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Abstract

With the rise of social media, cyberharassment (e.g., cyberbullying and cyber-

hate) has become more prevalent in daily interactions and has thus been identi-

fied as a critical social problem. It often involves inappropriate online behavior

and deliberate cyber threats against individuals, or specific social groups on the

grounds of characteristics such as race, sexual orientation, gender, or religious

affiliation. For instance, the Cyberbullying Research Center reported that 37%

of middle and high school students have been cyberbullied during their life-

time, and this number is expected to further increase as teens continue to have

an increased online presence. In a recent Pew survey [1], roughly four in ten

(i.e., 41%) Americans reported personally experiencing varying degrees of ha-

rassment and bullying online, and Internet users all over world (i.e., 48%) have

also reported having similar experiences [2, 3]. Furthermore, the new waves

of anti-Asian hate [4, 5], mask-related hate [6, 7] and vaccine-related hate [8, 9]

set-off by the COVID-19 pandemic have had a devastating effect on our society

globally.

Although Machine Learning (ML) has immense potential for automatic cy-

berharassment detection, and researchers are increasingly using ML techniques

to address this important social problem, they face key challenges to effectively

address cyberharassment using ML. We identify three pertinent challenges in

xiv



defending against cyberharassment in the era of ML. First, the representation

of cyberharassment has shifted from traditional text-based cyberharassment to

multimodal (i.e., both texts and images) cyberharassment, which poses new

challenges to effective cyberharassment detection. Second, cyberharassment is

a fast-evolving phenomenon, whether fueled by current events or by people

looking for new ways to evade cyberharassment detection systems with tech-

niques such as adversarial examples against ML-based models. Third, in spite

of the recent advances in ML in cyberharassment detection, the robustness of

these ML models in an adversarial setting remains poorly understood.

In this dissertation, we focus on understanding and defending against cyber-

harassment using ML techniques, and studying the robustness of ML models

employed in cyberharassment defense. We are interested in (1) understanding

and defending against visual cyberbullying (i.e. cyberbullying via images), (2)

understanding, detecting and explaining online hateful content, and (3) study-

ing the robustness of ML models employed in cyberharassment defense. In the

area of visual cyberbullying defense, we discover five visual factors of cyber-

bullying in images, and develop a multimodal deep learning model that detects

cyberbullying content in images based on those factors. In online hateful con-

tent understanding, detection and explanation, we carry out an in-depth analy-

sis of COVID-19-related hateful tweets, and discovered new keywords used to

disseminate COVID-19-related hate speech using BERT attention mechanism.

Additionally, we carry out further studies to understand the nature of online

hate, and discover that new waves of online hate, such as hate related to masks

and vaccines witnessed during the COVID-19 pandemic are a core issue limiting

the effectiveness of traditional detectors in practical applications, and propose

a new ML methodology based on attribute-based Zero Shot Learning to effec-

xv



tively address new waves of hateful content. Lastly, in the area of ML model

robustness, we study the robustness of multimodal models against adversarial

attacks using a novel attack algorithm based on decoupling input modalities.
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Chapter 1
Introduction

1.1 Problem Motivation

The social and economic destabilization caused by global events, such as the

COVID-19 pandemic has produced a range of emotions in people, including

fear, anxiety, and even hostility. Notably, instances of cyberharassment are in-

creasingly occurring on social media that target people based on race/ethnicity,

age, social class, immigration status and political ideology. For instance, Asian

Americans are frequent targets of cyberharassment related to COVID-19, with

derogatory terms for the disease, such as “kung flu” and “chop fluey”, shared

more than 10,000 times on Twitter during March alone [10]. Meanwhile, the

phrase “Boomer Remover”, a callous nickname for COVID-19 used to mock

the high mortality rate among older people infected with the disease, has been

shared more than 65,000 times on Twitter [11]. Moreover, a recent report on

online toxicity found a 900% increase in cyberharassment towards China and

Chinese people on Twitter [12], and traffic to sites and posts that target Asians

over COVID-19 has skyrocketed. Cyberharassment thus has emerged as a critical
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cybersecurity issue [2].

The techniques to address cyberharassment should be accompanied with a

strong mitigation strategy so that Internet users can be deterred from posting

such content online. Artificial Intelligence/Machine Learning (AI/ML) is an

effective means to deter the spread of such content by automatically detecting

and removing such content. Additionally, user warnings and word removal

recommendations [13, 14] are also often used to obfuscate or redact such con-

tent. Thus AI/ML provides an effective means to detect cyberharassment con-

tent online, and then obfuscate or redact such content so that exposure to such

content can be prevented. Although ML brings significant benefits to system-

atically detect cyberharassment and also point out for effective control, current

ML models have several limitations that limit its applicability to address cyber-

harassment. The newer representations of cyberharassment consisting of multi-

ple (a.k.a multimodal) modalities, occurrence of new waves of online hate and

lack of robustness studies of ML-based multimodal cyberharassment detection

methods greatly hinder the applicability of ML in cyberharassment detection.

1.2 Research Motivation

Recent reports of cyberharassment related to Asian-Americans [4, 5], mask [6, 7]

and vaccine [8, 9] set-off by the COVID-19 pandemic have had a devastating ef-

fect on our society globally. As our cyberspaces move into the future consisting

of advanced technologies such as Web 3.0 [15], augmented reality [16] and the

Metaverse [17], cyberharassment is bound to take on new, more sinister shapes.

Thus, efforts to effectively counter such new eruptions in cyberharassment must

be taken immediately. Furthermore, the changing technology landscape has not
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only changed the way users access OSNs, but has also changed how perpetra-

tors express online hate. For example, in recent times, more and more online so-

cial networks (OSN) users are using images and videos to propagate hate speech

that was traditionally in the textual format [18, 19]. As our cyberspaces move

into the future consisting of advanced technologies such as Web 3.0 [15], aug-

mented reality [16] and the Metaverse [17], new ways of expressing cyberharass-

ment are bound to take on new, more sinister shapes. As an instance, although

the recent wave of COVID-19-related cyberharassment has engendered studies

from various domains [20, 21, 22, 23], these studies focused on the spread of

COVID-19-related cyberharassment through the medium of textual data, such

as tweets. Memes, a relatively new phenomenon, have emerged as a new form

of expression beyond text. Memes consist of images with superimposed text,

that deliver a particular message when considered in the context of both the

image and text content together [24, 25]. Traditionally used as devices to in-

duce humor, memes have recently taken a more negative turn, by being used

as mediums of spreading online hate speech [26, 24]. For example, memes

that portray Asian people eating dog meat [27], racist memes targeting Chi-

nese eating habits [28], and the morbid meme “Boomer-remover” [29] against

the so-called Boomer generation have been widely circulated. Since the con-

text of memes is framed by both image and text, the hate speech propagated in

memes is significantly different from text-only hate speech. While recent stud-

ies have provided many interesting insights into the nature of hate speech in

textual data during COVID-19 pandemic, the role of memes in the propagation

of hate speech during COVID-19 pandemic has been largely overlooked. Thus,

measures to address such multimodal forms of cyberharassment thus need to be

taken urgently.
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Online cyberharassment is not a static problem. It is highly influenced by

global events and the changing technological landscape. For example, recent

polarizing events such as the COVID-19 pandemic [4], the 2020 presidential

elections [30] and the Black Lives Matter (BLM) [31] protests have shown how

emotions of fear, uncertainty, and anxiety involved in these episodes can set-off

new spikes in unprecedented cyberharassment [32]. As an instance, the new

waves of anti-Asian hate [4, 5], mask-related hate [6, 7] and vaccine-related

hate [8, 9] set-off by the COVID-19 pandemic have had a devastating effect on

our society globally. Thus, efforts to effectively counter such new eruptions in

cyberharassment must be taken immediately.

The enormous eruptions of new waves of cyberharassment and their increas-

ingly complex landscapes have unfortunately not induced a corresponding im-

provement in their detection capability, and existing online hate detection sys-

tems have consistently lagged behind in flagging down new cyberharassment

content. For example, the recent waves of anti-Asian hate [4, 5], mask-related

hate [6, 7] and vaccine-related hate [8, 9] encountered during the COVID-19 pan-

demic could not be sufficiently contained by online hate moderation tools de-

ployed in online social networks (OSNs), as a result of which cyberharassment

against minority communities and other vulnerable groups spread unabated

during this period. While these same detection system seemed quite effective

in controlling traditional cyberharassment such as violent extremism [33, 34]

and trolling [35], they were found struggling to stop the recent, new waves of

cyberharassment [36].

Adversarial attacks have been known to successfully fool AI/ML models [37,

38]. Recently, several unimodal adversarial attacks for deep unimodal models

have been formulated to study their robustness. For example, unimodal ad-
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versarial images [37, 39, 40, 38] and unimodal adversarial text [41] have been

widely studied, which have exposed numerous vulnerabilities in deep unimodal

models. However, these attacks cannot be directly employed to study the ro-

bustness of their deep multimodal counterparts. First, since these attacks can

only be applied to single modalities, they do not affect the fusion mechanism

that is fundamental to Deep Multimodal Models (DMMs). Second, since DMMs

combine several different types of modalities (e.g., image, text, speech, etc.), a

single unimodal attack cannot be used for all those modalities. We note that for-

mulating comprehensive methods to study the robustness of DMMs is of utmost

importance to adopting them in real-world systems.

1.3 Research Objective

In this dissertation, our research goal is to study and address visual cyberbully-

ing using multimodal ML, detect and explain traditional online hate using ML,

as well as understand and detection new waves of online hate, and study the

robustness of multimodal models in adversarial settings. Through the research,

we will answer the following research questions.

• Enable detection of visual cyberbullying in images

- RQ1: What are the visual factors of cyberbullying in images that can

be used to detect this problem?

- RQ2: How can ML be used to detect cyberbullying in images using

those factors?

• Enable detection, explanation and understanding of online hate



6

- RQ3: How can we use ML to enable the detection and explanation of

traditional online hate?

- RQ4: Can we build ML techniques that can detect new waves of on-

line hate?

• Enable robustness studies of multimodal models

- RQ5: Can we study the robustness of multimodal models in adver-

sarial settings?

1.4 Overview of Research Tasks

Onl ine Hate Defense

AI /ML

Cyber har assm ent  Defense

Visual Cyberbullying Detection

Traditional Online Hate Defense

Multimodal Adversar ial Attack

New  Waves of Online Hate Defense

Robust  AI /ML

Cyber bul l yi ng Defense

Figure 1.1: This dissertation consists of three major pieces of work, addressing
cyberharassment by enabling cyberbullying defense using AI/ML, addressing
cyberharassment by enabling online hate defense using AI/ML, and addressing
robustness of AI/ML employed in cyberharassment defense. The black blocks
indicate the components that will be contributed by this dissertation
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To achieve the research goal, we propose to support the understanding and

defense of cyberharassment using AI/ML techniques, and support the study

of robustness of AI/ML techniques employed in cyberharassment defense, as

shown in Figure 1.1.

1.5 Task1: Enable detection of visual cyberbullying

in images (RQ1 and RQ2)

We first collect a large dataset of cyberbullying images labeled by online partici-

pants. We analyze the cyberbullying images in our dataset against five state-

of-the-art offensive image detectors, Google Cloud Vision API, Yahoo Open

NSFW [42], Clarifai NSFW, DeepAI Content Moderation API [43], and Amazon

Rekognition 1. We find that 39.32% of the cyberbullying samples can circum-

vent all of these existing detectors. Then, we study the cyberbullying images

in our dataset to determine the visual factors that are associated with such im-

ages. Our study shows that cyberbullying in images is with highly contextual

nature unlike traditional offensive image content (e.g., violence and nudity).

We find that cyberbullying in images can be characterized by five important,

high-level contextual visual factors: body-pose, facial emotion, object, gesture, and

social factors. We then measure four classifier models (baseline, factors-only, fine-

tuned pre-trained, and multimodal classifier models) to identify cyberbullying in

images based on deep-learning techniques that use visual cyberbullying factors

outlined by our study. Based on the identified factors, the best classifier model

1The offensive image detectors have been selected based on their ability to detect images
with certain features, such as violence, profanity, and hate symbols, which have been found in
cyberbullying images.



8

(multimodal classifier model) can achieve a detection accuracy of 93.36% in clas-

sifying cyberbullying images.

1.6 Task2: Enable detection, explanation and under-

standing of online hate (RQ3 and RQ4)

We address Traditional online hate, wherein we propose a novel approach to

discover new keywords linked to COVID-19-related hate speech and the word

associations to effectively implement its control. We collect a new dataset (Boomer-

hate dataset) of tweets targeting old people and supplement this dataset with an

existing COVID-19 dataset (Asian-hate dataset) targeting Asian American com-

munity [21]. We then train a BERT (Bidirectional Encoder Representations from

Transformers) model [44] to classify tweets as Hate Vs. Non-hate. Based on

the analysis of BERT attention mechanism, a transformer model [45] based on

attention, we develop an approach to discover new keywords (186 keywords

targeting the Asian community and 100 keywords targeting older people) re-

lated to COVID-19. For implementing effective control, we develop a strategy

based on the attention attributed to these keywords by other words in a tweet,

so that all sensitive words in a tweet can be censored or reconsidered. We then

undertake an exploratory analysis of COVID-19-related hate speech and find

that most of such high-impact, long distance attentions are learned in the earlier

layers of the BERT model (layers 2 to 7 for Asian-hate dataset) or later layers

(layers 10 and 11 for Boomer-hate dataset) depending on the underlying data

distribution. Our study also makes an important finding that in the case of

Boomer-hate dataset, the BERT model makes predictions based on the associa-
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tion of hate keywords and targeted groups or individuals, a finding that is inline

with existing hate-speech research. Informed by the previous research results,

as part of future work I plan to study New waves of online hate defense, and

Multimodal Adversarial Attack.

We address the problem of new waves of online hate, by studying it, under-

standing its challenges, and formulating automatic systems that can detect it.

Our intuition, informed by previous studies [5, 7, 8] and reports [46, 2], is that

new waves of online hate are characterized by rapidly changed contexts. We

first report a systematic study on the phenomenon of new online hate waves, by

collecting a large dataset of 3312 hateful users and their 4042454 tweets on Twit-

ter, and studying their tweeting behavior before and after the COVID-19 pan-

demic. We find that before the pandemic, the tweeting behavior of these hateful

users were related to traditional hate contexts, which completely changed into

online hate related to new contexts post pandemic. Next, we conducted a large

scale study of the effectiveness of state-of-the-art, existing systems of hateful

content detection such as Perspective API [47], Google Cloud Vision API [48]

and MMBT [49] on datasets of COVID-19-related 1,679 tweets, and found that

these detectors are severely limited (average F1 score of 0.31) against new waves

of hate tweets. We then identify key challenges to the timely and effective inter-

vention of new waves of online hate: (i) learn knowledge from traditional hate

contexts and apply learned knowledge to new contexts, (ii) training with just a

few samples of new hate contexts.

We introduce our framework, Attribute-based Zero-shot Learning (AZL),

that can detect new waves of online hate by addressing each of those challenges.

AZL uses an attribute-based learning methodology [50] to transfer important

knowledge about traditional hate contexts to the detection of new hate contexts,
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and uses Zero-shot learning [51] to effectively classify new hateful contexts with

just a few training samples. We evaluate AZL from several different perspec-

tives, and find that our framework achieves state-of-the-art-detection average

F1 score of 0.72 on new hate contexts, such as Asian (76.52%), mask (67.47%),

vaccine (70.73%) and boomer (72.34%) related hate.

1.7 Task3: Enable robustness studies of multimodal

models (RQ5)

In this task, we first highlight how multimodal adversarial attacks based on de-

coupling the input modalities in DMMs can easily compromise these models.

Then, we introduce a framework called MUROAN to study the robustness of

DMMs based on decoupling of modalities, thereby revealing vulnerabilities in

the fusion mechanism of existing DMMs. MUROAN uses a unified view of

DMMs to expose its key vulnerability. Then, we introduce a new type of ad-

versarial attack called decoupling attack in MUROAN, wherein the objective

of its attack algorithm is to decouple the input modalities of multimodal mod-

els to induce a misclassification. As depicted in Figure 6.1, a decoupling of the

image and text modalities through occlusion of a few datapoints in the image in-

duces a misclassification. In addition, we leverage the MUROAN framework to

measure several state-of-the-art DMMs. We find that the seemingly straightfor-

ward decoupling attack of MUROAN is in fact highly effective in compromising

DMMs.



Chapter 2
Background and Related Work

2.1 Researches on Cyberharassment Detection

2.1.1 Cyberbullying Detection

Cyberbullying is a critical social problem that has been actively researched, es-

pecially by the psychology, social, and behavioral science communities. Re-

cently, cyberbullying research has also attracted attention from the computer

science community, and there has been a significant amount of research dedi-

cated to studying the detection of cyberbullying, with an emphasis on textual

cyberbullying. In this work, we focus on the understanding and detection of

cyberbullying in images.

There has been significant research in understanding the psychological and

social aspects of cyberbullying. The study in [52] discusses early work in cy-

berbullying, including the nature of cyberbullying in online and social media

environments. The study in [53] reveals that cyberbullying in images is espe-

cially harmful among the other types of cyberbullying discussed in this work.

Methods introduced in [54] approach the problem of cyberbullying differently,
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by using bystander intervention strategies in social media networks. Many

works discuss the definition of cyberbullying, although there is no universally

accepted definition of cyberbullying currently [55, 56]. For example, a study [57]

defines cyberbullying as “an aggressive, intentional act carried out by a group or

individual, using electronic forms of contact, repeatedly and over time against

a victim who can not easily defend him of herself”. However, the concept of

repetition is questioned by many studies [55, 56, 58] in the field of cyberbully-

ing. A major limitation of these studies is that they do not discuss any practical

methods to defend against cyberbullying online.

Several automatic methods of cyberbullying defense that target text-based

cyberbullying have emerged [59, 60, 61]. The work in [59] presents a machine

learning approach to detect cyberbullying using textual content such as com-

ments and social media post descriptions. Another automatic approach to de-

tect textual cyberbullying is presented in [62], in which the authors present topic

sensitive binary classifiers to detect cyberbullying in YouTube comments. The

discussion of the language factors involved in textual cyberbullying and contex-

tual factors of cyberbullying events in social media is presented in [63]. A recent

study [64] elaborates on an approach that incorporates the use of hashtags, emo-

tions and spatio-temporal features to detect textual cyberbullying. Another re-

cent study [65] explores the enhancement of word embedding of cyberbullying

texts, by using an embedding enhanced bag-of-words features set. Other works

have also suggested the use of meta data to improve the prediction of textual

cyberbullying [66, 67, 68]. However, these studies only partially addresses the

problem of cyberbullying, as cyberbullying involves several different forms of

media, such as images, in addition to text.
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2.1.2 Online Hate Speech Understanding, Explanation and De-

tection

Several recent studies have emerged in the area of hate speech detection. In [69],

the authors used Reddit, which is a community with a platform that shares in-

formation in the form of posts with the ability to be up voted or down voted

based on the reader’s opinion towards it. They used a public data set from sub-

reddit /r/TD to collect 16,349,287 comments about the president and the pres-

idency. They utilized TF-IDF to identify distinct hate words towards Donald

Trump and used Wikipedia articles to identify nicknames for Trump. They con-

cluded with findings about how humans used tools like bots to keep themselves

entertained, but did not focus on pinpointing removing those bots, resulting in

minimal research on preventing internet trolling.

The authors of [70] used Gab (gab.com) to find out the diffusion of hate

speech. For the dataset, they used a Lexicon based filter to identify racial slurs,

and chose non-ambiguous words to increase accuracy. They also utilized De-

Groot’s model of information diffusion to identify hateful users. They focused

on the diffusion characteristics of hateful users, but not how to pinpoint and

remove hateful comments in general. In [71], the authors used a large dataset

from Reddit and Gab and narrowed it down to hate speech by using human

intervention, which is inefficient because it takes a long time to label so many

tweets. It is also unreliable because there are some tweets that are incorrectly

labeled. They used a survey and crowdsourcing to label all the tweets, which is

not reliable, takes too much time, and adds cost. They created a dataset of hate

speech and used programs like Seq2Seq and VAE. These are unreliable because

it only uses an input and output tags, and does not go through multiple veri-
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fications. VAE may be unreliable for such tasks because sequences are discreet

(unlike continuous image signals), and does not pinpoint certain hate words.

A recent work [21] studies the spread of hate and counter-hate during the

COVID-19 pandemic. The authors collect a dataset of 2,400 tweets and train a

text classifier to identify hate and counterhate tweets. The authors also find that

hateful users in Twitter were less engaged in anti-Asian hate speech prior to

their first anti-Asian tweet, following which such tweets turned to being more

aggressive and hateful. However, a proportional rise in counterhate tweets was

not observed by the authors.

Using attention mechanisms in natural language processing tasks such as

classification, next sentence prediction, question answering and neural machine

translation (NMT) were first introduced by [72] and [73], and most implemen-

tations are based on the models introduced in [74]. The use of attention mecha-

nisms were broadly adapted to various NLP tasks, often achieving then state-of-

the-art performances in tasks such as reading comprehension [75] and natural

language inference [76]. Multi-headed attention was first introduced by [45] for

NMT and English constituency parsing and termed the model as “transformer”,

and further adopted for transfer learning [44], language modeling [77, 78], and

semantic role labeling [79].

In this work, we focus on the BERT model [44], a large transformer [45] net-

work. Transformers consist of multiple layers where each layer contains mul-

tiple attention heads. Each attention head takes as input a sequence of vectors

h = [h1, ..., hn] corresponding to the n tokens of the input sentence. Each vector

hi is transformed into query, key, and value vectors qi, ki, vi through separate lin-

ear transformations. The head computes attention weights α between all pairs

of words as softmax-normalized dot products between the query and key vec-
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tors. The output o of the attention head is a weighted sum of the value vectors,

and αij represents a dot product between the query and key vectors, expressed

in Equation 4.1 below.

αij =
exp(qT

i k j)

∑n
l=1 exp(qT

i kl)
oi =

n

∑
j=1

αijvj (2.1)

The attention weights can be interpreted as controlling the importance of

every other token when learning the next representation of the current token.

BERT is trained using the “masked language modeling” strategy over bil-

lions of data samples, and more details about the training process can be found

in [44]. An important detail about BERT training is that a special token [CLS] is

added to the beginning of the text and another token [SEP] is added to the end,

so that multiple sequence inputs can be trained together.

2.2 Researches on Robustness of ML Models

2.2.1 Multimodal Learning

The renewed interest in multimodal learning can be attributed to more powerful

models [44, 45] that can learn strong fusion of input modalities and the avail-

ability of several multimodal datasets [80, 24]. These models and datasets have

resulted in DMMs achieving impressive results on standard benchmarks. Much

of the DMMs that have achieved impressive performances can be categorized

under the following categories.

Traditional Fusion-based Models. Several DMMs have attempted to ad-

dress how to effectively combine multimodal information [81]. Feature con-

catenation is one of the most preferred fusion techniques in these models, while
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some of the models use other feature fusion techniques such as element-wise

product. Since these models showed impressive performances on several mul-

timodal benchmarks, they are considered strong baselines for many multimodal

tasks.

Transformer-based Fusion Models. Recently, the BERT model [44], a type

of transformer [45], has been shown to achieve state-of-the-art performance [49,

82] on multimodal benchmarks, by learning the interaction between the in-

put modalities via self-attention over many different layers. For example the

MMBT [49] model fuses image embeddings in the form of pooled filter maps

from a ResNet model and word tokens as two segments of BERT [44]. As shown

by these works, the transformer based DMMs outperform their unimodal coun-

terparts in multimodal tasks by quite a large margin.

2.2.2 Unimodal Adversarial Attacks

The discovery of unimodal adversarial attacks has engendered active research

in the safety and robustness of unimodal deep learning models. In this section,

we discuss important unimodal adversarial attacks on images and text.

Unimodal Adversarial Image. A large body of adversarial attacks have

been introduced in recent times that mainly focus towards robustness analysis

of computer vision models. For example, several works, such as fast-gradient

attacks [83], optimization-based methods [37, 38], and other such methods [40],

have been proposed successfully. Furthermore, alarmingly critical real-world

attacks such as adversarial patches [84] have been introduced recently, which

cast serious questions on the safety of these vision models.

Unimodal Adversarial Text. Recently, some works have focused on uni-
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modal adversarial text to study robustness of Natural Language Processing

(NLP) models. While earlier works [85] effectively employed character level

perturbations to perform adversarial attacks, more recent works have found

word replacement strategies [41] to be largely effective in compromising these

models



Chapter 3
Understanding and Detecting

Cyberbullying in Images

Today’s Internet users have fully embraced the Internet for socializing and in-

teracting with each other. It has been reported that 92% of users go online

daily [86]. Particularly, according to recent findings from the Pew Research Cen-

ter [87], 95% of adolescents surveyed (ages 12-17) spend time online, reflecting

a high degree of user engagement, and 74% of them are “mobile Internet users”

who access the Internet on cell phones, tablets, and other mobile devices at least

occasionally.

The rise of social networks in the digital domain has led to new definitions

of friendships, relationships, and social communications. However, one of the

biggest issues of social networks is their inherent potential to engender cyber-

bullying, which has been widely recognized as a serious social problem. Multi-

ple studies have suggested that cyberbullying can have severe negative impact

on an individual’s health, which include deep emotional trauma, psychological

and psychosomatic disorders [88, 89]. According to a National Crime Preven-
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lmao.. & yur r  r eal l  funny 
sk inny ass bi tchh  &.. hm.. 
that isn't r eal ly much of an 
insult now  is i t? what i f  i  

was f at? lol u  suck  at talkn 
shi t :] later  whi te t r ash 

skank  :] ur  super  ugly nd 
that guy u l ike r eal ly isnt 
gonna come back around 

for  u. 

(a) (b)

Figure 3.1: Cyberbullying in text v.s. cyberbullying in an image. (a) shows
a tweet with demeaning words and phrases. (b) shows an image of a person
showing a ‘loser’ hand gesture.

tion Council report, more than 40% of teenagers in U.S. have reported being cy-

berbullied [90]. Dooley et al. define cyberbullying as “Bullying via the Internet

or mobile phone” [91]. Cyberbullying encompasses all acts that are aggressive,

intentionally conducted by either a group or an individual in cyberspace using

information and communication technologies (e.g. e-mail, text messages, chat

rooms and social networks) repeatedly or over time against victims who cannot

easily defend themselves [92].

Techniques used by perpetrators in cyberbullying change rapidly. For exam-

ple, multimedia devices (such as mobile phones, tablets, and laptops) have now

evolved from basic, single-purpose tools to high-tech multi-media devices that

are fully integrated into the daily lives of millions of users. These devices intro-

duce several new dimensions to usage of Internet services. For example, they

provide on-board cameras to capture and instantly share images online. There-

fore, perpetrators can use the camera-capacity of their multi-media devices to

bully others through sending and distributing harmful pictures or videos to
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their victims via these devices. Furthermore, the current trend for social net-

working websites (e.g. Facebook [93], Instagram [94] and Twitter [95]) is to

provide users with options to freely share their images. Indeed, the popular-

ity of image-sharing has seen a significant increase, thereby enabling numerous

social networking websites, such as Instagram, Flickr [96] and Pinterest [97], to

exclusively focus on image-sharing. These trends have introduced a shift from

traditional text-based cyberbullying content like messages and tweets, to cy-

berbullying content that makes use of visual items to perpetrate cyberbullying

behaviours among victims. Empirical evidence demonstrates that the cyberbul-

lying in images may cause more distress for victims than do other forms of cy-

berbullying [53, 98]. This enhanced form of cyberbullying perpetrated through

images now affects one of every two cyberbullying victims [99].

Figure 3.1 presents two examples of cyberbullying in text and in an im-

age, respectively. Figure 3.1 (a) depicts a cyberbullying tweet [63] with the

cyberbullying-related words shown in bold (such as ‘a**’, ‘fat’, and ‘ugly’). Fig-

ure 3.1 (b) depicts an image, in which a person is showing a demeaning hand

sign (a ‘loser’ hand gesture) to bully his victim. We note that over the years,

text-based cyberbullying detection has been a topic of in-depth study by re-

searchers [100, 60, 62], and some state-of-the-art detectors for text-based offen-

sive1 content detection have been developed that are sufficiently effective in

combating text-based cyberbullying. For example, on running the text in Fig-

ure 3.1 (a) against three state-of-the-art offensive text detectors namely Google

Perspective API [47], Amazon Comprehend [101], and IBM Toxic Comment

Classifier [102], all of them are able to detect this text as offensive with very high

1We have used the term “offensive” here to mean harassing, harmful, toxic, or hateful con-
tent.
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confidence (Google Perspective API as 92.84% likely to be offensive; Amazon

Comprehend as negative sentiment with score of 0.97; and IBM Toxic Comment

Classifier as offensive with score of 0.99). However, such kind of research with

respect to cyberbullying in images has been largely missed, and the state-of-the-

art offensive image detectors, which are very accurate on the detection of tra-

ditional offensive image content, such as nudity and violence, also do not have

the capability to effectively detect cyberbullying in images. For example, on

running the image in Figure 3.1 (b) through three state-of-the-art offensive im-

age detectors namely, Google Cloud Vision API [48], Amazon Rekognition [103],

and Clarifai NSFW [104], none of them could detect this image as offensive (de-

tected by Google Cloud Vision API as “Unlikley” to cause any harm; Amazon

Rekognition as no need of moderation; and Clarifai NSFW as safe for work with

score of 0.67). Therefore, there is a crucial need for research that can shed more

light on the phenomenon of cyberbullying in images.

The social and psychological aspects of cyberbullying in text have been the

subject of intense study [105, 106, 107]. These studies have revealed that the cy-

berbullying in text is characterized by certain factors, such as harassing words

or phrases, name-calling, and humiliating insults. However, these studies have

mainly focused on its textual factors used by the perpetrators of cyberbullying

with text, while largely overlooking the study of visual factors associated with

cyberbullying in visual media such as images. It is a challenging task to identify

the factors of cyberbullying content in images due to two reasons. First, cyber-

bullying in images is highly contextual and often subtle, depending on the com-

plex interactions of several aspects of an image. Studying its factors therefore

is not as straightforward as cyberbullying in text. Second, several clear defini-

tions of cyberbullying in text are available (such as [91, 92]) and used to identify
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its factors, whereas the definition of cyberbullying in images is not established,

which makes the study of its factors much harder. To examine cyberbullying in

images, new ways to understand its personal and situational factors should be

studied.

Based on above observations and studies, we believe it is timely and impor-

tant to systematically investigate cyberbullying in images and understand its

factors, based on which automatic detection approaches can be formulated. In

this chapter, we first collect a large dataset of cyberbullying images labeled by

online participants. We analyze the cyberbullying images in our dataset against

five state-of-the-art offensive image detectors, Google Cloud Vision API, Yahoo

Open NSFW [42], Clarifai NSFW, DeepAI Content Moderation API [43], and

Amazon Rekognition 2. We find that 39.32% of the cyberbullying samples can

circumvent all of these existing detectors. Then, we study the cyberbullying im-

ages in our dataset to determine the visual factors that are associated with such

images. Our study shows that cyberbullying in images is with highly contextual

nature unlike traditional offensive image content (e.g., violence and nudity). We

find that cyberbullying in images can be characterized by five important, high-

level contextual visual factors: body-pose, facial emotion, object, gesture, and social

factors. We then measure four classifier models (baseline, factors-only, fine-tuned

pre-trained, and multimodal classifier models) to identify cyberbullying in im-

ages based on deep-learning techniques that use visual cyberbullying factors

outlined by our study. Based on the identified factors, the best classifier model

(multimodal classifier model) can achieve a detection accuracy of 93.36% in clas-

sifying cyberbullying images. Our findings about the factors of cyberbullying in

2The offensive image detectors have been selected based on their ability to detect images
with certain features, such as violence, profanity, and hate symbols, which have been found in
cyberbullying images.
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images and the best suited classifier model for their detection can provide use-

ful insights for existing offensive image content detection systems to integrate

the detection capability of cyberbullying in images.

The key contributions of this chapter are as follows:

• New Dataset of Cyberbullying Images. We present a novel methodol-

ogy to collect a large dataset of cyberbullying images. We first compile a

set of keywords based on a collection of stories of cyberbullying provided

by online users with real cyberbullying experiences. We then use these

keywords to collect a large, real-world images dataset with 117,112 im-

ages crawled from online sources. The dataset with 19,300 valid images

has been annotated by online participants from Amazon Mechanical Turk

(MTurk) 3.

• Measurement of State-of-the-art Offensive Image Detectors. We present

a measurement of five state-of-the-art offensive image detectors against

our cyberbullying images dataset, wherein we study their effectiveness of

detecting cyberbullying images. We find that these state-of-the-art detec-

tors are not capable of effectively identifying cyberbullying in images.

• New Factors of Cyberbullying in Images. We analyze our dataset and

identify five visual factors (i.e., body-pose, facial emotion, object, gesture, and

social factors) of cyberbullying in images. We also find that the factors

linked to cyberbullying images are highly contextual. Those factors dis-

covered by our study play an important role towards understanding cy-

berbullying in images and building systems that can be used to detect

3Our dataset will be made publicly available (subject to ethical concerns, discussed in Sec-
tion ??).
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cyberbullying in images.

• Extensive Evaluation of Visual Factors of Cyberbullying. We first an-

alyze the visual factors of cyberbullying identified in our work with ex-

ploratory factors analysis and our study reveals that the factors are associ-

ated with two underlying social constructs, which we interpret as ‘Pose

Context’ and ‘Intent Context’. We then measure four classifier models

based on our identified factors. We note that by including the visual fac-

tors identified in this dissertation in those classifier models, they can ef-

fectively detect cyberbullying content in images as offensive content with

high accuracy. The best classifier model, which is a multimodal classifier

model, can detect cyberbullying images with an accuracy of 93.36% (along

with a precision and a recall of 94.27% and 96.93%, respectively).

The rest of this chapter is organized as follows. We first lay down the threat

model of our work in Section 6.2. Next, we present our cyberbullying images

data collection strategy in Section 3.2. We then present the motivation of our

work in Section 3.3. This is followed by the details of our approach in Sec-

tion 6.3.2. We discuss the implementation details of the cyberbullying images

classifier models and present the evaluations of those models from different per-

spectives in Section 3.5. We discuss some important aspects of our approach in

Section ??. This is followed by a discussion of related work in cyberbullying

defense in Section ??. Finally, we conclude our work in Section ??.
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3.1 Threat Model and Scope

Threat Model. In this chapter, we consider two types of users: 1) a perpetrator

is a user who sends a cyberbullying image to other users; and 2) a victim is a

user who receives a cyberbullying image from a perpetrator. We consider the

scenario where images depicting cyberbullying are sent by a perpetrator to a

victim when the perpetrator uploads such images online, posts such images on

social networks or shares such images via mobile devices. The affected users

are the victims viewing the photo. In our current work, we focus on addressing

cyberbullying in images, and do not consider images accompanying with cyber-

bullying text. We also do not consider the traditional offensive image content,

such as nudity, pornography, and violence, which have been deeply studied by

previous work [43, 103, 104]. Besides, we do not consider cyberbullying cases

with inside meaning that is only understandable to specific users. For example,

a perpetrator Alice sends images of snakes to a victim Bob since Bob has a fear of

snakes.

Problem Scope. In this chapter, our goal is to identify factors of cyberbully-

ing in images and to demonstrate that they can be used to detect cyberbullying

content in images. Our major purpose is not to design a novel classifier model

that achieves the highest detection accuracy, instead we analyze several typical

classifier models to demonstrate that they can effectively detect cyberbullying

content in images after integrating the visual factors of cyberbullying identified

by our work.
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3.2 Cyberbullying Images Data Collection

To identify factors of cyberbullying in images, we need an effective mechanism

to collect a large amount of cyberbullying-related visual information, which

should be representative of real-world cyberbullying found in images. In our

work, we introduce an approach to collect a large dataset of cyberbullying im-

ages, wherein we first extract a set of keywords and keyphrases of cyberbullying

from cyberbullying stories about self-reported experiences of real victims of cy-

berbullying, which are then used to collect a cyberbullying images dataset. Our

data collection tasks are approved by IRB. We elaborate the methodology of our

approach in the following section.

3.2.1 Methodology

In this section, we discuss our pre-data collection study for collecting cyberbul-

lying images dataset. In this study, we use the cyberbullying stories from Inter-

net users with their own cyberbullying experiences to collect an images dataset

that is representative of real-world cyberbullying in images.

We use the self-reported stories from [108], a collection of anonymized sto-

ries of cyberbullying collected from voluntary online users who have them-

selves experienced cyberbullying. Therefore, this corpus of cyberbullying sto-

ries and experiences is a wealth of cyberbullying related information for re-

search in this field. We mined this corpus and compiled 265 unique stories of

cyberbullying, each of which is contributed by a user. Among the users in this

study, 30 users reported themselves as adults and 197 reported themselves as

below the age of 18 years. A majority of users reported themselves as female

(178 users), whereas a relatively smaller number of users reported themselves



27

as male (54 users). The rest of the users wished not to report their age or gender.

3.2.2 Cyberbullying Keywords Extraction

To extract keywords of cyberbullying in images from the cyberbullying stories,

we used the following method. We first removed all identifiers from the cyber-

bullying stories information. Next, we used the Python NLTK library [109] to

remove stop words [110] from all stories. At the end of this process, we collected

2,648 keywords. Then, we used the sentiment analyzer of the Python NLTK li-

brary to remove neutral and positive words, followed by manual verification of

the words, which left us with 378 words (we used a polarity threshold of -0.55 4).

We used these words as the final keywords list to collect potential images of cy-

berbullying content for our dataset. Table 3.1 shows some cyberbullying story

samples and the keywords extracted with our methodology.

Stories Extracted Key-
words

The oldest boy’s dad is crazy and
has been sending text containing
verbal harm messages and even a
text holding a gun and a message
to the boyfriend and just wanted to
know what we should do.

holding, gun,
crazy, harm

I have been threatened that some-
one was going to kill me and told
me to shut the f*ck up here is a pic-
ture.

f*ck, kill, threat-
ened

How does it feel being the fat ugly
outcast of all your pretty skinny
friends why do you take a bazillion
pictures of yourself.

fat, ugly

I am keep getting name called such
as f*g, douche bag, small d*ck.

f*g, douche, d*ck

Table 3.1: Samples of cyberbullying stories and the extracted keywords.

4Polarity threshold is defined in the interval -1 to +1. More negative words have a polarity
value closer to -1.



28

Figure 3.2: Image samples that did not have any Regions of Interest (ROIs).

3.2.3 Data Collection and Annotation

The models of cyberbullying detection in images should be capable of differenti-

ating between images with cyberbullying content from other benign images. In

addition, they should also distinguish between harmless images that do not in-

tend to cause cyberbullying, so that false alarms are reduced. To collect a diverse

dataset of images that captures important patterns of cyberbullying in images,

we used multiple web sources, including web search engines (Google, Bing, and

Baidu) and publicly available social media images from multiple online social

media websites (Instagram, Flickr, and Facebook). We collected images using

keywords and phrases compiled from our findings in Section 3.2.2. We finally

collected 117, 112 images using our data collection methodology. Next, we used

an object localization tool called YOLO [111] to exclude images that do not have

any regions of interest (ROIs). These are images that typically do not have any

content and hence, do not convey any meaning. Some samples of images that

were excluded in this step are depicted in Figure 3.2. After this step, we were

left with 19, 300 images for annotations.
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3.2.4 Image Annotation

We used MTurk to obtain annotations for the collected images. Our objective

was to annotate whether an image contains cyberbullying content or does not

contain any cyberbullying content. Therefore, we referred to the definition of

cyberbullying from [107, 112] as guidelines for annotation. Specifically, we fo-

cused on cyberbullying in images as “an act of online aggression carried out

through images” for the participants of our study (the interface of our image

annotation task can be found in Appendix 3.5.3). We displayed a warning to

participants about the nature of the task in both the task title and description

according to MTurk guidelines. We placed a restriction that only allows par-

ticipants with an approval rating of 90% or higher and 1000 approved HITs to

participate in our annotation task. We offered a $0.05 reward for each task sub-

mission and recorded an average task completion time of 18 seconds per task.

We allowed each image to be annotated by three distinct participants and chose

the majority voted category as the final annotation. Finally, in our dataset, 4,719

images were annotated as cyberbullying images and 14,581 images were anno-

tated as non-cyberbullying images.

We computed the inter-rater agreement [113] using the Randolph’s κ-measure [114],

a statistical measure of agreement between individuals for qualitative ratings.

Note that, κ < 0 corresponds to no agreement, κ = 0 to agreement by chance, and

0 < κ ≤ 1 to agreement beyond chance. We measured κ on our cyberbullying

images dataset, and obtained κ = 0.80.
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3.3 Motivation and Observation

To illustrate our motivation, we first conducted a study into the detection ca-

pability of several popular offensive image detectors, including Google Cloud

Vision API (Google API), Yahoo Open NSFW, Clarifai NSFW, DeepAI and Ama-

zon Rekognition, and ran these detectors against images annotated as cyberbul-

lying in our dataset. We chose these detectors because they have the ability

to detect certain offensive attributes in images. We computed the performance

of these detectors in terms of precision and recall metrics on the cyberbullying

images as shown in Table 3.2. From Table 3.2, we observed that those state-

of-the-art detectors have low performance in detecting cyberbullying images.

Among those popular offensive image detectors, Yahoo Open NSFW (preci-

sion = 36.27%, recall = 2.82%) and Clarifai NSFW (precision = 42.94%, recall

= 10.67%) offer overall lowest performance. DeepAI (precision = 69.43%, recall

= 15.92%) and Amazon Rekognition (precision = 77.44%, recall = 23.55%) offer

only a small improvement over the previous two detectors, although they con-

sider a higher number of attributes. Among the popular detectors, Google API

(precision = 35.65%, recall = 39.40%) achieves the best performance, although

this detector also misses a large number of cyberbullying samples (60.59%). A

more startling observation was that 39.32% of the cyberbullying samples could

circumvent all five popular offensive image detectors.

Detector Precision Recall
Google API 35.65% 39.40%
Yahoo Open NSFW 36.27% 2.82%
Clarifai NSFW 42.94% 10.67%
DeepAI 69.43% 15.92%
Amazon Rekognition 77.44% 23.55%

Table 3.2: Precision and recall of popular offensive image detectors.
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(i ) (i i )

(a) Without cyberbullying context.

(i ) (i i )

(b) With cyberbullying context.

Figure 3.3: Image context in cyberbullying images.

Image # Google API Yahoo NSFW Clarifai Deep AI Amazon
Figure 3.3a (i) 0.2 0.17 0 0.17 0
Figure 3.3a (ii) 0.2 0.005 0.05 0.003 0.98
Figure 3.3b (i) 0.2 0.008 0.01 0.008 0
Figure 3.3b (ii) 0.2 0.004 0 0 0.97

Table 3.3: Detection scores of existing detectors on image samples in Figure 3.3.

After an examination of cyberbullying images annotated by users in our

dataset, we found that most of such images are context-aware. Figure 3.3 depicts

two images without cyberbullying context (annotated as non-bullying images

by participants) and two other images with cyberbullying context (annotated as



32

Detector Categories of Offen-
sive Content

Limitations

Google Cloud Vision
API

Object detection, face
detection, image at-
tributes, web entities,
content moderation

No offensive image
detection capability

Yahoo Open NSFW NSFW detection Limited to only nu-
dity detection

Clarifai NSFW NSFW detection,
content moderation
concepts

Only limited types
of concepts (explicit,
suggestive, gore and
drug)

DeepAI Content
Moderation API

Content moderation Only limited to a few
objects (guns confed-
erate flag)

Amazon Rekognition Object and scene de-
tection, face recog-
nition, emotion de-
tection, unsafe image
detection

Limited categories of
unsafe detection (nu-
dity and violence)

Table 3.4: Capabilities of existing detectors and their limitations.

bullying images by participants), respectively, from our dataset. The images in

Figure 3.3a only show a possible factor (a demeaning hand gesture or a gun),

but without any contextual information. In contrast, Figure 3.3b shows images

that portray these factors with contextual information, such as a person delib-

erately showing the hand gesture in Figure 3.3b (i) to the viewer, or the person

in Figure 3.3b (ii) pointing the gun at the viewer. Table 3.3 depicts the scores of

each popular offensive image detectors on those image samples. We observed

that the Google API scores all the image samples equally, and rates them as “un-

likely” to be unsafe. Yahoo NSFW, Clarifai and DeepAI seem to have very small

scores for all image samples, and therefore are unable to differentiate between

non-cyberbullying and cyberbullying content. Amazon Rekognition seems to

only detect guns in Figure 3.3a (ii) (score = 0.98) and Figure 3.3b (ii) (score =

0.97), and naively flags down all such images. Thus, we note that the existing

detectors cannot detect cyberbullying in images effectively.

We further study the capabilities and limitations of the five state-of-the-art

offensive image detectors, as depicted in Table 3.4. From Table 3.4, we can first
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Figure 3.4: Approach overview.

observe that none of state-of-the-art detectors consider cyberbullying in images

as a category of offensive content. Thus, our first motivation is that this im-

portant category of offensive content should be included by existing systems

as an offensive content category. Secondly, since the factors of cyberbullying in

images are unknown, the existing detectors are not capable of detecting them.

Thus, we are motivated to shed light on identifying the visual factors of cyber-

bullying so that they can be automatically detected in images.

3.4 Our Approach

We analyse the cyberbullying images in our dataset in three steps: (i) under-

stand and identify the factors related to cyberbullying in images (Section 3.4.2);

(ii) extract those factors from images (Section 3.4.3); and (iii) examine the usage

of those factors in classifier models (Section 3.4.4).
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3.4.1 Approach Overview

The main components involved in our approach are depicted in Figure 3.4. We

first collect a large dataset of cyberbullying images to study this phenomenon

(Figure 3.4, Step 1 “Data Collection and Annotation”). Next, we analyze the col-

lected data to identify factors in the way participants consider cyberbullying in

images (Figure 3.4, Step 2, “Factor Identification and Extraction”, “Factors”). In this

step, we identify five factors of cyberbullying in images in our dataset: body-

pose, facial emotion, gesture, object and social factors. We then focus on two

processes to study and address cyberbullying in images: “Factors Identification

and Extraction”, “Attributes” (Figure 3.4, Step 2) and “Classifier Model Measure-

ment” (Figure 3.4, Step 3). In Factor Extraction, our primary goal is to extract the

attributes of those factors of cyberbullying in images. We use several off-the-

shelf tools and techniques to extract these visual factors. In Classifier Model Mea-

surement, we then use several deep learning-based classifiers to demonstrate that

the identified factors can be used to effectively detect cyberbullying in images.

To understand the importance of these factors and to study their effectiveness

in detecting cyberbullying in images, we train four classifier models: baseline,

factors-only, fine-tuned pre-trained, and multimodal models. During the evalu-

ation of a new photo, we extract the factors and predict a score of cyberbullying

in images using those classifier models. We discuss our methodology in more

details in the following sections.

In our work, the context of cyberbullying refers to the story that an image

is conveying, where the intent is to bully receivers/viewers of the image. For

example, a photo with a person at a gun shop looking at various guns on display

has a totally different context compared with a photo, which depicts a person
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pointing a gun at viewers. Towards this end, we study this context in-depth,

identify its factors in images, and design techniques that identify cyberbullying

content by capturing the context.

Factor Attribute Cyberbullying Non-cyberbullying Description

Body-pose Front pose 0.86 0.53 Pose of subject in image is towards the viewerNon-front pose 0.50 0.84

Emotion

Joy 0.34 0.25

Facial emotion of subject in imageSorrow 0.02 0.02
Anger 0.09 0.04
Surprise 0.07 0.05

Gesture Hand gesture 0.71 0.32 Hand gesture made by subject in imageNo hand gesture 0.70 0.94

Object Threatening object 0.33 0.06 Threatening object present in imageNo threatening object 0.94 0.99

Social Anti-LGBT 0.45 0.06 Anti-LGBT symbols and anti-black racism in imageAnti-black racism 0.03 0.00

Table 3.5: Analysis of cyberbullying factors. Higher value of cosine similarity
indicates higher correlation.

3.4.2 Factor Identification

Various studies [52, 55, 56] focused on text-based cyberbullying have tried to un-

derstand its nature, and revealed several personal and situational factors, such

as the use of abusive or harassing words and phrases. However, no existing

research has attempted to understand the factors associated with cyberbullying

in images. To examine cyberbullying in images, new personal and situational

factors related to image content should be studied. The identified factors can

help formulate classifier models for detection, and potentially enable popular

offensive content detectors (e.g., Google Cloud Vision API and Amazon Rekog-

nition) to automatically detect cyberbullying in images as an offensive content

category.

To study the factors of cyberbullying in images in our dataset, we conduct an

experiment by considering all the cyberbullying and non-cyberbullying images

in our dataset. In this experiment, we use existing tools to analyze the nature of
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the images considering recurring visual factors we observe in the dataset, sum-

marised in Table 3.5. We analyze the body-pose [115] of the subject in an image,

as prior research [116] has shown that threatening poses are a commonly used

tool in cyberbullying. We analyze hand gestures [48] as hand gestures are pop-

ular forms of sign language used to convey meaning through images. We study

the facial emotion [117] of the subject in images, as facial emotions can convey

several meanings to a viewer. We study the objects [111] that are used by per-

petrators to threaten, or intimidate a victim. Lastly, we study social factors such

as anti-LGBT (lesbian, gay, bisexual, transgender, and queer) content in images

in our dataset. We use the cosine similarity [118] to compare the differences of

these factors with respect to cyberbullying and non-cyberbullying images.

Body-pose factor. We conduct a preliminary study of the correlation of the

visual factors with images that have been labeled as cyberbullying vs. non-

cyberbullying by observing the cosine similarity between images depicting the

visual factors (outlined in Table 3.5). We observe that images depicting persons

who pose at the viewer (front pose) had strong correlation with cyberbullying

images (cosine similarity = 0.86, 74.74% of cyberbullying images). In contrast,

these images with the person posing at the viewer were observed to have a

much lower correlation (cosine similarity = 0.53, 28.29% of non-cyberbullying

images) with non-cyberbullying images (i.e., these images were mostly non-

front pose). On examining such cyberbullying images, we observe that these

images depicted subjects that are directly looking at the image viewer in order to

directly engage the viewer, whereas most subjects in non-cyberbullying images

had posed looking away.

Facial emotion factor. Facial emotions have been known to convey signif-

icant meaning regarding what a person is feeling. Thus, we study the correla-
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tion of facial emotions (e.g., sorrow, joy, anger, and surprise) with cyberbullying

images. We observe that most cyberbullying images do not have specific emo-

tions expressed by a subject. We also observe that even in cyberbullying images,

subjects do not show any strong emotions. In fact, we observe that these sub-

jects generally showed happy emotions such as joy (cosine similarity = 0.34,

11.39% of cyberbullying images). Our preliminary observations reveal that sub-

jects may generally depict themselves mocking the viewer by showing emotions

of joy.

Hand gesture factor. Hand gestures are a popular method that Internet users

use to convey meaning in images [119, 120]. We find a high correlation of hand

gestures (e.g., loser, middle finger, thumbs down and gun point) with cyberbul-

lying images (cosine similarity = 0.71, 50.6% of cyberbullying images), indicat-

ing that in cyberbullying images, hand gestures may constitute an important

factor.

Object factor. Next, we discuss the correlation of threatening objects (e.g.,

gun, knife) with the cyberbullying images in our dataset. We also observe some

correlation of threatening objects (cosine similarity = 0.33, 10.6% of cyberbully-

ing images) with cyberbullying images, which indicates Internet users may use

these objects to threaten or intimidate a viewer [121]. Although, we also observe

that many cyberbullying images (cosine similarity = 0.94, 89.40% of cyberbul-

lying images) also do not depict direct use of these objects to cyberbully their

victims. This could be due to the belief that Internet users generally may use

more subtle tools to perpetrate cyberbullying, rather than directly using such

threatening objects, which may risk initiating action by law enforcement agen-

cies.

Social factor. Prior works [122, 123] have shown that cyberbullying is a
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deeply concerning social issue. Hence, we manually analyze the cyberbullying

images in our dataset for current social-related factors, such as anti-LGBT [124]

and racism [125]. We find that a small part of images consisted of anti-LGBT

symbolism (cosine similarity = 0.45, 1% of cyberbullying images), and images

depicting “black-face” and historical references to hanging (cosine similarity =

0.03, < 1% of cyberbullying images).

Next, we study the correlation of a person depicting a hand gesture or a

threatening object with respect to cyberbullying images (Table 3.6). We observe

a significant correlation of person and hand gestures in cyberbullying images

(cosine similarity = 0.72, 95.31% of cyberbullying images). On further exam-

ination, we observe that many cyberbullying images depict a person directly

showing a gesture towards the image viewer. We also observe that some im-

ages with only a hand gesture and no person is significantly less correlated with

cyberbullying (cosine similarity = 0.10, 4.69% of cyberbullying images), which

may indicate that presence of person invokes stronger context in an image, and

a factor by itself may not actually convey cyberbullying. We make a similar ob-

servation involving objects and person regarding cyberbullying images (cosine

similarity = 0.31, 90.4% of cyberbullying images). We observe that many photos

of objects (e.g., guns and knives) alone were not labeled as cyberbullying (cosine

similarity = 0.02, 9.6% of cyberbullying images), but photos depicting a person

holding these objects were overwhelmingly labeled as cyberbullying.

Cyberbullying Non-cyberbullying
Person No person Person No person

Object 0.31 0.09 0.02 0.07
Gesture 0.72 0.10 0.34 0.07

Table 3.6: Analysis of correlation of person with threatening object and gesture.

From our analysis, we observe that cyberbullying in images is highly con-
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textual in nature, involving very specific factors (outlined in Table 3.5). In our

work, we use these factors to train classifier models and demonstrate that they

can be effectively used to detect cyberbullying in images. A crucial requirement

of defense against cyberbullying in images is to accurately detect cyberbullying

based on those images. The high correlation of cyberbullying with certain fac-

tors may indicate that classifier models based on these factors could potentially

detect cyberbullying in images. Furthermore, popular offensive content detec-

tors currently do not consider cyberbullying as a category of offensive content

in images and hence lack the capability to detect it. One of the objectives of our

work is to highlight the importance of cyberbullying in images, so that it can

be included as a category of offensive content in popular offensive content de-

tectors. In our work, we use the visual factors of cyberbullying to demonstrate

that they can be used in deep learning models (such as the ones in these content

detectors) to successfully detect cyberbullying in images with high accuracy.

3.4.3 Factor Extraction

Our aim is to identify a set of cyberbullying factors in images that are mini-

mally correlated and best predict the outcome (i.e., presence of cyberbullying in

images). However, cyberbullying in images is a complex problem, and such fac-

tors are not directly derivable from image data with currently available learning

techniques. Therefore, we extract these factors based on our collected dataset

and preliminary analysis, and catalog them as follows.

• Body-pose factor extraction. Regarding body pose of a person appearing

in an image, there may be several aspects of the person, such as orienta-

tion, activity, and posture. Specifically in our dataset, we observe that in
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cyberbullying images, the subject is predominantly oriented towards the

image viewer (i.e. towards the camera). For example, Figure 3.5 shows

two image samples from our dataset. Figure 3.5(i) depicts a cyberbullying

sample and Figure 3.5(ii) depicts the pose of the subject. It can be observed

that this pose of the subject indicates that the subject in this image is ori-

ented directly at the viewer and pointing a threatening object (e.g., gun) at

the viewer. However, this is in contrast to Figure 3.5(iii), whereas the pose

depicted in Figure 3.5(iv) of a non-cyberbullying sample indicates the sub-

jects are not oriented towards the viewer and the threatening object not

pointed towards the viewer. Thus, we wish to capture these orientations

related to body-pose.

We used OpenPose [115] to estimate the body-pose of a person in the im-

age. OpenPose detects 18 regions (body joints) of a person (such as nose,

ears, elbows and knees), and outputs the detected regions and their cor-

responding detection confidence. We use the confidence scores of the re-

gions as the factor values as this indicates the confidence about the ap-

pearance of those regions in the image.

• Facial emotion factor extraction. Since cyberbullying may involve the

subject in an image expressing aggression or mocking a victim, we were

specifically interested in capturing facial emotions related to these expres-

sions, as the facial emotions of subject in images may be good indicators

of the intent of the person towards conveying such expressions. For ex-

ample, an angry expression could indicate an intent to be aggressive or

threatening to a viewer, or a happy (e.g., sneering, taunting) expression

could indicate an intent to mock the viewer.
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(i ) Cyberbullying Image (i i ) Cyberbullying Pose

(i i i ) Non-cyberbullying 
Image

(iv) Non-cyberbullying 
Pose

Figure 3.5: Cyberbullying Vs. non-cyberbullying body-pose.

We extract the emotions in our dataset using two sources, OpenFace [117]

and Google Cloud Vision API [48]. We choose the emotion categories that

are indicated with high confidence by both these sources. Overall, we use

four emotion categories: joy, sorrow, anger, and surprise.

• Gesture factor extraction. There exist several hand gestures that subjects

use in images and most of these are not harmful (e.g., the victory sign,

thumbs up and OK sign). We observed that in cyberbullying images in

our dataset, the hand gestures were used as tools to convey harmful in-

tent by perpetrators of cyberbullying. Such images (e.g., Figure 3.6) depict

subjects making mocking or threatening hand gestures, such as the loser

gesture (Figure 3.6 (i)), middle finger (Figure 3.6 (ii)), thumbs down (Fig-

ure 3.6 (iii)), and gun gesture (Figure 3.6 (iv)). Hence, we were interested
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in capturing these harmful gestures we found in cyberbullying images.

(i ) Loser  (i i ) Middle Finger

(i i i ) Thumbs Dow n (iv) Finger  Gun

Figure 3.6: Some hand gestures found in cyberbullying images in our dataset.

We use the tag suggestions by Google Cloud Vision API [48] to indicate

if an image depicts any hand gestures. The tags detected by this API do

not provide fine-grained gesture categories. Therefore, we only use the

presence or absence of a hand gesture as the feature indicative of hand

gesture factor.

• Object factor extraction. Different objects depicted in an image can indi-

cate different intents of the subject in the image. We observe that a large

number of cyberbullying images portrayed the use of threatening objects,

such as guns and knives, and hence we are specifically interested in cap-

turing these objects. In cyberbullying [123, 126], perpetrators specifically
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use threatening and intimidation to cyberbully their victims. Specifically,

in cyberbullying in images, perpetrators can use images of themselves us-

ing such threatening objects to cyberbully the victims and hence we were

interested in capturing these types of objects.

We use an open source object detection system called YOLO [111] to detect

the objects in images of our dataset. YOLO outputs the object category as

well as the confidence score of detection for each object depicted in an

image. Since YOLO outputs a large set of categories of images, we limit

the objects categories to only the categories that we are interested in (e.g.,

gun, knife, revolver, etc.). Then, we use the confidence scores of the subset

of objects as features for this factor.

• Social factor extraction. We observe certain social factors in cyberbullying

images that perpetrators could use to convey intent of cyberbullying. Such

factors predominantly included anti-LGBT symbolism in our dataset, such

as portraying certain LGBT symbols in a derogatory manner, or defacing

such symbols.

Detecting such social factors in images is a complex task and currently

there are no detectors that can satisfactorily detect these factors. Thus, we

directly label the images that contained such symbolism in our dataset,

based on online information about this topic [124, 125]. However, we note

that this factor category maybe very vast, and we only consider the social

factors that we observe in our collected dataset in this chapter.

In our dataset, we also find that some cyberbullying images, such as the ones

depicting the social factor, do not have a person. For these images, we represent

the feature vectors for these factors as zero vectors, indicating the absence of
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people in these images. For example, since the body-pose factor is dependent

on a person being present in the image, we represent the body-pose feature

vector with the zero vector when the image does not contain a person.

3.4.4 Measurement of Machine Learning Models for Classifica-

tion of Cyberbullying in Images

Feature Selection. In computer vision applications, deep neural networks (such

as Convolutional Neural Networks (CNNs) have enabled the automatic selec-

tion of image features. Previous works [127] have shown that the convolutional

layers of a CNN learn to identify various features, such as edges, objects, and

body parts, to compute a prediction. Although this approach has yielded sig-

nificantly accurate results in specific computer vision tasks (such as object de-

tection), such an approach cannot be directly applied to a complex task, such as

detection of cyberbullying in images, due to the presence of several contextual

factors. Therefore, to detect cyberbullying in images, we first need to identify

the factors that determine cyberbullying. In our work, we catalog five factors

of cyberbullying based on the images in our dataset. Furthermore, we study

the importance of each factor towards the effective detection of cyberbullying

in images.

Classifier Models. To demonstrate the effectiveness of the factors identified in

this chapter, we use machine learning models to predict cyberbullying vs. non-

cyberbullying in images. Our main focus is to examine which of the machine

learning models can achieve high accuracy of detection of cyberbullying in im-

ages. Although we demonstrate the effectiveness of the identified visual factors,
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we are also interested in learning at what level of abstraction the factors have

the most predictive power. Thus, we have built several classifiers at different

levels of abstractions, spanning from the raw image consisting of lowest level

features to the high-level factors identified in this chapter. We have evaluated

all the models using 5-fold cross-validations. This study would also allow us to

investigate if the classification of cyberbullying in images can be trivially solved

using simple features. Below, we explain these different classifier models.

1) Baseline model. As a baseline model, we directly train a deep CNN with the

low level image features. Our intuition behind choosing this baseline model is

because we want to include use cases that are common among most of existing

detectors, which are all based on CNNs. Another reason for choosing CNN is

that it is still the most effective model for image-based tasks. All images were

resized to 224 × 224 pixels and then fed into a VGG16 untrained model, which

is a popular 16 layer deep CNN for computer vision tasks. This represents a

model that is trained on the most concrete set of features, i.e., the raw pixel

values of the images.

2) Factors-only model. This model that we formulate is based on a multi-

layer perceptron network with only the factors identified in this chapter as in-

puts. Our objective is to investigate whether the factors identified alone could

be used with no image features to classify images as cyberbullying vs. non-

cyberbullying.

3) Fine-tuned pre-trained model. Fine-tuning a pre-trained model allows us to

transfer the knowledge in one task to perform the task of cyberbullying clas-

sification in images. This process is analogous to how humans use knowl-

edge learned in one task to solve new problems. We fine-tune the 16 layer

VGG16 model that is trained on the object detection task using the ImageNet
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dataset [128], which consists of over 14 million images. In our factors analysis,

we find that certain object categories, such as person, gun, and knife, could be

responsible for causing cyberbullying. This intuition leads us to choose a model

trained for object detection as a baseline pre-trained model. To fine-tune this

pre-trained model, we replace the final linear layer with a linear layer that out-

puts two values followed by the Sigmoid activation function, in order to predict

cyberbullying vs. non-cyberbullying. We only train the linear layers and keep

the other layers fixed as it is the norm in fine tuning.

Visual 
Factor s

Image

MLP

CNN

Feature 
Fusion

Fully 
Connected 

Layers

Cyberbullying 
Score

Feature 
Maps

Adaptive 
Pooling

Feature 
Vector

Figure 3.7: Multimodal model used in our approach.

4) Multimodal model. In this model, we combine the low level image fea-

tures (Figure 3.7, “Image”) with the factors identified in this chapter (Figure 3.7,

“Visual Factors”). To achieve this, we need a method to combine these visual

factors and image features. We combine these features using feature fusion tech-

niques, such as early and late fusion [129]. We use the VGG16 pre-trained model

for image features (Figure 3.7, “CNN”) and use a multi-layer perceptron model

(Figure 3.7, “MLP”) for the factors related features, and combine the feature vec-

tors from both these models using late fusion. The VGG16 model produces an

output of 512 convolutional feature maps of dimension 7 × 7. We flatten the
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convolutional feature maps using adaptive pooling into one-dimensional vec-

tor of 512 and fuse it (Figure 3.7, “Feature Fusion”) with the output of the MLP

network. We train this model in a joint manner (Figure 3.7, “Fully Connected

Layers”) to classify images as cyberbullying vs. non-cyberbullying. Ideally, we

expect this model to perform the best among all models discussed, since this

model is presented with low level as well as high level features (i.e., the visual

factors).

3.5 Implementation and Evaluation

In this section, we first discuss the implementation of the machine learning

models used in our work, followed by experiments to evaluate our approach

from different perspectives. The major goals of our evaluation are summarized

as follows.

• Understanding the effectiveness of factors of cyberbullying in images by

using exploratory factors analysis (Section 3.5.2).

• Demonstrating the effectiveness of our factors in accurately predicting cy-

berbullying in images, using four classifier models (Figure 3.10 and Ta-

ble 3.9).

• Studying the performance overhead of our model when integrated in mo-

bile devices (Section 3.5.2).

• Evaluating the false positives of our model on the images depicting the

American Sign Language (Section 3.5.3).
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• Validation of our cyberbullying factors with a wider audience (Section 3.5.3).

• Studying the representativeness of our cyberbullying images dataset (Sec-

tion 3.5.3).

• Analyzing the capabilities of the state-of-the-art offensive image detectors

with respect to the cyberbullying factors (Section 3.5.3).

3.5.1 Implementation

In this section, we discuss the implementation details of the classifier models

for cyberbullying in images. We use the PyTorch framework [130] to train and

deploy these models. In our work, we use the VGG-16 network [131] for fea-

ture extraction in the models. We use the VGG-16 model that is pre-trained on

ImageNet dataset [132] for the purpose of transfer learning. Following PyTorch

naming conventions, we remove the last fully connected layer of the VGG-16

network (named “fc1”). For the multimodal model, we add a fully connected

layer having 2 units for classification. Next, we add a sigmoid activation func-

tion on the output of classification. We train all the models for the same number

of epochs.

3.5.2 System Effectiveness Evaluation

Understanding the Effectiveness of Cyberbullying Factors

We study in detail the factors of cyberbullying in images identified in this chap-

ter in terms of their effectiveness in characterizing cyberbullying in images.
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We first study the most frequently occurring visual factors that characterize

cyberbullying images, as depicted in Table 3.7. For cyberbullying images, we

note that Body-pose accounts for 76.91% frequency, which indicates that it is an

important cyberbullying factor. Gesture (50.6%) is the next most frequent fac-

tor, which indicates that in cyberbullying in images, subjects may deliberately

use gestures to convey harmful meaning to a viewer. Among the facial emo-

tions, we observe that the predominant emotion in cyberbullying images is joy

(11.41%). This is an interesting observation that indicates that subjects may be

expressing joyful facial expressions to mock a viewer. The next most frequent

factor is observed to be object (10.58%). A significant portion of the cyberbul-

lying images involved the subject showing certain threatening objects such as

guns and knives to potentially directly intimidate a viewer.

# Factor Cyberbullying Frequency Non-cyberbullying Frequency
1 Body-pose 76.91% 31.41%
2 Joy 11.41% 5.97%
3 Sorrow 0.06% 0.06%
4 Anger 0.83% 0.19%
5 Surprise 0.51% 0.26%
6 Gesture 50.6% 10.76%
7 Object 10.58% 0.42%
8 Social 0.53% 0.00%

Table 3.7: Frequencies of factors responsible for labeling an image as cyberbul-
lying or non-cyberbullying.

The factors frequencies in non-cyberbullying images are depicted in Table 3.7.

In comparison to cyberbullying images, we observed that body-pose factor plays

a significantly less important part in non-cyberbullying images (31.41%). Same

observation is made about the gesture factor (10.76%). We observe that the ges-

tures in non-cyberbullying images are predominantly harmless, such as the vic-

tory sign and the thumbs up sign. The joy facial emotion is higher than other

emotions in these images too (5.97%), although it is found to be lower than in
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cyberbullying images.

# Factor Spearman ρ
1 Body-pose 0.39
2 Joy 0.08
3 Sorrow 0.00
4 Anger 0.04
5 Surprise 0.02
6 Gesture 0.42
7 Object 0.26
8 Social 0.06

Table 3.8: Correlation coefficient (Spearman ρ) between visual factors and cy-
berbullying label. The coefficients are significant at p < 0.001 level.

Next, we conduct a study to understand the associations between human

level annotations on images and the identified factors. Table 3.8 depicts the

correlations (Spearman ρ) for visual factors and cyberbullying images. In Ta-

ble 3.8, significant correlation coefficients suggest an association between the

factors and the rationale of human annotators about cyberbullying images. A

strong association of 0.39 is observed in case of the body-pose, indicating that

annotators tend to agree that a subject in a cyberbullying image intentionally

poses at a viewer. Similarly, strong association is observed for gesture (0.42) and

object (0.26), indicating that annotators generally considered that photos depict-

ing these factors are generally cyberbullying. These associations may imply

that annotators may consider those images as cyberbullying, which depict clear

meaning and context, as the strongly associated factors (body-pose, gesture, and

object) imply most clear meanings among all the other factors.

In our next study, we are interested in studying those subsets of uncorre-

lated visual factors that are most effective in distinguishing cyberbullying im-

ages from the non-cyberbullying images. We conduct Exploratory Factor Anal-

ysis (EFA) to discover the uncorrelated factor sets. The Scree plot depicted in
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Figure 3.8: Scree plot showing proportions of variance and cumulative propor-
tion of variance explained by each component.

Figure 3.8 suggests the number of factors 5 to extract. The point of inflection in

the Scree plot after the second factor may suggest that two factor subsets can

represent the cyberbullying in the data. Figure 3.9 exhibits the factor loadings

after a ‘varimax’ rotation. We omit loadings that are too low. A feature is as-

sociated with the factor, with which it has a higher loading than the other, and

also that features associated with the same factor are grouped together for cer-

tain descriptive categories. More specifically, the facial emotions sorrow, surprise

and anger are grouped together, and characterized by lower loadings. The ob-

ject category grouped with these emotions reveals a characteristic observation

that facial expression are generally more negative when coupled with threaten-

ing object. However, the joy emotion is away from these indicating it is an im-

portant uncorrelated factor. Body-pose and gesture are also uncorrelated factors.

From these observations, intuitively cyberbullying in images could be related

to the facial expression of a person and the overall body (pose, object in hand

and gesture) of a person. Thus, based on our analysis, cyberbullying in images

could be intuitively characterized with two social constructs: “Pose Context”

5Here, “factor” refers to EFA factors and not visual factors of cyberbullying.
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(pose related factors, such as pose and gesture) and “Intent Context” (e.g. an

image depicts an intent using facial emotion or object).

Figure 3.9: Factor loadings of the features across two extracted factors.

Effectiveness Evaluation of Classifier Models

To understand the effectiveness of the classifier models trained on high-level

factors and low-level image features, we randomly select 80 percent of our

dataset for training (with 5-fold cross validation) and 20 percent of the dataset

for testing and we run the four types of classifiers on images from our test

dataset. We perform the Receiver Operating Characteristics (ROC) [133] analy-

sis of the classifier models for cyberbullying images prediction. The ROC anal-

ysis provides a means of reviewing the performance of a model in terms of the

trade-off between False Positive Rate (FPR) and True Positive Rate (TPR) in the

predictions. The ROC plot of the classifier models for cyberbullying detection

in images is depicted in Figure 3.10. The Area Under the Curve (AUC) of each

classifier model is depicted in the plots, which indicates the success of a model

in detecting cyberbullying images.
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(a) Baseline Model (b) Factors-only
Model

(c) Fine-tuned Pre-
trained Model

(d) Multimodal
Model

Figure 3.10: ROC analysis of classifier models.

Figure 3.11: Precision-recall graph of the multimodal model.

Classifier
Model

Accuracy Precision Recall

Baseline
Model

77.25% 63.00% 29.68%

Factors-
only
Model

82.96% 79.34% 80.84%

Fine-
tuned Pre-
trained
Model

88.82% 81.40% 73.70%

Mutimodal
Model

93.36% 94.27% 96.93%

Table 3.9: Accuracy, precision and recall of classifier models.
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The TPR is a metric that represents how many correct positive results oc-

curred among all positive samples available in the test dataset. FPR represents

how many incorrect positive results occurred among all the negative samples

available in the test dataset. These metrics are used in the ROC plots to analyze

the performance of a model. We compute these evaluation metrics according to

formulations in [133].

We find that the baseline model (Table 3.9, precision = 63.0% and recall =

29.68%) indeed has the lowest performance, indicating that cyberbullying in

images is not a problem that can be trivally solved. Indeed, in our analysis, we

find that cyberbullying in images is a highly contextual problem, which needs

special investigation about its factors. From Figure 3.10a, a low AUC of 0.79

indicates that this model has a large number of false predictions.

Next, we investigate the factors-only model (Table 3.9, precision = 82.96%

and recall = 79.34%). A better performance than the baseline model does in-

dicate that even adding just the factors (without showing a model the original

image) has quite powerful effect in classifying cyberbullying (Figure 3.10b, AUC

= 0.82). Another observation we make about the factors-only model is that the

recall is improved significantly, indicating that the identified visual factors do

demonstrate the ability to distinguish the true positives (cyberbullying labeled

images).

From our observations, the fine-tuned pre-trained model (Table 3.9, preci-

sion = 81.40% and recall = 73.70%) does not perform overall better than the the

factors-only model. Although the accuracy is higher, the recall of this model is

significantly lower, which indicates that this model is not able to distinguish the

cyberbullying images. On further examination, this model seems to be biased

towards non-cyberbullying images, which could be attributed to our dataset
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containing a significantly higher number of non-cyberbullying images com-

pared to the cyberbullying images. Ideally, for good performance, we expect

a model to have high precision and recall, and not just a high accuracy. We

attribute the low performance of this model to the lack of the identified cyber-

bullying image factors. For example, a cyberbullying image portraying a person

showing a gesture is interpreted by this model as just a person (since it is pre-

trained). However, this model lacks the capability to distinguish that the person

may be showing a gesture at the viewer.

Finally, we find that the multimodal classifier demonstrates the highest per-

formance (Table 3.9, precision = 94.27% and recall = 96.93%) among the different

classifier models. A high AUC (Figure 3.10, AUC = 0.96) is indicative of a good

performance on the false positives and the false negatives. Note that this model

is aware of the cyberbullying image factors identified in this chapter and also

the low-level image features. A high precision and recall of this model indicates

that the visual factors identified in this chapter are needed in order to distin-

guish especially the cyberbullying images. Due to the highly contextual nature

of cyberbullying in images, the differences between such images and harmless

images are very subtle. Therefore, we believe that the multimodal classifier

demonstrates that our visual factors can be used to detect cyberbullying images

accurately in real-world applications.

To interpret the model performance considering the unbalanced nature of

our dataset, we depict the balance between the precision and recall in the case

of the multimodal model in the precision-recall (PR) plot in Figure 3.11. The PR

plot indicates that the multimodal model is able to correctly classify cyberbul-

lying images with high precision.
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Performance Overhead in Mobile Applications

Mobile phones play a major role in engendering cyberbullying in images, espe-

cially due to the on-board equipment, such as cameras, on these devices. Thus,

our intention is that our models can be deployed on mobile devices to defend

users against cyberbullying in images. To this end, we carry out an experiment

to study the overhead of our model in a mobile application. We use the Py-

Torch Mobile framework [134] to deploy our multimodal model in an Android

application, running in a Samsung Galaxy S5 mobile phone, with a memory ca-

pability of 256 megabytes. Note that we conduct this experiment on an older

Android device in order to show that our model can be even run on weaker

mobile devices. We are interested in measuring two types of overheads poten-

tially introduced by running our model: (1) the model time, which is the time

taken to execute a forward pass of our model; and (2) the render time, which is

the time taken to resize an image according to the input dimensions needed by

our model, and to render a warning message to the user if cyberbullying is de-

tected in an image. To study the bearing of different sized photos, we measure

these overheads with respect to the photo size. In this experiment, we randomly

select 1000 photos from our test dataset and run them through the Android ap-

plication with our model. We depict both the model time and the render time

in Figure 3.12.

From Figure 3.12, we first observe that both the model time and the render

time are mostly within the millisecond range, showing that it is indeed practical

to adopt our models in mobile devices. We note that the size of the photo does

not have any significant bearing over the model time and the render time, as we

do not notice any effect of the size of image on the performance. We observe that
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Figure 3.12: Overhead evaluation of the multimodal model integrated into an
Android application.

the average model time is 753 milliseconds and the average render time is 0.06

milliseconds, both of which are sufficiently small. Thus, using the multimodal

model in mobile devices only cause a minor overhead on the devices.

3.5.3 Deployment and User-based Evaluation

False Positives Evaluation on American Sign Language Dataset

Our analysis of cyberbullying factors in images reveal that hand gestures play

a major role in carrying out cyberbullying. However, many harmless hand ges-

tures, such as those used in the American Sign Language (ASL), are quite ubiq-

uitous, and a concern with a cyberbullying model is that it may flag down such

benign images as cyberbullying images. In this experiment, our objective is

to conduct a false positive evaluation of our model on images from a publicly

available ASL dataset [135]. Figure 3.13 depicts two samples from this dataset.

We run the multimodal model on all the test images of the ASL dataset (the

ASL test dataset consists of 479 images). Our multimodal model correctly de-
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Figure 3.13: Image samples from the ASL dataset.

tects all 479 images as non-cyberbullying images. This indicates that our model

has learned to identify the harmful cyberbullying hand gestures, while the other

hand gestures, such as the ones in the ASL dataset, are precisely detected as

non-cyberbullying.

Validation of Cyberbullying Factors with a Wider Audience

In our work we introduce new factors of cyberbullying in images, as discussed

in Section 3.4.2 We compile these factors by carefully observing the images la-

beled as cyberbullying by participants who take part in our data collection task.

In this evaluation, we carry out a study to validate these factors with a wider

audience. A sample of our study is depicted in Figure 3.14 in Appendix 3.5.3.

In our study, we first show each participant, randomly selected image samples

depicting a factor of cyberbullying, and ask the participant to input the factors,

due to which the image samples have been reported as cyberbullying, in a free

text box. By providing a free text box, we ensure that participants are not biased

in any way by the factors compiled by us. Furthermore, we also provide par-

ticipants the option to choose the images as non-cyberbullying thereby further
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reducing any bias effects. We collect the free text responses for several cyberbul-

lying images depicting different attributes of the cyberbullying factors. Asking

participants to enter factors on their own allows the participants to think of fac-

tors by themselves without any bias and also allows us to validate our factors

from a larger audience.

Our study was approved by our institution’s IRB. We recruited 104 partici-

pants from Amazon MTurk for this study. Each task took about 10 minutes on

average, and we paid a reward of $2 for task completion. Three participants

failed our attention check questions and two participants had entered the exact

same text for all the images, and failed the attention check questions. After fil-

tering out these five participants, we were left with 99 total participants in our

study.

Next, we have to determine the factors from the free text entries that were

entered by our participants. We identified the cyberbullying factors from par-

ticipants’ entries by mining them for text keywords and phrases pertaining to

individual factors. For example, we used the words/phrases such as “pointed”,

“directed at me” and “aimed at me” to interpret that a participant is indicating

that the body-pose of the person in the image is the cause of cyberbullying, and

keywords like “gun”, “pistol” and “firearm” to interpret that a participant is

indicating that a threatening object, such as a gun, in the image is the cause of

cyberbullying. We provide a full list of these words and phrases in Table 3.11 of

Appendix 3.5.3. In the following, we discuss our findings from this study.

From the results of our study, the overall χ2 [136] shows significant varia-

tion (χ2(11) = 308.84, p < .0001) among the 12 conditions (e.g., body-pose, gun,

knife, middle finger, etc.) for the identified factors from participants’ entries,

indicating that different factors affected cyberbullying perception differently.
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For the body-pose factor, we presented two samples to each participant. The

first sample showed a person posing directly towards the viewer with a threat-

ening object (e.g., Figure 3.14 in Appendix 3.5.3). The second sample showed

a person posing away from the viewer with a similar threatening object. For

the image sample with the person directly posing towards the viewer, 84.61%

of participants who found this image as cyberbullying identified the factor to

be the body-pose of the person in the image. For the image sample with the

person posing away from the viewer, 72.41% of the participants found it to be

non-cyberbullying, and none of the participants identified the body-pose of the

person for this image sample. We think it is possible that the few participants

who chose this image sample as cyberbullying could base their opinions on the

threatening objects in this sample, although the body-pose of the person in the

image is not correctly identified as a factor by all the participants. From the

participants’ entries, we found that they were most concerned that the image

with the person posing towards the viewer is directly threatening the viewer by

this pose, from responses such as “Someone holding a gun and pointing it at the

camera could be a direct threat to you” and “She is aiming a gun and when I look at the

image it seems to be pointed directly at me”. Thus, the participants have identified

body-pose as a factor in the cyberbullying image.

Next, we discuss the results about the facial emotion factor in our study. In

our study, each participant was shown an image sample based on facial emo-

tions of joy, sorrow, anger and surprise. Overall only 9.43% of participants men-

tioned the facial emotion as a factor of cyberbullying, which is consistent with

our finding in Section 3.5.2 that the facial emotion does not have a significant

effect over cyberbullying in images. Thus, we believe that the facial emotion by

itself is not a strong factor of cyberbullying images.
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We then discuss the results about the hand gesture factor in our study. We

showed each participant an image sample of a person showing the middle-

finger, loser sign, and thumbs down hand gesture, all belonging to the hand

gesture factor category. Overall 80.4% of participants discussed these hand ges-

tures as factors of cyberbullying, with 97% of participants specifically mention-

ing the loser hand sign and 82.7% of the participants specifically mentioning the

middle-finger sign as factors of cyberbullying in images. Thus, the participants

have captured the hand gesture as an effective cyberbullying factor in images.

For the threatening object factor, we showed each participant image samples

depicting gun, knife, and noose, which belong to the threatening object factor

category. 88.29% participants discussed these threatening objects as the factor of

cyberbullying. We conclude that the participants have rightly identified threat-

ening objects as a strong factor of cyberbullying in images.

Lastly, we discuss the results of the social factor of cyberbullying in images.

In this factor category, we showed an image sample of an anti-LGBT symbol.

89% of the participants identified this social factor for causing cyberbullying

in images. We could observe that most participants consider this factor as a

strong factor of cyberbullying in images. From this user experiment, we ob-

served when the participants were provided free text boxes so that they can

enter the cyberbullying factors by themselves, these factors identified by the

participants were in agreement with the factors that we chose in our analysis.

Representativeness of Cyberbullying Images Dataset.

Cyberbullying in images is a complex phenomenon, and currently there are

limited datasets available to study such a problem. Our cyberbullying images

dataset takes a step closer towards understanding this phenomenon. In order
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to make our dataset representative of real-world cyberbullying in images, we

have asked participants to label cyberbullying images based on a very general

guideline (Section 3.2.4, cyberbullying is “an act of online aggression carried out

through images”). We carried out another study to compare the representative-

ness of the cyberbullying images in our dataset with another set of cyberbul-

lying images [137]. The authors of [137] have shared their dataset of cyberbul-

lying images with us. This dataset is composed of Instagram posts consisting

of images and the associated comments, and the posts (i.e., the images and the

associated comments together) are labeled by participants as cyberbullying or

non-cyberbullying. We first filtered those cyberbullying posts, which were la-

beled as cyberbullying due to the content of images, so that we could filter out

those posts that are only cyberbullying due to the associated comments. This

left us with 316 images. Next, we used the same guidelines as used by us to

label the images of the posts as cyberbullying. We recruited participants with

the same criteria as in our annotations task from Amazon MTurk for this task,

and used the same criterion for determining an image as cyberbullying. Over-

all, 31 images from their dataset were labeled as cyberbullying on their own.

We conclude that their dataset predominantly needs the associated comments

along with the images to be considered as cyberbullying, and the images on

their own are mostly non-cyberbullying in nature. In contrast, our dataset con-

tains a large number of images that are, on their own capable of causing cy-

berbullying, which indicates the images in our dataset are more representative

cyberbullying images in the real world.
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Capability Analysis of Existing Offensive Image Detectors

In this study, we focus on a deep analysis of the capabilities of state-of-the-art

offensive image detectors with respect to the cyberbullying factors. Table 3.10

summarizes the capabilities of these detectors pertaining to the cyberbullying

factors. In the following, we discuss in more detail about the capabilities of

each detector and some observations related to the cyberbullying factors.

Factor Google
API

Yahoo Open
NSFW

Clarifai
NSFW DeepAI Amazon

Rekognition
Body-pose ✗ ✗ ✗ ✗ ✓

Facial emotion ✓ ✗ ✗ ✗ ✓

Hand gesture ✓ ✗ ✗ ✗ ✗

Threatening
object ✓ ✗ ✗ ✓ ✓

Social ✗ ✗ ✗ ✗ ✗

Table 3.10: Capabilities of state-of-the-art offensive image detectors with respect
to cyberbullying factors.

We find that only Amazon Rekognition has the capability to detect body-

pose. For example, it can indicate whether the person in an image is turned to-

wards the viewer or at several angles from the viewer. Next, we find that both

Google Cloud Vision API and Amazon Rekognition can detect the facial emo-

tions of people in an image. The hand gesture factor is found to be detectable

only by the Google Cloud Vision API. Although Google Cloud Vision API has

this capability, we find that it only points out 40.61% of the cyberbullying im-

ages due to hand gestures as likely offensive. On a closer look, we find that the

Google Cloud Vision API can not detect certain kinds of hand gestures, such as

the loser sign that are prevalent in the cyberbullying images, as offensive.

We also find that Google Cloud Vision API, DeepAI, and Amazon Rekog-

nition are capable of detecting threatening objects, such as guns and knives.

We further study the detection capability of Google Cloud Vision API on two

threatening objects, i.e., guns and knives. We observe that although Google
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Cloud Vision API detects these objects in images, it flags down only certain

such images as unsafe or offensive (42.58% of cyberbullying images with guns

and 43.09% of cyberbullying images with knives). To analyze this observation

further, we inspect the labels produced by Google Cloud Vision API on images

with these objects. We observe that only images that had blood, wounds, or

gore accompanied with an object are labeled as likely offensive by this detec-

tor. However, images with a visual cyberbullying object directly pointed at the

viewer or a subject in an image, or the object brandished in a threatening fash-

ion are missed by this detector. Besides, we find that all the existing offensive

image detectors do not have the capability to detect the social factor of cyber-

bullying. Overall, we surmise that the detection capabilities of those existing

offensive image detectors can be expanded based on the findings of our work.

User Study Interface and Keywords

# Factor Keywords

1 Body-pose

’point’, ’direct’, ’at me’,
’at viewer’, ’tell me’,

’recipient’, ’toward’, ’aim’,
’stance’, ’posture’

2 Facial emotion

’joy’, ’happy’, ’smile’,
’laugh’, ’sad’, ’sorrow’,

’unhappy’, ’angry’, ’scary’,
’mean’, ’menacing’, ’intimidating’,

’shock’, ’surprise’

3 Hand gesture

’middle finger’, ’flip’,
’flick’, ’f*ck off’, ’loser’,

’L sign’, ’thumbs down’,
’gesture’, ’hand sign’

4 Threatening object
’gun’, ’firearm’, ’pistol’,
’knife’, ’noose’, ’rope’,

’weapon’

5 Social ’lgbt’, ’symbol’,
’anti-pride’, ’gay’

Table 3.11: Keywords used to identify factors.
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The fol low ing photo has been repor ted as 
containing cyberbullying content by some 

Internet users. Obser ve the image careful ly. 
Then in the box below , descr ibe why you think 

i t has been repor ted as containing 
cyberbullying content.

Image content that could be responsible 
for  cyberbullying.

|

I  don't think this image contains any 
cyberbullying content.

Figure 3.14: User study interface: participants are provided with a free text box
to enter factors on their own.

In this study, Cyberbullying is "an act of onl ine 
aggression or  harassment car r ied out through 

images". I f  you think that the depicted image f i ts 
this descr iption, categor ize i t as cyberbullying, 
other w ise categor ize i t as non-cyberbullying.  

Imagine the scenar io where the depicted image is 
sent to you on your  mobi le device. Consciously put 

yourself  in the scenar io, and categor ize the image as 
cyberbullying or  non-cyberbullying.

Cyberbullying

Non- Cyberbullying

Figure 3.15: Interface of image annotation task.
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Image Annotation Task Interface

3.6 Conclusion

In this task, we first analyzed the state-of-the-art offensive image detectors and

found them to be inadequate for cyberbullying images detection. We collected a

real-world cyberbullying images dataset that is representative of cyberbullying

faced by social media users. We discovered five visual factors of cyberbully-

ing in our dataset, and formulated a multimodal model based on those visual

factors. Our evaluation of our model shows that our model effectively detect

visual cyberbullying in images.



Chapter 4
Detecting and Explaining Traditional

Online Hate Speech

The social and economic destabilization caused by COVID-19 has produced a

range of emotions in people, including fear, anxiety, and even hostility. No-

tably, COVID-19-related hate speech is increasingly occurring on social media

that target people based on race/ethnicity, age, social class, immigration status

and political ideology. For instance, Asian Americans are frequent targets of

hate speech related to COVID-19, with derogatory terms for the disease, such

as “kung flu” and “chop fluey”, shared more than 10,000 times on Twitter dur-

ing March alone [10]. Meanwhile, the phrase “Boomer Remover”, a callous

nickname for COVID-19 used to mock the high mortality rate among older peo-

ple infected with the disease, has been shared more than 65,000 times on Twit-

ter [11]. Moreover, a recent report on online toxicity found a 900% increase in

hate speech towards China and Chinese people on Twitter [12], and traffic to

sites and posts that target Asians over COVID-19 has skyrocketed.

This recent wave of COVID-19-related hate speech has given rise to novel vo-
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cabularies and jargon that are used by Internet users to specifically target certain

communities. While current social media platforms such as Twitter and Face-

book are quite well equipped to detect hate-speech concerning traditional is-

sues [138], they are not capable of addressing the new jargon related to COVID-

19. Thus, there is a need to discover these novel jargon with respect to COVID-

19-related hate speech. However, Internet users often find innovative ways to

use such jargon [139, 140], in order to hide their true meaning (e.g., “xinpigs”,

“thankschina”), due to which they cannot be discovered in a straightforward

manner. Thus, new strategies based on deep analysis of such texts need to be

formulated to summarize such jargon by discovering the keywords that are re-

lated to them.

The detection of online hate speech should be accompanied with a strong

control strategy so that Internet users can be deterred from posting such texts.

User warnings and word removal recommendations [13, 14] are often used to

implement such control mechanisms. However, merely asking users to remove

hate-related keywords is not a strong enough control strategy, as users often

come up with alternate ways to post such texts by surpassing the detection

mechanisms. Moreover, the other words in a text that are semantically related

to such keywords (such as names of individuals or group) can still significantly

harm the targeted individuals or groups. Therefore, a control strategy that can

systematically point out these semantically related words is very important for

effectively controlling these instances of hate speech.

The new wave of hate speech related to COVID-19 is unique because, un-

like traditional forms of hate speech that are typically rooted in deep-seated

animosity, hate speech linked to the COVID-19 outbreak is spontaneous, in-

duced by fear, anxiety, and stress resultant of a rapidly-changing reality. Previ-
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ously, to understand why identity-based hate speech is becoming increasingly

common online [141], sociologists and criminologists have explored the roles

of strain and threat in fostering such attacks. While some works [142] theo-

rize that deviant behavior stems from a disjuncture between culturally-valued

goals, others show that financial strain, such as strain caused by unemploy-

ment/underemployment and low wages, can indeed engender harassing be-

havior towards immigration groups [143, 144, 145]. While fear prompted by the

pandemic might trigger long-held prejudice towards certain groups, such as

Asian Americans or immigrants, it is unlikely that hate-speech based on age or

socio-economic status is similarly an expression of embedded bias. Thus, more

information on COVID-19-related hate speech is needed to better understand

its impetuses.

In this chapter, we propose a novel approach to discover new keywords

linked to COVID-19-related hate speech and the word associations to effectively

implement its control. We collect a new dataset (Boomer-hate dataset) of tweets

targeting old people and supplement this dataset with an existing COVID-19

dataset (Asian-hate dataset) targeting Asian American community [21]. We

then train a BERT (Bidirectional Encoder Representations from Transformers)

model [44] to classify tweets as Hate Vs. Non-hate. Based on the analysis of

BERT attention mechanism, a transformer model [45] based on attention, we

develop an approach to discover new keywords (186 keywords targeting the

Asian community and 100 keywords targeting older people) related to COVID-

19. For implementing effective control, we develop a strategy based on the at-

tention attributed to these keywords by other words in a tweet, so that all sen-

sitive words in a tweet can be censored or reconsidered. We then undertake

an exploratory analysis of COVID-19-related hate speech and find that most
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of such high-impact, long distance attentions are learned in the earlier layers

of the BERT model (layers 2 to 7 for Asian-hate dataset) or later layers (layers

10 and 11 for Boomer-hate dataset) depending on the underlying data distribu-

tion. Our study also makes an important finding that in the case of Boomer-hate

dataset, the BERT model makes predictions based on the association of hate key-

words and targeted groups or individuals, a finding that is inline with existing

hate-speech research. Our finding paves the way for deep analysis of BERT for

detection of hate-speech as well as explaining BERT (known as BERTology), a

largely unexplored research area concerning BERT.

Our contributions are summarized as follows:

• New Dataset of COVID-19-related Hate Speech Against Old People.

We collect a new dataset of COVID-19-related hate speech against old

people. Our Boomer-hate dataset consists of 388 hate tweets and 1358

non-hate tweets from 1401 Twitter users. We will make our dataset pub-

licly available for further research. In our work, we supplement our own

dataset with another publicly available dataset [21] pertaining to COVID-

19-related Asian hate, so that our study covers a broad spectrum of hate

speech witnessed during COVID-19.

• COVID-19-related Hate Speech Keywords Discovery. We first train a

BERT model on the datasets to learn Hate Vs. Non-hate speech. We then

develop an approach based on BERT attention mechanism, to discover the

most attended-to keywords that are responsible for causing hate in hateful

tweets. We discover 186 keywords related to Asian-hate and 100 keywords

related to Boomer-hate using our approach. For effective control of hate

speech, we use our approach to find the words that significantly attend
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to the hate keywords so that they can be presented to users for removal

or reconsideration. The new keywords discovered by our approach are

an important resource for further hate-speech research, and we plan to

submit them to a popular online hate keywords repository 1.

• Exploratory Findings About COVID-19-related Hate Speech. Our ex-

ploratory findings specifically concerning BERT and hate-speech detection

sheds light on the inner-workings of the BERT model, using which we can

identify if the model uses specific word associations only to detect hate

speech, or uses a more complex association of words. We find that the high

impact attentions regarding hate speech are learned in the earlier layers of

the BERT model in case of Asian-hate and later layers in case of Boomer-

hate, and that BERT seems to be associating hate-related keywords and

groups or individuals for hate-speech predictions for Boomer-hate.

4.1 Data Collection Methodology

In our study, we collect a timely dataset of tweets from Twitter related to COVID-

19-related hate speech against old people. We then supplement this dataset with

an existing dataset [141] of COVID-19-related hate speech against Asian Amer-

ican community. We use this combined dataset to study online hate speech

associated with COVID-19 on Twitter.

Collection Methodology. We adopted a keyword-based approach to col-

lect COVID-19 tweets against old people using an online Twitter data collection

tool 2. We used the keywords “boomer” with COVID-19 related keywords such

1https://hatebase.org/
2https://github.com/Jefferson-Henrique/GetOldTweets-python
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as “Coronavirus” and “Covid-19” to search for such tweets. We restricted the

tweet collection to English language only. Using these keywords, we collected

28,827 tweets between December 2019 and June 2020 from 1401 Twitter users.

Figure 4.1 shows the percentage of tweets related to COVID-19 hate speech

against older people and the date ranges they were searched in. Since the date

ranges prior to Feb 24, 2020 yielded very low tweets, we have ignored those

date ranges. It can be seen in Figure 4.1 that the majority of the tweets linked to

COVID-19-related hate speech against old people were found in March, 2020.

We note that this may be the time, during which the adverse effects of the pan-

demic on older individuals were brought to light that could have triggered the

spike in the hate-related tweets during this time.

Boomer-Hate Dataset. Since there are no ground truth labels of COVID-

19-related anti old people hate tweets, we asked two experts in our research

team to label the collected tweets. We first cleaned the tweets based on senti-

ment polarity and removed the tweets that are neutral sentiment using Python

NLTK library 3. Existing studies of hate speech from the social science liter-

ature [146, 147] have shown that hate speech is directed at an individual or

group based on “an arbitrary or normatively irrelevant feature”, and that it casts

the target as an “undesirable presence and a legitimate object of hostility.” We

used a similar definition for our annotation task: (a) has one or more COVID-

19-related keywords, (b) is directed towards an individual or a group of older

people (Boomers), and (c) is abusive or derogatory.

The two experts labeled all the tweets in the dataset, which results in 388

hate-speech related tweets and 1358 non-hate-related or neutral tweets.

Asian-Hate Dataset. We used a publicly available dataset [141] of tweets

3https://www.nltk.org/
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Figure 4.1: Percentages of tweets collected according to date ranges. All date
ranges belong to the year 2020.

aimed at COVID-19-related hate speech against the Asian American commu-

nity. This dataset contains 2,319 labeled tweets, with 678 of them labeled as

hateful tweets.

4.2 Background

In this chapter, we focus on the BERT model [44], a large transformer [45] net-

work. Transformers consist of multiple layers where each layer contains mul-

tiple attention heads. Each attention head takes as input a sequence of vectors

h = [h1, ..., hn] corresponding to the n tokens of the input sentence. Each vector

hi is transformed into query, key, and value vectors qi, ki, vi through separate lin-

ear transformations. The head computes attention weights α between all pairs

of words as softmax-normalized dot products between the query and key vec-

tors. The output o of the attention head is a weighted sum of the value vectors,

and αij represents a dot product between the query and key vectors, expressed

in Equation 4.1 below.
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αij =
exp(qT

i k j)

∑n
l=1 exp(qT

i kl)
oi =

n

∑
j=1

αijvj (4.1)

The attention weights can be interpreted as controlling the importance of

every other token when learning the next representation of the current token.

BERT is trained using the “masked language modeling” strategy over bil-

lions of data samples, and more details about the training process can be found

in [44]. An important detail about BERT training is that a special token [CLS] is

added to the beginning of the text and another token [SEP] is added to the end,

so that multiple sequence inputs can be trained together.

4.3 Study Methodology

On a high level, our study is focused on studying the attention mechanism

of BERT models to find important patterns about COVID-19-related hateful

tweets. Since BERT is based on attention mechanism, the model learns the at-

tentions between different tokens in all the tokens of an input sequences. This

provides us a powerful tool to analyze linguistic associations in the dataset

that BERT is trained on. Our work leans on the exploratory research side of

BERT (known as “BERTology” [148, 149]). We first train a 12 layer, 12 attention

heads “bert-base-uncased” model [45] on our dataset (we use 90% for training

and 10% for testing). In the following sections, we analyze the BERT model

trained on the hate datasets, spanning several layers and attention heads to for-

mulate hate-speech control strategies and draw important observations about

how BERT detects hate speech.
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4.3.1 Keywords Discovery from BERT Attention Mechanism

The first objective of our work is to find new keywords of hate-speech from the

two datasets (Asian-Hate and Boomer-hate datasets). In this section, we dis-

cuss our approach for discovering these keywords and our findings regarding

the keywords found in the two datasets. In this experiment, we evaluate the

words that are most attended to, by the fine-tuned BERT model in each layer.

To achieve this, we aggregate the attention on each token of an input sequence

by all attention heads in each layer, as given below in Equation 4.2.

Aggrl(oi) = ∑
h∈H

oh
i (4.2)

In the Equation 4.2, H refers to the attention heads in each layer of BERT

model and oi refers to the attention weight of a token in an input sequence.

For each layer, we take the top-k (k = 5) tokens as potential keywords. We do

not consider tokens that are not split by the BERT word-piece tokenizer to re-

duce words normally occurring in English dictionary. We further remove those

words that are not part of a sentence 4. A summarized list of discovered key-

words are depicted in Table 4.1.

In our analysis of Table 4.1, we found several new keywords used to prop-

agate hate speech with respect to COVID-19-related Asian-hate and Boomer-

hate. In the Asian-hate dataset, we found that BERT attributes the most atten-

tion to keywords that are a combination of word-pieces related to Asian com-

munity (e.g., “chin”) and word-pieces related to the COVID-19 pandemic (e.g.,

“virus”), giving rise to keywords such as “chinkvirus” and “wuhanflu”. In the

Boomer-hate dataset, we found that certain keywords followed a similar pat-

4We use Python NLTK library’s POS tags
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Table 4.1: Summarized list of sample keywords in the datasets, most attended
to by BERT model.

Dataset Top Keywords
Asian-
hate
Dataset

chinkvirus, wuhanflu, chi-
nesebioterrorism, chinese-
viruscorona, chinaliedhdex-
periencedied, wholiedpeo-
pledied, chinamustexplain,
nochinainfuenceonamerica,
wuhanhealthorganisation,
abioweaponslab, fuckchina,
chinesebiologicalchemi-
cal, ccpvirus, prisonplanet,
makechinapay, neverforgetnev-
erforgive

Boomer-
hate
Dataset

boomerremover, gaslighters,
corbid, 60sfolks, boomerdeath,
karen, hitler , headassery,
thankyouboomer, yoof, deletus,
boomermoober, michiganders,
entomber, boomerentomber,
komekko, doubledowndonnie,
boomerdoomer, coronachan, so-
cialistremover, oldaf, immuno-
compromised, thintheherd

tern of word-pieces related to older people (e.g., “boomer”) and word-pieces

related to derogatory terms (e.g., “remover”), giving rise to keywords such as

“boomerremover”, but certain keywords did not necessarily follow any partic-

ular pattern, but seemed to be more contextual in nature (e.g., “karen”, “oldaf”

and “deletus”). We also found some keywords that were completely new, that

were simply derogatory to older individuals (e.g., “yoof” refers to the way an

older person may pronounce “youth”). These findings may indicate that while

users follow a particular pattern in the Asian-hate tweets, on the other hand

users seem to adopt more complex and varied techniques in the Boomer-hate

tweets.

Next, in order to study how these keywords are learned in each BERT layer,

we analyze the attention given to these keywords by each layer of the BERT

model. We recall that the BERT model used in this chapter has 12 layers of

multi-headed attentions. In this study, we analyze the keywords that are most
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attended to in each BERT layer. The Table 4.2 shows the top-k (k=10) most

attended keywords in each BERT layer, normalized across all attention heads.

We did not find any apparent pattern which indicated that particular keywords

could be receiving more attention in certain layers. Existing research in BERTol-

ogy such as [149] suggest that certain layers of BERT may be focusing on dif-

ferent word associations. Therefore, we further analyzed the layers from this

perspective. We focused on long-distance attentions in each layer based on the

attention on multiple tokens, as given by Equation 4.3.

Table 4.2: Top-k (k = 10) keywords attended to in each layer of BERT model.

Layer # Top-k Keywords
Layer 1 coronavirus, chinesevirus, wuhanvirus, chinavirus, ccpvirus, wuhancoron-

avirus, chinesevirus19, chinesecoronavirus, coronavirusoutbreak, chinalied-
peopledied

Layer 2 coronavirus, covid19, chinavirus, chinesevirus, wuhanvirus, chinaliedpeo-
pledied, realdonaldtrump, covid2019, xijinpingvirus, chinesevirus19

Layer 3 chinaliedpeopledied, chinaliedpeopledie, fuckchina, covid19, coronavirus,
wuhanvirus, chinesevirus, chinese, racismisavirus, chinavirus

Layer 4 chinaliedpeopledied, coronavirus, covid19, fuckchina, chinesevirus, chi-
naliedpeopledie, wuhanvirus, chinavirus, ccpvirus, chinesevirus19

Layer 5 covid19, chinaliedpeopledied, chinesevirus, coronavirus, chinavirus, wuhan-
virus, chinesevirus19, ccpvirus, fuckchina, covid2019

Layer 6 chinaliedpeopledied, chinesevirus, coronavirus, chinavirus, covid19, wuhan-
virus, chinaliedpeopledie, ccpvirus, fuckchina, chinesevirus19

Layer 7 chinesevirus, coronavirus, chinaliedpeopledied, wuhanvirus, chinavirus,
covid19, fuckchina, ccpvirus, wuhancoronavirus, chinaliedpeopledie

Layer 8 coronavirus, chinesevirus, chinaliedpeopledied, wuhanvirus, fuckchina, chi-
navirus, covid19, ccpvirus, wuhancoronavirus, chinaliedpeopledie

Layer 9 chinaliedpeopledied, coronavirus, chinesevirus, fuckchina, wuhanvirus, chi-
navirus, covid19, ccpvirus, chinaliedpeopledie, racismisavirus

Layer
10

chinaliedpeopledied, coronavirus, fuckchina, covid19, chinesevirus, chi-
navirus, chinese, chinaliedpeopledie, racismisavirus, chinesevirus19

Layer
11

coronavirus, covid19, chinaliedpeopledied, fuckchina, chinesevirus, chi-
navirus, wuhanvirus, chinese, ccpvirus, chinaliedpeopledie

Layer
12

chinesevirus, coronavirus, chinaliedpeopledied, covid19, wuhanvirus, chi-
navirus, ccpvirus, chinaliedpeopledie, racismisavirus, chinesevirus19

D =
∑N

i=1 ∑i
j=1 αij(x)× (i− j)

∑N
i=1 ∑i

j=1 αij(x)
(4.3)

The Equation 4.3 determines attention spanning across tokens, normalized

by their distances (i and j are indices). Therefore, higher attention tokens farther
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# Original Tweet Keywords
1 some chinese are horrible as fuck

chinaliedpeopledie boycottchina wuhanvirus
chinese, chinaliedpeopledie, boycottchina, wuhanvirus

2 itsing6 spokespersonchn fuck ccpvirus

chinesevirus

fuck, ccpvirus, chinesevirus

3 h*********f j****l s*************d fuck off commie
chinaliedpeopledied fucktheccp

fuck off, commie, chinaliedpeopledied, fucktheccp

4 5g does fuck u ask the kungflu fuck, kungflu
5 it’ll be the only party left come november

boomerremover
boomerremover

6 magkcovid unta it incompetent NA senators they

called the virus a boomer remover for a reason

magkcovid, boomer, remover

Table 4.3: Samples of control strategy.

apart would have higher distance attention. We computed this metric for each

attention head in a layer and the result is depicted in Figure 4.2, which depicts

a heat-map of the attention distance for each head in each layer for the two

datasets.

From Figure 4.2a which shows the results for Asian-hate dataset, we can

observe that the attention distance in earlier layers (layers 2 to 7) are higher

(depicted by darker color). This could indicate that the hate-related attentions

for Asian-hate spanning across tokens are predominantly learned in the earlier

layers of the BERT model.

On analyzing the Figure 4.2b which depicts the results of this experiment for

Boomer-hate dataset, we observed a different result, which may indicate that

in this case, the long distance attentions are learned in later layers of the BERT

model, with layers 11 and 12 showing overall higher mean attention distances.

This observation could be due to the fact that the hateful tweets in the Boomer-

hate dataset seems to be significantly correlated to a few, specific keywords (e.g.

“boomer” and “remover”). Another explanation of this observation could be

that the BERT model may be dynamically learning these associations according

to the underlying distribution of the training data.

We observed that in the later layers, most attention is given to certain words
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(a) Attention distance by layer and
head in the Asian-hate dataset.

(b) Attention distance by layer and
head in the Boomer-hate dataset.

Figure 4.2: Attention distance in the two COVID-29 datasets.

or phrases, and also to the start and end tokens (“[CLS]” and “[SEP]”) of the

BERT tokenizer. Therefore, in COVID-19 related hate tweets, the attentions in

earlier or later layers can be studied to understand the word associations in such

tweets, depending on the distribution of the training data.

4.4 Implementation and Evaluation

In the following, we discuss the implementation of our approach and evaluate

it by running it on the Asian-hate and Boomer-hate datasets to perform control,

and examine if BERT detect in detecting hate speech based on existing defini-

tions of hate.

4.4.1 Implementation

Our approach has been implemented as a Pytorch [130] model. We use the pre-

trained BERT model provided by Huggingface [150]. Experiments have been

performed on NVIDIA V100 GPUs.
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4.4.2 Hate Speech Control with BERT Attention

We utilize the results of the previous section to formulate a control strategy for

COVID-19-related hate-speech using BERT attention mechanism. We use the

attentions given to the keywords discovered in Section 4.3.1 by other words in a

sequence, in the layers found to have long distance word associations (from Fig-

ure 4.2a and Figure 4.2b). Since these other words contribute to the hateful con-

text in an input sequence, these words must also be pointed out for removal or

re-consideration. We then propose to a user to re-consider sending such words

or changing these words.

Existing studies on BERT attention mechanism [149, 148] suggest that the

attention formulation in Equation 4.1 prioritizes tokens with higher dot product

vectors. Hence, the attention mechanism of BERT can be used to find other

words in a tweet, that attend to the hateful keywords. In this chapter, we use

this phenomenon to find the top other words that attend the most to the hateful

keywords. Table 4.3 depicts randomly selected samples from the hate datasets

with hateful words and keywords highlighted.

In a real-world system, we propose a control strategy in which a tweet posted

by a user is run through our model to detect any hate content. If any hate con-

tent is detected in the tweet, keywords discovered in our work can be searched

in the tweet. If any of the keywords are found, our strategy of finding other

words that significantly attend to these keywords can be presented to the user

for removal or reconsideration, along with the hateful keywords.
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(a) Layer 0. (b) Layer 1. (c) Layer 2.

(d) Layer 4. (e) Layer 9. (f) Layer 11.

Figure 4.3: Attentions to Target words Vs. Non-target words in case of Asian-
hate.

(a) Layer 1. (b) Layer 9. (c) Layer 10.

Figure 4.4: Attentions to Target words Vs. Non-target words in case of Boomer-
hate.

4.4.3 Is BERT Detecting Hate Speech based on Existing Defini-

tions of Hate?

Several existing studies [151, 152, 153] suggest that hate-speech targets disad-

vantaged social groups in a manner that is potentially harmful to them. From

a broader perspective, these disadvantaged groups could also be individuals,

who could be targets of hate speech. Our objective in this experiment is to study

whether the BERT model implicitly detects hate-speech based on such existing

definitions of hate-speech from literature.
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We first identify the words that pertain to the targets of hate-speech in both

the COVID-19 datasets. We consider both groups (e.g. “Chinese”, “Seniors”)

and individuals (e.g. “Xi Jinping”) as targets for this experiment. Some samples

of the chosen target words are depicted in Table 4.4.

Target Samples
Groups han, chinese, chinese-

tourists, taiwanese, libs,
babyboomers, magats,
muslim, jews, asians,
koreans, african, africans,
christians, indians

Individuals spokespersonchn, jinping,
trump, jackma, pompeo,
boris, potus, chr******s,
m******7, g*********8

Table 4.4: Samples of words chosen as targets. Username identifiers have been
removed to preserve user identities.

Our objective is to study to what extent BERT model may be using associa-

tions between hateful keywords and such targets words to detect hate-speech.

We base our study on the attention that these keywords may be attributing to

these target words. If the model is learning to pay higher attention to the target

words from the keywords (corresponding to higher attention weights) than the

non-target words in a tweet, this could indicate that the BERT model strongly

uses these associations to detect hate-speech. For each tweet in both the COVID-

19 datasets, we capture the attention weights from the the hateful keywords to

the target words such as the ones in Table 4.4. We then plot the CDF of such at-

tention weights for certain layers for both the Asian-hate and the Boomer-hate

datasets. Our results are presented in Figure 4.3 and Figure 4.4, respectively for

the Asian-hate dataset and Boomer-hate dataset.

In the Asian-hate dataset results depicted in Figure 4.3, we plot the CDF for

layers 0, 1, 2, 4, 9 and 11 for target words (depicted by red curve). We chose
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these layers so that we have good representation from all depth levels and also

from our result from Section 4.4.2 that for this dataset, longer distance associa-

tion may be formed in the earlier layers. For comparison, we also plot the CDF

for non-targets words (depicted by blue curve) occurring in the tweets, which

are ordinary words. We found that for this dataset, the BERT model seems to

pay similar attention for keywords and target/non-target words. While prelim-

inarily this may indicate that BERT does not learn well to associate keywords

with target words, we found that BERT learns the subtle differences between

hate and non-hate tweets (e.g., “chinese get out” and “stop telling chinese to get

out”), based on associations between keywords and both target words and non-

target words. Our analysis of the Asian-hate dataset led to the observation that

although the keywords and target words are themselves not hateful, their asso-

ciations could be hateful in hate tweets. In order to make correct detection, the

BERT model seems to learn the associations between these two kinds of words

in conjunction with the other non-target words in the tweet to make accurate

predictions. Thus, we observed that BERT does form association between hate

keywords and target words, however it does not only depend on these associ-

ations to make predictions, which may be the reason why BERT is found to be

more powerful than other sequence models such as recurrent neural networks.

Next, we analyze the Boomer-hate dataset using the same procedure de-

scribed above. The results of our experiment on Boomer-hate dataset is depicted

in Figure 4.4. We found the results on this dataset to be quite different from the

results in the case of Asian-hate dataset. In this case, the BERT model seemed

to be associating more strongly between the hateful keywords and the target

words (depicted by red curve), when compared to the non-target words (de-

picted by blue curve). For example, in Figures 4.4a and 4.4c, we can see clearly,
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the observation that association between target words and hateful keywords

are given a lot more attention than the non-target words. Even in Figure 4.4b (a

later layer with more distance associations, Section 4.4.2), this trend seems to be

visible.

Upon further investigation, we observed that this behavior could be due

to the reason that the Boomer-hate dataset is more sparsely containing hateful

keywords and the target keywords. For example, in the case of Asian hate, we

observed a lot of different targets ranging from groups (e.g., “chinese”, “tai-

wanese”, “asians”) and keywords (e.g., “kungflu”, “wuflu”, “wuhanvirus”).

However, in the case of Boomer-hate we found relatively fewer number of such

words, as the target is mostly singular (older people only) and the hate key-

words therefore, are also quite limited. Hence, we observed that in such cases,

where a less varied patterns need to be learned by BERT model, it depends

more on learning association between certain words than learn more subtle and

varied associations.

4.5 Conclusion

In this task, we focused on the COVID-19 related hate speech detection and

control using the attention mechanism of BERT. We discovered several novel

keywords of online hate speech in Asian-hate and Boomer-hate datasets, and

identified important findings about how BERT detects Asian-hate and Boomer-

hate. We then used our approach to control hate speech online, by pinpointing

the exact words or phrases that are responsible. Our evaluation shows that our

approach is able to effectively detect and control online hate speech.



Chapter 5
Towards Understanding and

Mitigating New Waves of Online

Hate

Online hate negatively transforms our online and offline societies. While hate

speech has existed as a critical social issue from quite some time, recent ad-

vancements in Internet and social media platforms have led to a massive rise in

online hate. In a recent Pew survey [1], roughly four in ten (i.e., 41%) Americans

reported personally experiencing varying degrees of harassment and bullying

online, and Internet users all over world (i.e., 48%) have also reported having

similar experiences [2, 3]. Furthermore, the odds of users experiencing abuse

have increased by 1.3 times over the past three years and young adults aged

18–24 and vulnerable communities such as LGTBQ+ reportedly face heightened

levels of risk [2].

Online hate is not a static problem. It is highly influenced by global events

and the changing technological landscape. For example, recent polarizing events
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such as the COVID-19 pandemic [4], the 2020 presidential elections [30] and

the Black Lives Matter (BLM) [31] protests have shown how emotions of fear,

uncertainty, and anxiety involved in these episodes can set-off new spikes in

unprecedented online hate [32]. As an instance, the new waves of anti-Asian

hate [4, 5], mask-related hate [6, 7] and vaccine-related hate [8, 9] set-off by the

COVID-19 pandemic have had a devastating effect on our society globally. As

our cyberspaces move into the future consisting of advanced technologies such

as Web 3.0 [15], augmented reality [16] and the Metaverse [17], online hate is

bound to take on new, more sinister shapes. Thus, efforts to effectively counter

such new eruptions in online hate must be taken immediately.

The enormous eruptions of new online hate waves and their increasingly

complex landscapes have unfortunately not induced a corresponding improve-

ment in their detection capability, and existing online hate detection systems

have consistently lagged behind in flagging down new hateful content. For ex-

ample, the recent waves of anti-Asian hate [4, 5], mask-related hate [6, 7] and

vaccine-related hate [8, 9] encountered during the COVID-19 pandemic could

not be sufficiently contained by online hate moderation tools deployed in on-

line social networks (OSNs), as a result of which online hate against minority

communities and other vulnerable groups spread unabated during this period.

While these same detection system seemed quite effective in controlling tradi-

tional online hate such as violent extremism [33, 34] and trolling [35], they were

found struggling to stop the recent, new waves of online hate [36].

To understand why existing detection systems have not been able to keep

pace with the problem of new waves of online hate, the gap between the detec-

tion paradigm employed by these systems and the new online hate paradigms

should be contemplated. Existing detection systems [48, 103, 43, 104, 42] are
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largely based on supervised artificial intelligence and machine learning (AI/ML)

models that are trained on large datasets [154, 153, 155] of hate speech collected

from OSNs, that are traditionally text-based. First, a limitation of this paradigm

is that these models are static, i.e., they are applicable to only traditional con-

texts of online hate. However, the context of new waves of online hate rapidly

changes. To address new waves of online hate, we need new systems that can

learn from the traditional contexts of online hate, and apply the learned knowl-

edge to new contexts of online hate. Second, the existing detection systems

need large datasets to be trained sufficiently, since they use supervised learn-

ing paradigm. However, large datasets of new waves of hate are unavailable

and it is not feasible to collect large datasets in a timely manner. Thus, new

learning paradigms that can sufficiently address this problem with a few train-

ing samples need to be investigated. Third, since perpetrators represent new

hate waves in many different formats such as text, images and videos, existing

methods that are based on text alone cannot be used for other representations.

New approaches that can incorporate different representations of hate need to

be investigated.

In this chapter, we aim to practically address the problem of new waves

of online hate, by studying it, understanding its challenges, and formulating

automatic systems that can detect it. Our intuition, informed by previous stud-

ies [5, 7, 8] and reports [46, 2], is that new waves of online hate are characterized

by rapidly changed contexts. We first report a systematic study on the phe-

nomenon of new online hate waves, by collecting a large dataset of 3312 hateful

users and their 4042454 tweets on Twitter, and studying their tweeting behav-

ior before and after the COVID-19 pandemic. We find that before the pandemic,

the tweeting behavior of these hateful users were related to traditional hate con-
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texts, which completely changed into online hate related to new contexts post

pandemic. We also found that these users were increasingly using newer rep-

resentation techniques, such as images and memes to spread hateful content.

Next, we conducted a large scale study of the effectiveness of state-of-the-art, ex-

isting systems of hateful content detection such as Perspective API [47], Google

Cloud Vision API [48] and MMBT [49] on datasets of COVID-19-related 1,679

tweets, and found that these detectors are severely limited (average F1 score

of 0.31) against new waves of hate tweets. We then identify key challenges

to the timely and effective intervention of new waves of online hate: (i) learn

knowledge from traditional hate contexts and apply learned knowledge to new

contexts, (ii) training with just a few samples of new hate contexts, and (iii) the

need to support multiple representations of online hate.

We introduce our framework, Attribute-based Zero-shot Multimodal Learn-

ing (AZL), that can detect new waves of online hate by addressing each of

those challenges. AZL uses an attribute-based learning methodology [50] to

transfer important knowledge about traditional hate contexts to the detection

of new hate contexts, uses Zero-shot learning [51] to effectively classify new

hateful contexts with just a few training samples, and uses Multimodal rep-

resentation techniques [156] to incorporate different representations of hateful

content. We evaluate AZL from several different perspectives, and found that

our framework achieves state-of-the-art-detection average F1 score of 0.72 on

new hate contexts, such as Asian (76.52%), mask (67.47%), vaccine (70.73%) and

boomer (72.34%) related hate..

Our paper makes the following contributions:

• New understanding about the nature of new waves of online hate. We
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report the first systematic study on the nature of new waves of online hate,

and the effectiveness of existing hateful content detection systems on new

hate contexts. Our study, focusing on the COVID-19 pandemic as a case-

study, sheds light on how nature of hate rapidly changes, with rapidly

changing contexts, and changing representations. Our study shows how

these new forms completely evade existing, state-of-the-art techniques of

hateful content detection that are used in real-world systems for hate mod-

eration. Our studies highlight the gap between these new waves of online

hate and the detection capabilities of existing systems. Furthermore, our

studies emphasize the need for a paradigm shift in the way we approach

the issue of practically addressing hateful content moderation.

• New framework for detecting new waves of online hate. We devel-

oped a novel framework called AZL to detect new waves of online hate.

AZL is designed to address the challenges of detecting new hate waves.

Our framework uses attribute-based learning to use transferable knowl-

edge from traditional hate contexts to detect new hate contexts, zero-shot

learning to detect new hate contexts using only a few samples, and multi-

modal representation learning to address different representations of on-

line hate. Our framework takes a first step toward more effective control

of the emerging threat of new waves of online hate.

• Multi-faceted evaluation of AZL on 4 new hate contexts and 2 differ-

ent representations. We evaluate our framework on four new contexts

of hate encountered during the COVID-19 pandemic, such as anti-Asian

hate, hate related to mask, vaccine-related hate and hate towards older

individuals (a.k.a “Boomer” hate) and two different representations, i.e.,
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tweets and memes. Furthermore, we also evaluate our framework from

several different perspectives, such as ablation studies based on the dif-

ferent components of our framework, performance in real-world settings

and extensive comparisons against existing real-world systems. Results

demonstrate AZL to be highly effective on new waves of online hate.

5.1 Examining New Waves of Online Hate

The phenomenon of hate is not new. Earlier generations have known this phe-

nomenon in other forms, such as hateful speeches and news articles. With the

coming of the digital age, hate found a new platform, in terms of the Internet,

and online hate emerged has a critical issue. As the society and technological

innovation evolves, online hate takes new shapes. Recently, online hate was a

major damaging effect of the COVID-19 pandemic globally, highlighted by sev-

eral media organizations [10, 12] and research works [4, 157]. In this section, we

studied the nature of the news waves of online hate considering the COVID-19

pandemic as a case-study. In the following, we present our study that illustrates

how new waves of online hate contexts emerge after traditional ones, and how

new representations could play a major role in these news waves. Following

the study, we scrutinize the performance of existing state-of-the-art detectors,

and discovered that they have serious limitations when used on new waves of

online hate.

5.1.1 Data Collection

To examine new waves of online hate, we carried out two data collection tasks.
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5.1.2 Hateful twitter users dataset

To collect this dataset, we started with a set of 11 seed users, who have been

reported [158] to post hateful content on Twitter. Then, we augmented the seed

users set with their followers, and we used the Tweepy [159] framework to col-

lect these followers. We collected a total of 3312 users whose accounts were

not suspended, deleted or made private. We then proceeded to collect all the

historical tweets of these users. We collected a total of 4042454 tweets, out of

which 506505 were made before the first reporting (i.e., December 2019 [160])

of the pandemic, and 3535949 tweets were made after the first reporting of the

pandemic.

5.1.3 COVID-19-related tweets and memes dataset.

To collect tweets and memes related to COVID-19, we compiled a set of 195

hashtags that we found to be prevalent during the COVID-19 pandemic [161,

162, 163, 164], which consisted of diverse COVID-19-related hashtags such as

covidiots, ChinaVirus, americafirst, WearAMask, trump2020 and COVID19Vaccine.

COVID-19-related Tweets Collection. Twitter Streaming API can only be used

to collect real-time tweets, and Twitter Search API can only collect tweets in the

past seven days. Therefore, we used snscrape [165] to collect tweets during the

period from January 1, 2020 to September 30, 2020, and Twitter Streaming API

from October 1, 2020 to June 30, 2021 (i.e., 18 months) based on the hashtags.

In total, we obtained 507 million tweets published by 38 million users after re-

moving all tweets not in English and retweets. Based on different definitions of

hate speech in the literature [166] and on Facebook [167], we present a more spe-

cific definition related to COVID-19 used in our data labelling. We defined hate
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speech as texts/comments in tweets used to attack a person or a group based

on their social category, such as race, sex, sexual orientation, gender, national

origin, religion, disability, occupational status, or political belief. More specifi-

cally, text that promotes/incites violence, contains dehumanizing comparisons,

tries to segregate/exclude, harass with/without racial epithet, expresses inferi-

ority and contains profanity/offensive language were all considered offensive

speech. We first utilized the Perspective API [47] to obtain the initial subset of

tweets. Perspective API scores texts based on how toxic they are and gives a

score between 0 and 1. We randomly sampled 36,000 tweets from our dataset

and used Perspective API to score each tweet. 1,235 tweets having a toxic score

greater than 0.9 were retained. To remove potential bias that could result from

Perspective API, another 450 tweets with toxic scores lower than 0.9 were also

retained. Finally, three internal annotators labeled 1,679 tweets after removing

duplicates. Of the 1,679 tweets labeled, 554 were labeled as hate speech and

1,125 as non-hate speech. If two annotators had the same label which is differ-

ent from the third annotator, the label of the two annotators was adopted unless

the third annotator provided a clarification based on our definition.

COVID-19-related Memes Collection. Next, we proceeded to use the hashtags

to search for memes on Twitter. We only searched for tweets with image content

(i.e., potential memes) based on the list of compiled hashtags for the period of

February 2020 to April 2021. To control the size of the collection to a usable limit,

we randomly selected one month from each quarter in the collection period.

Using our COVID-19-related hashtags, we collected a total of 1,025,702 potential

memes from February 2020 to April 2021.

Next, we used certain criteria to exclude memes that are invalid. First, we re-

stricted our dataset to consist of only those memes that are in English. Since we
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focus on multimodal memes [24] (i.e., images with superimposed text), we first

removed memes that did not have any text in them. We also removed memes

with very long text (> 30 words) to exclude screenshots and news articles, us-

ing an open-source tool Tesseract [168]. Then, we excluded those memes that

did not have any image-based content (or Regions of Interest) in them (i.e., just

plain background images) using the YOLO object detector [169]. Next, we re-

moved duplicated memes. Finally, we were left with 114,064 valid memes in

our dataset.

We annotated a subset of memes in our dataset. We developed a rigorous

annotation process to establish the ground truth of memes based on the meme’s

content. In our annotation scheme, we annotated any meme as hateful, that is:

(1) directed towards an individual or a group of people, organization or country,

and (2) attacks victims using violent or dehumanizing speech, scandalization

of personal appearance, propagates harmful stereotypes or misrepresentation,

makes statements of inferiority, expressions of contempt, disgust or dismissal,

cursing and calls for exclusion or segregation [49, 167].

We annotated the memes in two rounds. In the first round, the annotators

independently labeled a set of randomly selected 200 memes. After indepen-

dent labeling, the annotators resolved disagreements and updated the labeling

guidelines based on the discussions. This resulted in the final annotation crite-

ria presented above. In the second round, a subset of randomly selected 5000

memes were annotated independently by all annotators. This round led to near-

perfect inter-rater agreement. Overall, 1,341 memes were annotated as hateful

and 3659 memes were annotated as non-hateful.
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Figure 5.1: New waves of online hate context.

5.2 New Waves of Online Hate Contexts During the

COVID-19 Pandemic

In this study, we wanted to find out whether global events spiral off changes in

the online hate contexts in hateful users’ tweets. To study the change in contexts

of online hate, we used the dataset of hateful Twitter users and their tweets (Sec-

tion 5.1.2), and conducted a large-scale study of these users and their tweets pre

and post the COVID-19 pandemic. We studied the tweet behavior of these users

regarding traditional and new contexts of online hate. The traditional contexts

were related to traditional online hate, such as hate against ethnic groups (e.g.

Mexican and African-American), gender-related hate (e.g. women), and hate

against religious minorities (e.g. antisemitism and anti-Muslim sentiment). The

new contexts were related to recent reports of online hate during the COVID-19

pandemic, such as anti-Asian hate (e.g. terms like “Chinese virus” and “Wuhan
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flu” used to refer to COVID-19), hate related to mask and vaccine mandates,

and Ageism-related hate (e.g. COVID-19 referred using terms like “Boomer-

remover”). To determine the context of the tweet, we matched those terms to

the tweet text. Next, to examine the tweeting behavior of these hateful users

regarding traditional and new contexts of online hate pre and post pandemic,

we constructed their networks, wherein each node represents a user’s correla-

tion with traditional or new hate contexts, and edges represent the similarity

of the tweets contexts between each user. We visualized the tweeting behavior

of these users from June 2019 to June 2020, i.e., 6 months before and after the

first reporting of the COVID-19 pandemic [160], and correlated them with the

development of the COVID-19 pandemic [160], depicted in Figure 5.1.

To determine the statistical significance of the evolution of hate context pre

and post the pandemic, we used the Wilcoxon hypothesis test [170], which is a

non-parametric alternative to the dependent samples t-test. The Wilcoxon test

was used since the data does not approximate a normal distribution (an as-

sumption of the dependent samples t-test), but satisfied the assumptions of the

Wilcoxon text. For the significance test, we considered the users that had tweet

activity at least 6 months before and 6 months after the first reported case of the

pandemic. We found that users had significantly changed the hate context in

the months after the first pandemic report (Z = 7971.0, p < 0.001), with XX%

users changing their tweet behavior from traditional contexts to new contexts of

online hate. In the tweets posted before the pandemic by these users, a majority

of the tweets were focused on traditional hate contexts. However, after the pan-

demic, a clear change towards new hate contexts can be observed in Figure 5.1

(e.g. in March 2020 and April 2020). A strong similarity between the users’

tweeting behavior is also observed, depicted by the density of edges. We also
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observed a correlation between the hate context and the timeline of the COVID-

19 pandemic [160], with increasingly new online hate being disseminated with

the increasingly severe developments of the pandemic.

What these results indicate is that the contexts of online hate changes with

global events, and new hate contexts emerge. For example during the COVID-

19 pandemic, the context of hate changed from traditional hate-related contexts,

to new contexts such as masks, vaccines and anti-Asian hate. This rapid change

in context is problematic for existing online hate detection systems which evi-

dently could not effectively detect the new hate contexts, as evidenced by the

wave of new hate cintexts following the first pandemic report in Figure 5.1.

Thus, detection systems for addressing new contexts of online hate waves should

address two challenges: (1) learn to effectively use knowledge about traditional

hate contexts to detect new hare waves, (2) be trained in a timely manner with

few data samples.

5.3 Different Representations of New Waves of On-

line Hate

Next, we wanted to study the role of different representations of online hate,

other than traditional text-based representations in the new waves of online

hate. To this end, we conducted a study about the visual content in the full

set of tweets collected from the hateful users. In this study, we examined the

proportion of visual media in the dissemination of online hate, pre and post

the pandemic (i.e. in traditional vs. new contexts). We counted the number

of tweets having visual media (i.e., images and videos) for each month, from
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June 2019 to June 2020. Figure 5.2 depicts the results of our study. We used

the Wilcoxon hypothesis test to determine the statistical significance of the role

of different representations of online hate pre and post the first report of the

pandemic (red line in Figure 5.2). We found that users were found to have sig-

nificantly used different representations of online hate in the months after the

first pandemic report (Z = 124706.0, p < 0.001), wherein an increase of XX%

was observed in the usage of different representations post pandemic first re-

port. We found that before the pandemic, the role of visual media in spread

of online hate (i.e., blue bars in Figure 5.2) is not significant. However, in the

months following the pandemic, we observed a rise in the use of visual media

in the spread of online hate (i.e., red bars in Figure 5.2). A closer inspection of

these tweets revealed a significant usage of image-based representations such

as memes to convey the hateful meaning about vaccine, mask and Asian-hate

normally conveyed via traditional, textual means. What this study indicates is

that detecting new waves of online hate in the form of different representations

is an important challenge for detection systems.

5.4 Effectiveness of Existing Techniques Against New

Waves of Online Hate

Thus, preliminary evidence presented in the previous sections indicates that

new waves of online hate pose significant challenges in terms of the need for

transferring knowledge from traditional hate to detection of new waves of on-

line hate, availability of only a few samples of new contexts of online hate, and

different representations of new waves of online hate. Next, we aimed to find
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Figure 5.2: Representation of new waves of online hate.

out how effective the state-of-the-art systems and AI/ML models are against

the new waves of online hate.

We carried out a measurement of several state-of-the-art existing systems

(i.e., Clarifai Text Moderation [104], Perspective API [47], Azure Text Modera-

tion [171], IBM Toxic Comment Classifier [102], Google Cloud Vision API [48],

Clarifai NSFW [104], and DeepAI [43]) and pre-trained AI/ML models (i.e.,

MMBT [49], ViLBERT [172], VisualBERT [82], and VisualBERT COCO [82]) against

the samples of COVID-19-related tweets and memes dataset (Section 5.1.3). We

chose these systems and models so that we can cover both the hate context and

representation. Our objective in this measurement experiment was to study the

capability of these existing models on the new waves of hate only, and we do

not propose that these systems and models are not effective against traditional

hate. We depict the results of this measurement experiment in terms of preci-

sion, recall and F1-score in Table 5.1. We found that the existing systems are

consistently deficient in addressing new online hate contexts, in both text and
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Detection
System/
Pre-trained
Model

Input Type Precision Recall F1-score

Clarifai Text
Moderation

Text

0.69 0.16 0.27

Perspective
API

0.49 0.31 0.38

Azure Text
Moderation 0.54 0.21 0.31

IBM Toxic
Comment
Classifier

0.69 0.15 0.25

Google
Cloud Vision
API

Multimodal

0.31 0.03 0.06

Amazon
Rekognition

0.41 0.01 0.02

Clarifai
NSFW

0 0 0

DeepAI 0.28 0 0.01
MMBT [49] 0.25 0.27 0.30
ViLBERT 0.33 0.30 0.32
VisualBERT 0.35 0.13 0.19
VisualBERT
COCO

0.47 0.02 0.04

Table 5.1: Detection capability of existing systems and pre-trained models on
evolving hate.

other representations such as memes, observed from the low F1-scores reported

by these systems and models. In fact, the highest F1-score was found to be just

0.38 (Perspective API), which is not sufficient for practical use.

While these existing systems address traditional hate quite sufficiently, they

are quite limited in case of new waves of hate. New systems, that address the

challenges of new waves of hate need to be formulated.

5.5 Our Approach

Informed by the findings about the new waves of online hate, we design an

approach that is based on two key observations:
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• Online hate is characterized by certain attributes. These attributes can be

learned from traditional online hate datasets.

• Since the datasets of new waves of online hate are small, they cannot be

used for supervised learning. Alternative ML techniques that can be used

with small datasets should be used for new waves of online hate.

5.5.1 Approach Overview

The main components of our approach are depicted in Figure 5.3. We first

collected small datasets of online hate witnessed during the recent pandemic.

Specifically, we collected samples related Asian, mask, vaccine and Boomer (i.e.,

Ageism during COVID-19) hate. In our work, we used the generalized zero shot

learning paradigm [51]. We used the new waves of hate as inference datasets,

and used samples from traditional online hate datasets [153, 154] as training

datasets. We first extracted attributes of online hate in samples from all the

datasets. Then, we constructed entailment labels for all samples based on hate

or non-hate label and the online hate attributes. Next, we trained our attribute-

based zero shot learning model, AZL, on the traditional online hate samples.

We then ran our trained model on the new waves of hate based on entailment

labels. In the following, we provide in-depth discussions on each of the compo-

nents involved in AZL.
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Figure 5.3: AZL overview.

New Wave of Hate Type Number of Samples
Asian-hate 223

Mask 221
Vaccine 62

Boomer (i.e., Ageism during COVID-19) 177

Table 5.2: New waves of hate types.

5.5.2 Data Collection

5.5.3 Online Hate Attributes

Although traditional online hate and new waves of hate differ significantly in

their compositions, such as the target of hate, or the subject of hate, they have

some attributes that are generic to online hate. These online hate attributes can

characterize online hate in general, whether the samples belong to traditional

hate or new waves of hate. In our framework, we use these attributes to build

classifier model that is trained to understand these attributes from traditional

online hate, and then use these attributes to make decisions on new waves of

hate. In this way, our classifier model learns to apply knowledge about online

hate by learning it on traditional online hate and applying it to detect new waves

of hate. In our work, we use five attributes that have been compiled based

on existing work in the psychology [173], computer science [154, 174, 175] and

social sciences [176, 177] domains. We do not claim that these five attributes are
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a complete list of online hate attributes, but we use them to demonstrate the

effectiveness of attribute-based learning in detecting new waves of online hate.

• Sentiment. Sentiment of a text depicts the polarity of the text towards a

positive or negative feeling. Online hate in general is associated with neg-

ative sentiment [175, 174], since hate itself might originate from negativity

towards an entity. The sentiment polarity contrast between regular con-

tent and hateful content is a useful attribute in distinguishing online hate

and non hate. Furthermore, sentiment is a general attribute of online hate,

and thus characterizes both traditional as well as new waves of hate.

• Target. Online hate is characterized by the presence of certain actors, in-

cluding hate speech instigators and targets [178, 179]. Targeting a commu-

nity or individual because of their immutable or prominent characteristics

is a known tactic of perpetrators. Thus, the presence of a target is an im-

portant characteristic of online hate. For example, in traditional contexts,

vulnerable groups such as women and African-Americans have been targets

of online hate. In recent times, other groups such as Asians and older peo-

ple have been targets of online hate, especially during the pandemic. The

presence of a target is thus a generalized attribute of online hate.

• Othering. “Othering is a phenomenon in which some individuals or groups

are defined and labeled as not fitting in within the norms of a social group.

It is an effect that influences how people perceive and treat those who are

viewed as being part of the in-group versus those who are seen as being

part of the out-group” [180, 173]. In simple terms, othering is the expres-

sion of an “us vs. them” feeling. In social media, othering is prevalent in

posts containing online hate [173, 175]. Othering thus, is found in online
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hate speech in general, and therefore used as an attribute of online hate in

our work.

• Derogatory terms. Derogatory terms are words or phrases used to de-

mean, humiliate or belittle targets in a piece of text. Such terms are not

only relevant to online hate, but are highly prevalent in online hate. For

example, in traditional contexts, derogatory terms such as n**ger, b**ch and

chi*k have been used to demean certain minority groups. More recently, in

the new waves of hate witnessed during the COVID-19 pandemic, deroga-

tory terms such as “kung flu” and “chop fluey” were used to target the

Asian community, and the phrase“Boomer Remover” was used to mock

the high mortality rate among older people. Derogatory terms are in gen-

eral attributes of online hate.

• Threatening terms. Threatening speech is “the speech, when heard or

seen by its target, would result in serious apprehension of danger, at the

hands of either the speaker or a third party who responds to the speech.” [181].

Threatening terms are a general aspect of online hate, often found in ex-

treme hate speech wherein perpetrators use such terms to depict their in-

tent.

In our work, we extracted these attributes using text mining and other NLP

techniques. We extracted sentiment using the Google sentiment analyzer [182],

and each sample was allocated a sentiment between 0 and 1. We extracted

the target using named entities, wherein we used Python NLTK tokenization

and Spacey [183], and used the entities PERSON, GPE, ORG, NORP as targets.

We extracted othering if samples contained othering words or phrases such as

they, them, their, you people, etc. We extracted derogatory terms in samples using
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Profanity-check [184]. Lastly, we used the Perspective API to point out threat-

ening terms [138].

5.5.4 AZL: Attribute-based Zero Shot Classification

AZL model. We propose to detect new waves of online hate, by approaching

this classification problem as a textual entailment problem, in an attribute-based

zero-shot learning setting. This is inspired by: (i) Entailment allows us to cre-

ate hypothesis based on attributes of online hate. Since we want to use tradi-

tional online hate to learn generalized attributes to make prediction about new

waves of hate samples, we need efficient ways to encode these attribute so that

a classification model can learn to detect such samples using the attributes. En-

tailment allows us to convert simple binary labels (i.e., hate and non-hate) into

hypothesis statements (e.g., this text is hateful since it contains othering). (ii) Zero-

shot learning paradigm is suitable when a new wave of hate occurs, wherein

large datasets are definitely not available for a conventional supervised learn-

ing paradigm. Therefore, exploring detection of new waves of hate as a tex-

tual entailment problem in an attribute-based zero-shot learning paradigm is a

reasonable way to achieve generalization on unseen samples of erupting new

waves of hate.

Converting labels into hypothesis. The first step of AZL is to convert binary

labels into hypotheses. To this end, we convert each label into a hypothesis

statement consisting of the label (i.e., hate or non-hate) and the attributes that are

contained in the text. Table 5.3 lists some examples for converting binary hate

labels into hypotheses statements containing attributes.

Converting classification data into entailment data. Typically for a data split
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Text Sample Label Attributes Example Hy-
pothesis

“get out of this
country, filthy
immigrants”

Hate negative
sentiment,
deroga-
tory terms

“this is hate
speech since it
contains nega-
tive sentiment
and derogatory
terms”

“the f***ing
democrats and
these Chinese
planned China
Virus”

Hate othering,
deroga-
tory
terms,
target

“this is hate
speech since it
contains other-
ing, derogatory
terms and tar-
get”

“I lost my job
due COVID-19”

Non-hate - “this is not hate
speech”

Table 5.3: Converting labels to hypothesis.

(i.e., train, dev and test), each input sample, acting as the premise, has a posi-

tive hypothesis corresponding to the positive label and negative hypothesis cor-

responding to the negative labels. We convert both the traditional online hate

dataset and the new waves datasets into entailment data. During training, we

only use the traditional online hate samples and during the inference, we use

the trained model on the new waves of hate and consider them as test dataset.

AZL model learning and inference. In this chapter, we make use of the

RoBERTa-large pre-trained on ANLI [185], MNLI [186], and SNLI [187] tasks.

We fine-tune this model on the traditional online hate dataset. For entailment,

we use the cosine similarity loss as given by the equation below.

Cosine(x, y) =
x · y
|x||y| (5.1)

In the inference time, we entail an input sample (i.e., a new wave of hate

sample) with all the hate and attribute combination hypotheses, as well as the

non-hate hypotheses. We consider a sample as hateful, if the entailment score

with any of the hate and attribute combination hypotheses is greater than the
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non-hate hypotheses.

Prediction =



Hate, if f {x, y}, ∀y ∈ {hate hypotheses}

>

f {x, y}, ∀y ∈ {non-hate hypotheses}

Non− hate, otherwise

In Equation 5.5.4, y is a hypothesis statement, and f (x, y) depicts the entail-

ment of an input sample x with a hypothesis.

5.6 Implementation and Evaluation

5.6.1 Implementation

We evaluated AZL using two metrics - accuracy and weighted average F1 score.

We compute both metrics for four types of new online hate waves: Asian, mask,

vaccine and boomer hate.

New Wave of Hate Precision Recall Weighted Avg. F1 Score
Asian 86.27% 68.75% 76.52%
Mask 55.83% 79.13% 67.47%

Vaccine 61.7% 82.86% 70.73%
Boomer 77.27% 68.0% 72.34%

Table 5.4: Evaluation of AZL model on new waves of online hate.

5.6.2 Effectiveness of AZL

By the comparing the metrics in Table 5.4 to the performance of current systems

in Table 5.1, it can be clearly observed that our model based on attribute-based
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zero shot learning paradigm and entailment achieves significant performance

improvements on new waves of online hate. It should be noted that weighted-

averaged F1 score is calculated by taking the mean of all per-class F1 scores

while considering each class’s support. In our work, we consider two classes,

hate and non-hate. The significantly higher weighted average F1 scores in our

model shows that it can significantly outperform the current systems on new

waves of online hate in a balanced manner.

5.7 Conclusion

In this task, we analyzed in-depth, the problem of new waves of online hate.

We collected a novel datasets of hateful Twitter users, and found that the users

perpetrate new waves of online hate based on crisis events. We also found that

the representation of hate evolves from traditional text based representations

to visual-based representations involving images, such as hateful memes. We

then introduced a novel approach based on attribute-based zero shot learning,

trained on textual entailment paradigm. Our evaluation of our detection frame-

work shows that it can achieve new state-of-the-art results in detecting new

waves of online hate.



Chapter 6
Robustness of Cyberharassment

Detection Models

Multimodal learning has been gradually gaining focus of the research commu-

nity over the past few years. The approaches for multimodal learning have

come a long way from simple models re-purposed for multimodal tasks, to deep

learning-based models that are specifically designed for multimodal tasks (re-

ferred to as Deep Multimodal Models or DMMs throughout this chapter). For

example, recent advances in this field have led to several state-of-the-art DMMs,

such as VisualBERT [82], MMBT [49], and Pythia [188], while also engendering

the collection of several multimodal datasets, such as Hateful Memes [24], and

Visual Question Answering (VQA) [80]. Due to the success of these DMMs on

standard benchmarks, there have been many encouraging attempts to adopt

them to real-world and safety-critical scenarios, such as autonomous driving,

assistance to blind people [189], and hate-speech moderation on social media [24].

However, in spite of the recent advances, the robustness of DMMs remains

poorly understood.
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What is the cat eating?

What is the cat eating? Answer : Banana

Mul t im odal  Decoupl i ng
via MUROAN

Answer : Nothing

Figure 6.1: By decoupling the input modalities through the removal of a few
datapoints in the image via MUROAN framework, the multimodal model pre-
dicts a wrong answer class: Nothing, indicating that decoupling attack can easily
compromise multimodal models.

A significant difference between DMMs and their unimodal counterparts is

the fusion mechanism in DMMs. This fusion mechanism fuses multiple input

modalities to learn their joint representation, which is then processed by several

fully connected layers to predict classification scores depending on the nature

of the corresponding downstream tasks. Different DMMs [49, 82, 188] employ

different strategies to learn strong fusion embeddings of their input modalities.

This fusion mechanism presents new challenges towards studying the adver-

sarial robustness of these models.

Recently, several unimodal adversarial attacks for deep unimodal models

have been formulated to study their robustness. For example, unimodal ad-
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versarial images [37, 39, 40, 38] and unimodal adversarial text [41] have been

widely studied, which have exposed numerous vulnerabilities in deep unimodal

models. However, these attacks cannot be directly employed to study the ro-

bustness of their deep multimodal counterparts. First, since these attacks can

only be applied to single modalities, they do not affect the fusion mechanism

that is fundamental to DMMs. Second, since DMMs combine several different

types of modalities (e.g., image, text, speech, etc.), a single unimodal attack can-

not be used for all those modalities. We note that formulating comprehensive

methods to study the robustness of DMMs is of utmost importance to adopting

them in real-world systems.

To address these challenges, in this chapter, we first highlight how multi-

modal adversarial attacks based on decoupling the input modalities in DMMs

can easily compromise these models. Then, we introduce a framework called

MUROAN to study the robustness of DMMs based on decoupling of modalities,

thereby revealing vulnerabilities in the fusion mechanism of existing DMMs.

MUROAN uses a unified view of DMMs to expose its key vulnerability. Then,

we introduce a new type of adversarial attack called decoupling attack in MUROAN,

wherein the objective of its attack algorithm is to decouple the input modalities

of multimodal models to induce a misclassification. As depicted in Figure 6.1,

a decoupling of the image and text modalities through occlusion of a few dat-

apoints in the image induces a misclassification. In addition, we leverage the

MUROAN framework to measure several state-of-the-art DMMs. We find that

the seemingly straightforward decoupling attack of MUROAN is in fact highly

effective in compromising DMMs.

Our contributions in this chapter are as follows.
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• We present a unified view of DMMs to explore their vulnerabilities, and

identify the fusion mechanism of these models as a critical component for

their robustness analysis.

• We propose a novel framework called MUROAN that consists of the uni-

fied view to exploit the fusion mechanism and a decoupling attack algo-

rithm for comprehensively studying the adversarial robustness of DMMs.

MUROAN directly focuses on the fusion mechanism of DMMs by decou-

pling the input modalities that are fused together.

• We use MUROAN for a comprehensive robustness analysis of state-of-

the-art DMMs under several dataset and model settings. Our experiments

show that, in the worst case, the decoupling attack in MUROAN can achieve

an attack success rate of 100% after decoupling of 1.16% of input modali-

ties of DMMs.

We are open-sourcing our code to encourage research in training DMMs ro-

bust to decoupling attacks: http://github.com/SecurityAndPrivacyResearch/

mda.

6.1 Background

In the following, we give an overview of the field of multimodal learning as

well as the state-of-the-art unimodal adversarial attacks used for the robustness

analysis of unimodal models.

http://github.com/SecurityAndPrivacyResearch/mda
http://github.com/SecurityAndPrivacyResearch/mda
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6.1.1 Multimodal Learning

The renewed interest in multimodal learning can be attributed to more powerful

models [44, 45] that can learn strong fusion of input modalities and the avail-

ability of several multimodal datasets [80, 24]. These models and datasets have

resulted in DMMs achieving impressive results on standard benchmarks. Much

of the DMMs that have achieved impressive performances can be categorized

under the following categories.

Traditional Fusion-based Models. Several DMMs have attempted to ad-

dress how to effectively combine multimodal information [81]. Feature con-

catenation is one of the most preferred fusion techniques in these models, while

some of the models use other feature fusion techniques such as element-wise

product. Since these models showed impressive performances on several mul-

timodal benchmarks, they are considered strong baselines for many multimodal

tasks.

Transformer-based Fusion Models. Recently, the BERT model [44], a type

of transformer [45], has been shown to achieve state-of-the-art performance [49,

82] on multimodal benchmarks, by learning the interaction between the in-

put modalities via self-attention over many different layers. For example the

MMBT [49] model fuses image embeddings in the form of pooled filter maps

from a ResNet model and word tokens as two segments of BERT [44]. As shown

by these works, the transformer based DMMs outperform their unimodal coun-

terparts in multimodal tasks by quite a large margin.
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6.1.2 Unimodal Adversarial Attacks

The discovery of unimodal adversarial attacks has engendered active research

in the safety and robustness of unimodal deep learning models. In this section,

we discuss important unimodal adversarial attacks on images and text.

Unimodal Adversarial Image. A large body of adversarial attacks have

been introduced in recent times that mainly focus towards robustness analysis

of computer vision models. For example, several works, such as fast-gradient

attacks [83], optimization-based methods [37, 38], and other such methods [40],

have been proposed successfully. Furthermore, alarmingly critical real-world

attacks such as adversarial patches [84] have been introduced recently, which

cast serious questions on the safety of these vision models.

Unimodal Adversarial Text. Recently, some works have focused on uni-

modal adversarial text to study robustness of Natural Language Processing

(NLP) models. While earlier works [85] effectively employed character level

perturbations to perform adversarial attacks, more recent works have found

word replacement strategies [41] to be largely effective in compromising these

models.

6.2 Threat Model

In this section, we enumerate the goals and capabilities of an adversary in the

multimodal learning attacks domain. We consider an adversary of a DMM sys-

tem whose goal is to provide an adversarial multimodal input x′ that results in

an incorrect output classification. We consider the adversary whose objective is

to cause both untargeted and targeted misclassification. We assume that the ad-
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Figure 6.2: Overview of our approach.

versary has complete knowledge about the targeted DMM including the DMM

model architecture parameters.

6.3 Our Approach

In this section, we discuss our approach for the robustness analysis of DMMs

via MUROAN framework. In this regard, we first discuss a unified view of

DMMs to explore the vulnerabilities of the fusion mechanism of DMMs, and

then introduce our algorithm to decouple the fused modalities of DMMs. The

overview of our approach is depicted in Figure 6.2. A threat model regarding

our approach is presented in Appendix 6.2.

6.3.1 Unified View of Deep Multimodal Models

We consider a DMM D : X → Y to be a function that maps a domain X

to a co-domain Y. An input is a set of vectors of different modalities x =

{x1
0 . . . x1

n, x2
0 . . . x2

m, . . . } (Figure 6.2, Step (a)). We consider Y to be the set of

possible classes for a multimodal input x ∈ X. The output of the DMM for a

multimodal input x is considered to be D(x) = y, for some y ∈ Y. We denote

the confidence of the DMM for a multimodal classification probability on input
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x and class y as Dy(x). Lastly, we denote the cardinality of a set as | · |, which

represents the number of elements in the set.

Since DMMs have several different architectural configurations, we need a

unified view (or representation) of them for a uniform vulnerability analysis

of all these different multimodal architectures. To achieve this, we unify these

different architectural approaches into a single view, in which we consider a

DMM as a generator of the fusion embedding of multiple input modalities (Fig-

ure 6.2, Step (b)), followed by several fully connected layers that are specific

for downstream tasks. In other words, we break down a DMM into two func-

tions: the first generates a latent representation (i.e., the fusion embedding) of

the multimodal inputs and the second performs classification based on the fu-

sion embedding. We consider the fusion embedding of a multimodal input x

as Z(x) = z, where z is the d-dimensional fusion embedding vector. Next, we

consider y = M(z) to represent classification based on the fusion embedding

from fully connected layers that are specific to downstream tasks. Therefore,

the original DMM is broken down into two functions, represented as M(Z(x)).

We further discuss this process for two typical DMM architectures: traditional

architectures and transformer-based architectures.

Traditional Multimodal Architectures. Traditional DMM architectures are

composed of separate neural networks that are specific to each input modality,

whose outputs are combined using fusion techniques such as element-wise mul-

tiplication, addition or concatenation. For example, the Pythia [188] architecture

is composed of a convolutional neural network that learns the embedding of the

image modality, and a recurrent network that learns the embedding of the text

modality, which are then combined using element-wise multiplication. This

combination represents the fusion embedding.
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Transformer-based Multimodal Architectures. These architectures use the

transformer [45] for learning a strong fusion embedding of the input modali-

ties. The input modalities are first converted into embeddings, which are then

combined using the transformer, which performs several self-attentions across

many layers. The first token embedding then constitutes the fusion embedding,

which is subsequently processed by fully connected layers for classification.

6.3.2 MUROAN Framework

The traditional methods of adversarial attacks are not suitable for DMMs for

two specific reasons. First, most key methods of crafting adversarial attacks use

either the l∞ or l2 norm 1 Optimization with respect to these kinds of manipu-

lations induces a perturbation in all (or almost all) of the datapoints of an input

modality by a small value ±ϵ. This is not suitable in case of multimodal inputs

because different modalities have different compositions, and not all modali-

ties support this type of manipulation. For example, image-based inputs are

continuous and thus suitable for such manipulations, but text-based inputs are

discrete, thus not suitable for such manipulations. Second, for DMMs, such ad-

versarial manipulations are not suitable for robustness analysis processes since

the core weaknesses of these models should be examined in the fusion mecha-

nism of these models, which is not achieved by these manipulations. Since we

are interested in studying the effect of decoupling fused modalities, we employ

l0-norm-based optimization attack algorithm, wherein an l0-norm attack opti-

mizes for the number of changes made to the inputs for a successful decoupling

attack.
1We note that an l0-norm attack [40] exists for unimodal models. However, the vast majority

of attacks used for robustness studies use l∞ or l2 norm attacks.
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Removal of salient datapoints from inputs has been shown to be an impor-

tant factor for considering the robustness and safety of a decision model [190].

However, the key difference between the traditional unimodal domains and the

multimodal domain is that such datapoints are in fact parts of separate modal-

ities that are coupled together by the multimodal fusion mechanism. Thus, it is

imperative to study the cases, in which some parts of the input modalities are

removed, so as to render this fusion as unsuccessful.

For a multimodal input x, we consider coupled datapoints as some x′ ⊂ x.

Our objective is to find the minimum subset via the following optimization.

x′⊂x(|x| − |x′|) s.t. D(x) ̸= D(x′) (6.1)

However, it is impractical to solve the optimization in Equation 6.1, due to

a large number of such datapoints in the multimodal input space. Thus, to

solve this optimization, we use the notion of the fusion embedding to compute

a salient points set first, Sn (Figure 6.2, Step (c)). We use the salient datapoints

set to study the weaknesses of DMMs, by defining it as follows.

Sx
n = {xi ∈ x | Z(x/xi) ̸= Z(x)} (6.2)

In Equation 6.2, the salient datapoints set contains those datapoints that af-

fect the fusion embedding upon removal (where x/xi denotes removal of a dat-

apoint). For example in the transformer-based DMMs, a datapoint xi ∈ Sx
n if

∀i ̸= j, zi ≥ zj due to the transformer pooling layer. Next, we find the set of

coupled datapoints (Figure 6.2, Step (d)) from the salient datapoints set. Let

[n] = {1, 2, . . . n} denote the collection of all subsets of size {1, 2, . . . n} from the

salient datapoints set, and P(X) represent a set of all subsets of X, then coupled
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Algorithm 1: MUROAN Decoupling Attack Algorithm
Input: x, y, D, Θ, f, maxitr
Output: x′

1 Initialization: x′ ← x
2 while f(D, x, x′, y) or maxitr do
3 Sx

n ← GetSalientSet(D, x′)
4 Cx

n ← GetCoupledSet(Sx
n)

5 for xi ∈ Cx
n do

6 if D(x′) ̸= y then
7 break
8 end
9 x′ ← x′/xi

10 if D(x′) ̸= y and f (D, x, x′, y) ̸= True then
11 x ← x
12 end
13 end
14 end
15 return x′

datapoints set is the permutations of all datapoints of a maximum size equal to

the size of the salient datapoints set, defined in Equation 6.3.

{Cn ∈ P([n])} (6.3)

Now that we have computed the coupled datapoints set, we propose the

MUROAN Decoupling Attack Algorithm (Algorithm 1) to iteratively refine the

decoupling attack. In our algorithm, first the salient datapoints set is computed

based on the process described in Equation 6.2. Then, the GetCoupledSet pro-

cedure is called, which performs two functions. First, the coupled datapoints

are computed as described in Equation 6.3. Then, they are ordered based on

the size of the datapoints, so as to satisfy Equation 6.1. We encode the termina-

tion of our algorithm as a boolean function f , to support multiple adversarial

requirements. For example, adversarial requirements for crafting untargeted at-
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tacks (D(x′) ̸= y) or targeted attacks (D(x′) = y′) can be supported (Figure 6.2,

Step (e)). Lastly, we propose the following theorem to use our decoupling attack

algorithm as a robustness verification technique to find adversarial examples in

DMMs if one exists.

For a multimodal model D that satisfies our unified view and a given mul-

timodal input x, the MUROAN decoupling attack algorithm will find the opti-

mum adversarial example that satisfies Equation 6.1.

Proof. If an adversarial example exists for input x, it can be found by an exhaus-

tive search of the input space. The GetCoupledSet function returns all possible

permutations of the coupled datapoints and the f function and maxitr can be

set such that the algorithm does not terminate until a satisfactory adversarial

permutation is found. Furthermore, since the permutations in the coupled dat-

apoints set are ordered, thus, a permutation that is found by our algorithm to

be adversarial is minimal.

6.4 Implementation and Evaluation

In this section, we first summarize the DMMs, datasets, and unimodal adver-

sarial baselines that are used in our experiments. We then use MUROAN to an-

alyze the robustness of state-of-the-art DMMs trained on popular multimodal

datasets to show how decoupling attack can easily compromise these models,

thereby enabling us to understand their robustness. We also consider some uni-

modal adversarial attack baselines in our evaluation only to show how easily

decoupling attack can compromise DMMs. Our objective is not to make a direct

comparison of our approach against these existing attacks, but to highlight how

decoupling of input modalities can be easily used to attack the fusion mecha-
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nism of DMMs. We also conduct adversarial training to study potential defense

against our attack. Our findings highlight the need for rigorous safety analysis

of DMMs against decoupling attacks, and lay down important groundwork for

their deployment in real-world applications.

6.4.1 Implementation

We have implemented our attack using the PyTorch library. For the VQA dataset

we used 1000 samples and for Hateful Memes dataset, we used 250 samples to

conduct our experiments. We used pretrained models published by the original

authors for all the DMMs that we have evaluated in our experiments. In the

MUROAN decoupling attack algorithm, we used a maximum iteration limit

of 500 epochs, post which we report the attack as unsuccessful. We ran our

experiments on a single NVIDIA V100 GPU enabled eight core machine.

6.4.2 Baselines

Deep Multimodal Models

• Pythia. The Pythia [188] is a state-of-the-art model in the VQA challenge

task. This models is composed of a convolutional network to compute an

image embedding and a recurrent network to compute a sentence embed-

ding, which are fused using element-wise multiplication.

• Late Fusion. We consider the late-fusion architecture based DMM in [191]

as a strong baseline model. In this model, image embeddings from a

convolutional neural network and text embeddings from a recurrent net-

work are fused using element-wise sum, and then the fusion embedding is
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processed through multiple classification layers to generate a probability

score.

• MMBT. The MMBT model [49] is a state-of-the-art DMM that utilizes the

BERT [44] to learn multimodal embeddings by the implicit alignment of

image and text features with the self-attention mechanism of transform-

ers [45], for a wide range of visual-linguistic tasks. The query vector of this

model, which is treated as the fusion embedding, is processed through a

classifier head for downstream tasks.

Multimodal Datasets

• Hateful Memes. The Hateful Memes [24] dataset consists of image and

text pairs pertaining to hateful memes, a recent phenomenon that poses a

serious societal threat in today’s day and age. The objective is classification

into two categories: “hateful” or “non-hateful”.

• Visual Question Answering (VQA). The VQA dataset [191] consists of

images with multiple associated natural language questions. Each image

and question pair expects a list of answers. The objective is to predict the

best answer from the list of answers for each image-question pair.

Unimodal Adversarial Baselines

We considered two image-based unimodal adversarial baselines (i.e., Carlini

and Wagner attack [38] and Projected Gradient Descent attack [39]), and two

text-based unimodal adversarial baselines (i.e., Genetic Attack [192] and TextFooler [41]).

Please refer to Appendix 6.4.2 for more details about these unimodal baseline
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attacks. Furthermore, the configuration details of these baselines can be found

in Appendix 6.4.2.

Unimodal Adversarial Baseline Details

• CW Attack. We use the Carlini and Wagner [38] attack algorithm as base-

line for unimodal adversarial images for image-based modality.

• PGD Attack. We have also used the Projected Gradient Descent [39] attack

algorithm which is a popular image-based attack baseline in our work.

• Genetic Attack. We use the Genetic Attack [192] algorithm (referred to

as “Genetic” in this chapter) as baseline for unimodal adversarial text for

text-based modality.

• TextFooler. TextFooler [41] is a greedy word substitution based adversar-

ial attack algorithm specifically designed to attack text-based models. We

use this algorithm as an additional text-based unimodal attack baseline.

Baseline Configuration

In this section, we provide the configuration of all the baseline models and tech-

niques used in our paper.

PGD. We have used the L∞ norm PGD with a perturbation budget of 8/255, a

step size of 0.01, and the number of iterations as 40.

CW. We have used the L∞ norm CW attack with a step size of 0.10, learning rate

of 0.01 and number of iterations of 500.

Genetic Attack. We have used a population size of 20 and maximum genera-

tions as 20.
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TextFooler. We set the threshold to choose important word as -1, the threshold

for selecting sentences of high semantic similarity as 0.5, and the size in score

module as 15.

Adversarial Training. We followed the adversarial training settings in the orig-

inal paper [39]. We used CW loss function (see above for CW configuration),

and training procedure using SGD optimizer, with a learning rate of 0.0001 and

momentum of 0.9.

6.4.3 Effectiveness Evaluation

Robustness Analysis

In this section, we used our framework to analyze the robustness of state-of-the-

art DMMs under various attack conditions to show that the robustness of these

DMMs are largely overestimated.

Adversarial robustness of an AI/ML-based model refers to how robust it is

to (test time) perturbations of its inputs by an adversary intent on fooling the

model. A reliable way to analyze robustness of a model is to study the average

perturbations (i.e., inputs changed) for a successful attack. We studied the per-

centage of average points changed by MUROAN decoupling attack algorithm

in comparison with the CW attack and PGD attack for a successful misclassi-

fication. We used the same cutoff of 500 epochs for both the algorithms in all

the tests, post which we reported a failure. We have depicted the results of this

experiment in Figure 6.3.

Figure 6.3 depicts the CDF of the average percentage of datapoints changed

by the attacks under consideration. We found that the unimodal adversarial at-

tacks (i.e., the CW attack and PGD attack) needed to change significantly more
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(a) Pythia-VQA

(b) Late Fusion-Hateful Memes (c) MMBT-Hateful Memes

Figure 6.3: CDF of percentage of datapoints changed.

Model-Dataset Average Points
Changed -
MUROAN

Average Points
Changed - CW

Average Points
Changed - PGD

Pythia-VQA 1.16% 93.99% 96.47%
Late Fusion-Hateful Memes 16.93% 99.86% 98.28%

MMBT-Hateful Memes 5.73% 94.92% 98.33%

Table 6.1: Comparison of average percentage points affected by MUROAN and
CW attack.

datapoints to induce successful attacks in comparison to MUROAN. For in-

stance from Table 6.1, for the Pythia-VQA, it was observed that the CW attack

changed 93.99% of the input datapoints and the PGD attack changed 96.47%

of input datapoints, whereas MUROAN decoupling attack algorithm changed

1.16% of input datapoints. The observation that the unimodal attacks changed

a large number of datapoints but our attack changed significantly fewer data-

points for successful attack indicates that these attacks cannot be used to suffi-

ciently study the robustness of DMMs. This finding may have important impli-

cations on using DMMs such as VQA models in real-world applications, such as
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Model-
Dataset

ASR-
MUROAN

ASR-
CW

ASR-
Genetic

ASR-
CW+Genetic

ASR-
PGD

ASR-
TextFooler

ASR-
PGD+TextFooler

Pythia-VQA 100% 79.77% 49.30% 86.45% 86.51% 0% 86.51%
Late Fusion-
Hateful
Memes

97.25% 59.11% 0% 59.11% 96.12% 0% 96.12%

MMBT-
Hateful
Memes

83.33% 47.19% 0% 47.19% 75.19% 0% 75.19%

Table 6.2: Comparison of Attack Success Rate (ASR).

visual question answering for the blind [189]. Next, we discuss another impor-

tant application domain, namely Hateful Memes. For the Late Fusion-Hateful

Memes model, it was again observed that the unimodal baselines (i.e., CW at-

tack and PGD attack) changed significantly more datapoints (e.g. 99.86% in

case of CW), whereas MUROAN decoupling attack algorithm changed an av-

erage of 16.93% of input datapoints. For the MMBT-Hateful Memes model, it

was observed for instance, that the CW attack changed 94.92% of datapoints,

whereas MUROAN decoupling attack algorithm changed an average of 5.73%

of input datapoints.

Next, we compared the Attack Success Rate (ASR) of MUROAN decou-

pling attack algorithm with respect to the unimodal adversarial images and

text baselines, namely the CW [38] attack, Genetic [192] attack, PGD [39] and

TextFooler [41] attack respectively. The results of this experiment have been

depicted in Table 6.2. We first discuss the impact of the unimodal adversar-

ial images on the DMMs. In all the three DMMs, we found that although the

unimodal adversarial images could affect these DMMs, they were not suffi-

ciently effective when compared to the ASRs of MUROAN decoupling attack

algorithm. For the Pythia-VQA model, the CW attack for instance achieved an

ASR of 79.77%, although the ASR achieved by MUROAN decoupling attack

algorithm was 100%. For the two DMMs for hateful memes (i.e., Late Fusion-
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Hateful Memes and MMBT-Hateful Memes), a similar observation was made,

although the CW attack achieved significantly lower ASR for both DMMs. Next,

we took a closer look at the impact of the unimodal adversarial text (i.e., Ge-

netic attack and TextFooler) on the DMMs, in comparison with MUROAN. For

the Pythia-VQA, it was observed that the Genetic attack for instance has little

effect when compared to MUROAN decoupling attack algorithm, and even to

the CW attack, wherein both these attacks outperformed the unimodal adver-

sarial text baselines by a large margin. In case of the hateful memes DMMs

(i.e., Late Fusion-Hateful Memes and MMBT-Hateful Memes) this margin was

found to be even larger. It was observed that the unimodal adversarial text had

no significant effect on the DMMs for hateful memes.

Thus, we observed that the safety and robustness of these DMMs need to

be deeply examined, specifically from the perspective of decoupling attacks. In

this regard, our experiments indicate that our attack exposes the vulnerabilities

in the fusion mechanism of DMMs, and the robustness of this mechanism needs

significant improvement, especially if DMMs are to be deployed in real-world

systems.

Adversarial Training

Our experiments in Section 6.4.3 raise an important question: how can we de-

fend against decoupling attacks? We performed a preliminary experiment to

see if adversarial training [83], a popular technique to improve adversarial ro-

bustness, can be used to reduce the attack success rate. The configuration details

of the adversarial training procedure can be found in Appendix 6.4.2. We per-

formed adversarial training using the MMBT model for the hateful memes clas-

sification. We generated 247 adversarial examples via MUROAN framework
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and trained the model on these samples combined with the original dataset

from scratch. We observed that the adversarial trained DMM was still vulnera-

ble to newly crafted decoupled samples, despite the model achieving near 100%

accuracy classifying adversarial examples included in the training set. These re-

sults demonstrate the difficulty in defending against decoupling attacks using

traditional adversarial training. We hope these results inspire further work in

increasing the robustness of DMMs.

6.4.4 Qualitative and Quantitative Analysis

Qualitative Analysis of MUROAN

What is the man pull ing?
Answer : Nothing Safe sex isis style White power !

(a) (b) (c)

Figure 6.4: Three samples depict three types of minimum coupled datapoints
in the VQA and Hateful Memes dataset. In sample (a), the minimum coupled
datapoints are in the image only (indicated by red circles), and it is enough to
only make changes to a those datapoints to decouple the sample. In sample (b),
the minimum coupled datapoints are in the text only (indicated by red font), it
is enough to make changes to the text only to decouple the sample. In sample
(c), the coupled datapoints consist of both image and text, therefore both need
to be changed to decouple this sample.

In this section, we provide a qualitative analysis of the decoupled samples
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that MUROAN decoupling attack algorithm generated. Upon observation of

such samples in the two baseline datasets (i.e., VQA and Hateful Memes), we

discuss certain aspects of the nature of decoupling pertaining to our observa-

tions. In Figure 6.4 2, we depict three samples from our robustness analysis

experiments. Figure 6.4 (a) is from the VQA dataset, and Figures 6.4 (b) and (c)

are from the Hateful Memes dataset. These three samples represent the three

levels of decoupling we observed in our experiments. In Figure 6.4 (a), the min-

imum coupled datapoints were found in the image only, therefore it is sufficient

to decouple just the single image modality. In the VQA dataset, since ques-

tions are asked about certain parts of an image, this observation is intuitive

since it should be sufficient to only affect the relevant parts of the image. In

Figure 6.4 (b), the minimum coupled datapoints were only found in the text

modality, since intuitively we cannot see why this sample could be a hateful

meme from the image alone. In Figure 6.4 (c), the minimum coupled datapoints

consist of both the image and the text modalities. In this case, both the input

modalities need to be affected for decoupling this fusion. Therefore, we note

that vulnerabilities in the DMMs are of a very different nature when compared

to their unimodal counterparts.

Additional Qualitative Results Based on Perturbation Types

In this section, we provide additional qualitative examples of our attack against

the MMBT-Hateful Memes model and the Pythia-VQA model in Figure 6.5 and

Figure 6.6, respectively. In Section 6.4.4, we discussed a few samples from

MUROAN from the Hateful Memes dataset. We further discuss more samples

2Note: samples (b) and (c) are from the Hateful Memes dataset [24], which some readers may
find distressing.
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from the VQA dataset in addition to some samples from the Hateful Memes

dataset in this section.

who knew  that this 
countr y is ful l  of 

white tr ash
Non-hateful

islam is a r el igion of 
peace stop cr i ticizing 

my rel igion
Non-hateful

told gir l fr iend that 
mom is deaf so speak 

loud and slow  told 
mom that gir l fr iend is 

r etarded

Non-hateful

Figure 6.5: Additional Samples from the Hateful Memes dataset.

Figure 6.5 depicts three samples from the MMBT-Hateful Memes baseline.

The first sample depicts the case where only the text is needed to be manipu-

lated to decouple the input modalities in a sample. The second example depicts

the case where only a part of the image needs to be manipulated to decouple the

modalities in a sample. The third example depicts the case where both image

and the text need to be manipulated to decouple the modalities in a sample.

Figure 6.6 depicts three samples from the Pythia-VQA baseline. In this case,

the objective is to fool the DMM so as to output a wrong answer (as opposed to

a wrong label in the Hateful Memes case). We observed a similar trend in case

of VQA as well, as noted in Section 6.4.4. In some cases (such as the first sample

and the second sample in Figure 6.6), it was sufficient to only manipulate one

of the input modalities to decouple the input modalities in a sample. In some
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what object is 
depicted in this 

picture?

Or iginal Answer : Stop sign
Adverar ial answer : House

what spor ts team is 
mentioned?

Or iginal Answer : Red sox
Adverar ial answer : Yes

what are the color  of 
the l ines on the cour t?

Or iginal Answer : Red and 
blue

Adverar ial answer : Red

Figure 6.6: Additional Samples from the VQA dataset.

cases though, both modalities had to be manipulated for decoupling them (such

as the third sample in Figure 6.6).

Furthermore, to study the versatility of MUROAN regarding the perturba-

tion type, we performed another experiment wherein we used two additional

perturbation types apart from the occlusion-based perturbation used through-

out the paper: (1) Random noise-based perturbation, and (2) Gradient-based

perturbation. Samples from this experiment are depicted in Figure 6.7. It can be

observed that the perturbation types can be chosen in MUROAN based on the

application domain.

Quantitative Robustness Analysis of DMMs

We have discussed in Section 6.4.3 about how our attack can be used to study

the robustness of several DMMs. In this section, we use our attack to study

and compare the robustness of two baseline DMMs, Late Fusion and MMBT,
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(i) (ii) (iii)

(iv) (v) (vi)

Random Noise-based Perturbation

Gradient-based Perturbation

Figure 6.7: Samples from the hateful memes dataset depicting random noise-
based and gradient-based perturbation types.

discussed in our paper.

(a) Late Fusion Model (b) MMBT

Figure 6.8: CDF of robustness of Late Fusion model and MMBT against
MUROAN decoupling attack algorithm.

In this experiment, our objective is to compare the two DMMs that are trained

for the same task to determine which DMM is more robust against our attack.

In this way, we can use MUROAN to additionally compare DMMs in terms of
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their robustness. We study and compare the robustness of the two DMMs both

trained on the Hateful Memes dataset based on the robustness metric ψ [193].

Model robustness is defined as follows.

ψ(x) =
1

max
δ∈set

DKL(P(x), P(x + δ))
(6.4)

Equation 6.4 uses the Kullback–Leibler divergence loss (DKL) to depict the

divergence between the probability distributions of the original samples and

the adversarial samples generated by MUROAN decoupling attack algorithm.

In other words, the DKL is higher for a model, for which the adversarial samples

are further from the original distribution, indicating stronger robustness. In this

experiment, we compared the robustness of the MMBT model to the Late Fusion

model, where both DMMs were trained on the same Hateful Memes dataset.

The distribution of the robustness the two DMMs as calculated by Equation 6.4

based on our attack is depicted in Figures 6.8a and 6.8b, respectively. We found

that the MMBT model is significantly more robust than the Late Fusion model,

as can be observed from the Figure 6.8. The mean robustness of the MMBT

model was found to be ψ = 0.65 and the mean robustness of the Late Fusion

model was found to be ψ = 0.003. The higher robustness of the MMBT model

could be attributed to the way the fusion is achieved in this DMM, using the

more sophisticated self-attention mechanism of the transformer [45], while the

Late Fusion model uses the element-wise addition. Thus, the robustness metric

in this experiment could also indicate the strength of the fusion mechanism.

In this way, the robustness of the state-of-the-art DMMs can be quantitatively

measured using MUROAN.
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(a) MMBT (b) Late Fusion

Figure 6.9: Computation cost of MUROAN

6.4.5 Computation Cost of MUROAN

In this section, we provide details about the computation cost of MUROAN. We

computed the cost of two primary operations in MUROAN, i.e., computing the

salient datapoints set (Equation 6.2) and computing the coupled datapoints set

(Equation 6.3).

We study the time taken by MUROAN to compute Sn and Cn for all the sam-

ples in test dataset of the Hateful Memes dataset, for the MMBT and late fusion

DMMs. Figure 6.9 depicts the CDFs of the computation cost in terms of time

in seconds. For MMBT model, the mean Sn time is 1.36 seconds and mean Cn

time is 0.59 seconds. For late fusion model, the mean Sn time is 13.93 seconds

and mean Cn time is 3.40 seconds. We note that in both DMMs, the cost to com-

pute the coupled datapoints set is significantly lower than the cost to compute

the salient datapoints set, as the search in the latter case is on a smaller subset of

datapoints. For end-to-end models such as MMBT, the overall computation cost

for MUROAN is significantly low for the more traditional architecture based on

late fusion methodology.
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6.5 Conclusion

In this task, we have studied the robustness of DMMs against multimodal de-

coupling attacks that are aimed at compromising the fusion mechanism of DMMs.

We have introduced a new framework called MUROAN for studying the ro-

bustness of DMMs, which consists of a unified view of the DMMs that exposes

the fusion embedding, and an algorithm for decoupling the input modalities.

Our experiment shows that MUROAN is very effective in attacking several ex-

isting multimodal models successfully. MUROAN paves the way for studying

the robustness of DMMs via decoupling input modalities in the future.



Chapter 7
Discussion

In this chapter, we will discuss potential limitations of the research conducted

in this dissertation and point out the promising directions for this research.

7.1 Understanding and Detecting Cyberbullying in

Images

In this section, we discuss some limitations and potential enhancements of our

work. It should be noted that this work represents the first step towards un-

derstanding and identifying the visual factors of cyberbullying in images, and

demonstrate that it can be effectively detected based on these factors.

Known Biases in MTurk Surveys. We have used Amazon MTurk as the

platform to annotate images in our dataset and to carry out our user studies.

Although MTurk provides a convenient method for researchers to enlist high-

quality participants online, it also has certain well-known issues that may affect

the data collected through it. In the following, we discuss these issues along

with how they may have affected the studies in this work. As MTurk is quite
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convenient, it follows convenience sampling techniques [194, 195] to enlist par-

ticipants. Therefore, some participants may not fully representative of the entire

population that uses the Internet and hence may not have encountered real-

world cyberbullying. In our data collection, MTurk may have introduced some

bias towards US-based participants. Common method bias [196] could also

be introduced in MTurk studies, wherein self-reported responses may lead to

spurious effects. Besides, participants in our study may have some inaccurate

knowledge of cyberbullying, which may have caused additional bias in their

responses towards our data collection and user experiments.

Different Contexts of Cyberbullying. Cyberbullying is a complex issue,

having different contexts. The conventional context of cyberbullying is text-

based cyberbullying, which has been well studied and its factors have been

extensively cataloged by existing work. A step ahead from this conventional

context of cyberbullying is the context of cyberbullying in images, which is the

focus of this work. More complex contexts of cyberbullying involve cyberbul-

lying scenarios associated with both images and text. Further contexts of cy-

berbullying involves videos (i.e., image streams and speech), where we believe

our work could also be useful for addressing cyberbullying in the visual part

of the video context. As part of our future work, we plan to study those more

complicated cyberbullying contexts.

Broadening of Social Factor. In our work, we found attributes, such as anti-

LGBT symbols, under the social factor were used for cyberbullying in images.

Especially, we found that many images that depicted the anti-LGBT attribute

portrayed defacement of the pride symbol. While anti-LGBT is an important

attribute of the social factor, we note that there are other attributes under this

factor too, such as hate symbols and memes portraying racism against Black
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and Asian communities, sexism against women, and religious bigotry. In our

dataset, we could not find images portraying these other attributes of the social

factor. As part of our future work, we plan to carry out a new study wherein we

will broaden attributes of the social factor, and study their effects on cyberbul-

lying in images.

Enabling Existing Detectors to Detect Cyberbullying in Images. We have

discussed our finding (in Section 3.3) that the existing state-of-the-art offen-

sive image detectors (e.g. Google Cloud Vision API, Amazon Rekognition, and

Clarifai NSFW) cannot effectively detect cyberbullying in images. Through our

work, we aim to provide insights into the phenomenon of cyberbullying in im-

ages and potentially facilitate those existing offensive image detectors to offer

the capability for detecting cyberbullying in images. In this regard, we would

suggest two possible ways for building such a capability: (1) training detection

models based on new cyberbullying image datasets (like the dataset we have

created); and (2) adopting multimodal classifiers with respect to the visual cy-

berbullying factors (as we have identified in this work) for the detection of cy-

berbullying in images, since we found that the multimodal classifier is the most

effective classifier for detecting cyberbullying in images based on our measure-

ment.

Adoption and Deployment. Current techniques of preventing cyberbully-

ing in social networks, especially cyberbullying in images is limited to reporting

and flagging down such images and posts by social network users themselves.

In addition to cyberbullying, other online crimes such as online hate [197, 198,

199, 200], pornography [201], grooming [202] and trolling [153] have been iden-

tified as dangerous threats. Preliminary research in the automatic detection of

these threats have gained momentum in recent times. The multimodal classifier
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model explored in our work can be combined with systems that defend against

these other threats to provide an overall safer online environment. Additionally,

the multimodal classifier can be deployed as a mobile app in mobile devices.

Multi-faceted Detection of Cyberbullying in Images. Many online social

networks (such as Facebook and Instagram) support multi-faceted information

content, such as textual content accompanying with visual content. In this work,

we have only focused on cyberbullying image factors identification and classifi-

cation. In our future work, we intend to augment the cyberbullying factors with

textual information and study the role of the combination of visual and textual

cyberbullying. We also intend to study the cyberbullying incidents involving

a combination of images and texts in a sequential fashion, so that timely inter-

vention can be possible. In this direction, we intend to discover new factors of

cyberbullying involving both textual and visual information. Another future

direction that we plan on studying is the issue of revenge-porn [203]. This is-

sue involves a perpetrator who shares revealing or sexually explicit images or

videos of a victim online. Due to its offensive and harassing nature, revenge-

porn is emerging as a new image-based cyberbullying issue. This issue may be

characterized by specific factors that are different from traditional pornography,

due to which current offensive content detectors may mis-classify images with

this issue. As future work, we intend to study this issue and discover its factors,

so that the existing offensive content detectors can be made capable of detecting

it in online images.

Adversarial Manipulation of Predictions. Another direction that we intend

to explore is the protection of deep-learning based classifiers from adversarial

attacks [204, 40]. These attacks are specifically crafted to “fool” deep learning

based systems into outputting erroneous predictions. Specifically, we intend
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to further explore adversarial manipulations that are aimed at compromising

multimodal classifier-based systems. Since our current work and future work

would use multimodal machine learning for detecting cyberbullying in images

and for intervention, we believe it is highly important to make such models

more resistant to such attacks.

Ethical Issues. Our deep learning models have been trained on our dataset

of cyberbullying images and our data collection task has been approved by IRB.

We intend to make our dataset publicly available. However, we have also found

that our dataset may contain some potentially extremely sensitive images, such

as images with great violence against children. Therefore, we plan to exclude

such extremely sensitive images from our shared dataset. Furthermore, in this

chapter, we have attached a few samples of cyberbullying images to illustrate

certain concepts so that readers can better understand our paper. We have ap-

plied masks over the human subjects’ eyes in all attached images to protect their

privacy. We do not intend to distribute any sensitive images or leak the human

subjects’ privacy.

7.2 Detecting and Explaining Traditional Online Hate

Speech

In this chapter, we have studied the recent phenomena of hate speech triggered

by the COVID-19 pandemic. We have focused our study on the hate-speech

in Twitter against Asian community and old people. We have trained a BERT-

based model to detect hate-speech based on the datasets in this chapter and

used the multi-headed attention mechanism of BERT to discover novel key-



140

words (186 keywords targeting the Asian community and 100 keywords tar-

geting older people) using our strategy. Further, we have discussed how BERT

could be learning longer distance attentions based on the underlying distribu-

tion of training data, and found that such attentions are learned in the earlier

layers for the Asian-hate dataset and later layers for the Boomer-hate dataset.

We have introduced a strategy to study whether BERT is learning hate-speech

detection based on existing definitions of hate-speech. We have learned that in

the case of Asian-hate dataset, BERT focuses on varied attention between sev-

eral words, whereas in the case of the Boomer-hate dataset, BERT focuses on

certain word associations to detect hate-speech.

7.3 Towards Understanding and Mitigating New Waves

of Online Hate

In this chapter, we have studied in-depth, the nature of the new waves of on-

line hate. We discovered that there are eruptions of new waves of online hate

with large-scale events, which are of a different nature that traditional online

hate. We also discovered that the new waves of online hate consist of different

representations, such as image and text based hateful memes. Our measure-

ment analysis of existing systems and models of online hate detection reveals

that they are vastly limited against new waves of online hate. Informed by our

findings, we introduced our framework, AZL, for the detection of new waves of

online hate. Our framework is based on an attribute-based, zero shot learning

paradigm using entailment to detect new waves of online hate. We train our

detection model on traditional hate and run inference on four different types of
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new waves of online hate, i.e., Asian-hate, mask, vaccine and boomer hate. Our

evaluation shows that our framework achieves a huge improvement in the de-

tection of new waves of online hate over the existing systems, with a weighted

average F1 score of 76.52% for Asian-hate.

7.4 Robustness of Cyberharassment Detection Mod-

els

In this chapter, we have focused on DMMs that mainly operate on image and

text modalities as inputs. We chose this type of DMMs since it could represent

different compositions of inputs (i.e., a continuous input and a discrete input).

Our approach however can be generalized to incorporate any other types of

DMMs, considering compositions of other inputs including speech and video

modalities.

In conclusion, we have studied the robustness of DMMs against multimodal

decoupling attacks that are aimed at compromising the fusion mechanism of

DMMs. We have introduced a new framework called MUROAN for study-

ing the robustness of DMMs, which consists of a unified view of the DMMs

that exposes the fusion embedding, and an algorithm for decoupling the input

modalities. Our experiment regarding adversarial training shows that it does

not improve the robustness against our decoupling attacks. MUROAN paves

the way for studying the robustness of DMMs via decoupling input modalities

in the future.
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Conclusion

This dissertation devotes to exploring how AI/ML can be used to address on-

line cyberharassment, and how robustness of such cyberharassment detection

models can be studied and improved.

We focused on two critical issues related to cyberharassment in today’s day

and age - visual cyberbullying and online hate. In the area of visual cyberbul-

lying, we conducted a large-scale analysis of existing state-of-the-art offensive

image detectors against cyberbullying images from our dataset, and found that

they are significantly limited in detecting cyberbullying images. We then ana-

lyze our dataset and catalog five important factors if visual cyberbullying. We

formulated a multimodal model to detect visual cyberbullying, and our model

achieves state-of-the-art accuracy of 93.36% in detection of cyberbullying im-

ages.

In the area of traditional online hate, we focused on detecting this traditional

hate tweets online, as well as explaining the reason for the hate, by pinpointing

the exact words and phrases involved in causing the hate. We used the BERT

attention model for detection and introduce a novel mechanism to explain and
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pinpoint the words based on attention mechanism. Our evaluation results im-

ply that our detection and explanation methods are very effective in detecting

as well as explaining and thus controlling traditional online hate.

Furthermore in the area of online hate, we then addressed the problem of

new waves of online hate. We carried out an in-depth analysis of online hate

witnessed during the COVID-19 pandemic, and made three important find-

ings - (i) large-scale events give rise to new waves of online hate, (ii) these new

waves contain new representation in the way online hate is expressed, and (iii)

existing online hate detection systems are significantly ineffective in detecting

new waves of online hate. Informed by our findings, we introduced our frame-

work to detect new waves of online hate, which is based on an attribute-based

zero shot learning paradigm, using textual entailment for training and infer-

ence. Our model achieves new state-of-the-art results on four totally unseen

new waves of online hate, and vastly outperform the existing systems.

We finally focused on studying the robustness of AI/ML models that are

used in cyberharassment detection, and especially considered multimodal mod-

els. We identified the fusion mechanism of these models are a core component,

and introduced our custom attacks that focus on decoupling this fusion. Our

attacks achieve state-of-the-art performance in compromising multimodal mod-

els, compared to traditional unimodal attacks.

In summary, the contributions made by this dissertation are as follows.

• Developing a multimodal model for visual cyberbullying detection based

on visual factors and evaluating its performance on real-world cyberbul-

lying images

• Developing a BERT-based detection and explanation model for detection
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and control of traditional cyberbullying and evaluating its performance

on traditional online hate datasets

• Developing an attribute-based zero shot learning using textual entailment

for detecting new waves of online hate and evaluating it on four new

waves datasets

• Developing multimodal attacks for studying the robustness of multimodal

models and evaluating its effectiveness on state-of-the-art multimodal mod-

els and comparisons with traditional unimodal attacks

We expect our cyberharassment detection technologies to provide suitable

protections against current cyberharassment issues such as cyberbullying and

online hate, which are widely propagated in today’s Internet. We also envision

that our systems can offer effective mitigation against new issues of cyberha-

rassment that are yet unseen. Finally, we hope that our success in studying

the robustness of cyberharassment-related AI/ML models can improve the re-

silience of these models in real-world scenarios.
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