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Abstract

This thesis examines the problem of anomaly detection in evolving data. Data-driven
anomaly detection methods typically build a model for the normal behavior of the target
system and score each data instance with respect to this model. A threshold is invariably
needed to identify data instances with high (or low) scores as anomalies. This presents a
practical limitation on the applicability of such methods, since most methods are sensitive
to the choice of the threshold, and it is challenging to set optimal thresholds. The issue is
exacerbated in a streaming scenario, where the optimal thresholds vary with time.

Furthermore, the methods lack the ability to scale to high-dimensional settings or time-
series databases. Anomaly detection for time series data is often aimed at identifying ex-
treme behaviors within an individual time series. However, identifying extreme trends rel-
ative to a collection of other time series is of significant interest, like in the fields of public
health policy, social justice and pandemic propagation.

This thesis has 3 parts, the first two parts are two novel anomaly detection algorithms for
evolving data and the third part is an application of the second anomaly detection method
to neural networks. In the first part, we present a probabilistic framework to explicitly
model the normal and anomalous behaviors and probabilistically reason about the data. An
extreme value theory based formulation is proposed to model anomalous behavior as the
extremes of normal behavior. As a specific instantiation, a joint non-parametric clustering
and anomaly detection algorithm (INCAD) is proposed that models the normal behavior as
a Dirichlet Process Mixture Model. Results on a variety of data sets, including streaming
data, show that the proposed method provides effective and simultaneous clustering and
anomaly detection without requiring strong initialization and threshold parameters.

Since the INCAD model is unable to scale to time-series databases, we present a second
algorithm in the second part of our thesis, Large Deviations Anomaly Detection (LAD), that



can scale to large collections of time series data using the concepts from the theory of large

deviations. Exploiting the ability of the algorithm to scale to high-dimensional data, we
propose an online anomaly detection method to identify anomalies within individual time
series and then to a collection of multivariate time series. We demonstrate the applicabil-
ity of the proposed Large Deviations Anomaly Detection (LAD) algorithm in identifying
counties in the United States with anomalous trends in terms of COVID-19 related cases
and deaths. Several of the identified anomalous counties correlate with counties with doc-
umented poor responses to the COVID pandemic.

In the third part of this thesis, the computational efficiency of the LAD model is used
to improve the training of artificial neural networks (ANNs) using our novel training algo-
rithm. The aim of the novel training model, LAD Improved Iterative Training (LIIT), is
to design a faster training approach using a smaller but better representative sample of the
training data. We adopt the LAD anomaly scores to construct a series of Modified Train-
ing Samples (MTS) that are updated iteratively. The LIIT model incorporates ideas from
Gradient Boosting methods to improve the learning process for the ANN. We present an
extensive study on the performance of this training approach on simple clustering ANN
as compared to the traditional training model and demonstrate the robustness of the LIIT
approach to perturbations.
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Chapter 1

Introduction

Anomaly detection refers to the identification or classification of uncommon and extreme
behavior in data. Depending on the context, these behaviors are can be referred to as rare
events, extreme events, novelty, attacks, fraud, noise, outliers, or anomalies. While one
can reduce anomaly detection to a simple pre-processing step for small datasets, it is a
significant challenge to identify them in most complex datasets. Particularly in evolving
datasets or high-dimensional data, anomaly detection in a supervised or semi-supervised
setting is not the most ideal approach (as the underlying assumptions about the data might
be inaccurate). Thus, research on unsupervised anomaly detection algorithms is of much
interest.

1.1 Defining and Studying Anomalies

Establishing an abstract mathematical definition of an anomaly has been challenging due
to diversity among interpretations. The domain, dataset as well as the research problem of
interest - all collectively dictate the way we define, identify and study anomalies. However,
the shared theme amongst these variations is the scarcity of an anomaly.

The fundamental idea behind studying anomalies is to prepare for the unforeseen and
exercise suitable measures to constrain loss. Hence, we need to define anomalies, identify

1



them and understand their severity.
Traditionally, relative attributes such as extreme, unique, rare, novel, irregularity, low

likelihood of occurrence and being extreme are used to define anomalies making it challeng-
ing to study them. Consequently, behaviors that diverge from the expected are anomalous.
Thus, a metric for apt quantification of this divergence must be defined.

1.2 Contributions

This thesis makes the following key contributions:

1.2.1 Unsupervised Anomaly Detection in Evolving Data Streams

Anomaly detection heavily depends on the definitions of expected and anomalous behaviors
[51, 35, 48]. In most real systems, observed system behavior typically forms natural clusters
whereas anomalous behavior either forms a small cluster or is weakly associated with the
natural clusters. Under such assumptions, clustering based anomaly detection methods form
a natural choice [14, 27, 44] but have several limitations.

Firstly, clustering based methods usually require baseline assumptions that are often
conjectures and generalizing them is not always trivial. This leads to inaccurate choices
for model parameters such as the number of clusters or the thresholds that are required to
classify anomalies. Score based models have thresholds that are often based on data/user
preference. Such assumptions result in models that are susceptible to modeler’s bias and
possible over-fitting.

Secondly, setting the number of clusters has additional challenges when dealing with
streaming data, where new behavior could emerge and form new clusters. Non-stationarity
is inherent as data evolves over time. Moreover, the data distribution of a stream changes
over time due to changes in the environment, trends or other unforeseen factors [34, 49].
This leads to a phenomenon called concept drift, due to which an anomaly detection algo-

2



Table 1.1: Comparison with other anomaly detection methods: The table illustrates the the
gap that exists among existing anomaly detection methods and the research contributions
of the INCAD model

Neural Networks LOF KNN Kmeans – Kernel Function Based Gaussian Model Based INCAD
Clustering Based ✗ ✗ ✓ ✓ ✗ ✗ ✓

Multi-dimension ✓ ✗ ✓ ✓ ✓ ✓ ✓

Unsupervised ✗ ✓ ✓ ✓ ✓ ✓ ✓

Non-parametric ✗ ✗ ✗ ✗ ✓ ✗ ✓

Adaptable to streaming settings ✗ ✗ ✗ ✗ ✗ ✗ ✓

Adaptive thresholds ✗ ✗ ✗ ✗ ✗ ✗ ✓

Probabilistic scoring ✗ ✗ ✗ ✗ ✓ ✗ ✓

rithm cannot assume any fixed distribution for data streams. Thus, there arises a need for a
definition of an anomaly that is dynamically adapted.

Thirdly, when anomaly detection is performed post clustering [3, 32], the presence of
anomalies gives a skewed (usually slight) definition of traditional/normal behavior. How-
ever, since the existence of anomalies impacts the clustering as well as the definition of the
‘normal’1 behavior, it seems counter-intuitive to classify anomalies based on such defini-
tions2.To avoid this, simultaneous clustering and anomaly detection needs to be performed.

In addition to the above, extending these assumptions to the streaming context leads to a
whole new set of challenges. Many supervised [16, 40] and unsupervised anomaly detection
techniques [7, 16, 38, 44] are offline learning methods that require the full data set in ad-
vance for data mining which makes them unsuitable for real-time streaming data. Although
supervised anomaly detection techniques may be effective in yielding good results, they are
typically unsuitable for anomaly detection in streaming data [40]. We propose a method
called Integrated Clustering and Anomaly Detection (INCAD), that couples Bayesian non-
parametric modeling and extreme value theory to simultaneously perform clustering and
anomaly detection. Table 1.1 summarizes the properties of INCAD vs other strategies for
anomaly detection. The primary contributions of the algorithm are as follows:

1. Generalized anomaly definition with adaptive interpretation: The model’s def-
1Non-anomalous behavior is described as “normal" behavior. Should not be confused with Gaussian/Nor-

mal distribution.
2Clustering and defining “normal/traditional" behavior in presence of anomalies develop in skewed and

inconsistent results.
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inition of an anomaly has dynamic interpretation allowing anomalous behaviors to
evolve into normal behaviors and vice versa. This definition not only evolves the
number of clusters with an incoming stream of data (using non-parametric mixture
models) but also helps evolve the classification of anomalies.

2. Combination of Bayesian non-parametric models and extreme value theory(EVT):
The novelty of INCAD approach lies in blending extreme value theory and Bayesian
non-parametric models. Non-parametric mixture models [45], such as Dirichlet Pro-

cess Mixture Models (DPMM) [6, 63, 73], allow the number of components to vary
and evolve during inference. While there has been limited work that has explored
DPMM for the task of anomaly detection [68, 75], they have not been shown to op-
erate in a streaming mode or ignore online updates to the DPMM model. On the
other hand, EVT gives the probability of a point being anomalous which has a more
universal interpretation, in contrast to the scoring schema with user-defined thresh-
olds. Although EVT’s definition of anomalies is more adaptable for streaming data
sets [69, 8, 30], fitting an extreme value distribution (EVD) on a mixture of distribu-
tions or even multivariate distributions is challenging. This novel combination brings
out the much-needed aspects in both the models.

3. Extension to streaming settings: The model is non-exchangeable which is well
suited to capture the effect of the order of data input and utilize this dependency to
develop streaming adaptation.

4. Ability to handle complex data generative models: The model can be generalized
to multivariate distributions and complex mixture models.
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1.2.2 Large Deviations Anomaly Detection for High Dimensional Data

and Time Series Database

High dimensional data is often subjected to dimensionality reduction to address the chal-
lenges associated with curse of dimensionality. But anomalies is these less relevant features
can often be missed by reducing our data. Additionally, in an evolving setting like a multi-
variate time series or a time series database, these methods tend to become computationally
very expensive and inaccurate. Though challenging, these studies can be of significant
importance to monitor multiple trends simultaneously like weather data across multiple
geographical locations, pandemic trends, multiple sensor data from different sources, etc.
For instance, consider the anomalous COVID-19 trends observed in US counties (See Fig-
ure 1.1). Identifying the most extreme trends can help us understand or study the mandates
and public health policies implemented in these locations and how they have impacted the
population. In such cases, studying them collectively is inevitable to have a comparative
evaluation against rest of the geographical locations. Thus, the need for studying a collec-
tion of multivariate evolving trends is substantial.

Thus, we propose a novel, large deviations theory based anomaly detection algorithm
that provides a computationally inexpensive solution to studying high dimensional evolving
data without additional dimensionality reduction. This part of the thesis has following key
contributions:

1. We propose the Large deviations Anomaly Detection (LAD) algorithm which is a
data driven model that returns probabilistic evolving anomaly score for all the obser-
vations.

2. The model uses large deviations principle based methodology making it highly scal-
able, without any additional dimensionality reduction.

3In early November, these counties in North Dakota were exhibiting infection rates that were
six times the national rate - https://www.washingtonpost.com/opinions/2020/11/06/
north-dakota-covid-19-cases/
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(a) Total Confirmed Cases

(b) Total Deaths
Figure 1.1: Top 5 anomalous counties identified by the proposed LAD algorithm based on
the daily multivariate time-series, consisting of cumulative COVID-19 per-capita infections
and deaths. At any time instance, the algorithm analyzes the bivariate time series for all the
counties to identify anomalies. The time-series for the non-anomalous counties are plotted
(light-gray) in the background for reference. For the counties in North Dakota (Burleigh
and Grand Forks), the number of confirmed cases (top), and the sharp rise in November
2020, is the primary cause for anomaly3. On the other hand, Wayne County in Michigan
was identified as anomalous primarily because of its abnormally high death rate, especially
when compared to the relatively moderate confirmed infection rate.
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3. The LAD model is easily generalized with online extension to multivariate time series
as well as collections of multivariate time series.

4. Due to its scalability and broad applicability, we extend the work to study COVID-19
pandemic trends to identify geographical locations with extreme patterns.

1.2.3 Using Large Deviations for Training Stable Neural Networks

Artificial neural networks (ANNs) require tremendous amount of data to train on. However,
in classification models, most data features are often similar which can lead to increase in
training time without significant improvement in the performance. Thus, we hypothesize
that there could be a more efficient way to train an ANN using a better representative sample.
For this, we propose the LAD Improved Iterative Training (LIIT), a novel training approach
for ANN using large deviations principle to generate and iteratively update training samples
in a fast and efficient setting. This is exploratory work with extensive opportunities for future
work. The thesis presents this ongoing research work with the following contributions from
this study:

1. We propose a novel ANN training method, LIIT, based on the large deviations theory
where additional dimensionality reduction is not needed to study high dimensional
data.

2. The LIIT approach uses a Modified Training Sample (MTS) that is generated and
iteratively updated using a LAD anomaly score based sampling strategy.

3. The MTS sample is designed to be well representative of the training data by including
most anomalous of the observations in each class. This ensures distinct patterns and
features are learnt with smaller samples.

4. We study the classification performance of the LIIT trained ANNs with traditional
batch trained counterparts.
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1.3 Thesis Outline

This thesis is organized in following three parts:
Part I deals with anomaly detection for evolving streams. Chapter 2 provides an overview

of evolving data and background on Extreme Value theory (EVT). Chapter 3 describes
Dirichlet Process Mixture Models (DPMM) and introduces a novel algorithm INCAD using
EVT and DPMM. Chapter 4 provides a comparative evaluation of INCAD against state-of-
the-art anomaly detection algorithms for non-streaming and streaming settings.

Part II deals with anomaly detection for high dimensional datasets. Chapters 5 pro-
vides an overview of relevant existing methods for anomaly detection in high dimensional
settings and a short background on underlying large deviations theory and the approach to
anomaly detection using the same. Chapter 6 details our LAD model for detecting unsu-
pervised anomalies in multivariate time series. Chapter 7 describes the experiments and
demonstrates the state-of-the-art performance of the LAD method. Chapter 8 discussed the
anomalous COVID-19 trends captured by the LAD model.

Part III deals with devising improvised training samples for artificial neural networks.
Chapter 9 provides an overview of relevant existing methods for reducing training data for
ANNs. Chapter 10 details the training methodology for the LIIT approach and the sam-
pling strategies used in conjunction with LIIT. Chapter 11 describes the experiments and
demonstrates the state-of-the-art performance of our method.
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Part I

Unsupervised Anomaly Detection in

Streaming Data
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Chapter 2

Anomaly Detection in Streaming Data

2.1 Introduction

Anomalies are unusual, unexpected, and surprising phenomena that need to be detected and
explained. Identifying, understanding, and prediction of anomalies from data forms one of
the key pillars of modern data mining, and has applications in almost every application do-
main. For instance, effective detection of anomalies can reveal critical information needed
to stop malicious attacks, detect and repair faults, and, ultimately, understand the behavior
of a complex system. In fact, one of the most practical applications of anomaly detection
is for monitoring system behavior and detecting when the system exhibits anomalous be-
havior due to external or internal stress factors [33]. In this regard, two types of anomaly
detection methods, viz., online anomaly detection [69, 2, 71] and clustering based anomaly
detection [27, 44, 56], are highly relevant. Online methods, that can simultaneously iden-
tify clusters and the anomalies from streaming data, are especially beneficial, as complex
system behavior typically falls into multiple regimes or clusters.

However, existing anomaly detection methods face two key challenges in this context.
First challenge is the reliance of existing anomaly detection methods on an a priori user-
defined threshold which makes them highly sensitive to the choice of the threshold. While
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a large literature on anomaly detection exists (Chandola, Banerjee, and Kumar, 2009), most
of the existing methods follow a general two-phase strategy: i). learn a model,  , for the
normal behavior of the underlying system, and ii). score a data instance, 𝑥, with respect to
using a scoring function, 𝑠 (). Typically, the score is uncalibrated, though some methods
produce a calibrated score (probability). However, to identify anomalies, every method
requires a notion of a threshold, 𝛿, such that the data instances whose score is above (or
below) 𝛿 are anomalous. While unthresholded scores are sufficient for evaluation purposes,
e.g., generating an ROC curve or comparing different methods on a validation data set,
an optimal threshold is necessary in an operational setting. A very high threshold could
potentially result in missing many anomalies while a low threshold would have a high false
positive rate. The issue is exacerbated in a streaming setting, where both  and 𝛿 can
evolve. While current streaming anomaly detection methods allow updates to  , none
of them allow for updating the threshold, 𝛿. Second challenge is specific to clustering-
based anomaly detection methods. Traditional methods learn the clustering structure from
the observed data as a surrogate for the normal behavior,  . Adapting such methods for
streaming data requires the ability to allow the clustering to evolve, i.e., new clusters can
form and old clusters can grow or split. Current clustering-based methods are not equipped
to adapt to such evolving stream behavior.

One possible solution would be to explicitly learn a model, , for the anomalous behav-
ior, and then compare the scores, 𝑠 (𝑥) and 𝑠(𝑥), to declare if a data instance is normal or
anomalous. By allowing both models to “evolve” in a streaming setting, a robust streaming
anomaly detector can be developed. However, given the lack of sufficient (or any) anoma-
lous data, learning  is not possible. We advocate the use of Extreme value theory (EVT)
(Charras-Garrido and Lezaud, 2013) to learn a surrogate for . The core idea is to as-
sume that the anomalous observations are the extreme values of  . Using a key result in
EVT, which states that the extreme values can be modeled as a parameterized distribution
(referred to as an Extreme value distribution or EVD), one can learn  for a given  .
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In principle, this is a fundamental breakthrough in anomaly detection, and some initial
work has been recently published in this direction (Siffer et al., 2017). However, current
EVT supports a limited class of base distributions ( ); in fact, while dealing with extremes
of a univariate and unimodal distribution is well understood in EVT, handling multivariate
and/or richer distributions, e.g., mixture models, is a challenge. We propose an EVT driven
strategy that can admit a richer class of n distributions. A generalization of EVT to multi-
variate and multimodal distributions (Clifton et al., 2014) is employed, which uses EVT on
the likelihood of the observations, thus reducing the problem to univariate setting.

As an instantiation of the EVT driven strategy, we propose an anomaly detection method
in which the normal behavior,  , is modeled as a non-parametric mixture model—Dirichlet

Process Mixture Model (Frigyik, Kapila, and Gupta, 2010), or DPMM—which allows clus-
tering the data without pre-specifying the number of clusters. This, especially when adapted
to the streaming setting, is an invaluable feature for anomaly detection, where the normal
clustering pattern can evolve with the stream. This is an invaluable feature for anomaly
detection in an online setting, where the normal clustering pattern can evolve with incre-
mental data addition. The anomalous distribution, , is also a DPMM with a coupling
with  which forces the parameters of  to be generated from the extremes of the prior
distribution that generates the parameters for  . The resulting method can perform joint
clustering and anomaly detection and can be adapted to a streaming setting, with robustness
to the choice of threshold for identifying anomalies. Experimental results on synthetic and
publicly available data sets are provided to demonstrate the effectiveness of the proposed
method over state of art methods.

2.1.1 INCAD Contributions

The model makes the following key contributions:

1. We propose a method called Integrated Clustering and Anomaly Detection (INCAD)1,
1A preliminary version of INCAD was published here [42]
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(a) Before streaming phase (b) After streaming 5 observations

(c) After introducing all instances for fourth
cluster (d) End of streaming phase

Figure 2.1: Illustration of INCAD performance on a synthetic streaming data set. (a). After
the initial batch phase, INCAD correctly and automatically identifies three clusters in the
data, along with some peripheral data instances as anomalies (denoted by a ◦, where the
transparency intensity denotes the probability of the observation being anomalous). (b). As
new instances arrive in the stream, INCAD first identifies them as anomalies, and then, (c).
identifies a new cluster. (d). The truly anomalous instances in the stream are labeled as
anomalies with a higher probability than the false positives (instances on the periphery of
the clusters).
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that couples Bayesian non-parametric modeling and extreme value theory to simulta-
neously perform clustering and anomaly detection. INCAD uses a dynamic definition
of anomalous and non-anomalous behavior, which makes it well-suited for continu-
ous monitoring applications. At the same time, by using a non-parametric clustering
mechanism, i.e., Dirichlet Process Mixture Models (DPMM), the model permits the
formation of new clusters at subsequent processing steps. This feature helps in ad-
dressing issues in open set classification[9, 36]. Moreover, by explicitly modeling
the anomalous behavior, the model can directly produce an anomaly label, instead of
relying on a user-defined threshold on a score.

2. We provide a key theoretical result that enables us to extend the EVT formulation to
multi-dimensional data, via the extended Generalized Pareto Distribution modifica-
tion.

3. We put forward a streaming extension to the INCAD model that captures drift or

evolution in streams as illustrated in Figure 2.1.

4. We provide a comprehensive evaluation of the model on a variety of benchmark data
sets to highlight its effectiveness and provide a comparison against existing models.

2.2 Extreme Value Theory

Extreme value theory (EVT) [18] is the study of extremes of data distributions. The foun-
dations were laid by Fisher and Tippett (1928) and Gnedenko (1943) who demonstrated the
closed forms of the distributions of the extreme values of i.i.d. samples. In this part, we
follow the theory by De Haan and Ferreira (2007).

Broadly speaking, there are two principal approaches to studying extreme values. One
of the approaches is to study the block maxima i.e. the largest observations in multiple large
samples (or blocks) of identically distributed observations. For instance, consider a random
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variable, 𝑋, with 𝐺 as the Cumulative Distribution Function (CDF)2. Given 𝑛 realizations
of this random variable, {𝑋1, 𝑋2,… , 𝑋𝑛}, let , 𝑀𝑛 = 𝑚𝑎𝑥{𝑋1, 𝑋2,… , 𝑋𝑛}. If there exists
a sequence of constants 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ, such that 𝑀𝑛−𝑏𝑛

𝑎𝑛
has a non-degenerate distribution

as 𝑛 → ∞.

𝑃
(

𝑀𝑛 − 𝑏𝑛
𝑎𝑛

≤ 𝑥
)

→ 𝐺(𝑥) as 𝑛 → ∞ (2.1)

In other words, if Equation 2.1 holds for every continuity point 𝑥 of the non-degenerate dis-
tribution𝐺𝐸𝑉 , then𝐺𝐸𝑉 is called an extreme value distribution and the class of distributions
𝐺 satisfying (2.1) are said to be in the domain of attraction of 𝐺𝐸𝑉 .

For univariate data, the Generalized Extreme Value (GEV) distribution, 𝐺𝐸𝑉 (𝑥), takes
the following form:

𝐺𝐸𝑉 (𝑥) = 𝑒𝑥𝑝

{

−
[

1 + 𝜁
(

𝑥 − 𝜈
𝛽

)]−1∕𝜁
}

(2.2)

where 𝜈, 𝛽 and 𝜁 ≥ 0 are the location, scale and shape parameters of the distribution. For
𝜁 = 0 the distribution takes the form

𝐺𝐸𝑉 (𝑥) = 𝑒𝑥𝑝
{

−𝑒𝑥𝑝
[

−𝑥 − 𝜈
𝛽

]}

(2.3)

𝜁 is typically referred to as the extreme value index and depends on the shape of the tail
of the data distribution, 𝐺. For instance, if 𝐺 is a univariate Gaussian distribution, then
𝜁 = 0. Table 2.1 and Figure 2.2 shows the shapes of the tail for different distributions, and
the corresponding value for 𝜁 .

Given a distribution, 𝐺, and the corresponding EVD, one can calculate the cumulative
probability of an observation 𝑥 to be an extreme value with respect to 𝐺. This requires
estimation of the shape parameter, 𝜁 , which can be done directly from data. However, the

2We will use 𝐺𝑋 to denote the CDF of the data 𝑋 and 𝐺𝐸𝑉𝑋 to denote the corresponding tail distribution.
Unless needed, the subscript is omitted for ease of notation.
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Table 2.1: Relation between 𝐺 and 𝜁 : The table presents types of extreme value tail distri-
butions associated with different data distributions.

Tail Behavior Tail distribution Examples
Exponential tail Gumbel (𝜁 = 0) Gaussian, Exponential, Gumbel, Lognormal

Heavy tail Fréchet (𝜁 > 0) Pareto, Fréchet
Bounded tail Reversed Weibull (𝜁 < 0) Uniform, Beta, Reversed Weibull

Figure 2.2: Tail distribution for different 𝐹 for different values of 𝜁 : In this figure we see
the tail distributions associated with different shape parameters 𝜁 of the extreme value dis-
tribution. Fatter tails are associated with larger value of 𝜁 .

above approach only utilizes maximal value in each block, and is, thus, inefficient. A more
economical approach to study extremes, called Peaks-Over-Threshold (POT) [61], studies
all large observations which exceed a high threshold. In POT, the excesses over a user-
specified threshold, 𝑡, i.e., 𝑍 = 𝑋 − 𝑡 can be modeled as a Generalized Pareto Distribution

(GPD), given by the following CDF:

𝐺𝐸𝑉
𝑍 (𝑧) =

⎧

⎪

⎨

⎪

⎩

1 −
(

1 + 𝜁
(

𝑧−𝜇
𝜎

))− 1
𝜁 if 𝜁 ≠ 0

1 − exp (− 𝑧−𝜇
𝜎
) if 𝜁 = 0

(2.4)

with 𝜇, 𝜎, and 𝜁 as the location, scale, and shape parameters, respectively. The choice
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of the threshold, 𝑡, is often regarded as a bias-variance problem as very large or extreme
thresholds lead to fewer observations and over-fitting whereas thresholds resulting in many
tail observations result in bias. In this part, we favor the POT approach due to simplicity in
implementation and explanation.

Of course, given a data distribution, 𝐺, there is no guarantee that a corresponding EVD
exists. A simple theorem from De Haan and Ferreira (2007) on domains of attraction for
univariate data is used to establish the necessary conditions for the existence of the EVD
for 𝐺3.

Theorem 1. Let 𝐺 be a distribution of 𝑋 with 𝑢 as the right upper limit on the realizations

of 𝑋. Assume that second order derivatives 𝐺′′ exists and the first order derivative 𝐺′ is

positive for all 𝑥 in the left neighborhood of 𝑢. If

lim
𝑥→𝑢

(1 − 𝐺
𝐺′

)′
(𝑥) = 𝜁 (2.5)

or alternately,

lim
𝑥→𝑢

(1 − 𝐺(𝑥))(𝐺′′(𝑥)
(𝐺′(𝑥))2

= −𝜁 − 1 (2.6)

then 𝐺 is in the maximum domain of attraction (MDA)4 of GEV family of distributions 𝐆𝐸𝑉
𝜁

with shape parameter 𝜁 .

2.2.1 Extreme Value Theory for Multivariate Data

In the previous section, we posed the different approaches in extreme value theory in the uni-
variate space. However, most datasets are often multivariate rendering the above approach
inapplicable. In this section, we develop the multivariate approach to extreme values.

3The detailed mathematical proofs for the above theorems is given in De Haan et al. [21].
4The maximum domain of attraction can be seen as a family of distributions with tail distributions that are

unique up to location and scale parameters.
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For the sake of notational simplicity we will discuss a 2-D case, where the random
variable, 𝑋, is denoted as a tuple (𝑋1, 𝑋2).

Definition 1. Let {(𝑋1,𝑖, 𝑋2,𝑖)}𝑛𝑖=1 be a sequence of independent and identically distributed

random tuples with distribution𝐺. Suppose that there exist sequences of constants 𝑎𝑖, 𝑐𝑖 > 0

and 𝑏𝑖, 𝑑𝑖 ∈ ℝ and a distribution 𝐺𝐸𝑉 with non-degenerate marginals for all continu-

ity points of (𝑥1, 𝑥2). Then any limit function of 𝐺𝐸𝑉 given below with non-degenerate

marginals is called a multivariate extreme value distribution,

lim
𝑖→∞

𝑃

(

𝑀𝑋1,𝑖 − 𝑏𝑖
𝑎𝑖

≤ 𝑥,
𝑀𝑋2,𝑖

− 𝑑𝑖
𝑐𝑖

≤ 𝑦

)

= 𝐺𝐸𝑉 (𝑥, 𝑦) (2.7)

where 𝑀𝑋1,𝑖 = 𝑚𝑎𝑥(𝑋1,1, 𝑋1,2, ...𝑋1,𝑖) and 𝑀𝑋2,𝑖 = 𝑚𝑎𝑥(𝑋2,1, 𝑋2,2, ...𝑋2,𝑖).

Extending the univariate results to multivariate settings is often arduous and computa-
tionally complex. However, as most data is often multivariate, we study using an alternative
approach where the probability image space is used to identify anomalies.

2.2.2 Using Probability Image Space for Handling Multi-modal and

Multivariate Distributions

Estimation of parameters for extreme value distributions is often infeasible if the distribu-
tion is multi-modal and/or if the random variable is multivariate [61, 21]. To address this
challenge, recent work by Clifton et al. (2014) shows that it is possible to construct, and
examine, an equivalent univariate distribution by considering the probability image space.
The result states that for a probability distribution function, 𝑔𝑋 ∶ 𝑋 → 𝑌 , where 𝑌 ∈ ℝ+

is the probability image space, let random variable 𝑌 be defined as a distribution 𝐺𝑌 , with
following CDF:

𝐺𝑌 (𝑦) = ∫𝑔−1𝑌 ([0,𝑦])
𝑔𝑋(𝑥)𝑑𝑥 (2.8)

18



where 𝑔−1𝑌 ([0, 𝑦]) denotes all the values of the random variable𝑋, whose probability density
is between 0 and 𝑦. Using the POT result (Pickands, 1975), as discussed earlier, it can
be shown that for a small positive value, 𝑢, the tail of 𝐺𝑌 can be modeled as a GPD for
𝑦 ∈ [0, 𝑢], as 𝑢 → 0, such that if an observation 𝑥 is extreme with respect to the original
distribution, 𝐺𝑋 , if 𝑔𝑋(𝑥) < 𝑢, then 𝑦 = 𝑔𝑋(𝑥) will be extreme with respect to 𝐺𝑌 . The
corresponding GPD for (𝑢− 𝑦), denoted as 𝐺𝐸𝑉

𝑌 , can be used to calculate the probability of
𝑥 to be extreme, with respect to 𝐺𝑋 .

A simulated example is shown in Figure 2.3, where 2000 observations from two uni-
variate Gaussian distributions are studied. Unlike the traditional EVT approach that can
only study tail distributions for unimodal data, the Ext-GPD approach is able to include
rare observations between the two modes as seen in the shaded red zone in Figure 2.3a. The
probability image space of the mixture distribution is used to study the observations with
low probabilities i.e. the rare tail observations. The resulting image space is considered
as the one-dimensional projections of the original data and the anomalies are identified by
studying the left tail in Figure 2.3b. The Ext-GPD approach is discussed in detail in Section
2.2.3. The theory behind the extended GPD approach has not been presented earlier[20].
Hence, we present the necessary conditions one-dimensional data in Section 2.2.3. The
proof for multi-dimensional case is similar and has been included in the supplementary.

2.2.3 Ext-GPD approach

In this section, we derive the necessary conditions required for the Extended GPD approach.
For this, consider the following setting in the univariate space5.

Let𝑋 ∈ ℝ be the data space with pdf6 𝑔𝑋 ∶ ℝ → ℝ+. Let 𝑌 ∈ ℝ+ be the corresponding
image space, i.e., 𝑌 = 𝑔𝑋(𝑋) and 𝑌𝑚 = 𝑠𝑢𝑝(𝑔𝑋(𝑋)). As the limit distribution of the minima
of Y is of interest, we wish to study the limit distribution of maxima of 𝑍 = 𝑌𝑚 − 𝑌 . Let

5The proof for the higher dimensional space is presented in the supplementary section
6Note: 𝑔−1𝑋 represents an image set as the function 𝑔𝑋 is a many-to-one (non-injective) function.
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(a) Data Density

(b) Extended GPD
Figure 2.3: Extended GPD distribution using Probability Image Space for Bi-modal Uni-
variate Data. 2000 observations from two random normal distributions with mean and vari-
ance (0,2) and (6,2) respectively is shown. (a). Empirical density of the data is shown in
green. The observations with probability density less than 0.1 are considered tail obser-
vations (shown in red shaded region). The empirical c.d.f. 𝐺𝑋 is shown red. , (b). The
empirical density of the probability image space is shown in red. The cumulative distribu-
tion used in the extended GPD approach is shown in blue.
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the cdf of 𝑍 is given by 𝐺𝑍 . Then, we show that the Theorem 2 holds.

Theorem 2. 𝐺𝑍 is in the maximum domain of attraction of a generalized extreme value

(GEV) distribution 𝐆𝐸𝑉
𝜁 , iff 𝑑𝑔𝑋 (𝑥)

𝑑𝑧
and 𝑑2𝑔𝑋 (𝑥)

𝑑𝑧2
exists ∀𝑥 ∈ 𝑔−1𝑋 (𝑌𝑚−𝑧) in some neighborhood

of 𝑌𝑚.

Proof. To derive the necessary conditions for the Ext-GDP approach, we make the follow-
ing claims.

Claim 1. 𝐺𝑍 is a cumulative distribution function.

Proof. As the limit distribution of the minima of Y is of interest, we wish to study the limit
distribution of maxima of 𝑍 = 𝑌𝑚 − 𝑌 . Then the cdf of 𝑍 is given by 𝐺𝑍 is

𝐺𝑍(𝑧) = 𝑃 (𝑍 ≤ 𝑧)

= 𝑃 (𝑌𝑚 − 𝑌 ≤ 𝑧)

= 𝑃 (𝑌 ≥ 𝑌𝑚 − 𝑧)

= 1 − 𝐺𝑌 (𝑌𝑚 − 𝑧)

= ∫𝑔−1𝑋 ([𝑌𝑚−𝑧,𝑌𝑚])
𝑔𝑋(𝑥)𝑑𝑥

(2.9)

∀𝑧 ∈ [0, 𝑌𝑚].

For, 𝐺𝑍 , the corresponding maximum value, 𝑥∗ = 𝑌𝑚.

Claim 2. 𝐺′

𝑍 exists and is positive in some neighborhood of 𝑌𝑚.

Proof. If𝐹 be a distribution in 1D,∃ {

𝑥1 = −∞, 𝑥1, 𝑥2 … , 𝑥2𝑁 = ∞
} and intervals 𝐼1, 𝐼2,… , 𝐼𝑁
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such that 𝐼𝑛 = [𝑥2𝑛−1, 𝑥2𝑛] ∀ 𝑛 = 1, 2,… , 𝑁 and 𝑔−1𝑋 ([0, 𝑌𝑚 − 𝑧]) = ∪𝑁𝑛=1𝐼𝑛

∫𝑔−1𝑋 ([0,𝑌𝑚−𝑧])
𝑔𝑋(𝑥)𝑑𝑥 = ∫∪𝑁𝑛=1 𝐼𝑛

𝑔𝑋(𝑥)𝑑𝑥

=
𝑁
∑

𝑛=1
∫𝐼𝑛

𝑔𝑋(𝑥)𝑑𝑥

=
𝑁
∑

𝑛=1
𝐺𝑛(𝑧)

(2.10)

where 𝐺𝑛(𝑧) = ∫𝐼𝑛 𝑔𝑋(𝑥)𝑑𝑥 and {

𝑥1, 𝑥2 … , 𝑥𝑁−1
} are the solutions to 𝑔−1𝑋 (𝑌𝑚 − 𝑧).

Then,

𝐺′

𝑍(𝑧) =
𝑑
𝑑𝑧 ∫𝑔−1𝑋 ([𝑌𝑚−𝑧,𝑌𝑚])

𝑔𝑋(𝑥)𝑑𝑥

= 𝑑
𝑑𝑧

(

1 − ∫𝑔−1𝑋 ([0,𝑌𝑚−𝑧])
𝑔𝑋(𝑥)𝑑𝑥

)

= − 𝑑
𝑑𝑧

𝑁
∑

𝑛=1
𝐺𝑛(𝑧)

(2.11)

Since 𝐺𝑛(𝑧) = ∫𝐼𝑛 𝑔𝑋(𝑥)𝑑𝑥 = ∫ 𝑥2𝑛
𝑥2𝑛−1

𝑔𝑋(𝑥)𝑑𝑥, by Leibniz integral rule, we get,

𝑑
𝑑𝑧
𝐺𝑛(𝑧) =

𝑑
𝑑𝑧 ∫

𝑥2𝑛

𝑥2𝑛−1

𝑔𝑋(𝑥)𝑑𝑥

= 𝑔𝑋(𝑥2𝑛)
𝑑𝑥2𝑛
𝑑𝑧

− 𝑔𝑋(𝑥2𝑛−1)
𝑑𝑥2𝑛−1
𝑑𝑧

+ ∫

𝑥2𝑛

𝑥2𝑛−1

𝑑
𝑑𝑧
𝑔𝑋(𝑥)𝑑𝑥

= (𝑌𝑚 − 𝑧)
(

𝑑𝑥2𝑛
𝑑𝑧

−
𝑑𝑥2𝑛−1
𝑑𝑧

)

= (𝑌𝑚 − 𝑧)
(

|

|

|

|

𝑑𝑥2𝑛
𝑑𝑧

|

|

|

|

+
|

|

|

|

𝑑𝑥2𝑛−1
𝑑𝑧

|

|

|

|

)

(2.12)

Then,

𝐺′

𝑍(𝑧) =
2𝑁
∑

𝑛=1
(𝑌𝑚 − 𝑧)

|

|

|

|

𝑑𝑥𝑛
𝑑𝑧

|

|

|

|

(2.13)
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Claim 3. 𝐺′′

𝑍 exists iff 𝑑𝑔𝑋 (𝑥)
𝑑𝑧

and 𝑑2𝑔𝑋 (𝑥)
𝑑𝑧2

exists ∀𝑥 ∈ 𝑔−1𝑋 (𝑌𝑚 − 𝑧).

Proof.

𝐺′′

𝑍(𝑧) =
𝑑
𝑑𝑧
𝐺′

𝑍(𝑧)

= 𝑑
𝑑𝑧

[

(𝑌𝑚 − 𝑧)
2𝑁
∑

𝑛=1

|

|

|

|

𝑑𝑥𝑛
𝑑𝑧

|

|

|

|

] (2.14)

It can be seen that 𝐺′′

𝑍 exists iff 𝑑𝑔𝑋 (𝑥)
𝑑𝑧

and 𝑑2𝑔𝑋 (𝑥)
𝑑𝑧2

exists ∀𝑥 ∈ 𝜕𝑔−1𝑋 (𝑌𝑚 − 𝑧) where 𝜕𝑈 are
boundary points in 𝑈 . This is true for all distributions in the exponential family.

Claim 4. 𝐺𝑍 is in the maximum domain of attraction of a generalized extreme value (GEV)

distribution 𝐆𝐸𝑉
𝜁 , where 𝜁 ∈ ℝ is the rate parameter of the GEV distribution.

Proof. By von Mises’ Condition7, and Claims 2 and 3, we can see that the𝐺′

𝑍 is positive and
𝐺′′

𝑍 exists in some neighborhood of 𝑌𝑚. Hence, 𝐺𝑍 is in domain of attraction of 𝐆𝐸𝑉
𝜁 .

Using Claims 1-4, we get the necessary conditions for the above claim.

2.2.4 Ext-GPD for n-D case

The extension to the multivariate case is shown in Theorem 3.

Theorem 3. Let X⃗ ∈ ℝ𝑛 be the data space with pdf 𝑔X⃗ ∶ ℝ𝑛 → ℝ+. Let 𝑌 ∈ ℝ+ be the

corresponding image space. Let X⃗ ∈ 𝐑𝑛 and 𝑔−1
X⃗
([0, 𝑌𝑚 − 𝑧]) = 𝐷(𝑌𝑚 − 𝑧) be a n-manifold

with a boundary 𝜕𝐷(𝑌𝑚 − 𝑧). 𝐺𝑍 is in the maximum domain of attraction of a generalized

extreme value (GEV) distribution iff :

1. 𝐷(𝑌𝑚 − 𝑧) is an n-manifold with a boundary 𝜕𝐷(𝑌𝑚 − 𝑧),
7von Mises’ Condition: Let 𝐹 be a distribution function and 𝑥∗ is its right end point. Suppose 𝐹 ′′ exists

and 𝐹 ′ is positive for all x in some neighborhood of 𝑥∗. If lim𝑡→𝑥∗
(

1−𝐹
𝐹 ′

)′
(𝑡) = 𝜁 then, F is in the MDA of

𝐆𝐸𝑉
𝜁 .
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2. The Eulerian velocity of the boundary v⃗𝑏 =
𝑑𝐷(𝑌𝑚−𝑧)

𝑑𝑧
exists,

3. 𝑑𝑥
[

𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺
]

exists and

4. 𝑖v⃗
(

𝑑𝑥
[

𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺
])

exists.

.

Let 𝑋 ∈ ℝ𝑛 be the data space with pdf 𝑔X⃗ ∶ ℝ𝑛 → ℝ+. Let 𝑌 ∈ ℝ+ be the correspond-
ing image space.

Definition 2. ∀𝑦 ∈ 𝑌 , 𝐺𝑌 is defined as

𝐺𝑌 (𝑦) = ∫𝑔−1
X⃗
([0,𝑦])

𝑔X⃗(𝑥)𝑑𝑥 (2.15)

Claim 5. 𝐺𝑌 is a cumulative distribution function.

As the limit distribution of the minima of Y is of interest, we wish to study the limit
distribution of maxima of 𝑍 = 𝑌𝑚 − 𝑌 . Then the cdf of 𝑍 is given by 𝐺𝑍 is

𝐺𝑍(𝑧) = 𝑃 (𝑍 ≤ 𝑧)

= 𝑃 (𝑌𝑚 − 𝑌 ≤ 𝑧)

= 𝑃 (𝑌 ≥ 𝑌𝑚 − 𝑧)

= 1 − 𝐺𝑌 (𝑌𝑚 − 𝑧)

= ∫𝑔−1
X⃗
([𝑌𝑚−𝑧,𝑌𝑚])

𝑔X⃗(𝑥)𝑑𝑥

(2.16)

∀𝑧 ∈ [0, 𝑌𝑚].
For, 𝐺𝑍 , the corresponding maximum value, 𝑥∗ = 𝑌𝑚.
We need the necessary conditions for the above distribution to be in the domain of

attraction of a GEV distribution. By von Mises’ Condition, if we can prove that 𝐺′

𝑍 is
positive and 𝐺′′

𝑍 exists in some neighborhood of 𝑌𝑚, then 𝐺𝑍 is in domain of attraction of
𝐺𝛾 .
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Proof. Let X⃗ ∈ 𝐑𝑛 and 𝑔−1
X⃗
([0, 𝑌𝑚 − 𝑧]) = 𝐷(𝑌𝑚 − 𝑧) be a n-manifold with a boundary

𝜕𝐷(𝑌𝑚 − 𝑧). Then,

𝐺′

𝑍(𝑧) =
𝑑
𝑑𝑧 ∫𝑔−1

X⃗
([𝑌𝑚−𝑧,𝑌𝑚])

𝑔X⃗(x⃗)𝑑x⃗

= 𝑑
𝑑𝑧

[

1 − ∫𝑔−1
X⃗
([0,𝑌𝑚−𝑧])

𝑔X⃗(x⃗)𝑑x⃗
]

= − 𝑑
𝑑𝑧 ∫𝐷(𝑌𝑚−𝑧)

𝑔X⃗(x⃗)𝑑x⃗

(2.17)

where, 𝑑x⃗ = 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ ... ∧ 𝑑𝑥𝑛.
Then, using Reynolds transport theorem, we get,

𝑑
𝑑𝑧
𝐺(𝑧) = 𝑑

𝑑𝑧 ∫𝐷
𝑔X⃗(x⃗)𝑑x⃗

= ∫𝐷(𝑌𝑚−𝑧)

𝜕
𝜕𝑧
𝑔X⃗(x⃗) 𝑑𝑉 + ∫𝜕𝐷(𝑌𝑚−𝑧)

𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺
(2.18)

where 𝑔X⃗(x⃗), 𝐷(𝑌𝑚 − 𝑧) and 𝜕𝐷(𝑌𝑚 − 𝑧) are as defined above, v⃗𝑏 =
𝑑𝐷(𝑌𝑚−𝑧)

𝑑𝑧
is the Eulerian

velocity of the boundary, n is the outward unit normal, 𝑑𝑆 is the surface element in 𝐑𝑑 and
𝑑𝚺 = n𝑑𝑆.

Since, 𝜕
𝜕𝑧
𝑔X⃗(x⃗) = 0,

𝐺′

𝑍(𝑧) = ∫𝜕𝐷(𝑌𝑚−𝑧)
𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺 (2.19)

Claim 2: 𝐺′′

𝑍 exists.

𝐺′′

𝑍(𝑧) =
𝑑
𝑑𝑧
𝐺′

𝑍(𝑧)

= 𝑑
𝑑𝑧 ∫𝜕𝐷(𝑌𝑚−𝑧)

𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺
(2.20)

Since, 𝜕𝐷(𝑌𝑚−𝑧) an (n-1)-closed manifold, i.e. (n-1)-manifold without a boundary, we
use the general statement of the Leibniz integral rule to compute the second order derivative,
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𝐺′′

𝑍(𝑧) =
𝑑
𝑑𝑧
𝐺′

𝑍(𝑧)

= 𝑑
𝑑𝑧 ∫𝜕𝐷(𝑌𝑚−𝑧)

𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺

= ∫𝜕𝐷(𝑌𝑚−𝑧)
𝑖v⃗
(

𝑑𝑥
[

𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺
])

(2.21)

where, 𝑑𝑥 𝑓 is the exterior derivative of 𝑓 w.r.t space variables only, v⃗ = 𝜕x⃗
𝜕𝑧

is the vector
field of the velocity and 𝑖v⃗ denotes the interior product with v⃗.

Thus, it can be seen that 𝐺𝑍 is in the maximum domain of attraction of a generalized
extreme value (GEV) distribution iff :

1. 𝐷(𝑌𝑚 − 𝑧) is an n-manifold with a boundary 𝜕𝐷(𝑌𝑚 − 𝑧),

2. The Eulerian velocity of the boundary v⃗𝑏 =
𝑑𝐷(𝑌𝑚−𝑧)

𝑑𝑧
exists,

3. 𝑑𝑥
[

𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺
] exists and

4. 𝑖v⃗
(

𝑑𝑥
[

𝑔X⃗(x⃗)v⃗𝑏 ⋅ 𝑑𝚺
]) exits.

.
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Chapter 3

Integrated Clustering and Anomaly

Detection (INCAD) for Streaming Data

3.1 Anomaly Detection using EVT for unimodal data

EVT plays a significant role in studying rare events and so, several methods have been
proposed that incorporate these features in anomaly detection. Here, we present a novel
methodology which involves both EVT and non-parametric modeling for anomaly detec-
tion. The core principles that lead to the development of the integrated algorithm are dis-
cussed here. We start with a basic case of one cluster data with anomalies.

Based on the EVT concepts discussed above, we first propose a simple anomaly detec-
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Figure 3.1: Graphical representation of the proposed probabilistic model: The figure illus-
trates the generation of non-anomalous and anomalous observations from two distinct prior
distributions for a unimodal case.

tion model (See Figure 3.1), which is equivalent to the following generative distributions:

𝜃|𝜓 ∼ 𝙶𝟶(𝜓) (3.1)
𝜃𝑎|𝜓 ∼ 𝙶𝙴𝚅

𝟶
(𝜓) (3.2)

𝛾|𝛼, 𝛽 ∼ Beta(𝛼, 𝛽) (3.3)
𝑎𝑖|𝛾 ∼ Bernoulli(𝛾) (3.4)

𝑥𝑖|𝑎𝑖, 𝜃, 𝜃
𝑎 ∼

⎧

⎪

⎨

⎪

⎩

𝐺(𝜃) if 𝑎𝑖 = 1

𝐺(𝜃𝑎) if 𝑎𝑖 = −1
(3.5)

The model is a mixture of two components,  and , parameterized by 𝜃 and 𝜃𝑎,
respectively. 𝑎𝑖 is an indicator latent variable denoting if 𝑥𝑖 is normal or anomalous, and 𝛾
is the mixture weight with a Beta distribution prior.

The mixture of models representation allows us to sketch a Gibbs sampling based infer-
ence scheme, similar to a mixture model [29], using the following conditional posteriors:

𝑝(𝛾|𝐚, 𝐱, 𝜃, 𝜃𝑎, 𝛼, 𝛽, 𝜓) = 𝙱𝚎𝚝𝚊(𝛼 + 𝑛𝑎, 𝛽 + 𝑛 − 𝑛𝑎) (3.6)
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where 𝐱 denotes the vector of 𝑛 observed data instances, 𝐚 is a binary indicator vector, i.e.,
𝑎𝑖 = −1 ⇒ 𝑥𝑖 is anomalous, and 𝑛𝑎 is the number of anomalous instances. The posteriors
for the indicators can be computed as:

𝑝(𝑎𝑖 = −1|𝐚−𝑖, 𝐱, 𝜃, 𝜃𝑎, 𝛼, 𝛽, 𝜓) ∝ 𝛾𝑝𝐺(𝑥𝑖|𝜃𝑎) (3.7)
𝑝(𝑎𝑖 = 1|𝐚−𝑖, 𝐱, 𝜃, 𝜃𝑎, 𝛼, 𝛽, 𝜓) ∝ (1 − 𝛾)𝑝𝐺(𝑥𝑖|𝜃) (3.8)

Finally, the posteriors for the mixture parameters, 𝜃 and 𝜃𝑎, can be computed as:

𝑝(𝜃|𝐚, 𝐱, 𝜃, 𝜃𝑎, 𝛼, 𝛽, 𝜓) ∝ 𝑝𝙶𝟶(𝜃|𝜓)
∏

𝑖∶𝑎𝑖=1
𝑝𝐺(𝑥𝑖|𝜃) (3.9)

𝑝(𝜃𝑎|𝐚, 𝐱, 𝜃, 𝜃𝑎, 𝛼, 𝛽, 𝜓) ∝ 𝑝𝙶𝙴𝚅
𝟶
(𝜃𝑎|𝜓)

∏

𝑖∶𝑎𝑖=−1
𝑝𝐺(𝑥𝑖|𝜃𝑎) (3.10)

Starting from an initial estimate of the latent variables, 𝛾 , 𝐚, 𝜃, and 𝜃𝑎, the inference can be
done via Gibbs update, in which new estimates for the latent variables are sampled from the
conditional posteriors given in (3.6), (3.8) and (3.10), respectively.

3.1.1 Modified posterior expressions

Let 𝑦𝑖 denote the pdf of an observation 𝑥𝑖 according the to the normal distribution, i.e.,
𝑦𝑖 = 𝑝𝐺(𝑥𝑖|𝜃). Using a threshold 𝑢1, we define the “tail” of the distribution 𝙶𝑌 using samples
{𝑦𝑖}𝑖∶𝑦𝑖≤𝑢. A GPD, 𝙶𝐸𝑉𝑌 , is fitted on the samples {𝑢 − 𝑦𝑖}𝑖∶𝑦𝑖≤𝑢. The conditional posteriors
for 𝑎𝑖 for tail instances can be written as:

𝑝(𝑎𝑖 = −1|𝐚−𝑖, 𝐱, 𝜃, 𝜃𝑎, 𝛼, 𝛽, 𝜓) ∝ 𝛾(1 − 𝑃 𝐸𝑉
𝑌 (𝑢 − 𝑦𝑖)) (3.11)

𝑝(𝑎𝑖 = 1|𝐚−𝑖, 𝐱, 𝜃, 𝜃𝑎, 𝛼, 𝛽, 𝜓) ∝ (1 − 𝛾)𝑃 𝐸𝑉
𝑌 (𝑢 − 𝑦𝑖) (3.12)

1Note that 𝑢 is not a threshold for determining if an observation is anomalous or not; instead, it defines the
“tail” of the original distribution, which are then used to determine the parameters of the corresponding GPD.
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Figure 3.2: Results for a synthetic 2D case, with a fixed Gaussian mixture model as 𝙶0.The model identifies the anomalies (red) with respect to the tail of 𝙶0 (green) as well as the
parameters for 𝙶0 (shown as contour lines).

where 𝑃 𝐸𝑉
𝑌 (𝑢 − 𝑦𝑖) is the probability of observing 𝑦𝑖 in the tail of 𝙶𝑌 . Since 𝐺𝑃𝐷 is a uni-

modal distribution, we use the survival function value, 1−𝐺𝐸𝑉
𝑌 (𝑦− 𝑢𝑖), instead of the exact

probability. For non-tail instances, i.e., 𝑦𝑖 > 𝑢, the conditional probability 𝑝(𝑎𝑖 = −1|…) is
set to 0. Under this modified model, computing the posterior for 𝜃𝑎 in (3.10) is not needed
anymore. If the form of the normal model is known, e.g., a unimodal Gaussian or a mixture
of Gaussians2 (See Figure 3.2), the anomalies and the model parameters can be inferred via
Gibbs sampling, using the above mentioned conditional distributions. However, in the next
section we show how the Bayesian formulation can be extended to a richer class of the base
distribution, 𝙶0, i.e., non-parametric mixture models.

2In presence of multiple clusters, the prior 𝙶𝟶 can be chosen as a mixture of individual priors generating
the non-anomalous components ensuring that low probability or tail region of the distribution is associated
with generating parameters associated with anomalous components.
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Challenges If 𝙶𝟶 is the conjugate prior of 𝐺, one can get an analytical form for the poste-
rior in (3.10). The posterior for 𝜃𝑎 is the main challenge here, for two reasons: a). 𝙶𝙴𝚅

𝟶
exists

only for a limited base distributions, 𝙶𝟶, and, b). even for known 𝙶𝙴𝚅
𝟶

, it is unlikely that the
posterior in (3.10) will have an analytical form.

We first note that the quantity 𝑝𝐺(𝑥𝑖|𝜃𝑎) is the probability of the observation 𝑥𝑖 to be
generated by the distribution 𝐺, parameterized by 𝜃𝑎, which, in turn, is sampled from the
EVD for 𝙶𝟶, i.e., 𝙶𝙴𝚅

𝟶
.

For distributions belonging to the exponential family, one can show that if 𝙶𝟶 is the
conjugate of 𝐺, then sampling 𝑥𝑖 from 𝐺(.|𝜃𝑎), where 𝜃𝑎 ∼ 𝙶𝙴𝚅

𝟶
, is equivalent to (under

expectation): first sampling 𝜃 from 𝙶𝟶, and then sampling 𝑥𝑖 from the EVD of 𝐺 (or 𝐺𝐸𝑉 ),
parameterized by 𝜃, i.e., 𝔼𝜃𝑎∼𝙶𝙴𝚅

𝟶
[𝑝𝐺(𝑥𝑖|𝜃𝑎)] = 𝔼𝜃∼𝙶𝟶[𝑝𝐺𝐸𝑉 (𝑥𝑖|𝜃)].

We show that this claim will hold for the following simple setting, and omit the gen-
eral proof in the interest of space. Let 𝐺 ∼  (𝜇, 1), i.e., 𝐺 is a univariate Gaussian
distribution with fixed variance and the mean is generated from a Gaussian prior, i.e.,
𝙶0 ∼  (𝜇0, 𝜎2

0). Note that the EVD for a Gaussian distribution is a Gumbel distribution,
i.e., 𝙶𝙴𝚅

𝟶
∼ 𝐺𝑢𝑚𝑏𝑒𝑙(𝜇0, 𝜎0).

Assuming that 𝑥𝑖 is an anomaly, i.e., 𝑥𝑖 is sampled from a Gaussian,  (𝜇𝑎, 1), where
𝜇𝑎 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙(𝜇0, 𝜎0), then we can show that for any 𝜇 ∼  (𝜇0, 𝜎2

0), the probability that 𝑥𝑖
is not in the tail of  (𝜇, 1) will be very small, since:

𝔼𝑋∼ (𝜇𝑎,1)[𝙶 (𝜇,1)(𝑋)]

= ∫
1

√

2𝜋
exp

(

−
(𝑥 − 𝜇)2

2

)

1
√

2𝜋
exp

(

−
(𝑥 − 𝜇𝑎)2

2

)

𝑑𝑥

∝ exp
(

−
(𝜇 − 𝜇𝑎)2

4

)

Thus the claim will hold in this case because the prior distribution is Gaussian, for which
|𝜇 − 𝜇𝑎|≫ 0.
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3.2 Extension to Data with Multiple Clusters

While the previous result is an interesting step towards explicitly modeling the anomaly
distribution, it is still limited to the case where the normal data is being generated from a
single cluster. A natural extension to the presented preliminary model is the scenario where
the normal data could be generated from multiple clusters. The key challenge in performing
anomaly detection on such data is the method to identify the generative model that is robust
to anomaly presence.

Why integrate Extreme Value Theory and DPMM? Anomalies with significantly large
deviations are inherently caught by most anomaly detection algorithms including traditional
DPMM. The distinction between the algorithms is observed when identifying anomalies
with relatively similar behavior to normal data. Such anomalies are found in the vicinity
of clusters and are often clustered into being normal. Traditional DPMM algorithm can
identify such anomalies by increasing the concentration parameter but the choice of the
new value has the same challenges as the choice of a threshold thus arising a need for
an external algorithm like EVT that studies these tail points separately and an integrated
approach would ensure enhanced and robust clustering.

3.2.1 Background on Mixture Models

Finite Mixture Models (FMM) are a useful clustering tool to identify and study sub-populations
within data. However, they require pre-specifying the number of clusters, which is not al-
ways known. This is especially important for anomalous data for which accurate knowledge
is not available, and can lead to some significantly inaccurate (and in some cases unreliable)
interpretations of the data. Non-parametric mixture models, e.g., Dirichlet Process Mixture

Models (DPMM) (Frigyik, Kapila, and Gupta, 2010), can be used in such settings.
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Dirichlet Process Mixture Models A DPMM can be thought of as an infinite extension
of a finite mixture model (FMM), which is equivalent to the following distributions:

𝝅|𝛼 ∼ Dir(𝛼∕𝐾,… , 𝛼∕𝐾) (3.13)
𝑧𝑖|𝝅 ∼ Multi(𝝅) (3.14)
𝜃𝑘|𝜓 ∼ 𝙶0(𝜓) (3.15)

𝑥𝑖|𝑧𝑖, {𝜃𝑘}𝐾𝑘=1 ∼ 𝐺(𝜃𝑧𝑖) (3.16)

Each observation 𝑥𝑖 is generated by first sampling a cluster index, 𝑧𝑖 from a Multinomial
distribution, parameterized by a 𝐾 length vector, 𝝅. A symmetric Dirichlet prior is used to
generate 𝝅. The observations are sampled from a cluster specific distribution, 𝐺, parame-
terized by 𝜃𝑘. The cluster specific distribution parameters are also generated from a prior
(or base) distribution, 𝙶0, parameterized by 𝜓 .

A DPMM is an extension of FMM to the case where𝐾 → ∞. While several equivalent
representations of DPMM exist, we will use the Stick Breaking representation, which shows
DPMM as a natural extension of FMM. The stick breaking representation allows sampling
the mixture weights, with possibly infinite components, as follows:
• Start with a unit-length stick and break it according to 𝛽1, where 𝛽1 ∼ Beta(1, 𝛼0), and
assign 𝛽1 to 𝜋1;
• Break remaining stick according to the proportion 𝛽𝑘 ∼ Beta(1, 𝛼0) and assign 𝛽𝑘 portion
of the remaining stick to 𝜋𝑘.
The sequence 𝝅 = {𝜋𝑘}∞𝑘=1 satisfies ∑∞

𝑘=1 𝜋𝑘 = 1 and is typically written as 𝝅 ∼ GEM(𝛼)3.
3named after Griffiths, Engen, and McCloskey
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3.2.2 Integrated Non-parametric Clustering and Anomaly Detection

(INCAD)

We propose an instance of the general Bayesian anomaly detection algorithm described in
Section 3.1 which uses a DPMM as its base distribution, 𝙶0. The generative model (See
Figure 3.3) consists of two coupled DPMM models, each corresponding to the normal and
anomalous behaviors, respectively, and is equivalent to the following distributions4:

𝝅|𝛼 ∼ GEM(𝛼) (3.17)
𝝅𝑎|𝛼∗ ∼ GEM(𝛼∗) (3.18)
𝜃𝑘|𝜓 ∼ 𝙶0(𝜓) (3.19)
𝜃𝑎𝑘|𝜓 ∼ 𝙶𝐸𝑉0 (𝜓) (3.20)

𝑠𝑖𝑔𝑛(𝑧𝑖)|𝛾 ∼ Bernoulli(𝛾) (3.21)

|𝑧𝑖|
|

|

|

𝝅,𝝅𝑎, 𝑠𝑖𝑔𝑛(𝑧𝑖) ∼

⎧

⎪

⎨

⎪

⎩

Multi(𝝅) if 𝑠𝑖𝑔𝑛(𝑧𝑖) = 1

Multi(𝝅𝑎) if 𝑠𝑖𝑔𝑛(𝑧𝑖) = −1
(3.22)

𝑥𝑖|𝑧𝑖, {𝜃𝑘}∞𝑘=1, {𝜃
𝑎
𝑘}

∞
𝑘=1 ∼

⎧

⎪

⎨

⎪

⎩

G(𝜃
|𝑧𝑖|) if 𝑠𝑖𝑔𝑛(𝑧𝑖) = 1

G(𝜃𝑎
|𝑧𝑖|
) if 𝑠𝑖𝑔𝑛(𝑧𝑖) = −1

(3.23)

The key difference from the model in Section 3.1 is the additional variable, 𝑧𝑖, that
works as the cluster labels as well as anomaly indicator. The 𝑠𝑖𝑔𝑛(𝑧𝑖) represents presence
of anomalous behavior where anomalous (or non-anomalous) observations are assigned

4GEM is a recursive process with an infinite number of clusters of which only a finite number of them
are populated. The number of the populated clusters as well as the corresponding proportions are learned
sequentially as seen in the stick breaking process.

Since the true number of clusters is unknown, Dirichlet process priors, like the GEM distribution, are
traditionally used to sample the vectors 𝝅 and 𝝅𝑎. When sampling from the GEM distribution, we generate a
vector (of unknown but finite length) from a simplex that sums to one (as seen in the stick breaking approach).
The vector length can be regulated using the concentration parameter (large concentration parameter returns
more number of populated clusters i.e. vector of longer length).
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Figure 3.3: Graphical representation of the proposed INCAD model: The figure illustrates
the generative process for observations in a mixture distribution.
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negative (or positive) labels. Based on the observed labels, anomalies can be classified into
global, local and group anomalies.

Definition 3 (Global Anomalies). A single observation is defined as a group anomaly if

it is a observation with distinctly novel behavior. INCAD classifies such observations into

singleton clusters with negative cluster labels.

Definition 4 (Group Anomalies). Multiple observations with similar behavior that is dis-

tinct from existing predominant behaviors (normal clusters) are classified as group anoma-

lies. Such observations are classified into smaller clusters with negative cluster labels.

Definition 5 (Local Anomaly). Observations with behaviors that moderately deviate from

normal clusters but not distinct enough to form individual clusters are defined as local

anomalies. Such observations are classified into normal clusters with similar behavior

but with negative labels to indicate diverging behavior. Anomalies that originate from an

overlapping anomalous cluster are often classified as local anomalies.

Since labels are assigned considering both clustering as well as anomaly detection, we
call this model, INCAD (Integrated Non-parametric Clustering and Anomaly Detection).
Based on 𝑠𝑖𝑔𝑛(𝑧𝑖), 𝑧𝑖 is sampled from a Multinomial distribution that is either parameterized
by 𝝅 (if 𝑠𝑖𝑔𝑛(𝑧𝑖) = 1) or 𝝅𝑎 (if 𝑠𝑖𝑔𝑛(𝑧𝑖) = −1). The Multinomial parameters, 𝝅 and 𝝅𝑎 are
sampled from the Stick Breaking construction of a Dirichlet process, i.e., 𝝅 ∼ GEM(𝛼) and
𝝅𝑎 ∼ GEM(𝛼∗).

The INCAD model goes beyond the illustrated simple case where we assume multiple
anomalous sources, each associated with a different concentration parameter 𝛼∗. The gener-
ative model can now be seen as a collection of multiple DPMMs of which all but one DPMM
can be perceived as sources for anomalous data and the set of concentration parameters for
anomalous data, {𝛼∗𝑑}, would dictate the corresponding DPMM’s cluster proportions {𝝅𝒂

𝒅}.
Inference for the INCAD model includes inferring posteriors for (𝑧𝑖)𝑛𝑖=1, (𝜃𝑘, 𝜃𝑎𝑘)∞𝑘=1.

While this follows the general Gibbs sampling based scheme discussed in Section 3.1 (omit-

36



ting exact details in the interest of space), there are some additional issues that are unique
to the INCAD model. In particular, the dependency between 𝑧𝑖 and 𝑠𝑖𝑔𝑛(𝑧𝑖) in Figure 3.3
means that one cannot consider the model as a straightforward mixture for two DPMMs.
However, the relationship between the normal and anomalous model parameters, via the
EVT construct, means that we can calculate the posteriors for 𝑠𝑖𝑔𝑛(𝑧𝑖) using the modifica-
tion proposed earlier (See (3.12)).

Inference when 𝙶𝙴𝚅
𝟶

is available

MCMC and variational inference based algorithms [58, 10] have been typically used for
inference of the computationally expensive infinite mixture models. For INCAD, we adopt
an extension of a Gibbs sampling-based method for a fixed mixture model that allows room
for additional cluster formation. The algorithm is inspired by the sampling based MCMC
method for conjugate priors (Algorithm 1 [58]). Here, new clusters comprise anomalous
observations identified using EVT.

Gibbs Sampling The anomaly classification variable 𝑠𝑖𝑔𝑛(𝑧.) is a unique feature of IN-
CAD that distinguishes it from traditional DPMM. Thus, the posterior probabilities for the
latent variables namely, the number of clusters 𝐾 , cluster and anomaly indicators {𝑧𝑖}𝑁𝑖=1
are computed using Markov property and Bayes rule:

𝑃 (|𝑧𝑖| = 𝑘 ||
|

𝑥., 𝑧−𝑖, 𝛼, 𝛼∗,𝝅,𝝅𝑎, 𝜓,
{

𝜃𝑘
}

,
{

𝜃𝑎𝑘
}

, 𝑠𝑖𝑔𝑛(𝑧.), 𝛾)

= 𝑃 (|𝑧𝑖| = 𝑘 ||
|

𝑥., 𝑧−𝑖, 𝛼, 𝛼∗,
{

𝜃𝑘
}

,
{

𝜃𝑎𝑘
}

, 𝑠𝑖𝑔𝑛(𝑧𝑖))

∝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃 (|𝑧𝑖| = 𝑘 ||
|

𝑧−𝑖, 𝛼, 𝜃𝑘)𝑃 (𝑥𝑖
|

|

|

|𝑧𝑖| = 𝑘, 𝑧−𝑖, 𝜃𝑘, 𝛼) , 𝑠𝑖𝑔𝑛(𝑧𝑖) = 1

𝑃 (|𝑧𝑖| = 𝑘 ||
|

𝑧−𝑖, 𝛼∗, 𝜃𝑎𝑘)𝑃 (𝑥𝑖
|

|

|

|𝑧𝑖| = 𝑘, 𝑧−𝑖, 𝜃𝑎𝑘, 𝛼
∗) , 𝑠𝑖𝑔𝑛(𝑧𝑖) = −1
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=

⎧

⎪

⎨

⎪

⎩

𝑛𝑘
(𝑛+𝛼−1)

𝐺(𝑥𝑖
|

|

|

𝜃𝑘) , 𝑠𝑖𝑔𝑛(𝑧𝑖) = 1
𝑛𝑘

(𝑛+𝛼∗−1)
𝐺(𝑥𝑖

|

|

|

𝜃𝑎𝑘) , 𝑠𝑖𝑔𝑛(𝑧𝑖) = −1
(3.24)

where 𝛼∗ = 1
1−𝑝𝑖

, 𝑝𝑖 is the probability of 𝑥𝑖 being anomalous, 𝑛𝑘 is the number of ob-
servations in the 𝑘𝑡ℎ cluster and 𝐾 is the number of non-empty clusters. In the improved
versions of INCAD, 𝑝𝑖 is the cumulative density function for the extreme value distribution.

The posterior probability of forming a new cluster denoted by 𝐾 + 1 is given by:

𝑃 (|𝑧𝑖| = 𝐾 + 1 ||
|

𝑥., 𝑧−𝑖, 𝛼, 𝛼
∗,𝝅,𝝅𝑎, 𝜓,

{

𝜃𝑘
}

,
{

𝜃𝑎𝑘
}

, 𝑠𝑖𝑔𝑛(𝑧.), 𝛾)

= 𝑃 (|𝑧𝑖| = 𝐾 + 1 ||
|

𝑥𝑖, 𝑧−𝑖, 𝛼, 𝛼
∗, 𝜓, 𝑠𝑖𝑔𝑛(𝑧𝑖))

∝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃 (|𝑧𝑖| = 𝐾 + 1 ||
|

𝑧−𝑖, 𝛼, 𝜓)𝑃 (𝑥𝑖
|

|

|

|𝑧𝑖| = 𝐾 + 1, 𝑧−𝑖, 𝛼, 𝜓, 𝑠𝑖𝑔𝑛(𝑧𝑖)) , 𝑠𝑖𝑔𝑛(𝑧𝑖) = 1

𝑃 (|𝑧𝑖| = 𝐾 + 1 ||
|

𝑧−𝑖, 𝛼∗, 𝜓)𝑃 (𝑥𝑖
|

|

|

|𝑧𝑖| = 𝐾 + 1, 𝑧−𝑖, 𝛼∗, 𝜓, 𝑠𝑖𝑔𝑛(𝑧𝑖)) , 𝑠𝑖𝑔𝑛(𝑧𝑖) = −1

=

⎧

⎪

⎨

⎪

⎩

𝛼
𝑛+𝛼−1

∫ 𝐺(𝑥𝑖
|

|

|

𝜃)𝙶𝟶(𝜃
|

|

|

𝜓)𝑑𝜃 , 𝑠𝑖𝑔𝑛(𝑧𝑖) = 1
𝛼∗

𝑛+𝛼∗−1
∫ 𝐺(𝑥𝑖

|

|

|

𝜃𝑎)𝙶𝙴𝚅
𝟶
(𝜃𝑎 ||

|

𝜓)𝑑𝜃𝑎 , 𝑠𝑖𝑔𝑛(𝑧𝑖) = −1
(3.25)

Similarly, the parameters for clusters 𝑘 ∈ {1, 2,… , 𝐾} are sampled from:

𝜃𝑘 ∝ 𝙶𝟶(𝜃𝑘
|

|

|

𝜓)(𝒙𝑘
|

|

|

𝜃𝑘) if cluster is not anomalous (3.26)
𝜃𝑎𝑘 ∝ 𝙶𝙴𝚅

𝟶
(𝜃𝑎𝑘

|

|

|

𝜓)(𝒙𝑘
|

|

|

𝜃𝑎𝑘) if cluster is anomalous (3.27)

where 𝒙𝑘 = {𝑥𝑖
|

|

|

|𝑧𝑖| = 𝑘} is the set of all points in cluster 𝑘. Finally, to identify the anomaly
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classification of the data, the posterior probability of 𝑠𝑖𝑔𝑛(𝑧𝑖) is given by:

𝑃
(

𝑠𝑖𝑔𝑛(𝑧𝑖) = −1 ||
|

𝑥., |𝑧.|, 𝛼, 𝛼
∗,𝝅,𝝅𝑎, 𝜓,

{

𝜃𝑘
}

,
{

𝜃𝑎𝑘
}

, 𝛾
)

= 𝑃 (𝑠𝑖𝑔𝑛(𝑧𝑖) = −1 ||
|

𝑥𝑖, |𝑧.|, 𝛼
∗, 𝜓,

{

𝜃𝑎𝑘
}

, 𝛾)

∝
𝐾+1
∑

𝑘=1
𝑃 (𝑠𝑖𝑔𝑛(𝑧𝑖) = −1 ||

|

𝑥𝑖, |𝑧𝑖| = 𝑘, 𝑧−𝑖, 𝛼
∗, 𝜓,

{

𝜃𝑎𝑘
}

, 𝛾) ∗ 𝑃 (|𝑧𝑖| = 𝑘 ||
|

𝑥𝑖, 𝑧−𝑖, 𝛼
∗, 𝜓,

{

𝜃𝑎𝑘
}

, 𝛾)

=
𝐾
∑

𝑘=1
𝑃 (𝑥𝑖

|

|

|

𝜃𝑎𝑘)𝛾
𝑛𝑘

(𝑛 + 𝛼∗ − 1)
+
(

∫ 𝐺(𝑥𝑖
|

|

|

𝜃𝑎)𝙶𝙴𝚅
𝟶
(𝜃𝑎 ||

|

𝜓)𝑑𝜃𝑎
)

𝛾 𝛼∗

𝑛 + 𝛼∗ − 1
(3.28)

Similarly,

𝑃 (𝑠𝑖𝑔𝑛(𝑧𝑖) = 1 ||
|

𝑥𝑖, |𝑧.|, 𝛼, 𝜓,
{

𝜃𝑘
}

, 𝛾)

∝
𝐾
∑

𝑘=1
𝑃 (𝑥𝑖

|

|

|

𝜃𝑘)(1 − 𝛾)
𝑛𝑘

(𝑛 + 𝛼 − 1)
+
(

∫ 𝐺(𝑥𝑖
|

|

|

𝜃)𝙶𝟶(𝜃
|

|

|

𝜓)𝑑𝜃
)

(1 − 𝛾) 𝛼
𝑛 + 𝛼 − 1

(3.29)

Inference when 𝙶𝙴𝚅
𝟶

is not available

Existence of a tail distribution 𝙶𝙴𝚅
𝟶

is not always feasible. As the extreme value distribution
might not belong to the family of the conjugate priors of 𝐺, we assume 𝜃𝑎 ∼ 𝙶𝟶 for sam-
pling the parameters {𝜃𝑎𝑘}∞𝑘=1 for anomalous clusters. Here, we perform rejection sampling
to sample observations from the tail distribution. For this, we initially sample 𝑃 observa-
tions from 𝐺0 and isolate observations with probability density less than a set threshold5

0 < 𝑡 << 1. The above procedure is repeated 𝑀 times till sufficient samples 𝑆𝑡𝑎𝑖𝑙 from
the tail distribution have been identified. The cluster means {𝜃𝑎𝑘}

∞
𝑘=1 can be estimated by

randomly sampling from the tail observations 𝑆𝑡𝑎𝑖𝑙. However, this could result in potential
5The choice of threshold governs the range of values that can be considered in the tail. Larger threshold

allows wider sample range and therefore, better parameter estimation. However, collecting extreme tail sam-
ples using rejection sampling could be difficult when using larger thresholds. It must be noted that optimal
choice specific to the data can be made based on the data distribution. In our analysis, we set the threshold to
15% (probability density) for ease of sampling.
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convergence issues. Thus, we propose the closest observation in 𝑆𝑡𝑎𝑖𝑙 to the sample estimate
for the respective anomalous cluster.

The pseudo-Gibbs sampling algorithm, presented in Algorithm 2, has been designed
to address the cases when 𝙶𝙴𝚅

𝟶
is not available. For such cases, the modified concentration

parameter 𝛼∗ is given by the function 𝑓 where,

𝑓 (𝛼|𝑥𝑛, x, z) =
⎧

⎪

⎨

⎪

⎩

𝛼 , 𝑖𝑓 𝑛𝑜𝑡 𝑖𝑛 𝑡𝑎𝑖𝑙
1

1−𝑝𝑛
, 𝑖𝑓 𝑖𝑛 𝑡𝑎𝑖𝑙

(3.30)

where, 𝑝𝑛 is the cumulative density of 𝑥𝑛 for the extreme value distribution of the tail data6

where, the cumulative density is given by the Extended Generalized Pareto Distribution
described in Section 2.2.3.

Non-Exchangeability and Evolution Detection in Stream

Exchangeable models are robust to alterations in the order of the sequence of observations.
However, for streaming data that evolves over time, it can be costly to assume exchangeabil-
ity among the observations. The instances that mark the beginning of an evolution are cap-
tured and monitored in INCAD. Additionally, relapse of outdated and non-prevalent behav-
iors are identified and evaluated. These features are possible due to the non-exchangeable
nature of the INCAD model.

To further understand the non-exchangeable nature of INCAD, one can look at the joint
probability of the cluster assignments for the INCAD model,

𝑃 (𝑧1, 𝑧2, ..𝑧𝑛|x) = 𝑃 (𝑧1|x)𝑃 (𝑧2|𝑧1, x)..𝑃 (𝑧𝑛|𝑧1∶𝑛−1, x) (3.34)
6The left and right continuous inverses of the function 1

1−𝙶𝙴𝚅
𝟶
(.)

are broadly studied in Extreme Value theory
to understand the behavior of the tail distributions.
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Algorithm 1 Gibbs Sampling Algorithm when 𝙶𝙴𝚅
𝟶

is available
Given 𝑧(𝑡−1). ,

{

𝜃(𝑡−1)𝑘

}

,
{

𝜃𝑎(𝑡−1)𝑘

}

from iteration (𝑡−1). Let𝐾 be the total number of clusters
at iteration (𝑡 − 1).

1: Set 𝑧. = |𝑧(𝑡−1). | and 𝑎. = 𝑠𝑖𝑔𝑛(𝑧(𝑡−1). )
2: for each observation 𝑖 do
3: Remove 𝑥𝑖 from its cluster 𝑧𝑖..
4: if 𝑥𝑖 is the only point in its cluster then
5: Remove the cluster and update K to K-1.
6: end if
7: Drop empty clusters.
8: Sample 𝑧𝑖 from the Multinomial distribution given by Equations 3.24 and 3.25
9: if 𝑧𝑖 = 𝐾 + 1 then

10: Sample new cluster parameters from the following distribution. 7

𝜃
|

|

|

|

𝑥𝑖, 𝑧.,
{

𝜃(𝑡−1)𝑘

}

,
{

𝜃𝑎(𝑡−1)𝑘

}

, 𝑎(𝑡−1). (3.31)

∝

{

𝛼𝙶𝟶(𝜃|𝜓)𝐺(𝑥𝑖|𝜃) +
∑

𝑗≠𝑖𝐺(𝑥𝑖|𝜃𝑧𝑗 )𝛿(𝜃 − 𝜃
(𝑡−1)
𝑧𝑗

)𝛿(𝑎(𝑡−1)𝑗 ) , 𝑎(𝑡−1)𝑖 = 1
𝛼∗𝙶𝙴𝚅

𝟶
(𝜃|𝜓)𝐺(𝑥𝑖|𝜃) +

∑

𝑗≠𝑖𝐺(𝑥𝑖|𝜃𝑧𝑗 )𝛿(𝜃 − 𝜃
(𝑡−1)
𝑧𝑗

)𝛿(𝑎(𝑡−1)𝑗 − 1) , 𝑎(𝑡−1)𝑖 = −1
(3.32)

11: Update 𝐾 = 𝐾 + 1
12: end if
13: for each cluster 𝑘 ∈ {1, 2,… , 𝐾} do
14: Sample cluster parameters 𝜃𝑘 and 𝜃𝑎𝑘 using Equations 3.26 and 3.27.
15: end for
16: Sample the anomaly classification 𝑎𝑖 using Equations 3.28 and 3.29.
17: Set 𝑧(𝑡)𝑖 = 𝑧𝑖 ∗ 𝑎𝑖
18: end for
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Algorithm 2 Gibbs Sampling Algorithm when 𝙶𝙴𝚅
𝟶

is not available
Given 𝑧(𝑡−1). ,

{

𝜃(𝑡−1)𝑘

}

,
{

𝜃𝑎(𝑡−1)𝑘

}

from iteration (𝑡−1). Let𝐾 be the total number of clusters
at iteration (𝑡 − 1).

1: Set 𝑧. = |𝑧(𝑡−1). | and 𝑎. = 𝑠𝑖𝑔𝑛(𝑧(𝑡−1). )
2: for each observation 𝑖 do
3: Remove 𝑥𝑖 from its cluster 𝑧𝑖..
4: if 𝑥𝑖 is the only point in its cluster then
5: Remove the cluster and update K to K-1.
6: end if
7: Drop empty clusters.
8: Sample 𝑧𝑖 from the Multinomial distribution given by Equations 3.24 and 3.25
9: if 𝑧𝑖 = 𝐾 + 1 then

10: Set the cluster distribution to be multivariate normal with the new cluster mean
as 𝑥𝑖 and cluster variance as Σ which is pre-defined.

11: Update K=K+1.
12: end if
13: for each cluster 𝑘 ∈ {1, 2,… , 𝐾} do
14: Sample cluster parameters 𝜃𝑘 and 𝜃𝑎𝑘 using Equation 3.26.
15: end for
16: Sample the anomaly classification 𝑎𝑖 from the Binomial(𝑝𝑖) where 𝑝𝑖 is given by

𝑝𝑖 = 𝑝(𝑥𝑖) =
{ Probability of 𝑥𝑖 being anomalous, 𝑥𝑖 in tail

0, otherwise (3.33)

17: if most cluster instances are classified as anomalous then
18: Classify all cluster’s instances as anomalies.
19: end if
20: Set 𝑧(𝑡)𝑖 = 𝑧𝑖 ∗ 𝑎𝑖
21: end for

Algorithm 3 Algorithm for Streaming Extension
Perform clustering on a small portion of the data ( 20%) using non-streaming model

1: for each new data point 𝑥𝑁 do
2: Compute the mixture proportions 𝑚_𝑝𝑎𝑟𝑎 and the mixture density for all the data.

Compute 𝑡1 = 𝑞𝑡ℎ percentile pdf value to identify the tail points
3: For each 𝑥𝑖 𝑠.𝑡. 𝑔(𝑥𝑖) < 𝑡1 repeat steps 3→19 of Algorithm 2
4: if cluster size ≤ 0.05 ∗ 𝑁 then
5: Classify all the cluster points as anomalies.
6: end if
7: end for
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Without loss of generality, let us assume there are 𝐾 clusters. Let, for any 𝑘 < 𝐾 , the
joint probability of all the points in cluster 𝑘 be given by

( 𝛼 ∗ 𝑝𝑘,1
𝐼𝑘,1 + 𝛼 − 1

+
𝛼∗ ∗ (1 − 𝑝𝑘,1)
𝐼𝑘,1 + 𝛼∗ − 1

) 𝑁𝑘
∏

𝑛𝑘=2

(

(𝑛𝑘 − 1) ∗ 𝑝𝑘,𝑛𝑘
𝐼𝑘,𝑛𝑘 + 𝛼 − 1

+
(𝑛𝑘 − 1) ∗ (1 − 𝑝𝑘,𝑛𝑘)

𝐼𝑘,𝑛𝑘 + 𝛼
∗ − 1

)

(3.35)

where 𝑁𝑘 is the size of the cluster 𝑘 , 𝐼𝑘,𝑖 is the index of the 𝑖𝑡ℎ instance joining the 𝑘𝑡ℎ
cluster and 𝑝𝑘,𝑖 = 𝑝𝐼𝑘,𝑖 . Thus, the joint probability for complete data is then given by

∏𝐾
𝑘=1

[

(𝐼𝑘,1 − 1)𝑝𝑘,1(𝛼 − 𝛼∗) + 𝛼∗(𝐼𝑘,1 + 𝛼 − 1)
∏𝑁𝑘

𝑛𝑘=2
(𝑛𝑘 − 1)(𝐼𝑘,𝑛𝑘 + 𝛼 − 1 + 𝑝𝑘,𝑛𝑘(𝛼

∗ − 𝛼)
]

∏𝑁
𝑖=1 ((𝑖 + 𝛼 − 1)(𝑖 + 𝛼∗ − 1))

(3.36)

which is dependent on the order of the data. This shows that the model is not exchange-
able unless 𝛼 = 𝛼∗ or 𝑝𝑘,𝑛𝑘 = 0 or 𝑝𝑘,𝑛𝑘 = 1. These conditions effectively reduce the prior
distribution to a traditional CRP model. Hence, it can be concluded that the INCAD model
cannot be modified to be exchangeable.

The non-exchangeable and non-parametric prior in the INCAD model serves as a ex-
cellent platform to capture drift or evolution in the behavior(s) locally and globally. Such
prior can detect the following trends:

1. Instances that signify new evolutionary behavior are captured and classified as anoma-
lous.

2. Increased prevalence in a previously rare behavior can be re-evaluated and conceived
as normal8.

3. Outdated behaviors that are no longer prevalent would be classified as anomalous.
Additionally, relapse of such behaviors are also branded as anomalous till sufficient
popularity is reached.

8As an alternate frame of reference, one can say that with sufficient surge in the instances, group anomalies
can eventually grow to become normal clusters.

43



A clear streaming extension of the INCAD model involves exclusive re-evaluation of
the tail instances as opposed to updating with entire data. The Gibbs sampling algorithm
for the streaming INCAD model is given in Algorithm 3.

Choice of Priors

For computational ease, the base distribution that generates the parameters for the normal
clusters, 𝙶0, is chosen to be the conjugate of the generative distribution for the actual data,
𝐺. This makes the inference task considerably simpler, though approximate methods have
been discussed for non-conjugate prior choices as well [58, 41]. In this part, we use a Mul-

tivariate Normal Distribution (MVN) as the data distribution, 𝐺, and the Normal Inverse

Wishart (NIW) as the base distribution, 𝙶0. It must be noted that the model is not limited to
MVN distribution. In particular, any univariate data distribution that satisfies the necessary
conditions in Theorem 2 could be used. For multivariate data, distributions from exponen-
tial family satisfy the necessary conditions needed for the Ext-GPD approach. The required
conditions for the multivariate case have been presented in the supplementary section and
in Theorem 3.

The concentration parameter, 𝛼, and the prior for the base distributions, 𝜓 , are treated as
hyper-parameters, though suitable vague priors maybe set to make the model more robust
to the choice of the hyper-parameters. 𝛼 controls the final number of normal clusters, while
𝛼∗𝑑 controls the final number of anomalous clusters from the 𝑑𝑡ℎ DPMM. To ensure that a
larger number of populated non-anomalous clusters are formed with few instances assigned
to them, 𝛼’s can be typically set to a higher values.

The parameter 𝛾 influences the number of anomalous instances in the data set, and is
initialized based on the expected proportion of anomalies in the given context. For the
results listed in this part, we have used a standard set of the parameter and hyper-parameter
choices to show the results in a generalized setting (detailed in Section 4.1.1). But in other
contexts, one can use the information from the data to determine the hyperparameters. For
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instance, the 𝛾 value can be initially set to the proportion of anomalies known in the data, and
the concentration parameter 𝛼 can be set higher if the true number of clusters is known to be
high. It must be noted that the choice of hyper-parameters {𝛼∗𝑑} and parameter 𝛾 is updated
and optimized using Extreme Value distributions and Bayesian updates over iterations.
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Chapter 4

Detecting Anomalies in Streaming Data -

A Comparative Evaluation

4.1 Experimental Setup

To comprehensively evaluate the capabilities of the proposed INCAD model, results on both
synthetically generated and publicly available benchmark data sets are provided. We evalu-
ate the ability of the proposed model to identify both clusters and anomalies, in both batch
and streaming settings. We also compare the model performance with existing methods for
anomaly detection and clustering. Additionally, we study the role of various user-defined
parameters on the model performance.

4.1.1 Model Initialization

The INCAD model has the following user-defined hyper-parameters: the initial number of
clusters (𝐾), the concentration parameter (𝛼), the initial mean and covariance matrices for
the clusters and the prior for the proportion of anomalies (𝛾). For the experiments, we set
𝐾 to 10 and 𝛼 to 1. For each data set, the sample mean and covariance are used as the initial
values for the cluster parameters. The proportion of anomalies (𝛾) is set to 0.1. In the batch
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phase, the model is run until convergence is achieved, with a maximum iteration limit of
1000.

4.1.2 Data description

We consider a variety of publicly available benchmark data sets from different domains
(See Table 4.1) for the experimental evaluation. Additionally, a synthetically generated 2-
dimensional data set, SD, with 4 normal clusters and scattered anomalies was generated to
evaluate the joint clustering and anomaly detection performance. Each cluster consisted of
100 observations, sampled from a 2-D Gaussian distribution with means in {(−40,−40),
(−30, 10), (40,−60), (45, 30)}, for each cluster, respectively. The covariance matrix for
each cluster was set to 5𝐼 , where 𝐼 is the 2 × 2 identity matrix. 23 anomalies were added
by sampling from a Gaussian distribution with mean at (0, 0) and covariance as 100𝐼 . For
a qualitative evaluation of the joint clustering and anomaly detection performance, we use
the MNIST handwritten digits data set [52], which consists of 60000 28 × 28 images, cor-
responding to 10 digits (clusters). We use a 10% sample of the original data set and use
principal component analysis (PCA) to reduce the dimensionality of the data from 784 to
25.

Finally, we use the Gas Sensor Array Drift data set [78] to understand the performance
of the INCAD model in a streaming setting. The data set consists of 470 readings from an
array of 16 chemical sensors exposed to gas mixtures at three different concentration levels.
First, two concentration levels were used as the batch data set and the third concentration
level was injected in a streaming fashion.

4.1.3 State-of-the-art Methods

We compare the performance of INCAD with several existing state-of-art anomaly detection
and clustering methods, as well as one method that has been proposed for joint clustering
and anomaly detection [19]
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Name 𝑁 𝑑 𝑐
Pageb 5473 11 2
Wine-Cluster 6497 12 2
Heart Statlog 270 13 2
Zoo 101 16 7
Abalone 4177 8 2
Magic Gamma 19020 10 2
Iono 351 33 2
Ecoli 336 7 8
Haberman 306 2 12
Concrete 1030 9 2
German 1000 7 9
Segment 2310 18 7
Iris 150 4 3
Yeast 1484 8 10
WDBC 569 31 2
Vehicle 846 18 4
Glass 214 9 6
Tae 151 3 3
Balance Scale 625 4 3
Vowel 990 10 11

(a) Clustering

Name 𝑁 𝑑 𝑎
Annthyroid 7200 6 7.42 %
Pen Global 809 16 11.12%
Cardio 1831 21 9.61 %
Mammography 11183 6 2.32 %
Letter 1600 32 6.25 %
Seismic Bumps 2584 11 6.58 %
Cover 217 10 9.22 %
Breast Cancer 367 30 2.72 %
Smtp 113 3 11.5 %
Wine-AD 129 13 7.75 %
Pendigits 6870 16 2.27 %

(b) Anomaly detection

Table 4.1: Description of the benchmark data sets used for evaluation of the cluster-
ing (source: UCI-ML repository [24]) and anomaly detection (source: Outlier Detection
DataSets /ODDS (Rayana, 2016)) capabilities of the proposed model. 𝑁 - number of in-
stances, 𝑑 - number of attributes, 𝑐 - number of true clusters and 𝑎 - the fraction of known
anomalies in the data set.

Anomaly Detection: For anomaly detection, we consider four existing methods: 𝑘
nearest neighbor outlier detection (kNN) [62], local outlier factor (LOF) [12], one-class

Support Vector Machines (oc-SVM) [72] and k-means-- (Chawla and Gionis, 2013). The
first two methods assign an anomaly score for each data instance, while the last two meth-
ods assign an anomaly label. Both kNN and LOF have been previously shown to outper-
form other existing methods [39] and are considered state-of-art methods. The k-means--

method performs joint clustering and anomaly detection and thus is the most similar to IN-
CAD. All methods have one or more user-defined parameters. We investigated a range of
values for each parameter and report the mean results.

48



Clustering: We compare the clustering performance of INCAD with k-means, k-means--

and a Bayesian Gaussian Mixture model with a Dirichlet prior (BGM-DP). While both k-
means and k-means-- are hard clustering algorithms that require specifying the number of
clusters as a user-defined parameter, BGM-DP is a soft clustering algorithm that does not
need the number of clusters to be provided in advance. Thus it is similar to INCAD in that
regard.

4.1.4 Evaluation Metrics

For the anomaly detection methods that assign an anomaly label to a test instance, i.e.,
oc-SVM, k-means-- and INCAD, f-measure1 on the anomaly class is used as the evalua-
tion metric. For the scoring methods, i.e., kNN, LOF and the scoring version of INCAD,
the instances with top 𝑝 anomaly scores are labeled as anomalies and these labels are then
used to calculate the f-measure. For the clustering evaluation, we use average cluster pu-

rity (Chawla and Gionis, 2013), as the evaluation metric, where the purity of a cluster is
defined as the fraction of the majority class of the cluster with respect to the size of the
cluster.

4.2 Results

In this section, we discuss the overall performance of the INCAD model against the state-
of-the-art algorithms with respect to clustering and anomaly detection, in both streaming
and batch settings on simulated as well as benchmark datasets.

4.2.1 Simulated Data

Batch scenario: For a given batch dataset, INCAD produces two types of outputs. First, it
assigns every data instance to either a normal cluster (with a positive index) or an anomalous

1the class-specific f-measure is defined as the harmonic mean of the recall and precision on the given data
set for that class.
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Figure 4.1: INCAD output for the synthetic data, SD. Instances belonging to the normal
clusters are shown as □ and instances belonging to anomalous clusters are shown as ◦.
The size of the anomalous instances indicates the probabilistic anomaly score. Inset: the
average anomaly score for truly anomalous instances (TP) and false positives (FP).

50



cluster (with a negative index). The sign of the cluster index is used as the anomaly label.
Additionally, the method also assigns a probability for each instance to be in the tail of
the overall data distribution, which is used as the probabilistic anomaly score. For the SD
data set, the identified normal and anomalous clusters, as well as the anomaly scores, are
shown in Figure 4.1. We first note that INCAD identifies the four main clusters in the data,
without the need to initially specify the number of clusters. Additional anomalous clusters,
with negative index, were identified as well. While the method correctly labels all the 23
anomalous instances, it also identified some peripheral instances of the normal clusters as
anomalies; these would constitute as the false positives. However, the probability score
is higher for the true anomalies (See Figure 4.1: Inset). Thus, simple heuristics, such as a
low threshold on the anomaly probability, can be potentially employed, as a post-processing
step, to filter out these false positives.

Streaming Scenario: To study the performance of INCAD in a streaming mode, we
simulate the following streaming scenario: We first create a batch of data consisting of
instances belonging to three of the four clusters in SD and present it to INCAD for batch
learning. INCAD identifies the three primary clusters and some of the peripheral instances
as local anomalies, after the batch phase (See Figure 2.1a). The instances belonging to
the fourth cluster and the anomalies are sequentially presented to the model. With each
incoming streaming instance, the tail data is re-evaluated and the overall identified data
distribution is updated. At the beginning of the streaming phase, the new instances are
identified as group anomalies, as shown in Figure 2.1b. However, a fourth normal cluster is
identified after a sufficient number of instances belonging to the fourth cluster are observed
in the stream, as shown in Figure 2.1c. Finally, the remaining truly anomalous instances
are identified as global anomalies, as they do not form a tight enough group to become a
normal cluster, as shown in Figure 2.1d.
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4.2.2 Anomaly Detection Performance on Benchmark Datasets

The f-measure performance of INCAD and the competing algorithms is shown in Table 4.2.
For all the listed algorithms, results for the best parameter settings are reported. The pro-
posed INCAD model outperforms other methods on 4 out of 11 data sets. While other
methods, especially LOF and KNN are better on other data sets, it should be noted that
these methods are highly sensitive to the parameter settings. The k-means−−method, which
is capable of both clustering and anomaly detection, shows the best average performance.
However, this model requires specifying the proportion of true anomalies in the data set,
which might not be feasible in a real-world setting2.

A specific behavior noticed in the score based INCAD model is the ranking of the
anomalies. As INCAD is a conservative algorithm that identifies more anomalies, it can
be seen that the model recall is relatively higher than the rest of the methods. However, the
true anomalies might not always be ranked as the most anomalous observations. This be-
havior can be best observed in two particular datasets, namely Pen-Global and Wine data,
where the score based model has failed to rank most true anomalies in the top while the
classification model still identified some of the true anomalies.

4.2.3 Clustering Performance on Benchmark Datasets

Table 4.3 summarizes the performance of INCAD and other competing clustering methods
on the benchmark data sets. Overall, INCAD has the best average performance compared
to others, which is significant, despite not having to provide a prior specification of the
expected number of clusters, unlike k-means and k-means−−. Looking at both anomaly
detection and clustering performance, it is clear that INCAD is effective in identifying both
anomalies and clusters in the data and is superior to k-means−−, which also does the joint
detection.

2For some real datasets with >30% anomalies, smaller clusters identified by INCAD can be manually
reclassified as anomalous.
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Dataset k-means k-means−− BGM (DP Prior) INCAD
PAGEB 0.9 0.9 0.94 0.99 (± 0.0114)
ABALONE 0.75 0.81 0.76 0.81 (± 0.0139)
ZOO 0.87 0.41 0.64 0.79 (± 0.0913)
WINE 0.63 0.63 0.69 0.79 (± 0.0719)
HEART-STATLOG 0.84 0.71 0.61 0.79 (± 0.033)
IONO 0.71 0.64 0.83 0.79 (± 0.0156)
MAGIC.GAMMA 0.65 0.73 0.77 0.78 (± 0.0103)
ECOLI 0.83 0.43 0.57 0.76 (± 0.0079)
HABERMAN 0.75 0.74 0.75 0.75 (± 0.0069)
SEGMENT 0.55 0.14 0.52 0.71 (± 0.0989)
GERMAN 0.7 0.7 0.7 0.7 (± 0.0036)
CONCRETE 0.6 0.87 0.65 0.69 (± 0.0324)
IRIS 0.81 0.33 0.76 0.67 (± 0.0096)
YEAST 0.66 0.66 0.66 0.66 (± 0.002)
WDBC 0.91 0.91 0.82 0.63 (± 0.0021)
GLASS 0.56 0.36 0.51 0.55 (± 0.0296)
TAE 0.44 0.4 0.44 0.54 (± 0.0145)
VEHICLE 0.37 0.35 0.5 0.49 (± 0.0416)
BALANCE-SCALE 0.65 0.65 0.59 0.46 (± 0.0016)
VOWEL 0.33 0.09 0.34 0.37 (± 0.0587)
Avg. Purity 0.68 0.57 0.66 0.69

Table 4.3: Comparing INCAD with existing clustering algorithms using purity score as the
evaluation metric.
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(a) Clusters (b) Anomalies
Figure 4.2: Output of INCAD for the MNIST 10% sample data. (a). Cluster centers identi-
fied by INCAD. Note that the number of clusters (18) is automatically inferred by the model,
(b). Anomalies identified by INCAD.

To further show the effectiveness of INCAD for the joint detection task, we visualize
the detected clusters and anomalies for the MNIST hand-written digit data set. INCAD
identified 18 clusters in the data. The cluster centroids are shown in Figure 4.2a. The
most interesting outcome of clustering using INCAD was the identification of subtle writing
behaviors identified in the data. For instance, three different writing styles of digits ‘2’ and
‘6’ were identified, which corresponded to distinctive slants, presence of loops, etc. The
anomalous digits (See Figure 4.2b) identified by INCAD include unrecognizable and ill-
written digits.

4.2.4 Streaming Anomaly Detection and Clustering: Gas Sensor Ar-

ray Drift Data

The experiment for the Gas Sensor Array Drift data set simulates a streaming scenario in
which a gas at different concentrations is being introduced into a chamber and the concen-
tration levels are being measured by an array of 16 chemical sensors. For these experiments,
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the observations corresponding to two concentration levels are provided for batch learning
and observations corresponding to the third concentration level are added as a stream. The
monitoring output of INCAD, at different phases of the stream, are shown in Figure 4.3. At
the end of the batch learning, INCAD is able to identify the two gas concentrations (See
Figure 4.3a) present in the batch data set. After the start of the streaming phase, the new
instances are identified as anomalies (See Figure 4.3b), as they belong to a previously un-
seen concentration. However, as more data is observed in the stream, a new novel cluster
is identified (See Figure 4.3c) and all the instances belonging to the third concentration are
now considered normal.

4.2.5 Sensitivity to Batch Proportion

Previous results on streaming data show that INCAD can identify anomalies and new clus-
ters in a stream. The performance, however, depends on the size of the initial batch data
set. Figure 4.4 shows the performance of the model, both in terms of computing time and
accuracy in identifying anomalies for the synthetic data set, SD. While the total size of the
data set is fixed, the proportion of the instances in the batch is varied from 10% to 90%. The
computing time3 for processing the batch increases linearly with the increase in the batch
size. At the same time, the time taken to process a single stream instance also increases
as the size of the batch increases. This is because the INCAD model has to update the tail
probabilities for the data observed so far. The quality of the detected anomalies (shown us-
ing the F-measure for the anomalies detected after all of the data is observed), improves as
the size of the batch increases. Additionally, the performance is more stable (lower variance
across multiple runs) when the batch size is higher because the batch phase is able to learn
a stable clustering structure in the data.

3All the methods are implemented in Python and all experiments were conducted on a 2.7 GHz Quad-Core
Intel Core i7 processor with a 16 GB RAM.
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(a) Before Streaming (b) After adding 5 streaming observations

(c) After adding all streaming observations
Figure 4.3: Evolving anomalies and clusters identified by INCAD for the Gas Sensor Array
Drift data. Cluster assignments are shown using colored symbols, anomalous observations
are labeled using colored circles. While the original data has 16 dimensions, the data is
mapped to 2-D using the t-SNE algorithm [54].
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Figure 4.4: Impact of the size of the batch data set on INCAD performance on the synthetic
data set (SD). For each batch size, mean and standard deviation across 5 different runs are
shown.

4.3 Conclusions and Future Work

We have introduced a Bayesian framework for anomaly detection that explicitly models the
normal and anomalous data. While in the past, lack of labeled anomalies has prevented such
solutions, we adopt concepts from Extreme Value Theory (EVT), to model the anomalous
data with respect to the extremes of the model for the normal data. This is a fundamental
breakthrough in anomaly detection as it permits probabilistic reasoning for both types of
instances, without the need for a non-intuitive threshold, as is the case for existing methods.
Additionally, the proposed INCAD algorithm combines EVT with another powerful mod-
eling tool - DPMM which allows identifying clusters and anomalies at the same time. The
non-parametric prior on the number of clusters ensures that the model is not handicapped
by the need to know the exact number of clusters. Moreover, this sets the model up to be
adapted for a streaming scenario, where the number of clusters can change over the stream.

As the results show, INCAD outperforms existing methods that have been proposed
exclusively for anomaly detection or clustering, on each of the tasks, for most of the data
sets (See Tables 4.2 and 4.3). Moreover, while existing methods rely on carefully speci-
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fied, problem-specific, parameters, INCAD requires specifying relaxed Bayesian priors and
infers key parameters, such as the number of clusters, from the data. Additionally, the prob-
abilistic output of INCAD, allows for an interpretable setting of thresholds, on the anomaly
score, something that is not possible with most existing score based anomaly detection al-
gorithms. INCAD is especially effective in dealing with streaming data, where the notion
of normal clusters and anomalies evolve over the duration of the stream, as shown in Fig-
ure 4.3. This makes INCAD highly suitable for monitoring the behavior of complex systems
over time, without the need to explicitly retrain the underlying model.

One of the key shortcomings of the model is the complexity of the iterative Gibbs al-
gorithm. Variational inference methods that have been proposed for inference in DPMM
clustering (Blei and Jordan, Huynh, Phung, and Venkatesh, 2004, 2016) can be used to
improve the complexity and will be explored in the future.
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Part II

Anomaly Detection in High-Dimensional

Evolving Data
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Chapter 5

Large Deviations Principle

5.1 Introduction

Anomaly detection has been extensively studied over many decades across many domains [16,
46]. Among the most useful applications of anomaly detection is to simultaneously monitor
multiple systems’ behaviors and identify the system that exhibits anomalous behavior due
to external or internal stress factors. These include the study of multiple evolving streams
like a time series database.

Time series analysis metrics are expensive for large collections of streams or are diffi-
cult to extend to do a relative study across a database of time series. However, the study of
anomalous behaviors in one time series as relative to others in a database is, by compari-
son, less researched. In particular, such a perspective is important in response to pandemic
propagation, economic issues, social justice issues, climate change adaptation, public health
etc.

For instance, consider the example of the COVID-19 infection data. Studying the con-
firmed case and death trends across various countries, states or counties could highlight
and identify the most (or least) significant public policies. One possible approach to study
the data could be to monitor each time series [13, 55, 81] and identify sudden outbreaks or
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(a) Total Confirmed Cases

(b) Total Deaths
Figure 5.1: Top 5 anomalous counties identified by the proposed LAD algorithm based on
the daily multivariate time-series, consisting of cumulative COVID-19 per-capita infections
and deaths. At any time instance, the algorithm analyzes the bivariate time series for all the
counties to identify anomalies. The time-series for the non-anomalous counties are plotted
(light-gray) in the background for reference. For the counties in New York (Westchester,
New York and Orange), the number of confirmed cases (top), and the significant rise during
early 2021 along with the consistently high death rates, is the primary cause for anomaly1.
On the other hand, Washington and Linn County in Oregon were identified as anomalous
primarily due to their steady low rates compared to the rest of the counties.

significant causal events. However, such methods study each time series individually and
cannot be used to detect the gradual divergence from the normal trends or initial signs of
such drift.

In this part of the thesis, we propose a new anomaly detection algorithm called Large

deviations Anomaly Detection (LAD), for large/high-dimensional data and multivariate time
series data. LAD uses the rate function from large deviations principle (LDP) [23, 77,

1In early January 2021, a highly contagious variant from the UK was found
in NY state. In addition to the above, the post holiday surge was seen in the
form of increased hospitalizations during this period - https://abc7ny.com/
uk-lockdown-covid-variant-nyc-vaccine-hospitalizations-19-deaths/
9340767/
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76] to deduce anomaly scores for the underlying data. Core ideas for the algorithm are
inspired by the large deviation theory’s projection theorem that allows better handling of
high dimensional data. Unlike most high dimensional anomaly detection models, LAD does
not incorporate feature selection or dimensionality reduction, which makes it ideal to study
multiple time series in an online mode. The intuition behind the LAD model allows it to
naturally segregate the anomalous observations at each time step while comparing multiple
multivariate time series simultaneously. The key contributions of this part are following:

1. We propose the Large deviations Anomaly Detection (LAD) algorithm, a novel and
highly scalable LDP based methodology, for scoring based anomaly detection.

2. The proposed LAD model is capable of analyzing large and high dimensional datasets
without additional dimensionality reduction procedures thereby allowing more accu-
rate and cost effective anomaly detection.

3. An online extension of the LAD model is presented to detect anomalies in a mul-
tivariate time series database using an evolving anomaly score for each time series.
The anomaly score varies with time and can be used to track developing anomalous
behavior.

4. We perform an empirical study on publicly available anomaly detection benchmark
datasets to analyze the robustness and performance of the proposed method on high
dimensional and large datasets.

5. We present a detailed analysis of COVID-19 trends for US counties where we identify
counties with anomalous behavior (See Figure 5.1 for an illustration).

5.2 Related Work

In this section, we provide a brief overview of relevant anomaly detection methods which
have been proposed for high-dimensional data and for multivariate time-series data. We also
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discuss other works that have used the large deviations principle for detecting anomalies.
A large body of research exists on studying anomalies in high dimensional data [1, 5] but

challenges remain. Many anomaly detection algorithms use dimensionality reduction tech-
niques as a pre-processing step to anomaly detection. However, many high dimensional
anomalies can only be detected in high dimensional problem settings and dimensionality
reduction in such settings can lead to false negatives. Many methods exist that identify
anomalies on high-dimensional data without dimensional reduction or feature selection, e.g.
by using distance metrics. Elliptic Envelope (EE) [65] fits an ellipse around data centers
by fitting robust covariance estimates. Isolation Forest (I-Forest) [53] uses recursive parti-
tioning by random feature selection and isolating outlier observations. 𝑘 nearest neighbor

outlier detection (kNN) [62] uses distance from nearest neighbor to get anomaly scores. lo-

cal outlier factor (LOF) [12] uses deviation in local densities with respect to its neighbors to
detect anomalies. k-means-- (Chawla and Gionis, 2013) method uses distance from near-
est cluster centers to jointly perform clustering and anomaly detection. Concentration Free

Outlier Factor (CFOF) [4] uses a “reverse nearest neighbor-based score” which measures
the number of nearest neighbors required for a point to have a set proportion of data within
its envelope. In particular, methods like I-Forest and CFOF are targeted towards anomaly
detection in high dimensional datasets.

In most settings, real time detection of anomalies is needed to dispatch necessary pre-
ventive measures for damage control. Such problem formulation requires collectively mon-
itoring a high dimensional time series database to identify anomalies in real time. Recently,
large deviations theory has been widely applied in the fields of climate models [22], statis-
tical mechanics [74], networks [60], etc. Specially for analysis of time series, the theory
of large deviations has proven to be of great interest over recent decades [11, 57]. How-
ever, these methods are data specific, often study individual time series and are difficult to
generalize to other areas of research.

Anomaly detection for time series have been extensively explored in the literature [43],
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though most focus has been on identifying anomalous events in a single time-series. While,
the task of detecting anomalous time series in a collection of time series has been studied
in the past [80, 15, 17], most of these works have focused on univariate time series and
have not easy to scale to long time series data. Our proposed method addresses this issue
by using the large deviation principle.

5.3 Large Deviation Principle

Large deviations theory provides techniques to derive the probability of rare events2 that
have an asymptotically exact exponential approximation[23, 77, 76]. In this section, we
briefly go over the large deviation theory and different ways to generate the rate functions
required for the large deviations principle.

The key concept of this theory is the Large Deviations Principle (LDP). The principle
describes the exponential decay of the probabilities for the mean of random variables. The
rate of decay is characterized by the rate function . The theorem is detailed below:

Theorem 4. A family of probability measures {𝜇𝜖}𝜖>0 on a Polish space  is said to satisfy

large deviation principle (LDP) with the rate function  ∶  → [0,∞] if:

1.  has compact level sets and is not identically infinite

2. 𝑙𝑖𝑚𝑖𝑛𝑓𝜖→0𝜖𝑙𝑜𝑔𝜇𝜖() ≥ −() ∀ ⊆  open sets

3. 𝑙𝑖𝑚𝑠𝑢𝑝𝜖→0𝜖𝑙𝑜𝑔𝜇𝜖() ≤ −() ∀ ⊆  closed sets

where, () = 𝑖𝑛𝑓𝑥∈(𝑥),  ⊆ 

To implement LDP on known data with known distributions, it is important to decipher
the rate function . Cramer’s Theorem provides the relation between the rate function 

and the logarithmic moment generating function Λ.
2In our context, these rare events include outlier/anomalous behaviors.
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Definition 6. The logarithmic moment generating function of a random variable 𝑋 is de-

fined as

Λ(𝑡) = log𝐸[exp(𝑡𝑋)] (5.1)

Theorem 5 (Cramer’s Theorem). Let 𝑋1, 𝑋2,…𝑋𝑛 be a sequence of iid real random vari-

ables with finite logarithmic moment generating function, e.g. Λ(𝑡) <∞ for all 𝑡 ∈ ℝ. Then

the law for the empirical average satisfies the large deviations principle with rate 𝜖 = 1∕𝑛

and rate function is given by

(𝑥) ∶= sup
𝑡∈ℝ

(𝑡𝑥 − Λ(𝑡)) ∀𝑡 ∈ ℝ (5.2)

Thus, we get,

lim
𝑛→∞

1
𝑛
log

(

𝑃

(

𝑛
∑

𝑖=1
𝑋𝑖 ≥ 𝑛𝑥

))

= −(𝑥), ∀𝑥 > 𝐸[𝑋1] (5.3)

For more complex distributions, identifying the rate function using the logarithmic mo-
ment generating function can be challenging. Many methods like the contraction principle
and the exponential tilting exist that extend rate functions from one topological space that
satisfies LDP to the topological spaces of interest[23]. For our work, we are interested in
the Dawson-Gärtner Projective LDP, that generates the rate function using nested family of
projections.

Theorem 6. Dawson-Gärtner Projective LDP: Let {𝜋𝑁}𝑁∈ℕ be a nested family of projec-

tions acting on s.t. ∪𝑁∈ℕ𝜋𝑁 is the identity. Let𝑁 = 𝜋𝑁 and𝜇𝑁𝜖 = 𝜇0◦(𝜋𝑁 )−1, 𝑁 ∈ ℕ.

If ∀𝑁 ∈  , the family {𝜇𝑁𝜖 }𝜖>0 satisfies the LDP on𝑁 with rate function 𝑁 , then {𝜇𝜖}𝜖>0

satisfies the LDP with rate function 𝐼 given by,

(𝑥) = 𝑠𝑢𝑝𝑁∈ℕ𝑁 (𝜋𝑁𝑥) 𝑥 ∈ 
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Since 𝑁 (𝑦) = 𝑖𝑛𝑓{𝑥∈|𝜋𝑁 (𝑥)=𝑦}(𝑥), 𝑦 ∈  , the supremum defining  is monotone in N

because projections are nested.

The theorem allows extending the rate function from a lower projection to a higher
projection space. The implementation of this theorem in the LAD model is discussed in
Section 6.1.
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Chapter 6

Large Deviations Based Anomaly

Detection (LAD) for Time Series

Databases

6.1 Methodology

Consider the case of multivariate time series data. Let {𝐭𝐧}𝐍𝐧=𝟏 be a set of multivariate time
series datasets where 𝐭𝐧 = (𝐭𝐧,𝟏,… , 𝐭𝐧,𝐓) is a time series of length 𝑇 and each 𝐭𝐧,𝐭 has 𝑑
attributes. The motivation is to identify anomalous 𝐭𝐧 that diverge significantly from the
non-anomalous counterparts at any given time steps or a time window.

The main challenge is to design a score for individual time series that evolves in a tem-
poral setting as well as enables tracking the initial time of deviation as well as the scale of
deviation from the normal trend.

As shown in the following sections, our model addresses the problem through the use
of rate functions derived from the large deviations principle. We use the Dawson-Gärtner
Projective LDP (See Section 6.1.2) for projecting the rate function to a low dimensional
setting while preserving anomalous instances.
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The extension to temporal data (See Section 6.1.3) is done by collectively studying each
time series data as one observation.

6.1.1 Large Deviations for Anomaly Detection

Our approach uses a direct implementation of LDP to derive the rate function values for
each observation. As the theory focuses on extremely rare events, the raw probabilities
associated with them are usually very small [77, 23, 76]. However, the LDP provides a rate
function that is useful as a scoring metric for our LAD model.

Consider a dataset 𝑋 of size 𝑛. Let 𝐚 = {𝐚𝟏,… , 𝐚𝐧} and 𝐈 = {𝐈𝟏,… , 𝐈𝐧} be anomaly
score and anomaly label vectors for the observations respectively such that 𝑎𝑖 ∈ [0, 1] and
𝐼𝑖 ∈ {0, 1} ∀𝑖 ∈ {1, 2,… , 𝑛}.

By large deviations principle, we know that for a given dataset𝑋 of size 𝑛, 𝑃 (�̄� = 𝑝) ≈

𝑒−𝑛(𝑝). Assuming that the underlying data is standard Gaussian distribution with mean 0
and variance 1, we can use the rate function for Gaussian data where (𝑝) = 𝑝2

2
. Then the

resulting probability that the sample mean is 𝑝 is given by:

𝑃 (�̄� = 𝑝) ≈ 𝑒−𝑛
𝑝2
2 (6.1)

Now, in presence of an anomalous observation 𝑥𝑎, the sample mean is shifted by ap-
proximately 𝑥𝑎∕𝑛 for large 𝑛. Thus, the probability of the shifted mean being the true mean
is given by,

𝑃 (�̄� = 𝑥𝑎∕𝑛) ≈ 𝑒−
𝑥2𝑎
2𝑛 (6.2)

However, for large n and |𝑥𝑎| << 1, the above probabilities decay exponentially which
significantly reduces their effectiveness for anomaly detection. Thus, we use 𝑥2𝑎

2𝑛
as the

anomaly score for our model. Thus generalizing this, the anomaly score for each individual
observation is given by:

𝑎𝑖 = 𝑛(𝑥𝑖) ∀𝑖 ∈ {1, 2,… , 𝑛} (6.3)
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6.1.2 LDP for High Dimensional Data

High dimensional data pose significant challenges to anomaly detection. The presence of
redundant or irrelevant features acts as noise, making anomaly detection difficult. However,
dimensionality reduction can impact anomalies that arise from less significant features of the
datasets. To address this, we use the Dawson-Gärtner Projective theorem in the LAD model
to compute the rate function for high dimensional data. The theorem records the maximum
value across all projections which preserves the anomaly score making it optimal to detect
anomalies in high dimensional data. The model algorithm is presented in Algorithm 4.
Algorithm 4 Algorithm 1: LAD Model
Input: Dataset 𝑋 of size (𝑛, 𝑑), number of iterations 𝑁𝑖𝑡𝑒𝑟, threshold 𝑡ℎ.
Output: Anomaly score 𝐚
Initialization: Set initial anomaly score and labels 𝐚 and 𝐈 to zero vectors and, entropy
matrix 𝐸 = 0(𝑛,𝑑) where 0(𝑛,𝑑) is a zero matrix of size (𝑛, 𝑑).

1: for each 𝑠 <= 𝑁𝑖𝑡𝑒𝑟 do
2: Subset 𝑋𝑠𝑢𝑏 = 𝑋[𝐼𝑖 == 0]
3: 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[∶, 𝑑𝑖] =

𝑋[∶,𝑑𝑖]− ̄𝑋𝑠𝑢𝑏[∶,𝑑𝑖]
𝑐𝑜𝑣(𝑋𝑠𝑢𝑏[∶,𝑑𝑖])

, ∀𝑑𝑖 ∈ {1,… , 𝑑}
4: 𝐸[𝑖, ∶] = −𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[𝑖]2∕2𝑛, ∀𝑖
5: 𝑎𝑖 = −𝑚𝑎𝑥(𝐸[𝑖, ∶])
6: 𝐚 = 𝐚−𝐦𝐢𝐧(𝐚)

𝐦𝐚𝐱(𝐚)−𝐦𝐢𝐧(𝐚)
7: 𝑡ℎ = 𝑚𝑖𝑛(𝑡ℎ, 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐚, 𝟎.𝟗𝟓)
8: 𝐼𝑖 = 1 if 𝑎𝑖 > 𝑡ℎ, ∀𝑖
9: end for

6.1.3 LAD for Time Series Data

The definition of an anomaly is often contingent on the data and the problem statement.
Broadly, time series anomalies can be categorized into two groups [17]:

1. Divergent trends/Process anomalies: Time series with divergent trends that last for
significant time periods fall into this group. Here, one can argue that the generative
process of such time series could be different from the rest of the non-anomalous
counterparts.
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2. Subsequence anomalies: Such time series have temporally sudden fluctuations or de-
viations from expected behavior which can be deemed as anomalous. These anoma-
lies occur as a subsequence of sudden spikes or fatigues in a time series of relatively
non-anomalous trend.

The online extension of the LAD model is designed to capture anomalous behavior at
each time step. Based on the mode of analysis of the temporal anomaly scores, one can
identify both divergent trends and subsequence anomalies. In this part of the thesis, we
focus on the divergent trends (or process anomalies). In particular, we try to look at the
anomalous trends in COVID-19 cases and deaths in US counties. Studies to collectively
identify divergent trends and subsequence anomalies are being considered as prospective
future work.

In this section, we present an extension of the LAD model to multivariate time series
data. Here, we wish to preserve the temporal dependency as well as dependency across
different features of the time series. Thus, as shown in Algorithm 5, a horizontal stacking
of the data is performed. This allows collective study of temporal and non-temporal features.
To preserve temporal dependency, the anomaly scores and labels are carried on to the next
time step where the labels are then re-evaluated.

As long term anomalies are of interest, time series with temporally longer anomalous
behaviors are ranked more anomalous. The overall time series anomaly score 𝐴𝑛 for each
time series 𝐭𝐧 can be computed as:

𝐴𝑛 =
∑𝑇

𝑡=1 𝐼[𝑛, 𝑡]
𝑇

∀𝑛 (6.4)

For a database of time series with varying lengths, the time series anomaly score is com-
puted by normalizing with respective lengths.

Similarly, the method can be extended to studying anomalies within an individual time
series by breaking the series into a database of sub-sequences of a time series extracted via a
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Algorithm 5 Algorithm 2: LAD for Time series anomaly detection
Input: Time series dataset {𝐭𝐧}𝐍𝐧=𝟏 of size (𝑁, 𝑇 , 𝑑), number of iterations 𝑁𝑖𝑡𝑒𝑟, threshold
𝑡ℎ, window 𝑤.
Output: An array of temporal anomaly scores 𝐚, an array of temporal anomaly labels 𝐼
Initialization: Set initial anomaly score and labels 𝐚 and 𝐈 to zero matrices of size (𝑁, 𝑇 )
and, entropy matrix 𝐸 to a zero matrix of size (𝑁, 𝑇 , 𝑑).

1: for each 𝑡 <= 𝑇 do
2: 𝑋 = ℎ𝑠𝑡𝑎𝑐𝑘( ̄𝑡𝑛,𝑡) where ̄𝑡𝑛,𝑡 = {𝑡𝑛,𝑡−𝑤,… 𝑡𝑛,𝑡}
3: 𝐼[𝑖, 𝑡] = 𝐼[𝑖, 𝑡 − 1]
4: 𝐚[∶, 𝐭] = 𝐚[∶, 𝐭 − 𝟏]
5: for each 𝑠 <= 𝑁𝑖𝑡𝑒𝑟 do
6: Subset non-anomalous time series 𝑋𝑠𝑢𝑏 = {𝑋[𝑖, ∶]|𝐼[𝑖, 𝑡] == 0,∀𝑖}
7: 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[∶, 𝑑𝑖] =

𝑋[∶,𝑑𝑖]− ̄𝑋𝑠𝑢𝑏[∶,𝑑𝑖]
𝑐𝑜𝑣(𝑋𝑠𝑢𝑏[∶,𝑑𝑖])

, ∀𝑑𝑖 ∈ {1, 2,… , 𝑑 ∗ 𝑤}
8: 𝐸[𝑖, ∶] = −𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑[𝑖]2∕2𝑛, ∀𝑖
9: 𝐚[𝐢, 𝐭] = −𝐦𝐚𝐱(𝐄[𝐢, ∶])

10: 𝐚[∶, 𝐭] = 𝐚[∶,𝐭]−𝐦𝐢𝐧(𝐚[∶,𝐭])
𝐦𝐚𝐱(𝐚[∶,𝐭])−𝐦𝐢𝐧(𝐚[∶,𝐭])

11: 𝑡ℎ = 𝑚𝑖𝑛(𝑡ℎ, 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐚[∶, 𝐭], 𝟎.𝟗𝟓)
12: 𝐼[𝑖, 𝑡] = 1 if 𝐚[𝐢, 𝐭] > 𝐭𝐡, ∀𝐢
13: end for
14: end for

sliding window. It must be noted that this approach allows for a retrospective classification
of anomalies.
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Chapter 7

Anomaly Detection for High

Dimensional Data

7.1 Experiments

In this section, we evaluate the performance of the LAD algorithm on multi-aspect datasets.
The following experiments have been conducted to study the model:

1. Anomaly Detection Performance: LAD’s ability to detect real-world anomalies as
compared to state-of-the-art anomaly detection models is evaluated using the ground
truth labels.

2. Handling Large Data: Scalability of the LAD model on large datasets (high observa-
tion count or high dimensionality) are studied.

3. Speed: The computation and execution times of different algorithms are studied and
evaluated.

4. Time series Anomaly Detection: The LAD model is used to classify anomalies in
time series (retrospective study). The model’s performance is compared with similar
scoring based anomaly detection algorithms.
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5. COVID-19 Time Series Data: We study the performance of the LAD model on multi-
ple multivariate time series datasets to identify anomalous instances within each time
step as well anomalous time series amongst many.

7.1.1 Datasets

We consider a variety of publicly available benchmark data sets from Outlier Detection
DataSets/ODDS (Rayana, 2016) (See Tables 7.1) for the experimental evaluation. For
anomaly detection within individual time series, we study univariate time series data from
Numenta Benchmark Datasets [59] (See Tables 7.2). Additionally, for the time series data,
we use COVID-19 deaths and confirmed cases for US counties from John Hopkins COIVD-
19 Data Repository (Dong, Du, and Gardner, 2020). The country level global data for
COVID-19 trends was taken from the Our World in Data Repository (owidcoronavirus,
owidcoronavirus).

Name 𝑁 𝑑 𝑎

HTTP 567498 3 0.39%
MNIST 7603 100 9.207%
Arrhythmia 452 274 14.602%
Shuttle 49097 9 7.151%
Letter 1600 32 6.25%
Musk 3062 166 3.168%
Optdigits 5216 64 2.876%
Satellite Image 6435 36 31.639%
Speech 3686 400 1.655%
SMTP 95156 3 0.032%
Satellite Image-2 5803 36 1.224%
Forest Cover 286048 10 0.96%
KDD99 620098 29 29 0.17%

Table 7.1: High Dimensional and Large Sample Datasets: Description of the benchmark
data sets used for evaluation of the anomaly detection capabilities of the proposed model.
𝑁 - number of instances, 𝑑 - number of attributes and 𝑎 - the fraction of known anomalies
in the data set.
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Dataset 𝑁 𝑎

EC2 CPU UTILIZATION 825CC2 4032 0.09%
EC2 NETWORK IN 257A54 4032 0.1%
EC2 CPU UTILIZATION 5F5533 4032 0.1%
EC2 CPU UTILIZATION AC20CD 4032 0.1%
EC2 CPU UTILIZATION 24AE8D 4032 0.1%
SPEED 7578 1127 0.1%
SPEED 6005 2500 0.1%
OCCUPANCY 6005 2380 0.1%
SPEED T4013 2495 0.1%
ART LOAD BALANCER SPIKES 4032 0.1%
EXCHANGE-3 CPM RESULTS 1538 0.1%
EXCHANGE-4 CPM RESULTS 1643 0.1%
TWITTER VOLUME KO 15851 0.1%
TWITTER VOLUME CVS 15853 0.1%
TWITTER VOLUME CRM 15902 0.1%
MACHINE TEMPERATURE SYSTEM FAILURE 22695 0.1%
EC2 REQUEST LATENCY SYSTEM FAILURE 4032 0.09%
CPU UTILIZATION ASG MISCONFIGURATION 18050 0.08%

Table 7.2: Benchmark Time Series: Description of the benchmark time series used for
evaluation. 𝑁 - number of instances, 𝑑 - number of attributes and 𝑎 - the fraction of known
anomalies in the data set.

7.1.2 Baseline Methods and Parameter Initialization

As described in Section 6.1, LAD falls under the unsupervised learning regime targeted
for high dimensional data, we do not compare with supervised algorithms. For this we
consider Elliptic Envelope (EE) [65], Isolation Forest (I-Forest) [53]1, local outlier factor

(LOF) [12], and Concentration Free Outlier Factor CFOF [4]. The CFOF and LOF models
assign an anomaly score for each data instance, while the rest of the methods provide an
anomaly label. As above mentioned methods have one or more user-defined parameters, we
investigated a range of values for each parameter, and report the best results. For Isolation
Forest, Elliptic Envelope and CFOF, the contamination value is set to the true proportion

1The I-Forest model returns both anomaly scores and anomaly labels. As the classification model outper-
forms its score based counterpart on the above discussed datasets, we only present results on the classification
model.
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of anomalies in the dataset.
To study anomaly detection in time series, the LAD model is compared with other score

based time series anomaly detection algorithms like Twitter AD Vec, Skyline, Earthgecko
Skyline (E.Skyline), Numenta, Relative Entropy (RE), Random Cut Forest (RCF), Win-
dowed Gaussian (WG).

The LAD model relies on a threshold value to classify observations with scores over
the value as strictly anomalous. Though this value is iteratively updated, an initial value is
required by the algorithm. For the LAD model in this part of the thesis, the initial threshold
value for the experiment is set to 0.95 for all datasets.

All the methods for anomaly detection benchmark datasets are implemented in Python
and all experiments were conducted on a 2.7 GHz Quad-Core Intel Core i7 processor with
a 16 GB RAM.

7.1.3 Evaluation Metrics

As LAD is a score based algorithm, we study the ROC curves by comparing the True Pos-
itive Rate (TPR) and False Positive Rate (FPR), across various thresholds. The final ROC-
AUC (Area under the ROC curve) is reported for evaluation.

For anomaly detection within individual time series, we use the F-measure as the eval-
uation metric to study the overall performance of the model. Since all the models re-
turn anomaly scores, thresholds were used to classify observations as anomalous vs non-
anomalous. Threshold was set to be the maximum score in the truly non-anomalous data
for each model and the observations with scores higher than the set threshold were labeled
anomalous. This is to ensure that the model is able to distinguish anomalies from the rest
of the data.

For time series database anomaly detection, we present the final outliers and study their
deviations from normal baselines under different model settings.
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7.1.4 Anomaly Detection Performance

We present the results on small and large datasets. The Table 7.3 presents data description
of small datasets for evaluation. Table 7.4 shows the performance of the LAD model on
these datasets. It can be seen that LAD outperforms other algorithms in most datasets.

Name 𝑁 𝑑 𝑎

Pima 768 8 34.896%
Wine 129 13 7.752%
Cardio 1831 21 9.612%
Pendigits 6870 16 2.271%
Thyroid 3772 6 2.466%
Vowels 1456 12 3.434%
Breast cancer 683 9 34.993%
Lympho 148 18 4.054%
Annthyroid 7200 6 7.417%
WBC 378 30 5.556%
Mammography 11183 6 2.325%
Glass 214 9 4.206%
Cover 286048 10 0.96%
Vertebral 240 6 12.5%

Table 7.3: Description of the benchmark data sets used for evaluation of the anomaly de-
tection (source: Outlier Detection DataSets /ODDS (Rayana, 2016)) capabilities of the pro-
posed model. 𝑁 - number of instances, 𝑑 - number of attributes, and 𝑎 - the fraction of
known anomalies in the data set.

Table 7.5 shows the performance of LOF, I-Forest, EE, CFOF and LAD on anomaly
detection benchmark datasets. Due to relatively large run-time2, CFOF results are shown
for datasets with samples less than 10k. For all the listed algorithms, results for the best
parameter settings are reported. The proposed LAD model outperforms other methods on
most data sets. For larger and high-dimensional datasets, it can be seen from Table 7.5 that
the LAD model outperforms all the models in most settings.3

To study the LAD model’s computational effectiveness, we study the computation time
2The CFOF model is computationally expensive relative to the rest of the algorithms. As it is aimed to

study high-dimensional data, only results on datasets with <10k observations are presented.
3The lowest AUC values for the LAD model are observed for Speech and Optdigits data where multiple

true clusters are noted.
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Table 7.4: Comparing LAD with existing anomaly detection algorithms using ROC-AUC
as the evaluation metric.
Data LOF KMeans– KNN OCSVM iForest EE LAD
PIMA 0.59 0.64 0.64 0.52 0.62 0.62 0.68
VERTEBRAL 0.51 0.43 0.36 0.61 0.45 0.43 0.35
THYROID 0.62 0.56 0.95 0.51 0.77 0.82 0.92
WBC 0.95 0.8 0.94 0.47 0.8 0.7 0.95
CARDIO 0.59 0.81 0.87 0.57 0.76 0.71 0.96
MAMMOGRAPHY 0.74 0.63 0.85 0.55 0.6 0.49 0.87
GLASS 0.72 0.54 0.87 0.73 0.54 0.48 0.73
BREASTW 0.35 0.23 0.99 0.81 0.95 0.95 0.96
VOWELS 0.89 0.58 0.81 0.64 0.6 0.51 0.77
PENDIGITS 0.54 0.59 0.74 0.51 0.71 0.54 0.91
AVERAGE RANK 4.75 5.6 2.85 6.2 5.1 6.2 2.7

Table 7.5: Comparing LAD with existing anomaly detection algorithms for large/ high
dimensional datasets using ROC-AUC as the evaluation metric.

Data LOF I-Forest EE CFOF LAD
SHUTTLE 0.52 0.98 0.96 - 0.99
SATIMAGE-2 0.57 0.95 0.96 0.70 0.99
SATIMAGE 0.51 0.64 0.65 0.55 0.6
KDD99 0.51 0.85 0.54 - 1.0
ARRHYTHMIA 0.61 0.67 0.7 0.56 0.71
OPTDIGITS 0.51 0.52 0.49 0.48
LETTER 0.54 0.54 0.6 0.90 0.6
MUSK 0.5 0.96 0.96 0.49 0.96
HTTP 0.47 0.95 0.95 - 1.0
MNIST 0.5 0.61 0.65 0.75 0.87
COVER 0.51 0.63 0.52 - 0.96
SMTP 0.84 0.83 0.83 - 0.82
SPEECH 0.5 0.53 0.51 0.47 0.47
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(a) Computation time for large datasets

(b) Computation time for high dimensional datasets
Figure 7.1: Computation time for large and high-dimensional datasets: The figure shows
the execution time in seconds for different datasets. The LAD model presents a significant
advantage over other state-of-the-art models as illustrated here.
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and scaling of the LAD model on large and high dimensional datasets. We consider datasets
with more than 10k observations or over 100 features for our analysis. Figures 7.1a and
7.1b show the computation time in seconds for benchmark datasets. It can be seen that the
LAD model has a relatively low computation time, second only to Isolation Forest in most
datasets. In fact, the computation time is more stable for our model as opposed to others in
high dimensional datasets.

(a) LAD scales linearly with the number of records for KDD-99 data

(b) LAD scales linearly with the number of dimensions in KDD-99 data.
Figure 7.2: Computation time for KDD-99 data: The figure shows the scaling of the LAD
model for different number of records and increasing dimensionality of the data.

Figure 7.2a shows the scalability of the LAD with respect to the number of records in
the data. We plot the time needed to run on the first k records of the KDD-99 dataset. Each
record has 29 dimensions. Figure 7.2b shows the scalability of the LAD with respect to the
number of dimensions (linear-scale). We plot the time needed to run on the first 1, 2, ..., 29
dimensions of the KDD-99 dataset. The results confirm the linear scalability of the LAD
with the number of records as well as the number of dimensions.
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7.1.5 Anomaly Detection in Time Series

In Table 7.6, we compare the performance of the LAD model as compared to other score-
based algorithms. In particular, it can be seen that the LAD model with a window length
of 100 has the best anomaly detection performance as compared to other methods in most
datasets.

In particular, we can see that the model has higher anomaly scores for truly anomalous
data as compared to the rest of the time series as seen in Figures 7.3.
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(a) Time Series Performance in CPU Utilization data
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(b) Time Series Performance in Twitter Volume data
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(c) Time Series Performance in CPU Utilization Mis-
configuration
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(d) Time Series Performance in Machine Tempera-
ture System Failure data
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(e) Time Series Performance in Art Load Balancer
Spikes data
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(f) Time Series Performance in Exchange-3 CPM Re-
sults data

Figure 7.3: Anomaly detection within individual time series: The above images illustrate the per-
formance of LAD in comparison to the state of the art time series anomaly detection algorithms.
The anomaly scores for all time series observations are plotted for each algorithm. The dotted grey
line indicates the observations labeled true anomalies within the data.
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Chapter 8

Anomaly Detection in COVID-19 Trends

8.1 Anomaly Detection in Time Series Data

This section presents the results of the LAD model on COVID-19 time series data at the
US county level. Multiple settings were used to understand the data:

1. Deaths and confirmed case trends were considered for analysis

2. Daily New vs Total Counts: Both total cases as well daily new cases were analyzed
for anomaly detection.

3. Complete history vs One Time Step: Two versions of the model were studied where
data from previous time steps were and were not considered. By this, we tried to dis-
tinguish the impact of the history of the time series on identifying anomalous trends.

4. Univariate vs Multivariate Time Series data: To further understand the LAD model,
the deaths and case trends were studied individually as a univariate time series as well
as collectively in a multivariate time series data setting.

5. Time Series of Uniform vs Varying Lengths: Finally, all the above analyses were
conducted on time series data with varying lengths. Here, for each county level time
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series, the time of the first event was considered as initial time step to objectively
study the relative temporal changes in trends.

To bring all the counts to a baseline, the total counts in each time series were scaled to
the respective county population. Missing information was replaced with zeros and counties
with a population less than 100k were eliminated from the study.

8.1.1 Discoveries: US COVID-19 Trends

In this section, we look at the trends since the start of 2020. We look at the daily new case
and daily deaths in US counties. To rank the counties, anomaly scores between January 1
2020 - December 22 2021 were considered to identify most anomalous counties.

Complete history vs One Time Step The full history setting considers the complete his-
tory of the time series and is aimed to capture the most deviant trends over time. The one
time step (or any smaller window) setting is more suitable to study deviations within the
specific window. As we target long term deviating trends, the one time step setting returns
trends that have stayed most deviant throughout the entire time range. This can be seen in
Figures 8.1 and 8.2 where the one time step setting returns trends that have stayed deviant
almost throughout the duration while the full history setting is able to capture significantly
higher overall deviations from normal trends and therefore higher anomaly score. For in-
stance, counties like Mercer(NJ), Union (NJ), that had extensive testing conducted1 were
captured in the one time step model as seen in Figures 8.1c and 8.1d. Similarly, counties in
NY observed a peak in early 2021 2, which was not captured as anomalous in the one time
step model as seen in Figures 8.2a and 8.2b.

1https://www.nj.com/coronavirus/2021/12/more-covid-testing-sites-opening-as-cases-climb-here-are-9-places-to-go.
html

2https://www.newsday.com/news/health/coronavirus/
coronavirus-long-island-deaths-vaccinations-1.50200404
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(a) Total Confirmed, Full History

(b) Total Deaths, Full History

(c) Total Confirmed, One Time Step

(d) Total Deaths, One Time Step
Figure 8.1: Top 5 Counties with Anomalous Trends: Varying lengths, Total Counts, Mul-
tivariate Time Series
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(a) Total Confirmed, Full History

(b) Total Deaths, Full History

(c) Total Confirmed, One Time Step

(d) Total Deaths, One Time Step
Figure 8.2: Top 5 Counties with Anomalous Trends: Uniform lengths, Total Counts, Mul-
tivariate Time Series
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(a) New Confirmed, Full History

(b) New Deaths, Full History
Figure 8.3: Top 5 Counties with Anomalous Trends: Varying lengths, Daily New Counts,
Multivariate Time Series

Univariate vs Multivariate Time series In Figures 8.1, 8.2, 8.3 and 8.4 we see the
anomalous trends in multivariate time series, where total confirmed cases and deaths were
collectively evaluated for anomaly detection. For instance, despite the near-normal trends
in confirmed cases, Kings, Queens and Bronx (NY)3 in Figures 8.1a- 8.1b, were identified
anomalous due to their deviant death trends which significantly contributed to the anomaly
scores. This setting enables identification of time-series with at least one deviating feature.

Daily New vs Total Counts Figures 8.2 and 8.4, show anomalous trends in multivariate
time series for total and daily new counts respectively. It can be seen that the anomaly score
is relatively more erratic for trends new case counts. This is due to the fact that the data for
new case and death counts is more erratic leading to fluctuating normal average as well as
non-smooth anomaly scores. Similar behavior can be seen across Figures 8.1 and 8.3.

3https://www.nbcnewyork.com/news/coronavirus/nyc-mask-mandate-indoors-an-option-if-needed-mayor-says-as-23-nations-report-omicron/
3428102/

93

https://www.nbcnewyork.com/news/coronavirus/nyc-mask-mandate-indoors-an-option-if-needed-mayor-says-as-23-nations-report-omicron/3428102/
https://www.nbcnewyork.com/news/coronavirus/nyc-mask-mandate-indoors-an-option-if-needed-mayor-says-as-23-nations-report-omicron/3428102/


(a) New Confirmed, Full History

(b) New Deaths, Full History
Figure 8.4: Top 5 Counties with Anomalous Trends: Uniform lengths, Daily New Counts,
Multivariate Time Series

(a) Total Confirmed, Full History

(b) Total Deaths, Full History
Figure 8.5: Top 5 Counties with Anomalous Trends: Varying lengths, Total counts
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(a) Total Confirmed, Full History

(b) Total Deaths, Full History
Figure 8.6: Top 5 Counties with Anomalous Trends: Uniform lengths, Total counts

(a) New Confirmed, Full History

(b) New Deaths, Full History
Figure 8.7: Top 5 Counties with Anomalous Trends: Varying lengths, Daily New Counts
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(a) New Confirmed, Full History

(b) New Deaths, Full History
Figure 8.8: Top 5 Counties with Anomalous Trends: Uniform lengths, Daily New Counts

The LAD model on the daily new counts data was able to capture the escalation in
Racine, Wisconsin in Figure 8.4a and 8.4b during late 2020 when multiple meatpacking
plants were tied to COVID-19 cases4.

Uniform Length vs Varying Length Time Series The US county cases and deaths data
consists of time series of uniform lengths. However, not all counties have events recorded
in the early stages. Thus, studying the non-synchronized database creates a bias against
counties with early reported cases. On the other hand, counties with longer reporting on
trends or earlier outbreaks tend to be associated with higher anomaly scores towards the
most recent data due to lack of equally long time series.

This can be seen in Figures 8.2 where counties like Lane, Oregon that was flagged
anomalous due to distinctively low cases due to later outbreak of the pandemic much after

4https://www.jsonline.com/story/news/2020/11/25/meatpacking-plants-tied-more-covid-19-cases-than-known-new-bussiness-outbreak-data-shows/
6376197002/
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many counties in NY, unlike in Figures 8.1 which reports counties in NY with an early start
as highly anomalous in the later stages5.

8.1.2 Global Trends and Emergence of Other COVID-19 Variants

In this section, we study the COVID-19 trends across countries globally. The Coronavirus
Pandemic (COVID-19) Data from Our World in Data [owidcoronavirus] was used for the
analysis. The study includes countries with population more than 5 million only. Trends in
the daily new deaths and confirmed cases (7 day rolling average, right-aligned), biweekly
growth rates in deaths and confirmed cases and case fatality rates were considered collec-
tively as multivariate time series. Two sets of end dates were studied to analyze the onset
of new variants namely the Delta and Omicron variants. Additionally, vaccination trends
among countries were also analyzed.

Delta Variant

We start by considering the global trends post the incidence of the Delta variant. To rank
the trends, we considered behaviors during the 90 day period between May 1 2021 - July 29
2021. It can be seen that China, Egypt, Mexico, Tanzania and Columbia were found most
anomalous. In particular, China and Mexico had a very low per capita weekly average deaths
and confirmed cases. However, the case fatality rate was consistently high 6 indicating
that additional investigation is required to understand the root cause which can be under-
reporting or reporting issues or presence of a new variant.

Omicron Variant

To study the Omicron variant, we looked at the 90 day period data between September 23
2021 - December 21 2021. It can be seen that the countries with the most anomalous trends

5https://time.com/5812569/covid-19-new-york-morgues/
6https://www.reuters.com/business/healthcare-pharmaceuticals/

china-reports-smallest-number-local-covid-19-cases-since-july-2021-08-13/,
https://www.marketwatch.com/story/new-daily-covid-19-cases-and-deaths-spike-to-6-week-highs-as-delta-variant-spreads-rapidly-11625673956
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(a) Daily Confirmed

(b) Daily Deaths

(c) Biweekly Growth Confirmed

(d) Biweekly Growth Deaths
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(e) Fatality Rates
Figure 8.9: Top 5 Countries with Anomalous Trends: Pandemic surge due to Delta vari-
ant. The grey shaded region indicates the time-period of interest used to identify the most
anomalous trends.

include the UK and China. In particular, growth in cases in Egypt, UK and Russia has been
significantly responsible for them being identified as anomalous 7. However, in the case of
Egypt and Russia, the surge in cases were not accounted to the Omicron variant but due to
the COVID wave in their region that happens to coincide with the Omicron emergence 8.

Vaccination Rates

To study trends in vaccination rates, we look at the total vaccinations, total boosters and
people fully vaccinated (per hundred) in the 30 day period November 22 2021 - December
22 2021. We can see that China, South Korea, Italy, UK and Bangladesh were found most
extreme due to the high vaccination rates found in these countries. In particular, the recent
daily vaccination trend in Bangladesh has been relatively higher than the rest of the countries
due to their ’no vaccine, no service’ policy promoting the extreme trend9.

7https://www.cnn.com/2021/12/13/uk/uk-omicron-infections-tidal-wave-gbr-intl/
index.html

8https://www.egyptindependent.com/egypt-has-not-passed-the-peak-of-the-covid-19-fourth-wave/,
https://tass.com/society/1370957

9https://www.thedailystar.net/health/disease/coronavirus/news/
no-vaccine-no-service-2906766

99

https://www.cnn.com/2021/12/13/uk/uk-omicron-infections-tidal-wave-gbr-intl/index.html
https://www.cnn.com/2021/12/13/uk/uk-omicron-infections-tidal-wave-gbr-intl/index.html
https://www.egyptindependent.com/egypt-has-not-passed-the-peak-of-the-covid-19-fourth-wave/
https://tass.com/society/1370957
https://www.thedailystar.net/health/disease/coronavirus/news/no-vaccine-no-service-2906766
https://www.thedailystar.net/health/disease/coronavirus/news/no-vaccine-no-service-2906766


(a) Daily Confirmed

(b) Daily Deaths

(c) Biweekly Growth Confirmed

(d) Biweekly Growth Deaths
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(e) Fatality
Figure 8.10: Top 5 Countries with Anomalous Trends: Pandemic surge during the Omicron
variant. The grey shaded region indicates the time-period of interest used to identify the
most anomalous trends.

(a) Total Vaccinations per 100

(b) Total Boosters per 100
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(a) Total People Fully Vaccinated per 100

(b) Total People Vaccinated per 100

(a) Daily People Vaccinated per 100
Figure 8.13: Top 5 Countries with Anomalous Trends in Vaccinations: Most extreme trends
in vaccinations are illustrated in the figures. The grey shaded region indicates the time-
period of interest used to identify the most anomalous trends.

102



8.2 Conclusion

In this part of the thesis, we propose LAD, a novel scoring algorithm for anomaly detec-
tion in large/high-dimensional data. The algorithm successfully handles high dimensions
by implementing the large deviation theory. Our contributions include reestablishing the
advantages of the large deviations theory to large and high dimensional datasets. We also
present an online extension of the model that is aimed to identify anomalous time series in
a multivariate time series data. The model shows vast potential in scalability and perfor-
mance against baseline methods. The online LAD returns a temporally evolving score for
each time series that allows us to study the deviations in trends relative to the complete time
series database.

A potential extension to the model could include anomalous event detection for each
individual time series. Another possible future work could be extending the model to enable
anomaly detection in multi-modal datasets. Additionally, the online LAD model could be
enhanced to use temporally weighted scores prioritizing recent events.
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Part III

Large Deviations for Accelerating

Neural Networks Training
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Chapter 9

Neural Networks : Sensitivity to

Training Samples

9.1 Introduction

Artificial Neural Networks (ANNs) are assumption free models that gather information from
the provided training data. Due to their design, they are ideal to study complex functional
dependencies between input and output layers. In contrast to traditional statistical models
that use metrics like mean, covariance matrices, probability and confidence intervals, ANNs
rely on patterns observed in training data for model development and fitting. Though this
can be considered useful to develop better fitting architectures than their statistical counter-
parts, specially in datasets with complex data structures, the effect of incorrect or deficient
training data is profound.

In this part of the thesis, we propose a statistically enhanced sampling of the training
data in combination with a novel training method that ensures faster training of the neural
network. The following are the contributions of this research:

1. We propose the LAD Improved Iterative Training (LIIT) strategy that uses a Modified
Training Sample (MTS) to train the neural network.
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2. We present 4 LAD score based sampling strategies to design the MTS. The LAD score
is a large deviations based approach that is computationally inexpensive. Therefore,
one can analyze large and high dimensional datasets without additional dimension-
ality reduction procedures thereby allowing more accurate and cost effective scoring
schema.

3. The use of MTS which is a smaller training sample reduces the cost of computational
time significantly for large datasets.

4. We perform an empirical study on publicly available classification benchmark datasets
to analyze the performance of the proposed method.

The research is limited to simple classification based neural networks in this thesis. The
future works include extending it to more complex ANNs.

9.2 Related Work

In this section, we provide a brief overview of sensitivity to training samples and speed of
neural network training.

Artificial neural networks are powerful for general classification. However, its excellent
performance often depends largely on a huge training set. A large body of research exists
that study the impact of training data size on neural network learning [70, 25]. In particular,
it is evident that smaller training data leads to less efficient models. However, the vast
computational expense associated with training on large sets of data makes the need to
improve training practices essential, specially for online or real-time models.

Many methods that try to model faster neural networks exist. For instance, Wang et
al. (2019) use batch normalization in deep neural networks to improve the convergence
rates. Zhong et al. (2017) work on image classification using their agile convolution neural
network SatCNN, for quick and effective learning with small convolutional kernels and deep
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convolutional layers. However, these works are limited to the domain problems and cannot
be easily scaled to other data types.

Another alternative to improve the training speed can be by modifying the training sam-
ples. For instance, studies like Shanker, Hu, and Hung (1996) look at the effect of standard-
ization of data on the learning of the neural network. Kavzoglu (2009) emphasizes on char-
acteristics of training samples and uses representative training to improve the classification.
These methods, however, fail to study the impact of smaller data on model performance and
efficiency.

In this part of the thesis, we propose a novel training strategy that can be generalized
across domains. The method is used to replicate the true representation of the training
features in a smaller sample which can be in turn used for faster training and convergence.
Due to the proper representation of even the most extreme observations, this method ensures
faster learning with competitive performance.
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Chapter 10

LAD Improved Sequential Training for

Neural Networks

10.1 Methodology

The most important aspect of classification models is the adequacy of the representative
training samples for each class. Although the size of the training data is of considerable
importance, acquiring a large number of representative training data may be impractical
where a large number of classes are involved. In particular, since most observations within
each true class have similar features, multiple samples add low value in terms of novel
information/pattern. In this section, we describe the traditional batch training approach in
brief followed by the LAD Improved Iterative Training approach. We present 4 sampling
strategies used in the LIIT training and their respective algorithms.

10.1.1 Definitions and Terminology

Before describing the detailed methodology, we list out the terminology and corresponding
definitions that are used for this study.

Definition 7. LAD Score is the Large deviations Anomaly Detection (LAD) generated
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anomaly score for each observation in the data.

Definition 8. Full-Training Data is the available complete training dataset for the ANN. It

must be noted that only a subset of the Full Training Data might be used to train the ANN

in the LIIT approach. Hence we present a different terminology to differentiate it from the

training data.

Definition 9. Batch Training is the traditional ANN training method using mini-batches of

training data.

Definition 10. Modified Training Sample (MTS) is a smaller sample generated from the

training data using a specific sampling algorithm.

Definition 11. LAD Improved Iterative Training (LIIT) is the novel improved batch train-

ing approach to train the ANN.

10.1.2 Classification Neural Network

For this analysis, we look at the most basic classification algorithm. Figure 10.1 shows the
architecture of the simple three layer dense neural network.

The model is trained using full training samples with the convergence criterion set to
zero validation loss for 5 epochs with the maximum number of epochs is set to 180. Three
different activation functions, RELU, Tanh, Softmax are used for the three consecutive
dense layers respectively.

A simple model was chosen to study the proof of concept of the representative sampling
strategy presented in the part of the thesis. Further studies are needed to understand the
relation between the model choice and training sampling techniques.

10.1.3 LAD Improved Iterative Training of The Neural Network

Traditionally, in batch training, the full training data is divided into smaller samples or
batches. The ANN learns from each batch sequentially till all the observations from the
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Figure 10.1: Simple Classification Neural Network: The figure illustrates a dense neural
network to classify data into 3 classes. The network takes an input of 10 dimensions and
returns scores for being assigned to each class.

Figure 10.2: Mini-Batch Training Algorithm
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Figure 10.3: LIIT Training Algorithm
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full training data are exhausted, as demonstrated in Figure 10.2. In the LIIT training, we
iteratively design and update the modified training samples, MTS, from the full training
data. At each iteration, we train the ANN using batch training on MTS till convergence.
This partially trained model is then tested on the full training data to identify potential
learning flaws. Since the current work is limited to classification models, the learning flaws
include the misclassified data. The misclassified data is then used to derive the updated
MTS which is used to retrain the ANN. The process is illustrated in Figure 10.3. This is
inspired by Boosting techniques [66] where the subset creation depends on the previous
model. However, unlike in boosting setting, we retrain the same ANN. 1

To determine and extract the MTS sample, any sampling algorithm can be used. How-
ever, to ensure a just representation, we designed 4 LAD score based sampling algorithms
along with the random sampling approach which is used as a baseline. The following are
the sampling strategies used in our analysis:

1. LAD Anomaly only (Repeated Entry): Observations with the highest anomaly
scores in each true class are added to the training batch. Multiple copies of the ob-
servation can be added over iterations when the model fails to classify them after
numerous re-training. See Algorithm 6.

2. LAD Anomaly + Normal (Unique Entry): Equal parts of the high and low anomaly
score observations are sampled for each true class. The final training batch contains
a unique set of observations with no duplicate entries. See Algorithm 7.

3. LAD Anomaly only (Unique Entry): This is similar to the LAD Anomaly only

(Repeated Entry) approach. Observations with the highest anomaly scores in each
true class are added to the training batch. However, the final training batch contains
a unique set of observations with no duplicate entries. See Algorithm 8.

4. LAD Quantile Samples (Repeated Entry): The observations are sampled using
1The LIIT approach is very similar to batch training within the epoch of a neural network.
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different quantiles of the anomaly score for each true class. Multiple copies are main-
tained in the training batch to ensure weighting from under-represented latent classes
within each known true class. See Algorithm 9.

5. Random: In this model, we use random sampling from the available data. See Al-
gorithm 10.

For this part of the thesis, we sample ∼ 5− 6% of the full training data at each iteration
that is later added to the modified training sample. We ensure equal weights for all true
classes for the analysis. The LIIT approach is implemented with 6 iterations (1 initial and
5 updates) which brings to ∼ 30% of the full training sample used in the LIIT approach.
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Algorithm 6 LAD Anomaly only (Repeated Entry)
Input: Dataset 𝑋 of size (𝑛, 𝑑), number of iterations 𝑁𝑖𝑡𝑒𝑟, threshold 𝑡ℎ, number of true
classes in the data 𝐾 , sample size from each class 𝑐𝑠𝑖𝑧𝑒, number of iterations 𝑖𝑖𝑡𝑒𝑟, ANN
classification model 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.
Initialization:
Split data into 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑒𝑠𝑡, 𝑥𝑣𝑎𝑙, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡, 𝑦𝑣𝑎𝑙 (train, test and validation)
Derive LAD score 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 for all observations in training data i.e.
𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 = 𝐿𝐴𝐷(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)

1: 𝑀𝑇𝑆 = [] (create empty MTS sample indices list)
2: for each class 𝑘 do
3: Generate list of indices of all observations in class 𝑘, 𝑖𝑛𝑑𝑘
4: Subset anomaly scores for each class

𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑘]

5: Identify top 𝑐𝑠𝑖𝑧𝑒 observations with least anomaly scores and add them samples to
the 𝑀𝑇𝑆 sample i.e. (most non-anomalous observations)

6: for each iteration 𝑖 ≤ 𝑖𝑖𝑡𝑒𝑟 do
7: Fit the ANN on 𝑀𝑇𝑆 using batch training,

𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑓 𝑖𝑡(𝑥𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆], 𝑦𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆])

8: Predict model classification on 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑧𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥𝑡𝑟𝑎𝑖𝑛)
9: Identify all miss-classified observations’ indices in training data

𝑒𝑟𝑟𝑖𝑛𝑑𝑠 = 𝑛𝑝.𝑤ℎ𝑒𝑟𝑒(𝑧𝑝𝑟𝑒𝑑! = 𝑦𝑡𝑟𝑎𝑖𝑛)

10: for each class 𝑘 do
11: Identify all miss-classified observations 𝑖𝑛𝑑𝑒𝑟𝑟𝑘12: Subset anomaly scores for miss-classified data in class 𝑘

𝑎𝑛𝑎𝑒𝑟𝑟𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑒𝑟𝑟𝑘]

13: Identify 𝑐𝑠𝑖𝑧𝑒 observations with highest anomaly scores from 𝑖𝑛𝑑𝑒𝑟𝑟𝑘 i.e.
(most anomalous observations) and add them to 𝑀𝑇𝑆 sample.

14: end for
15: end for
16: end for
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Algorithm 7 LAD Anomaly + Normal (Unique Entry)
Input: Dataset 𝑋 of size (𝑛, 𝑑), number of iterations 𝑁𝑖𝑡𝑒𝑟, threshold 𝑡ℎ, number of true
classes in the data 𝐾 , sample size from each class 𝑐𝑠𝑖𝑧𝑒, number of iterations 𝑖𝑖𝑡𝑒𝑟, ANN
classification model 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.
Initialization:
Split data into 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑒𝑠𝑡, 𝑥𝑣𝑎𝑙, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡, 𝑦𝑣𝑎𝑙 (train, test and validation)
Derive LAD score 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 for all observations in training data i.e.
𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 = 𝐿𝐴𝐷(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)

1: 𝑀𝑇𝑆 = [] (create empty MTS sample indices list)
2: for each class 𝑘 do
3: Generate list of indices of all observations in class 𝑘, 𝑖𝑛𝑑𝑘
4: Subset anomaly scores for each class

𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑘]

5: Identify top 𝑐𝑠𝑖𝑧𝑒 observations with least anomaly scores and add them samples to
the 𝑀𝑇𝑆 sample i.e. (most non-anomalous observations)

6: for each iteration 𝑖 ≤ 𝑖𝑖𝑡𝑒𝑟 do
7: Fit the ANN on 𝑀𝑇𝑆 using batch training,

𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑓 𝑖𝑡(𝑥𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆], 𝑦𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆])

8: Predict model classification on 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑧𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥𝑡𝑟𝑎𝑖𝑛)
9: Identify all miss-classified observations’ indices in training data

𝑒𝑟𝑟𝑖𝑛𝑑𝑠 = 𝑛𝑝.𝑤ℎ𝑒𝑟𝑒(𝑧𝑝𝑟𝑒𝑑! = 𝑦𝑡𝑟𝑎𝑖𝑛)

10: for each class 𝑘 do
11: Identify all miss-classified observations 𝑖𝑛𝑑𝑒𝑟𝑟𝑘12: Subset anomaly scores for miss-classified data in class 𝑘

𝑎𝑛𝑎𝑒𝑟𝑟𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑒𝑟𝑟𝑘]

13: Identify 𝑐𝑠𝑖𝑧𝑒∕2 observations each for the lowest and highest anomaly scores
from 𝑖𝑛𝑑𝑒𝑟𝑟𝑘 i.e. (most anomalous as well as least anomalous observations) and add
them to the 𝑀𝑇𝑆 sample indices.

14: end for
15: Remove repeated indices in the updated modified training sample,

𝑀𝑇𝑆 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝑀𝑇𝑆)

16: end for
17: end for
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Algorithm 8 LAD Anomaly only (Unique Entry)
Input: Dataset 𝑋 of size (𝑛, 𝑑), number of iterations 𝑁𝑖𝑡𝑒𝑟, threshold 𝑡ℎ, number of true
classes in the data 𝐾 , sample size from each class 𝑐𝑠𝑖𝑧𝑒, number of iterations 𝑖𝑖𝑡𝑒𝑟, ANN
classification model 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.
Initialization:
Split data into 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑒𝑠𝑡, 𝑥𝑣𝑎𝑙, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡, 𝑦𝑣𝑎𝑙 (train, test and validation)
Derive LAD score 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 for all observations in training data i.e.
𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 = 𝐿𝐴𝐷(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)

1: 𝑀𝑇𝑆 = [] (create empty MTS sample indices list)
2: for each class 𝑘 do
3: Generate list of indices of all observations in class 𝑘, 𝑖𝑛𝑑𝑘
4: Subset anomaly scores for each class

𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑘]

5: Identify top 𝑐𝑠𝑖𝑧𝑒 observations with least anomaly scores and add them samples to
the 𝑀𝑇𝑆 sample i.e. (most non-anomalous observations)

6: for each iteration 𝑖 ≤ 𝑖𝑖𝑡𝑒𝑟 do
7: Fit the ANN on 𝑀𝑇𝑆 using batch training,

𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑓 𝑖𝑡(𝑥𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆], 𝑦𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆])

8: Predict model classification on 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑧𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥𝑡𝑟𝑎𝑖𝑛)
9: Identify all miss-classified observations’ indices in training data

𝑒𝑟𝑟𝑖𝑛𝑑𝑠 = 𝑛𝑝.𝑤ℎ𝑒𝑟𝑒(𝑧𝑝𝑟𝑒𝑑! = 𝑦𝑡𝑟𝑎𝑖𝑛)

10: for each class 𝑘 do
11: Identify all miss-classified observations 𝑖𝑛𝑑𝑒𝑟𝑟𝑘12: Subset anomaly scores for miss-classified data in class 𝑘

𝑎𝑛𝑎𝑒𝑟𝑟𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑒𝑟𝑟𝑘]

13: Identify 𝑐𝑠𝑖𝑧𝑒 observations with highest anomaly scores from 𝑖𝑛𝑑𝑒𝑟𝑟𝑘 i.e.
(most anomalous observations) and add them to 𝑀𝑇𝑆 sample.

14: end for
15: Remove repeated indices in the updated modified training sample,

𝑀𝑇𝑆 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝑀𝑇𝑆)

16: end for
17: end for
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Algorithm 9 LAD Quantile Samples (Repeated Entry)
Input: Dataset 𝑋 of size (𝑛, 𝑑), number of iterations 𝑁𝑖𝑡𝑒𝑟, threshold 𝑡ℎ, number of true
classes in the data 𝐾 , sample size from each class 𝑐𝑠𝑖𝑧𝑒, number of iterations 𝑖𝑖𝑡𝑒𝑟, ANN
classification model 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.
Initialization:
Split data into 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑒𝑠𝑡, 𝑥𝑣𝑎𝑙, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡, 𝑦𝑣𝑎𝑙 (train, test and validation)
Derive LAD score 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 for all observations in training data i.e.
𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 = 𝐿𝐴𝐷(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)

1: 𝑀𝑇𝑆 = [] (create empty MTS sample indices list)
2: for each class 𝑘 do
3: Generate list of indices of all observations in class 𝑘, 𝑖𝑛𝑑𝑘
4: Subset anomaly scores for each class

𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑘]

5: Identify top 𝑐𝑠𝑖𝑧𝑒 observations with least anomaly scores and add them samples to
the 𝑀𝑇𝑆 sample i.e. (most non-anomalous observations)

6: for each iteration 𝑖 ≤ 𝑖𝑖𝑡𝑒𝑟 do
7: Fit the ANN on 𝑀𝑇𝑆 using batch training,

𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑓 𝑖𝑡(𝑥𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆], 𝑦𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆])

8: Predict model classification on 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑧𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥𝑡𝑟𝑎𝑖𝑛)
9: Identify all miss-classified observations’ indices in training data

𝑒𝑟𝑟𝑖𝑛𝑑𝑠 = 𝑛𝑝.𝑤ℎ𝑒𝑟𝑒(𝑧𝑝𝑟𝑒𝑑! = 𝑦𝑡𝑟𝑎𝑖𝑛)

10: for each class 𝑘 do
11: Identify all miss-classified observations 𝑖𝑛𝑑𝑒𝑟𝑟𝑘12: Subset anomaly scores for miss-classified data in class 𝑘

𝑎𝑛𝑎𝑒𝑟𝑟𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑒𝑟𝑟𝑘]

13: Identify observations corresponding to 𝑐𝑠𝑖𝑧𝑒 quantiles in 𝑎𝑛𝑎𝑒𝑟𝑟𝑘 scores and
add them to the 𝑀𝑇𝑆 sample indices.

14: end for
15: end for
16: end for
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Algorithm 10 LAD Anomaly only (Repeated Entry)
Input: Dataset 𝑋 of size (𝑛, 𝑑), number of iterations 𝑁𝑖𝑡𝑒𝑟, threshold 𝑡ℎ, number of true
classes in the data 𝐾 , sample size from each class 𝑐𝑠𝑖𝑧𝑒, number of iterations 𝑖𝑖𝑡𝑒𝑟, ANN
classification model 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.
Initialization:
Split data into 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑥𝑡𝑒𝑠𝑡, 𝑥𝑣𝑎𝑙, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑒𝑠𝑡, 𝑦𝑣𝑎𝑙 (train, test and validation)
Derive LAD score 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 for all observations in training data i.e.
𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒 = 𝐿𝐴𝐷(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛)

1: 𝑀𝑇𝑆 = [] (create empty MTS sample indices list)
2: for each class 𝑘 do
3: Generate list of indices of all observations in class 𝑘, 𝑖𝑛𝑑𝑘
4: Subset anomaly scores for each class

𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑘]

5: Randomly sample indices of 𝑐𝑠𝑖𝑧𝑒 observations and add them samples to the 𝑀𝑇𝑆
sample

6: for each iteration 𝑖 ≤ 𝑖𝑖𝑡𝑒𝑟 do
7: Fit the ANN on 𝑀𝑇𝑆 using batch training,

𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑓 𝑖𝑡(𝑥𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆], 𝑦𝑡𝑟𝑎𝑖𝑛[𝑀𝑇𝑆])

8: Predict model classification on 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑧𝑝𝑟𝑒𝑑 = 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑖𝑡.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥𝑡𝑟𝑎𝑖𝑛)
9: Identify all miss-classified observations’ indices in training data

𝑒𝑟𝑟𝑖𝑛𝑑𝑠 = 𝑛𝑝.𝑤ℎ𝑒𝑟𝑒(𝑧𝑝𝑟𝑒𝑑! = 𝑦𝑡𝑟𝑎𝑖𝑛)

10: for each class 𝑘 do
11: Identify all miss-classified observations 𝑖𝑛𝑑𝑒𝑟𝑟𝑘12: Subset anomaly scores for miss-classified data in class 𝑘

𝑎𝑛𝑎𝑒𝑟𝑟𝑘 = 𝑎𝑛𝑎𝑠𝑐𝑜𝑟𝑒[𝑖𝑛𝑑𝑒𝑟𝑟𝑘]

13: Randomly sample indices of 𝑐𝑠𝑖𝑧𝑒 observations and add them samples to the
𝑀𝑇𝑆 sample

14: end for
15: end for
16: end for
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Chapter 11

Neural Networks : Training and

Stability to Perturbations

11.1 Experiments

In this section, we evaluate the classification performance of the simple neural networks on
real data when trained using LAD sub-sampled data. We focus on the performance of the
neural networks under different training and sampling settings.

The following experiments have been conducted to study the model:

1. Computational Expense: The LIIT trained ANN model’s ability to train on a smaller
set of training samples and converge faster is compared to the fully trained model.

2. Classification Performance: The overall performance of the sub-sampled models on
multiple benchmark datasets is studied. For this analysis, we consider Area Under
the Curve (AUC) as the performance metric to study classification.

3. Stability to Perturbations: Perturbations upto 8% are added to the test data which is
used to study the change in performance in all models.

To maintain fair comparison, the number of epochs is fixed to a maximum count of 180 for
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the ANN model trained on the full training data a.k.a. the full model and 30 per iteration of
all the LIIT trained ANNs (totaling to 180 epochs for complete training). For each trained
ANN, we evaluate performance on 5 independent reruns. The average results are presented
for all evaluations.

11.1.1 Datasets

We consider a variety of publicly available benchmark data sets from the UCI-ML reposi-
tory [24]) (See Table 11.1) for the experimental evaluation. For training, test and validation,
the data was randomly split into 80%, 10% and 10% of the data respectively.

Name 𝑁 𝑑 𝑐
Ecoli 336 7 8
Imgseg 2310 18 7
Skin 245057 4 2
Shuttle 58000 10 2
Wisc 699 9 2
Iono 351 33 2
Zoo 101 16 7
Letter 20000 16 26
Comm And Crime 1994 102 2
Vowel 990 10 11
Fault 1941 28 2
Sonar 208 60 2
Balance-Scale 625 4 3
Pageb 5473 11 2
Spambase 4601 58 2
Wave 5000 22 2
Tae 151 3 3
Thy 215 5 3
Opt Digits 5620 63 2
Concrete 1030 9 2

Table 11.1: classification Benchmark Datasets: Description of the benchmark data sets used
for evaluation of the classification detection capabilities of the proposed model. 𝑁 - number
of instances, 𝑑 - number of attributes, 𝑐 - number of true classes in the data set.
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(a)

(b)

(c)
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(d)
Figure 11.1: Computation time for different datasets: The figures illustrate the computa-
tion time for different LIIT trained ANN models in comparison to the ANN trained on full
training data (Full model).

Computational Time

In this section, we look at the time taken by each ANN to train on the datasets. Since the
LIIT trained ANNs use only one-third of the full training data, the training time is evidently
lower as compared to training for the full model. This can be clearly seen in the Figures
11.1.

Model Performance

Now, since the LIIT trained ANN models have a clear computational advantage over the
full model, we look at the overall classification performance on a multitude of benchmark
classification datasets. Table 11.2 shows the performance of the models on each of these
datasets. We use the Area Under the Curve (AUC) as the evaluation metric to study the
classification performance of the models. It is discernible that the Quantile Sampling along
with LIIT trained ANN model is on par with the fully trained model.
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Stability to Perturbations

Since the training samples have a significant influence on the model’s learning and perfor-
mance, we try to look at the stability of the model to various perturbations in the test data.
For this, random noise is sampled from a multivariate normal distribution with the 0 − 8%

of the training data mean and variance and is added to all the observations in the test data.
Each ANN’s performance is evaluated in these settings for all benchmark datasets. The
final classification performances are seen in Figures 11.2. It was interesting to note that dif-
ferent datasets had better and relatively more stable performances using different sampling
strategies.

Now, to see the individual changes in performance to perturbations, we look at the raw
change in AUC values due to the addition of perturbations for all models. Figures 11.3 show
the change in performance for different datasets. In particular, Figures 11.3a and 11.3b show
a group of datasets that show better performance using Quantile (Repeated), while Figures
11.3c - 11.3e show performance on datasets where Anomaly (Unique), Anomaly + Normal
(Repeated) and Anomaly (Repeated) sampling approaches have respectively outperformed.

It can be seen that the Quantile Sample Trained Model has a higher mean AUC as well
as lower deviation in AUC than the fully trained model in most datasets.

Here, we can see that different LIIT models outperform for different datasets. We hy-
pothesize that the data distribution and heterogeneity play important role in the overall per-
formance and stability. We intend to continue the study of the proposed hypothesis as future
research.

11.2 Conclusion

We present a new training strategy for enhancing the learning speed of a neural network
whilst maintaining the performance of the model. We present the LAD Improved Itera-
tive Training (LIIT) which is an improved iterative training version of the traditional batch
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Figure 11.2: Change in AUC over % perturbations added to the data: The figure illustrates
the change in AUC with increase in % perturbations to different datasets. The error-bars
indicate the standard deviations in AUC values for 5 repetitions
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(a) Datasets where Quantile Sampling LIIT trained model shows the best performance

(b) Datasets where Quantile Sampling LIIT trained model shows the best performance

training approach. The LIIT approach uses a modified training sample (MTS) generated
and updated using a LAD score based sampling approach that ensures enough representa-
tion of extreme and rare behaviours. In particular, the LAD score based Quantile Sampling
approach allows ample heterogeneity within the sample data. We study the classification
performance of the LIIT trained ANN in comparison with ANN trained on full training data
on real benchmark datasets. Though the current research is limited to simple classification
neural networks, the work has immense research potential. The LIIT training approach com-
bined with specific LAD sampling methodology might draw out the best performance in a
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(c) Datasets where Anomaly (Unique) LIIT trained model show best performance

dataset based on the data characteristics. Future studies might help understand the impact
of data heterogeneity and sampling method on the performance of ANN.
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(d) Datasets where Anomaly + Normal (Repeated) LIIT trained model show best performance
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(e) Datasets where Anomaly (Repeated) LIIT trained model shows the best performance
Figure 11.3: Total change in AUC over % perturbations added to the data: The figure illus-
trates the mean change in AUC with the increase in % perturbations to different datasets.
The error-bars indicate the standard deviations in AUC values across perturbations.
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Chapter 12

Conclusion

The existing research on anomaly detection for evolving data is mostly limited to studying
anomalies within individual time series. With the explosive growth of temporal data and
collections of time series data over the last decade, the need to develop methods to study
evolving data has been emphasized. This thesis presents two statistically sound approaches
to examine anomalies in evolving settings.

The thesis starts by examining the problem of studying multi-modal evolving data in
streaming settings. We present the INCAD model that performs simultaneous clustering and
anomaly detection for streaming datasets. The model is an amalgamation of the Bayesian
non-parametric model and extreme value theory. By using the Chinese Restaurant process
as a prior, the model can capture new clusters evolving in the streaming without additional
interventions. Being data driven and completely unsupervised, the model is sensitive to
changes in data distribution. Our study reveals that the model has exceptional performance
in capturing anomalies in streams as well as reclassifying labels based on popular behaviors.
However, due to the high complexity associated with the INCAD model, applicability to
large datasets is limited. So, we propose the LAD algorithm.

The LAD approach is a large deviations based anomaly detection algorithm that aims to
capture anomalies in a wide variety of data types. The model uses the rate function to derive
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a probabilistic anomaly score for observations. Due to the ease and scalability of the large
deviations rate functions, the LAD model is particularly fast and efficient. This approach
can be easily extended to studying individual time series as well as a collection of time
series. We present extensive results for this approach in many real benchmark datasets. In
particular, a significant contribution of the thesis includes studying multivariate time series
databases for COVID-19 pandemic data to identify geographical locations with extreme
trends. The research presents a potential channel to study various geographical streams as
a collective set.

Despite its vast versatility, the LAD model is still limited to unimodal data. Extension
to multi-modal data is achievable provided true cluster centers are known for the analysis.
Further future work is needed to extend an unsupervised clustering component to the LAD
model.

Additionally, due to its computational ease and scalability to diverse data types, another
application of the LAD model is to enhance training methodology for neural networks.

Since artificial neural networks (ANNs) are sensitive to the size of training data, a gen-
erous number of samples are required to train an ANN. This demands considerable com-
putational time and resources. We conclude the thesis by providing a preliminary report
on a novel training approach for ANN. The LAD Improved Iterative Training (LIIT) is an
improvised batch training algorithm that ensures a fast and efficient training of ANN. This
approach uses a modified training sample (MTS) derived and updated from the training data
to train the neural network. Multiple LAD score based sampling techniques have been listed
that are used to generate the MTS samples. This thesis presents the performance results of
the multiple LIIT trained ANNs in comparison to the ANN trained on full training data.

We conclude the thesis with a hypothesis that the data heterogeneity plays important role
in the performance of LIIT trained mode. In particular, each LAD score based sampling
algorithm is best suited with a specific data characteristics. However, detailed studies are
recommended to derive a conclusive understanding of the relationship between sampling
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methods and data characteristics. This future work could be critical in developing sampling
algorithms with better representation of the data distribution which can in turn be used to
develop more stable methods.
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