = x and public key pk = (q,G, g, y, h), choose

random k, r ∈ Zq and compute t = gk, xm = com(m, r) = gmhr, and s ≡

(H(xm||t) − xt)k−1 (mod q). The algorithm outputs σ = (t, s) and xσ = r. The

recipient computes com(m,xσ) and verifies the signature on com(m,xσ).

PrivVerify: The prover has private m and xσ, the corresponding signature σ = (t, s) on

xm, where xm = gmhxσ , and both parties hold pk. The prover gives the verifier

σ and xm and they engage in the following ZKPK: PK{(μ, γ) : xm = gμhγ}. If

this proof passes and the equality gH(xm||t) = ytts holds, the verifier outputs 1;

otherwise, the verifier outputs 0.

Note, that in this scheme the signer chooses g, h and thus will be able to open a commit-

ment com(m, r) to a message different from m (but the users will not be able to do so). If

this poses a security risk, h will need to be produced by an independent party or parties

so that the signer does not know the discrete logarithm of h to the base g.
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This signature scheme remains unforgeable, and we prove it using the standard def-

inition (Definition 2.2.2) with ForgePrivSig experiment that accommodates privacy as

described in section 2.1. The intuition is that the prover now has a signature on a com-

mitment, but has to demonstrate knowledge of the commitment opening (i.e., the message

itself) and the use of groups of prime order only simplifies the analysis in [40].

Theorem 3.2.1. Modified ElGamal signature scheme is existentially unforgeable against

an adaptive chosen-message attack in a random oracle model.

Proof. The ElGamal signature scheme on which we build [40, 41] was shown to be secure

in the random oracle model assuming α-hard prime moduli. This assumption is satisfied

by groups of prime order which the modification uses.

The proof in [41] proceeds in two steps: First, security against a no-message attack

is shown. Second, it is shown that the signer can be simulated with an indistinguishable

distribution, which using the forking lemma implies security against an adaptively chosen-

message attack. If we examine the proof of the first step, we can see that two cases are

considered: t is prime to q mod p− 1 and t is not prime to q mod p− 1, where σ = (t, s).

In this case, the second option does not exist as the computation is mod q, and thus the

rest of the analysis goes through with only one option to consider. The second part of

the proof in [41] can also be simplified as we only need to consider computation modulo

q in the exponent, as opposed to computation modulo qR = p − 1. Thus, it is easier to

show security when the setup assumes groups of prime order.

As far as the modification to replace message m with a commitment to m xm goes,

xm can be treated as m in the proof above. Furthermore, because H is modeled as a
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random oracle, there is flexibility with respect to the values to which its output can be

set. The verification process also requires that the prover proves the knowledge of the

discrete logarithm representation of xm, which means that the prover must know m upon

which xm was formed (because the protocol is a proof of knowledge). This also means

that A will be able to correctly prove (in zero-knowledge) that m included in xm for every

message that A used to query the signing oracle is different from the messages m∗ output

during its forgery, as required by the security definition.

Next, we state the privacy property of modified ElGamal signature.

Theorem 3.2.2. Modified ElGamal scheme is a signature scheme with privacy.

Proof. Let A be a PPT adversary attacking the modified ElGamal signature scheme with

access to the signing oracle. After A submits the challenge (m0,m1), it receives (σb, xmb
),

where xmb
= com(mb, r) for some random private r and σb is an ElGamal signature on

xmb
. Note that in this scheme, that the signature σb and commitment xmb

that A observes

are fixed, meaning that even if A executes multiple instances of PrivVerify. It will still

observe the same values of σb and xmb
and only the execution traces of the ZKPK can

differ. Based on the properties of the underlying building blocks, we know that the ZKPK

is zero-knowledge and the commitment scheme is information-theoretically hiding, which

means that A cannot have a non-negligible advantage in determining any information

about mb (assuming the difficulty of the discrete logarithm problem). In other words, if

we replace mb in the challenge with a randomly chosen message (in which case A cannot
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do better than a random guess), the execution trace of PrivVerify will be indistinguishable

to that of the actual challenge.

Recall that A has access to the signing oracle and can obtain its own signatures on m0

and m1 prior to the challenge phase. We note any such previously issued signatures on m0

and m1 cannot help A to answer the challenge because A observes only a commitment

to mb which information-theoretically hides and new randomness is used for each new

signature.

The ZKPK in this PrivVerify proceeds similar to previous ZK proofs, where the prover

chooses v1, v2 ∈ Zq, computes T = gv1hv2 , and sends T to the verifier. After receiving

the challenge e from the verifier, the prover responds by sending r1 = v1 + em mod q,

r2 = v2 + er mod q, and the verifier accepts if gr1hr2 = xemT . The cost of using this

construction in SMC is 5 mod exp for the ZKPK and 3 for signature verification, giving

us a total of 8 mod exp. (If the user does not store commitment xm, its re-computation

is another 1 regular and 1 short mod exp.)

3.2.2 Batch Verification of Modified ElGamal Signatures

The batch verifier for the modified ElGamal signature is given next. It uses the same

security parameter lb as before.

Batch: The prover holds commitments xmi = com(mi, xσi) = gmihxσi on messages mi ∈

Zq using randomness xσi ∈ Zq and signatures σi = (ti, si) on xmi for i = 1, . . . , n.

Both parties hold pk = (q,G, g, y, h).
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1. The prover sends signatures σi and commitments xmi to the verifier for i =

1, . . . , n.

2. The prover and verifier engage in the following ZKPK: PK{(μ1, . . . , μn, γ1, . . . , γn) :

xm1 = gμ1hγ1 ∧ · · · ∧ xmn = gμnhγn}. If the proof fails, the verifier outputs 0

and aborts.

3. The verifier chooses δ1, . . . , δn ∈ {0, 1}lb at random, computes u1 =
∑n

i=1H(xmi ||ti)δi

and u2 =
∑n

i=1 tiδi, and checks whether gu1 = yu2
∏n

i=1 t
siδi
i . If the check suc-

ceeds, the verifier outputs 1, and 0 otherwise.

Theorem 3.2.3. Batch above is a batch verifier for the modified ElGamal scheme.

Proof. First we show that PrivVerify(pk,m1, σ1) = . . . = PrivVerify(pk, mn, σn) = 1 im-

plying that Batch
(
pk, (m1, σ1), . . . , (mn, σn)

)
= 1. Suppose that the individual signatures

verified, i.e., gH(xmi ||ti) = ytitsii for all i = 1, . . . , n. Then

gu1 = g

n∑

i=1
H(xmi ||ti)δi

=

n∏

i=1

(
gH(xmi ||ti)

)δi

=

n∏

i=1

(
ytitsii

)δi =
n∏

i=1

ytiδi
n∏

i=1

tsiδii

= y

n∑

i=1
tiδi

n∏

i=1

tsiδii = yu2

n∏

i=1

tsiδii

is deduced as desired. To show the other direction, assume that Batch accepts. We know

that each ti was computed as ti = gki for some ki ∈ Zq, thus we can write:

g

n∑

i=1
H(xmi ||ti)δi

= y

n∑

i=1
tiδi

n∏

i=1

tsiδii = g

n∑

i=1
xitiδi

n∏

i=1

gkisiδi = g

n∑

i=1
xitiδi+

n∑

i=1
kisiδi
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It follows that

n∑

i=1

H(xmi ||ti)δi −
n∑

i=1

xitiδi −
n∑

i=1

kisiδi ≡ 0 (mod q) (3.2.1)

Let βi = H(xmi ||ti)− xiti − kisi. Then equation (3.2.1) can be written as
∑n

i=1 δiβi ≡ 0

(mod q), which is the same as equation (3.1.1) in the proof of Theorem 3.1.3. Thus, the

remainder of the proof proceeds in the same way as the proof of Theorem 3.1.3 to obtain

that the probability of Batch successfully completing when at least one signature does not

verify is at most 2−lb .

The ZKPK in Batch above consists of n invocations of the ZKPK in modified ElGa-

mal’s PrivVerify. Thus, the cost of batch verification of n messages is 5n mod exp for the

ZKPK and n + 2 mod exp for signature verification, or 6n + 2 mod exp total. (If the

commitments are to be re-computed, we add n regular and n short mode exp.)

Taking into account the way messages are input into SMC allows us to use a single

commitment to all n messages. For the modified ElGamal, this optimization results in

great savings because this means that we can use a single signature. Thus, the signer

now issues a signature on xm = com(m1, . . . ,mn, r) and xσ still contains the randomness

r. This significantly simplifies the Batch algorithm above as only 1 signature and 1 com-

mitment are communicated in step 1, with step 2 only involving the proof of knowledge

of the discrete logarithm representation of xm. Lastly step 3 consists of verifying a single

signature without the use of δis. This has significant performance improvement implica-

tions, with the cost of step 2 reduced to 2n + 3 mod exp and the overall cost of Batch
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Scheme Single message
Batch with n Batch with 1
commitments commitment

Modified CL Scheme A
11 mod exp and 10n+ 1 regular and 6n+ 5 regular and

5 pairings 3n short mod exp 3n short mod exp
and 2n+ 3 pairings 2n+ 3 pairings

Modified ElGamal 8 mod exp 6n+ 2 mod exp 2n+ 6 mod exp

Table 3.1: Performance of private verification for a single signature and a batch of size n.

reduced to 2n + 6 mod exp (again, if the commitment is to be re-computed, we add 1

regular and n short mod exp).

The performance of new constructions of signature and batch verification can be found

in Table 3.1. It is assumed that commitments are stored pre-computed.

3.3 Using Certified Inputs in Secure Computation

Having described the private verification protocols, we now address the question of inte-

grating them with SMC techniques based on secret sharing in the presence of malicious

adversaries. For that purpose, we have chosen two prominent constructions of Damg̊ard

and Nielsen [15] and SPDZ [16] and provide discourse on their work. These constructions

were chosen based on their attractive performances and distinct security guarantees that

they provide, including cases such as when the computation is performed by k parties.

The former solution tolerates fewer than k/3 corruptions, while the latter can handle

any number of corrupt parties. To compare, our solution uses signatures with privacy to

guarantee that inputs entered into secure computation are identical to those generated or

observed by an authority. However, in general certification can take on different forms.

As far as security properties go, the privacy guarantees of SMC in the presence of

malicious adversaries must hold as in the standard formulation of the problem (see, e.g.,
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[20] for a formal definition). We additionally require the condition that it is not feasible

for a participant to enter (certified) inputs into the computation without possessing a

signature on them. More formally, if a participant supplying input x enters a value

different from what was certified by a certification authority, this behavior will be detected

by the participants with overwhelming probability. In other words, if the computation

completes successfully, there is only a negligible chance that a corrupt input owner can

enter an input that has not be signed by the certification authority.

In what follows, we denote the computational parties as P1, . . ., Pk and assume that

they are connected by pairwise secure channels. These constructions use (k, t)-threshold

linear secret sharing, and we denote a secret shared version of x by [x].

3.3.1 Damg̊ard-Nielsen Scalable and Unconditionally SMC

The construction of Damg̊ard-Nielsen [15] is unconditionally secure (assuming secure

channels) in the presence of at most t < k/3 malicious participants. It was the first

model to achieve unconditional security with communication complexity where the part

that depends on the circuit size is only linear in k. The computation proceeds in two

stages: offline pre-computation that generates random multiplication triples/other ran-

dom values and the online phase which is executed once the inputs become available.

As far as input into the computation (during the online phase) goes, let x denote

party P	’s input into the secure computation for some � (the same will apply to all other

parties holding inputs; participants with input who are not computational parties can be

accommodated as well). To secret-share x among the parties, P	 computes δ = x + r,

where r is a random value chosen during precomputation in such a way that the parties
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hold shares of r [r] and the value of r is known in the clear to P	 (i.e., [r] was opened to

P	). Both the shares [r] and the value r that P	 possesses are guaranteed to be correct in

the presence of malicious participants. Then once P	 computes δ, P	 broadcasts it to all

parties who compute [x] = δ − [r] and use [x] in consecutive computation.

To enable the use of certified inputs, we need to modify the above input sharing

procedure to guarantee that x that P	 uses in computing δ was indeed certified. Then

to ensure that the correct x is input into the computation, the parties could compute a

commitment to r and verify (in zero-knowledge) that δ corresponds to the sum of r and x.

This could be implemented by having the parties broadcast commitments to their shares

of r and interpolating them to compute a commitment to r. In that case, reconstructing

a reliable commitment to r presents the main challenge because any participant can be

malicious. If the input owner P	 is honest, it can verify correctness of commitments from

other parties and discard incorrect transmissions. Dealing with malicious P	, however, is

more difficult because P	 can influence through its share the value of r in the commitment

which the parties reconstruct. In this case, because the validity of P	’s share cannot be

verified, P	 can adjust its share to modify the reconstructed r by the amount it wants to

change x from its certified version, getting around the certification process.

To solve this issue, we chose to proceed with directly entering input x into the com-

putation as opposed to supplying the delta. To accomplish this, we utilize one of the

building blocks from [15] for dealing consistent shares of a value (which is input x in our

case). It has a mechanism for resolving conflicts and upon successful termination provides

a set of parties holding consistent shares. We use this set to form a commitments to shares

of x and interpolate them to reconstruct a commitment to x.
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Because each P	 often enters multiple inputs into the computation, we will associate

inputs x1, . . ., xn with party P	. In what follows, we describe our version with a single

commitment to all xis, allowing for improved performance. The case of a single certified

input x will also follow from that construction. When P	’s inputs are certified by multiple

authorities, this procedure is performed for each public key separately. Because the

solution uses (Pedersen) commitments, we assume that a group setup (G, q) where the

discrete logarithm problem is hard with generators g1, . . ., gn, h is available to the parties.

All signature schemes that we considered in this work already use commitments, and

therefore we will assume that this setup comes from the public key of the corresponding

signature scheme.

We use notation [y]j to denote the jth share of y held by party Pj . As in [15], we

assume that operations on secret shares take place in a field F and secret shares correspond

to the evaluation of a polynomial of degree t on different points. For concreteness, we set

F = Fp for a prime p (q � p). The computation encompasses:

Input: The parties collectively hold [r1], . . ., [rn] and the public key pk of the certification

authority. P	 has private input x1, . . ., xn, com(x1, . . ., xn, r̂), and signatures with privacy

σ1, . . ., σn on x1, . . ., xn, respectively.
1

Output: [x1], . . ., [xn] are available to the parties and their certification has been verified.

1. The parties execute the protocol for P	 to deal consistent shares of x1, . . . , xn and an-

other value α that P	 randomly chooses from Fp (as specified in Figure 7 from [15]).

If P	 is honest, there are at least 2t+1 parties who hold consistent shares of each xi

1Note that in the case of the modified ElGamal signatures, P� will hold a single signature on
com(x1, . . ., xn, r̂).
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and we denote this set by S. (Otherwise, the protocol fails and the parties restart

it as specified in [15].)

2. P	 broadcasts commitments com([x1]j , . . ., [xn]j , [α]j) = g
[x1]j
1 · · · g[xn]j

n h[α]j and each

Pj ∈ S verifies that the jth commitment is consistent with its shares.

3. The parties compute interpolation coefficients βj (in Fp) for each Pj ∈ S and then

compute c′x = com(x′1, . . ., x′n, α′) =
∏

Pj∈S com([x1]j , . . ., [xn]j , αj)
βj . Note that

xi =
∑

Pj∈S βj [xi]j (in Fp) for each i.

4. P	 computes α′ =
∑

Pj∈S βj [α]j (in Zq) and x′i =
∑

Pj∈S βj [ri]j , si = �x′i/p� (over in-

tegers) for i = 1, . . ., n. It creates commitment cs = com(s1, . . ., sn, r̃) = gs11 · · · gsnn hr̃

and broadcasts it to the other parties.

5. P	 broadcasts cx, σ1, . . ., σn and the parties execute Batch(pk, x1, σ1, . . ., xn, σn) with

P	 playing the role of the prover.

6. The parties additionally execute PK{(x1, . . ., xn, x′1, . . ., x′n, s1, . . ., sn, α′, r̂, r̃) : cx =

gx1
1 · · · gxn

n hr̂ ∧ c′x = g
x′
1

1 · · · gx′
n

n hα
′ ∧ cs = gs11 · · · gsnn hr̃ ∧ ∧n

i=1

(
x′i = xi + sip

)} where

P	 plays the role of the prover.

Because different moduli are used for exponents in G and arithmetic in Fp, to guarantee

correctness we need to compensate for reduction modulo p in field operations. To accom-

plish that, we interpolate each xi over integers and thus have that x′i = xi + sip for some

unique integer si, which is the relationship that P	 proves in step 6. This computation

requires that |q| > 2t|p|, which is the case in practice for typical values of q, t, and p (i.e.,
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threshold t is usually low and set to 1–2, |p| is set to accommodate integers of 64 or fewer

bits, and |q| is at least in hundreds to guarantee security).

Lastly, note that step 6 already includes a PK of the discrete logarithm representation

of com(x1, . . ., xn, r̂) and thus the same ZKPK in Batch is no longer executed in step 6.

To show security, we prove that this modification complies with the definition of secure

multi-party computation and it is not feasible for a dishonest participant to supply inputs

different from what was signed by a certification authority.

Theorem 3.3.1. Assuming security of Pedersen commitment, Batch is a batch verifier

for a signature scheme with privacy, and the proof of knowledge is zero-knowledge, our

modification to the Damg̊ard-Nielsen construction above is a t-secure multiparty protocol

for t < k/3.

Proof (Sketch). In the context of our problem, we treat cx, σ1, . . . , σn as public values

accessible to the adversary in both ideal and real models. This may be of particular

importance when the same certification is used in multiple secure function evaluations,

possibly with a different set of participants and may be observable by the adversary. We

consider two cases: 1) P	 is not among the corrupted parties and 2) P	 is among the

corrupted parties.

Case 1. When P	 is not among the corrupt parties, the simulator is unable to obtain

access to P	’s input and simulates the adversarial view on randomly chosen data. In

particular, the simulator uses randomly chosen values in place of x1, . . . , xn in step 1 and

the parties hold shares of these values at the end of step 1. In step 2, the simulator forms

commitments on behalf of P	 consistent with the shares generated in step 1, and each
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party computes c′x in step 3. Step 5 uses true cx, σ1, . . . , σn (recall that no ZKPKs are

executed in that step). To carry out the ZKPK in step 6, the simulator can compute all

values and the commitment in step 4 based on the information it used in earlier steps of

the protocol (i.e., shares [xi]j produced in step 1) and needs to invoke the ZKPK simulator

in step 6 to simulate the verifier view. Once the computation completes, the simulator

sets the shares of the output that the corrupt parties receive as in the original protocol,

so that they re-assemble to the output the parties are entitled to learn.

This simulation achieves indistinguishability because secret shares and commitments

are perfectly hiding and reveal no information about the values they encode (and thus the

adversary is unable to tell that randomly chosen inputs are used to generate shares and

commitments that use the shares), signature verification maintains privacy of the inputs,

and the ZKPK reveals no information about the values used in its statement as well.

Finally, the computation on secret-shared data that follows maintains security guarantees

as well.

Case 2. In this case, the honest parties whose participation the simulator is to simulate

contribute no input. Therefore, the simulator simply follows the protocol the way honest

participants would.

Observe that the same signature (and possibly the same commitment to the signed

message) can be used in multiple secure function evaluations for possibly different func-

tions. To capture this formally, one would need to modify the standard definition to allow

for the participants to evaluate multiple functions with the same observable information
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associated with an input (i.e., signatures and commitments in our case). Here we only

note that our construction remains secure in those circumstances as well. This is because

the modification uses perfectly hiding Pedersen commitments, zero-knowledge proofs, and

signatures that provably protect the messages being signed. If the commitment associ-

ated with a signature does not change across different secure function evaluations, the

steps above (for entering certified inputs into secure computation) can be executed only

once for multiple invocations of secure multi-party computation (with possibly different

functions). Otherwise, the steps above can be executed using fresh randomness for the

commitments, still maintaining privacy of the inputs.

Theorem 3.3.2. If the computation above does not abort, PK is a proof of knowledge,

Batch is unforgeable, and commitments are binding, a dishonest P	 can enter x′i 
= xi for

at least one i ∈ [1, n] with at most negligible probability.

Proof. First of all, because we only consider computation that could successfully complete,

the checks performed in steps 2, 5, and 6 must hold. Second, because of the properties

of the signature scheme, commitment cx has to be on true input x1, . . . , xn with all but

negligible probability to pass signature verification. We also have that ZKPK is secure,

which means that the relationship x′i = xi + sip must hold in step 6 for some integer

si, which means that x′i and xi are equivalent for the purposes of the computation that

follows. Therefore, it remains to show that it is not feasible to tamper with the values

that lead to the computation of x′is.

Next, based on the properties of the original construction, we have that the parties

in S collectively hold consistent shares of the inputs entered by P	. The most crucial
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step here is to demonstrate that transition from shares to commitments does not let P	

modify the values that others view as its inputs in this process. Then if dishonest P	

broadcasts commitments inconsistent with the shares [xi]j of some party Pj ∈ S, P	’s

behavior will be detected. On the other hand, if dishonest Pj ∈ S claims that P	 did not

send a correct commitment, the dispute can be resolved as in the original solution with

dispute resolution by possibly eliminating some parties from S (but the number of honest

parties is guaranteed to be at least 2t+1, which allows for successful dispute resolution).

We obtain that if step 2 successfully completes, the shares must re-assemble to x′i over

integers, which has identical meaning to xi in Fp. Therefore, the computation that follows

proceeds on consistent shares of xis and P	 must possess signatures on xi or xi + zip for

some zi ∈ Z (which have identical meaning when computing in Fp).

3.3.2 SPDZ

The second of our proposed solutions is built on SPDZ [16]. This is an SMC protocol that

achieves security in the presence of any number of malicious parties t < k (and thus offers

stronger security guarantees than the previous solution) and has a fast online phase. This

construction enters private inputs into the computation similar to the way [15] did. For

example, to secret share input xi, the input owner P	 uses a random value ri computed

during the preprocessing phase known only to P	 and the parties jointly holding [ri]. P	

then computes and broadcasts δi = xi−ri (in Fp) and the players compute [xi] = [ri]+δi.

The difference is that now additive secret sharing (i.e., (k−1)-out-of-k) is used instead of

threshold secret sharing, with each secret-shared value y also using a secret-shared MAC

49



γ(y) in the form of α(y+τ), where α is a global secret key and τ is public, to authenticate

its value. Simply put, a secret shared value [y] is represented by each party Pi holding

〈τ, [y]i, [γ(y)]i〉, where [y]1 + . . . + [y]n = y and [γ(y)]1 + . . . + [γ(y)]k = α(y + τ). The

value of α is opened at the end of secure computation and is used to verify consistency of

certain values used during computation, before the parties can learn the result (see [16]

for detail).

Unlike our previous solution considered in section 3.3.1, we could proceed with the

approach where the parties compute the input as xi = ri + δi, reconstruct a commitment

to ri, and use it to verify the relationship between xi and ri. Verification of correct ri used

in the commitment is then deferred to the end of the computation where the value of α

is opened. If the parties determine that the commitment to ri was correctly formed, they

proceed with reconstructing the output. In order for our security analysis to go through,

we require that the field size is sufficiently large so that the probability 1/|Fp| can be

considered to be negligible. This assumption is already present in SPDZ itself, which

states that the field size must be large to have the desired error probability of (1/|Fp|)c

for a small constant c.

The inputs of the procedure remain unchanged and the computation proceeds as

follows:

1. Each Pj (including P	) chooses random α′
j ∈ Zq, sends its shares [r1]j , . . ., [rn]j and

α′
j to P	, and also broadcasts com([r1]j , . . ., [rn]j , α

′
j) = g

[r1]j
1 · · · g[rn]jn hα

′
j .

2. P	 verifies that
∑k

j=1[ri]j = ri (in Fp) for each i = 1, . . ., n and that the received

commitments are consistent with [ri]js and α′
js.
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3. The parties compute c′r = com(r′1, . . ., r′n, α′) =
∏k

j=1 com([r1]j , . . ., [rn]j , α
′
j).

4. Each Pj (including P	) chooses random α′′
j ∈ Zq and broadcasts com([γ(r1)]j , . . .,

[γ(rn)]j , α
′′
j ) = g

[γ(r1)]j
1 · · · g[γ(rn)]jn hα

′′
j .

5. The parties compute c′γ = com(γ′1, . . ., γ′n, α′′) =
∏k

j=1 com([γ(r1)]j , . . ., [γ(rn)]j , α
′′
j ).

6. P	 computes δi = xi − ri (in Fp) and broadcasts δi for i = 1, . . ., n.

7. P	 computes α′ =
∑k

j=1 αj (in Zq) and r′i =
∑k

j=1[ri]j , si = �(r′i + δi − xi)/p�

(over integers) for i = 1, . . ., n. It creates commitment cs = com(s1, . . ., sn, r̃) =

gs11 · · · gsnn hr̃ and broadcasts it to the other parties.

8. P	 broadcasts cx = com(x1, . . ., xn, r̂), σ1, . . ., σn and the parties execute Batch(pk,

x1, σ1, . . ., xn, σn) with P	 playing the role of the prover.

9. The parties additionally execute PK{(x1, . . ., xn, r′1, . . ., r′n, s1, . . ., sn, α′, r̂, r̃) : cx =

gx1
1 · · · gxn

n hr̂ ∧ c′r = g
r′1
1 · · · gr′nn hα

′ ∧ cs = gs11 · · · gsnn hr̃ ∧ ∧n
i=1

(
r′i = xi − δi + sip

)}

where P	 plays the role of the prover.

As before, the ZKPK of x1, . . . , xn, r̂ is redundant and no longer executed in Batch.

Next, once the computation is complete and the value of α is opened (but prior

to reconstructing the output of the computation from the shares), the parties perform

additional computations and checks:

1. Each Pj sends α′′
j and [γ(ri)]j for i = 1, . . . , n to P	.

2. P	 checks that each com([γ(r1)]j , . . ., [γ(rn)]j , α
′′
j ) is consistent with [γ(ri)]js and α′′

j

and aborts otherwise.
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3. P	 computes α′ =
∑k

j=1 αj (in Zq), γ
′
i =

∑k
j=1[γ(ri)]j , ui = �r′i/p�, wi = �γ′i/p�

(over integers) for i = 1, . . ., n. P	 creates commitments cu = com(u1, . . ., un, z) =

gu1
1 · · · gun

n hz, cw = com(w1, . . . , wn, z
′) = gw1

1 · · · gwn
n hz

′
and broadcasts them to

other parties.

4. P	 proves the following statement PK{r′1, . . . , r′n, γ′1, . . . , γ′n, u1, . . . , un, w1, . . ., wn, α
′, α′′, z, z′ :

c′r = g
r′1
1 · · · gr′nn hα

′ ∧ c′γ = g
γ′
1

1 · · · gγ′
n

n hα
′′ ∧ cu = gu1

1 · · · gun
n hz ∧ cw = gw1

1 · · · gwn
n hz

′ ∧
∧n

i=1

(
γ′i = α(r′i − uip+ τi) + wip

)}, where τi was the public value in ri’s MAC.

As described above, we consider the construction that the parties compute the shared

secret input [xi]s using the relation [xi] = [ri] + δi where [ri] is shared random value of

ri. The [ri]s are computed in the preprocessing phase so each party holds [ri] before the

protocol starts. Thus we use the both the commitment to ri and the commitment to xi

in this construction.

As in the previous section, we show that augmenting SPDZ with certified inputs

maintains security of the construction in the presence of malicious players and furthermore

it is not feasible for a dishonest participant to supply inputs different from what the values

that the certification authority signed.

Theorem 3.3.3. Assuming security of Pedersen commitment, Batch is a batch verifier

for a signature scheme with privacy, and the proof of knowledge is zero-knowledge, our

modification to the SPDZ above is a t-secure multiparty protocol.

Proof (Sketch). As before, we need to analyze two cases: when P	 is among the corrupted

parties and when it is not. We start with the latter.
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Case 1: When P	 is not among the corrupt parties, the simulator does not have

access to its inputs and uses randomly chosen inputs to simulate the adversarial view

(while presenting authentic cx and σis).

Unlike using certified inputs with the Damg̊ard-Nielsen construction, this solution

relies on values generated as part of the offline phase. For that reason, the simulator

needs to participate in the offline phase as well. Because we make no modifications

to the offline phase and because the original SPDZ construction has been previously

shown secure, we could call the offline computation as a black box. Also note that offline

computation is only used to produce shares of random values and uses no private inputs.

Thus, the simulator could simply play the roles of the honest parties (without involvement

of the trusted party) and store the shares that they generate. Then because the offline

computation opens randomly generated values ris to P	, the simulator will store them as

well (on behalf of P	).

Once the online computation starts, the simulator will receive shares from the corrupt

parties in step 1, contribute its shares for honest parties stored during the offline compu-

tation, and perform the check in step 2 as honest P	 would using the ris. The simulator

proceeds with the computation as prescribed and in step 6 computes the values of δi using

previously generated ris and any values of its choice in place of xis. It consequently uses

the same values for xis in step 7, while step 8 is performed using authentic commitment

cx and signatures σ1, . . . , σn which encode true inputs. The simulator finishes the first

portion of the online computation by invoking a simulator for the ZKPK in step 9.

Once the main computation on private data completes and the value of α is opened,

the simulator participates in the verification steps. It receives values α′′
j and [γ(ri)]j from
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each corrupt party in step 1 and retrieves the corresponding values chosen on behalf of

honest participants. The simulator performs the same checks as an honest P	 would in

step 2. Finally, the simulator can compute all values in step 3 honestly and has enough

information to execute the ZKPK in step 4 on behalf of P	.

The main difference between the real and simulated views is that the simulator has

no access to the xis and uses randomly generated values in place of them in steps 6–7,

as well as simulates the ZK proof. We note that this inconsistency cannot be detected

by the adversary because it is not feasible to gather information about (true) xis from

the corresponding commitment and signature verification. Similarly, it is not feasible to

gather information about ris from their shares or commitments (to use that information

in combination with δis). Finally, the ZK proofs reveal no information about their private

inputs.

Case 2. Similar to the use of certified inputs with the Damg̊ard-Nielsen construction,

simulating the adversarial view is straightforward when P	 is corrupt. In that case the

honest parties contribute no input and the simulator simply follows the protocol on behalf

of them.

It is also not difficult to see that the security guarantees will hold even if we invoke

multiple secure function evaluations with the same certification. The same reasoning used

in the previous section applies here as well.

Theorem 3.3.4. If the computation above does not abort, PK is a proof of knowledge,

Batch is unforgeable, and commitments are binding, a dishonest P	 can enter x′i 
= xi for
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at least one i ∈ [1, n] with at most negligible probability for a sufficiently large Fp..

Proof. Note that in this setting (where all but one party can be corrupt) detectable mis-

behavior of at least one party leads to computation abort, therefore for the computation

to finish, all checks must succeed. Combined with the fact that the signature scheme

is unforgeable, we obtain that the commitment cx has to be on truthful inputs that P	

possesses. Also, based on the security of the original SPDZ construction, the offline gen-

eration of the shares of ris is correct (which in part is due to post-computation checking

of the corresponding MACs). What remains to show is that ris are correctly converted

to commitments and ris are correctly linked to true inputs xis included in cx (i.e., it is

not feasible to cheat at the time of creating δis).

To convert the shares of ris to commitments, each Pj broadcast a commitment to

its own share of both ris and the MAC on each ri, which are consequently combined

into aggregate commitments c′r and c′γ , respectively. Consider what happens when some

parties cheat in this process. If some Pj 
= P	 are dishonest and provide shares that

do not sum to the ris that P	 expects in step 2, the computation aborts. Note that

it is possible for 2 or more dishonest parties to modify their shares from the originally

distributed shares in such a way that the sum (over Fp) remains correct, but in that case

correctness if not affected. Now suppose that P	 modifies its shares [ri]	 that it uses form

its commitment in step 1 so that
∑m

j=1[ri]j 
= ri (in Fp). This change, if not detected,

would allow P	 to cheat on its inputs by silently modifying the value of ri. We, however,

note that it is not feasible for P	 to make this change without being detected because, in

order to succeed, P	 has to consistently modify the corresponding MAC (and commit to

it in step 5). Because the value of α is information-theoretically protected from P	 (or
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any coalition of parties that includes P	), it has only 1/|Fp| probability of successfully

matching the MAC. This would result in negligible probability for sufficiently large field

Fp. Because of the soundness of the ZK proof performed in step 4 of post-computation,

P	 must have a correct MAC in order for the protocol to finish.

Once a commitment to the ris is formed, the correct link between xis and ris (i.e.,

the fact that δis were computed correctly) is shown through the ZK proof in step 9

that connects commitments cx and c′r. Because of its soundness property, a dishonest

P	 is unable to successfully finish the proof if at least one δi does not correspond to the

difference between xi and ri in Fp. This completes the proof.

3.3.3 Performance Evaluation

Before we conclude this chapter, we provide a brief performance evaluation of the devel-

oped techniques. To summarize, we have implemented the modified ElGamal with private

verification that uses a single commitment to n messages (and thus a single signature).

Additionally, we have implemented SPDZ-based input of certified inputs into SMC us-

ing the same signature. All programs were written in C using OpenSSL’s elliptic curve

implementation with a 224-bit modulus (equivalent to a 2048-bit modulus in the stan-

dard setting) and SHA-256 as the hash function. The experiments were run on an 8-core

2.1GHz machine with a Xeon E5-2620 processor and 64GB of memory running CentOS

using a single thread and the times were averaged over at least 20 executions. The results

are given in Table 3.2.

The table shows the time of Sign, the cumulative computation of Batch (the prover and
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Number of messages n
1 10 102 103 104 105 106

Modified Signing 0.69ms 0.70ms 1.0ms 5.2ms 56.1ms 675ms 8.59s
ElGamal Verification 1.8ms 2.7ms 12.6ms 111ms 1.11s 12.6s 134s
Signatures Communication 140B 392B 2.84KB 27.4KB 274KB 2.67MB 26.7MB

SPDZ-based
Input party

comp. 4.61ms 8.69ms 49.5ms 462ms 4.63s 52.9s N/A
entering of comm. 1.02KB 2.81KB 20.7KB 200KB 1.95MB 19.5MB 195MB
certified

Other party
comp. 5.45ms 8.90ms 43.4ms 393ms 3.92s 45.4s N/A

inputs comm. 232B 304B 1.00KB 8.03KB 78.3KB 781KB 7.63MB

Table 3.2: Performance of batch signatures and using certified inputs in SMC.

verifier work), and communication amount in Batch (which is n+4 group elements, with

a 28-byte group element in this experiments). Recall that the ZKPK of Batch becomes

a part of the ZKPK used during entering certified inputs into SMC and is not executed

separately then. For the SPDZ-based solution of section 3.3.2, we used a setup with k = 3

computational parties and |p| = 32. We report the computation time of input party P	

and all other parties (who do identical work) as well as the amount of communication

sent by P	 and other parties, respectively. A broadcast message is counted multiple times

using direct transmissions to each party and an EC point is counted as 1 group element.

In our construction, P	 does a slightly larger amount of work per input xi than other

parties, which is reflected in Table 3.2 for large n. When, however, n is small, the constant

terms (e.g., batch verification carried out by everyone except P	) noticeably contribute

to the overall time making P	’s time slightly faster. It is important to note that in all

cases, each party’s work is not substantially higher than the work of private signature

verification itself.

An improvement to SPDZ [14] reports for p near 232 in the malicious model (without

certified input) 7.5–134 thousand multiplications per second (for 1 to 50 operations in

parallel) during the online phase. This is about 7.5–130μs per multiplication (including

communication), while our work associated with input certification is about 400μs with
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on the order of hundred bytes of communication per message. This is in not drastically

higher than that of an online multiplication (all of which can be improved with parallel

execution using multiple cores). For many computations, the number of multiplications is

significantly greater than the number of inputs, which means that the cost of computation

will exceed that of entering and verifying inputs in our solution. Furthermore, offline work

per multiplication triple in SPDZ is significantly higher at 28.7ms per triple. All of this

suggests that the performance of our solution is demonstrates promise and is not expected

to encounter bottleneck in secure computation.
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Chapter 4

Oblivious Transfer with Certified

Inputs

Secure multi-party computation is a popularly studied field in recent times due to privacy

being a hot topic issue today. Present research has continued to prevent attacks for

existing security protocols under the two-standard adversarial model accounting for semi-

honest and malicious participants. However, we build beyond the standard model to

study the problem of correct input enforcement in the secure computation in the presence

of malicious participants. Among them, we present the method to enforce the correct

evaluator’s input in SMC system using GC based OT protocol. To do so we utilize a

certification issued by the certified authority (CA) and use it later in secure computation

to ensure that the input is not manipulated in the transfer of information.

In this chapter, we treat the issue of enforcing evaluator’s correct input to the GC

based OT in the presence of malicious participants. Section 4.1 provides solutions to
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enforce correct evaluator’s input depending on the size of input using Naor-Pinkas’ non-

interactive efficient OT and Asharov et al.’s efficient OT extension.

4.1 Solutions

We discuss two possibilities: (i) when the evaluator’s input size is small, i.e., m ≤ κ for

a computational security parameter κ and (ii) when the evaluator’s input is large, i.e.,

m > κ. In the first case, regular OT is preferred, while realizing the second option using

an OT extension results in a faster solution (since OT extensions invoke κ instance of

OT).

Our constructions consist of two protocols: (i) input certification, in which a user

obtains certification of its private input from a trusted signer, and (ii) secure two-party

computation, where authenticity of the evaluator’s private input is to be verified. Because

an evaluator enters its input into secure two-party computation by means of OT (or OT

extension), for the purposes of current discussion it is sufficient to consider only the

OT/OT extension portion of the computation.

In what follows, κ is a symmetric key security parameter, ρ is a statistical security

parameter, and τ = κ+ ρ.

4.1.1 OT-based Input Certification

Our first proposed solution is based on the oblivious transfer of Naor and Pinkas [38],

which we provide for reference in Appendix 1, and uses its setup. The common setup to

all parties consists of a group G of prime order q in which the discrete logarithm problem

is hard, generated by g, and a random element C ∈ G. This setup may be chosen by a
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Scheme 1:

Common setup: Group G of prime order q in which the discrete logarithm problem
is hard, 〈g〉 = G, and C ∈ G.

Input certification: A user U has input y = y1 . . . ym to be certified. The signer CA
holds a key pair (pk, sk) of a secure signature scheme and the verification key pk is
publicly available.

1. For i ∈ [1,m], CA chooses random ki ∈ Zq and sets public keys PKyi
i = gki and

PK¬yi
i = C/PKyi

i .

2. CA concatenates PK0
i for i ∈ [1,m], and stores the resulting string as c.

3. CA signs c as σ(c) = Signsk(c) and returns 〈c, σ(c), (PK1
i )

m
i=1, (ki)

m
i=1〉 to U.

Oblivious transfer: Evaluator E holds y = y1 . . . ym and 〈c =
(PK0

i )
m
i=1, σ(c), (PK1

i )
m
i=1, (ki)

m
i=1〉 received from CA. Garbler G holds κ-bit strings

(�0i , �
1
i ) for i ∈ [1,m].

1. E sends c, σ(c) to G. G verifies the signature using CA’s public key pk and aborts
if verification fails.

2. If G does not abort, it chooses random r ∈ Zq and computes Cr and gr. G
computes (PK0

i )
r and (PK1

i )
r = Cr/(PK0

i )
r for i ∈ [1,m] and sends gr and two

encryptions H((PK0
i )

r, i, 0)⊕ �0i , H((PK1
i )

r, i, 1)⊕ �1i for each i to E.

3. For i ∈ [1,m], E computes H((gr)ki , i, yi) = H((PKyi
i )r, i, yi) and uses it to

recover �yii .

Figure 4.1: OT with Evaluator’s Input Certification.

certification authority CA if it is trusted to properly produce it. Otherwise, the setup

may be jointly produced by the interested parties (and in particular C could be decided

upon in a distributed manner). Our construction is given as Scheme 1.

We will demonstrate security of Scheme 1 by using the simulation paradigm as specified

in definition 2.7.2 and then show that our construction enforces input correctness.

Theorem 4.1.1. Assuming that the CDH problem is hard and that H is modeled as a

random oracle, Scheme 1’s oblivious transfer is secure oblivious transfer with auxiliary
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input according to definition 2.7.2.

Proof. Recall that the CDH problem is defined as the inability of a PPT adversary to

compute gab, given (g, ga, gb) with random a, b ∈ Zq and the appropriate group setup.

The evaluator’s security (G is corrupt). First, we show that no malicious garbler

G in the real model, denoted as AG, can learn information about E’s private input. Per

definition 2.7.2, the OT protocol can be executed multiple times, where E contributes

the same input and corresponds to the same participant, while we denote the (real-world)

garbler participating in the jth protocol is execution by Aj
G for j = 1, . . . , k. In the ideal

model, the simulator SG has access to each Aj
G and the trusted party TP and simulates

Aj
G’s view. We construct SG as follows:

1. Prior to engaging in any simulations, SG obtains certification 〈c, σ(c), (PK1
i )

m
i=1, (ki)

m
i=1〉

of a random m-bit input y from the certification authority.

2. For the jth protocol execution (j = 1, . . . , k), SG invokes Aj
G and executes the steps

below.

3. SG sends c, σ(c) toAj
G and consequently receives fromAj

G gr and encryptions (e0i , e
1
i )

for i = 1, . . . ,m.

4. SG extracts r that matches gr from Aj
G and sets �′0i = H((PK0

i )
r, i, 0) ⊕ e0i , �

′1
i =

H((PK1
i )

r, i, 1)⊕ e1i for i ∈ [1,m].

5. SG sends the pairs (�′0i , �
′1
i ) to the TP, which allows honest E to obtain the result

from the TP.

6. SG outputs whatever Aj
G outputs.
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The only difference between the real and the ideal model executions is the fact that

random input y was used instead of E’s real input. Each Aj
G only observes PK0

1 , . . . , PK0
m

and CA’s signature on these values (note that the collective view of all Aj
Gs is the same

as that of a single Aj
G). Each PK0

i is a random element of Zq, regardless of whether it

was computed as a random value gki or random value C/gki . This provides information-

theoretic hiding of the input and thus the real and simulated views have identical distri-

butions.

The garbler’s security (E is corrupt). To show security of the protocol in the

presence of a malicious evaluator, we need to consider a single AE who engages in different

OT executions with possibly different garblers. We thus consequently build SE with access

to AE and the TP who needs to simulate a protocol execution view for AE .

Recall that H is modeled as a random oracle and let H : {0, 1}∗ → {0, 1}λ for some

λ ≥ m. As in the original Naor-Pinkas OT constructions, we add 0 or 1 as a suffix to H’s

input. This ensures that the result of hashing (PK0
i )

r is different and independent from

the result of hashing (PK1
i )

r, even if PK0
i was maliciously chosen to be equal to PK1

i by

setting it to be
√
C. Similarly, index i is included as a suffix to H’s input to ensure that

the result of hashing a key for index i1 is independent from the resulting of hashing a key

for index i2 
= i1. For general-purpose OT protocols, this was needed to defend against

malicious receivers (evaluators in our case), while in Scheme 1 all key pairs (PK0
1 , PK1

i )

are chosen by certification authorities. Thus, if CAs are trusted to compute these keys

as prescribed by the construction, the solution can be slightly simplified by removing all

suffixes from H’s input. Note that a malicious E is unable to replace a CA-generated

key by its own because the keys come with a CA’s signature. We choose to proceed with
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the variant with stronger security guarantees as specified in Scheme 1, which places fewer

assumptions on CAs.

The simulator SE works as follows:

1. SE invokes AE .

2. When AE engages in the jth invocation of OT, SE receives the message 〈c, σ(c)〉

that AE sends to the garbler. Note that per definition 2.7.2, the auxiliary input

(i.e., certification) does not change across different executions of the OT protocol.

3. If 〈c, σ(c)〉 does not pass verification with the CA’s public key, SE aborts the exe-

cution.

4. SE chooses random r ∈ Zq and selects random λ-bit strings α0
i and α1

i for each

i = 1, . . . ,m. SE sends gr and all (α0
i , α

1
i ) pairs to AE .

5. SE computes (PK1
i )

r = Cr/(PK0
i )

r using the common input C and r he chooses

and monitors AE ’s queries to H. If a query does not contain (PK0
i )

r or (PK1
i )

r,

SE responds at random. Otherwise, if a query contains ((PKb
i )

r, i, b) for some bit

b(= yi), SE queries the TP with index i and input bit yi and stores the received

output as �yii . Next, SE sets H((PKyi
i )r, i, yi) = αyi

i ⊕ �yii and uses this value to

answer AE ’s query.

6. SE outputs whatever AE outputs.

Now, we need to analyze the differences in the real and simulated views. The main

difference comes from the fact that the simulator SE responds with random strings α0
i

and α1
i in step 2 of the OT instead of the values derived from G’s input. However, AE is
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unable to detect the difference because G’s inputs are XORed with the random output of

the hash function and thus the result is also random. The only case when AE would be

able to determine that the protocol is not followed is when it queries both ((PK0
i )

r, i, 0)

and ((PK1
i )

r, i, 1), because in that case SE would not be able to retrieve both �0i and

�1i . This event (i.e., the fact that AE can compute both (PK0
i )

r and (PK1
i )

r), however,

happens with a negligible probability by the CDH assumption. That is, given ga and

gb, we could fix ga = C and gb = gr; then we use AE ’s ability to compute (PK0
i )

r and

(PK1
i )

r to answer the challenge as (PK0
i )

r · (PK1
i )

r = Cr = gab. This requires the ability

to set C, which in our setting is more difficult than in a stand-alone execution of an OT

protocol, but still can be accomplished if the CDH problem is given at the setup time.

To conclude, we obtain that the real and simulated views are indistinguishable when

either G or E is corrupt, as required.

We next proceed with showing that the construction enforces that correct input is

entered by E into the computation.

Theorem 4.1.2. Assuming that the signature scheme used during certification is secure,

the CDH problem is hard, and that H is modeled as a random oracle, any dishonest PPT

E has at most negligible probability of successfully entering incorrect input in Scheme 1,

i.e., learning �¬yii for at least one i ∈ [1,m]

Proof. In Scheme 1, E computes the label �yii for its input yi using encryptions w0
i =

H((PK0
i )

r, i, 0)⊕ �0i and w1
i = H((PK1

i )
r, i, 1)⊕ �1i supplied by G. An honest E computes

its output as �yii = wyi
i ⊕H((gr)ki , i, yi), where PKyi

i = gki comes from the CA and PK¬yi
i
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was set to C/PKyi
i . The goal of a malicious E is to determine �¬yii using its knowledge of

PKyi
i , PK¬yi

i , and ki. We show that the probability that malicious E learns �¬yii for at

least one i ∈ [1,m] is negligible in the security parameter κ.

By contradiction, assume that a malicious E has a non-negligible chance in obtaining

�¬yii for at least one i. Because we assume security (i.e., unforgeability) of the signature

scheme, any malicious E can forge a valid (c, σ(c)) pair with at most a negligible proba-

bility and thus must attack other aspects of the solution. This means that encryptions

w0
i and w1

i are formed using authentic PK0
i and PK1

i set to C/PK0
i .

Next, the adversary could recover information about �¬yii by learning some information

about H((PK¬yi
i )r, i,¬yi). However, because H is modeled as a random oracle, its output

on all inputs is random and the only way to predict the output of H((PK¬yi
i )r, i,¬yi)

is to query H on that input. This gives us that the input must be recovered with a

non-negligible probability in order for the attack to succeed.

Lastly, recovering (PK¬yi
i )r is at least as hard as solving the CDH problem. That is,

given an instance (g, ga, gb) of the CDH problem, set C = ga and gb = gr. If the adversary

who is given gr, wi
0, and w1

i is able to recover (PK¬yi
i )r, we obtain the answer to the CDH

problem by setting gab = Cr = (PK¬yi
i )r(PKyi

i )r. Therefore, recovering (PK¬yi
i )r with

a non-negligible probability contradicts the CDH assumption and we obtain that any

malicious PPT E is unable to successfully enter incorrect input, i.e., recover �¬yii with a

non-negligible probability.
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4.1.2 Improved OT extension

Our starting point is the OT extension of Asharov et al. [1]. It provides security against

malicious participants and has good performance and is given in Appendix 2. We improve

its performance from O((m+ κ)τ2) to O((m+ κ)τ) and consequently use it in our input

certification construction. The improvement stems from the use of a hash function h that

supports homomorphic XOR as in h(x⊕y) = h(x)⊕h(y), which is used in the consistency

check. The improved OT extension is given as Scheme 2.

The OT extension of Asharov et al. [1] is based on the solution of Ishai et al. [26]

who provide an OT extension secure against semi-honest participants. The authors of [1]

extend the construction to make it secure against malicious participants by augmenting

it with a consistency check. For completeness of this work, we provide the OT extension

of [1] in Appendix 2. The consistency check corresponds to steps 7 and 8 of the protocol

and ensures that the receiver uses consistent input in forming uis during the extension.

Our construction (Scheme 2) uses a different consistency check (steps 6 and 7 in Scheme

2), while leaving the remainder of the construction intact.

Because security of the OT extension in [1] in the presence of a malicious receiver

is heavily tied to the details of the consistency check, we re-evaluate security of our

construction against a malicious receiver. To achieve security in the presence of a malicious

sender, it was only required that in the semi-honest construction of Ishai et al. [26] the

input b is padded with a sufficient number of random bits r (as in step 1 of Scheme 2).

In other words, the consistency check does not contribute to security of the construction

in the presence of a malicious sender. Therefore, to show security of Scheme 2 against a
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Scheme 2:

Input: Sender S holds private binary strings (a0i , a
1
i ) for i ∈ [1,m] and receiver R holds

m private bits b = b1 . . . bm.

Output: R obtains ab11 , . . . , abmm .

1. R chooses random r ∈ {0, 1}κ and sets y′ = b||r.
2. S chooses a random string s = s1 . . . sτ ∈ {0, 1}τ .
3. R chooses a pair of random κ-bit strings (k0i , k

1
i ) for i ∈ [1, τ ].

4. S and R perform τ OTs secure against malicious parties where S’s input into the
ith OT is si and R’s input is (k0i , k

1
i ).

5. R computes ui = PRG(k0i )⊕PRG(k1i )⊕ y′ for i ∈ [1, τ ] and sends them to S. For
i ∈ [1, τ ], let ti = PRG(k0i ). Also let T = [t1‖ . . . ‖tτ ] denote the (m+ κ)× τ bit
matrix where the ith columns is ti and ith row is ti.

6. For i ∈ [1, τ ], R computes h0i = h(PRG(k0i )) and h1i = h(PRG(k1i )) and sends
them to S.

7. S computes hy′ = h(u1)⊕ h01 ⊕ h11. S checks that hsii = h(PRG(ksii )) for i ∈ [1, τ ]
and h(ui) = h0i ⊕ h1i ⊕ hy′ for i ∈ [2, τ ]. S aborts if at least one of these checks
fails.

8. For i ∈ [1, τ ], S defines qi = (si · ui)⊕ PRG(ksii ). (Note that qi = (si · y)⊕ ti.)

9. Let Q = [q1‖ . . . ‖qτ ] denote the (m+ κ)× τ bit matrix where the ith columns is
qi and ith row is qi. (Note that qi = (si · y)⊕ ti and qi = (yi · s)⊕ ti.)

10. S computes w0
i = a0i ⊕H(i,qi) and w1

i = a1i ⊕H(i,qi⊕ s) for i ∈ [1,m] and sends
them to R.

11. R computes abii = wbi
i ⊕H(i, ti) for i ∈ [1,m].

Figure 4.2: Improved OT extension.
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malicious sender, we only need to analyze the new consistency check and show that the

information revealed to S in steps 6 and 7 of Scheme 2 (more precisely, h0i and h1i values)

does not allow S to learn information about R’s input.

Theorem 4.1.3. Assuming that h : {0, 1}m+κ → {0, 1}g(κ) is a universal hash function

supporting homomorphic XOR using a suitable choice of function g(·), the OT is secure

against malicious participants, and PRG : {0, 1}τ → {0, 1}m+κ is a pseudo-random gen-

erator, the release of h0i = h(PRG(k0i )) and h1i = h(PRG(k1i )) for i ∈ [1, τ ] in step 6 of

Scheme 2 preserves security of the OT extension in the presence of a malicious sender.

Proof. We show that releasing h0i = h(PRG(k0i )), h
1
i = h(PRG(k1i )) for i ∈ [1, τ ] in steps

6–7 of Scheme 2 reveals no information about R’s input to S. Recall that R’s private input

consists of b = b1 . . . bm and it also generates k0i , k
1
i for i ∈ [1, τ ]. During the protocol

execution, S learns ksii , ui, h0i , and h1i . This knowledge allows S to consequently compute

and learn hsii = PRG(ksii ) and h(y′) = h(ui) ⊕ h0i ⊕ h1i using the XOR homomorphic

property of h (without loss of generality, in our construction consistency of supplied y′ is

checked using u1 with i = 1, but S can compute the same value for all other i). Because

information about b is included in the computation only as part of y′, S could learn

information about b (i) by either recovering PRG(k¬sii ) (or, k¬sii itself) or (ii) by using

h(y′).

In the first case, because we assume security of the oblivious transfer used in step 4,

malicious S can learn information directly about k¬sii with a negligible probability. Oth-

erwise, S could attempt to invert h¬sii to get PRG(k¬sii ) or hash its guesses for PRG(k¬sii )

until the result equals h¬sii . By definition, h is one-way and a polynomial-time adversary
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cannot learn any information about preimage of h from its image. Furthermore, guess-

ing pseudo-random string PRG(k¬sii ) of m + κ bits long cannot be accomplished by a

polynomial-time adversary with a non-negligible probability.

Similarly, retrieving y′ from h(y′) cannot be accomplished by S with a non-negligible

probability for the same reasons. In particular, while b can be guessable by the adversary,

y′ = b||r has κ random bits and cannot be guessed by S with a non-negligible probability.

Theorem 4.1.4. Assuming that h is a universal hash function with the XOR homomor-

phic property, H : {0, 1}∗ → {0, 1}n is modeled as a random oracle, the OT is secure

against malicious participants, and PRG : {0, 1}τ → {0, 1}m+κ is a pseudo-random gen-

erator, Scheme 2 is a secure OT extension in the presence of a malicious receiver.

Proof. Before we proceed with building a simulator, we analyze the cheating options that

a malicious receiver can try. Our goal is to ensure that each ui is formed correctly and

in particular uses the same input y′ with each ui. This is enfoced using ui, h0i , h
1
i for

each i, as well as hy′ computed using i = 1. Let yi = ui ⊕ PRG(k0i ) ⊕ PRG(k1i ) for each

i ∈ [1, τ ]. This value is the “input” implicitly defined by ui and the base OTs (which

may or may not be the same for different i or what R uses as its input to form ui), which

we use in the analysis. Because consistency of inputs is checked against hy′ , we say that

input yi (i ∈ [2, τ ]) is consistent if h(yi) = hy′ (y1 is defined to be consistent with itself).

Because malicious R may use different yis in the computation, we define y′ to be the

most frequently used value. In our consecutive analysis, we will treat the cases when

h(y′) = hy′ and h(y′) 
= hy′ . In what follows, we use ŷ′ to denote the pre-image of hy′
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(where ŷ′ may or may not be equal to y′).

1. R supplies information correctly: If R uses consistent yi and correct h0i , h
1
i to

supply information to S for i ∈ [1, τ ], then the verification passes for every si for

each i ∈ [1, τ ].

2. One of the hashes supplied by R is incorrect: One of the hashes h0i and h1i

provided by R is correct (i.e., computed as h(PRG(k0i )) or h(PRG(k
1
i )), respectively),

while the other one is not and R sets ui to match these values and hy′ . In other

words, recall that S checks whether h(ui) = h0i ⊕ h1i ⊕ hy′ . Let hbi = h(v) 
=

h(PRG(kbi )) be the incorrect hash for some b ∈ {0, 1}, v ∈ {0, 1}m+κ. Then in order

to pass the verification, R needs to use ui to satisfy h(ui ⊕ v ⊕ PRG(k¬bi )) = hy′ or

ui ⊕ v ⊕ PRG(k¬bi ) = ŷ′. This implicitly defines yi to be ŷ′ ⊕ v ⊕ PRG(kbi ).

Then if si = b, the computation is aborted because the value that S computes as

hsii = h(PRG(ksii )) does not match the value hbi supplied by R. When, however,

si = ¬b, S is unable to detect R’s misbehavior and the computation continues.

Because honest S chooses each si with uniform distribution, a cheating R is caught

in this case with probability 1/2 and learns si also with probability 1/2.

Other cheating strategies (when, for instance, R uses inconsistent yi, but does not adjust

h0i , h
1
i values to compensate for the difference) result in aborting the computation without

giving advantage to R and thus are not beneficial for R to use.

A complicating factor in the analysis of the OT extension in [1] was the fact that R’s

cheating strategy for some i ∈ [1, τ ] was not independent of its strategy for another i′ 
= i.

Therefore, computation and adversarial success for different indices i had to be considered
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together. In our OT extension, on the other hand, we notice that adversarial success in

the computation and verification associated with some i ∈ [1, τ ] does not depend on its

cheating strategy used with another i′ 
= i. This, in particular, means that the probability

that a cheating adversary (who does not use consistent values) will pass verification in

rounds i and i′ 
= i is at most 1/4 and we detect its misbehavior with probability at least

3/4.

Before we proceed further, we analyze how R’s misbehavior is treated in the real model.

For the purposes of current discussion, let hy′ = h(y′). Suppose that R cheats during the

computation of some ui in the attempt to learn information about si as described above

and does not get detected. If si = 0 (and consequently b was 1), S sets qi = PRG(ki0) as

desired and qi = ti. If si = 1, S sets qi = ui ⊕ PRG(k1i ) = v ⊕ y′ instead of the desired

PRG(k0i )⊕y′. In both cases, we obtain that qi = (si ·yi)⊕ti. This is identical to the way

qis are formed in the presence of a cheating R in [1] and thus, as in [1], we can represent

qj as qj = (y′j · s) ⊕ tj ⊕ (s ∗ ej), where ∗ denotes the entry-wise multiplication of two

vectors and ej is some (computable) error vector with the Hamming distance at most ρ

from 0 (because R cannot cheat on more than ρ values of i without being detected, as

discussed later). The case when hy′ 
= h(y′) will be analyzed later.

Now we are ready to proceed with building an ideal-world simulator SR for the real-

world malicious receiver AR. The simulator interacts with AR and can query TP’s re-

sponse. We construct simulator SR as follows:

1. SR invokes AR.

2. SR obtains (k0i , k
1
i )

τ
i=1 from AR as AR’s input to the OTs and simulates AR’s view
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using arbitrary input.

3. SR receives ui, h0i , and h1i for each i ∈ [1, τ ] from AR.

4. SR performs verification using (k0i , k
1
i ,u

i, h0i , h
1
i )

τ
i=1 and the chosen secret s the way

an honest S would in step 7 in Scheme 2 in the real model. If one of the verification

checks fails, SR aborts.

5. SR computes the matrices T,Q and Y , the ith columns of which are ti = PRG(k0i ),q
i =

(si · yi)⊕ ti and yi = ui ⊕ PRG(k0i )⊕ PRG(k1i ) for i ∈ [1, τ ].

6. SR determines the most frequent value, y′, among y1, . . . ,yτ and stores its first m

bits as b. It sends b to the TP and receives (ab11 , . . . , abmm ).

7. SR computes ej = (bj · 1)⊕ yj for j ∈ [1,m], where yj is the jth row of Y .

8. SR sets w
bj
j = a

bj
j ⊕H(j, tj ⊕ (s ∗ ej)) and sets w

¬bj
j to a string chosen uniformly at

random. Then SR sends (w0
j , w

1
j )

m
j=1 to AR.

9. SR outputs whatever AR outputs.

We next analyze the difference in the real and simulated views. The differences include

using y′ as AR’s input (which may not be equal to ŷ′ against which inputs are checked)

and setting w
¬bj
j to a random string instead of w

¬bj
j = a¬bjj ⊕H(j,qj ⊕ s).

First, consider the case when ŷ′ 
= y′ (e.g., AR cheats in the computation of u1). This

means that there are < τ/2 − 1 other inputs consistent with ŷ′. This implies that the

probability that the computation does not terminate (after S’s checks in the real model

and SR’s checks in the ideal model) is < 1
2τ/2

, which is negligible in both statistical and

computational security parameters. We state this as a separate claim:
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Claim 4.1.5. The probability that h′y computed in step 7 of Scheme 2 does not equal to

the hash of the most frequent input y′ and this is not detected by S is negligible.

Consequently, because the probability of the event that ŷ′ 
= y′ is negligible, the

simulator can use y′ in place of ŷ′ and obtain indistinguishability of the real and simulated

views.

Second, consider the fact that w
¬bj
j is set to a random string in the simulated view.

Note that in the construction the inputs a0j and a1j are masked with H(j,qj) and H(j,qj⊕

s), respectively. Thus, an adversary who could sufficiently predict s would be able to tell

the simulated view from the real view with a non-negligible probability. It is, however,

infeasible for a computationally limited AR to have sufficient knowledge of s. First,

observe that an adversary who cheats in ρ computations of ui has only a negligible chance

(< 1
2ρ ) of not being detected and learning ρ bits of s. We state this as a separate claim.

Claim 4.1.6. A malicious receiver R who learns ρ or more bits of s is not detected with

a negligible probability.

But even that chance is not enough because there are 2κ options for the remaining κ

bits of s, which AR will not be able to try. In particular, consider AR’s ability to make

specially-crafted queries to H using the fact that it has control over yis that it uses and

thus control over vectors eis. Recall that in the presence of inconsistent inputs qj becomes

equal to (y′j · s)⊕ tj ⊕ (s ∗ ej). Thus, if the adversary could query H on input (j,qj ⊕ s)

for some j, it would be able to recover a
¬bj
j . This is, however, beyond the abilities of a

computationally-limited AR who can only query a negligible fraction of the unknown 2κ

strings. We obtain that the values H(j,qj) and H(j,qj ⊕ s) remain unpredictable and
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random to AR, which results in the real and simulated executions being indistinguishable.

Say that H doesn’t have to be modeled as a random oracle and instead can be strongly

κ-min-entropy correlation robust as in [1]. Provide the definition.

4.1.3 OT extension-based Input Certification

Based on the certification provided by the certification authority, we modify the improved

OT extension to provide input correctness as the new feature of OT extension. In addition,

the certification is reusable for multiple circuits as long as Evaluator’s input has not been

changed (we call it reusable OT extension with input certification). You can find the

details of reusable OT extension with input certification as Scheme 3.

In the following, we prove no information about y is revealed in scheme 3. We also

provide the proof of security of scheme 3 based on simulation paradigm in definition 2.7.2

and show that structure enforces input correctness. At the end, we prove the proposed

certification in scheme 3 is reusable. To prove that no information leakage takes place

during protocol execution, we rely on the following result:

Theorem 4.1.7. Assuming that h is a universal hash function supporting homomor-

phic XOR, H is a strongly κ-min-entropy correlation robust function, PRG : {0, 1}τ →

{0, 1}m+κ is a pseudo-random generator, and the base OT is secure against malicious

participants, Scheme 3’s oblivious transfer is a secure OT extension with auxiliary input

according to definition 2.7.2.

Proof (Sketch). First, consider evaluator E’s security (who plays the role of the receiver)
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Scheme 3:

Common setup: Security parameters κ and τ , universal hash function h with XOR
homomorphic property.

Input certification. U has input y = y1 . . . ym to be certified. CA holds a key pair
(pk, sk) of a secure signature scheme and the verification key pk is publicly available.

1. CA chooses random r ∈ {0, 1}κ and sets y′ = y||r.
2. CA computes c = h(y′), signs c as σ(c) = Signsk(m) and returns 〈c, σ(c), r〉 to U.

OT Extension: E holds y = y1 . . . ym and the corresponding certification 〈c, σ(c), r〉.
G holds κ-bit strings (�0i , �

1
i ) for i ∈ [1,m]. E receives �y11 , . . . , �ymm .

1. E provides c, σ(c) to G. G verifies the signature on c using CA’s pk and aborts if
verification fails.

2–6. E sets y′ = y||r and the parties execute steps 2–6 of OT extension in Scheme 2,
where G plays the role of S and E plays the role of R.

7. For i ∈ [1, τ ], G checks that hsii = h(PRG(ksii )) and h(ui) = h0i ⊕h1i ⊕ c. G aborts
if at least one of these checks fails.

8-11. The parties execute steps 8–11 of OT extension in Scheme 2, where G plays the
role of S, E plays the role of R, azi = �zi and bi = yi for i = [1,m] and z ∈ {0, 1}.

Figure 4.3: OT Extension with Evaluator’s Input Certification.
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in the presence of a malicious garbler G (who plays the role of the sender). When the OT

extension in Scheme 3 is executed only once, the sender receives the same information

about the receiver’s input y in the form of h(y′), plus it learns h0i , h
1
i , k

si
i , and ui as

in Scheme 2. (Recall that in Scheme 2, in an OT extension execution that does not

abort, the observed hy′ 
= h(y′) with a negligible probability and therefore is ignored.

See Claim 4.1.5.) Therefore, the modification preserves security of the OT extension

in Scheme 2 after a single execution. When the construction is invoked multiple times

with the same h(y′), h(y′) is the only value that remains unchanged across the different

executions, with all other values chosen anew uniformly at random or produced as a

function of new (pseudo)random values and are independent of the input y′. This means

that multiple invocations of the OT extension with the same h(y′) does not allow G to

learn information about E’s input and security of the protocol is preserved.

Next, consider garbler G’s security in the presence of a malicious evaluator E. Com-

pared to Scheme 2, this construction limits the way malicious receiver E could misbehave

because h(y′) is guaranteed to be authentic. (Recall that in Scheme 2, malicious R could

cheat during the computation of u1 and supply hy′ 
= h(y′).) This is the only difference

between the OT extension in Scheme 2 and Scheme 3 and security of a single execution of

the OT extension of Scheme 3 follows. When we consider multiple executions of the OT

extensions, they are executed independently using new input of G and new randomness

used by both parties. The only constant information is h(y′) which gives no advantage

to a malicious E.
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Now, we proceed with showing that the construction using certification enforces E to

enter the correct input into the computation.

Theorem 4.1.8. Assuming that the signature scheme used during certification is secure,

H is a strongly κ-min-entropy correlation robust function, the base OTs are secure against

malicious participants, any dishonest PPT E has at most negligible probability of success-

fully entering incorrect input in Scheme 3, i.e., learning �¬yii for at least one i ∈ [1,m].

Proof. In scheme 3, E recovers valid label �yii for its input bit yi using the encryption

wyi
i supplied by G and tj since the valid label could be computed by the equation �yii =

wyi
i ⊕H(i, ti). The goal of malicious E is evaluate �¬yii using the information it has (e.g.,

y′, ti, ti,ui). We show that the probability that the malicious E learns �¬yii for at least one

i ∈ [1,m] is negligible. First of all, since we assumed the security of signature scheme and

it is computed by CA the signature is unforgeable. Thus malicious E provides valid c and

σ(c) to G. Next, recall that �yii = wyi
i ⊕H(j, ti⊕ (s∗ei)) for error vector ei with hamming

distance at most ρ from 0. Suppose that the malicious E are trying to find valid input

s of G as part of an effort to recover �¬yii . However, as shown in the proof of Theorem

4.1.4 malicious E can not recover correct ti ⊕ s because it can recover at most ρ bit of s.

Also we assumed that H is universal hash so it can find valid hash value with negligible

probability. Therefore, any dishonest PPT E can only succeed in entering incorrect input

with negligible probability which concludes the proof.
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Chapter 5

Conclusions

In this Chapter, we conclude our discussion in this dissertation and describe the direction

of future research.

5.1 Signature Scheme with Certified Inputs

Our work showed how to modify CL and ElGamal signature schemes to achieve efficient

private batch verification for use in SMC. This process certified inputs and integrated them

with two secret-sharing-based protocols. The results demonstrate that the techniques are

efficient even in the cases of a large number of inputs, showing that the ideas behind

private verification have potential applications to other signature schemes.

Our future research will focus on exploring ways to implement private verification

ideas for enforcing input correctness with other existing signature schemes. Furthermore,

we plan to study methods to further increase efficiency, so that our research can be applied

to various SMC applications.
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5.2 Oblivious Transfer with Certified Inputs

In our examination of this topic, we have discussed the security enhancements to the tra-

ditional formulation of SMC. This is accomplished by using certificates issued by certified

authorities. It guarantees the input correctness and when combined with secure function

evaluation, strengthens security. We focused on enforcing correctness of the evaluator’s

input in secure two-party computation (Garbled Circuit evaluation) in the presence of

malicious participants. To summarize, we constructed protocol combining the certificate

with the Naor-Pinkas’ efficient OT protocol, allowing us to evaluate the function securely

while enforcing the evaluator’s correct input in case of short input. In case of long input,

our construction consisted of a combination using Asharov et al.’s OT extension protocol

and certificate. In both cases, we showed how to integrate a certificate with a secure com-

putation to ensure that the evaluator’s input is correct, and formally proved the security

of our construction.

Current literature is emerging that has explored the possibility of selective failure

attacks on OT. A selective failure attack is an attack in which the malicious garbler

manipulates the input to know a input bit of the evaluator. This attack makes it possible

for an adversarial garbler to know evaluator’s input bit depending on whether the protocol

is terminated normally or the output indicate failure. In the face of this new challenge,

we will study the possibility of selective failure attack on our construction, and finally

will carry out further research to devise a construction that resilient to selective failure

attacks in the context of evaluator’s input certification.
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Appendix

1 Naor-Pinkas committing OT

We provide committing Naor-Pinkas OT that is committing version of Naor-Pinkas OT

protocol [38] to prevent cheating of sender by providing a commitment on the sender’s

input r.

Initial Setting: Common input consists of prime p, a generator g of subgroup of Z∗
q of

prime order q, a random element C from the group generated by g, h = gu for random

u ∈ Zq and a hash function H.

Inputs: G has �0 and �1, E has σ ∈ {0, 1}

Output: E learns �σ and G learns nothing

1. G chooses r ∈ Zq and computes Cr and gr.

2. E chooses k ∈ Z
∗
q , sets public key PKσ = gk and PK1−σ = C/PKσ, and sends PK0

to G.

3. G computes (PK0)
r and (PK1)

r = Cr/(PK0)
r.

4. G sends gr and two encryptions H((PK0)
r, 0)⊕ �0, H((PK1)

r, 1)⊕ �1 to E.
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5. E computes H((gr)k, σ) = H((PKσ)
r, σ) and uses it to recover �σ. After that E

checks com(r, s) = grhs holds. If not E aborts, otherwise E returns �σ.

2 Asharov et al.’s OT extension [1]

Common setup: Symmetric security parameter κ and statistical security parameter ρ.

Assume that τ = κ+ ρ.

Input: Sender S holds private binary strings (a0i , a
1
i ) for i ∈ [1,m] and receiver R holds

m private bits b = b1 . . . bm.

Output: R receives (ab11 , . . . , abmm ) and S learns nothing.

1. S generates wire labels (a0i , a
1
i ) correspond to R’s input for i = 1, . . . ,m and chooses

a random string s = s1 . . . sτ ∈ {0, 1}τ .

2. R chooses τ pairs of random κ-bit strings (k0i , k
1
i ) for i = 1, . . . , τ .

3. S and R perform τ OTs secure against malicious parties where S’s input into the

ith OT is si and R’s input is (k0i , k
1
i ) for i = 1, . . . , τ .

4. R chooses random r ∈ {0, 1}κ and sets b′ = b||r.

5. R computes ti = PRG(k0i ), u
i = PRG(k0i ) ⊕ PRG(k1i ) ⊕ b′ and sends ui to S for

i = 1, . . . , τ

6. Let T = [t1‖ . . . ‖tτ ] denote the (m+ κ)× τ bit matrix where the i-th columns is ti

and i-th row is ti for i = 1. . . . , τ .
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7. For every pair (i, j) ∈ [1, τ ]2, R computes four values:

h
(0,0)
(i,j) = H(PRG(k0i )⊕ PRG(k0j )) h

(0,1)
(i,j) = H(PRG(k0i )⊕ PRG(k1j ))

h
(1,0)
(i,j) = H(PRG(k1i )⊕ PRG(k0j )) h

(1,1)
(i,j) = H(PRG(k1i )⊕ PRG(k1j ))

and sends them to S.

8. For every pair (i, j) ∈ [1, τ ]2, S checks that h
(si,sj)

(i,j) = H(PRG(ksii ) ⊕ PRG(k
sj
j )),

h
(si,sj)

(i,j) = H(PRG(ksii )⊕ PRG(k
sj
j )⊕ ui ⊕ uj), and ui 
= uj . S aborts if at least one

of these checks fails.

9. For i = 1, . . . , τ , S defines qi = (si · ui)⊕ PRG(ksii ). (Note that qi = (si · b)⊕ ti.)

10. Let Q = [q1‖ . . . ‖qτ ] denote the (m + κ) × τ bit matrix where the i-th columns is

qi and i-th row is qi. (Note that qi = (si · y)⊕ ti and qi = (yi · s)⊕ ti.)

11. S sends (w0
i , w

1
i ) for every i = 1, . . . ,m, where w0

i = a0i ⊕ H(i,qi) and w1
i = a1i ⊕

H(i,qi ⊕ s).

12. For i = 1, . . . ,m, R computes abii = wbi
i ⊕H(i, ti).
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