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Abstract

Advanced Persistent Threats (APT) are not only a matter of concern for the gov-

ernment organizations but also to the industries as well. Recent studies show

that many companies have suffered financial damage at the face of an attack

by an APT and sustained damage to their reputation and brand value. Detect-

ing the attack and building a defense system against APT is difficult due to the

fact that these attacks are very stealthy and targeted. This dissertation lays the

path to defense against APTs through identification, detection, deception, and

attack mitigation. To begin with, this dissertation presents a holistic approach

via a parameterized model to identify an APT and then to review and assess the

vulnerabilities, attacker resources, and probable targets. The attacks mounted

by APT groups are highly diverse and sophisticated in nature and can render

traditional signature based intrusion detection systems ineffective. This necessi-

tates the development of behavior oriented defense mechanisms. Therefore, fol-

lowing the identification of newer features being attributed to APTs, we devel-

oped intrusion detection systems (IDS) using Hidden Markov Model (HMM),

machine learning (ML) models, and natural language processing (NLP). The

IDSes we designed for APT type ransomware needed another layer of protec-

tion. This layer of protection was ensured through a deception architecture.

In this dissertation, we put-forward a framework called Kidemonas to tackle

xv



generic APT attacks with the use of deception. We used a commercial-off-

the-shelf (CoTS) hardware component called trusted platform module (TPM)

for designing Kidemonas. The idea is to run a generic APT detection system

in an isolated environment outside the purview of the attacker. In order to

give a layer of protection to the HMM based IDS, we designed a deception

based countermeasure called Decepticon. The intrusion detection system and

the deception architecture were designed as a defense against APT type mal-

ware. But the systems which do not have these defense features, and/or the

systems in which these defense features are defeated by the APT type malware,

are put to great risk. To counter this problem, we explored the solutions us-

ing game theoretic analysis. We analyzed the threat scenario of non-APT type

ransomware using a sequential game model. We introduced two parameters

which would help the defender in making an informed decision when under

attack. We then extended the concept of game theory for more sophisticated

APT type ransomware. We designed a more elaborate sequential game model

for multi-stage advanced ransomware attacks, analyzed the threat scenario and

traced the optimal strategies of the attacker for different conditions while con-

sidering the attacker’s perception of the defense architecture in the system and

existence of a contingency plan of attack on the part of the attacker. We came up

with equilibrium conditions to maximize the outcome and minimize the losses

of the defender with and/or without the defense features. We also put forward

an algorithm, which would help the defender to reach the equilibrium state for

a given set of conditions. This helps in both preparedness and mitigation of the

sophisticated APT type attacks.
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Chapter 1
Introduction

Advanced Persistent Threats (APT) are a form of quiet invaders [1] and are a

lingering threat to industries and government organizations. They silently per-

form reconnaissance, quietly invade, and keep a communication channel open

in order to communicate with the command and control (C&C) centers. The

attackers control the behavior of the malware from the C&C centers. APTs carry

out targeted attacks to achieve their goal. They are quite persistent in their efforts

of achieving the goals and in doing so they might come with a contingency plan to

which they may resort to upon discovery [2]. Such a type of attack has become

prevalent and frequent, owing to the fact that malware-as-a-service (MaaS) are

readily available, which provide the attackers with the necessary framework

and infrastructure to create attacks [3], [4]. APTs come in different forms and

formats. In this paper we focus on the detection and mitigation of a ransomware

that qualifies as an APT [2].

According to FireEye, 4,192 attacks were detected in 2013, which were mounted

by groups that can confidently be classified as APT groups [5]. They were also

able to detect 17,995 different infections by APT groups. The attacks thereafter
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have been increasing by leaps-and-bounds. RSA Security LLC suffered finan-

cial losses of about $66.3 Million when it became a victim of an APT attack [6].

According to a study by Ponemon Institute, the average financial losses suffered

by a company owing to the damaged reputation after an APT amounts to about

$9.4 Million [7]. WannaCry, Petya and NotPetya are ransomware campaigns

that graduated to become APTs and collected huge amounts of ransom causing

considerable financial losses to the victims [2]. WannaCry collected ransom in

BitCoins. According to published reports, between May 12, 2017 and May 17,

2017, the attackers collected $75,000 to $80,000 in ransoms [8], [9]. With time

the cost of financial damage suffered by the companies is expected to go even

higher. If the target of attack is a government agency, the damage could be

beyond mere financial losses; the attacks might even threaten national security.

These aforementioned factors and incidents outline a great threat to the crit-

ical infrastructure as a whole, be it government or industry. The problems are

intense and the attacks are adaptive in nature, requiring a holistic approach to

address them. However, it is not necessary to put the entire defense frame-

work into the same defense mode every time the system comes under attack be-

cause deploying a sophisticated defense mechanism indiscreetly to fend off at-

tacks will severely affect performance and degrade the quality of service (QoS).

A better approach is to deploy the most sophisticated countermeasure against

the most severe form of attack. Less sophisticated countermeasures taking care

of the less severe attacks would not only be economical but also might help

in preserving a good balance between security, performance, and the QoS of

the system. In the same vein, system security through different forms of in-

formation isolation has been studied for quite sometime [10]. Isolation can be

achieved through software or hardware [11]. But with advanced attacks from
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APT groups which are highly adaptive in nature, they have been successful in

attacking physically isolated systems as well. One such example is the Stuxnet

campaign that took place in the Iranian nuclear facility [12], [13], [14]. Therefore,

a need for a new form of defensive strategy arose. Researchers have looked into

various approaches to repel highly sophisticated attacks. One of the approaches

is the use of deception as a defense tool.

This dissertation investigates in detail the problems due to APT attacks, and

the development of a framework and strategies to mitigate the effects of APT

attack. The dissertation is organized as follows. Chapter 2 puts forward the

problem this dissertation is concerned about. In Chapter 3 APT definitions,

AI models, and different techniques traditionally used to defend and mitigate

APT attacks are examined. Chapter 4 discusses the newer attributes of APT at-

tacks which have been identified in this research. Chapter 5 presents several

intelligent intrusion detection systems (IDS) designed using Hidden Markov

Model (HMM), machine learning (ML) models, and natural language process-

ing (NLP) models. Chapter 6 presents deception frameworks to tackle the APT

problem. The idea is to provide an added layer of security to the IDSes de-

veloped in Chapter 5. But there can be systems which may or may not have

an APT detection system and/or their APT detection system has been defeated

by a sophisticated malware. The questions then arise “What to do?”, “When to

do?”, and “How to do?” with regard to mitigating APT attacks. To answer these

questions, Chapter 7 analyzes both APT and non-APT variants of ransomware

to develop optimal strategies to mitigate the attack. Finally, in Chapter 8 we

conclude this dissertation and pave the way for future research. Chapter 9 lists

the papers published as the outcome of this research.



Chapter 2
Problem Statement

The aim of this dissertation is to identify attacks resulting from Advanced Per-

sistent Threats (APT) and provide a framework and strategies to mitigate APT

type Ransomware. By seeking answers to the following questions, the purpose

and the solution schemes developed in this dissertation can be outlined.

• What are APTs?

• How are APTs identified traditionally?

• In the ever-changing scenario of attack landscape by sophisticated attackers, how

can one identify state-of-the-art attack by APT groups?

• How to reduce the computational load of running an APT detection system?

• APTs infiltrate stealthily and mount sophisticated attacks. Can deception be used

as a defensive tool against an APT attack?

• Can deception be implemented in a cost effective manner?

• Other than having a framework to counter APTs, how can one make informed

decision to defend against them?



5

• How can one devise an optimum strategy to defend against APT attacks?

• A defender is always faced with the questions, ”What to do?”, ”When to do?”,

and ”How to do?” while an attack is on-going. How to answer these questions?

2.1 Threat Model

Advanced Persistent Threats (APT) are putting systems at great risk. They

stealthily infiltrate the system, perform reconnaissance missions to gather in-

formation, gain access to critical infrastructure and mount an attack that poses

grave danger to the functioning of the entire system. APTs often carry out tar-

geted attacks to achieve their goal. The APT campaigns are typically carried out

against government agencies, military systems and commercial entities. The

cost of damage is expected to go higher with time, due to the fact that the at-

tacks from the APTs are becoming deeper and adaptive in nature. There is no

formal model in the literature to classify a threat as an APT or not; security ex-

perts often apply some ad hoc rules after analyzing the impact of the attack.

Without a proper threat or attack model, the defense mechanism also becomes

unstructured and ineffective.

Ransomware are a type of malware which infiltrate a system and hold crit-

ical data for a ransom. Primarily there are three simpler types of ransomware,

namely the locker, the crypto and the hybrid [15]. The locker variant of the ran-

somware locks the entire system and denies the user access to the system. The

crypto form of the malware, targets specific files and/or folders and encrypts

them, thereby denying the user any access to those encrypted resources. The

hybrid version of ransomware possesses the capabilities of both types of ran-
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somware. Ransomware variants created by APT groups are more advanced

and can cause damage beyond mere ransomware type attacks. A formal model

is required to classify these APT attacks to build a strong defense framework.

2.2 APT Defense: Detection and Deception

Figure 2.1: Traditional APT Defense Methods

Figure 2.1 shows different methods for defense against APT attacks [16].

These methods require considerable computational capability. Traditionally APT

detection systems run using super-computers. This poses an important prob-

lem. To tackle newer and more sophisticated attacks, not many intelligent and

distributed systems are available so that APT detection systems could be run

securely on lesser powerful computers.
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2.3 Mitigation

One of the most important factors in defense against APTs is to make proper

decisions at the proper time. Answering the questions “What to do?”, “When

to do?”, and “How to do?” suitably would help the defender devise a mitigation

plan when faced with an APT attack.

2.4 Summary of Contributions

• We have identified several new attributes of APTs to address the state-

of-the-art attacks from well-known APT groups. This helps to character-

ize more sophisticated attacks. An updated feature set helps to build a

stronger defense system. This addresses the problem of threat modeling.

• We designed an architecture, Kidemonas, a generic framework to silently

detect APTs and surreptitiously report the intrusion to the user. To make

the architecture cost effective, commercial-off-the-shelf (COTS) hardware

components are used. Kidemonas is a distributed framework to detect

generic APT. This reduces the computational load by putting different

APT detection system in different nodes of the framework.

• In the aforementioned distributed framework we needed an APT detec-

tion system. Therefore, we designed a Hidden Markov Model (HMM)

based intrusion detection system (IDS) to detect APT type ransomware.

This can be launched from one of the nodes of the framework. If any APT

type ransomware is detected at the node, the information is shared with

the other nodes of the framework. This reduces the load of computation

on other nodes.
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• We integrated the HMM based IDS inside Kidemonas along with the smart-

box concept by [17] to forward a deception based countermeasure called

Decepticon. This addresses the problem of detection and deception as a

defense system with respect to APT type ransomware which can be han-

dled by lesser powerful computers.

• We also designed a classifier based IDS using machine learning (ML) and

natural language processing (NLP) models, viz., Naive Bayes’ Classifier

(NBC), gradient boosting (GB) decision trees, random forest (RF), logistic

regression (LR), support vector machine (SVM) and BERT.

• We ran several APT type ransomware, viz., Darkside, REvil, BlackMatter,

BlackByte, and Diavol, and created a dataset of system call logs. We used

that dataset to train, validate, and test our classifier base IDS. This caters

to the need of an intelligent detection system for APT type ransomware.

• To answer the questions “What to do?”, “When to do?”, and “How to

do?” competently, we use game theoretic analysis of the attack-defense

scenario with respect to APT type ransomware. This would address the

final problem of making informed decisions for the purpose of designing

an optimum strategy to mitigate APT type ransomware attacks.

• We analyzed the threat scenario of non-APT type ransomware using a se-

quential game model. We introduced two parameters which would help

the defender in making an informed decision when under attack.

• We then extended the concept of game theory for more sophisticated APT

type ransomware. We designed a more elaborate sequential game model
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for multi-stage advanced ransomware attacks, analyzed the threat sce-

nario and traced the optimal strategies of the attacker for different condi-

tions. We came up with equilibrium conditions to maximize the outcome

and minimize the losses of the defender with and/or without the defense

features.



Chapter 3
Preliminaries and Related Work

“The most important factor in determining whether readers can understand a

text is how much relevant vocabulary or background knowledge they have.”

– Natalie Wexler,

The Knowledge Gap

In this chapter, we provide relevant background to our research area and

describe the related work by other researchers in this domain.

3.1 Advanced Persistent Threats

Malware created by the APT groups typically do not carry out the attacks in a

single stage. The “Cyber Kill Chain” framework developed by Lockheed Mar-

tin describes an APT through a seven stage life cycle [18]. The model describes

the beginning of the attack through a reconnaissance phase wherein the malware

gathers information about the system. This is followed by the weaponization

phase, thereupon creating a remote access malware that can be controlled by

the attacker. The delivery phase denotes the intrusion of the malware into the
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system. In the exploitation phase, the malware exploits the vulnerabilities that

exist in the system. The installation phase signifies the escalation of privileges

on the part of the malware and the installation of back-doors to maintain com-

munication with the command and control (C&C) centers to receive further in-

structions. The command and control phase implies the access of the target system

gained by the attackers from the C&C centers. Finally, in the actions on objective

phase, the intruder mounts the final assault on the system. LogRythm describes

an APT through a five stage life cycle [19]. Lancaster University describes APT

through a three stage life cycle [20].

3.2 Ransomware

A malware is a software program which is designed with malicious intent to

cause harm to the victim. When the intent of a malware is monetary gain by hi-

jacking victim’s resources for a ransom, it is called a ransomware. Ransomware

are a type of malware which infiltrate a system and hold critical data for a ran-

som. Depending upon the nature and level of sophistication, a ransomware

can be of an APT type or of a basic nature. Primarily there are three simpler

types of ransomware, viz. the locker, the crypto and the hybrid [15]. The locker

variant of the ransomware locks the entire system and denies the user access to

the system. The crypto form of the malware targets specific files and/or fold-

ers and encrypts them, thereby denying the user any access to those encrypted

resources. The hybrid version of ransomware possesses the capabilities of both

types of ransomware. It can encrypt and lock targeted resources and/or the en-

tire system. But there can be a variant of ransomware which is a more advanced

form of malware. In addition to possessing the features of a basic ransomware,
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they are more sophisticated by having a contingency plan of attack on being

discovered [2]. They also perform the attack through multiple stages and gener-

ally are controlled by the attackers from the C&C centers. They qualify as APTs.

Recently, an Australian beverage company and educational institutions in In-

dia became victims of ransomware attack [21], [22], [23]. Off late, the malware

WannaCash is also causing trouble to the cyber-world [24]. Another example

of a recent attack is the one on Indian nuclear power plants causing significant

data breaches [25]. Zakaria et al. [15] investigated the rise in spread of ran-

somware, and laid down the main areas for research concerning ransomware

starting with the detection from indicators of compromise (IoC), signatures of

the malware and analysis of network traffic. This is followed by the two other

areas of research identified by the authors, which are recovery from the attack

and prevention from future attack. In our research, we investigate the strate-

gies of the attacker as well as the defender, and in doing so we dive into the

research territories of “recovery from attack” and “prevention of future attacks”

mentioned in [15].

3.2.1 APT type Ransomware

The threat model considered in our research is both basic and advanced type of

ransomware but we are focusing primarily on the latter. The APT variants are

generally perpetrated by nation state actors with huge amount of resources at

their disposal [2]. Following are some of the APT type ransomware used in our

research. BlackByte, an APT type ransomware, has two modes of attack. It can

either attack directly, or offer services as ransomware-as-a-service (RaaS) [26]. It

exploits the ProxyShell vulnerabilities that exists in Microsoft Exchange Server



13

to infiltrate the system. The ransomware has a Russian origin, as it avoids any

device that has a language setting in Russian and/or some other language from

any of the former Soviet countries. The primary targets includes US-based or-

ganizations in critical infrastructure sectors such as government, finance, and

food & agriculture [27]. DarkSide is another APT type ransomware which was

involved in attacks on Colonial Pipelines and Toshiba [28]. REvil is also an APT

type ransomware which was responsible for attacks on entities which are sup-

pliers of Apple Inc. and are responsible for stealing confidential information

[29]. Both REvil and DarkSide have similar code base. Just like BlackByte, both

REvil and DarkSide allegedly have Russian origin. They avoid devices that have

language settings similar to Russian and former Soviet countries [30]. Black-

Matter is another APT type ransomware, which targeted multiple U.S. critical

infrastructure entities, including two U.S. Food and Agriculture Sector organi-

zations [31]. They are allegedly a “rebrand” of DarkSide ransomware and their

main targets include food and agricultural sector [32]. Diavol, an APT type ran-

somware, is allegedly linked to a cybercrime group called Wizard Spider who

are also known as Trickbot. They are also the perpatrators of the ransomware

Ryuk, Conti and the spam Trojan Emotet [33]. Diavol, just like the other ran-

somware created by TrickBot, attacks corporate victims, especially financial in-

stitutions which use Windows [34], [35]. TrickBot is a nation state actor with

alleged connections to Russian intelligence agencies [36].

3.3 Mitigation Techniques against APT

Traditionally APT attack mitigation is carried out by following some or all of

the 12 processes [37]:
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Anomaly Detection: Deviation from expected behavior by certain processes

or network traffic can help in detecting and thwarting an APT attack.

Whitelists: Whitelisting trusted units in a network and communicating ex-

clusively with them can lower the risk of an APT attack.

Blacklists: Blacklisting known malicious entities in a network and not com-

municating or blocking them also lowers the risk of an attack by APT groups.

Intrusion Detection System (IDS): Having a strong and state-of-the-art in-

trusion detection system can inform the user of any form of intrusion and an

attack can be thwarted in early stages.

Awareness: Creating awareness among people regarding their behavior in

the cyber-physical space can help in minimizing the human error or human-

factor induced vulnerabilities in the system. This reduces the chances of an

attack on the system due to exploitation of vulnerabilities induced by human

beings.

Deception: Deception as a potential weapon against attacks by APTs has

been used in various forms. The goal is to deceive the attacker in believing that

it has become successful in mounting an attack, while analyzing the malware

and preparing a defense action against the attack.

Cryptography: Having a strong encryption scheme increases the security of

the system. It can often help in increasing the privacy as well.

Traffic/Data Analysis: Often statistical methods are employed to analyze

traffic and data in the system to look for any breach in network protocols or any

other form of anomaly in detecting attacks from APTs.

SIEM: In the Security Information and Event Management (SIEM) tool the

data is collected and analyzed centrally. It is one of the most popular ways to

detect and protect a system against APT attacks.
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Pattern Recognition: Looking into the pattern of malicious activities per-

formed by applications can be used to thwart future attacks.

Risk Assessment: Assessing the risks and possibilities of attack on the sys-

tem can be helpful in preparedness against attacks.

Multi-layer Security: Communications in computer systems happen through

multiple layers. Having a strong security system for each layer helps in bolster-

ing the security of the system.

3.4 Trusted Computing

In our research, we aspired to provide a layer of deception with the use of

commercially available hardware-based components. In this regard, we ex-

plored the following option. The Trusted Platform Module (TPM) is a hard-

ware component designed following the guidelines of the security consortium,

the Trusted Computing Group (TCG) [38]. The TPM comes with essential cryp-

tographic potential. It can generate cryptographic keys, both symmetric and

asymmetric. It has the capability of generating random numbers when required

and can store cryptographic credentials. It also provides hashing capabilities.

The primary functionalities of TPM include verification of platform integrity,

safeguarding encryption keys, and preservation of password and user creden-

tials. Figure 3.1 gives a simplified schematic of the TPM version 1.2, the speci-

fications of which are laid down by the TCG [39]. TPMs today come in differ-

ent incarnations that depend on the type of device and the manufacturer. Intel

Software Guard Extension (SGX) and ARM TrustZone are versions of TPM-like

hardware which come with certain functionalities in addition to the ones al-

ready mentioned for TPMs [40], [41], [42], [43]. They provide a Trusted Execution
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Figure 3.1: A Simplified Schema of TPM

Environment (TEE), which is generally outside the purview of high-priority OS

instructions but can be accessed using the user credentials. Therefore, in general

it can be assumed, even if the OS is compromised, that the hardware component

is outside the purview of the attacker.

3.5 AI Models for Intrusion Detection

In this section, we examine AI models which we use in our research for design-

ing an effective behavior oriented intrusion detection system (IDS).
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3.5.1 Hidden Markov Models

Hidden Markov Models (HMM) have been historically used for speech recog-

nition [44], [45]. HMM has also been applied for handwritten character and

word recognition [46]. The biggest advantage that comes with HMM is that, in

a process wherein the stages are not visible to the observer, certain observable

features can be used to predict the stage of the process at a certain instance.

Owing to this advantage, HMM-based techniques have often been used for the

analysis of sophisticated malware. Metamorphic virus can be an annoyance. A

metamorphic virus is capable of changing its code and become a new variant

of itself without changing the functionalities. The changes are not exactly vis-

ible to the observer and therefore observable characteristics play an important

role in the analysis. HMM has been used for detection and analysis of such

metamorphic viruses [47].

3.5.2 Machine Learning Algorithms

3.5.2.1 Naive Bayes Classifier (NBC)

Naive Bayes is a supervised machine learning algorithm based on applying

Bayes’ theorem along with the conditional independence assumption between

every pair of features [48]. It assumes that one feature of a class is unrelated

to the other features, regardless of any correlation, and will predict the class of

unknown datasets based on the Bayes’ theorem of probability. This classifier

is known to work well in real-world text classification situation such as Spam

identification, and Recommendation Systems.
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3.5.2.2 Support Vector Machine (SVM)

Support Vector Machine is a type of supervised learning method used for clas-

sification, regression, and outlier detection [49]. It is an effective algorithm in

high dimensional spaces. It works by creating a hyper-plane or set of hyper-

planes in the high dimensional space to separate the data into groups based on

the classes and this hyper-plane is used for classification. The hyper-plane is

chosen based on the separation achieved between the classes. A good hyper-

plane is characterized by a larger margin, i.e., maximum distance between the

support vectors (which are the nearest training data points). The hyper-plane

or separation line is determined using these support vectors by identifying the

hyper-plane that gives the highest margin, since higher the margin the lower

the error of classification.

3.5.2.3 Logistic Regression (LR)

Logistic Regression is another supervised learning model to perform binary or

multivariate classification [50]. The prediction of a class for a given data point is

performed using a linear equation and by passing its output to a logistic func-

tion to get a value between 0 to 1. Typically, a sigmoid function is used to restrict

the values between 0 and 1.

3.5.2.4 Gradient Boosting (GB) Decision Tree

Gradient Boosting Decision Tree is an ensemble learning model for performing

supervised classification tasks [51]. An ensemble model performs predictions

using a collection of models. Boosting is one of the ways of building an ensem-

ble model where the collection of models are trained sequentially where each
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model learns from the previous models’ mistakes. In Gradient Boosting, mul-

tiple weak learners are used together to build one strong learner (where each

weak learner is a decision tree). The trees are combined one at a time and trained

to correct the prediction mistakes made by the prior models. These weak learn-

ers are combined in a series and each new learner takes into account the errors

from previous learner so that the overall model improves.

3.5.2.5 Random Forest (RF)

Random Forest is a supervised learning algorithm that is based on the ensemble

model [52]. It derives that predictions by creating multiple decision trees. This

algorithm works on the concept of Bagging where multiple models are trained

in parallel and each of these models is trained on a random subset of the data.

Random Forests can be visualized as parallel combination of decision trees and

the results from these trees are combined to come up with the final classification.

3.5.3 ML based IDS

Researchers have long used KDD CUP’99 dataset to design and evaluate ID-

Ses [53]. It is a popular dataset which has five million and two million records

for training and testing, respectively. Using this dataset, researchers can design

classifiers working on 41 features to detect attacks like denial of service (DoS),

probe, remote to local (R2L), and user to root (U2R) [54]. NSL KDD is a more re-

fined version of KDD CUP’99 dataset by removing several of its integral issues.

NSL KDD is also a 41 feature dataset and is used for detection of attacks similar

to KDD CUP’99 dataset [55], [56]. These datasets are mostly used for designing

network based IDS (NIDS) [54]. Researchers have been plagued by the paucity
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of data regarding APT type ransomware. To help with this problem, for our

research, we created a dataset of system call logs for the design and evaluation

of host based IDS (HIDS) in the context of APT type ransomware attacks.

Researchers have often used a variety of machine learning (ML) techniques

to detect malware. Alkasassbeh et al. [57] used data mining techniques along

with classification techniques like multi-layer perceptron (MLP), Naive Bayes’

classifier (NBC) and Random Forest to detect distributed denial of service (DDoS)

attack. Almaseidin et al. [58] used classifiers like J48, Random Forest, Random

Tree, Decision Table, MLP, NBC and Bayes Network on KDD dataset to design

and evaluate IDSes to detect attacks like DoS, U2R, R2L and Probe. Halimaa

et al. [59] used SVM, and NBC on NSL-KDD dataset to detect DoS, Probe and

R2L attacks. Keserwani et al. [60] in order to obtain features from IoT network

used a combination of Particle Swarm Optimization (PSO) and Grey Wolf Op-

timization (GWO). The features obtained are then provided to a random forest

(RF) classifier in order to attain a high attack detection accuracy. They used

KDDCup99, NSL–KDD, and CICIDS-2017 datasets to design and evaluate their

NIDS. Krishna and Arunkumar [61] also proposed a hybrid GWO-PSO opti-

mization algorithm used in conjuction with RF classifier on NSL-KDD dataset to

detect DoS, R2L, U2R and Probe attacks. They have even compared their results

with the results obtained from classifiers LSTM-RNN and Gradient Boosting

Decision Trees. But the existing aforementioned datasets are generally used for

designing NIDS. In our research we created a dataset for APT type ransomware

and designed a HIDS to detect the same.
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3.5.4 Natural Language Processing based Models for IDS

The recent advancements in Natural Language Processing (NLP) has greatly im-

proved the abstract understanding of language and representation of language.

The development of state-of-the-art Language Models has enabled setting high

benchmarks in various real-world applications such as question answering, ma-

chine translation, text summarization, and text classification. Language Models

capture the probability distribution of words in a word sequence, i.e., it can

predict the probability of a given word sequence being correct. Primarily there

can be two types of Language Models, Statistical Language Models and Neural

Language Models. The neural models have been traditionally based on Recur-

rent Neural Networks (RNN) which are widely used for processing sequential

data. RNN based architecture is sequential in nature and processing at each time

step is dependent on the output/processing of the previous one. This prevents

the use of parallelization to improve training time. Then came the Transformer

based architecture [62] that could overcome the problem of parallelization using

the mechanism of Attention. This allowed the model to get the context for any

position in the input and process the input data in parallel without having to

wait for previous time-steps to process a time-step. As a result, the paralleliza-

tion enabled much larger data to be used to train these models and also reduced

the training times.

Tran and Sato used NLP-based approach to analyze and classify malware

from the data collected from API call sequences [63]. They collected behavioral

data from malware from API call sequences. Thereafter, they performed fea-

ture extractions and feature vectorization using TF-IDF and Paragraph Vectors.

Following that, classification was done using KNN, SVM, RF, and MLP.
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Najafi et al. [64] used the events log of SIEM at enterprise systems to model

the behavior as directed acyclic graphs (DAG). They used a NLP-based ap-

proach to detect graph based outliers. They evaluated their model in enterprise

like environment and discussed the feasibility and effectiveness in advanced

malware detection in the real-world.

Wang et al. [65] presented a research on the challenging problem of APT

attribution. In their research, for the intermediate representations from wide

variety of architectures, they used the VEX IR method. They chose two features,

viz., string features and code features. They used strings as the behavioral fea-

tures of the malware. The string features were the texts in the behavior report.

They used paragraph vector distributed memory (PV-DM) to generate vectors

for code features. They used bag-of-words for the vectorization of string fea-

tures. They applied random forest classifier (RFC) and deep neural network

(DNN) classifier to learn and classify. Finally, they ran RFC and Local Inter-

pretable Model-agnostic Explanations (LIME) to interpret the results from the

classification task.

Bidirectional Encoder Representations from Transformers (BERT) is a trans-

former based language model that revolutionized the field of Natural Language

Processing [66]. BERT model differs from the traditional transformer architec-

ture in a way that it uses only the encoder instead of both encoder and decoder

design. BERT is designed to pre-train deep bidirectional (as it takes entire se-

quence at once) representation from text and can be fine-tuned and customized

for specific and unique tasks using one additional output layer. Based on this ar-

chitecture, huge pre-trained models have been trained and open-sourced. These

pre-trained models have been trained on humongous dataset (nearly 3.3 billion

words using data from Wikipedia, Google’s BookCorpus) and this contributes
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to the deep understanding of the English language of BERT models. BERT’s

source code and several pre-trained BERT models are available open-source and

free. This allows the community to utilize these state-of-the-art models running

quickly and tailor, fine-tune the models and its performance for their custom

use-case.

Researchers have previously worked on the intersection of NLP and Cy-

bersecurity. Rahali and Akhloufi [67] used transformer-based models to au-

tomatically identify malicious software. They processed the source code of

Andriod APKs (applications for Android system) and performed static anal-

ysis to identify malware and classify them into malware categories. The neural

net model LSTM and transformer-based models such as XLNet, RoBERTa, Dis-

tilBERT, BERT were used to perform both binary and multi-classification and

these models’ performances were compared. Andronio et al. [68] presented

an NLP based ransomware detection model called HelDroid for mobile de-

vice platform. It primarily identifies malicious apps. The authors implemented

“Threatening Text Detector” on OpenNLP, an NLP library. It was designed for

mobile devices running Android OS. They were able to detect ransomware with

99% accuracy on the samples which were not known to HelDroid. Continella et

al. [69] put forward a detection model “ShieldFS”, which focused on the low-

level behavior of the ransomware. The model examines the activity at the low-

level file-system and updates the rule-based system profile models. If any pro-

cess does not comply with the models, then they are considered to be malicious.

Scaife et al. [70] proposed “CryptoDrop”, a behavior based early warning sys-

tem for detecting ransomware. They use a set of behavior indicators pertaining

to ransomware and in accordance to that the system is parameterized for ran-

somware detection. Kolodenker et al. [71] provided a proactive defense mech-
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anism called “PayBreak.” PayBreak depends on the insight that ransomware

often uses hybrid encryption system with symmetric keys for different sessions

on the victim’s computer. It scrutinizes the use of those keys, put them in an

“escrow” and thereafter use them to recover the files whenever the need arises

to decrypt the resources encrypted by the ransomware. These researchers de-

veloped models to detect ransomware intrusion and also ransomware defense

mechanisms against basic variant of the ransomware. In our research, we have

devised a new way to identify APT type ransomware which are also applicable

to the basic variant. The focus is on using system calls and other metadata cap-

tured about the processes to create a dataset that allow us to design an IDS to

detect ransomware that disguise themselves as legitimate processes.

3.5.5 Evaluation Metrics

The model evaluation is an important step to understand the performance of a

model and to evaluate how well a model can classify/predict the values for un-

known datasets. The evaluation is done by getting the predictions on a smaller

dataset (called the test set) that is held out from the model during the training

phase and this test set is not seen by the model before the evaluation phase.

The metrics chosen for evaluation also allow us to compare one models’ per-

formance with that of another model. In our experiments, the below explained

metrics are used. Let us consider the following notations used in the metrics

[58].

1. True Positive (TP): A malicious event is classified correctly as malicious by

the model.

2. False Positive (FP): A non-malicious event is classified incorrectly as mali-
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cious by the model.

3. True Negative (TN): A non-malicious event is classified correctly as non-

malicious by the model.

4. False Negative (FN): A malicious event is classified incorrectly as non-

malicious by the model.

3.5.5.1 Accuracy

Accuracy is the proportion of the correct classifications to the total number of

classifications performed in the test set, i.e., it denotes the fraction of correct

classifications. The value of this metric is between 0 to 1 and a larger value

indicates better classification accuracy.

Accuracy = TP+TN
TP+FP+TN+FN

3.5.5.2 F1 Score

F1 score metric can be explained in terms of two other commonly used metrics,

precision and recall.

• Precision: Precision value denotes the extent to which the positive (mali-

cious events) values classified by the model are correct. It is given by count

of true positives divided by the total number of positive classification. So,

it is the proportion of positive classifications that are correct to the total

positive classifications.

precision = TP
TP+FP

• Recall: Recall is also called as sensitivity of the model and denotes the abil-

ity of the model to classify the available positive events (malicious events)
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correctly. This value indicates how many positive events can be classified

correctly by the model over all the available actual positive events.

recall = TP
TP+FN

F1 Score is the harmonic mean of precision and recall values and it is a way

of getting a weighted average of precision and recall. Since F1 score takes both

the precision and recall, higher the score, the better is the performance.

F1 = 2 ∗ precision.recall
precision+recall

3.5.5.3 Receiver Operating Characteristic

The Receiver Operating Characteristic Curve (ROC Curve) is a plot which can

be used to evaluate and compare classification models. This graph is plotted

against the true positive rate and the false positive rate.

• True Positive Rate (TPR) is the proportion of the true positive classification

to the number of actual positive classes available. This is same as the recall

of a model.

TPR = TP
TP+FN

• False Positive Rate (FPR) is the proportion of false positives to the number

of actual negative classes that are available. This metric is also called as

fall-out of the model.

FPR = FP
FP+TN

Plotting ROC curve and computing the area under the curve (AUC) is a com-

monly used metric to evaluate the performance of a model. The AUC metric

calculates the entire two dimensional area under the plotted ROC curve and it

represents the extend to which the model can separate or distinguish between

the classes to be classified. This is an indicator of separability of the model.
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3.5.5.4 Training Time

Every model is trained using the training dataset. The model parameters and

weights are updated as part of this training step and this requires certain com-

pute power. Capturing the total time taken by the model to train indicates the

computation time required to get the model ready before we can get classifica-

tion/predictions using the model.

3.6 Game Theory for Security and Mitigation

Game theory opens up new avenues for malware analysis. Cartwright et al. [72]

proposed a game-theoretic model to analyze generic ransomware attacks. They

used kidnapping game [73], [74] as the basis for the model. The malware was

modeled as the kidnapper whereas the database of the victim was modeled as

the hostage. The goal of the paper is to help the defender to make an informed

decision regarding the payment of the ransom. Spyridopoulos et al. [75] in-

vestigated a game-theoretic approach for the cost-benefit analysis of malware

proliferation, and modeled it on the lines of epidemic spread models, SIR and

SIS. They applied their models on the well-studied Code-Red worm. The idea

was to develop a cost-benefit game-theoretic model to apply malware prolifera-

tion strategies including “patching” of infected nodes in a network, “removal”

of infected nodes in the network, and/or the combination of both. They used

“FLIPIT” game as the basis for the development of their model. But this re-

search was primarily done to analyze and mitigate a generic ransomware attack.

In our research, we investigate the sophisticated APT type ransomware attack

through a “sequential game”, so that future developments can be incorporated
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in the ever evolving attack landscape of APTs.

Khouzani et al. [76] used a zero-sum dynamic game-theoretic model as a

solution to malware attack. They analyzed the structural properties of saddle-

point strategies, which are simple threshold-based policies, and showed the

possibility of a robust dynamic defense system against malware attacks. They

have investigated the network defense landscape of mobile wireless networks.

The strategies on the part of defender those were investigated were reception

and patching rates. The strategy of the attacker that was investigated was anni-

hilation rate of the infected nodes. Through the formulation of a dynamic game

it was proven that threshold-based policies form an effective robust solution to

malware attacks.

In the world of Internet of Things (IoTs), a cloud-assisted malware detec-

tion and suppression framework has been put forward by Zhou et al. [77]. The

authors have used a support vector machine (SVM) based malware detection

technique with sharing of data at the security platform in the cloud. This was

followed by an epidemic spread model to show the state transition of the wire-

less media system (WMS) to emulate the spread of malware in the network.

Finally, they used dynamic differential game to calculate the Nash equilibrium

as a solution to the attack, based on which the malware suppression framework

was designed.

Cekar et al. [78] have used deception to counter denial of service (DoS) at-

tacks. They have also used a game-theoretic model based on signaling game

with perfect Bayesian equilibrium (PBE) to investigate the implications of de-

ception to counter the attacks. Deception as a potential defense tool has been

used to lure the attackers to high interaction honeypots in [79] and thereby de-

signing an effective malware detection system. The author proposed an adap-
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tive honeypot system based on game-theoretic concepts to lure the attackers

leading to the detection of the rootkit malware by the defender. Deception as

a defensive tool has been an important area of research, and so are the game-

theoretic models for its analysis in the cyber-physical domain [80], [81], [82].

A multi-phase and multi-stage game-theoretic model has been developed

by Zhu et al. [83] to systemize the threat mitigation strategies against APTs. A

three-phase game was considered in the aforementioned paper which included

spearphishing game in phase 1, followed by phase 2 game modeled on learning

and penetration behavior of the malware, and finally phase 3 game modeled on

the final stage of the APT wherein the damage has been eventually caused to the

victim. The spearphishing game was modeled as a simplified Bayesian game,

the multi-stage penetration of the networks was modeled as a nested game and

final-phase game was modeled as a finite zero-sum game.

The research in the Khouzani et al. [76], Zhou et al. [77], and Zhu et al.

[83] papers were aimed at the game theoretic analysis of attacks mounted by

malware. In our research, we also use game theoretic model for the analysis of

APT type ransomware. We follow our sequential game model by a sensitivity

analysis as a means to study the effect of the changes in the values of different

parameters on the equilibrium strategies of the players.

3.7 Summary

In summary:

• We looked into a class of malware of the type Advanced Persistent Threats

(APT).



30

• We explored different variants of ransomware including the APT variant.

• We browsed through some of the traditional APT mitigation techniques.

• Before we introduce the concept of deception in our research, we exam-

ined the commercially available hardware components used for the same.

• We scrutinized some of the AI models and the evaluation metrics that we

used for the purpose of malware detection in our research.

• Finally, we investigated the usage of Game Theory with regards to the

development of mitigation strategies for our research.



Chapter 4
Advanced Persistent Threats

Redefined

“Every search for a hero must begin with something which every hero requires

- a villain.”

– Robert Towne,

Mission Impossible II

In this chapter, we identify several new attack attributes with the goal of

characterizing the current state-of-the-art advanced persistent threats (APT).

APT is the main category of threats this dissertation is primarily focusing on.

The attributes identified would help the defender devise a defense mechanism

and mitigation strategies when faced with an attack. The following sections

discuss the details of the research done in this regard.
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4.1 New Definition

Identification of an APT while the attack is unfolding is non-trivial due to the

dynamically changing landscape of sophisticated attacks. In order to address

this, we first defined a set of characteristics of an attack. If the attack dis-

played certain well-defined characteristics, we could say that the threat is an

APT within the bounds of our definition and an action could be taken to mit-

igate the after-effects of the attack. The proposed parameterized model is a

customization of the stealth attack model of [17] to fit the new breed of attacks,

viz. APT.

Most published cyber-attacks in the literature are single-shot, staged by run-

ning certain attack scripts and are instantaneous. The typical defense mecha-

nism is reactive in nature. On the other hand, the APTs are generally mutli-shot

and spread over multiple stages [17]. The defense against an APT is different

from that of the non-APT attacks. It is possible to proactively handle an APT if

it is recognized at an early stage. So an early detection and classification of the

threat is important from the defender’s point of view. For the purpose of clas-

sification, we considered five main characteristics shown in Table 4.1. For each

characteristic we defined certain parameters, which would help in identifying

the threat.

4.1.1 Reconnaissance

Reconnaissance is a characteristic possessed by almost all kinds of attacks. Most

of the attacks perform some external reconnaissance on the system and many

do internal reconnaissance once inside the system. Therefore, we defined two

parameters for this characteristic, namely, P1.1 and P1.2 to recognize both of
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Table 4.1: Characteristics and Parameters of an Attack

Characteristics Symbol Parameter Description

Reconnaissance P1 P1.1 External Reconnaissance
P1.2 Internal Reconnaissance

Exploit P2

P2.1 Hardware Vulnerabilities
P2.2 Software Vulnerabilities

P2.3.1 HW Timing Constraints
P2.3.2 SW Timing Constraints
P2.4 Target Acquisition
P2.5 Affected Resources

Authorized Access P3
P3.1 Admin Rights
P3.2 Backdoor Implants

P3backdoor Backdoor Implant Tools

Honeypot Interaction P4
P4.1 Low Interaction Honeypots
P4.2 High Interaction Honeypots
P4.3 Activity Logging

Contingency Plan P5

P5.1 Abort Mission
P5.2 Different resources, same attack
P5.3 Different attack, same resources
P5.4 Different attack and resources
P5.5 Decoy attack

these activities.

4.1.2 Exploit

The Exploits characteristic encompasses all the exploitable vulnerabilities and

the parameters defined here are used to calculate the risk associated with the

vulnerabilities. In this characteristic, five parameters are defined. Each parame-

ter enlists the vulnerabilities associated, which can be exploited by the attacker

to mount an attack. Parameter P2.1 enlists all the exploitable hardware vulner-

abilities. Parameter P2.2 encompasses all the exploitable software vulnerabil-

ities. Parameter P2.3 gives the time constraints regarding exploitation of the

vulnerabilities. It denotes the time required for exploiting the hardware as well
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as software vulnerabilities. This parameter is particularly very important from

the attacker’s point of view. It gives them an idea to run a feasibility test. It

is also important from the defender’s perspective since this parameter helps a

defender to understand whether a system is unconditionally secured, compu-

tationally secured or not secured. Parameter P2.4 enlists all the target compo-

nents, which had either been acquired or will be acquired. This parameter gives

an idea to the defender about the components, which are to be secured on a pri-

ority basis at the event of an attack. The last parameter of this characteristic is

P2.5, which lists the affected resources.

4.1.3 Authorized Access

Reconnaissance and Exploit characteristics are generic and common to most

threat families. On the other hand, Authorized Access is a major characteristic

of a quiet invader [1] and/or an APT. This characteristic signifies the capability

of the threat to gain authorized access to the system and maintains the foothold.

The parameters defined in these characteristics are P3.1 and P3.2. P3.1 is differ-

ent from the other parameters in the sense that it is a Boolean parameter. P3.1 is

True if the attacker is able to gain administrative privileges, else it is False. P3.2

enlists all the backdoor implant tools used to install backdoors. This parameter

is very important from defender’s perspective as it gives an idea about the na-

ture of attack being carried out. This parameter also opens up the avenue for

the defender to snoop into the communication between the malware installed

by the attacker and the Command and Control (C&C) centers. If this commu-

nication between the malware and the C&C centers can be breached, then the

attack can not only be thwarted but also the family as well as the nature of the



35

attack can be known easily.

4.1.4 Honeypots

For the purpose of defense many systems use deception as a tool. Use of honey-

pots and honeypot farms is such an application [17]. Parameters P4.1 and P4.2

enlist the threat and honeypot pairs and log their interaction. Parameter P4.3

is another Boolean parameter, which is True if the honey-pots are logging the

activities of the malware and is False otherwise.

4.1.5 Contingency Plan

A distinguishing feature of our APT model is the recognition of the presence

of a contingency plan in an attack campaign [84]. A defender might come up

with a defense mechanism while under attack, but the attacker realizing that

a defense is building up might change the mode of attack. The renewed attack

might be totally different in nature throwing the defender off guard and making

the system more vulnerable than it was before. Therefore, to understand this

characteristic, we defined 5 sub-parameters. The parameter P5.1 is a Boolean

parameter. P5.1 is True when the contingency plan of threatening attacker is to

abort mission when discovered, and False otherwise. This may be viewed as a

default plan on the part of the attacker. Parameter P5.2 enlists all the resources,

which can be attacked using the same mode of attack. Parameter P5.3 enlists

all the different modes of attacks, which can attack the same resources, which

are currently under attack. Parameter P5.4 enlists all the attacks and resources,

which can be attacked except for the current mode of attack and the resources,

which are currently under attack. Parameter P5.5 addresses a certain plausible
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scenario. Though this parameter is enlisted under Contingency Plan it can be-

come the main plan as well depending upon attacker skills and the dynamics

of the application environment. It enlists all the probable decoy targets, which

are currently under attack in order to take the focus away from the main target.

It primarily enlists all the sets in which one or more targets are the main tar-

gets and other targets, which can be probable decoys for the main target. It also

states which sets are currently active, which means that the decoys are currently

under attack and the main target is at risk.

4.2 Summary

In summary:

• In this chapter we put forward a research which identifies new attributes

to characterize state-of-the-art APT attacks.

• These attributes play a key role in differentiating APT type attacks from

non-APT type attacks.

• Owing to this update, we were able to differentiate between APT type

ransomware and non-APT type ransomware.

• These attributes help us build better defense architecture and make in-

formed decisions when faced with an attack.

• More details can be found in the published work [2].

The new attributes identified help to account for the more recent and sophis-

ticated attacks. The initial step in designing a defense system is threat identifica-
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tion. These attributes would not only help in proper identification of the threats

but also help in designing strategies to mitigate the attacks.



Chapter 5
Attack Detection

“He will win who knows when to fight and when not to fight.”

– Sun Tzu,

Art of War

The initial definition of APT in the literature had become outdated and would

not account for the most recent state-of-the-art sophisticated attacks. In Chap-

ter 4, we updated the literature by redefining an APT. With the newer features

being attributed to the APT attacks, a new system is needed to detect an intru-

sion by an APT type malware. We designed a Hidden Markov Model (HMM)

based intrusion detection system (IDS) for APT type ransomware [85]. HMM

has traditionally been used for handwritten character recognition, speech recog-

nition, analysis of polymorphic and metamorphic virus. The advantage of using

HMM in our model was to identify the state of the attack (which are generally

hidden owing to the stealthy nature of the malware) from the observable fea-

tures. This would help the defender tailor a defense response best suited to that

particular state of attack. This way the defense response would be more effec-

tive and would affect the performance to a lesser extent. Another advantage
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of using HMM for the IDS is that it not only characterizes the attack but also

the attacker. This helps the defender to be better prepared for similar future

attacks. Additionally, we showed that malware spread models can be used to

obtain the indicators of compromise (IoC) and can be effectively used to aid the

HMM based IDS in detecting an intrusion by an APT type ransomware [86].

Furthermore, we present multiple models to make an IDS smarter with the use

of machine learning (ML) and natural language processing (NLP) models. We

create a dataset by collecting system call logs from running a few APT type

ransomware, viz. Black- Byte, BlackMatter, Diavol, REvil and Darkside using

a commercial tool. Then we run our ML and NLP based detection models and

compare their accuracy and performance.

5.1 Malware Spread Model

The threat being considered in this dissertation is a ransomware type malware

created by the APT groups. A careful analysis of this threat will reveal the types

of vulnerabilities, the systems that are at risk and the spread of the malware.

This knowledge would help the defender to identify the indicators of compro-

mise for the analysis of the HMM based APT detection system. The spread

model would help the defender in detecting the malware in its early stages. For

the spread of the ransomware we consider the following spread and growth

models, viz., exponential growth, epidemic spread model and random walk.
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5.1.1 Model 1 - Exponential Growth

The exponential growth model [87], [88] can be applied to those malware which

infect the systems and/or devices that communicate directly with the infected

systems and/or devices. A number of new infections are caused by already

infected cases. If we assume that the population is large enough then we can

use the exponential model. Let us assume that Nt nodes in a networked system

of a very large enterprise are infected at a given time t. Let E be the average

number of nodes which are directly interacting with an infected node, and let

p be the probability of an exposed node becoming infected from its interaction

with an infected node. Then the increase in the number of infected nodes is

given by

∆Nt = E · p · Nt

At time t+1 we have

∆Nt+1 = Nt + E · p · Nt

∆Nt+1 = (1 + E · p) · Nt

With the aforementioned logic we can have

∆Nt = (1 + E · p)t · N0

where N0 is the initial number of infections or the number of infected nodes at

t = 0.

Therefore, (1 + E · p) is a constant greater than 1, which means the infection

is forever exponentially increasing. But that is not always the case. With time,

either a kill-switch is discovered or the non-infected nodes stop interacting with
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the infected nodes.There can be another possibility, wherein the infected nodes

are interacting only with the infected nodes, and thus, no new infections are

found. Taking these factors into account, one can introduce new parameters in

the equation to form a logistic curve from the rate of change of infected nodes

given by the following equation

dN
dt

= c(1 − N
PopulationSize

)N

wherein N is the number of infected nodes at a given point of time, c is

the constant of proportionality and PopulationSize denotes the total number

of nodes in a networked system. Initially the the logistic curve is generally

indistinguishable from an exponential growth when the slope is increasing till

the time it reaches the “inflection point”, when the slope is 1. After crossing the

inflection point, the slope is decreasing and the rate of change of infected nodes

decreases till it saturates out or becomes 0. The growth factor is generally taken

into account which is given by

GrowthFactor =
∆Nt+1

∆Nt

which is number of new infections at time t + 1 divided by number of new

infections at time t. Before the inflection point, the growth factor is generally

greater than 1 and it is less than 1 after the inflection point. At inflection point

the growth factor is 1.
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5.1.2 Model 2 - Epidemic Spread Model

The spread of diseases which become epidemic are perceived mathematically

using the epidemic spread model [89]. It helps in assessing the risk to the un-

infected and measure the spread of the disease. Inspired from real life, the epi-

demic spread model can be applied to the cyber-physical world [90], [91]. It is

similar to the exponential growth model but a bit more detailed. It takes into

account both the susceptible systems and/or devices as well as the recovered

ones. It gives a more comprehensive idea of the nature of the malware spread

which could help the defender to apprehend the spread. There are two popu-

larly used epidemic spread models, which are Susceptible-Infected-Recovered

(SIR) and Susceptible-Infected-Susceptible (SIS). In the SIR model, the suscep-

tible object can get infected and after infection a chance of recovery by some

means is possible. It is assumed in this model, that once the object has recov-

ered, it cannot be infected by the same infectious malware. But in the SIS model,

an infected object who has recovered can become susceptible to the same mal-

ware after a duration called incubation period. Generally, if a system has been

attacked by a certain type of malware and has recovered, then there is a very

low chance that it will be affected by the same malware again. After the attack,

the vulnerabilities are generally taken care of through patch release and/or tak-

ing back-up of the critical data of the system. With these assumption, we moved

forward with the SIR model.

For the model we use N(t), S(t), I(t), and R(t) for the total number of

nodes, number of susceptible nodes, number of infected nodes, and number

of recovered nodes, respectively in a networked system. This give us N(t) =

S(t) + I(t) + R(t). We use the standard notations for infection rate and recovery
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rates which are δ and γ, respectively. For the type of malware under consider-

ation, susceptible nodes are the ones which have the relevant vulnerabilities,

that are being exploited for infiltration, and are communicating directly with

the infected nodes. Recovery rate indicates the removal of the infected nodes

and/or removal of the malware from the infected nodes. Once a malware starts

spreading, the susceptible nodes can get infected if they communicate directly

with the infected nodes or are in the same network as the infected nodes. From

these assumptions we can calculate the following rates of change of susceptible,

infected and recovered nodes, respectively:

dS(t)
dt

= −δ · S(t) · I(t)

dI(t)
dt

= δ · S(t) · I(t)− γ · I(t)

dR(t)
dt

= γ · I(t)

The rates of change of number of susceptible nodes, infected nodes and re-

covered nodes help the defender know the behavior of spread and the nature

of vulnerabilities being exploited. This would help in an early detection of the

malware and risk assessment of the system for the attack. The Delta value (δ)

also gives the time constraint for exploitation of the vulnerabilities that exist in

the system [2]. The Gamma value (γ) gives a fair idea about the weaknesses

of the malware and subsequently might help in discovering the kill-switch to

thwart the attack [2]. Both δ and γ values, if correctly estimated, then become

important elements in designing a behavioral based intrusion detection and/or

intrusion prevention systems.
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5.1.3 Model 3 - Random Walk

In a networked environment, if the malware can spread to the nearest neigh-

bors, with equal probabilities for each of the neighbors then one can model the

spread with the Random Walk model [92], [93]. The APT type ransomware,

which is being considered as the malware for this dissertation, can move around

randomly in a networked environment, if all the nodes have equal probabilities

of possessing the vulnerabilities it exploits to infiltrate.

For smaller and simpler networked systems, one can use the 1-D random

walk model to show the spread of the malware within the network. It can be

as simple as the walk on the integer line. Just like the integer line, if we move

our frame of reference with the first infected node at point zero, then the next

move which the malware makes towards the nearest neighbor can be a random

variable Zi of value -1 or +1 with probability 50%. We set the value S0 = 0

and then we have Sn = ∑n
i=1 Zi. The series {Sn} is known as the simple random

walk on Z, where {Z0, Z1, ..., Zn} ∈ Z. Such a series gives an idea of the distance

traversed by the malware, if each of the hops made by the malware is of equal

distance and is made with equal probability.

5.1.4 Usability of the Models

An early detection of malware created by APT groups gives the defender a

leverage in effectively thwarting the attack. The spread of a particular malware

often reveals the type of vulnerabilities that are being exploited for infiltration.

It also helps in giving the defender an idea about the systems at risk and the

timing constraints regarding the exploitation of the vulnerabilities [2]. The ex-

ponential growth model gives an idea about the growth rate, the inflection point
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and the extent of the infection. The biggest drawback of this model is that it is

only applicable to a very large population size. It means that systems with very

large number of nodes in a networked system might manifest such characteris-

tics. The DDoS attacks on Dyn servers by the family of Mirai botnets infected

around half-a-million IoT devices in order to carry out the attack in 2016 [94].

The networked systems with fewer nodes wouldn’t be efficiently portrayed by

this model. The SIR epidemic spread model suggests the estimate regarding

the nodes at risk which are denoted by the susceptible nodes. It also gives an

account of the infected and the recovered nodes in the system. It outlines the

extent of nodes at risk, the vulnerabilities being exploited and the rate of infec-

tion. If the spread model is assessed in detail, then it might even give the rate

of recovery and weaknesses on the part of the malware. This helps in building

a behavior oriented countermeasure to thwart the attack mounted by malware

created by the APT groups. If the malware spread can be modeled by random

walk, then the primary advantage is that it gives the probability of a particu-

lar node being infected, once the attack has begun. It also gives an estimate of

the time, within which a particular node can be infected with certain probabil-

ity, from the distance of the node from the latest infected node. This gives the

defender a valuable information regarding the time for preparedness.

There can be other models which can be used to analyze the spread of the

malware, e.g., neighbor-based worm propagation model, Bernoulli-distributed

neighbor-based worm propagation model, modeling worm propagation using

Weibull distribution and random worm propagation model [95]. But for these

models, a detailed information regarding the nature of the malware is required

which generally is not available for the malware created by APT groups. There-

fore, for this dissertation we stick to the observable features exhibited by APTs.
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5.2 HMM based Ransomware Detection Model

5.2.1 The Model

The threat model under consideration in this dissertation primarily deals with

ransomware which qualify as advanced persistent threats. This means that the

attack mounted would be highly sophisticated and persistent in nature. Such

attacks can render the traditional signature based intrusion detection systems

ineffective. To deal with APTs that have no prior history, behavior-oriented

defense systems are a necessity. APTs are generally mounted in multiple stages

unlike more common threats. The knowledge of the stage in which an APT is

currently in, is a utilitarian information for the defender to make an informed

decision about the defense strategy. A crucial feature manifested by APTs is

the existence of a contingency plan of attack [2]. A simple ransomware can be

taken care of with the existing infrastructure and defense strategies but an APT

with a contingency plan needs special attention. A contingency plan of attack

is an alternate attack strategy, which attackers might resort to, if they believe

that the defender is able to thwart the primary attack campaign. The type of

alternate campaign the attacker might resort to can be completely different from

the primary attack strategy. If the attacker is spooked, they can execute the

contingency plan and that can inflict unwanted but significant damage to the

victim.

The APT type ransomware are typically mounted by quiet invaders [1] and

they subtly graduate through different stages. Therefore, difficulty arises in

figuring out the status of the malware. One can look into the behavioral changes

and using those as observables can help make an informed decision. To help
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the defender in making that informed decision, we develop a Hidden Markov

Model (HMM) based intrusion detection tool. This tool will help the defender

discern the status of the malware with certain probability, which would define

its confidence in choosing the defensive action.

The proposed HMM has N number of hidden states and M number of ob-

servables. The model can be denoted by λ = (A, B, π), where

• A is an N × N matrix that gives the transition probabilities, characteriz-

ing the transition of each hidden state to another. Hence, it is called the

transition matrix.

• B is an N × M matrix that gives the emission probabilities for each hidden

state. Hence, it is called the emission probability matrix.

• π is a 1 × N matrix that contains the initial probability distribution for

each of the hidden states.

This detection model strictly deals with ransomware. It intends to figure out

whether a malware is a ransomware or not, and if it is a ransomware then is it

a ransomware that has graduated to become an APT. Moreover, the model also

investigates that if the ransomware is an APT then is it still pursuing its attack as

a ransomware or would resort to a contingency plan of attack. Taking all these

into consideration, we formulate the model using the following parameters:

• The value of N is 4 which denotes that there are 4 hidden states being

considered in this model, termed as Z = {z1, z2, z3, z4}

• The value of M is 5 which denotes that the number of observable random

variables is 5, termed as X = {x1, x2, x3, x4, x5}
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• αij denotes the transition probability of the malware from ith latent state to

jth latent state, where i ∈ {1, 4} and j ∈ {1, 4}

• βir denotes the emission probability of ith latent state manifesting rth ob-

servable behavior, where i ∈ {1, 4} and r ∈ {1, 5}

The hidden or latent states of the malware are as follows:

• The first state z1 is where it is just a malware, regardless of the fact whichever

form of malware it graduates to.

• The second state z2 is where the malware becomes a ransomware.

• The third state z3 is the one wherein the ransomware has graduated to

become an APT.

• The fourth and the final hidden state in this model is denoted by z4, wherein

the attacker chooses to execute the contingency plan of attack instead of

mounting a ransomware attack on the victim.

The hidden states of the malware are often outside the purview of the de-

fender’s intrusion detection system and hence, the term hidden state, which en-

tails the use of HMM based intrusion detection model for ransomware. For the

model, as discussed earlier, the observable behavioral features, X = {x1, x2, x3, x4, x5},

are used to ascertain the status of the malware. Following are the details regard-

ing individual observable features used to design the model:

• x1 : Reconnaissance

• x2 : Interaction with honeypots or real-databases which are of high value

• x3 : Backdoor implants and/or back-channel traffic
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• x4 : If the strategy of “Campaign Abort” exists

• x5 : Existence of any other contingency plan of attack

The observable features help the defender to discern the latent state of the

model, which the malware is in, while an attack is ongoing. It starts with the

feature of reconnaissance. The prior knowledge about the spread of a malware

created by same or similar APT groups (using one of the models described in

Section 5.1) help the HMM model to differentiate the interaction of a legitimate

process with the system from the interaction of a malicious process with the

system. Moreover, the spread models of the malware also give an insight re-

garding the frequently exploited vulnerabilities of a system. Systems with very

high value resources often deploy honeypots and/or honeypot farms. The in-

teraction with the honeypots and the activity logs often reveal the nature of the

malware and help in understanding whether the malware is a ransomware or

not. The manifestation of other observable features like existence of back-doors

and back channel communications, and existence of other plans of attack in-

cluding a “Campaign Abort” strategy are critical features often portrayed by

malware created by APT groups. Hence, these features are important in as-

certaining the latent state of the malware in the HMM based detection model,

while it is performing an attack.

Figure 5.1 shows the HMM based ransomware detection model. With the

latent states, observable features, and the associated parameters, we can deter-

mine the transition probability matrix A and the emission probability matrix B.

We have the following for matrices A and B, respectively:
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A =



α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44



B =



β11 β12 β13 β14 β15

β21 β22 β23 β24 β25

β31 β32 β33 β34 β35

β41 β42 β43 β44 β45


Transition probability:

T(i|j) = αij = p(zk+1 = j|zk = i)

where i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3, 4}

Emission probability:

εi(xk) = p(x = xk|zk = i) = βik

where εi(xk) is the probability distribution on X, such that xk ∈ X, k ∈ {1, 2, 3, 4, 5}

and i ∈ {1, 2, 3, 4}

Initial probability distribution:

π(i) = p(z = i)

where i ∈ {1, 2, 3, 4}
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Figure 5.1: HMM based Ransomware Detection Model

The joint probability distribution is given by:

p(z1, ..., z4, x1, ..., x5) = π(1)
3

∏
k=1

T(zk+1|zk)
5

∏
n=1

εz(xn)

The transition probabilities considered for this research are updated as in the

following matrix:

A =



α11 α12 0 0

0 α22 α23 0

0 0 α33 α34

0 0 0 α44


The transition probability from state z1 to state z3 is 0 owing to the fact that

it has to first go through state z2 as it will portray the features of ransomware

anyway. If it portrays features of any other form of malware, then it stays in
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this state as the detection of other forms of malware is outside the scope of

this model. Similarly, the transition probability of state z1 to state z4 is also

zero, as the malware cannot directly make a transition to the final state without

becoming a ransomware first. According to the assumption made in this model,

effectively the malware can remain in some other form of malware or become a

ransomware.

The transition probability of state z2 to state z1 is assumed to be zero. The

basis for the assumption is, if the model can depict characteristics of some other

form of malware, which is not a ransomware, then it is effectively state z4.

Hence, any behavior of this type is categorized under state z4. The same rea-

soning applies to the transition probabilities of states z3 to z1 and states z4 to z1.

The transition probability of states z2 to z4 is 0, owing to the fact that in state z2

it is already a ransomware, and if the attacker is planning to execute a contin-

gency plan of attack then it is effectively state z3 as it has already graduated to

become an APT [2].

The transition probabilities of states z3 to z2 and z4 to z2 are assumed to be

0. In state z3 the ransomware has graduated to become an APT. On reaching

this state, the ransomware will execute APT type attack and/or will abort the

campaign upon discovery. In state z4 the APT type ransomware has decided

to execute some other form of attack as a contingency plan of action owing to

a belief of being discovered by the defender. The assumption here is that once

a ransomware has graduated to become an APT, it cannot be considered as a

simple ransomware, even though it executes a ransomware style attack and/or

resorts to a contingency plan. Even if the attacker executes a contingency plan,

which effectively is a ransomware attack, then there is a high possibility that

the newer form of ransomware attack would be somewhat different from the
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primary form of attack, and therefore we assume this as an alternate form of

attack and the model denotes the state to be z4.

The initial probability distribution depends on the type of attacking group

and the malware created by them. The probabilities with which the observable

features are visible constitute the emission probability matrix and it depends

on the type of resources, the system, the attack framework and the duration of

attack.

5.2.2 WannaCry: A Use Case

We considered WannaCry [9], [96] to illustrate the effectiveness of the models

developed in this research and the associated detection framework. It was cre-

ated by the APT group named Lazarus from North Korea [96]. We first looked

into the spread model for probable indicators of compromise (IoC). This is fol-

lowed by HMM based ransomware detection taking over the control of predict-

ing the stage of attack, so that the defender can tailor a defense strategy best

suited to the stage of attack.

The series of attacks carried out by WannaCry in 2017 is known as “Wan-

naCry Campaign.” Figure 5.2 shows the execution flow of WannaCry [96]. The

attack started on May 12, 2017 and ended on May 17, 2017. Over this period,

the attackers earned somewhere between $75,000 to $80,000 from ransom [9].

The execution flow of WannaCry malware gives an insight to the indicators of

compromise (IoC) to look for, which in turn would help the defender to look

for the observable features for the HMM based intrusion detection system. The

systems which contained the Eternal Blue vulnerabilities of SMBv1 are the ones

which are susceptible to the WannaCry attacks. The dropper exploits the vul-
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nerability to infiltrate the system as shown in Fig. 5.2. The ones which have

already been locked out or the ones which have the DoublePulsar back-door im-

plant tools in the system and some form of back-door communication is going

on are the ones which can be termed as infected systems. Figure 5.2 shows that

after infiltration, the main task of the malware is to encrypt the system using

the AES encryption scheme [97], [98]. The WannaCry execution flow diagram

also shows, how it queries a bogus domain in order to be certain that it is not

being run in a controlled environment. If the malware believes that it is being

run inside a sand-box or any controlled environment, it resorts to a contingency

plan of attack. The systems which have received the decryption key after the

payment of the ransom or the systems which earned some time once the kill-

switch (or faking the initial beacon as shown in Fig. 5.2) has been triggered, are

the ones that formed the population of recovered systems.



55

Figure 5.2: WannaCry Execution Flow
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The spread model used for WannaCry in this research is the SIR model. The

important data we needed were the total number of susceptible nodes, the in-

fected nodes and the recovered nodes. But it is difficult to get all the data when

the attack is in progress and one could only make an estimation. The estimates

were then used to compute the rates of change of susceptible, infected and re-

covered nodes as described in Section 5.1.

The spread model gives a perception of the vulnerabilities being exploited

from the Delta value (δ), the weaknesses of the malware including the kill-switch,

and the recovery rate from the Gamma value (γ) once the ransom is paid. All

these information from the spread model gives the defender useful insight of the

behavior of the malware, which helps in understanding the observable features

so as to predict its clandestine states, to build a Hidden Markov Model based

detection tool.

In order to perceive the IoCs, we assume there are “ns” susceptible nodes

and “ni” infected nodes and “nt” total nodes, then the total recovered nodes

will be nt − (ns + ni). So, the fraction of susceptible, infected and recovered

nodes are given as follows:

Fraction o f Susceptible Nodes = ns/nt

Fraction o f In f ected Nodes = ni/nt

Fraction o f Recovered Nodes = (nt − (ns + ni))/nt

• The Fraction of Susceptible Nodes gives an estimate of the vulnerable nodes

which might come under attack. The total number of susceptible nodes

is estimated to be a few orders of magnitude more than that of the total
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number infected nodes. Through further investigation, one can approxi-

mate the type of resources under attack.

• An analysis of Fraction of Infected Nodes and Fraction of Recovered Nodes

would help the defender to gauge the types of vulnerabilities being ex-

ploited for the attack.

• If we observe the attack for a brief period, we can obtain the δ and the γ

values. From these values we can calculate the rates of change of suscep-

tible, infected and recovered nodes.

• This would help us to calculate the time taken for recovery if ransom is

paid, and/or if there are other ways to tackle the attack on the system

including the existence of a kill-switch (if there exists one). The informa-

tion about the resources under risk can be obtained from analysis of the

fractions of susceptible and infected nodes.

• We then can calculate the emission probability matrix that accounts for the

behavioral aspects manifested by the attacking malware while interacting

with the system.

• Moreover, the information regarding the δ and the γ values gives us the

R0 value. R0 is the number of nodes that are at risk because of one infected

node and is given by R0 = δ/γ.

• The δ and the γ values denote the intrinsic nature of the malware and are

“generally” different for different malware. But if they are same or similar

in value for two different malware, then there is a very high probability

that they belong to the same family of APTs and/or are created by the

same attackers.
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• Using the aforementioned information, the systems on which the attack

is on-going, the state of the malware can be discerned, which gives the

information about the stage of the attack and a suitable defense strategy

can be tailored for that particular stage of attack

• Table 5.1 gives us the parameters required for both the spread model and

the HMM based detection model.

Table 5.1: Parameters for Spread Model and the Detection Model

Spread Model HMM based Detection Model

Number of Susceptible Nodes [S(t)] Initial Probability Distribution (π)
Number of Infected Nodes [I(t)] Emission Probability Matrix(B)

Number of Recovered Nodes [R(t)] Transition Probability Matrix(A)

The first step is the identification of the observable features/states (as dis-

cussed in Section 5.2.1).

• x1 in this case would flag any process or program searching for the Eter-

nalBlue vulnerabilities if at all they exist in the system.

• x2 would flag any process that is actually interacting with the SMBv1 vul-

nerabilities [9]. It can also denote any process that is interacting with hon-

eypots with similar vulnerabilities.

• x3 feature manifests the existence of DoublePulsar back-door implant tool

in the system and/or existence of a back-channel communication between

the malware and its command and control (C&C) centers.

• x4 feature denotes the “Campaign Abort” strategy by the malware if it

finds itself in a sand-boxed environment.
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• x5 feature is a bit tricky to predict or discern before it has actually been

manifested by the attackers. In the context of WannaCry this can be the

DDoS attack mounted on the server that hosted the “Kill-Switch” [99].

Once we have the observable features, we can use the HMM based detection

system to predict the hidden/latent states for the WannaCry campaign.

• z1 denotes the state where it can be any malware.

• z2 denotes the state where it has manifested the features of being a ran-

somware.

• z3 signifies the state where the ransomware has qualified to become an

APT with primary intention of executing ransomware attack or aborting

the campaign upon discovery (which in this case is a “do nothing” strategy

when the malware “believes” that it is being run in a sand-boxed environ-

ment).

• z4 manifests the intention of the attacker of executing some other form of

attack as a contingency plan of attack. In the context of WannaCry the con-

tingency plan of attack is the DDoS attack mounted in the server hosting

“Kill-Switch.”

The HMM based detection model takes over once we have the emission

probabilities of initial compromise from the spread model. The initial probabil-

ity distribution of the malware would depend on the APT group which created

the malware. Initially, the origin of the attack may not be known, so we use

a standard probability distribution from past attacks of similar nature. As and

when the details of the attack are revealed, we use the proper probability distri-

bution values of the malware attack created by a particular APT group and then
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modify the distribution if needed. The transition probabilities for different hid-

den states are characteristics of the creators of the malware, which in our case

are the APT groups. To begin with, our model uses standard transition prob-

abilities learned from similar attacks in the past based on the emission matrix.

The emission probabilities for each state will be given as stated in matrix B in

Section 5.2.1 and the transition probabilities will be given as stated in matrix A

in Section 5.2.1.

In order to show the working of our model in the absence of experimental

data, we make some assumptions regarding the probability matrices, with Wan-

naCry as the malware. The transition probabilities manifest the transition of the

malware from one state to another given the last state. WannaCry would behave

simply as a malware in the first state. But it is essentially a ransomware, hence

it would behave like one rather than be a simple malware. Therefore, the transi-

tion probability of WannaCry will be considerably higher for the transition from

State 1 to State 2, wherein it is a ransomware, as compared to the transition to

State 1 from itself. Inherently WannaCry is an APT type ransomware. So, the

transition probability of WannaCry will be considerably higher for the transi-

tion from State 2 to State 3, wherein it behaves as an APT, as compared to the

transition from State 2 to itself. In State 3, WannaCry behaves as APT and has

higher advantage if it remains in this state. The pay-off for the malware is high-

est in this state until it is discovered. On being discovered, it makes a transition

to State 4, at which point it executes a contingency plan of attack. The malware

on assuming that it has been discovered, makes a transition to State 4. Once in

State 4 it either aborts the campaign or executes a contingency plan of attack.

Therefore, WannaCry in State 4 remains in State 4. With these assumptions, we

created an illustrative transition probability matrix as shown in Table 5.2.
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Table 5.2: Illustrative Transition Probabilities for Each Hidden State

State to State Transition Probability

State 1 to State 1 p(zk+1 = 1|zk = 1) = α11 = 0.3
State 1 to State 2 p(zk+1 = 2|zk = 1) = α12 = 0.7
State 2 to State 2 p(zk+1 = 2|zk = 2) = α22 = 0.4
State 2 to State 3 p(zk+1 = 3|zk = 2) = α23 = 0.6
State 3 to State 3 p(zk+1 = 3|zk = 3) = α33 = 0.8
State 3 to State 4 p(zk+1 = 4|zk = 3) = α34 = 0.2
State 4 to State 4 p(zk+1 = 4|zk = 4) = α44 = 1

We now look for the observable features which are manifested with certain

probabilities given by the emission probability matrix. The observable features

in this context are given by the feature set X in Section 5.2.1. In State 1, Wan-

naCry behaves mostly as a generic malware, so the feature which is manifested

with highest probability is x1. It, being a ransomware, features x2 and x3 are ex-

pressed with lower probabilities. The features x4 and x5 may not be expressed

at all. In State 2, WannaCry being a ransomware, will manifest the feature x2

with the highest probability and other features will be manifested with lower

probabilities. In this state, it has not graduated to express all the features of an

APT malware, therefore, feature x5 will be manifested with lowest probability.

In State 3, it has graduated to express all the features of an APT, so all the fea-

tures will be observable with certain probabilities. In State 4, WannaCry is an

APT malware with a contingency plan of attack. Thus, in this state, the feature

which will be observable with highest probability is x5, while the remaining fea-

tures will be manifested with certain probabilities lower than that of feature x5.

The resulting emission probability matrix is illustrated in Table 5.3.

The initial probability distribution of the states of a malware created by an

APT group generally depends on the group. An APT group can create any ran-
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Table 5.3: Illustrative Emission Probabilities for Each Hidden State

x1 x2 x3 x4 x5

State 1 0.65 0.25 0.1 0 0
State 2 0.2 0.4 0.3 0.1 0
State 3 0.1 0.3 0.3 0.2 0.1
State 4 0.1 0.2 0.2 0.2 0.3

dom malware which can be used to mount targeted attacks on certain industry

and/or institution. Therefore, the initial probability matrix will have the high-

est probability for State 1 for all types of malware. In the context of WannaCry,

State 2 would have the second highest probability. The states 3 and 4 would

have lower probabilities. The resulting initial probability matrix is shown in

Table 5.4.

Table 5.4: Illustrative Initial Probability Values for Each Hidden State

State Initial Probability

State 1 0.6
State 2 0.2
State 3 0.1
State 4 0.1

Once we have all the three matrices for the HMM based ransomware de-

tection model, we can use either of the Forward-Backward Algorithm, Baum-

Welch Algorithm or Viterbi Algorithm to predict the sequence of states for the

malware and the defender can tailor a response based on the outcome of the

algorithms [44], [100], [101], [102].

Through detailed experiments, the transition probability matrix, the emis-

sion probability matrix and the initial distribution matrix can be calculated and

put to application in the real world scenario. Every time the status of the mal-
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ware is detected, a cost-effective countermeasure could be deployed. In the

context of WannaCry, the following are the countermeasures that could be em-

ployed once the status of the malware is known:

• When it is at the state of malware, simple patching of the system would

help. Microsoft had released a patch update as soon as it had learned of

the vulnerability.

• When the malware is graduating to become a ransomware then backing-

up of the important databases would help.

• As the ransomware graduates to become an APT, blocking back-door traf-

fic along with patching the system as well as maintaining a back-up of the

database would help. Also triggering the “Kill-Switch” might help.

• In the final state, APT proceeds to execute the contingency plan of attack

which in this case is the DDoS attack mounted on the server hosting the

“Kill-Switch.” The countermeasure in this case is all the countermeasures

applicable for the previous state as well as another defensive action would

be to protect the server which hosts the “Kill-Switch.”

5.3 ML and NLP based IDS

Intrusion Detection Systems (IDS) are responsible for identifying any form of

infiltration in the system with malicious intent. In this section, we present the

design of an IDS to detect intrusions by identifying malicious processes. Mi-

crosoft Windows systems capture various metadata about a process that is run-

ning such as process name, description, command line system call executed,
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operation performed, and so on. Analyzing this metadata can give critical in-

sights on determining whether the process is malicious or not. Analyzing the

metadata using ML and NLP models will help in the detection of malicious

processes in the system which stealthily disguise themselves as legitimate pro-

cesses. This can be viewed as a classification task where a system call metadata

can be classified into “Malicious” or “Non-Malicious.” The IDS developed in

this section, uses the aforementioned approach of using the system call meta-

data to differentiate between malicious and non-malicious processes. We used

a few ML models and one NLP model for the classification task. The IDS has

been designed to identify APT type ransomware.

The designing of AI based IDSes required a dataset to be used for the pur-

pose of training, testing and validation. For this purpose, we used the simulator

provided by Picus Security [103]. The simulator provided us with real-world

APT type ransomware and we ran that inside the Windows sandbox environ-

ment. We then collected the system calls metadata and created the dataset to be

used for designing the IDSes.

The ML based IDS was designed using multiple ML models and the results

were compared. The models used were NBC, LR, RF, SVM and GB decision

tree. These models were trained using the dataset created from the simulator.

The TF-IDF based vectorization was used to feed the data for the Naive Bayes

Classifier and the word embeddings based vectorization was used to train the

models SVM, RF, GB decision tree, and LR.

The NLP based IDS was designed using a BERT model for sequence classifi-

cation. This transformer model contains the bare BERT Model architecture with

a linear layer on top of the pooled output layer. This linear layer can be trained

for sequence classification. The BERT Model is loaded from the pre-trained
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model configuration that is available open-source. The weights/parameters for

the bare BERT Model architecture is instantiated from the pre-trained model

and the liner layer on the top can be fine-tuned and the weights can be trained

with the dataset available for the classification task.

Figure 5.3 is the representation of the BERT architecture for sequence clas-

sification. This model has an encoder layer consisting of 12-layers, 768 hidden

nodes in each layer, 110M parameters in total (only 12-layers are available as the

“bert-base-uncased” pre-trained model is utilized). Each BertLayer internally

has 3 sub-layers, Attention (BertAttention), an intermediate representation layer

(BertIntermediate), and an output layer (BertOutput). The input to the model

is given in form of BertEmbeddings in the embeddings layer. The pooler layer

is responsible for taking the output corresponding to the token and using it for

further downstream tasks (such as classification, sequence generation and so

on). Finally, to perform the classification, the architecture has a linear layer on

the top that takes the output from the pooler layer as an input and has 2 output

features since we need to perform a binary classification.

Figure 5.3: BERT Architecture for Classification
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Figure 5.4 represents the various machine learning classifiers and the NLP

model used in the IDS design. The BERT based classification model is compared

with the machine learning models - Logistic Regression, Gradient Boosting De-

cision Trees, Random Forest, Naive Bayes, and Support Vector Machine and the

performance metrics of these models are compared.

Figure 5.4: Models used in the IDS design

5.3.1 Experimental Setup

The experimental setup consists of the following steps:

1. Ransomware attack simulation in a sandbox environment.

2. Capture system calls, metadata of non-malicious processes and the system

calls during the ransomware execution.

3. Create the dataset from the system call and process metadata dumps.

4. Develop the machine learning models for classification of malicious/non-

malicious calls.

5. Evaluate and compare the models.

Figure 5.5 gives a pictorial view of the experimental setup beginning with

the ransomware simulation to the final step of model evaluation.
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Figure 5.5: Experimental Setup

5.3.1.1 Ransomware & Simulated Environment

Picus Security is a company providing solutions on breach and attack simula-

tion, security posture management, and complete security control validation.

The platform allows users to perform Threat Emulation, Detection Analytics,

Security Control Validation, and Mitigation. The platform has an extensive

threat database and attack scenario simulations for various types of malware.

It contains simulations that are multi-phased attacks with several tactics. The

platform contains various attacks which denotes the different stages in an Uni-

fied Kill Chain and contain multiple attack scenarios as defined in the MITRE

ATT&Ck tactics. They also have sophisticated and APT type ransomware in

their database. This allows us to simulate APT type ransomware that carry

out multi-staged attacks with various objectives. In our controlled experiment

inside the sandbox, we used few APT type ransomware, viz. BlackByte, Black-

Matter, Diavol, Darkside, and REvil.

The simulation was set up in a Dell OptiPlex 7010 system with Intel core i7-

3770 @ 3.40GHz processor, 16.00 GB memory running a 64-bit Windows 10 Ed-

ucation OS. The system had Intel HD Graphics 4000. The simulations were run

in a safe sandbox environment. We used Windows Sandbox application feature
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(available from Windows 10). Windows Sandbox is a lightweight environment

for desktop intended for safely running software in isolation. The configura-

tion of spawned Windows Sandbox was Intel core i7-3770 @ 3.40GHz processor,

4.00 GB RAM running a 64-bit Windows 10 Enterprise OS. The Picus platform

requires the installation of an agent, which is used to run the simulations. This

agent was installed in the Windows Sandbox and all simulations were run in-

side of it. After the agent is installed, the platform aids in simulating real-world

attacks and threats against our system. It can simulate various exploits and at-

tacks that operationalize the frameworks such as MITRE ATT&CK techniques.

Furthermore, the ransomware simulations are made of independent adversary

techniques (mapped to MITRE ATT&CK) but these scenarios (exploits, attacks)

do not run any malicious code but notepad-like “safe” apps to prove code exe-

cution, i.e., it does not actually lock a user out of a system or encrypt the entire

system and ask for a ransom to regain access. Instead, it performs these in a con-

trolled manner on minimal files/volumes and uses notepad-like applications to

notify the user that the exploit or attack was successfully carried out. It is like a

scaled down version of the ransomware that can still execute and simulate the

attacks or exploits but in a less destructive fashion. This allows us to capture

enough data on the various kinds of actions performed by a ransomware such

as encrypting the drives (files, volumes) or deleting the shadow copies or un-

blocking access to files and deleting them from the system. After each attack

simulation, the Picus agent follows up with clean-up functions to restore, clean-

up the OS to the last known state. For designing the IDS and performing our

experiments, we needed the dataset. The creation of the dataset and preprocess-

ing of the data are described in the next section.



69

5.3.1.2 Dataset

Windows Sysinternals offers a tool called Process Monitor (Procmon). It is an

advanced monitoring tool, that shows real-time file system, registry, and pro-

cess/thread activity. It can capture reliable process data such as process name,

command line system calls executed, user ID, operations performed, descrip-

tion, company name, and many more. It can capture these details for every

process that is running in the system even if it is spawned in the background.

This extensive metadata information can be dumped into a csv file. When a

ransomware is running, it executes multiple malicious processes that perform

actions such as encrypting a file, deleting shadow copies, deleting files, and so

on. Procmon is used to capture a snapshot of the system while simulation is

running. This contains all the metadata about the processes running during the

ransomware simulations. Similarly, to capture the non-malicious and default

system processes, Procmon is used to capture all the process events when the

simulation is not triggered. This captures all the processes that run in the sys-

tem in the background and user actions are performed to capture the normal

state of the system. This involves performing few user actions such as copying

files, create and delete text files, opening few applications such as notepad and

browser. These Procmon event details are converted into csv files and stored.

The process events captured during ransomware simulations and the ones

captured without the ransomware attacks are used to create the dataset for our

classification tasks. The features of interest in these events are the Process Name,

Operation, Detail, Description, Command Line, and Company. The events cap-

tured with no ransomware attacks are de-duplicated and labelled as ‘System’,

i.e., non-malicious and this dataset is referred to as System dataset. The events
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captured during the ransomware simulation cannot be marked entirely as ‘Ma-

licious’ as background Windows processes and other non-malicious processes

would still be running. Hence, the events captured in the System dataset are

referenced to identify the malicious processes. Every event in the data captured

during ransomware simulation is compared with the events captured for the

System dataset. Based on the uniqueness of the Process Name, Command Line

call executed, Operation and Company features, the events are tagged as ‘Ma-

licious.’ For instance, if all of these features are already available in the System

dataset, then that event is ignored since it denotes that it is a background sys-

tem event. If any of these four features are not already available in the System

events dataset, then that particular event is tagged as Malicious. The Detail and

Description features are not taken into account while this tagging is performed.

If any process event has Detail and Description values which are not there in

the System dataset, they may or may not be malicious in nature. If the four fea-

tures Process Name, Operation, Command Line, and Company denote a pro-

cess event as safe then those events, even with different Detail and Description

features, can be labelled as non-malicious in nature.

The dataset is tagged as ‘System’ and ‘Malicious’ as explained above. It is

used to build the classification model to identify malicious process events. The

dataset created contains 7 columns viz., Process Name, Operation, Company,

Detail, Command Line, Description, and Label. It contains a total of 90,841 rows

with 43,487 events tagged as ‘Malicious’ and 47,354 events tagged as ‘System.’

In the following subsection, we elucidate the pre-processing of the data to make

it suitable for the training of the AI models.

Figure 5.6 shows a sample of the created dataset with four rows. The first

two rows show non-malicious System processes that were captured when no
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Figure 5.6: Dataset Sample

ransomware was run in the Windows sandbox. The subsequent two rows show

Malicious processes that were captured as part of the ransomware simulation

in the sandbox. The first row depicts the notepad++.exe application running

in the system. The data row captured is a thread create event triggered by the

notepad++ application process. The other columns of that row show the meta-

data related to this process. The second row depicts a Windows Explorer.exe

application running in the system. An event related to file write is captured

and this is a benign data row as well. The third row represents a malicious

process running in the system. This was triggered as part of a ransomware

and it is using the powershell.exe application to carry out an unwanted oper-

ation in the system. The shadow copies are storage extents that are duplicate

copies of the original volumes and can be used for back-up/restore in case of

system failures. Using the powershell.exe application, the ransomware is try-

ing to delete the shadow copy of the volumes in the system. We can see in the

command line that it is using a combination of Get-CimInstance and Remove-

CimInstance scripting tools of the powershell.exe to carry out its malicious task.

The last row of Figure 5.6 represents a malicious process named BlackByteEn-

cryptor.exe which is part of the BlackByte ransomware campaign. As the name
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suggests, this is a dangerous process that is trying to encrypt the files in the sys-

tem. Encrypting the files, volumes in system is a common technique used by

ransomware to lock the user out of the system and prevent access to the drives

(system storage). The command line columns of the fourth row shows how this

encryptor process is trying to encrypt a text file available in a certain location.

5.3.1.3 Data Preprocessing

The dataset contains seven columns as depicted in Figure 5.6 with six columns

for features and one column representing the label. Each of these six features

are text based data. The columns Process Name and Operation are categori-

cal features, and the columns Detail, Company, Command Line, Description

are text data. These text based features cannot be used directly for training the

models. Instead they need to be converted into numerical features. The cate-

gorical features are converted into onehot encoding and the text data columns

are converted into vectors of word embedding. To get the word embedding,

pretrained Stanford Glove word embeddings are used [104]. The pretrained

word embedding provide vector representation for several words. The pack-

age glove.6B.300d, that contains pre-trained word vectors with 6B tokens, 400k

vocab with a vector of size 300 was used. The Out-Of-Vocab words (any word

for which vector representation is not available in the package) is initialized to

a random vector of dimension 300 and stored, so that the same vectors are used

for a word. The sentences are converted to vector by average pooling the word

embedding of each word in the sentence to get a final sentence embedding. Fi-

nally, to reduce the number of dimensions, the sentence vector of each of the

feature is again average pooled to get one final vector of size 300 that represents

the four columns. The onehot encodings of the categorical columns are merged
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and combined into one numerical array and further this is extended with the

vector representation of the four text columns to get a numerical array of di-

mension 457 that represents one event in the dataset. This is used to train Naive

Bayes, SVM, Random Forests, Gradient Boosting Decision Tree, and Logistic

Regression models.

The dataset is processed in a different manner for the Naive Bayes model.

The features are joined by whitespace into a single text sequence and is con-

verted into meaningful representation of numbers based on the TF-IDF (Term

Frequency Inverse Document Frequency) vectorization method. This is a method

that takes into account the relevance and importance of words in a corpus (col-

lection of documents which is the collection of all text sequences in this case).

The relevance and importance of words are derived from the occurrence count

of that word in a document and the number of documents in which the word

occurs in. Each text sequence is converted into a vector of length 17,125 (this is

the number of unique tokens in the document corpus).

In the case of BERT model, the input is expected to be a text sequence. Since,

each of the feature is of type text data, all the features are joined by whitespace

into one text sequence which is fed to the BERT based tokenizer for encoding.

The BERT tokenizer can then use this text sequence to perform extract word

pieces that is encoding into numerical values and can be fed into the model.

5.3.1.4 Model Training and Evaluation

The IDS requires to perform a binary classification to identify a system call along

with other metadata as malicious or non-malicious. Since this is a binary clas-

sification task, models such as Naive Bayes, Support Vector Machines, Logistic

Regression, Random Forests, and Gradient Boosting Decision Trees classifiers
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are trained using the dataset. We also trained NLP based BERT model on the

same dataset. We then compared the results from all the aforementioned AI

models.

The preprocessed dataset was split into training, validation and test sets in

the ratio 7:1:2 respectively. This means 70% of the data was used to train the

model, 10% of the data was used for validation, and the remaining 20% was

used for testing and computing the accuracy metrics of the models.

The Machine Learning models Naive Bayes, Support Vector Machines, Lo-

gistic Regression, Random Forests, and Gradient Boosting Decision Tree were

used. For these models, the entire training data was introduced during the

training stage. The validation and test sets were used to evaluate the model

after the training qas complete. These models were trained and evaluated on an

Apple MacBook Pro with M1 chip processor and 16GB memory.

For NLP based BERT model, similar split of the dataset was done with 70%,

10% and 20% of the data for training, validation and testing respectively. The

BERT based model for sequence classification BERTForSequenceClassification

was used for the task. This model was a slightly modified version of the BERT

base model with a linear layer over the pooled output layer that was fine-

tuned and trained for the classification task. The BERT base model was loaded

from a pretrained model that was available open-sourced “bert-base-uncased.”

This is a pretrained model over the English language (Wikipedia and Google

BooksCorpus) and it is a case insensitive model. This pretrained model can be

used to load the models’ weights, parameters, and configuration for the BERT

base model encoder. The linear layer on the top intended for classification was

loaded with random weights. The entire model (the embeddings layer, the en-

coder layers, and the linear layer on top) was tuned and the weights were up-
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dated as part of the model training step with the created dataset in hand. As

part of the training step, the data was fed to the model in batches of 8 and the

model was trained for 4 epochs. The BERT model was trained and evaluated in

Google Colab using a GPU. The Nvidia Tesla T4 was available in Google Colab

for training and testing the BERT model.

The trained models were then evaluated against the validation and test dataset.

Both of these datasets were unseen by the model before this step and each event

in these datasets was classified as malicious or non-malicious using the models.

The classification performed using the model was compared with the actual la-

bels of these events. The predicted labels and the actual labels are assessed to

get the evaluation metrics that allowed us to compare and evaluate the models.

5.3.2 Results and Discussion

After performing the experiments and generating the predictions on the test

dataset of size 18,169 records, we compared the results on the basis of F1 score,

Accuracy, and the ROC plots.

Table 5.5 summarizes the performance of each classifier in terms of accuracy

and F1 scores. We can see that the BERT classifier has the highest accuracy and

F1 score followed closely by the Naive Bayes classifier. These were followed by

Gradient Boosting Decision Tree, Random Forests and Logistic Regression clas-

sifiers in the order of decreasing accuracy. The Support Vector Machine classifier

had the least accuracy and F1 score.

Figure 5.7 shows the receiver operating characteristic (ROC) curves plotted

for each model. The area under the curve (AUC) computed for BERT was 1 in-

dicating that is able to distinguish between the two classes clearly. The AUC
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Table 5.5: Model Accuracy and F1 Score

Classifier Accuracy (%) F1 Score
BERT 99.98 1.00

Naive Bayes 98.55 0.984
Gradient Boosted DT 97.21 0.971

Random Forest 96.04 0.958
Logistic Regression 94.47 0.943

SVM 74.51 0.694

Figure 5.7: ROC curves for the Classifiers

values for Naive Bayes (NB) and Gradient Boosting (GB) Decision Trees were

almost equal to 1. This follows a similar trend to the accuracy values and from

Figure 5.8, we can notice that, though Naive Bayes model and GB Decision Tree

model curves seem similar, the green curve representing Naive Bayes covers

more area than the black curve representing GB decision tree. These models
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Figure 5.8: Zoomed view of the left Top part of ROC curves

are followed by Random Forest and Logistic Regression models in decreasing

values of AUC. The support vector machine classifier represented by the yel-

low curve in Figure 5.7 had the least area under the curve denoting its poor

classification performance on this dataset.

Of all the classification models used, NLP based BERT model had the best

performance, being able to predict the labels for the test set with a near perfect

accuracy. The next best performing model was Naive Bayes Classifier. This was

followed by Gradient Boosting Decision Tree, Random Forest Classifier and Lo-

gistic Regression Classifier in the order of decreasing accuracy. The model with

the least scores was the SVM classifier. On comparing the models with respect

to the training time taken as shown in Table 5.6, we can observe a contrast with
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BERT taking the longest time for training. BERT model took over six hours

for four epochs of training. This was followed by SVM classifier which took

5,190.30 seconds, Naive Bayes Classifier took 21.92 seconds, Gradient Boosting

Decision Tree took 628.84 seconds, Random Forest Classifier took 98.65 seconds

and Logistic Regression took 6.7 seconds.

Table 5.6: Classifier Models and their Training time

Classifier Training Time
BERT 6 hrs

Support Vector Machine (SVM) 5190.303s
Naive Bayes Classifier (NBC) 21.92s

Gradient Boosted Decision Tree 628.84s
Random Forest 98.65s

Logistic Regression 6.7s

5.4 Summary

In summary:

• This chapter introduced an HMM based IDS to detect APT type ransomware.

• The idea is to discover the state of the attack. This would help the defender

to devise a defense action best suited for that state of attack.

• HMM based IDS not only detects the attack but also characterizes the at-

tacker which helps ins preparedness against future attacks. More details

can be found in [85], [86].

• Classifier based IDS was also designed to detect APT type ransomware.

For the purpose, ML and NLP based classifiers were used.

• These classifiers detect APT type ransomware from system call data.
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• The plan was to differentiate malicious system processes from non-malicious

system processes and detect the APT type ransomware.

• Both the IDSes were designed for APT type ransomware but are equally

effective against a basic variant of the ransomware.

The IDSes were designed to identify APT type ransomware. But as men-

tioned in the works of the Roman poet Juvenal, a famous question comes to

the front, Quis custodiet ipsos custodes? [105]. In English, it means “Who will

guard the guards themselves?” [106]. Researchers have worked on techniques

to make their frameworks tamper-resistant by adding another layer of secu-

rity [107],[108]. To make them tamper-resistant, the IDSes needed another layer

of protection. Therefore, in order to ensure the security and survivability of

the system, a deception architecture and mitigation strategies become essential,

which are discussed in the subsequent chapters.



Chapter 6
Deception as a Defense Tool

“All warfare is based on deception. Hence, when we are able to attack, we

must seem unable; when using our forces, we must appear inactive; when we

are near, we must make the enemy believe we are far away; when far away, we

must make him believe we are near.”

– Sun Tzu,

Art of War

The detection systems we discussed for APT type ransomware, needed an-

other layer of protection. This layer of protection was ensured through a decep-

tion architecture. We designed a deception architecture namely, “Kidemonas.”

We used commercial-off-the-shelf (CoTS) hardware component called trusted

platform module (TPM) for designing Kidemonas. The idea is to run a generic

APT detection system in an isolated environment outside the purview of the

attacker. The aim of the architecture is to silently detect the intrusion and sur-

reptitiously report the same to the defender. This was for detection of generic

APT malware. In order to give a layer of protection to the HMM based IDS, we

designed a deception based countermeasure called “Decepticon.” Decepticon
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is a special case of Kidemonas, which runs an HMM based IDS to detect APT

type ransomware as its APT detection system in the isolated environment. The

distributed nature of the APT detection system ensures that the load of detect-

ing any form of APT type malware doesn’t fall on a single system. Having a

distributed APT detection architecture and surreptitious reporting has another

advantage. When an attack is unfolding, and an intrusion is detected in one of

the nodes of the distributed architecture, a preemptive action in other nodes can

be taken to prevent the attack on those nodes. This builds an effective defense

strategy when faced with an attack from an APT type malware which possess

the capabilities of lateral movement and privilege escalation. This chapter intro-

duces and explains the aforementioned deception architectures in the following

sections.

6.1 Kidemonas: The Silent Guardian

Here we put forward a framework to detect generic APT attacks. Deception has

been used as a potential weapon to tackle an attack by APT malware. The whole

idea is to silently detect any intrusion by an APT malware and surreptitiously

report the same to the user and/or the system administrator.

6.1.1 Trusted Computing: Security in Vanilla Form

Trusted computing has been thought of as a probable solution to the defense

against various cyber-threats [109]. In [110] the authors tried to leverage the

functionalities of trusted computing to detect any attack. They relied heavily

on constant monitoring of the system and checking the integrity of the platform
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regularly. In the event of any intrusion being detected, the system raises an

alarm. This alarm is also visible to the attacker. The attacker then can change

the mode of attack to take some aggressive measures or can resort to some other

form of contingency plan for which the defender may not be prepared and the

system can suffer unexpected damage. In [111] the authors present a model

wherein the TPM is given an added functionality to communicate via the link

layer communication channels to other nodes in a networked system. But it also

raises an alarm whenever any form of intrusion is being detected and that alarm

is visible to all. Therefore considering the implications of the aforementioned

threat detection alarms, we present Kidemonas, an architecture to silently detect

any threat and surreptitiously reporting it to the system administrator.

6.1.2 Kidemonas: The Architecture

Deception is an important part of the defense mechanism in cyber-security. The

authors of [112] present a software security solution wherein the elements of

misdirection and deception are introduced using honey-patches. But our ar-

chitecture, Kidemonas, uses hardware component, as shown in Figure 3.1 to

create the framework as shown in Figure 6.1, in order to introduce the decep-

tion scheme. By camouflaging the infiltration detection system, the attacker is

deceived into believing that it is successful in maintaining its stealth, and it buys

ample time for the defender to come up with countermeasures to thwart the at-

tack. To maintain the cover, the traffic is analyzed in a concealed environment.

Therefore, an encrypted copy of the incoming traffic is sent to our hardware

based security system, and it is in this unit where the malware detection system

analyzes the traffic and surreptitiously reports it to the user or the system ad-
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ministrator. The following subsections discuss the working of each unit as the

traffic flows through it.

Figure 6.1: Kidemonas Architecture

6.1.2.1 The Firewall

The first line of defense of a system would be the firewall, which acts as a fence

and keeps away the malicious actors from the system. But in an event of the

breach of the perimeter or in this case breaching the firewall of the system can

pose serious threats to the system. APT malware infiltrates the system stealthily,

so it can be assumed that the attacker would be able to pass through the firewall.
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6.1.2.2 The Crypto-Box

After passing through the firewall, the traffic enters the crypto-box, as shown

in Figure 6.1. The crypto-box is used for encrypting the data traffic entering the

system. The first task of the crypto-box would be to make a copy of the data

traffic entering the system and then to encrypt the copied traffic and sending it

to the hardware-based TPM. The crypto-box is configured to encrypt the copied

traffic using the RSA-OAEP scheme [113], [114]. The original copy goes to the

system as intended.

6.1.2.3 The Hardware-based TPM

The encrypted traffic then goes to the hardware-based security system which

comprises of a hardware-based TPM unit. This unit, along with various crypto-

graphic capabilities also provides an isolated and exclusive execution environ-

ment or the enclave, which even the high priority OS instructions do not have

access without user authentication. The idea is to implement the APT Detection

System within this execution environment. Any form of infiltration detected by

the system, which is running inside the enclave can be communicated to other

nodes in the network using the Peer Communication Units (PCUs) as shown

in Figure 6.1. The encrypted traffic can be stored outside the system to further

analyze the malware or the attack so that security patches can be produced at

the earliest.

Any traffic going inside the TPM doesn’t come-out and it behaves like a

black-hole. The encrypted traffic entering the TPM, is decrypted using the pri-

vate key of the TPM. For the hardware-based TPM, the security heavily depends

on how safely the private keys are kept hidden. The APT Detection System
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running inside the TPM analyzes the received traffic and detects any form of

infiltration by the APT malware, if it has taken place.

6.1.2.4 The APT Detection System

The architecture has been designed in a way that any state-of-the-art APT mal-

ware detection system, which is compatible with the system, can be installed

within the concealed environment of the hardware-based TPM. Security In-

formation Event Management (SIEM) and User Behavior Analytics (UBA) are

popular APT malware detection schemes [4]. The SIEM scheme collects infor-

mation from different events occurring in different components of the system,

and looks for security flaws. This scheme might blow the cover of the deception

mechanism. But any scheme which analyzes the incoming traffic, like big-data

analytics [115], can be installed in Kidemonas for APT malware detection.

6.1.2.5 Peer Communication Unit

Peer Communication Units (PCU) are the Link-layer or Layer 2 units, which in-

teract with other nodes in the systems via Layer 2 [111]. The PCU of one node

interacts with the PCU of the other, forming a PCU network as shown in Figure

6.2 [111]. The PCU of a given node interacts only with its hardware-based TPM.

Once the APT Detection System, running inside the hardwarebased TPM, de-

tects any form of intrusion, it communicates the information to the other nodes

in the system through the PCU network. The PCU network actually provides

a different communication intra-network link within the system, which is inac-

cessible to any entity, and is not a part of the system. Even the OS running on

each node won’t have access to this PCU network.
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Figure 6.2: Peer Communication Unit

6.1.2.6 The Deception Mechanism

The deception mechanism comprises of an alert, which is covertly raised with-

out letting the attacker know that an alert has been raised. It is achieved by

camouflaging the alert as a normal traffic between the TPM and the user or the

system administrator. The TPM would send two signals at every interval to the

user or the system administrator. The two signals are: Time Stamp and a Ran-

dom Signal of bit-strings of 0s and 1s. The time stamp will be in the 24-hour

format. Since, most of the OS being used today use 64-bit bus, the random bit

string will be 64-bits long. At the event of an infiltration being detected, the

TPM will generate a time-stamp and use the hour part of the time-stamp as the

recognizing bit. For example, if the hour part of the time-stamp is 09, then the

bit number 9 of the random string will be set as 1 as well as, (63-9) or the bit

number 54 would also be set as 1. In the event if no infiltration being detected

and the hour part of the time stamp is 09, then the bit number 9 of the ran-

dom string will be set as 0 as well as, (63-9) or the bit number 54 would also

be set as 0. The user or the system administrator will just check the bit number

n and the bit number (63-n), as the bits are numbered from 0 to 63, and would
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realize if there has been any intrusion or not. The infiltration detection is being

camouflaged in the randomness of the bit string.

6.1.3 Analysis of the Security of Kidemonas

6.1.3.1 The Deception Mechanism

The most significant aspect of the security provided by Kidemonas is the de-

ception mechanism. Considering the different stages of the APT life cycle, the

security provided by Kidemonas is analyzed in detail. Kidemonas won’t be

able to deter the attackers in the first three stages. The attacker will be able to

perform initial reconnaissance and infiltration, establish a foot-hold and esca-

late the privileges. But it won’t be able to perform internal reconnaissance, and

move and compromise internally as far as the Kidemonas unit is concerned.

Each time the infiltrated malware receives any command or information from

the C&C centers, Kidemonas would receive the same without the attacker know-

ing about it. Since, the attacker doesn’t know about Kidemonas, and no alarms

are being raised on infiltration, it would believe that it has successfully and

stealthily compromised the system. Therefore, neither the attacker would be-

come aggressive nor would they resort to the contingency plan. This would

buy copious time for the defender to come up with a patch or better security

features, before the attacker achieves the last stage, i.e., the mission completion

stage. This would help the victim to avert any major damage.

6.1.3.2 The Crypto-Box

The Crypto-box uses the RSA-OAEP scheme to encrypt the traffic being sent

to the hardware-based security unit. It could use the public-key portion of the
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endorsement key (EK) of the TPM to encrypt the traffic. Now, RSA-OAEP ac-

cording to [116] and [114] is chosen cipher-text attack (CCA) secure under the

RSA Assumption. This would camouflage the copy of the traffic going in to

the security unit. Moreover, as discussed earlier, the private key portion of the

endorsement key of the TPM never leaves the TPM and the security heavily de-

pends on how the endorsement key is kept secret. Therefore it would not be

possible for the attacker to have a better knowledge of the private key than a

random guess.

6.1.3.3 The Trusted Execution Environment

Last but one of the most significant contributions of the Kidemonas architecture

along with the surreptitious reporting scheme is that it also provides a trusted

and isolated execution environment wherein any state-of-the-art APT malware

detection system can be implemented. With time the APT malwares would be-

come more resourceful and might deceive the existing malware detection sys-

tems. The APT malware detection system can be updated manually for newer

and more advanced threats. This flexibility of system upgradation makes the

architecture robust against becoming obsolete in the face of newer and more

advanced form of threats.

6.1.3.4 The Security Overview in the Presence of a Threat

Now, taking an example of the threat model, the effectiveness of the Kidemonas

architecture can be discussed. The threat model perceived in this paper is a

dynamic one, which comes with a contingency plan and has the capability to

resort to the contingency plan any time they deem necessary and the trigger for
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such a scenario is the information being conveyed to the attacker that they have

been detected by the system. The attacker, if detected in the very first phase,

may abort the mission. This doesn’t give time to the defender to learn about the

attack in details. Kidemonas, surreptitiously informs the system administrator

regarding the attack, and the attacker is deceived into carrying out the attack.

This gives the defender an opportunity to study about the attack, during its en-

tire life-cycle and stop the attacker from giving the final blow in the very last

stage, as by then the defender would be well armed and ready to thwart the

attack. In the second stage, the APT malware installs a backdoor to communi-

cate with the C&C centers of the attack. If discovered in this stage, the attacker

can either abort the mission or resort to more aggressive means. Both the sce-

narios are disadvantageous to the defender. In the former case, they don’t get

sufficient time to study the attack and in the latter case, they are not ready for

a more aggressive form of attack. But, with Kidemonas, camouflaging the infil-

tration report, the attacker is made to believe that no detection has taken place.

This might also help the defender to be prepared not only for the current form

of attack but also for any aggressive contingency plan the attacker might have.

Similarly, for the later stages of the attack, the attacker is still deceived into be-

lieving that the system is unable to detect their threat. The attacker doesn’t get

any time to resort to the contingency plan, when the defender thwarts the attack

in a well prepared manner in the final stage of the attack.

6.1.3.5 The Weakness

But no design is completely secure and each comes with its own share of weak-

nesses. The biggest concern for the Kidemonas architecture is the insider threat.

As of now it is very hard to deal with insider attacks. In a networked system,
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if the attack happens from one of the nodes, then the entire system is compro-

mised. Insider attack is a scourge that would require special investigation and

is outside the scope of this dissertation.

6.2 Decepticon: Deception Based Countermeasure

The Trusted Computing Group (TCG) laid down the specifications for Trusted

Platform Module (TPM) with an intention of creating a trusted computing en-

vironment [38]. These specifications were capitalized on to create a deception

based architecture, Kidemonas [84], which provides isolation to malware detec-

tion systems so that the detection can occur outside the purview of the attacker

and the intrusion can be surreptitiously reported to the user or the system ad-

ministrator.

6.2.1 Decepticon: The Architecture

In this research the capabilities of Kidemonas are extended to realize a cost-

effective system to detect intrusions from APTs. In a business enterprise, Kide-

monas gives the system administrator the capability to run different forms of

intrusion detection on different computing units. The information regarding in-

trusion is shared with the system administrator and the other computing units

through a separate channel called the peer communication network. It com-

prises of a link-layer communicating unit present in each computing unit called

the peer communication unit (PCU). A computing unit in this scenario refers to

a computer or a server or basically any computing unit which forms a node in

the networked system in a corporate network monitored by a single user or a
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single group of users working collectively for the same purpose. To make the

defense strategies cost-effective, we use the smart-box proposed in [17]. The ob-

jective here is that whenever a form of intrusion is detected, it is reported to the

system administrator silently, who in turn can monitor the attacker’s moves and

use the smart-box to trigger an appropriate defensive response from the repos-

itory. The repository is a storage unit for defense strategies that could be trig-

gered to defend the system at the event of an attack on the system. The defense

strategies range from simply blocking certain processes to defending against in-

tricate attacks. The smart-box on learning from the nature of the attack and the

status of the malware can trigger an effective response which would be econom-

ical in terms of time and resources being used. The smart-box is the decision

making unit regarding defense strategies depending upon the characteristics of

the malware.

Figure 6.3 represents the hardware based defense architecture called Decep-

ticon whose aim is to deceive APT type ransomware. Kidemonas [84] is a more

generic architecture to counter any APT, whereas Decepticon is a customized

version to have a HMM based ransomware detection tool (which is subsumed

under the Enclave in the figure and discussed in the next section), and a smart-

box to trigger defensive actions depending upon the severity of the attack. If the

attack is determined to be of a simple nature, the smart-box triggers a simple re-

sponse to counter it, and if the attack is sophisticated in nature, then it triggers

an elaborate response.

The firewall (Fig. 6.3) performs signature based detection. If the malware

is able to get past the firewall along with the legitimate traffic, it reaches the

crypto-box. The crypto-box makes a copy of the incoming traffic and sends

the normal traffic to the system. The copied traffic is encrypted and sent to
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Figure 6.3: Decepticon Architecture

the hardware-based TPM. The encryption is performed using the public-key of

the endorsement key of the hardware-based TPM. In the TPM, the ciphertext is

decrypted using the private-key component of the endorsement key of the TPM.

The analysis of the traffic is done by the HMM based detection tool. Any form of

intrusion being detected is sent to the peer communication unit (PCU) and from

there to the PCU network, so as to inform every node in the networked system

about the form of intrusion. The PCU network is accessible only through the

PCU, which in turn is accessible through the hardware-based TPM. At the same

time, a surreptitious reporting is done to the user or the system administrator.

The system administrator then uses the storage root keys (SRK) to gain access to

the TPM to gain knowledge and the nature of the intrusion that has taken place.

The security of the entire system relies on the fact that the private key com-

ponent of the endorsement key of the TPM, which was created when it was
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Figure 6.4: The System

manufactured, never leaves the TPM. The security also relies on the fact that the

storage root keys (SRK) created by the users, when they took the ownership of

the TPM, is kept safely guarded.

Figure 6.4 shows a snapshot of a networked system in a corporate environ-

ment. This representation shows multiple computing units connected to a sin-

gle access point. Each computing unit is connected to other computing units

through the PCU network, which is also used to inform each other of any form

of intrusion in the system. Figure 6.4 shows different versions of detection tools

running on different computing units; some of them running Decepticon while

others are running the generic Kidemonas style APT detection tools.

6.2.2 Decepticon - In Action

The Decepticon architecture that is built upon Kidemonas makes it scalable and

easy to use due to its reliance on commercial off-the-shelf components (COTS)

such as the TPM. This scalability helps in future proofing of the entire system.
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The transition and emission probabilities once calculated, would provide the

defender with valuable information about the malware that would help the user

to trigger a cost-effective response from the repository through a smart-box.

The biggest advantage for the defender is awareness, security and cost-effective

countermeasure. Once the model is put to application in the real world, it would

yield numerical values for the transition and emission probability matrices. This

helps the defender to make an informed decision, without compromising the

quality of service of the system.

Given the scalability nature of Decepticon as shown in Fig. 6.4, it is safe to

assume that there will be multiple nodes in a networked environment and each

of them would be running a Kidemonas or a Decepticon type IDS individually.

The intrusion detection happens outside the purview of the attacker. However,

the framework presented here doesn’t guarantee that the APT detection system

would be successful at all times. There can be advanced forms of attacks, which

might defeat the IDS itself, wherein the IDS fails to identify the attack and gives

out false negative and the system becomes defenseless. But once the attack has

occurred, a copy of the malware still exists within the Decepticon architecture.

That malware can then be analyzed and attacks on systems with similar vulner-

abilities can be thwarted. As shown in Fig. 6.5, if one system is under attack,

the information is communicated to the other nodes in the networked environ-

ment through the PCU network and preventive action can be taken to save the

remaining nodes. The probability matrix can be updated for future use. The de-

tection system can be trained on past attacks, extracting features and updating

the probability matrices. When the IDS gives out false positives, then also the

performance is not affected as it happens outside the system.

Let us now discuss the benefit of using HMM to counter APTs. The purpose
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Figure 6.5: A Scenario wherein One System is under Attack

of our framework is to anticipate the state of the malware and take preventive

action. For this purpose, one can use a classifier. Using the feature set for a given

state, one can do online prediction of the state of the malware. As shown in Fig.

6.6, given the feature set at time t + 1 and the behavior observed till time t (the

behavior observed through the feature sets manifested for the respective states)

and the states observed till time t, the classifier can predict the state of the mal-

ware at time t + 1. This would be immensely helpful in tailoring a preventive

action against the malware. But the HMM based IDS can do more than that. An

HMM based IDS would also be able to provide more behavioral data regarding

the malware and in case of an APT, the behavioral pattern of the attacker can be

logged and analyzed through the probability matrices. It can be trained using

similar attacks originating from different APT groups and/or can be trained on

different attacks originating from the same APT group. This would not only

help the defender to ascertain the state of the malware but also would give an

insight regarding the behavior of the malware and/or the attacker.

As illustrated above, our model shows the way the countermeasures become
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Figure 6.6: Classifier Based On-line Predictive Model

more sophisticated as and when the malware advances to the higher states. The

calculation of the transition probability and the emission probability matrices

as well as the initial probability distribution is not done in this research due to

lack of real world data. The HMM based detection tool and the surreptitious

reporting of the intrusion information by the Decepticon architecture pave the

way for better security in corporate environments as well as in mission critical

systems.

6.3 Summary

In summary:

• We put forward an architecture called Kidemonas as a defense against

APT attacks.

• Kidemonas uses commercial-off-the-shelf (COTS) hardware components
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to keep the manufacturing cost low.

• This is an open-ended design to accommodate different types of APT de-

tection systems to be put inside Kidemonas.

• The framework paves a path for development of a distributed system to

detect generic APT attacks keeping the computational requirements low.

More details can be found in the published work [84].

• For our next deception architecture, we concentrated on APT type ran-

somware.

• We designed an HMM based IDS to detect APT type ransomware as shown

in Chapter 5. The IDS would be effective against basic ransomware as

well.

• Decepticon is a deception based countermeasure. It is a special case of

Kidemonas. The APT detection system inside the framework is an HMM

based IDS tailored to detect APT type ransomware.

• This countermeasure is very effective in distributed corporate network

wherein APT type ransomware could be detected with lower computa-

tional capabilities. More details can be found in the published works [117]

and [85].

When faced with an attack, the defender may or may not have the frame-

work to defend themselves against APTs. There can also be a situation wherein

the framework is defeated by the APT type malware. Then a few questions

arise like “What to do?”, “When to do?”, and “How to do?” To answer these

questions, the research work put forward in the next chapter becomes useful.



Chapter 7
Attack Mitigation

“Not having a contingency plan or never performing risk analysis and

mitigation activities is like not having an insurance plan for yourself.”

–Pooja Agnihotri,

17 Reasons Why Businesses Fail: Unscrew Yourself From Business Failure

The intrusion detection system and the deception architecture were designed

as a defense against APT type malware. But the systems which do not have

these defense features, and/or the systems in which these defense features are

defeated by the APT type malware, are put to great risk. This leads to ques-

tions like - “What to do?”, “When to do?” and “How to do?” with regard to

such sophisticated attacks. To answer these questions, our research presented in

this chapter explores solutions using game theoretic analysis. We analyzed the

threat scenario of non-APT type ransomware as well as sophisticated APT type

ransomware using sequential game models. We introduced two parameters

which would help the defender in making an informed decision when under

attack. Through a formal analysis of a non-APT type ransomware, our research

provides a preliminary treatment of the mitigation strategies to counter ad-
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vanced threats. We then extended the concept of game theory for more sophis-

ticated APT type ransomware. We designed more elaborate sequential game

model for multi-stage advanced ransomware attacks, analyzed the threat sce-

nario and traced the optimal strategies of the attacker for different conditions.

We came up with equilibrium conditions to maximize the outcome and min-

imize the losses for the defender with and/or without the defense features.

In the following sections, we elaborate the research for mitigation against ran-

somware.

7.1 Mitigation Technique for Basic Ransomware At-

tacks

7.1.1 The Threat

A ransomware can be either a basic variant or a more sophisticated APT vari-

ant, as discussed in Chapter 3. An APT type ransomware is generally created

by nation state actors. They are highly sophisticated attacks and are mounted

through multiple clandestine stages [2]. For such attacks, even though mone-

tary gain is generally the primary goal, they may have other concealed and/or

disguised agenda. On the other hand, in a basic ransomware attack, the attacker

encrypts the resources under risk and charges a ransom. If the ransom is paid,

the attacker releases the encrypted resources, else the victim loses the resources

forever. Such attacks generally have only one goal, i.e., to make the resources

inaccessible to the victim until the ransom is paid [118]. In this section, we re-

strict ourselves to the research concerning defense against basic ransomware

and consider the APT type ransomware in the next section.
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Parameterized attack graphs have been proposed in the literature to model

attacks that exploit vulnerabilities. The attack graphs capture attacker’s pre-

conditions, system and network vulnerabilities, attacker effects, and the impact

of the attack on the network [119]. The attacker precondition component in-

clude the attacker’s capabilities and the knowledge needed to stage the attacks

at an atomic level. However, attack graphs were found to be not very useful

due to scalability concerns regarding both model specifications and eventual

threat analysis [108]. Even with automated tools for attack graph generation

[120], such traditional approaches are not feasible in the context of ransomware

where the attacker might use social engineering tactics and launch the attack

in multiple stages. Game theory can effectively model this type of attacks and

capture the interactions between the attacker and the defender. In order to fa-

cilitate the development of the game model, we introduce two parameters, that

are specific to ransomware type attacks, as described next.

7.1.2 The Game

We now present a game to depict the ransomware attack on a vulnerable and

under-prepared system. We assume that the attacker exploited some form of

vulnerability, thereby not giving the defender any time for preparedness. Once

the attack has occurred, the defender is left with one of two choices. The first

choice is to pay ransom and hope the decryption key is released by the attacker,

while, the other option involves not paying ransom. The defender can make

these choices based on certain conditions. We analyze two conditions which

would help the defender make an informed decision on the payment of ran-

som and decryption of the encrypted resources held for ransom. In accordance
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Figure 7.1: Basic Ransomware Attack

with our assumptions, the willingness of the defender to pay ransom primarily

depends on two factors, the value of recovered resources under siege and the

reputation of the attacker.

Figure 7.1 gives a pictorial representation of the game. The game begins with

the attacker choosing either of the two strategies “Attack” or “No Attack.” If the

attacker chooses the strategy “No Attack”, then the defender has nothing to do

in order to respond to the attack. But if the attacker chooses to mount an “At-

tack”, the vulnerable resources are encrypted and then the defender is left with

one of the two choices, “Pay” or “No Pay” of the ransom. Once the defender has

made its move, the attacker has two more strategies to choose from, “Release”
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or “No Release” of the decryption key. If the attacker is a rational player, it will

only release the decryption key if a ransom payment is received. If it does not

receive the ransom, it will not release the decryption key. But there can be sit-

uations where the attacker may choose to do otherwise. That way the attacker

chooses not to be rational. The reasons for the attacker not being rational can

be many but it is outside the scope of this research. Since the attacker can be

rational or irrational, the reputation of the attacker can play an important role

in making an informed decision on the part of the defender when under attack.

In eq. (7.1), parameter rRec gives the ratio of recovered resources after pay-

ment of the ransom to the total value of assets of the defender. Variable R is the

value of the resources under risk and/or siege. The ransom value charged by

the attacker is denoted by β. The value of recovered resources, once the ransom

is paid, is given by R − β. The value of total assets of the defender is denoted by

RTotalAssets. Therefore, rRec indicates the importance of the recovered resources

for the defender, given the total value of assets, once the ransom is paid and

assuming the encrypted resources have been released.

rRec =
R − β

RTotalAssets
(7.1)

In eq. (7.2) below, parameter rRep establishes the reputation of the attacker

either as a rational or irrational player in the game. The higher the value of

rRep, the more rational is the attacker and the higher is its trustworthiness. In

an incident, if the attacker releases the decryption key on receiving the ransom

payment, we assign 1 as the value of reputation for that incident. If the attacker

chooses not to release the decryption key when the defender has not made the

ransom payment, we assign 1 as the value of reputation for that incident. For
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Table 7.1: Attacker Notations

Notation Description
x1, x2 Attacker’s first and second strategies, respectively
x∗, x̂ Optimal strategy and best response, respectively

UA, U∗
A Expected Utility and Optimal Utility, respectively

Release Decision to release the encryption keys (value 0 or 1)
(1-Release) Decision to not release the encryption keys (No Release)

Table 7.2: Defender Notations

Notation Description
y Defender’s Strategy

y∗, ŷ Optimal strategy and best response, respectively
UD, U∗

D Expected Utility and Optimal Utility, respectively
Pay Decision to pay the ransom (value 0 or 1)

(1-Pay) Decision to not pay the ransom (No Pay)

other cases we assign 0 as the value of reputation for that particular incident.

Then we take a mean of the reputation values of all the last known reported

incidents to calculate the overall reputation of the attacker. If the attack is a first

time attack, we assign a value of 0.5 to rRep for the purpose of decision making.

The attackers when they act rationally, the rRep value for them for the next game

goes up. If they act irrationally, then they incur penalty and the rRep value goes

down which results in lower willingness to pay the ransom on the part of the

defender.

rRep = [Mean o f all last known reported incidents] (7.2)

Tables 7.1 and 7.2 list the notations used for describing the utility functions

and strategies of the attacker and the defender, respectively.

With all the parameters under consideration, we look into the strategies of

both the attacker and the defender. Variable x1 represents the strategy for the at-



104

tacker which can take up values “Attack” or “No Attack.” We assign the value

of the strategy “Attack” as 1 when the attacker decides to attack and 0 other-

wise. Similarly for the “No Attack” strategy, the value is 1 when there is no

attack, and 0 otherwise. The strategy variable x2 for the attacker can take up

values “Release” or “No Release.” The value of “Release” is 1 when the attacker

decides to release the decryption key, and 0 otherwise. Similarly, the value of

“No Release” is 1 when the attacker decides against releasing the decryption

key, and 0 otherwise. The decision variable for the defender is denoted by y.

It takes up either of the two strategies as its value, viz. “Pay” and “No Pay.”

After an attack has taken place, if the defender decides to pay the ransom then

the value of the strategy “Pay” is 1, and 0 otherwise. Similarly, if the defender

decides against payment of the ransom, the value of “No Pay” strategy is 1, and

0 otherwise. Now, with x1 = Attack, y = Pay, and x2 = Release, we define the

utility functions of the attacker and the defender. Equations (7.3) and (7.4) show

the utility functions of the defender and the attacker, respectively.

UD ≡ (x1) ∗ [(y) ∗ {(x2) ∗ (R − β)

+ (1 − x2) ∗ (−R − β)}

+ (1 − y) ∗ {(x2) ∗ (R) + (1 − x2) ∗ (−R)}]

+ (1 − x1) ∗ (0)

(7.3)

UA ≡ (x1) ∗ [(y) ∗ {(x2) ∗ (β)

+ (1 − x2) ∗ (β)}+ (1 − y) ∗ {(x2) ∗ (0)

+ (1 − x2) ∗ (0)}]

+ (1 − x1) ∗ (λ)

(7.4)
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Table 7.3: Recovered Resources and Reputation Value for Defender

Value of Affected Resources (rRec)
High (H) Low (L)

Reputation (rRep)
High (H) H, H H, L
Low (L) L, H L, L

The above equations show all strategies and all scenarios including the ones

which generated a pay-off of 0 for the player. The simplified equations are:

UD ≡ (x1) ∗ [(y) ∗ {(x2) ∗ (R − β) + (1 − x2) ∗ (−R − β)}

+(1 − y) ∗ {(x2) ∗ (R) + (1 − x2) ∗ (−R)}]
(7.5)

UA ≡ (x1) ∗ [(y) ∗ {(x2) ∗ (β) + (1 − x2) ∗ (β)}]

+(1 − x1) ∗ (λ)
(7.6)

The defender makes a decision of paying the ransom based on the value of

resource which it might get back on payment of the ransom, and the reputa-

tion of the malware. If the values of rRec and rRep are “significantly high” then

the defender should pay the ransom. If the values of rRec and rRep are “signifi-

cantly low”, then the defender should decide not to pay the ransom. Table 7.3

shows the four main scenarios for different values of rRec and rRep. The high

and low values of rRec and rRep are set by a threshold defined by the defender.

The threshold for rRec is tRec, value of which is decided by the defender based

on the total value of assets it owns. If rRec ≥ tRec it is said to have a “High (H)”

value. Otherwise rRec is said to have a “Low (L)” value. Similarly, If rRep ≥ tRep

it is said to have a “High (H)” value. Otherwise rRep is said to have a “Low

(L)” value. Predetermining the threshold values helps the defender in attack

preparedness. This also helps in making economic decisions with contingency

plans in place.
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Table 7.4: Pay-off table for the ransomware attack game

Outcome Attacker Defender
1 β R − β
2 β −R − β
3 0 R
4 0 −R
5 λ 0

With the strategies and utility functions in place, we now describe how the

players make strategic decisions and how the game proceeds. Then we present

equilibrium solutions depending upon the various conditions. Thereafter we

conduct a sensitivity analysis so that the defender can visualize the expected

change in the decision from the change in the parameters. The change in the

value of parameter rRec signifies a change in the importance of the value of en-

crypted resources to the defender. Change in rRec is caused by a change in any

of the three parameters, viz. R, β and RTotalAssets. This would help defender in

attack preparedness, and as may be seen through the sensitivity analysis, the

effects of change in the value of the parameters on the decision making process

would be vivid.

7.1.3 Decision Making Conditions

Table 7.4 shows the pay-off for the defender and the attacker for each outcome.

When the attacker decides to attack, the maximum pay-off for the attacker is the

ransom amount it receives, as represented by UA(x1 = Attack) = β. For this

ransomware, the main goal is monetary gain from the ransom received from the

victims. If the attacker decides not to attack, then its pay-off is the savings by

avoiding the cost of attack as represented by UA(x = No Attack) = λ.
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For x1 = Attack the following condition must hold,

F1 ≡ UA(x = Attack) ≥ UA(x = No Attack) ≡ β ≥ λ

For x1 = No Attack the following condition must hold,

F2 ≡ UA(x = Attack) < UA(x = No Attack) ≡ β < λ

From the conditions F1 and F2 we get,

x∗1 =


“Attack” β≥λ

“No Attack” Otherwise
(7.7)

For x2 = Release or x2 = No Release the following condition should hold so

that it is in the best interest of the attacker,

x∗2 =


“Release” y=“Pay”

“No Release” Otherwise
(7.8)

The attacker can make decisions based on the pay-off table. The attacker

starts the game by making the first move. The first mover’s advantage goes to

them. When the attacker attacks, the defender is left with the choice of paying or

not paying the ransom. Once the defender has made the decision, the attacker

decides to release or not release the decryption key. With this decision, the at-

tacker ends the game. The decision for the defender cannot be made easily in a

similar fashion. The pay-off table does not quantify the importance of the value

of resources for the defender. Moreover, the pay-off table does not guarantee or
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Table 7.5: Best Response of the Attacker and the Defender given the conditions
(Equilibrium Strategies)

Conditions Strategies
Attacker Defender Attacker(x̂1, x̂2) Defender(ŷ)

β < λ N/A No Attack, Nothing Do Nothing
β ≥ λ rRep ≥ tRep AND rRec ≥ tRec Attack, Release Pay
β ≥ λ rRep < tRep OR rRec < tRec Attack, No Release No Pay

give insight into the rationality and reputation of the attacker. Consequently, the

defender needs to depend on other parameters. Considering this aspect, in this

paper we introduced two parameters to help make the defender an informed

decision, viz. rRec and rRep.

The defender decides the threshold for both the parameters. If the value of

the parameter is above the threshold, then it is quantified to have a “High (H)”

value, else “Low (L)” value. Once the defender has the values for both parame-

ters, they need to refer to Table 7.3 in order to make the decision. Therefore, the

optimal strategy is

y∗ =


“Pay” rRec ≥ tRec AND rRep ≥ tRep

“No Pay” rRec < tRec OR rRep < tRep

(7.9)

7.1.4 Equilibrium Solutions

The game presents the conditions, the strategies, and the pay-offs for each strat-

egy. Considering these factors, Table 7.5 presents the best responses for both the

attacker and the defender. Given the conditions, these best responses translate

to equilibrium solutions for the game.

Parameter λ denotes the cost of attack on the part of the attacker. When they

decide not to mount an attack, i.e., the strategy is “No Attack”, the pay-off is
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λ. This is the financial saving they make by avoiding the cost of attack. If the

system is harder to infiltrate, then the value of λ is higher. For the defender

it means, if the system they build is more secure against infiltration, the value

of λ increases which discourages the attacker from mounting the attack. This

information is important because this encourages to use a stronger encryption

system to secure the database and use security best practices to lower the num-

ber of vulnerabilities that might exist in the system.

In the event of an attack, the defender is left with either of the two choices,

viz. “Pay” and “No Pay.” This is where the threshold values for rRec and rRep

comes handy in the decision making process. The defender needs to decide a

value for tRec based on the value of resources under siege and the total value of

resources owned by them. This helps to decide the limit at which the defender

is comfortable in paying the ransom. For different values of the resources, ran-

som, and total assets, as rRec goes below tRec, the willingness to pay the ransom

decreases. The reason being the value of recovered resources becomes less im-

portant to the defender.

The defender shouldn’t rely on the rRec parameter alone. The reputation of

the malware is also important. If the value of rRec is low, i.e., less than tRec, the

resources are less important to the defender and it can decide not to pay the

ransom. But if it is high, i.e., rRec ≥ tRec, the next action the defender should

take is to check the value of rRep. If rRep < tRep, the reputation of the malware

is low. This signifies that if the defender pays the ransom, there is a very high

possibility that the attacker wouldn’t release the decryption key either. But if

rRep ≥ tRep, the reputation of the malware is high and it can be trusted with the

payment of the ransom. The best strategy for the defender therefore would be

to “Pay” the ransom when rRec ≥ tRec and rRep ≥ tRep and “No Pay” otherwise.
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The attacker, if feels that the pay-off is higher when x1 = Attack as com-

pared to x1 = No Attack, then mounts the attack. For the basic ransomware

considered in this paper, with attacker being rational, it is in its best interest

to release the decryption key on receiving the ransom payment and not releas-

ing decryption key, otherwise. Therefore, the attacker’s best strategy would

be x̂1, x̂2 = Attack, Release on receiving the ransom payment and x̂1, x̂2 =

Attack, No Release if the ransom payment is not made.

7.1.5 Sensitivity Analysis

We now perform a sensitivity analysis to determine how the values of ransom

and total assets affect the decision making of the defender.

To begin with, we assume an organization with a value of total assets (

RTotalAssets) of $10,000. The value of resources (R) under siege is $1,000. The

threshold values for the recovered resources parameter (tRec) and the reputa-

tion parameter (tRep) are assigned 0.05 and 0.5, respectively. For the purpose of

analysis, we use the value of rRep to be 0.618 (this is obtained by randomly gen-

erating a few reputations for past incidents and taking the mean). The ransom

value (β) was set at $300. Now in order to understand how much the total value

of all assets affect the decision making process, we vary RTotalAssets while keep-

ing the values of other parameters unchanged. When the value of RTotalAssets is

$14,000, the rRec value is at the threshold. Figure 7.2a shows how the value of

rRec changes as we increase the value of total assets owned by the defender. The

idea is to visualize the change in the importance of the value of resources under

siege for the defender when the value of total assets owned by them changes.

The higher the value of rRec, the more important is the encrypted resources to
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the defender. Figure 7.2b shows how the decision of the defender changes as the

importance of the value of encrypted resources changes. The decision “Pay” is

denoted by the value 1. The decision “No Pay” or not to pay the ransom is de-

noted by the value 0, i.e., No Pay = 1 − Pay = 0. The plot shows that when the

importance of the encrypted resources diminishes, the willingness to pay the

ransom decreases. From equation (7.1) and Figure 7.2a, it is apparent that rRec is

inversely related to RTotalAssets. Figure 7.2b shows how increasing the RTotalAssets

value affects the decision of the defender.

Now, we vary the ransom value from $100 to $1,000. We keep the value of

R at $1,000, tRec 0.05, tRep 0.5, and rRep 0.618. Figure 7.3a shows how increasing

the ransom value affects the rRec value. When the ransom value is $500, it is

the threshold value for rRec. The figure shows that as the value of ransom in-

creases, the effective value of the recovered resources decreases. Therefore, the

importance of the same to the defender decreases and so does the willingness

to pay the ransom. Figure 7.3b shows how increasing the ransom value affects

the decision of the defender. The decision “Pay” is denoted by value 1 for a

ransom value and the decision “No Pay” is denoted by 0. With an increase in

the value of the ransom, the willingness to pay decreases owing to the fact that

the effective value of the recovered resources diminishes. From equation (7.1)

and Figure 7.3a, it is evident that the relationship between rRec and β is linear

with a negative slope.

The sensitivity analysis shows how one can visualize the importance of each

parameter in the decision making process. In this research, we presented an

example with synthetic data. But this is applicable in the real world if the de-

fender wants to plug-in real values. This decision making process helps to make

an informed decision when faced with an attack. The sensitivity analysis helps
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(a) Importance of the resources for the defender

(b) Decision made by the defender

Figure 7.2: Sensitivity Analysis by varying RTotalAssets



113

(a) Importance of the resources for the defender

(b) Decision made by the defender

Figure 7.3: Sensitivity Analysis by varying Ransom Value
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to visualize the effect of the attack and helps in attack preparedness on the part

of the defender.

7.1.6 Prescriptive Solution

The sensitivity analysis in Section 7.1.5 shows how the change in the value of

ransom or change in the total value of assets owned by the defender affects

the decision made by them. The equilibrium strategies for the attacker and the

defender are shown in Table 7.5. The game is designed without any data and

the equilibrium strategies were obtained through backward induction. Even

though the sensitivity analyses were performed on an example set of data, the

game would work fine for any range of data for a basic ransomware attack. Data

on ransomware attacks are hard to come by as institutions and organizations of-

ten do not report the details fearing the leakage of sensitive information in the

public domain and/or adverse effects on their reputation. Therefore, there can

be an argument here about the incomplete information game [121]. To begin

with, one can argue that λ value is an unknown entity to the defender. But

through penetration testing and/or employment of ethical hackers that value

can be known with quite precision [122], [123]. Another value rRep may seem

to be unknown. But through media reports and browsing through historical

attacks by the same malware or the same attackers, it can be calculated. If no

information is available whatsoever, then the value of rRep is assumed to be

0.5. This way the game no longer becomes an incomplete information game.

With the values under consideration and assumption, Table 7.5 and Algorithm

1 present a prescriptive solution to a basic ransomware attack. The equilibrium

strategies and the algorithm present an opportunity for the defender to prepare
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in advance and/or make an informed decision when under attack from ran-

somware.

Algorithm 1 Choosing Defender’s strategy based on the Optimized Strategy of
Attacker from Table 7.5

tRec = # Set by Defender based on system config.
tRep = # Set by Defender based on info collected
if β ≥ λ then

if rRec ≥ tRec AND rRep ≥ tRep then
return Pay

else
return No Pay

end if
else if β < λ AND x̂1 = No Attack then

return Do Nothing
end if

The basic ransomware may come with few more features. An important fea-

ture being an early deadline for ransom payment. After this early deadline, of-

ten the value of ransom demanded is doubled. If the defender wishes to pay the

ransom, then they will have to pay double the amount after the early deadline.

In this scenario, the defender can simply update the values of the parameters

wherever applicable, including the value of the ransom. Another feature in the

game can be the existence of a bargaining stage between the attacker and the

defender. After the bargaining process, if the ransom value changes and/or

value of resources under siege changes, then the defender can update the value

of the parameters in the game. The value of rRep is calculated by observing the

ransomware attacks which have been known to the defender and/or reported

publicly as shown in the eq. (7.2). If the attack is happening for the first time

and/or there exists no reports of historical occurrence of the same, then the

defender can proceed with the value of 0.5 for rRep. But through proper inves-

tigation, and if any further clue can be found that links the ongoing attack to
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some other attack and/or attacker, then the defender can update eq. (7.2) using

the values from those attacks. Thereafter, the defender can update the values of

the parameters and tables in the game.

The defender, with the updated game can refer to Table 7.5 and Algorithm 2

to make an informed decision. Having a strong security system, effective intru-

sion detection system, strong encryption system and following proper security

practices, the defender effectively increases the value of λ. This acts as a deter-

rent against probable attacks on the system.

7.2 Mitigation Technique for APT type Ransomware

Attacks

7.2.1 The Threat

Malware created by the APT groups do not typically carry out the attacks in a

single stage. The Cyber Kill Chain framework developed by Lockheed Martin

describes an APT through a seven stage life cycle [18]. APT groups are generally

nation state actors [124]. They perform highly targeted attacks and do not stop

until the goal is achieved [125]. Researchers are always working toward devel-

oping a system and process to create an environment safe from APT type attacks

[126]. The following characteristics make them a true APT: 1) exploiting zero-

day vulnerabilities to achieve their goal, 2) non-stop campaign until goals are

achieved, 3) adaptive and having the ability to attack high value targets through

multiple modes of attack [2], [117], and 4) using stealth to quietly invade in a se-

ries of steps [1]. In this research, the threat considered is ransomware which are

developed by APT groups. WannaCry, is an example of a highly sophisticated



117

ransomware created by an APT group called the Lazurus group of North Korea

and its level of sophistication is evident from the existence of contingency plan

of attack on being discovered [2], [127]. In the following subsections we demon-

strate the development of mitigation strategies against APT type ransomware

with use of Game Theory.

7.2.2 Notations and Assumptions

An APT type ransomware is equipped with sophisticated capabilities and re-

sources. An APT type ransomware while manifesting the characteristics of a

ransomware, it often performs targeted attacks with ulterior motive and inter-

est in the encrypted resources. In these situations, the attacker may not want to

release the encrypted files even after receiving the ransom. The attacker might

do so when it deems that it has an advantage of keeping the resources to it-

self. Being an APT, it has huge amount of resources at its disposal. Table 7.6

denotes the possible strategies and notations of the attacker from the following

assumptions we make to describe them:

• Ransomware is the primary form of attack, and therefore, the highest pay-

off is obtained by encrypting the target resources.

• The attacker being an APT type malware, has the capability to perform a

contingency form of attack when it perceives that it has been discovered

or at risk of being discovered as described in [2]. A contingency attack

could mean a different form of attack than the on-going type of attack and

that includes both aborting the current attack (campaign abort strategy),

and a decoy attack to confuse the defender.
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• The attacker is a rational player in game theoretic terms and thus, the

strategies opted by it are motivated by the maximization of the payoff.

Table 7.7 denotes the possible strategies and notations of the defender from

the following assumptions we make to describe them to address the APT type

ransomware attacks.

• The defender is a rational player.

• The defender may have an intrusion detection system (IDS) which em-

ploys deception as a defense strategy [117]. The deception architecture

in our research means existence of an architecture which deceives the at-

tacker in believing in their success while silently detects the intrusion, sur-

reptitiously reports it to the defender and making an intelligent back-up,

all outside the purview of the attacker. The IDS is not perfect. A success-

ful deception and discovery mechanism implies that it was successful in

discovering the malware and the defender was surreptitiously reported of

the intrusion.

• If the defender is successful in detection and discovery of the ransomware,

then it implies that critical data was backed-up through a defender’s back-

up strategy.

These assumptions will define the premises of the game between the attacker

and the defender. Table 7.8 summarizes the pay-off parameters for the defender

which are defined below.

• ‘g’ denotes the damage suffered by the defender when the strategy “No

Surrender” is chosen. “No Surrender” strategy means not complying with
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Table 7.6: Strategies & Notations of the Attacker in the Game

Strategies & Notations Definition
Ransomware (RW) Ransomware type attack
Contingency Attack (CT) Mounts a different form of attack
Campaign Abort (CA) Aborts the ongoing attack
Campaign Complete (CC) Completes the ongoing attack
Release (R) Releases the encrypted resources
No Release (NR) Does not release the encrypted resources
Attack (AT) Mounts an attack on the targeted system
No Attack (NAT) Abstains from mounting an attack (1-AT)
x∗, x̂ Optimal strategy and best response respectively
UA, U∗

A Expected Utility and Optimal Utility respectively

Table 7.7: Strategies & Notations of the Defender in the game

Strategies & Notations Definition
Pay (P) Pays the ransom
No Pay (NP) Doesn’t pay the ransom (1-P)
Surrender (S) Surrenders to the contingency attack
No Surrender (NS) Doesn’t surrender to contingency attack (1-S)
Do Nothing (NOT) When there is no attack, the defender does nothing
y∗, ŷ Optimal strategy and best response respectively
UD, U∗

D Expected Utility and Optimal Utility respectively

or not giving up when faced with a “Contingency Attack” and taking

some or the other defense action.

– ‘gA’ denotes the damage suffered by the defender when the attacker

chooses the strategy “Campaign Abort” given that the defender has

already chosen the strategy “No Surrender.”

– ‘gC’ denotes the damage suffered by the defender when the attacker

chooses the strategy “Campaign Complete” given that the defender

has already chosen the strategy “No Surrender.”

• ‘c’ denotes the damage suffered by the defender when the strategy “Sur-

render” is chosen. “Surrender” strategy means complying with or giving
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up when faced with a “Contingency Attack.”

– ‘cA’ denotes the damage suffered by the defender when the attacker

chooses the strategy “Campaign Abort” given that the defender has

already chosen the strategy “Surrender.”

– ‘cC’ denotes the damage suffered by the defender when the attacker

chooses the strategy “Campaign Complete” given that the defender

has already chosen the strategy “Surrender.”

• ‘R’ denotes the value of resources that are held hostage for a ransom by

the attacker.

• ‘d’ denotes the cost incurred by the defender to implement a deception,

detection, and a back-up mechanism in place.

• PD denotes the probability that if a deception, discovery, and back-up

mechanism is present then whether it is successful or not.

Table 7.9 summarizes the pay-off parameters for the attacker which are de-

fined below.

• ‘β’ denotes the value of the ransom charged by the attacker when a suc-

cessful ransomware attack has been mounted.

• ‘γ’ denotes the value of the encrypted resources for the attacker. Depend-

ing on the value of ‘γ’, the attacker may choose to not release the decryp-

tion key even after receiving the ransom payment.

• ‘λ’ denotes the cost incurred by the attacker to mount a successful attack.

There can be a ‘−λ’ term for every outcome. Then for the “No Attack”
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Table 7.8: Model Parameters - Defender

Parameters Definition
g Damage suffered due to “No Surrender” strategy

gA Damage due to “Campaign Abort” strategy
gC Damage suffered due to “Campaign Complete” strategy
c Damage suffered due to “Surrender” strategy

cA Damage due to “Campaign Abort” strategy
cC Damage suffered due to “Campaign Complete” strategy
R Value of the resources under risk
d Cost of implementing deception and back-up mechanism

PD Probability of discovery and having deception mechanism

scenario the outcome for the attacker is 0. The equations, the math and

the equilibrium solution would still be the same. For a costly attack, the

outcome for the attacker could be negative. We just took out the ‘−λ’ term

from every outcome and kept the “No Attack” outcome to be ‘λ’, to show

the monetary savings.

• ‘δ’ denotes the value of gains for the attacker when the “Campaign Abort”

strategy is opted.

• ‘ω’ denotes the value of the gains for the attacker when the “Campaign

Complete” strategy is opted.

• PP denotes the probability with which the attacker perceives whether a

sophisticated deception and detection mechanism to detect ransomware

attack exists in the system or not.

7.2.3 Game Model: Model Description

The game begins when the attacker creates a malware and mounts an attack

on the system. If there is no attack, the defender does nothing and no attack-
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Table 7.9: Model Parameters - Attacker

Parameter Definition
β Ransom charged for the encrypted resources
γ Advantage parameter for “Not Releasing” the key
λ Cost of attack
δ Gain from “Campaign Abort” strategy
ω Gain from “Campaign Complete” strategy
PP Perception probability regarding deception mechanism

defense situation arises. The attack begins with initial reconnaissance of the

system, followed by initial compromise. If the attacker perceives that it has

not been discovered and/or chances of being discovered is low, then the ran-

somware type attack is executed. If the attacker perceives that it has been dis-

covered and/or there is a deception and discovery mechanism in the system

which might lead to its discovery, then the contingency plan of attack is exe-

cuted. We introduce a chance node in the game tree instead of a decision node to

represent this situation. Chance nodes in a game model are the ones wherein

a player makes one of the possible decisions with certain probability. Decision

nodes in a game model are the ones wherein a player makes one of the pos-

sible decisions with certainty. By introducing chance nodes to represent the

attacker’s perception, we can assume that with certain probability the malware

perceives its discovery and executes the contingency plan of attack. In response

to the contingency attack, the defender can choose to either surrender or not

surrender. The attacker then can proceed to either the campaign complete or

the campaign abort option, owing to its favorable outcome.

If there is no deception and discovery mechanism, or the mechanism failed

to detect the ransomware attack, the attacker would have correctly perceived a

low probability of discovery. Under such condition, the attacker mounts ran-
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Figure 7.4: APT Type Ransomware Game

somware attack and the defender may decide to pay. Once the attacker has

received the ransom, it may choose to release or not release the decryption key,

depending upon the favorable outcomes defined by the pay-offs. If the defender

decides not to pay the ransom assuming that ransom value is too high, then the

attacker chooses not to release the decryption key. But if the attacker’s percep-

tion of lack of a defense mechanism is false and it has been silently discovered

by the IDS and surreptitiously been reported to the defender chooses to not pay

the ransom. The attacker being a rational player in the game, then chooses to

not release the decryption key.
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Table 7.10: Pay-off for each outcome in the Game

Scenario Outcome Attacker Defender

Contingency
Attack

1 δ −cA
2 ω −cC
3 δ −gA
4 ω −gC

Ransomware
Attack

5 0 R − d
6 0 −R
7 β + γ −β − R
8 β −β + R

No Attack 9 λ 0

7.2.4 Pay-off for the Players

The attacker makes the first move and the defender responds. Then depending

upon the defender’s response, the attacker makes the next move. Therefore,

we have a sequential game as shown in Fig. 7.4. The strategies opted by the

attacker are shown in Table 7.6. The strategies undertaken by the defender are

listed in Table 7.7. The model parameters for the defender and the attacker are

listed in tables 7.8 and 7.9, respectively. The model parameters help to construct

the pay-off table for each outcome in the game as shown in Table 7.10. When

the attacker perceives that it has been discovered or there is a risk of discovery

by the defender, it proceeds with the contingency attack with probability PP.

With probability 1 − PP, the attacker proceeds with the ransomware attack, as

the perception is that the defender has failed to discover. When a ransomware

type attack is ongoing, the probability of the defender discovering the attacker

without the latter’s knowledge is given by PD. The probability of the attacker

being not discovered by the defender during a ransomware type attack is given

by 1 − PD.
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7.2.5 Decision Making Conditions

7.2.5.1 Best Response of the Attacker

When the attacker decides to attack, they can either choose to mount a ran-

somware type attack or a contingency mode of attack depending upon the per-

ception. During the contingency mode of attack, the attacker can respond to

the defender by choosing either of the two strategies, Campaign Abort (CA) or

Campaign Complete (CC). Expected utility of the attacker in case they choose

the strategy CA is given by eq. (7.10) and the expected utility when they choose

CC is given by eq. (7.11).

UA(x = CA) = δ (7.10)

UA(x = CC) = ω (7.11)

For x̂CT = CA the condition is given by eq. (7.12). Similarly, for x̂CT = CC

the condition is given by eq. (7.13).

F1 ≡ UA(x = CA) ≥ UA(x = CC) ≡ δ ≥ ω (7.12)

F2 ≡ UA(x = CA) < UA(x = CC) ≡ δ < ω (7.13)

When mounting the contingency attack, the best response of the attacker can

be derived from the equations (7.10) - (7.13). The best response is given by eq.

(7.14).
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x̂CT =


CA if δ≥ω

CC Otherwise
(7.14)

If the defender has a deception architecture in place against a ransomware at-

tack, then they decide not to pay the ransom, and thereafter the attacker decides

not to release the decryption key. If the defender has no deception architecture

during the ransomware attack, and they choose to pay the ransom, the attacker

can respond by either releasing (R) the decryption key or not releasing (NR) the

decryption key. The expected utilities of the attacker for release of the decryp-

tion key is given by eq. (7.15) and similarly for the no release of the decryption

key is given by eq. (7.16).

UA(x = R) = β (7.15)

UA(x = NR) = β + γ (7.16)

For x̂RW = R the condition is given by eq. (7.17). Similarly, for x̂RW = NR

the condition is given by eq. (7.18).

F3 ≡ UA(x = R) ≥ UA(x = NR) ≡ γ ≤ 0 (7.17)

F4 ≡ UA(x = R) < UA(x = NR) ≡ γ > 0 (7.18)

When mounting the ransomware attack, the best response of the attacker can

be derived from the equations (7.15) - (7.18). The best response is given by eq.

(7.19).
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x̂RW =


R if γ≤0

NR Otherwise
(7.19)

7.2.5.2 Best response of the Defender

The defender is the second mover in the game. The defender responds to ei-

ther the contingency attack or the ransomware attack. During the contingency

attack, the defender can respond to the attacker with either surrendering (S) or

not surrendering (NS) to the attack. Expected utilities of the defender in case

they choose to surrender when the attacker chooses to abort the campaign or

complete the campaign are given by the equations (7.20) and (7.21), respectively.

UD(y = S, x = CA) = −cA (7.20)

UD(y = S, x = CC) = −cC (7.21)

Similarly, expected utilities of the defender in case they choose not to surren-

der when the attacker chooses to abort the campaign or complete the campaign

are given by the equations (7.22) and (7.23), respectively.

UD(y = NS, x = CA) = −gA (7.22)

UD(y = NS, x = CC) = −gC (7.23)

When condition F1 holds given by eq. (7.12), the condition given by eq. (7.24)

must hold for ŷCT = S
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F5 ≡ UD(y = S, x = CA) > UD(y = NS, x = CA)

≡ cA < gA

(7.24)

When condition F2 holds given by eq. (7.13), the condition given by eq. (7.25)

must hold for ŷCT = S

F6 ≡ UD(y = S, x = CA) > UD(y = NS, x = CA)

≡ cC < gC

(7.25)

When condition F1 holds given by eq. (7.12), the condition given by eq. (7.26)

must hold for ŷCT = NS

F7 ≡ UD(y = S, x = CA) ≤ UD(y = NS, x = CA)

≡ cA ≥ gA

(7.26)

When condition F2 holds given by eq. (7.13), the condition given by eq. (7.27)

must hold for ŷCT = NS

F8 ≡ UD(y = S, x = CA) ≤ UD(y = NS, x = CA)

≡ cC ≥ gC

(7.27)

From the equations (7.22) - (7.27), the best response function of the defender

can be defined as shown in equation (7.28) when the attacker decides to launch

a contingency attack.

ŷCT =


S if [{(δ ≥ ω) ∩ (F5)} ∪ {(δ < ω) ∩ (F6)}]

NS Otherwise
(7.28)

During a ransomware attack, the defender with a deception architecture can
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respond to the attacker by not paying the ransom and the attacker responds to

that by not releasing the decryption key. This infers that the defender is not

in need of the decryption key and primarily being a ransomware, the attacker

decides not to release the decryption key. In the situation when the defender

doesn’t have a deception architecture, they can respond by either of the two

strategies, Pay or No Pay. The expected utilities of the defender are given by

the equations (7.29) - (7.31) when the attacker decides to mount a ransomware

attack.

UD(y = NP, x = NR) = −R (7.29)

UD(y = P, x = R) = −β + R (7.30)

UD(y = P, x = NR) = −β − R (7.31)

When the condition F3 holds as shown by the eq. (7.17), the best response by

the defender ŷRW = NP is given by eq. (7.32). Similarly, the best response by

the defender ŷRW = P is given by eq. (7.33).

F9 ≡ UD(y = NP, x = NR) > UD(y = Pay, x = R)

≡ β > 2R
(7.32)

F10 ≡ UD(y = NP, x = NR) ≤ UD(y = Pay, x = R)

≡ β ≤ 2R
(7.33)

When the condition F4 holds as shown by eq. (7.18), the decision not to pay

strictly dominates the decision to pay. Hence, ŷRW = NP.
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From the equations (7.29) - (7.33), we can write the best response function of

the defender for a ransomware type attack as shown in eq. (7.34).

ŷRW =


P If [(γ ≤ 0) ∩ (β ≤ 2R)]

NP Otherwise
(7.34)

When the attacker chooses not to attack, the only option for the defender is

to do nothing. Hence, ŷ = NOT.

7.2.6 Equilibrium Solutions

The best responses of the attacker and the defender under different conditions

were derived in Section 7.2.5. From those conditions and respective best re-

sponses of the players, we obtain the equilibrium solutions as shown in Table

7.11. The equilibrium solutions in Table 7.11 were obtained through backward

induction from the game as shown in Figure 7.4 and the pay-offs for each player

as shown in Table 7.10. One key result which is directly evident from the equi-

librium solutions is that if the value of λ can be made considerably high, i.e.,

if the system is secure enough so that the cost of attack is really high, then it

acts as a deterrent against an attack. This can be achieved through strong en-

cryption, proper authorization and authentication protocols, and by creating an

awareness of the security of the system amongst the user through proper train-

ing programs.

7.2.7 Sensitivity Analysis

As noted before, data on a ransomware attack is hard to acquire. Organiza-

tions often refrain from reporting owing to effects on their reputation and/or
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Table 7.11: Equilibrium Solution

Case Condition x∗ y∗ U∗
A U∗

D

1
[δ ≥ max(ω, λ

PP
)] ∩ [{γ > 0}∪

{(γ ≤ 0) ∩ (β > 2R)}] ∩ [cA < gA]
CA, NR S, NP δPP

(1 − PP)(2RPD−
dPD − R)− cAPP

2
[δ ≥ max(ω, λ

PP
)] ∩ [{γ > 0}∪

{(γ ≤ 0) ∩ (β > 2R)}] ∩ [cA ≥ gA]
CA, NR NS, NP δPP

(1 − PP)(2RPD−
dPD − R)− gAPP

3 [δ ≥ max(ω, λ−β(1−PP)(1−PD)
PP

)] ∩ [

{(γ ≤ 0) ∩ (β ≤ 2R)}] ∩ [cA < gA]
CA, R S, P δPP+

β(1 − PP)(1 − PD)
(1 − PP)(−β + R−
dPD + βPD)− cAPP

4 [δ ≥ max(ω, λ−β(1−PP)(1−PD)
PP

)] ∩ [

{(γ ≤ 0) ∩ (β ≤ 2R)}] ∩ [cA ≥ gA]
CA, R NS, P δPP+

β(1 − PP)(1 − PD)
(1 − PP)(−β + R−
dPD + βPD)− gAPP

5
[ω ≥ max(δ, λ

PP
)] ∩ [{γ > 0}∪

{(γ ≤ 0) ∩ (β > 2R)}] ∩ [cC < gC]
CC, NR S, NP ωPP

(1 − PP)(2RPD−
dPD − R)− cCPP

6
[ω ≥ max(δ, λ

PP
)] ∩ [{γ > 0}∪

{(γ ≤ 0) ∩ (β > 2R)}] ∩ [cC ≥ gC]
CC, NR NS, NP ωPP

(1 − PP)(2RPD−
dPD − R)− gCPP

7 [ω ≥ max(δ, λ−β(1−PP)(1−PD)
PP

)] ∩ [

{(γ ≤ 0) ∩ (β ≤ 2R)}] ∩ [cC < gC]
CC, R S, P ωPP+

β(1 − PP)(1 − PD)
(1 − PP)(−β + R−
dPD + βPD)− cCPP

8 [ω ≥ max(δ, λ−β(1−PP)(1−PD)
PP

)] ∩ [

{(γ ≤ 0) ∩ (β ≤ 2R)}] ∩ [cC ≥ gC]
CC, R NS, P ωPP+

β(1 − PP)(1 − PD)
(1 − PP)(−β + R−
dPD + βPD)− gCPP

9 [λ > max{δPP, δPP + β(1 − PP)(1 − PD),
ωPP, ωPP + β(1 − PP)(1 − PD)}]

NAT NOT λ 0

leakage of information regarding the intellectual properties of the organization.

A thorough validation of our model is thus not possible due to the paucity of

real world data. Alternatively, we perform a sensitivity analysis to show the

working of our model and to gain some insight of the attack-defense scenario of

ransomware. For the purpose of the sensitivity analysis we use synthetic data

with a small example organization or a start-up as a use case. The value of the

resources under siege by an APT type ransomware is assumed to be $10,000.

The values of the different parameters were varied to observe the equilibrium

solution pertaining to the changing conditions. The low and high values of the

parameters for different conditions for the sensitivity analyses are shown in Ta-

ble 7.12. Ransomware is the primary form of attack, so it is expected that ransom

should have a high value. Therefore, in the sensitivity analysis for the percep-

tion probability (PP) and discovery probability (PD), the value of ransom was

kept at $10,000 whenever β ≤ 2R and was kept at $21,000 whenever β > 2R.

Contingency attack is a fall back option for the attacker, therefore we kept the
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outcome for δ at $6,000 and ω at $3,000 whenever the condition was δ ≥ ω and

the values were reversed when the condition was otherwise. This makes the

intended outcome for the attacker lesser in case of a contingency attack. The

cost of a deception mechanism was kept at 10% and therefore the value of d was

set at $1,000. Similarly, the losses for the defender if the attack is purely a con-

tingency attack should be lesser. Therefore, the value of cA was kept at $5,000

and the value of gA at $2,500 whenever cA ≥ gA and the values were reversed

when the condition was otherwise. The values for cC and gC were chosen in a

similar manner. For the purpose of the sensitivity analysis, we chose to keep

the value for λ at $1,000 which is again 10% of the value of resources under

siege. The value of γ was kept at 0. Even though we chose certain values for

the parameters, the game model was not designed for any range of values. The

model should work fine for any range and set of data. The equilibrium condi-

tions triggered are sensitive to the conditions satisfied and would work for any

value.

The strategies of the defender are mostly reactions to the strategies of the

attacker. Moreover, the attacker is the one who begins and ends the game. Con-

sequently, the strategies of the attacker play a dominant role in deciding the

equilibrium condition case being triggered pertaining to a particular set of con-

ditions. The attacker being an APT type ransomware, we are more interested in

the parameters pertaining to the ransomware type attack. Contingency attack

can be any form of attack which the attacker is capable of, when the perception

is that a ransomware type attack is not much effective. So, herein we report

the effect of changing the values of the ransom, the perception probability and

the discovery probability from the sensitivity analysis so as to understand the

attack-defense scenario of an APT type ransomware.
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Table 7.12: Values of parameters for sensitivity analyses

Parameter Value(s)
δ $3,000, $6,000
ω $3,000, $6,000
cA $2,500, $5,000
cC $2,500, $5,000
gA $2,500, $5,000
gC $2,500, $5,000
λ $1,000
d $1,000
γ $0

7.2.7.1 Varying the Ransom Value (β)

We varied the ransom value demanded by the attacker from $1,000 to $41,000.

The values of PP and PD were kept at 0.5 and 0.25, respectively. Figure 7.5 shows

the equilibrium condition cases being triggered under different conditions. The

number on y-axis refers to the equilibrium condition case number as shown in

Table 7.11. Figure 7.6 shows the outcome of the players for the conditions δ > ω,

cA < gA and equilibrium condition cases 1 and 3.

7.2.7.2 Varying the Perception Probability (PP)

The perception probability plays an important role in the attacker’s decision

making regarding ransomware attack or contingency attack. But through sen-

sitivity analysis we find that if the conditions remain the same, the probability

of perception of the attacker of a probable discovery by the defender doesn’t

have much effect on the change of equilibrium condition when the value of PP

changes. The conditions wherein the attacker’s outcome is less than the cost

of attack, the attacker decides not to attack and in other cases it is motivated

by the maximization of their outcome. Therefore, changing conditions plays a
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Figure 7.5: Equilibrium Condition Case Triggered vs. Ransom Value for differ-
ent Conditions

Figure 7.6: Players’ Outcome vs. Ransom Value for δ > ω, cA < gA (Equilib-
rium Condition Cases 1 and 3)

more important role than changing the perception probability of the attacker.

Figure 7.7 shows the equilibrium condition case triggered when the perception

probability of the attacker on their discovery changes. The number on y-axis

refers to the equilibrium condition case number as shown in Table 7.11. Fig-

ure 7.8 shows the players’ outcome for varying perception probability of the
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Figure 7.7: Equilibrium Condition Case Triggered vs. Perception Probability for
different conditions

attacker. Figure 7.8a shows that the attacker’s outcome varies between $6,000

and $7,500 for equilibrium condition cases 3, 4, 7, and 8. It also shows that the

outcome varies between $1,000 and $6,000 for equilibrium condition cases 1,

2, 5, 6, and 9. Figure 7.8b shows that the defender’s outcome varies between

-$2,500 and $2,250 for equilibrium condition cases 3, 4, 7, and 8. It also shows

that the outcome varies between $0 and -$4,700 for equilibrium condition cases

1, 2, 5, 6, and 9. The negative outcome implies net loss for the defender in the

game. The players’ outcomes do change with the variation in the perception

probability but the equilibrium condition case changes with an overall change

in the conditions as shown in Table 7.11.
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(a) Attacker’s Outcome

(b) Defender’s Outcome

Figure 7.8: Players’ Outcome vs. Perception Probability for different conditions

7.2.7.3 Varying the Discovery Probability (PD)

We observed similar results for the discovery probability (PD) variation-based

sensitivity analysis compared to the perception probability (PP) variation-based

sensitivity analysis of Sec. 7.2.7.2. For reasons of brevity, the graphs are not

included in the paper.
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7.2.8 Prescriptive Solutions

The sensitivity analysis shows how the decisions would be affected by the var-

ious parameters. The solutions were not data dependent and would work for

any sets and any range of data given the conditions are satisfied. Therefore,

this would give the defender a definite set of strategies when a particular set

of conditions are met, which we demonstrated through a set of values for the

parameters with reasonable estimations. The equilibrium solutions are not very

sensitive to the changing value of the parameters, and thereby helping the de-

fender to make conclusive decisions given the conditions. As in the case of basic

ransomware analysis, there can be an the incomplete information game [121].

The information regarding certain parameters are generally unknown, which

includes PP, PD, δ, ω, cA, cC, gA, gC and γ. The game is designed as such that

the equilibrium solutions are not much sensitive to the change in the values of

PP and PD. The values of the outcomes for the attacker and the defender would

change owing to the changes in the values of PP and PD, but the equilibrium

strategies for a given set of conditions would mostly remain the same. Thus, the

defender can prepare for every condition when the values of the rest of the pa-

rameters are known. The values of δ and ω denote the gains from the Campaign

Abort and Campaign Complete strategies on the part of the attacker if they de-

cide to choose the contingency plan of attack. If the defender employs ethical

hackers and/or perform penetration testing [122], [123] regularly on their sys-

tem, they would be known values. Moreover, they will become aware of the

vulnerabilities in the system and the effects of Campaign Abort and Campaign

Complete strategies of the attacker and thereby gain the knowledge of the other

parameters in the system like cA, cC, gA, and gC. For the value of γ, the defender
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can assume that it is of the same value to the attacker as it is to them given the

nature of the resources. All these would help the defender to prepare in advance

as the APT type ransomware attacks are on the rise [2], [15], [128]. But in the

event when the defender is caught off-guard and the attacker has managed to

mount a successful attack, the defender still can use Algorithm 2 below to fig-

ure out the equilibrium condition given the attack and the resources under siege

as shown in Table 7.11. In the algorithm, the outcomes of the attacker for dif-

ferent conditions are denoted by UA1 = δPP, UA2 = δPP + β(1 − PP)(1 − PD),

UA3 = ωPP, and UA4 = ωPP + β(1 − PP)(1 − PD). The game is designed as

such that each of the players is rational in nature and would play to optimize

their outcomes and in the event of an unfavorable condition, they would play

to minimize the losses. The prescriptive solutions given by Algorithm 2 and the

equilibrium solutions in Table 7.11 not only help the attacker in the prepared-

ness but also in the mitigation if a successful attack has occurred.

The game is designed for an APT type ransomware attack. The algorithm

presented here is parameterized and therefore, a defender can plug in the values

of the parameters to get the equilibrium strategies for a variety of ransomware

attacks. There can be a basic ransomware attacks which doesn’t have any con-

tingency plan of attack and doesn’t have any perception of the system under

attack. This game model works fine for those attacks as well. The parameters

for the contingency plan of attack would have a value 0, as the attacker has

no contingency attack plan. This game theoretic analysis is an approach to the

solutions of the problem faced from a large variety of ransomware attacks.
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Algorithm 2 Choosing Defender’s strategy based on the Optimized Strategy of
Attacker from Table 7.11

if δ ≥ ω then
if γ > 0 then

if UA1 < λ then
return 9

else if cA < gA then
return 1

else
return 2

end if
else

if β > 2R then
if UA1 < λ then

return 9
else if cA < gA then

return 1
else

return 2
end if

else
if UA2 < λ then

return 9
else if cA < gA then

return 3
else

return 4
end if

end if
end if

else
if γ > 0 then

if UA3 < λ then
return 9

else if cC < gC then
return 5

else
return 6

end if
else

if β > 2R then
if UA3 < λ then

return 9
else if cC < gC then

return 5
else

return 6
end if

else
if UA4 < λ then

return 9
else if cC < gC then

return 7
else

return 8
end if

end if
end if

end if
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7.2.9 Summary

The research presented in this chapter is summarized as follows:

• The intrusion detection system and the deception architecture were de-

signed as a defense against APT type malware. But the systems which do

not have these defense features, and/or the systems in which these de-

fense features are defeated by the APT type malware, are put to great risk.

This leads to questions like - “What to do?”, “When to do?” and “How to

do?” with regard to such sophisticated attacks.

• To answer these questions, our research explored solutions using game

theoretic analysis. We analyzed the threat scenario of non-APT type ran-

somware using a sequential game model. We introduced two parameters

which would help the defender in making an informed decision when un-

der attack.

• The rRec parameter is the ratio of the value of recovered resources after

payment of ransom to the total value of all the assets owned by the de-

fender. This helps the defender to quantify the importance of the resources

under siege. The higher the value of rRec, the more willing the defender is

to pay ransom.

• The second parameter, rRep helps the defender to guess how “trustwor-

thy” the malware is. The higher the reputation, the more willing is the

defender to pay the ransom. More details can be found in the published

work [129].

• Through a formal analysis of a non-APT type ransomware, our research
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provided a preliminary treatment of the mitigation strategies to counter

advanced threats.

• We then extended the concept of game theory for more sophisticated APT

type ransomware.

• We designed more elaborate sequential game model for multi-stage ad-

vanced ransomware attacks, analyzed the threat scenario and traced the

optimal strategies of the attacker for different conditions. We came up

with equilibrium conditions to maximize the outcome and minimize the

losses of the defender with and/or without the defense features. More

details can be found in the published work [130].

• Our finding is that the equilibrium is not much sensitive to the changing

values of the parameters but are quite sensitive to the changing values of

the conditions. If the conditions change owing to change in the values,

then the strategies and therefore, the equilibrium would change. But if

the change in values of the parameters doesn’t change the conditions, the

equilibrium strategies wouldn’t change.

• The game is designed for rational players who would play to optimize

their outcomes and if the conditions are unfavorable, they would play to

minimize the losses. We demonstrated the same through a sensitivity anal-

ysis. This helps in both preparedness and mitigation of attacks from APT

type ransomware.



Chapter 8
Conclusion and Future Work

8.1 Conclusion

The problem addressed in this dissertation is the modeling, detection, decep-

tion, and mitigation of Advanced Persistent Threats. The definition of APT

had become outdated and wouldn’t account for the most recent state-of-the-

art sophisticated attacks. Through our research, we took a holistic approach to

identify an APT and updated the literature defining an APT. With the newer

features being attributed to the APT attacks, a system is needed to detect an

intrusion by an APT type malware. We designed AI based IDSes for APT type

ransomware using Hidden Markov Model (HMM), ML, and NLP models. We

used ML models like NBC, RF, SVM, GB decision trees, and LR, and NLP model

BERT to design classifier based IDS. We created a dataset using system call logs

by running ransomware in a sandboxed environment. We used Picus Security’s

simulator, a commercial tool, to collect data from APT type ransomware, viz.

Darkside, BlackByte, BlackMatter, REvil and Diavol. We also used HMM to de-

sign an IDS. The advantage of using HMM over classifier based IDS is, it not
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only identifies the attack but also characterizes the attacker. It also helps the

defender to identify the state of the attacker so that a defense strategy could be

tailored to be best suited to that state of attack.

The IDSes we designed for APT type ransomware needed another layer of

protection. This layer of protection was ensured through a deception archi-

tecture. We designed a deception architecture called Kidemonas. We used a

commercial-off-the-shelf (CoTS) hardware component called trusted platform

module (TPM) for designing Kidemonas. The idea is to run a generic APT de-

tection system in an isolated environment outside the purview of the attacker.

The aim of the architecture is to silently detect the intrusion and surreptitiously

report the same to the defender. This was for detection of generic APT malware.

In order to give a layer of protection to the HMM based IDS, we designed a de-

ception based countermeasure called Decepticon. Decepticon is a special case

of Kidemonas, which runs an HMM based IDS to detect APT type ransomware

as its APT detection system in the isolated environment. The distributed nature

of the APT detection system ensures that the burden of detecting any form of

APT type malware doesn’t fall on a single system. A distributed APT detection

architecture and surreptitious reporting has another advantage. When an attack

is unfolding, and an intrusion is detected in one of the nodes of the distributed

architecture, a preemptive action in other nodes can be taken to prevent the at-

tack on those nodes. This builds an effective defense strategy when faced with

an attack from an APT type malware which possess the capabilities of lateral

movement and privilege escalation.

The IDSes and the deception architectures were designed as a defense against

APT type malware. But the systems which do not have these defense features,

and/or the systems in which these defense features are defeated by the APT
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type malware, are put to great risk. This leads to questions like - “What to do?”,

“When to do?” and “How to do?” with regard to such sophisticated attacks.

To answer these questions, our research is explored solutions using game the-

oretic analysis. We analyzed the threat scenario of non-APT type ransomware

using a sequential game model. We introduced two parameters which would

help the defender in making an informed decision when under attack. The rRec

parameter is the ratio of the value of recovered resources after payment of ran-

som to the total value of all the assets owned by the defender. This helps the

defender to quantify the importance of the resources under siege. The higher

the value of rRec, the more willing the defender is to pay ransom. The second

parameter rRep, helps the defender to guess how “trustworthy” the malware is.

The higher the reputation, the more willing is the defender to pay the ransom.

Through a formal analysis of a non-APT type ransomware, our research pro-

vided a preliminary treatment of the mitigation strategies to counter advanced

threats. We then extended the concept of game theory for more sophisticated

APT type ransomware. We designed a more elaborate sequential game model

for multi-stage advanced ransomware attacks, analyzed the threat scenario, and

traced the optimal strategies of the attacker for different conditions. We came up

with equilibrium conditions to maximize the outcome and minimize the losses

of the defender with and/or without the defense features. Our finding is that

the equilibrium is not much sensitive to the changing values of the parameters

but are quite sensitive to the changing values of the conditions. If the condi-

tions change owing to change in the values, then the strategies and therefore,

the equilibrium would change. But if the change in values of the parameters

doesn’t change the conditions, the equilibrium strategies wouldn’t change. The

game is designed for rational players who would play to optimize their out-
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comes and if the conditions are unfavorable, they would play to minimize the

losses. We demonstrated the same through a sensitivity analysis. This helps in

both preparedness and mitigation of attacks from APT type ransomware.

Organizations can utilize the new results from our research regarding the

novel features that more sophisticated APT attacks may come armed with. They

can use our research on AI based detection system and the hardware assisted

deception mechanism to detect and defend themselves against attacks by APT

groups. They can also prepare themselves in advance by utilizing our research

on Game Theory based mitigation strategies and also use the same to make

informed decisions when under attack. Our research puts forward a holistic

approach in defense against attacks from APT groups through detection of at-

tacks, deceiving the attackers, and providing mitigation strategies to the de-

fender when under attack.

8.2 Future Work

Our research is designed around attacks from APT type malware, but it is equally,

if not more effective, applicable against basic malware which mostly mount

single stage attacks. Even though our current work focuses on APT type ran-

somware, we would like to extend our scope to other forms of APT malware,

and non-APT type sophisticated malware in the future. We would like to study

the security and privacy implications on the performance of the entire system.

We would also like to design strategies for defense against other types of mal-

ware using game theory. We also want to explore the areas of AI for security

and security for AI. Preparedness is the key. A cyber attack in today’s world is

not a question of “if” but “when” [131].
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