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Abstract

Smart devices play an increasingly important role in our daily life. Uninten-

tional faults and malicious attacks could bring great danger to human lives and

the environment, especially in safety-critical applications like medical devices,

automobiles, building controls and the smart grid. However, due to the fact

that industry is driven by functional requirements and fast-moving markets, a

large number of sensors and devices are distributed in public areas unprotected

and do not have the resources to support complex cryptographic mechanisms,

which makes the authentication of smart devices a big challenge. In this dis-

sertation, we seek to address this issue through exploiting the physical charac-

teristics of their embedded sensors. In particular, we propose and investigate

hardware-rooted device authentication systems which utilize the hardware fin-

gerprint of various on-board sensors as the unique identity of smart Devices.

We first study the security issues underlying the hardware-rooted device au-

thentication. In the literature, an enormous amount of research has been carried

out in an attempt to identify devices through modeling the manufacturing im-

perfections of their built-in transducers. However, the vast majority of the work
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in this area has focused on device tracking and identification. For adversar-

ial settings like forensics and authentication, it remains unclear whether these

methods will provide reliable identification results when the outputs of trans-

ducers are tampered by adversaries intentionally. In our work, we describe

the architecture of hardware-rooted device authentication modalities and pro-

pose two kinds of challenge-response schemes for the authentication of different

transducers. We outline two specific attacks that need to be taken into account

while designing such system and describe several desirable properties that a fin-

gerprinting method should have in order to be applicable for the authentication

scenario.

We then carry out in-depth study on a specific hardware fingerprint named

Photo Response Non-Uniformity (PRNU). PRNU is a reliable hardware finger-

print of digital cameras for image-to-camera matching in digital forensics. Un-

like most hardware fingerprints that are composed of a few features drawn

from the time domain and frequency domain of sensor outputs, this camera

fingerprint is a large matrix consisting of millions of variables, which makes

the fingerprint of each individual camera remarkably unique. This salient fea-

ture makes the PRNU a good candidate for the physical layer proof of a device.

In this thesis, we conduct extensive experiments to understand the characteris-

tics of a smartphone camera’s PRNU and formulate the problem of the finger-

print forgery attack and the replay attack in camera-based authentication. We

present new primitives for the PRNU forgery detection and propose two novel

and practical camera-based smartphone authentication systems.

Finally, in order to further improve the security of camera-based authenti-
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cation systems, we propose a privacy-preserving architecture for on-line image

sharing. We first study the problem of camera fingerprint leakage in current im-

age sharing practices. Our experimental results show that the PRNU fingerprint

is robust enough to survive most image processing operations, including filter-

ing, watermarking, beautifying, and compressing. Most images posted on the

Internet expose the camera fingerprints of their photographing device directly

to the public. These fingerprints enable the adversary not only to launch finger-

print forgery attacks against camera-based smartphone authentication systems,

but also to launch identity linking attacks, which re-identify anonymous social

network accounts through exploiting the digital cameras’ fingerprints that are

carried by the posted images. In order to counter the above attacks, we pro-

pose an intermediary between smartphone users and image sharing platforms

that conceals the camera fingerprint of the photographing device. The proposed

system is enabled to prevent malicious utilizations of camera fingerprint while

preserving the beneficial applications.

xxv



Chapter 1
Introduction

1.1 Motivation

To ensure that smart devices can be trusted to be what they purport to be, it

requres a unique and reliable identity that can be authenticated when a de-

vice attempts to connect to a central server. However, because smart devices

usually have lower memory and processing capabilities, traditional authenti-

cation systems are complex and not ideally suited in securing smart devices.

To address this issue, we propose and investigate hardware-rooted device au-

thentication systems which utilize the hardware fingerprint of various on-board

sensors as the unique identity of smart devices. In addition to the general

study of hardware-rooted device authentication modalities, we also carry out

in-depth study on a specific hardware fingerprint named Photo Response Non-

Uniformity (PRNU) and propose two practical camera-based authentication

systems for smartphones. Moreover, we also identify and address the security

and privacy issues raised by the leakage of camera fingerprint in the current
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image sharing practices.

Hardware-rooted device authentication. Reliably identifying and authen-

ticating heterogeneous smart devices is a challenging topic as most smart de-

vices do not have the resources to support complex cryptographic mechanisms.

This project seeks to address this challenge through verifying the hardware fin-

gerprint of the embedded sensors of smart devices. During the authentication

stage, the verifier needs only to look at the sensor measurements uploaded by

the target device and to verify its device-specific “noise component” (i.e., the

hardware fingerprint), which is particularly light-weight and of low cost. More-

over, such authentication modality can easily be extended to support continu-

ous authentication and multi-factor authentication (for devices with multiple

sensors).

To enable hardware-rooted device authentication, we proposed two kinds of

challenge-response schemes to authenticate sensors of different types (emitter

and receiver). We then investigated the security issues underlying each scheme

and identified two specific attacks: the replay attack and the fingerprint forgery

attack. Based on the proposed system and threat model, we studied the feasibil-

ity of multiple existing fingerprinting approaches and outlined three desirable

properties for a usable hardware fingerprinting method.

Camera-based smartphone authentication. The Photo-Response Non-

Uniformity (PRNU) (Lukas, Fridrich and Goljan, 2006) of an image sensor has

been used as a physical layer fingerprint identifying conventional digital cam-

eras in digital forensics. Given a query image taken by a camera of interest, the

camera can be identified through correlating the query image’s noise residue

against candidate devices’ reference fingerprints. Unlike most hardware finger-

prints that are composed of a few features drawn from the time domain and
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frequency domain of sensor outputs (Dey et al., 2014; Zhou et al., 2014; Brik

et al., 2008), this camera fingerprint is a large matrix consisting of millions of

variables, which makes the fingerprint of each individual camera remarkably

unique. Results have shown that, the PRNU-based identification approach can

accurately differentiate over one million images captured by thousands of de-

vices (Goljan, Fridrich and Filler, 2009). These salient features make the PRNU

a good candidate for the physical layer proof of a smartphone.

The PRNU however is vulnerable against fingerprint forgery attacks. With

a handful of images (e.g., on social media) from a victim smartphone, an ad-

versary can extract the fingerprint of the victim device and embed the obtained

fingerprint into arbitrary images of the same resolution (Goljan, Fridrich and

Chen, 2011; Steinebach et al., 2010). Despite decades of research on camera

fingerprinting, only few detection mechanisms have been proposed to detect

forged fingerprints, and these mechanisms are either impractical or have secu-

rity flaws.

To enable camera-based smartphone authentication, I conducted extensive

experiments to understand the characteristics of a smartphone camera’s PRNU

and designed two authentication systems with reliable forgery detection mech-

anisms: ABC: the idea is to detect forgery attacks through tracking the finger-

print of the adversary’s smartphone. This fingerprint in question is introduced

during the challenge response stage where the adversary is required to capture

a freshly generated QR code. The fingerprint of the adversarial device will be

preserved in forged images, which renders the similarity value between forged

images significantly higher than a normal value. Based on this observation, we

designed ABC, the first forgery-resilient camera-based smartphone authentica-

tion system. CIM: this system innovatively introduced burst mode photograph-
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ing and camera movement into the challenge-response process. It is built on

top of two fundamental observations: (i) Because burst images are captured in

rapid succession, the random noise components of a captured image can be par-

tially preserved across multiple images captured in a row. The preserved noise

forms a forgery-sensitive noisechain embedded in burst images. (ii) There exist

various correlations between the movement of the camera and the noise compo-

nents of the captured images. Both the noisechain and these correlations enable

new detectors for fingerprint forgery attacks.

Obfuscation-based camera fingerprint concealment. To further improve

the security of camera-based authentication systems, we investigate the prob-

lem of fingerprint leakage in current image sharing practices. We evaluated

images from four representative social networks: Facebook, Wechat, Weibo and

Flickr and studied the impact of a comprehensive set of image post-processing

techniques. Our experimental results show that the PRNU fingerprint is robust

enough to survive most image processing operations, including filtering, wa-

termarking, beautifying, and compressing. As a result, most images posted on

Internet carries the unique hardware fingerprint of the photographing device.

Camera fingerprints are directly exposed to the public, which gives rise to secu-

rity and privacy issues. For instance, an adversary can use these leaked finger-

prints to launch fingerprint forgery attacks against camera-based smartphone

authentication systems. The adversary can also use them to launch identity

linking attacks, which re-identify anonymous social network accounts through

exploiting the camera fingerprints that are carried by the posted images.

In order to protect users’ camera fingerprints from being leaked, we propose

to introduce an intermediary between smartphone cameras and social medias.

It conceals the camera fingerprint of the image of interest before uploading it to
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the Internet. The objective of the fingerprint concealment mechanism is to pre-

vent malicious uses of PRNU while preserving the beneficial ones. This requires

our system to conceal the PRNU fingerprint of an image without removing it,

which is a grand challenge. The idea is to obfuscate the PRNU fingerprint of an

image through embedding an irremovable noise component. With a specially

designed noise component, the similarity between two sanitized images is al-

ways high, whether or not they are captured by the same device. An adversary

can no longer use thresholding to determine if two images are captured by the

same device. Moreover, using the embedded noise component as a probe, a

fake fingerprint extracted from a user’s online images can be easily detected.

Meaning while, beneficial applications of PRNU are preserved because sani-

tized images will still carry the fingerprint of the photographing device.

1.2 Contribution

In this dissertation, we seek to strengthen security and reliance for smart devices

through exploiting the physical characteristics of their embedded sensors. The

research issues we addressed are summarized below:

From Hardware Fingerprinting to Multi-factor Authentication: in chapter

2, we investigate the feasibility of using a hardware fingerprint as the unique

identity of a smartphone. We discuss various security issues underlying the

hardware-rooted smartphone authentication and outline two specific attacks

that need to be taken into account while designing such system. We also de-

scribe several desirable properties that a fingerprinting method should have in

order to be applicable for the authentication scenario. Several classical finger-

printing methods are studied, and their security and usability are analyzed.
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PRNU-based Smartphone Camera Identification and Authentication: in

chapter 3, we propose ABC, a real-time smartphone Authentication protocol

utilizing the photo-response non-uniformity (PRNU) of the Built-in Camera. In

contrast to previous works that require tens of images to build reliable PRNU

features for conventional cameras, we are the first to observe that one image

alone can uniquely identify a smartphone due to the unique PRNU of a smart-

phone image sensor. This new discovery makes the use of PRNU practical

for smartphone authentication. While most existing hardware fingerprints are

vulnerable against forgery attacks, ABC defeats forgery attacks by verifying a

smartphone’s PRNU identity through a challenge response protocol using a vis-

ible light communication channel. A user captures two time-variant QR codes

and sends the two images to a server, which verifies the identity by fingerprint

and image content matching. The time-variant QR codes can also defeat replay

attacks. Our experiments with 16,000 images over 40 smartphones show that

ABC can efficiently authenticate user devices with an error rate less than 0.5%.

Towards Practical Camera-based Smartphone Authentication via Camera

Movement and Continuous Photographing: in chapter 4, we propose CIM, a

practical and reliable camera-based smartphone authentication system. In CIM,

a user is asked to move his/her smartphone along a specific route, take pictures

of QR codes displayed on the verifier’s interface in burst mode, and submit

particular burst pictures to the verifier for authentication. We find that, because

burst images are captured in rapid succession, the random noise components

of a captured image can be partially preserved across multiple images captured

in a row. The preserved noise forms a forgery-sensitive noisechain embedded

in burst images. We also find that there exist various correlations between the

movement of the camera and the noise components of the captured images. The
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noisechain and these correlations are then explored for forgery detection. We

performed extensive experiments with 22 smartphones of 5 different models.

Our experiment results show that CIM can achieve 100% true acceptance rate at

0% false acceptance rate in both fingerprint matching and forgery detection.

Preventing Camera Fingerprint Leakage via Obfuscation-based Finger-

print Concealment: in chapter 5, we first evaluate the effectiveness of several

critical attacks caused by camera fingerprint leakage. We then propose CFP,

an intermediary between smartphone users and image sharing platforms that

conceals the camera fingerprint of the photographing device. Instead of remov-

ing the camera fingerprint from the image of interest, our system protects user

privacy through obfuscating the camera fingerprint with a specially designed

random perturbation component. With such design, the proposed system is

enabled to prevent malicious utilizations of camera fingerprint while preserv-

ing the beneficial applications. Extensive experiments are conducted to demon-

strate the effectiveness and efficiency of the CFP system on various social plat-

forms. Using the CFP obfuscated images, the True Positive Rate of identity

linking attacks is reduced by around 85%. For identity forgery attacks, our sys-

tem enables an effective detection mechanism that could achieve 100% detection

rate.

1.3 Roadmap

The rest of this dissertation is organized as follows.:

Chapter 2 explore authentication modalities that verify a smartphone’s iden-

tity through tracking the hardware fingerprints of its built-in transducers. We

begin with an overview of hardware fingerprinting approaches in section 2.2.
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Section 2.3 describes the architecture of hardware-rooted smartphone authenti-

cation systems, focusing on the players involved and the communication chan-

nels. Section 2.4 studies several existing fingerprinting methods and discuss

their performance under replay attacks and fingerprint forgery attacks. Section

2.5 concludes this chapter.

Chapter 3 demonstrates the feasibility of using PRNU as a smartphone’s

unique identity and presents our first camera-based smartphone authentication

system. We begin with reviewing the current PRNU-based digital camera fin-

gerprinting method in Section 3.2. Section 3.3 formulates the problem to be

addressed in this chapter. Section 3.4 presents our smartphone authentication

protocol. Section 3.5 analyzes the security feature of the proposed protocol. Sec-

tion 3.6 conducts the performance evaluation. Section 3.7 reviews the related

existing work on hardware fingerprinting. Section 3.8 concludes this chapter.

Chapter 4 presents new primitives for the PRNU forgery detection and in-

troduce a new camera-based smartphone authentication protocol which is more

practical and more secure. Section 4.2 reviews related work. Section 4.3 in-

troduces background knowledge for camera-based smartphone authentication.

We present and validate the two primitives for forgery detection in Section 4.4.

Section 4.5 gives the design of CIM. Section 4.6 and Section 4.7 evaluates CIM

with extensive experiments. Section 4.9 concludes this chapter.

Chapter 5 highlights and evaluates the critical attacks caused by camera fin-

gerprint leakage and proposes a real-time fingerprint concealment system to

counter the attacks. We first introduce the background knowledge in Section

5.2. Section 5.3 highlights two specific attacks and evaluates their effectiveness

on current image sharing practices. Section 5.4 discusses the failure of finger-

print removal and gives the design of CFP in detail. Section 5.5 evaluates the
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proposed system with extensive experiments. Section 5.6 concludes this chap-

ter.

Chapter 6 concludes this dissertation and discuss several directions for my

future work.



Chapter 2
From Hardware Fingerprinting to

Multi-factor Authentication

2.1 Introduction

Driven by the concern of password and fingerprint leakage, many organiza-

tions today tend to use the smartphone that a user already carry as an extra

authentication factor in order to provide enhanced security as well as conve-

nience. The verification of a smartphone is typically carried out through check-

ing a software-level identity or a hardware-level component. A software-level

identity can be a cryptographic private key or a public identification number.

While the key is normally private to a specific device, it is vulnerable to relay

attacks and device clones (Danev, Zanetti and Capkun, 2012). A hardware-level

component is a hardware platform (e.g., the Secure Element) designed to se-

curely host applications and store cryptographic data. Although this approach

can provide enhanced security, its scalability is limited by the requirement of

additional hardware.
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One promising direction to authenticate a smartphone is to verify the hard-

ware fingerprints of its built-in transducers. A transducer is a device that con-

verts a signal from one form to another. Its hardware fingerprint refers to a

pattern noise on its output signal incurred by manufacturing imperfection. For

most types of transducers, the hardware fingerprint remains constant over time

and is difficult to replicate physically, making it a good candidate for the physi-

cal layer proof of a smartphone.

In this article, we first describe the architecture of hardware-rooted smart-

phone authentication modalities, focusing on the players involved and their

communication channels. Two kinds of challenge-response schemes are pro-

posed for the authentication of different transducers: Emitter-based scheme and

Receiver-based scheme. We then discuss the security issues underlying each

scheme and identify specific attacks. The desirable properties of a hardware

fingerprinting method is also discussed in the context of smartphone authenti-

cation. Finally, to explore the solution space, we study several existing finger-

printing methods and analyze their suitability for hardware-rooted smartphone

authentication systems.

2.2 Hardware Fingerprinting Overview

In this paper, a hardware fingerprint refers to the physical feature of a trans-

ducer exploited for the identification of a smartphone. During the transforma-

tion of an input signal, a transducer usually introduce a systematic distortion

into its output signal due to manufacturing imperfection. As this distortion re-

mains constant overtime, it has widely been explored to track smartphones.

There is a rich set of transducers that have been demonstrated to have unique
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fingerprints (Fig. 2.1). An acoustic sensor’s fingerprint is its frequency response

curve in a given frequency range. The fingerprint of an image sensor is caused

by the non-uniform dimension of its pixels. It introduces a constant white Gaus-

sian noise into every image captured by the smartphone. For wireless transmit-

ters, their fingerprints mostly come from the front-end components like ampli-

fiers and filters. For motion sensors, their fingerprints come from the imperfec-

tion of their electro-mechanical structure which results in calibration errors and

some statistical features. The magnetometers are also known to have calibration

errors (linear bias). This rich set of hardware fingerprints provide a variety of

modalities for smartphone authentication.

The verification of a smartphone’s hardware fingerprint involves two stages:

a training stage and an identification stage. During the training stage, the verifier

collects a number of signals generated by a transducer on the target smartphone

and extracts the fingerprint shared by those signals. The form of the fingerprint

and the extraction process may vary depending on the type of the transducer.

During the identification stage, the verifier checks if a query device is the target

smartphone it claimed to be. She first catches a signal known to be generated by

the query device. Then, she extracts the fingerprint on that signal and matches

it to the fingerprint record of the target smartphone. The matching method also

varies depending on the type of the transducer.

Using above procedures, most fingerprinting methods can achieve high ac-

curacy under lab settings. However, in real-world deployment, there are many

environmental factors that could affect their identification results. In section 2.4,

we will use examples to discuss the impact of different factors and how they can

help/hinder the design of authentication systems.
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Figure 2.1. Sensors in a smartphone

Figure 2.2. System model

2.3 Hardware-rooted Smartphone Authentication

2.3.1 Architecture

A hardware-rooted smartphone authentication system involves three entities: a

user, her smartphone, and a verifier. As illustrated in Fig. 2.2, the user is an

individual that needs to be authenticated into the system. She tries to prove

her identity to the verifier using her smartphone. The smartphone serves as

a possession factor and is identified by the hardware fingerprint of its built-in

transducer. The verifier consists of a terminal and a server. She uses the ter-

minal to interact with the user and to collect the signal generated by the user’s

smartphone. Her server maintains the fingerprint database and determines the

identity of smartphones.

Like all other authentication systems, the essence of a hardware-rooted
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smartphone authentication system is the challenge-response scheme. Depend-

ing on the form of the applied transducer, challenge-response schemes can be

classified into two categories: Emitter-based scheme: the transducer applied in

this scheme is an emitter that converts electrical signals to other signals. During

the challenge-response stage, the verifier sends a stimulation signal to the user’s

smartphone through a digital channel (e.g., WiFi). The user then feeds the re-

ceived signal into the transducer on her smartphone. Finally, the verifier uses a

receiver on her terminal to collect the signal emitted by the transducer. Receiver-

based scheme: the applied transducer is a receiver that converts other signals to

electrical signals. In this case, the verifier directly emits a stimulation signal

(e.g., an audio ) via an emitter on her terminal. The user uses her smartphone to

convert the stimulation signal to an electrical signal and transmits the obtained

signal to the verifier through a digital channel. For both scheme, the verifier

determines the identity of the smartphone through checking the fingerprint on

the collected signal.

It is important to note that, in most cases, the signal collected by the verifier

will also contain the fingerprint of the verifier’s emitter/receiver. For instance,

in the speaker-based scheme, the frequency response curve extracted from the

received audio will be a product of the speaker’s frequency response and the

microphone’s. Therefore, the verifier should always eliminate the fingerprint of

her device before conducting fingerprint matching.

2.3.2 Security Threats and Attacks

In this article, we consider the existence of malicious users impersonating le-

gitimate ones. The objective of a malicious user is to convince the verifier that
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Figure 2.3. Challenge-response schemes: a) emitter-based scheme; b) receiver-based
scheme.

a transducer on her smartphone is the one associated with a legitimate user.

Although it is difficult for an adversary to steal or to physically replicate the

transducer inside a user’s smartphone, she might be able to collect a number of

signals generated by that transducer (e.g., from the Internet). After collecting a

certain number of signals, the adversary may attack the system via replay attacks

or fingerprint forgery attacks.

In replay attacks, the adversary fraudulently repeats a victim smartphone’s

previous output signal to the verifier. For receiver-based schemes, because the

outputs of a receiver will be transmitted through a digital channel, the adver-

sary can easily repeat the victim’s signal without introducing any additional

distortion. For emitter-based schemes, the signal repeated by the adversary could

be badly distorted during their transmission since the emitter produces analog

outputs. It is much more difficult for the adversary to conduct successful replay

attacks.

In fingerprint forgery attacks, the adversary feeds the stimulation signal into a
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foreign device and synthesize a forged signal that contains the fingerprint of a

legitimate smartphone. For receiver-based schemes, the stimulation signal is emit-

ted on the server side and is captured on the user side. The adversary can embed

the obtained signal with the victim’s fingerprint before uploading it to the ver-

ifier. The success rate of this attack mainly depends on the effectiveness of the

embedding method. For emitter-based schemes, the stimulation signal is emitted

on the user side and is captured on the server side. Since the adversary can no

longer access to the captured signal, the forgery strategy here is modifying the

stimulation signal before feeding it into the transducer. An adversarial device

playing a modified stimulation signal should generate a similar output as the

victim device playing the original stimulation signal. The success rate of this

attack is mainly determined by the quality of the modified stimulation signal.

2.3.3 Desirable Properties of Hardware Fingerprint

In the context of smartphone identification and tracking, a hardware finger-

printing method can be considered usable as long as it allows a certain de-

gree of universality, uniqueness, permanence and collectability (Baldini and

Steri, 2017). However, in the authentication scenario, the fingerprinting method

should not only be able to identify smartphones, but also be able to defeat var-

ious impersonation attacks. Here we list several desirable properties that a fin-

gerprinting method should have in order to be applicable for authentication

systems.

Data independence: the applied fingerprint can be extracted from various sig-

nal patterns. This enables the verifier to defeat replay attacks through generat-

ing fresh stimulation signals for each authentication attempt. The dimension of
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possible challenges/responses is determined by the amount of signal patterns

supported by the fingerprinting method.

Repeating sensitivity: the applied fingerprint is sensitive to the extra distor-

tions introduced during replay attacks, such as the fingerprint of adversarial

devices and environmental noise.

Forgery resilience: the fingerprinting approach should be able to differenti-

ate synthesized signals from genuine ones. Both the forgery technique and the

detection mechanism may vary depending on the form of the fingerprint.

For receiver-based schemes, the applied fingerprinting approach must be

Data independent and Forgery resilient in order to defeat replay attacks as well as

forgery attacks. For emitter-based schemes, Data independent could be replaced

or combined with Repeating sensitive. Considering real-world deployment and

usability, the fingerprinting approach applied in both scheme should also be

Time efficient and User friendly.

2.4 Case Studies

In this section, we study several existing hardware fingerprinting methods from

the perspective of smartphone authentication. We start from their support of the

above mentioned properties and discuss their performance under replay attacks

and fingerprint forgery attacks. We also summarize various practical challenges

that need to be resolved while fulfilling the security and usability requirements

of a hardware-rooted smartphone authentication system.
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2.4.1 Accelerometer Fingerprinting

An accelerometer is a device that measures the current acceleration of its body.

When the sensor experiences an acceleration in one direction, a movable seis-

mic mass inside the accelerometer will shift to the opposite direction. The sensor

then converts the shift of the mass into an electrical signal proportional to the ac-

celeration. Its fingerprint comes from the imperfection of its electro-mechanical

structure (e.g., the flexibility of the seismic mass).

In order to measure the difference between accelerometers, Dey et al. (Dey

et al., 2014) propose to stimulate each accelerometer with a vibration motor and

use bagged decision tree to differentiate their outputs. Sixteen time-domain

features and twenty frequency-domain features are extracted to identify each

individual accelerometer. Under lab setting, their approach achieved over 96%

precision and recall in differentiating 107 individual devices. However, accord-

ing to their experimental results, there are many factors that can affect the fin-

gerprint, such as sampling rate, the smartphone case, and the surface on which

the device is placed. The precision and recall could drop below 70% when the

test environment is different from the training environment. For authentication

systems, the accelerometer can be used in conjunction with the gyroscope to

achieve higher identification accuracy. This is because that the gyroscope can

also respond to the stimulus generated by the vibration motor and is known to

have calibration errors.

Accelerometer-based authentication systems should follow the receiver-

based challenge-response scheme. Using above identification method, they will

suffer from both replay attacks and forgery attacks. 1) Replay attacks: Due to

the openness of accelerometer readings (Das, Borisov and Caesar, 2016), an ad-
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versary can easily collect a victim smartphone’s output signal and retransmit

it to the verifier to impersonate the user. Worse yet, the dimension of the chal-

lenges/responses is extremely limited since the applied fingerprinting approach

only accepts vibration and gravity as stimulation signals. 2) Forgery attacks: de-

noting the real acceleration as ao, the measurement of an accelerometer is nor-

mally modeled as aM = Sao +O, where S and O respectively represents the gain

and offset errors in the output signal (Das, Borisov and Caesar, 2016). By manip-

ulating these two errors, an adversary can control the mean and the deviation of

an accelerometer’s measurement and generate the fingerprint of another device.

Although the fingerprinting approach uses many different features to identify

each device, the mean and the deviation are the most discriminating features.

Manipulating these two features can significantly degrades the classification ac-

curacy of the fingerprinting approach (Das, Borisov and Caesar, 2016).

2.4.2 Digital Camera Fingerprinting

A digital camera is a device that produces digital images. It uses an image sen-

sor to convert light signals into electrical signals. The fingerprint of a digital

camera comes from its image sensor’s non-uniform sensitivity to light (Goljan,

Fridrich and Filler, 2009). This imperfection introduces an constant white Gaus-

sian noise onto every image captured by the same camera.

To track this unique noise, Goljan et al. (Goljan, Fridrich and Filler, 2009) pro-

pose to use denoising filter to extract the fingerprint carried on an image and to

use Peak to Correlation value to match fingerprints. Under public setting, their

approach achieved a false rejection rate less than 2.38% at a false acceptance rate

below 0.0024% in differentiating 6896 individual cameras. The only factor that
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affects the PRNU fingerprint is the intensity of ambient light (Ba et al., 2018). By

rising the light intensity of the photographing environment, the identification

accuracy can be further improved.

Camera-based authentication systems also follow the receiver-based

challenge-response scheme. They can be resilient to both replay attacks and

forgery attacks. 1) Replay attacks: although it is very easy for an adversary to

collect a victim’s images (e.g., from her Facebook) and conduct replay attacks,

the verifier can defeat this attack through challenging the user to provide im-

ages with specific features. The dimension of this challenges/responses is very

large due to the data independence of the camera fingerprint. For instance,

Valsesia et al. (Valsesia et al., 2017) propose to challenging the user to provide

uncompressed images to be authenticated into the system. Since most users

have shared only JPEG images with the public, it is difficult for an adversary

to collect raw images and conduct successful replay attacks. In another system,

Ba et al. (Ba et al., 2018) propose to challenging the user to capture and upload

freshly generated QR codes. The verifier then conducts image content matching

to detect the liveness of the query image. 2) Forgery attacks: as the fingerprint

of a camera is an additive noise component on the image content, an adversary

can easily plant a victim device’s fingerprint (K̂) into a foreign image (J) using

equation 2.1 (Goljan, Fridrich and Chen, 2011):

J′ = J(1 + αK̂) (2.1)

where J′ and α respectively represents the forged image and the strength of the

fingerprint. This approach enables the adversary to fabricate arbitrary images

carrying the victim’s camera fingerprint and to bypass most liveness detection
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mechanisms. In the literature, three mechanisms (Quiring and Kirchner, 2015;

Goljan, Fridrich and Chen, 2011; Ba et al., 2018) have been proposed for the

detection of fingerprint forgery attacks. Under certain assumptions, each of

them can achieve a high success rate.

2.4.3 Loudspeaker Fingerprinting

A loudspeaker is a transducer that converts electrical signals into sound signals.

When an electrical current arrives at the loudspeaker, it flows through the loud-

speaker’s electromagnet and generates a varying magnetic field. The magnetic

field then drives the loudspeaker’s diaphragm to vibrate and to generate sound

waves. Due to manufacturing imperfection, loudspeakers have non-uniform re-

sponses at difference frequency bands, which can be used to identify individual

devices (Zhou et al., 2014).

To calculate a loudspeaker’s frequency response Ξ at a certain frequency f ,

the verifier needs to feed the loudspeaker with a stimulation signal covering

frequency f and record the played sound. Then, the target frequency response

Ξ f can be calculated using equation 2.2:

Ξ f =
S( f )
R( f )

(2.2)

where S( f ) and R( f ) respectively represents the stimulation signal’s and the

recorded signal’s Fourier coefficients at the frequency f . The stimulation sig-

nal is normally designed as a fixed audio pattern in order to generate robust

frequency response curves. Chen et al. (Chen, Zhang, Qin, Mao, Qin, Shen

and Li, 2017) propose to stimulate the speaker with a combination of 41 single

tone signals from 4KHZ to 20KHZ. In most scenarios (e.g., office and roadside),
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Figure 2.4. The frequency response of a speaker measured at the top left, top right,
bottom left and bottom right of a microphone.

their method can achieve an equal error rate less than 2%. For acoustic signal,

the measured frequency response is also affected by the recording device, the

relative position between the speaker and the microphone (Fig. 2.4), and multi-

paths. Fortunately, Chen et al. have shown that it is possible to eliminate those

unwanted distortions and achieve high accuracy under public settings (Chen,

Zhang, Qin, Mao, Qin, Shen and Li, 2017).

Speaker-based authentication schemes use the emitter-based challenge-

response scheme to authenticate users. They are robust against replay attacks

but are vulnerable to forgery attacks. 1) Replay attacks: the adversary collects a

victim smartphone’s sound signal and replays it to the verifier’s terminal using

a foreign loudspeaker. In this attack, the sound recorded by the verifier’s termi-

nal has been distorted not only by the fingerprint of the victim device but also

the frequency response of the adversarial devices. Due to the existence of extra

distortions, existing fingerprint matching approaches (Chen, Zhang, Qin, Mao,

Qin, Shen and Li, 2017) can effectively defeat audio replay attacks. 2) Forgery

attacks: following the forgery strategy described earlier, the adversary can at-
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tack the system through playing a modified stimulation signal. Upon receiv-

ing the stimulation signal generated by the verifier, the adversary first divides

the spectrum of that signal by the fingerprint of the adversarial loudspeaker,

thereby eliminating the distortions caused by that foreign device. Then, in or-

der to embed the victim device’s fingerprint, the adversary further multiplies

the spectrum of the signal obtained in the above step by the frequency response

curve of the victim loudspeaker. It has been shown that, by playing this mod-

ified stimulation signal on the adversary’s device, the fingerprint extracted by

the verifier can be very similar to the victim’s fingerprint (Ba, Piao and Ren,

2017).

2.4.4 Wireless Transmitter Fingerprinting

The wireless transmitter converts data streams into Radio Frequency (RF) sig-

nals. When a wireless device attempts to send out a data stream, the data stream

will be processed by the modulator, the digital to analog converter, the local os-

cillator, and the power amplifier, transformed into RF signals that can propagate

in various mediums. The fingerprints of wireless transmitters basically come

from the imperfections of these hardware components.

There are mainly two kinds of schemes for modeling the hardware imper-

fections of a wireless transmitter: the transient-based scheme and the modula-

tion error-based scheme. Transient-based systems identify devices via the time-

domain and/or frequency-domain features of the transition signal. The highest

accuracy that those systems can reach exceeds 95%. However, the variations of

propagation channels might significantly degrade the performance of these sys-

tems. PARADIS proposed by Brik et al. (Brik et al., 2008) is a modulation error-
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based scheme, which assigns 5 modulation errors as the device fingerprint. It

is experimentally demonstrated that PARADIS can differentiate more than 130

NICs with over 99% accuracy and is resilient against ambient noise and channel

variations.

Wireless transmitter-based authentication systems should also resort to the

emitter-based scheme. The transient-based systems are vulnerable to both re-

play attacks and forgery attacks (Danev et al., 2010). Systems that use modu-

lation errors will suffer from forgery attacks. 1) Replay attacks: due to the open

wireless medium, an adversary can easily record and repeat a vicitm device’s

RF signals through setting up a transceiver. If the applied transceiver is a high-

end device (e.g., Ettus USRP), the replayed signal will carry almost the same

features as the original signal. This makes transient-based systems vulnerable

to replay attacks. For modulation error-based systems, due to their data inde-

pendence, the verifier is able to randomize the challenged signal packet and

conduct liveness detection. 2) Forgery attacks: most existing RF fingerprinting

systems are vulnerable to forgery attacks. With a high-end Software-Defined

Radio (SDR), an adversary is able to modify the characteristics of RF signals,

such as the modulation errors, to generate the authenticated RF fingerprints. In

this case, the signal transmitted by the SDR will carry a similar fingerprint as

the signal generated by a legitimate device. Attacks of this nature have not been

addressed so far.

2.4.5 Practical Challenges

In summary, hardware fingerprinting is a promising direction for the future

smartphone authentication, but the state-of-the-arts cannot satisfy all the desir-
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able properties listed in section 2.3.3. There are still several practical challenges

that need to be resolved.

Detecting fingerprint forgery attacks: forgery detection is the main issue that

constrains the solution space of the hardware-rooted smartphone authentica-

tion. While most fingerprinting approaches are subject to fingerprint forgery

attacks, few of them have reliable detection mechanisms.

User capacity analysis: in the literature, the user capacity of a hardware fin-

gerprinting approach is usually determined through a series of identification

experiments. While these experiments establish a preliminary understanding of

the user capacity of an approach, the results are just limited to their individual

experiment setups and cannot be universally applied to various authentication

scenarios (Wang et al., 2016).

Conflict between security and efficiency: although most fingerprinting ap-

proaches have proven to be efficient in fingerprint extraction and matching,

there is no guarantee that their forgery detection mechanisms will also be ef-

ficient. In order to detect forged signals, existing mechanisms normally need to

compare the query signal with a significant amount of signals generated by the

target device (Goljan, Fridrich and Chen, 2011), which lead to a considerable

time and storage overhead.

Conflict between security and usability: a practical authentication system

should only involve operations that are familiar and convenient for most users.

However, detecting forged signals normally requires the user to perform com-

plex operations, which may degrade the user experience of the authentication

system.

Identifying and addressing influential factors: the fingerprinting approach

should be applicable to different deployment environments. Extensive exper-
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iments should be conducted to identify and address factors that affect the iden-

tification accuracy, such as the aging of the query device, the hardware finger-

print of the verifier’s terminal and other environmental factors.

2.5 Concluding Remarks

Due to the explosive growth of data leakage, passwords and fingerprints can no

longer provide adequate protection for users’ on-line accounts. Many organiza-

tions began to seek alternative authentication modalities to provide enhanced

security. In this article, we explore authentication modalities that verify a smart-

phone’s identity through tracking the hardware fingerprints of its built-in trans-

ducers. We first describe the architecture of hardware-rooted smartphone au-

thentication systems, focusing on the players involved and the communication

channels. Two kinds of challenge-response schemes are presented to collect the

output signals of different transducers. We then analyze the security threats un-

derlying these schemes and list several desirable properties for a usable hard-

ware fingerprinting method. After that, we study several existing fingerprinting

methods and discuss their performance under replay attacks and fingerprint

forgery attacks. Hardware-rooted smartphone authentication is an important

research area with great challenges. We believe it will attract more and more

research efforts in the next few years.



Chapter 3
PRNU-based Smartphone Camera

Identification and Authentication

3.1 Introduction

Authentication systems that identify individuals by ”something the user has”

are playing an increasingly important role in defeating identity theft. Accord-

ing to breach level index (Index, N.d.), 9.2 billion data records have been lost

since 2013, including plaintext passwords and fingerprints. Such leakage makes

knowledge-based authentication severely broken and poses particular threats,

such as device-based impersonation attacks (Chen, Ren, Piao, Wang, Wang,

Weng, Su and Mohaisen, 2017), to biometrics-based authentication. Therefore,

there is a vast amount of works studying and implementing Multi-Factor Au-

thentication systems which verify device’s identity along with user’s. Providing

enhanced security without degrading user experience calls for secure and prac-

tical smartphone identification methods.

In the literature, one prevalent methodology to identify smartphones is to
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differentiate the fingerprints of their built-in sensors. Sensor fingerprint is a

systematic distortion of sensor reading incurred by manufacturing imperfec-

tion. Such distortion remains constant for each individual hardware and ex-

hibits strong diversity among different devices. It has been proved that the

fingerprints of motion sensors, WiFi chipsets and speakers (Dey et al., 2014;

Remley et al., 2005; Brik et al., 2008; Chen et al., 2015) are respectively strong

enough to differentiate smartphones. However, most of existing methods fail

to meet two security requirements: Fingerprint Leakage Resilience and Fingerprint

Forgery Resilience (Ba and Ren, 2017). Although it is infeasible to steal a sensor in

a smartphone, the signals generated by that sensor, in most cases, are available

to the public. An adversary who has collected those signals might extract the

victim’s hardware fingerprint and synthesize forged signals (Chen et al., 2015;

Danev et al., 2010). This vulnerability to the fingerprint forgery attack makes

them infeasible in practice. It remains open to find usable and secure smart-

phone fingerprinting method that can provide physical layer proof of device’s

identity.

The Photo-Response Non-Uniformity (PRNU) (Lukas, Fridrich and Goljan,

2006) of an image sensor has been used as a physical layer fingerprint identify-

ing conventional digital cameras in digital forensics. Given a query image taken

by a camera of interest, the camera can be identified through correlating the

query image’s noise residue against candidate devices’ reference fingerprints.

In this paper, we explore using the PRNU of an image sensor on a smartphone

to authenticate a user’s device to defeat various frauds and attacks.

There are two grand challenges of using PRNU to identify and authenticate

smartphones. First, eliminating the large registration overhead. For conven-

tional digital cameras, normally at least 50 images are required to derive a us-
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able reference fingerprint. Such a large registration overhead is often prohibitive

for a practical smartphone authentication protocol. Second, defending against

impersonation attack. The PRNU-based fingerprinting method is also vulnera-

ble to fingerprint forgery attacks (Goljan, Fridrich and Chen, 2011; Quiring and

Kirchner, 2015; Gloe et al., 2007; Steinebach et al., 2010). To impersonate a victim

device, an adversary could estimate the victim smartphone’s fingerprint from

public images and embed the obtained fingerprint into an image captured by

her own device. Existing forgery detection mechanisms suffer from either poor

reliability (Goljan, Fridrich and Chen, 2011) or huge transmission and storage

overhead (Quiring and Kirchner, 2015).

We performed extensive experiments to understand the characteristics of

PRNU of smartphone cameras in order to address these challenges in using

PRNU to identify and authenticate smartphones. A key observation is that,

compared with conventional digital cameras, a smartphone’s image sensor is

tens of times smaller. With the same level of manufacturing imperfection, the

reduction in the image sensor’s dimension amplifies the pixels’ dimensional

non-uniformity and generates a much stronger PRNU. Our experimental re-

sults reveal that the PRNU of smartphone cameras is so strong that one image

alone can uniquely identify a smartphone camera. Based on this observation,

we propose directly using the PRNU estimated from the noise residue of an im-

age taken by a smartphone as the reference fingerprint. This will significantly

reduce the registration overhead of such an authentication system.

Given the unique PRNU of smartphone cameras, we propose ABC, a PRNU-

based smartphone authentication protocol that can also defeat various attacks.

ABC involves a registration phase and an authentication phase. During the reg-

istration phase, the user uploads a freshly captured image to the verifier/server.
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From this image, the verifier estimates a reference fingerprint for the user’s

smartphone. In the authentication phase, the verifier challenges the user to

photograph and upload two time-variant QR codes, in each of which an ab-

stract of the ongoing transaction, a random number and a time stamp are en-

coded. Each QR code image is also embedded with a semi-fragile probe signal

that can survive photographing but not fingerprint removal. The user then puts

her smartphone parallel to the screen and takes pictures of those two QR codes.

She verifies the messages in the QR codes and uploads the images to the veri-

fier. Upon receiving the images captured by the user, the verifier authenticates

the user’s device through the following procedure: 1) Detect the existence of

the two time-variant QR codes and the target smartphone’s fingerprint. Replay

attacks and man in the middle attacks can be defeated by the two QR codes. 2)

Detect fingerprint forgery by measuring the similarity between the two received

QR code images. This is based on our observation that two images forged by

the adversary contain both the fingerprint of the victim device and the finger-

print of the adversary’s device, and incur a significantly higher similarity value.

3) Detect fingerprint removal through checking the strength of the probe signal

embedded in each received image in case that the adversary removes the PRNU

of her own device from a forged image.

Our major contributions are summarized as follows:

1 To the best of our knowledge, we are the first to explore the PRNU-based

smartphone fingerprinting on a large scale. We are the first to observe that

one image alone can uniquely identify a smartphone due to their unique

PRNU. We conducted extensive experiments by collecting images taken

by smartphones through Amazon Mechanical Turk and can achieve a to-
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tal error rate below 0.5% in differentiating smartphone cameras. This new

discovery makes the use of PRNU practical for smartphone authentica-

tion.

2 We propose a real-time smartphone authentication protocol that can pro-

vide reliable authentication and defeat various attacks. It has the follow-

ing salient features: 1) ABC achieves secure physical layer smartphone

authentication with a registration overhead of merely one photoshot. 2)

Our experiments on 4,000 forged images demonstrate that ABC can detect

the fingerprint forgery attack with a total error rate less than 0.47%. 3) The

usability of the proposed protocol is preserved since the requirement for

taking photos is familiar and convenient to smartphone users.

3.2 Background

In this section, we first introduce the generic Photo Response Non-Uniformity

(PRNU) based camera fingerprinting technique, which establishes a link be-

tween digital images and the corresponding cameras. We then introduce the

fingerprint forgery attack against this fingerprinting technique and analyze ex-

isting countermeasures.

3.2.1 PRNU-based Camera Fingerprinting

PRNU (Lukas, Fridrich and Goljan, 2006; Böhme and Kirchner, 2013) is caused

by an image sensor’s non-uniform sensitivity to light. It introduces a multi-

plicative factor to the actual optical view. Denote the real sensor output as I and

the actual optical view as I(0). Any image captured by a digital camera can be
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represented as Equation (3.1) (Brik et al., 2008),

I = I(0) + I(0)K + Θ, (3.1)

where K is the camera’s PRNU, and Θ represents other noise components such

as shot noise and read-out noise.

Since PRNU behaves like a white Gaussian noise variable with a variance

between 3 to 5 (Lukas, Fridrich and Goljan, 2006; Chen, Fridrich and Goljan,

2007), it can be extracted using a denoising filter. The extracted noise residue

W(i) can be represented as Equation (3.2) (Chen et al., 2008),

W(i) = I(i)K + Ξ(i), (3.2)

where Ξ(i) is a random noise component combining Θ and other minor compo-

nents.

For conventional digital cameras, the noise residue of its captured image is

so noisy that it can not be directly used as a fingerprint. Therefore, an averaging

process is used to reduce random components (Ξ(i)) and to enhance PRNU (K)

(Cain, Hayat and Armstrong, 2001). It suppresses random noise components

through averaging the noise residues of multiple images taken by the same cam-

era. The obtained fingerprint can be represented as Equation (3.3),

K̂ =
∑N

i=1 W(i)I(i)
∑N

i=1(I(i))2
= K + ∆, (3.3)

where ∆ is the difference between the estimated fingerprint K̂ and the real fin-

gerprint K.
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The quality of the estimated fingerprint is defined as q = corr(K, K̂) (Gol-

jan, Fridrich and Chen, 2011), which is the similarity between the estimated

fingerprint and the real fingerprint. For each individual device, q is positively

correlated to the number of images used in the averaging process. The most

commonly used similarity metric is Peak to Correlation Energy (PCE) (Goljan,

2008).

To determine if a query image is taken by a camera of interest, existing fin-

gerprint detection strategies correlate the image’s noise residue against that

camera’s reference fingerprint extracted from at least 50 images. Following this

strategy, Goljan et al. (Goljan, Fridrich and Filler, 2009) has proved camera fin-

gerprint’s accuracy and user capacity on over one million images taken by 6896

individual cameras. They show that camera fingerprint can achieve a false rejec-

tion rate less than 2.38% at false acceptance rate below 0.002% in differentiating

conventional digital cameras.

3.2.2 Fingerprint Forgery Attack and Countermeasures

With a PRNU fingerprint K̂ estimated from a victim’s public images, an adver-

sary could fabricate forged images using Equation (3.4),

J′ = J(1 + αK̂), (3.4)

where J is a foreign image and α controls the strength of the injected fingerprint.

With an appropriate α, the fabricated image could easily pass various finger-

print detection schemes.

The state-of-the-art fingerprint forgery detection mechanisms include fragile

fingerprint (Quiring and Kirchner, 2015) and triangle test (Goljan, Fridrich and
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Chen, 2011). Fragile fingerprint explores the component of the PRNU noise that

is fragile and removed by the lossy JPG compression. Based on the observation

that the majority of images shared online are in JPG format, this mechanism

assumes that an adversary derives the fingerprint from public JPG images and

such a fingerprint will not contain the fragile fingerprint. If a user is required to

submit uncompressed raw images for authentication, a fingerprint forgery at-

tack can be detected through correlating the query image’s noise residue against

the reference fragile fingerprint of the camera of interest. However, this ap-

proach requires 300 raw images to estimate the reference fragile fingerprint,

which will incur a huge transmission overhead. Moreover, the robustness of

this approach relies on the secrecy of raw images. Triangle test is based on the

observation that the injected fingerprint K̂ shares additional noise components

Ξ(i) with every noise residue W(i) used by the adversary. These shared Ξ(i)s

will sharply increase the PCE value between K̂ and all W(i)s. Therefore, it tests

all candidate images that might be accessible to the adversary in order to detect

forged images. However, due to the popularity of image sharing, it is infeasible

for the verifier to collect all candidate images that are accessible to the adversary.

3.3 Problem Statement

In this section, we first introduce the system model and threat model. We then

discuss design goals of the authentication system.
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3.3.1 System Model

Smartphone authentication is a process of verifying the possession factor (i.e.,

the smartphone) attached to the claimed identity of a user. Conventionally, the

verification of a smartphone is achieved using a secret key controlled by a pre-

installed app or an additional hardware (e.g., the secure element in iPhone). In

this work, we propose to authenticate a smartphone through tracking its PRNU

fingerprint as it requires no additional hardware and is physically unclonable. It

is worth mentioning that the proposed ABC can be integrated with conventional

cryptographic approaches to provide greater security without degrading the

user experience.

Fig.3.1 shows the system model of ABC. The system involves three entities:

a user, her smartphone and verifier. The user performs a transaction or login and

needs to be authenticated. The smartphone is equipped with a built-in camera

and serves as a security token. The user interacts with the verifier’s interface

and provides the verifier this security token in order to be authenticated. The

verifier consists of the interface and a server. The server maintains a database of

each registered user and her smartphone reference fingerprint.

Without loss of generality, we now use a point of sale (POS) terminal to il-

lustrate the authentication process through PRNU of a smartphone. The verifier

(bank) maintains a database that stores each user’s account identifier (e.g., card

number) and reference PRNU fingerprint. When a user requests to make a pay-

ment on the POS terminal, the verifier challenges the user who has to use her

smartphone and take pictures of what is shown on the terminal’s screen. The

user uploads the captured images and her account identifier to the bank. The

verifier then extracts the fingerprint of the user’s smartphone from the images



36

Figure 3.1. System model. The verifier authenticate a user’s smartphone through track-
ing the fingerprint of its built-in camera. The verifier first challenges the smartphone
to capture and upload the image shown on its interface. Then, the verifier extracts the
fingerprint of the received image and correlates it to the reference fingerprint to authen-
ticate the smartphone.

and correlates it to the reference fingerprint of the account of interest. If the

correlation is higher than a threshold, the transaction will be executed. There-

fore, the PRNU based authentication relies on “something you have” (i.e. the

smartphone) for authentication.

Our PRNU based authentication involves two communication channels: 1)

Visible light communication (VLC) channel from the verifier’s interface to the

smartphone’s built-in camera. The verifier uses the VLC channel and embeds

information into the image taken by the smartphone; 2) Wireless channel between

the smartphone and the verifier. The smartphone uses the wireless channel to

send the captured images to the verifier. The wireless channel may vary de-

pending upon availability.

3.3.2 Threat Model

We assume a powerful adversary, who knows everything about the victim user

and may sniff and alter the communication between the victim and the verifier,

e.g., through deploying a malicious interface. The objective of the adversary is

to impersonate a legitimate user and authorize a malicious request. We also as-

sume that the adversary can access any images that the victim captures with her

smartphone. Those images may be hard to be kept private anyway, for example,
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pictures shared through online social networks such as Facebook. However, we

assume that the adversary does not physically possess the victim’s smartphone.

We now use the POS terminal example again and discuss potential attacks in

two cases: 1) The adversary is a malicious user who wants to make a payment

with a victim’s bank account. She knows the victim’s account identifier and has

pictures taken by the victim device. The adversary may perform the following

attacks: Replay attack - the adversary replays the previous image tokens from

the victim smartphone to the verifier. Such tokens can be obtained through

eavesdropping the wireless channel of the victim smartphone from a previous

authentication session. Fingerprint forgery attack - the adversary uploads a forged

image token that is composed of the victim smartphone’s fingerprint and the

adversary’s image. The victim smartphone’s fingerprint can be obtained from

the victim’s public images. 2) The adversary is a malicious merchant who wants

to lure a victim to authorize a malicious payment. She controls the POS terminal

that processes the victim’s transaction. This adversary may further conduct Man

in the middle attack - The adversary secretly modifies the victim user’s ongoing

transaction. She controls the terminal to upload a modified payment request to

the bank, instead of uploading the payment shown on the screen of the terminal.

3.3.3 Design Goals

We envision the following design goals for a robust and usable smartphone

authentication system:

Attack resilience: the protocol should only accept fresh images captured by le-

gitimate smartphones. It should be able to detect forged images and the images

collected from the victim’s previous authentication sessions.
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Table 3.1. Examples of image sensors for digital cameras.
Digital camera Sensor size pixel amount

(mm2) (million)
Canon EOS 5D Mark II 36.00×24.00 21.1
Sony A850 35.90×24.00 24.6
Nikon D300s 23.60×15.80 12.3
Pentax Pentax K-30 23.70×15.70 16.3
Sigma SD1 Merrill 23.50×15.70 15.36

Real-time authentication: the protocol should be able to provide accurate and

real-time authentication. Both the fingerprint matching process and the attack

detection process should be efficient.

User-friendliness: the protocol should provide simple and convenient interac-

tion processes for both registration and authentication. The involved overhead

should be minimal and tolerable for all involved entities.

3.4 Proposed System

This section presents our real-time smartphone authentication system. We first

investigate the feasibility of using PRNU as a smartphone’s unique identity.

We then discuss two baseline authentication schemes and their vulnerabilities.

Finally, we present our full-fledged authentication protocol that achieves the

aforementioned design goals.

3.4.1 Smartphone Camera Fingerprinting

Table 3.1 and 3.2 (Image Sensor Relative Size Comparison Tool, N.d.) show that

although smartphone cameras and digital cameras use similar types of image

sensors, a smartphone’s image sensor is often tens of times smaller than the
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Table 3.2. Examples of image sensors for Smartphone cameras.
Smartphone camera Sensor size pixel amount

(mm2) (million)
Samsung Galaxy S4 4.69 ×3.53 13
Apple iPhone 6 4.89×3.67 8
HTC One X 4.54×3.42 8
LG G3 4.69×3.53 13.13
Nokia Lumia 920 4.80×3.60 8.7

image sensor of a traditional digital camera. The reduction in the sensor’s di-

mension significantly degrades the light received by the image sensor, and leads

to a worse signal to noise ratio (SNR) in captured images. Since the quality of

the extracted fingerprint (W = IK + Ξ) is mainly determined by the image’s

noise components, we have to find out whether the existing fingerprint detec-

tion strategy is suitable for smartphone cameras.

To investigate the characteristics of a smartphone camera’s PRNU, we col-

lected over 16,000 images from 40 individual smartphones and evaluated their

noise residues. Our experimental results (Fig. 3.2) demonstrate a very strong

correlation between noise residues from the same smartphone camera. The fin-

gerprint generated by a smartphone camera is much stronger than the finger-

print generated by a traditional digital camera. This is likely caused by the small

size of the pixels in a smartphone’s image sensor. With the same level of manu-

facturing imperfection, small pixels exhibit stronger non-uniformity, and hence

introduce a “high-quality” fingerprint in a captured image.

We now demonstrate the strong correlation between images captured by

smartphone cameras. Since an authentication is usually carried out in an indoor

environment, we look at the scenario where the tested image and the reference

image are both indoor images. We note that this is also the worst-case scenario

since the quality of the fingerprint on a captured image significantly increases
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(a) Matching image pairs cap-
tured by iPhone 6

(b) Non-matching image pairs
captured by iPhone 6

(c) Matching image pairs cap-
tured by Galaxy Note 5

(d) Non-matching image pairs
captured by Galaxy Note 5

Figure 3.2. Similarity statics for images captured by smartphone cameras. PCE mea-
sures the correlation between two images’ noise residues. For both iPhone 6 and Galaxy
Note 5, images taken by the same smartphone (matching image pair) show significantly
higher correlation than images captured by different smartphone (non-matching image
pair).

with the rise of the intensity of ambient light (will be shown in section 3.6).

We construct two types of image pairs: 1) matching image pairs, each of

which contains two images taken by the same smartphone; 2) non-matching im-

age pairs, each of which contains two images taken by different smartphones.

For iPhone 6, we tested 1250 matching image pairs and 1150 non-matching im-

age pairs. For Galaxy Note 5, we tested 4000 matching image pairs and 5300

non-matching image pairs. Fig. 3.2 shows the distribution of the obtained PCE
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Figure 3.3. ROC curve for fingerprint matching. True positive rate measures the per-
centage of matching images that are correctly identified. False positive rate measures
the percentage of non-matching images that are identified as matching ones.

values. It can be observed that, for both smartphone models, the PCE values of

the matching image pairs are significantly higher than the PCE values of non-

matching image pairs. By using thresholding to differentiate matching image

pairs from non-matching image pairs, we obtained the Receiver operating char-

acteristic (ROC) shown in Fig. 3.3. Minimizing the total error rate of fingerprint

matching based on Fig. 3.3, we choose 7.4338 as the matching threshold for

iPhone 6 and 13.0704 for Galaxy note 5. For iPhone 6, the chosen threshold leads

to a false positive rate of 0.08% at a false negative rate of 0.71%. For Galaxy Note

5, the chosen threshold leads to a false positive rate of 0.16% at a false negative

rate of 0.94%.

For both smartphone models, the PRNU achieves high accuracy in differen-

tiating image pairs even when the ambient light intensity is low. This suggests

that one image alone can be used as a reference fingerprint to uniquely identify

a smartphone. The reason why some image pairs are wrongly detected is be-

cause the fingerprints on those images are relatively weak. In order to further

improve the identification accuracy, the verifier can increase the intensity of am-
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Figure 3.4. Use case: a user captures an image shown on the verifier’s interface to be
authenticated (or registered).

bient light or use a reference fingerprint extracted from a bright image. As will

be shown in section 3.6, if the images are captured in a bright environment (e.g.

outdoor), the fingerprint detection strategy can achieve 100% accuracy.

Due to the high-quality fingerprint, smartphone camera fingerprinting dif-

fers from the digital camera fingerprinting in the following aspects: Fingerprint

detection strategy - with a high-quality fingerprint on every captured image, we

do not need to acquire a large number of images in order to estimate a refer-

ence fingerprint any more. Therefore, for a smartphone camera, we can use

only one image’s noise residue as the reference fingerprint. Fingerprint forgery -

use of PRNU for smartphone camera fingerprinting is vulnerable to the finger-

print forgery attack. With a high-quality fingerprint on every image taken by

a smartphone camera, the adversary can conduct the fingerprint forgery attack

with only one reference image. Since existing forgery detection mechanisms are

not practical and unreliable, it is a grand challenge to provide a trustworthy

fingerprinting result.
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3.4.2 Basic Authentication Schemes

Before presenting the full-fledged ABC protocol that achieves all three design

goals outlined in Section 3.3.3, we now introduce the framework of the camera

fingerprint based smartphone authentication system and two baseline schemes.

The first scheme can not distinguish a forged fingerprint from a genuine one.

The second scheme can detect forgery attacks, but introduces a huge overhead

to the verifier and the user.

3.4.2.1 System Framework

Fig. 3.4 shows a use case of the two-phase authentication process. Registra-

tion: the verifier constructs a fingerprint profile for a target smartphone. This

phase collects the target smartphone’s reference fingerprint, smartphone make

and model. The registration process is conducted on the verifier’s interface.

Authentication: the verifier authenticates a smartphone in real time. The verifier

challenges the user to upload freshly captured images and uses the fingerprint

derived from those images to authenticate the device.

3.4.2.2 Basic Scheme I

This authentication scheme, shown in Fig. 3.5, can defeat the replay attack and

the man in the middle attack. It integrates a challenge response scheme that

enforces the user to capture a freshly constructed scene embedded with an ab-

stract of the ongoing transaction. We propose to use a Quick Response Code

(QR code) as the challenge since it can carry long messages and support fast

image content matching.

The registration phase has no constraint on the user’s reference image I(r).
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Figure 3.5. Basic Scheme I. Registration: the user uploads an arbitrary image captured
by her smartphone. Authentication: the verifier challenges the user to capture a freshly
constructed QR code shown on its interface. The QR code is encoded with an abstract
of the ongoing transaction, which enables the user to verify the information before au-
thorizing.

Upon receiving the reference image uploaded by the user, the verifier extracts

the fingerprint K̂(c) contained in this image and uses it to construct a profile P(c)

for this smartphone.

During the authentication phase, upon receiving the user’s authentication

request, the verifier generates a QR code I(s) that encodes an abstract of the

ongoing transaction ω, a random string str and a time stamp T, displays this

QR code on its interface, and challenges the user to capture it. The user pho-

tographs the QR code with her smartphone and examines the transaction em-

bedded in the QR code. In this stage, any modification to the user’s request will

be noticed by the user (defeat man in the middle attack). She then uploads the

captured image I(c) to the verifier. Finally, the verifier performs image content

matching and fingerprint matching to make the authentication decision. Image

content matching ensures the liveness of the authentication process through de-

tecting the newly presented QR code in the received image. Fingerprint match-

ing verifies the producer of the received image by matching the noise residue

extracted from the QR image to the target smartphone’s reference fingerprint. A

legitimate image token should consist of the challenging QR code and the target



45

Figure 3.6. Basic Scheme II. Registration: the user uploads one image freshly captured by
her smartphone and all other images the smartphone has ever captured. Authentication:
this process is similar to the process in basic scheme I, except that triangle test is applied
to detect forged images.

smartphone’s fingerprint.

Although this scheme provides great convenience and strong resistance

against replay attacks and man in the middle attacks, it is vulnerable to finger-

print forgery attacks. During the authentication process, the adversary could

capture the presented QR code with a foreign smartphone and embed the vic-

tim smartphone’s fingerprint in the captured image. Since the forged image

contains both the challenging QR code and the victim smartphone’s fingerprint,

the verifier will accept this image as a legitimate token.

3.4.2.3 Basic Scheme II

To address the fingerprint forgery attack against Basic Scheme I, Basic Scheme

II adopts the state-of-the-art forgery detection mechanism named triangle test.

The main reason for not using the fragile fingerprint detection technique is that

transmitting large number of uncompressed raw images will lead to a huge la-

tency as discussed in section 3.2.2. With a complete history image set, triangle
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test can determine with a high level of confidence whether or not the received

image contains a forged fingerprint. The triangle test has two requirements for

the verifier: 1) the reference fingerprint K̂(c) for the target smartphone should

be extracted from a private image that is not accessible to the adversary; 2) the

verifier should maintain a history image set for the target smartphone. This im-

age set contains all of this smartphone’s public images that might be accessible

to the adversary.

Fig. 3.6 shows the second baseline authentication scheme. The registra-

tion phase of this scheme requires the user to upload their history image set

{I1, ..., IN} and a freshly captured image I(r). The verifier extracts the noise

residues of these images and uses them to construct a profile P(c) for this smart-

phone.

During the authentication phase, this scheme also asks the user to photo-

graph a freshly generated QR code. After verifying the QR code and the finger-

print contained in the received image, this scheme further conducts the triangle

test to detect the fingerprint forgery attack, as shown in Algorithm 1. The veri-

fier first extracts the query image’s noise residue W(q). For each history image’s

noise residue W(i), it then calculates the similarity η between W(q) and W(i). An

η higher than a threshold suggests that I(q) is a forged image fabricated with

W(i). The accuracy of this detection mechanism depends on the completeness

of the history image set.

Although the triangle test addresses the vulnerability against the fingerprint

forgery attack, it has the following drawbacks: 1) This scheme can not guarantee

real-time authentication. Since the verifier needs to test the whole history image

set, the response time may increase dramatically as the size of the image set

increases. 2) It brings a huge burden to the user and the verifier. To maintain
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Algorithm 1 Triangle Test
F1 function TriangleTest(I(q), {W(1), ..., W(N)})
1. W(q) ← F(I(q))
2. for i:= 1 to N do
3. η ← PCE(W(i), W(q))
4. If (η > threshold) then
5. Reject
6. end if
7. end for
8. Accept.

end function

an up-to-date history image set for the smartphone, the user has to notify the

verifier whenever they publish new pictures. 3) It is difficult to guarantee the

completeness of the history image set. An incomplete history image set will

make the detection result unreliable. 4) Collecting all the history images of a

user might create privacy issues.

3.4.3 Full-fledged Authentication Protocol

Overcoming the drawbacks in the two baseline schemes requires a reliable and

real-time detection mechanism against fingerprint forgery attacks. ABC detects

the forgery attack through tracking the fingerprint of the adversary’s smart-

phone. This fingerprint in question is introduced during the challenge response

stage where the adversary captures the challenge QR code with their own

smartphone. Since this fingerprint of the attacking smartphone is preserved in

forged images, its existence implies a fingerprint forgery attack. ABC requires a

smartphone to upload two freshly captured images. If these images are forged

by an adversary, their noise residues will contain both the victim device’s fin-

gerprint and the adversary’s camera fingerprint. This renders their similarity

value significantly higher than a normal value.
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Figure 3.7. Full-fledged authentication protocol. Registration: the user uploads an arbi-
trary image captured by her smartphone. Authentication: the verifier enforces the user
to capture two consecutive images shown on its interface.

Figure 3.8. Attack detection flow: since the user has confirmed the information of
the ongoing transaction, the verifier needs only to detect replay attack and fingerprint
forgery attack.

Since a camera fingerprint can be removed with a denoising filter, the ad-

versary can forge images containing only the victim device’s fingerprint. ABC

detects fingerprint removal by embedding each challenge with a probe signal

that can survive photographing but not fingerprint removal and checking the

existence of the probe signal in the received images.

Using the above detection mechanisms as building blocks, we now present

the full-fledged ABC protocol (Fig. 3.7). Its registration phase is the same as the

one in Basic Scheme I, which collects only one reference image from the user.



49

The authentication phase is as follows:

Step 1. The verifier generates two different QR codes encoded with a trans-

action abstract, a time stamp and a random string. Each QR code is embedded

with independent white Gaussian noise Γi, the variance of which is 5. The chal-

lenging scenes with QR codes can be represented as Ii(s) = QR(stri, Ti) + Γi, i =

1, 2. The verifier displays the two QR codes on its interface in a sequence.

Step 2. The user captures I1(s) and I2(s), and uploads captured images to the

verifier through the wireless channel.

Step 3. Upon receiving the images uploaded by the user, the verifier per-

forms the actions shown in Fig. 3.8 to identify the user’s smartphone:

Image content matching. Detects the challenging QR code in the received im-

ages. This can easily be achieved with off-the-shelf QR code scanning tools.

Fingerprint matching. Detects the target smartphone’s camera fingerprint K(c)

in the received images by correlating the noise residue of each received image

to the noise residue of the reference image.

Forgery detection. Detects the adversary’s camera fingerprint K(a) in the

received images. As shown in Algorithm 2, the verifier extracts the noise

residues Wi(c) of each received image Ii(c) and calculates their similarity val-

ues PCE(W1(c), W2(c)). If these images are forged by the adversary, both W1(c)

and W2(c) will contain K(a) and K(c), which will make PCE(W1(c), W2(c)) signif-

icantly higher than the normal similarity value PCE(W1(c), K̂(c)).

Removal detection. Detects the added white Gaussian noise Γi in the received

images. As shown in Algorithm 3, the verifier first subsamples each received

image Ii(c) and obtains Îi(c). With an appropriate subsampling method, Îi(c)

should contain the embedded probe signal Γi. The verifier then calculates

the similarity value between Γi and the noise residue of Îi(c). If Ii(c) has gone
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Algorithm 2 Forgery Detection

F2 function ForgeryDetection (K̂(c), I1(c), I2(c))
1. W1(c) ← F(I1(c))

2. W2(c) ← F(I2(c))

3. δ← PCE(W1(c), W2(c))− PCE(W1(c), K̂(c)))
4. If (δ > threshold) then
5. Reject.
6. end if

end function

Algorithm 3 Removal Detection
F4 function RemovalDetection(I1(c), I2(c))
1. for i in [1,2] do
2. Îi(c) ← Subsample(Ii(c))

3. Ŵi(c) ← F(Îi(c))
4. Γi ← ith probe signal
5. if PCE(Ŵi(c), Γi) < threshold then
6. Reject.
7. end if
8. end for

end function

through a fingerprint removal process, due to Γi’s sensitivity to fingerprint re-

moval, the similarity value will be lower than a threshold.

3.5 Security Analysis

In this section, we analyze the security of the ABC protocol by examining its

resistance against the replay attack, man in the middle attack and fingerprint forgery

attack.
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3.5.1 Replay Attack

An adversary may attempt to impersonate a legitimate smartphone by fraudu-

lently replaying a captured image token that is previously sent to the verifier.

Since this image token is indeed photographed by the legitimate smartphone,

without appropriate detection mechanisms, it will pass the authentication sys-

tem.

To detect replayed images, ABC challenges the user to photograph a freshly

generated QR code, in which a random string and a time stamp are encoded.

The random string ensures that the presented QR code is hard to predict and the

time stamp ensures that each QR code will be used only once for each user. In

this way, the verifier can detect replay attack through checking the existence of

the presented QR code in the received image. The reliability of this liveness de-

tection mechanism is mainly determined by the entropy of the presented chal-

lenge. For QR codes, even the lowest QR code version can generate 5.7× 1045

different images (Information capacity and versions of the QR Code, N.d.). It is

hardly possible for an adversary to predict the QR code to be requested in a

future authentication process. Therefore, ABC has strong resistance against the

replay attack.

3.5.2 Man in the Middle Attack

An adversary may attempt to lure a legitimate user to authorize a malicious re-

quest through modifying the communication between the user and the verifier.

The attacking process is as follows: 1) The legitimate user initiates her request

on the verifier’s interface. 2) The adversary (e.g., a malicious terminal) inter-

cepts the user’s request and sends the verifier a malicious one. 3) The verifier’s
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server sends a freshly generated QR code to the interface and challenges the

user to capture it. 4) The user captures and uploads the image using her smart-

phone. Since the smartphone presented by the user is indeed the legitimate

one, the captured image sure will pass the authentication process. However,

the transaction authorized by this smartphone is not the one requested by the

user.

To address this attack, ABC further embeds an abstract of the ongoing trans-

action into the challenging QR code. During the authentication process, the

user will be required to capture the challenging QR code and to verify the in-

formation of the transaction. With this design, an adversary conducting man

in the middle attack will have two options after receiving the challenging QR

code (step 3): 1) Display it on the screen and ask the user to capture it. In this

case, the user will terminate the authentication as the transaction encoded in

the QR code is different from the one she requested. 2) Fabricate and display

a forged QR code, in which an abstract of the user’s original transaction in en-

coded. In this way, the user will confirm the transaction and photograph the QR

code shown on the screen. However, since the QR code shown on the screen is

different from the one generated by the verifier, the captured image token will

not pass image content matching. In both cases, the adversary’s transaction will

not be authorized.

3.5.3 Fingerprint Forgery Attack

An adversary may impersonate a legitimate smartphone through fabricating

images that contain the challenging QR code and the target smartphone’s fin-

gerprint. Two forgery strategies could be used: 1) directly inject the victim’s
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(a) iPhone 6 (b) Galaxy Note 5

Figure 3.9. PCE for forgery detection. PCE1 measures the correlation between one
tested image and the reference fingerprint. PCE2 measures the correlation between two
tested images.

camera fingerprint into an image captured by the adversarial device; 2) remove

the adversary’s camera fingerprint from the captured image before the injection

process.

3.5.3.1 Forgery Strategy I

This forgery process works as follows: 1) derive two reference fingerprints from

two different sets of images captured by the victim device; 2) photograph the

challenging QR codes with another smartphone of the same model; 3) embed

each captured image with a different reference fingerprint. Images fabricated

in this way consist of the challenging QR code, the victim’s camera fingerprint

K(c) and the adversary’s camera fingerprint K(a), along with other random noise

components.

In order to detect this attack, our protocol adopts a forgery detection mecha-

nism that can detect the existence of K(a). Based on the observation that forged

images sharing K(a) will have a significant higher correlation value than legit-

imate images, our protocol enforces the user to capture two challenging QR
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(a) Normal iPhone 6 image pair (b) Forged iPhone 6 image pair

(c) Normal Galaxy Note 5 image
pair

(d) Forged Galaxy Note 5 image
pair

Figure 3.10. Distribution of PCE2-PCE1. For normal image pairs, PCE1 and PCE2 both
measure the correlation between two legitimate images. The distribution of PCE2-PCE1
is roughly a zero mean Gaussian. For forged image pairs. PCE2 measures the correla-
tion between two forged images sharing both the target smartphone’s fingerprint and a
foreign smartphone’s. The foreign smartphone’s fingerprint makes PCE2 significantly
higher than PCE1.

codes with the same device, and uses the correlation between the captured im-

ages to detect this forgery attack.

The reliability of the detection mechanism above lies in the significance of

the correlation caused by K(a). To prove the effectiveness of this mechanism, we

also look at the worst-case scenario where all tested images are captured in an

indoor environment. As will be shown in section 3.6, images captured in this

environment has the weakest fingerprint. We tested two image sets collected
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Figure 3.11. Forgery detection. True positive rate measures the percentage of forged
images which are correctly identified. False positive rate measures the percentage of
legitimate images that are identified as forged ones.

from Amazon Mechanical Turk and our own device:

• iPhone set: 6,000 images taken by 30 different iPhone 6. The resolution is

2448× 3264.

• Samsung set: 10,000 images taken by 10 different Galaxy Note 5. The reso-

lution is 2048× 1152.

For both image sets, we construct two kinds of image pairs for comparison:

1) Normal image pair: two images taken by the same camera, i.e., with the same

K(c). 2) Forged image pair: two forged images with the same K(c) and K(a). All

forged image pairs are fabricated through Forgery Strategy I. For the iPhone set,

we constructed 400 forged image pairs and 450 normal image pairs. For the

Samsung set, we constructed 1600 forged image pairs and 1400 normal image

pairs.

For each tested image pair, we calculate two similarity values. PCE1 =

PCE(W1(c), K̂(c)) is the similarity value between one tested image’s noise

residue and the target smartphone’s reference fingerprint. PCE2 =
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PCE(W1(c), W2(c)) is the similarity value between tested images’ noise residues.

Since PCE2 is positively correlated to PCE1 for both kinds of image pairs, as

shown in Fig. 3.9, we use the difference between PCE1 and PCE2 to differenti-

ate normal images from forged ones. The distribution of the obtained difference

is shown in Fig. 3.10.

ABC uses thresholding to detect fingerprint forgery attack. It counts an im-

age pair as a forged one if the difference between PCE2 and PCE1 is above a

threshold, and vice versa. Fig. 3.11 shows the performance of the detection

result as a ROC curve. Both true positive rate and false positive rate increase

with the reducing of the threshold. To minimize the total error rate of forgery

detection, we choose 75.7 as iPhone set’s forgery detection threshold and 162.9

as Samsung set’s threshold. For iPhone 6, the chosen threshold yields a false

positive rate of 0% and a false negative rate of 1.01%. For Galaxy Note 5, the

false positive rate is 0.14% and the false negative rate is 0.64%.

The reason why some forged image pairs can successfully pass the forgery

detection mechanism is because the K(a) introduced during their forgery pro-

cess is too weak. Because of the existence of random noise, the strength of K(a)

randomly varies between exposures even when the intensity of ambient light is

fixed. If an adversary accidentally captures an image with a weak K(a) during

the authentication process, she may able to fabricate a forged image that can

pass the forgery detection mechanism. However, as shown in Fig.2, the detec-

tion result will also be affected by the strength of K(c). As PCE1 increases, the

difference between PCE2 and PCE1 grows rapidly. If the verifier can increase

the intensity of ambient light and raise the threshold for fingerprint matching,

even images with weak K(a) will not pass the forgery detection mechanism.
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3.5.3.2 Forgery Strategy II

In this strategy, the adversary tries to defeat the forgery detection mechanism

through removing his own fingerprint from forged images. The forgery pro-

cess works as follows: 1) derive two reference fingerprints from two different

sets of images from the victim; 2) photograph the challenging QR codes and

remove the adversary’s fingerprint from the captured image; 3) embed each ob-

tained image with a different fingerprint of the victim. The constructed image

consists of the challenging QR code, the victim’s camera fingerprint, and other

random noise component. This strategy may defeat our mechanism for defeat-

ing Forgery Strategy I.

ABC defeats this attack by detecting fingerprint removal. Fingerprint re-

moval can be achieved in two ways: 1) filter the captured image with the

adaptive PRNU denoising technique (Karaküçük and Dirik, 2015; Dirik and

Karaküçük, 2014); 2) reconstruct an image containing the presented QR code.

Since both removal strategies remove all noise components, we use a probe sig-

nal to detect fingerprint removal. The probe signal is semi-fragile: 1) robust

against camera-screen channel distortion to ensure that it will be preserved in le-

gitimate image tokens. 2) sensitive against fingerprint removal to ensure that the

fingerprint removal process will change it. During the authentication process,

the verifier embeds this probe signal Γ into the QR code to be captured by the

user. In this way, fingerprint removal can be detected by checking the existence

of this signal in the received image.

The reliability of this detection mechanism lies in the semi-fragility of the

probe signal.

Sensitivity: The probe signal in ABC is of the same type as a camera finger-
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Figure 3.12. Probe signal detection. Setting 1: The presented QR code does not con-
tain the probe signal. Setting 2: The presented QR code contains a probe signal and
fingerprint removal is not performed on the captured image. Setting 3: The presented
QR code contains a probe signal and fingerprint removal is performed on the captured
image.

print, i.e., white Gaussian noise with a variance of 3 to 5. With this design, the

probe signal has an inherent sensitivity against adaptive PRNU denoising. Any

filtering method that can remove the adversary’s fingerprint will also remove

the probe signal. For the second removal strategy, since the probe signal is un-

known, the adversary cannot construct an image containing the probe signal

without introducing their own camera fingerprint into a captured image.

Robustness: Camera-screen channel distortion may lead to an information

loss in the high frequency band (Hao, Zhou and Xing, 2012; Gohshi et al., 2005).

Although this loss also affects the probe signal, the information loss caused by

fingerprint removal is much more severe. To compare channel distortion and

fingerprint removal, we test the probe signal with three different settings: 1)

The presented QR code does not contain the probe signal. 2) The presented QR

code contains an 800× 800 probe signal, and the adversary does not conduct

fingerprint removal on the captured image. 3) The presented QR code contains

a 800× 800 probe signal and fingerprint removal is performed on the captured
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image. In the experiment, we first put the smartphone (iPhone 6) in parallel to

the verifier’s interface (iPad mini 2) and photograph the presented QR code I(s).

We then perform region detection and subsampling on the captured image I(c)

to extract the challenging QR code and get I′(c). Finally, we calculate the PCE

value between I(s) and I′(c). For each setting, we repeat the experiment 20 times

and show the CDF of the PCE value in Fig. 3.12. It can be observed that: 1) the

probe signal is preserved in the captured images. The PCE value of the second

setting is significantly higher than that of the first setting; 2) using the probe

signal, we can reliably detect fingerprint removal. The PCE distributions of the

second and third setting have no overlapping. We note that the PCE value of

the first setting is mainly caused by the image content shared between I(s) and

I′(c).

Being sensitive to all fingerprint removal methods and robust against camera

screen channel distortion, the probe signal applied in ABC can effectively detect

fingerprint removal.

3.6 Performance Evaluation

In this section, we first investigate the characteristics of a smartphone camera’s

PRNU. We then evaluate the efficiency of the proposed ABC protocol. Finally, a

user study is conducted to demonstrate the usability of the system.

3.6.1 Experiment Setup

Configuration: The evaluation is conducted using Matlab on a Windows system

with 8 Core Intel i7-4720HQ processor running at 2.6 GHz. The algorithm for
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fingerprint matching and extraction is based on the code by digital data embed-

ding laboratory (Goljan, Fridrich and Filler, 2009).

Image sets: The applied image sets include 6,000 images captured by 30 indi-

vidual iPhone 6 devices and 10,000 images captured by 10 individual Samsung

Galaxy Note 5 devices. The resolution of iPhone 6 images and Samsung Galaxy

Note 5 images are 2448× 3264 and 2048× 1152, respectively. These images are

collected from Amazon Mechanical Turk and our own devices. To ensure the

randomness of the collected images, the image collection tasks we published

on Mechanical Turk had no limitation on image content or the way people take

photographs.

Metrics: We use the following metrics to evaluate the fingerprint of a smart-

phone camera. Peak to Correlation Energy (PCE) measures the correlation be-

tween a query image’s noise residue and the reference fingerprint. It can be

used to indicate the quality of the reference fingerprint and the strength of the

fingerprint carried by the query image. Cumulative distribution function (CDF) is

a graphical plot that illustrates the distribution of a value X. Given a specific

value α, the CDF shows the probability that the X will take a value less than

or equal to α. In this paper, CDF is used to compare the PCE distributions of

different experimental settings. A setting with higher PCE value will achieve

better accuracy in both fingerprint detection and forgery detection.

3.6.2 Smartphone Camera’s PRNU

Before presenting the detailed setting of our experiments, we first summarize

the investigated questions and our key observations as follows:

1 Does PRNU change over time? No. We have tested images captured in three
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different years. There is no significant difference in the fingerprints on

those images.

2 Will the ambient environment affect the fingerprint on an image? Yes, we have

tested the impact of light, temperature and relative humidity. The only

factor that can affect the fingerprint is the intensity of ambient light. The

strength of the fingerprint on a captured image significantly increases with

the rise of the light intensity.

3 What is the relationship between an image’s resolution and the strength of its

fingerprint? Positively correlated. When cropping an image to differ-

ent resolutions, the strength of its fingerprint is nearly proportional to the

number of remaining pixels.

4 How does the number of reference images affect the strength of the extracted refer-

ence fingerprint? For each smartphone, the strength of the extracted refer-

ence fingerprint is nearly proportional to the number of reference images.

3.6.2.1 Impact of Age

In an authentication system, a usable hardware fingerprint should not change

over time. Since the average life cycle for a smartphone is around 22 months

(Armstrong, 2017), we evaluate a smartphone’s PRNU with images captured in

three different years: 2015, 2016 and 2017. All tested images were captured in

the same room with fixed light intensity. The smartphone applied in this test is

an iPhone 6.

To find out if PRNU changes over time, we first extract a reference finger-

print from an image captured in 2017. Then, we conduct fingerprint match-

ing with three image sets collected in different years. Each image set contains
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Figure 3.13. The impact of age. We use a reference image captured in 2017 and conduct
fingerprint matching with images captured in different years. The CDF of each year
shows the distribution of the PCEs obtained for that year.

200 images captured by the tested device. Fig. 3.13 shows the CDF of the ob-

tained PCE value. As the reference fingerprint is captured in 2017, the CDF of

2017 shows the correlation between noise residues (fingerprints) from the same

year, and the CDF of 2015 and 2016 show the correlation between noise residues

from different years. Since there is no significant difference between these three

CDFs, the PRNU of the tested smartphone did not change over the last three

years.

3.6.2.2 Impact of Ambient Light

The quality of an extracted fingerprint is mainly determined by the noise com-

ponents of the image of interest. Since the ambient light will affect the random

noise component on a captured image, it is important to investigate the impact

of ambient light on camera fingerprint. We evaluate images captured in six

different environments: 1) Indoor low: a windowless room with a dim filament

lamp. 2) Indoor median: a windowless room with several fluorescent lamps. 3)

Indoor high: an indoor environment with several windows. The ambient light
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(a) indoor images (b) outdoor images

(c) Ambient temperature (d) Relative humidity

Figure 3.14. Impact of ambient environment. The CDF of each setting plots a distri-
bution of the correlation between two images captured in that environment. The only
environmental factor that affects camera fingerprint is the intensity of ambient light.
The strength of the fingerprint on a image significantly increases with the rise of the
ambient light intensity.

source is the sun. 4) Outdoor morning. 5) Outdoor noon. 6) Outdoor evening. The

outdoor images are captured on a sunny day.

During the experiment, we construct 300 image pairs for each configuration

and conduct fingerprint matching on those image pairs. The PCE value cal-

culated for each image pair indicates the strength of the fingerprints carried on

them. Fig. 3.14 shows the CDF of the obtained PCE values. The observations are

as follows: 1) The strength of the fingerprint on a captured image significantly

increases with the rise of the intensity of ambient light. 2) Compared with an
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indoor image, an outdoor image normally carries a stronger fingerprint. There-

fore, one possible way to improve the identification accuracy is to extract the

reference fingerprint from an outdoor image.

3.6.2.3 Impact of Ambient Temperature and Relative Humidity

To understand how ambient environments affect the fingerprint on a captured

image, we further investigate the impact of ambient temperature and relative

humidity. In order to eliminate the impact of ambient light, all tested images

are captured in an indoor environment with fixed light intensity. For ambient

temperature, we have tested 17.78°F, 45.5°F and 85.1°F. For relative humidity,

the tested images cover 27%, 45% and 78%( a rainy day). Similar to the last

experiment, we construct 200 image pairs for each configuration and conduct

fingerprint matching. As shown in Fig. 3.14(c) and Fig. 3.14(d), there is no

significant difference between the CDF of different configurations. Therefore,

PRNU is not affected by ambient temperature or relative humidity.

3.6.2.4 Impact of Image Resolution

Since the resolution of the image token significantly affects the overhead of the

authentication process (Section 3.6.3) in terms of the time used for authentica-

tion, we now evaluate the fingerprint detection strategy on resizing images.

The images captured by a digital camera can be resized with down-sampling

or image cropping. For down-sampling, we tested three most commonly used

interpolation methods: nearest-neighbor, bilinear, and bicubic. For image crop-

ping, we crop a rectangular area from the target image. After resizing an image,

we also need to decide the image format to be used to store it. We test the two
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(a) 40% scaling rate, JPG (b) 40% scaling rate, PNG

(c) 60% scaling rate, JPG (d) 60% scaling rate, PNG

(e) 80% scaling rate, JPG (f) 80% scaling rate, PNG

Figure 3.15. Impact of image resolution. For each setting, we conduct fingerprint
matching with matching and non-matching image pairs. When the resized image is
stored in JPG format, the scaling ratio has no significant impact on the obtained PCE
values. When PNG is used, the PCE value obtained from a matching image pair is
nearly proportional to the number of remaining pixels.
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most commonly used image formats: 1) PNG, which supports lossless image

compression. The obtained image has accurate pixel values but requires more

storage space. 2) JPG, which supports lossy compression. The obtained image

is noisy but smaller. The scaling ratio is defined as the proportional ratio of the

size of the resized image to the size of the original image. We tested different im-

age scaling ratios from 40%-80%. Overall, we have 24 different configurations,

each of which is tested with 100 matching image pairs and 100 non-matching

image pairs generated from the Samsung image set.

Fig. 3.15 shows the CDF of the obtained similarity value. We make the fol-

lowing observations. Image resizing method: image cropping is much better than

all tested down-sampling methods and it has the most distinguishing similarity

value in all configurations. We note that image cropping is also the most effi-

cient one. Image format: PNG is better than JPG in fingerprint detection. For

the matching image pairs, PNG images generate higher PCE values than JPG

images. For non-matching image pairs, JPG images generate higher PCE val-

ues than PNG images due to the noise components introduced during the lossy

compression process. Scaling ratio: a higher scaling ratio results in a higher PCE

value for PNG images. The scaling ratio has no remarkable impact on JPG im-

ages.

To summarize, the best resizing strategy is to crop the image to the target

resolution and save the obtained image in the PNG format. Comparing the

distributions of matching and non-matching image pairs, it can be observed

that even images with 40% scaling ratio (16% pixel amount) can achieve a decent

accuracy.
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(a) 40% scaling rate, JPG (b) 40% scaling rate, PNG

(c) 60% scaling rate, JPG (d) 60% scaling rate, PNG

(e) 80% scaling rate, JPG (f) 80% scaling rate, PNG

Figure 3.16. Impact of number of reference images. For every scaling ratio and image
format, the PCE value obtained from a matching image pair is nearly proportional to
the number of reference images.

3.6.2.5 Impact of the Number of Reference Images

For images with a low scaling ratio, one approach to improve the accuracy of

fingerprint detection is to increase the number of reference images uploaded by
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Table 3.3. Experimental settings for overall performance evaluation
Test# 1 2 3

Image Resolution 640x480 960x720 1280x960
Probe Resolution 200x200 200x200 400x400

Test# 4 5 6
Image Resolution 1600x1200 2048x1152 3264x2448
Probe Resolution 400x400 400x400 800x800

(a) Fingerprint matching (b) Forgery detection

(c) Total time consumption (d) Photographing

Figure 3.17. Time overhead of the ABC protocol. The resolutions of the tested images
are shown in Table 3.3.

the user. Since this approach also increases the registration overhead of the au-

thentication system, we further investigate how the number of reference images

affects the similarity value of resized images.

Since the high registration overhead can severely degrade user experience,

we only tested 1, 2, 4 and 6 reference images. The images are resized with image
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cropping and saved in both PNG and JPG formats. The image scaling ratios are

40%, 60% and 80%. Each of the 24 configurations is tested with 100 matching

image pairs and 100 non-matching image pairs generated from the Samsung

image set. Fig. 3.16 shows the CDF of the obtained similarity values. We ob-

serve that: 1) for the JPG format, although increasing the number of reference

images can improve the accuracy of fingerprint detection, it is hardly possible

for JPG images to achieve fair accuracy with reasonable registration overhead;

2) for the PNG format, even images with a scaling ratio of 40% can achieve high

accuracy with a very low registration overhead.

3.6.3 Time Overhead

We first analyze the cost of each individual procedure involved in the authen-

tication process and then discuss the overall protocol efficiency. The system is

tested with six of the most common resolutions shown in Table 3.3.

Image Content Matching: the cost of this procedure is mainly determined

by the version of the applied QR code. Based on the experimental results in

(Zhang et al., 2016), smartphones can decode QR codes of a very high version

(20) within 0.1 second.

Fingerprint Matching: this process involves two rounds of noise extraction

and PCE calculation. The time consumption of this procedure is shown in Fig.

3.17(a).

Forgery Detection: since the required noise residues have been obtained in the

previous procedure, this procedure only involves one round of PCE calculation.

Fig. 3.17(b) shows the time consumption of this process.

Removal Detection: this process involves two rounds of noise extraction and



70

PCE calculation. For the probe signal used in our prototype (800×800), the pro-

tocol uses up to 0.9 seconds to detect fingerprint removal.

Overall Protocol Efficiency: For each test, we utilize the parallel pool of Matlab

with four workers on a local machine. Two of the workers conduct fingerprint

matching and forgery detection sequentially, and the other two workers con-

duct removal detection with the probe signals shown in Table 3.3. As shown

in Fig.3.17(c), for most of the tested common resolutions, ABC achieves high

efficiency. Compared with the fingerprint matching process, the security mech-

anisms integrated in the protocol only introduce 7.5% additional run time to the

authentication process.

The latency for high resolution images is mainly caused by the fingerprint

extraction process. We note here that the code published by the digital data em-

bedding laboratory (Goljan, Fridrich and Filler, 2009) does not take advantage

of GPU computing and parallel computing. With further optimization, the effi-

ciency would be significantly improved. Moreover, as shown in Sections 3.6.2.4

and 3.6.2.5, images with a low scaling rate can also achieve high accuracy with

reasonable registration overhead. Therefore, for smartphone models with high

resolution cameras, the verifier can reduce the overhead of the authentication

process through cropping the received image to low resolution.

3.6.4 Usability Study

To understand the users’ behaviors, needs, and attitudes towards the ABC pro-

tocol, we conducted a user study with a prototype using two Samsung Galaxy

Note 5 devices as the smartphone to be authenticated and the verifier. In the

prototype, we use a NFC channel to implement the wireless channel from the
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smartphone to the verifier. We tested our system on 40 participants (20 males

and 20 females) aged from 21 to 54. They were randomly picked from the gen-

eral public. During the test, we first gave a one-minute introduction to the sys-

tem. Each participant was then required to conduct the smartphone authenti-

cation using our prototype without further guidance. Since people are familiar

with photographing with smartphones, all participants were able to easily ac-

complish the task on their first attempt. Fig. 3.17(d) shows the CDF of the time

taken by each participant in photographing the challenging QR code. 95% of

the participants thought that the photographing phase is efficient and comfort-

able. In particular, 5 female participants pointed out that photographing is bet-

ter than typing password since remembering passwords places a considerable

burden on them. For the NFC transmission phase, 80% of the male participants

criticized that the transmission speed of the NFC channel is a little slow while

90% of the female participants thought that the transmission speed is acceptable

and the way it transfers data is interesting.

3.7 Related Work

Hardware fingerprinting has been actively studied in recent years. Due to man-

ufacturing imperfection, physical sensors introduce systematic distortions on

their output. It has been shown that the distortions generated by motion sen-

sors, acoustic sensors, and wireless transmitters are strong enough to fingerprint

off-the-shelf smartphones.

Dey et al. (Dey et al., 2014) exploit the imperfection of the accelerometer.

They stimulate the sensor with a vibration motor and use machine learning to

create the fingerprint. Bojinov et al. (Bojinov et al., 2014) analyze the calibration
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error of the accelerometer and verify its effectiveness with a large number of de-

vices. This method requires the user to perform a calibration of the accelerom-

eter. Das et al. (Das, Borisov and Caesar, 2016) further investigate combining

the features of both accelerometers and gyroscopes to generate more accurate

fingerprints. However, their method requires the user to precisely rotate the

smartphone with several angles. Moreover, the fingerprints of motion sensors

are manipulatable and can be easily eliminated (Das, Borisov and Caesar, 2016,

2015).

Acoustic fingerprints can also be used to uniquely identify smartphones.

Das et al. (Das, Borisov and Caesar, 2014b,a) extract auditory fingerprints from

a process of playing and recording audio clips. Zhou et al. (Zhou et al., 2014)

explore the speaker’s frequency response to a specially designed audio input.

Chen et al. (Chen et al., 2015) combine the frequency response of one device’s

speaker and another device’s microphone as the hardware fingerprint for de-

vice authentication. However, these methods require access to the microphone

and lead to privacy concerns (Das, Borisov and Caesar, 2015).

Radio frequency fingerprinting is also an active research area. Several indi-

vidual steps in the process of generating wireless signals, all due to hardware

imperfections of a transmitter (Danev, Zanetti and Capkun, 2012), can be the

source of the RF fingerprints. Different fingerprint sources include the clock jit-

ter (Zanetti, Danev et al., 2010), device antenna (Danev, Heydt-Benjamin and

Capkun, 2009), DAC sampling error (Polak, Dolatshahi and Goeckel, 2011),

power amplifier non-linearity (Polak, Dolatshahi and Goeckel, 2011; Polak and

Goeckel, 2011; Liu and Doherty, 2008), modulator sub-circuit (Brik et al., 2008),

and the mixer or local frequency synthesizer (Toonstra and Kinsner, 1996).

Although hardware fingerprinting has been proved to be effective in track-



73

ing smartphones, it is unclear whether these methods can resist an imperson-

ation attack. Since the signal generated by a sensor is manipulatable, most fin-

gerprinting methods are vulnerable against forgery attacks where an adversary

tampers with the sensor data intentionally (Chen et al., 2015; Danev et al., 2010).

3.8 Conclusion and future work

In this paper, we explore the idea of utilizing the image sensor’s PRNU as a

smartphone’s unique fingerprint to implement the physical layer device au-

thentication. We find that smartphone cameras demonstrate very strong PRNU.

Based on this fact, we design ABC, an attack-resilient, real-time, and user-

friendly smartphone authentication protocol that differentiates smartphones

through the PRNU of their built-in cameras. The registration of a smartphone’s

PRNU requires only one image. We implement a prototype of ABC and test

it with 16,000 images collected from Amazon Mechanical Turk and our own

devices. The experimental results show that ABC can efficiently authenticate

users’ devices with an error rate less than 0.5% and detect fingerprint forgery

attacks with an error rate less than 0.47%. Our user study suggests that the

PRNU-based authentication is a promising approach for enhancing smartphone

security.

With more and more smartphone manufacturers adopting a dual-camera

(rare) system, we plan to investigate how to take advantage of the extra camera

and improve the security of ABC as future work. With a dual-camera system,

the verifier will be able to identify each smartphone with fingerprints of the two

cameras and further increase the difficulty of fingerprint forgery. We will also

consider the characteristics of different dual-camera system types: IPhone 7 plus
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is equipped with a wide-angle camera and a telephoto camera to achieve higher-

quality zoom from farther away; Huawei P9 combines two image sensors, one

RGB and one monochrome, to enhance the detail of the captured image.



Chapter 4
Towards Practical Camera-based

Smartphone Authentication via

Camera Movement and Continuous

Photographing

4.1 Introduction

Protecting users’ on-line accounts has always been a challenging task. Accord-

ing to Breach Level Index (Breach Level Index H1 2018 Infographic, N.d.), over 3.3

billion data records were compromised in the first half of 2018, an increase of

72% compared to the first half of 2017. The exposed data includes names, social

security numbers, passwords, fingerprints, and so on. Due to the fact that most

users are prone to reuse their passwords across different web services, many

organizations began to implement multi-factor authentication systems that not

only prompt the users for what they know but also what they have.
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Along this direction, we explore the camera-based smartphone authentica-

tion system which verifies the identity of a smartphone through checking the

hardware fingerprint of its built-in camera (Ba et al., 2018; Valsesia et al., 2017).

In such an authentication system, the user sends one or more images captured

by his/her smartphone to a verifier, which authenticates the user by matching

the fingerprint of the received images to the reference fingerprint of the legiti-

mate device. Compared with other physical-layer authentication systems that

either require additional hardware or suffer from poor usability, the camera-

based authentication system is convenient and of low cost. For instance, a user

can photograph and upload a transaction on a merchant’s point of sale (POS)

terminal to grant a payment. In another instance, a user can photograph a chal-

lenging scene (e.g., a QR code) displayed on a laptop to authorize a login. The

usability of such authentication modality is preserved since taking photos is fa-

miliar and convenient to most smartphone users.

The essence of the camera-based authentication system is the detection of

whether an image is captured by a specific smartphone. Photo Response Non-

Uniformity (PRNU) has been recognized as the most reliable hardware fin-

gerprint of digital cameras for image-to-camera matching in digital forensics

(Lukas, Fridrich and Goljan, 2006). Unlike most hardware fingerprints that are

composed of a few features drawn from the time domain and frequency do-

main of sensor outputs (Dey et al., 2014; Zhou et al., 2014; Brik et al., 2008), this

camera fingerprint is a large matrix consisting of millions of variables, which

makes the fingerprint of each individual camera remarkably unique. Results

have shown that, the PRNU-based identification approach can accurately dif-

ferentiate over one million images captured by thousands of devices (Goljan,

Fridrich and Filler, 2009). Moreover, according to the experimental results in
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(Ba et al., 2018), this fingerprint does not change overtime and is robust against

most environmental changes, such as light, temperature and relative humidity.

These salient features make the PRNU a good candidate for the physical layer

proof of a smartphone.

The PRNU however is vulnerable against fingerprint forgery attacks. With

a handful of images (e.g., on social media) from a victim smartphone, an ad-

versary can extract the fingerprint of the victim device and embed the obtained

fingerprint into arbitrary images of the same resolution (Goljan, Fridrich and

Chen, 2011; Steinebach et al., 2010; Ba et al., 2018). Despite decades of research

on camera fingerprinting, only few detection mechanisms have been proposed

to detect forged fingerprints, and these mechanisms are either impractical or

have security flaws. Goljan et al. (Goljan, Fridrich and Chen, 2011) detect forged

images by tracking their abnormal correlation with the victim images used by

the adversary. Their approach could achieve a high detection rate if the verifier

knows the images used by the adversary. This is a strong assumption that is

often hard to meet. Quiring et al. (Quiring and Kirchner, 2015) propose a fragile

camera fingerprint that can only be extracted from raw images. Since most of

the images shared online are in a compressed format such as JPG, the use of

fragile fingerprints raises the bar for fabricating forged images. Unfortunately,

this approach requires a large number of raw images to obtain a reliable finger-

print, and its performance relies heavily on the secrecy of raw images. In (Ba

et al., 2018), it is found that forged images generated by an adversarial device

share the fingerprints of both the victim device and the adversarial device. The

similarity value between two forged images fabricated by the same adversar-

ial device exceeds the normal range. Therefore, the authentication system pro-

posed in (Ba et al., 2018) detects forged images by requiring that a user captures
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two time-variant QR codes and sends the two images to a server. However, this

mechanism fails if the adversary uses multiple adversarial devices to fabricate

different images since images fabricated by different devices will only share the

victim’s camera fingerprint. The effectiveness of this attack is demonstrated in

Section 4.3.4.

In this paper, we present new primitives for the PRNU forgery detection

and introduce a novel and practical camera-based smartphone authentication

system. Our major contribution can be summarized as follows.

We find that a noisechain is embedded in the random noise components

of continuously captured images when a smartphone camera operates in burst

mode. In burst mode, images are captured in a short interval, and the ran-

dom noise components of an image can partly be preserved across multiple

images. We refer to the preserved noise components as the short-term noise. It

has a positive impact on the similarity value between nearby images and grad-

ually attenuates with the increasing distance between images. The similarity

values between a burst image and its nearby images always demonstrate an

attenuation pattern, which is considerably sensitive to the injection of foreign

fingerprints. Therefore, a noisechain-based forgery detector is built upon such

observations.

Our second finding is there exist correlations between a moving smartphone

camera in burst mode and the noise components of the captured image. The

instantaneous velocity of the camera is positively correlated with the quality of

the image’s camera fingerprint and is negatively correlated with the Peak to Au-

tocorrelation Energy (PAE) of the image’s random noise components. Therefore,

the verifier can challenge the user to upload images captured at a high move-

ment speed. The images uploaded by the user will always have a strong cam-
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era fingerprint and weak random noise components. A forgery attack will in-

evitably increase the noise PAE of the target image. A movement-based forgery

detector is built upon such observations by checking the noise PAE of the images

and their correlation with accelerometer readings. The movement-based detec-

tor works even if the user submits a single image for authentication. We do not

find attacks against this one-image authentication system while we recommend

the use of at least four images to take advantage of all forgery detectors. We are

the first to observe the correlation between the movement of the photograph-

ing device and the fingerprint of the captured images. The universality of the

observations are validated with 22 smartphones of 5 models.

Using the noisechain-based forgery detector and the movement-based

forgery detector, we propose CIM, a camera-based smartphone authentication

system that can defeat forgery attacks and is also user-friendly. CIM works as

follows. When a user requests authentication, the verifier generates two fresh

QR codes with random strings and displays them on its interface (e.g., a point-

of-sell machine) simultaneously. The user then takes pictures of the QR codes in

burst mode while moving the camera from the first QR code to the second one.

The smartphone records the measurements of its accelerometer. After reaching

the second QR code, the user stops the camera and uploads a certain number

of captured images with the accelerometer readings to the verifier. The veri-

fier authenticates the user as follows: 1) Detect replay attacks by checking the

existence of the presented QR codes. 2) Detect foreign devices by matching

the fingerprints of the received images to the reference fingerprint of the target

smartphone. 3) Detect fingerprint forgery attacks through the noisechain-based

forgery detector and movement-based forgery detector. Extensive experiments

are conducted to evaluate the security of the proposed system under various
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settings, including fingerprint forgery attacks and advanced adversaries. CIM

achieves 100% True Acceptance Rate(TAR) at 0% False Acceptance Rate(FAR) in

both fingerprint matching and forgery detection.

4.2 Related Work

Hardware Fingerprinting: In the literature, a rich set of sensors have been ex-

plored for identification of smartphones (Baldini and Steri, 2017; Amerini et al.,

2017). Motion sensors like accelerometers and gyroscopes have been demon-

strated to have unique statistical features (Dey et al., 2014; Das, Borisov and

Caesar, 2016) and calibration errors (Das, Borisov and Caesar, 2016; Son et al.,

2018). Acoustic sensors like speakers and microphones can be identified by the

frequency response (Zhou et al., 2014) and auditory features (Das, Borisov and

Caesar, 2014a). Image sensors on smartphone cameras exhibits non-uniform

sensitivity to light (Lukas, Fridrich and Goljan, 2006; Fridrich, 2009a). For wire-

less transmitters (Danev, Zanetti and Capkun, 2012), their fingerprints come

from the clock jitter (Jana and Kasera, 2010; Zanetti, Danev et al., 2010), device

antenna (Danev, Heydt-Benjamin and Capkun, 2009), DAC (Polak and Goeckel,

2015), power amplifier (Polak and Goeckel, 2015), and modulator (Brik et al.,

2008; Zhuang et al., 2018). Most of these methods have been demonstrated to

be effective in the context of device tracking.

Fingerprint Forgery: Under adversarial settings like authentication and

forensics, most of the above mentioned mechanisms are vulnerable to replay

attacks and fingerprint forgery attacks. Das et al. (Das, Borisov and Caesar,

2016; Das, Borisov and Chou, 2018) and Hupperich et al. (Hupperich et al.,

2015) show that the fingerprints of motion sensors are manipulatable. Goljan
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et al. (Goljan, Fridrich and Chen, 2011) demonstrated the feasibility of injecting

one camera’s fingerprint into the image captured by another device. The works

of (Danev et al., 2010; Edman and Yener, 2009; Rehman, Sowerby and Coghill,

2014; Fang, Liu and Ning, 2016) show that the fingerprints of wireless transmit-

ters are vulnerable to impersonation attacks. There is very limited research on

countermeasures to these fingerprint forgery attacks.

Hardware-rooted Smartphone Authentication: Recently, the explosive

growth of data breaches has led to a renewed interest in hardware-rooted au-

thentication modalities (Enterprise, 2017). Van et al. (Van Goethem et al., 2016)

proposed to authenticate wireless devices by checking the statistical features of

accelerometers. Chen et al. (Chen, Zhang, Qin, Mao, Qin, Shen and Li, 2017) im-

plemented an authentication system using the frequency response of acoustic

sensors. Ba et al. (Ba et al., 2018) and Valsesia et al. (Valsesia et al., 2017) explore

the PRNU as the unique identities of smartphones. The works of (Zeng et al.,

2011; Zeng, Govindan and Mohapatra, 2010; Jiang et al., 2013; Sharaf-Dabbagh

and Saad, 2016; Patel, 2015; Xiong and Jamieson, 2013) authenticate wireless de-

vices by checking the fingerprints of their transmitter and/or the wireless fad-

ing channel. Most of these works however suffer from either poor usability or

are vulnerable to fingerprint forgery attacks.

Toward this end, we present new primitives for the forgery detection of cam-

era fingerprint and propose CIM, a camera-based smartphone authentication

system that can defeat fingerprint forgery attacks while preserving usability.

Our work differs from existing methods in the sense that it exploits the cam-

era fingerprint of burst-mode images and the correlation between the camera

fingerprint and the camera movement.
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4.3 Preliminary

In this section, we introduce a typical camera-based smartphone authentication

system with the Photo Response Non-Uniformity (PRNU) and our threat model.

We then introduce smartphone camera fingerprinting, particularly how PRNU

is extracted from images as the fingerprint of a smartphone camera. At last, we

describe two fingerprint forgery attacks which will be addressed in this paper.

4.3.1 Camera-based Smartphone Authentication

Fig. 4.1 shows the typical architecture for camera-based smartphone authen-

tication. The user sends out a request (e.g., a payment request) to the verifier

and needs to be authenticated. The verifier consists of an interface and a server

that interact with the smartphone. The server maintains a database of <user

name, reference fingerprint, smartphone model>. In the authentication pro-

cess, the user takes pictures of the verifier’s interface and uploads the captured

images to the server. That is, the communication from the verifier’s interface to

the smartphone uses a visible light communication (VLC) channel. The verifier

then authenticates the user by checking the camera fingerprint extracted from

the received images, such as PRNU introduced below. The communication from

the smartphone to the server is through a wireless channel.

4.3.2 Threat Model

We consider a powerful adversary (Ba et al., 2018). The adversary has prior

knowledge of the victim’s credential, including the user name, smartphone

model, and camera fingerprint. The camera fingerprint can be extracted from
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Figure 4.1. System model. The user initiates the authentication process on the verifier’s
interface. The user then captures what is shown on the screen and uploads the captured
image to the verifier. The verifier determines the identity of the user through checking
the fingerprint on the received image.

the online images posted by the victim. The adversary may also know the de-

tailed setting of our authentication protocol and is able to collect any kind of

images captured by the victim smartphone. However, the adversary does not

physically possess the victim’s smartphone during the authentication process.

The objective of the adversary is to impersonate a legitimate user using a for-

eign smartphone. The adversary initiates the authentication with his/her smart-

phone and submits images carrying the victim’s camera fingerprint, in the hope

of fooling the verifier into believing that the smartphone is the one associated

with the legitimate user. In particular, the adversary may conduct two kinds

of attacks. In a replay attack, the adversary collects images carrying the victim’s

camera fingerprint and submits them to the verifier. Such images can easily be

obtained from the victim’s social network. In a fingerprint forgery attack, the ad-

versary takes pictures of the verifier’s interface and embeds the captured images

with the victim’s camera fingerprint. In this attack, the adversary can fabricate

arbitrary images carrying the victim’s camera fingerprint.
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4.3.3 Smartphone Camera Fingerprinting

Photo Response Non-Uniformity (PRNU) is a very reliable hardware finger-

print of digital cameras (Lukas, Fridrich and Goljan, 2006; Fridrich, 2009a). It

is a multiplicative factor to the actual optical view and originates from the non-

uniform light-sensitivity of millions of pixels. Denote K as the PRNU finger-

print of a digital camera. An image captured by the camera can be represented

as I = (1 + K) I0 + Θ, where I0 and Θ represents the actual optical view and the

random noise components respectively.

To determine if a query image Iq carries the PRNU fingerprint of a smart-

phone camera, the verifier needs to correlate the fingerprint of the query image

to the reference fingerprint of the target camera. Specifically, the verifier first

extracts the camera fingerprint of Iq using a denoising filter. Because the PNRU

fingerprint behaves like a white Gaussian noise (Lukas, Fridrich and Goljan,

2006; Chen, Fridrich and Goljan, 2007), the obtained noise residue can be mod-

eled as Wq = I0
qKq + Ξq (Chen et al., 2008), where Ξq is a combination of other

white Gaussian noises of the query image. The verifier then prepares a refer-

ence fingerprint K̂ of the target device. Due to the fact that smartphone cameras

possess strong fingerprints, the reference fingerprint can be the noise residue of

an image Ir taken by the target smartphone (Ba et al., 2018). Finally, the veri-

fier evaluates the similarity between W and K̂ using their Peak to Correlation

Energy (PCE) (Goljan, 2008):

ρ = PCE
(
Wq, K̂

)
,

= PCE
(

I0
qKq + Ξq, I0

r Kr + Ξr

)
.

(4.1)

The obtained PCE value is determined by the strength of the noise components
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shared between Wq and K̂. It will be significantly higher if Kq equals Kr. The

verifier uses a threshold to determine if the query image is indeed captured by

the target smartphone.

To illustrate PCE, we construct 800 matching image pairs and 800 non-

matching image pairs using iPhone 6 and conduct fingerprint matching. The

obtained PCE distributions are shown in Fig. 4.2. It can be observed that the

PCE values of matching image pairs are almost always higher than that of non-

matching image pairs. The reason why there is a small overlap between those

two distributions is because of the existence of the random noise components

(Ξr). In practice, the strength of Ξr can be suppressed through averaging the

noise residues of multiple images (Cain, Hayat and Armstrong, 2001). With a

high quality fingerprint estimated from multiple images, the PCE values ob-

tained from matching images can be significantly improved.

4.3.4 Fingerprint Forgery

There are two strategies to modify the fingerprint of an image: Quick Injection

(Goljan, Fridrich and Chen, 2011) and Fingerprint Replacement (Ba et al., 2018).

In quick injection, the adversary directly injects a victim’s camera fingerprint

into an image captured by a foreign device. Specifically, the adversary first es-

timates a fingerprint K̂V from multiple images captured by the victim smart-

phone. The adversary then injects the obtained estimation into an image J cap-

tured by a foreign smartphone by

J′ =
(
1 + αK̂V

)
J,

≈
(
1 + αK̂V

)
(1 + KA) J0,

(4.2)
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(a) Matching image pairs: The
PCE between two images cap-
tured by the same smartphone

(b) Non-matching image pairs:
the PCE between two images cap-
tured by different smartphones

(c) Quick injection attacks: the
PCE between a victim image and
a forged image

(d) Forged image pairs: the PCE
between two forged images fabri-
cated by different adversarial de-
vices

Figure 4.2. PCE distributions of different image pairs. (a) and (b): Images captured
by the same smartphone show significantly higher PCE than images captured by dif-
ferent smartphones. (c) In quick injection attacks, the forged image can easily bypass
PRNU-based camera identification because the PCE between a forged image and a vic-
tim image lies in a similar range as the PCE from matching image pairs (two victim
images). (d) For forged images fabricated by different adversarial devices, their PCE
also lies in a similar range as the PCE from matching image pairs.

where KA is the inherent fingerprint of J and α is the strength factor that controls

the injected fingerprint K̂V . With a proper α, the adversary can easily adjust the

strength of KV to the legitimate range (Fig. 4.2(c)).

In a recent work, a forgery detection mechanism is proposed to detect quick

injection attacks by challenging the user/adversary to provide two images and

checking the PCE between the noise residues of the received images (Ba et al.,

2018). If these two images are fabricated by the same adversarial device, the

obtained PCE will exceeds the normal range because of KA. However, as shown

in Fig. 4.2(d), forged images fabricated by different adversarial devices will only

share the victim’s camera fingerprint and have a similarity value within the
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normal range. ABC fails in this case.

In fingerprint replacement, the adversary removes the inherent fingerprint of

the target image before injecting the victim’s camera fingerprint. Given an im-

age J captured by a foreign device, the adversary first extracts its noise residue

WA using a denoising Filter. He/She then removes WA from J by

J′0 = (1− βWA) J,

≈
(

1− βJ0KA

)
(1 + KA) J0,

(4.3)

where β controls the strength of the removed fingerprint. By varying β, the ad-

versary adjusts the strength of KA to a negligible level. Finally, the adversary

injects the victim’s camera fingerprint into the sanitized image J′0 using equa-

tion 4.2. Images fabricated in this way will only contain the fingerprint of the

victim smartphone and are harder to detect.

4.4 Intuition and Validation

The key challenge for a practical camera-based smartphone authentication sys-

tem is to detect the quick injection attack and the fingerprint replacement attack

described in section 4.3.4. Our system addresses these attacks through employ-

ing a specially designed photographing strategy which greatly increases the dif-

ficulty of fabricating forged images without leaving traces. Specifically, upon re-

ceiving a user’s authentication request, the verifier requires the user to take pic-

tures in burst mode and to involve a simple movement into the photographing

process. Both the captured images and the measurements of the smartphone’s

accelerometer need to be uploaded for authentication. The verifier then detects
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quick injection attacks and fingerprint replacement attacks through checking

forgery-sensitive features unique to burst images and correlations between the

captured images and the camera movement. In this section, we describe the

features and correlations to be applied in our system, illustrate their sensitivity

to each kind of forgery attack, and provide experimental validations.

4.4.1 Intuition

We have observed two novel phenomena that can be used to address fingerprint

forgery attacks.

Noisechain in images taken in burst mode. Images in burst mode are captured

in quick succession. Short-term noise is shared between sequentially captured

images. Such short-term noise may form a noisechain linking the random noise

components of burst images. This is counter-intuitive because it is often be-

lieved that random noise components of unmodified images (i.e. images that

are not manipulated by an adversary) are always random and independent.

Therefore, during the authentication process, the user shall take images in burst

mode and the noisechain can be used to detect forgery attacks.

Correlation between camera movement and noise. A shaking camera may cause

blurry images that a photographer wants to avoid. However, the distortion

caused by movement is systematic, and it is likely to create correlations between

the noise components of the captured image and the instantaneous velocity of

the photographing device. Therefore, during the authentication process, a user

may shake the smartphone while taking images and the correlation between

camera movement and noise in images may be utilized to defeat forgery attacks.

In the rest of this section, we present our validation of the two phenomena
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Table 4.1. Devices under investigation
Smartphone Model Burst Rate Image Resolution
Samsung S8 30 FPS 1440×2560
iPhone 6 10 FPS 2448×3264
LG G5 10 FPS 2976×2976
Samsung J3 3 FPS 1536×1536
Moto G4 3 FPS 1836×3264

Figure 4.3. PCE distributions of burst image pairs. The distance between two images
refers to the difference between their position in the burst. A distance of 1 indicates that
the image pair contains two continuously captured images. A distance of Inf indicates
that the image pair is unconnected. Each of the distribution is obtained from 800 image
pairs captured by iPhone 6.

and also validate that any modification to the camera fingerprints from burst

images will break the integrity of the noisechain as well as the correlations with

movement. For each phenomenon, We employ 22 smartphones of 5 different

models for evaluation: i) 10 iPhone 6; ii) 3 Samsung Galaxy S8; iii) 3 LG G5; iv)

3 Samsung J3; v) 3 Moto G4. The technical specifications of the smartphones

are shown in Table 4.1. These smartphones cover all burst rates available in the

market.

4.4.2 Existence of Noisechain

To demonstrate the existence of the noisechain, we compare two types of image

pairs: 1) Connected image pair: two images in the same burst. The images are
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expected to share both the camera fingerprint and the short-term noise if the

noisechain exists. 2) Unconnected image pair: two images from different bursts

but captured by the same smartphone. The only noise component shared be-

tween the selected images shall be the camera fingerprint. Please note that, the

images applied this experiment are captured by hand-held cameras. No two

images in the same burst have identical image content. Because the image con-

tent will only affect the PCE between two images when there exists a region in

the two images that are identical and perfectly aligned, the PCE value obtained

in this experiment is not caused by similar image content.

For each image pair, we extract the noise residues of both images and cal-

culate their PCE value. The box plots of the PCE values are shown in Fig.

4.3. A box plot is often used to display the distribution of data. The distance

between two images refers to the difference between their position in a burst.

Each distribution is obtained from 800 image pairs captured by iPhone 6. It can

be observed that the PCE distributions of connected image pairs have signif-

icantly higher median and standard deviation than the distribution of uncon-

nected image pairs. With the increasing distance, the distribution of connected

image pairs gets closer to the distribution of unconnected image pairs. Since the

strength of the camera fingerprint is similar for all types of image pairs, these

provide convincing evidence that there are short-term noises affecting the PCE

values obtained from connected image pairs. Such short-term noise can be par-

tially preserved across multiple images captured in a row, and the strength of

the preserved part gradually decreases with the increasing distance. In other

words, there is a noisechain embedded in the random noise components of con-

tinuously captured burst images.

Universality of Noisechain: We now repeat the above experiments with
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Figure 4.4. Universality of the noisechain. Each of the distribution is obtained from 800
image pairs.

the four other smartphone models. The distribution of the obtained PCE val-

ues are shown in Fig. 4.4. We make following observations: 1) The noisechain

is universal for all smartphone models under investigation. Regardless of the

burst rate of the smartphone, the PCE distribution of connected image pairs

always has a higher median and standard deviation than the distribution of

unconnected image pairs. 2) For smartphone models with a higher burst rate,

the standard deviation of their PCE distribution drops faster with the distance

between images. This result indicates that the impact of the short-term noise

increases with the burst rate of the smartphone. 3) The standard deviation of

the PCE distributions obtained from LG G5 is relatively robust across different

types of image pairs. This is possibly because LG G5 has employed many post

processing techniques on the captured images. According to our experiment
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results, most post-processing operations suppress the short-term noise shared

between continuously captured images. Such robust standard deviation has a

positive impact on the performance of the noisechain-based forgery detector.

4.4.3 Correlation between Movement and Noise

Our experiment results clearly show two correlations between an image’s noise

components and the movement of the camera. We now use one series of burst

images to help illustrating the two correlations. The universality of these cor-

relations will be demonstrated later. The burst series contains 33 burst images

captured by an iPhone 6. During the photographing process, we first hold the

smartphone still, and then move the smartphone to the right side. After a short

stay, we move the smartphone back to the left side and then terminate the pho-

tographing process. Fig. 4.5(a) plots the smartphone’s accelerometer readings

along the moving direction (the X-axis). To visualize the movement pattern, we

calibrate the obtained accelerometer readings (Das, Borisov and Caesar, 2016)

and calculate the instantaneous velocity at each sample point. As shown in

Fig. 4.5(b), the movement of the smartphone mainly involves five stages: static,

move to the right side, static, move to the left side, and static.

Correlation with the camera fingerprint: The first feature affected by the

camera movement is the fingerprint quality of the captured image. Although

the PRNU of an image sensor remains constant overtime, the fingerprint signal

on an image can be distorted by the image’s random noise components (e.g.,

environmental noise and image content). Fingerprint quality is used to mea-

sure the similarity between the fingerprint of an image and the real fingerprint

of the smartphone camera. A high fingerprint quality indicates that the finger-
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(a) Acceleration (b) Velocity

(c) Fingerprint quality (d) Noise PAE

Figure 4.5. A burst series captured by an iPhone 6. The burst rate of the camera is 10
FPS, and the sampling rate of the accelerometer is 20 Hz.

print of the image is less distorted and that image is more likely to be accu-

rately matched to its photographing device. In practice, the fingerprint quality

of an image is normally estimated through calculating the PCE value between

the image’s noise residue and a high quality reference fingerprint of the pho-

tographing device. Fig. 4.5(c) plots the PCE values between each test image

and a strong reference fingerprint estimated from five images. Please note that,

although we use five images to extract the reference fingerprint for the purpose

of a clear illustration, one image is enough for our camera-based authentica-

tion system CIM. It can be observed that, the fingerprint quality of an image

is significantly and positively correlated with the instantaneous velocity of the
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photographing device. This is because the images captured at high movement

speed are more blurry than images captured at low movement speed. Cam-

era fingerprints extracted from blurred images are less distorted by the image

content and therefore have higher quality. We refer to the correlation between

the fingerprint quality and the camera movement as the fingerprint-movement

correlation.

Correlation with the noise residue: The second feature affected by the

camera movement is the Peak to Autocorrelation Energy (PAE) of the image’s

noise residue. The noise residue of an image consists of the camera fingerprint

and random noise components (e.g., environmental noise and image content).

Given a noise residue W of size m*n, the PAE can be calculated as:

PAE(W) = PCE(W, W)

=
(W−W) · (W(speak)−W(speak))
1

mn−|N| ∑s/∈N(W−W) · (W(s)−W(s))
,

(4.4)

where (W − W) · (W(s) − W(s)) is the dot product between W − W and

W(s)−W(s) circularly shifted by vector s. N is a small neighborhood around

the peak (Goljan, Fridrich and Filler, 2009). Because the peak for autocorrelation

is always occurs as speak = [0, 0], the equation 4.4 can be rewritten as

PAE(W) =
Var(W)

1
mn−|N| ∑s/∈N(W−W) · (W(s)−W(s))

, (4.5)

where Var(W) is the variance of the noise residue W. Fig. 4.5(d) plots the PAE

value of each test image. It can be observed that, the noise PAE of an image

is negatively correlated with the instantaneous velocity of the photographing

device as well as the fingerprint quality. The reason are twofold. Firstly, the
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noise residue of images captured at high movement speed contain less image

content than normal images, which decreases the variance of the noise residue.

Secondly, the movement of the smartphone introduced periodic signals into the

captured image and increased the denominator in equation 4.5. We refer to

the correlation between the noise PAE and the camera movement as the noise-

movement correlation.

Universality of correlations with movement: We now demonstrate the uni-

versality of the fingerprint-movement correlation and the noise-movement cor-

relation. We test two types of images for comparison: 1) Moving image: a burst

image captured with a moving camera. 2) Static image: a burst image captured

with a stationary camera. We test 200 moving images and 200 static images for

each smartphone model under investigation.

Fig. 4.6 shows the distributions of the noise PAE and the fingerprint qual-

ity of the tested images. It can be observed that, in most cases, the fingerprint

quality of a moving image is significantly higher than the fingerprint quality

of a static image, and the opposite is true for the noise PAE of these images.

The fingerprint-movement correlation and the noise-movement correlation are

both universal for all tested smartphone models. For several smartphone mod-

els, there exist a small overlap between the distributions of moving images and

static images. This is because both the fingerprint quality and the noise PAE

vary from one image to another. Fortunately, such overlap only exists in the

distributions constructed across different burst series.
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Figure 4.6. Noise-movement correlation and fingerprint-movement correlation. The
fingerprint quality is estimated using a reference fingerprint extracted from five burst
images.

4.4.4 Sensitivity to Fingerprint Forgery Attacks

To illustrate the impact of fingerprint forgery operations on burst images, we

construct three series of burst images for comparison: 1) Normal burst series: an

unmodified burst series containing 33 images captured in a row. We use the

burst series shown in Fig. 4.5. 2) Injection burst series: a forged burst series

fabricated through the quick injection strategy described in section 4.3.4. 3) Re-

placement burst series: a forged burst series fabricated through the fingerprint re-
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placement strategy described in section 4.3.4. We first generate a sanitized burst

series through removing the inherent fingerprints of the normal burst series.

We then inject a foreign fingerprint into a sanitized burst series. The injection

strength (α) in Equation 4.2 is set to be 0.03 so that the forged image will have a

victim fingerprint within the normal quality range. For fingerprint removal, the

strength factor (β) in Equation 4.3 is set to be 0.02 to completely eliminate the

image’s inherent fingerprint.

Each victim fingerprint is extracted from a training set of five images. The

victim fingerprints injected into different images are always be extracted from

different and non-overlapping training sets. To explain why, consider an adver-

sary using two training sets S1 and S2 that both contain an image I. In a forgery

attack, the adversary fabricates two forged images J′1 and J′2 using respectively

the victim fingerprint KA1 extracted from S1 and the victim fingerprint KA2 ex-

tracted from S2. Because an extracted fingerprint will also carry the random

noise components of the applied victim images. KA1 and KA2 will both carry

the random noise components of I, making the PCE between J′1 and J′2 higher

than a normal value. As a result, the adversary is exposed. To demonstrate this

phenomenon, we conduct experiments with image sets of five different sizes: 5,

10, 15, 20, and 30. For each setting, we construct 3 image sets S1, S2 and S3 using

images captured by the same iPhone 6. S1 and S2 are non-overlapping image

sets. S2 and S3 have 20% common images. We then extract KA1, KA2 and KA3

from the three image sets and calculate PCE(KA1, KA2) and PCE(KA3, KA2).

Figure 4.7 plots the PCE values obtained from different settings. It can be ob-

served that, due to the existence of common images, the PCE value between

KA3 and KA2 is always significantly higher than that between KA2 and KA1.

Noisechain: We construct connected image pairs from each burst series and
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Figure 4.7. The impact of common images on the similarity between fingerprint esti-
mations. KA1 and KA2 are estimated from non-overlapping image sets. The image sets
applied to estimate KA2 and KA3 have 20% common images

calculate their PCE values. Fig. 4.8 shows the heat map of the PCE values

obtained from the first ten images of each burst series. It can be seen that the

heat map of the normal burst series has an attenuation pattern, in which the PCE

values gradually decrease with the increasing distance. For the injection burst

series and the replacement burst series, there is no such attenuation pattern in

their heat maps. This is because the fingerprints injected into different images

are derived from different image sets and thus have non-uniform fingerprint

quality. The injection of these non-uniform fingerprints severely distorts the

attenuation pattern of the target burst series’ heat map.

The second observation is that the PCE values obtained from forged burst

series are significantly higher than the PCE values obtained from the normal

burst series. For the injection burst series, this phenomenon is caused by the

extra camera fingerprint carried in forged images. For the replacement burst se-

ries, this phenomenon is caused by the introduction of a new noise component.

Following the fingerprint replacement strategy, the adversary removes the in-

herent fingerprints of target images before injecting the collected fingerprints, in

the hope of decreasing the PCE values between forged images. However, as will
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Figure 4.8. The PCE values of connected image pairs selected from different burst series.
For each image pair, the image # is the sequential number of the first image, and sum of
the image # and the distance is the sequential number of the second image.

be shown in Section 4.6.5, removing the fingerprint of an image using adaptive-

denoising will introduce the negation of that image’s short-term noise into the

sanitized image. This noise component is shared between forged images and

causes the PCE values between forged images to be significantly higher than

that between normal images.

Our last observation is that the noisechain is also affected by the movement

of the photographing device. A comparison between Fig. 4.8 and Fig. 4.3 re-

veals that the standard deviation of the PCE values in Fig. 4.8 is much lower

than the standard deviation in Fig. 4.3. This is because the former experiment

involves camera movement. According to our experiment results, the standard

deviation of the strength of the short-term noise sharply decreases with the in-

creasing instantaneous velocity of the camera. In this paper, we refer to this

phenomenon as the noisechain-movement correlation. As will be shown in
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(a) Fingerprint quality (b) Noise PAE

Figure 4.9. Correlations with movement. The fingerprint quality is estimated using a
reference fingerprint extracted from five burst images.

Section 4.6.4, this correlation can be used to improve the performance of the

noisechain-based forgery detector.

The correlations with movement: Fig. 4.9 plots the fingerprint quality and

the noise PAE calculated from each burst series. For the injection burst series

and the replacement burst series, both the fingerprint-movement correlation

and the noise-movement correlation are severely distorted. These distortions,

like the distortion of the attenuation pattern, are primarily caused by the injec-

tion of non-uniform camera fingerprints. Due to the fact that the fingerprints

extracted from different image sets are normally rather different in terms of fin-

gerprint quality and noise PAE, it is difficult for an adversary to preserve both

correlations at the same time.

Another major difference between the normal burst series and modified

burst series is the distribution of their noise PAE. As shown in Fig. 4.9(b), the

noise PAE of a normal image is significantly lower than the noise PAE of a mod-

ified image. This is intuitive because both the injection burst series and replace-

ment burst series involve a fingerprint injection process. Because the camera

fingerprint is also a white Gaussian noise, the fingerprint injection process actu-
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(a) Screen layout (b) Photographing route (start)

(c) Photographing route (middle) (d) Photographing route (end)

Figure 4.10. Screen layout and photographing route.

ally introduces extra noise into the target image and will inevitably increase the

noise PAE of the forged image.

4.5 The Proposed System

In this section, we introduce the CIM protocol with the proposed forgery detec-

tors in detail. The architecture of our system is the same as the one in Fig. 4.1

while the underlying protocol is different. CIM allows a user to submit either

single or multiple images for the purpose of authentication.

4.5.1 CIM Protocol

The proposed authentication system involves two phases: the registration phase

and the authentication phase. During the registration phase, the verifier re-

quires the user to submit a user name, the smartphone model, and a burst se-
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ries captured by his/her smartphone. The reason for requiring the smartphone

model is that several thresholds used by CIM are different for different smart-

phone models. After receiving these data, the verifier extracts a reference finger-

print (K̂) from the received burst images and constructs a profile <user name,

reference fingerprint, smartphone model> for this user.

In the authentication phase, the user sends out a transaction along with the

user name to the verifier. The verifier then authenticate the user through fol-

lowing procedures:

Step 1: the verifier generates two fresh and different QR codes (I1
QR, I2

QR) and

displays them on its interface simultaneously. Each of the QR codes is encoded

with the metadata of the ongoing transaction, a time stamp and a random string.

Step 2: the user captures the QR codes following the specified route shown

in Fig. 4.10(a). The user first points the smartphone camera to the first QR code

and initiates the photographing process in burst mode. While photographing,

the user moves the smartphone along the route and stops at the second QR code

as shown in Fig. 4.10(d). The measurements of the accelerometer are recorded

during the photographing process. The user then uploads single or multiple

captured images ({I1, ..., In}) along with the corresponding accelerometer read-

ings (Acc) to the verifier through a wireless channel.

Step 3: upon receiving the burst series uploaded by the user, the verifier con-

ducts liveness detection, fingerprint matching, and forgery detection to verify

the user’s smartphone.

Liveness detection: The verifier detects the required QR codes in the received

burst series. The authentication request will be rejected unless all the images in

the burst series carry at least one of the required QR codes.

Fingerprint matching: The verifier first extracts the noise residue of each re-
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ceived image using a denoising filter. It then calculates the PCE values between

the reference fingerprint of the legitimate smartphone and each of the noise

residues. The obtained PCE values are stored in a vector VF. Finally, it com-

pares the minimum value of VF with a predefined threshold in order to detect

if all the images uploaded by the user carry the fingerprint of the legitimate

device.

Forgery detection: This process differs depending on the number of images

submitted by the user. If the user submits multiple images for authentication,

the verifier detects fingerprint forgery attacks using both the noisechain-based

forgery detector and movement-based forgery detector introduced below. In the case

that the user submits a single image for authentication, CIM requires the user to

submit the image covering both QR codes (Fig. 4.10(c)). This image is normally

the one captured at the highest movement speed, i.e., the image carrying the

maximum fingerprint quality and minimum noise PAE of the captured burst series.

Upon receiving this particular image, the verifier detects fingerprint forgery at-

tacks through checking the noise PAE of the received image. Because the min-

imum noise PAE is the most powerful feature in detecting fingerprint forgery

attacks (will be shown in Section 4.6), CIM can still provide reliable detection

results.

In practice, the selection of the number of images to be submitted by the

user depends on the specific application scenario and the verifier’s security re-

quirements. In the single-image authentication mode, both the transmission

overhead and the computational overhead are minimized. The verifier checks a

single feature for the detection of fingerprint forgery attacks. So far, we have yet

to find any practical attacks against this detection mechanism. In the multiple-

images authentication mode, the transmission overhead and the computational
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overhead increase. However, the verifier is able to take advantage of the two

forgery detectors, which make the authentication system highly secure.

4.5.2 Noisechain-based Forgery Detector

In order to detect the integrity of the noisechain, we construct two correlation

matrices for the received burst series {I1, ..., In}. The left correlation matrix CL

is an (n− 5) × 5 matrix. Its entry CL [i, j] is the PCE value between the noise

residues of Ii and Ii−j. The right correlation matrix CR is an (n− 5)× 5 matrix.

Its entry CR [i, j] is the PCE value between the noise residues of Ii and Ii+j. After

obtaining these correlation matrices, the verifier checks three features for the

detection of fingerprint forgery attacks: the mean, the standard deviation, and

the attenuation pattern.

The reason for choosing the mean and standard deviation is because all

forged burst series contain extra noise components. As discussed in Section

4.4.4, a burst series fabricated through the quick injection strategy carries the

fingerprint of the adversarial device, and a burst series fabricated through the

fingerprint replacement strategy carries the negation of the short-term noise.

Because of these extra noises, the correlation matrices of a forged burst series

always has a significantly higher mean and standard deviation than those of a

legitimate burst series. Here we use the mean and standard deviation of the

concatenated matrices (CL and CR). The authentication request is rejected if any

of the two values is larger than a predefined threshold.

If both the mean and the standard deviation are within the normal range, the

detector will further check the attenuation pattern of the correlation matrices. In

the ideal case, the value of CL [i, j] and CR [i, j] should both gradually decrease
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Figure 4.11. The correlation between a burst mode image and nearby images. The x-
axis is the sequential number of nearby images. For instance, in the first figure, the PCE
at the image #2 refers to the PCE value between image #7 and image #2.

as j increases. In practice, few matrices can strictly follow such pattern. For in-

stance, the heat map shown in Fig. 4.8 is apparently more “noisy” than the ideal

case. This is because the strength of the camera fingerprint and the short-term

noise usually vary from one image to another. This inevitably introduces un-

certainty into the obtained correlation matrices and makes it difficult to conduct

pattern matching.

In order to overcome the above issue, we design a pattern matching algo-

rithm named Slope Counting. The key observation behind slope counting is, al-

though most correlation matrices are unlikely to strictly follow the attenuation

pattern, their attenuation trends are surprisingly robust. To illustrate, we pick

three images from a burst series and plot their attenuation trends using linear

fitting. As shown in Fig. 4.11, their correlations to nearby images always tend

to increase on the left side and to decrease on the right side. Leveraging this
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observation, Slope Counting calculates the percentage of fitting lines that match

the desired trends and use thresholding to determine if the noisechain has been

distorted.

Specifically, the Slope Counting algorithm works as follows. Given a burst

series {I1, ..., In} submitted by the query smartphone, Slope Counting first gen-

erates the left correlation matrix CL and the right correlation matrix CR. Then,

for both CL and CR, the algorithm generates linear fitting lines for each row and

record their slopes. The slopes obtained from the tth row of the left correla-

tion matrix and of the right correlation matrix are respectively represented as

mL
t and mR

t . The algorithm then compares the obtained slopes with predefined

thresholds (ωL and ωR) in order to determine if the fitting lines match the de-

sired trends. Finally, Slope Counting counts the number of matching slopes and

outputs a matching ratio η that represents the percentage of matching slopes.

The details of Slope Counting are shown in Algorithm 4.

Algorithm 4 Slope Counting
F1 function Slope Counting ({I1, ..., In}, i, j)
1. (CL, CR)← CorrelationMatrix({I1, ..., In})
2. for t:= 1 to n-5 do
3.

(
mL

t , mR
t
)
← LinearFit (CL [t, :] , CR [t, :])

4. If (mL
t > ωL) then

5. Count← Count + 1
6. end if
7. If (mR

t < ωR) then
8. Count← Count + 1
9. end if

10. end for
11. Return Count

2(n−5)
end function



107

4.5.3 Movement-based Forgery Detector

The movement-based forgery detector builds upon the observation that intro-

ducing foreign fingerprints into a burst series will inevitably increase their noise

PAE and will distort their correlation with the movement pattern. In particular,

the detector uses three features to differentiate forged burst series from legit-

imate ones: the minimum noise PAE, the maximum noise PAE, and the correlation

with movement.

During the authentication process, the detector first constructs a noise vector

VN, which stores the noise PAE of each query image. For image Ii, its noise

PAE VN [i] is calculated using PCE (Wi, Wi), where Wi is the noise residue of

Ii. The detector then finds the maximum (Vmax
N ) and the minimum (Vmin

N ) of

VN and compares them with predefined thresholds (ωmax
N and ωmin

N ). Because

all received burst series are captured following the movement pattern shown

in Fig. 4.10, the maximum of VN is always obtained at an image captured at

the stationary stage and the minimum of VN is always obtained at an image

captured at the high movement speed. This makes the range of the noise PAE

remarkably robust for legitimate burst series. Therefore, we choose a ωmin
N that

is slightly higher than the lower limit of the normal range and directly use the

upper limit as ωmax
N . The authentication request will be rejected if either Vmax

N or

Vmin
N is higher than the corresponding threshold.

If the noise PAE of the target burst series are all within the normal range,

the detector further checks the fingerprint-movement correlation and the noise-

movement correlation. Here we use the linear correlation coefficient as our sim-

ilarity metrics. It outputs a value ranging from -1 to 1, where 1 represents total

positive linear correlation, 0 represents no linear correlation, and -1 represents
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total negative linear correlation. The verification process is as follows: 1) Cal-

ibrate the accelerometer readings Acc through eliminating gain and offset er-

rors unique to individual smartphones (Das, Borisov and Caesar, 2016). 2) Con-

structs a vector VV that stores the instantaneous velocity corresponding to each

image in the burst series. Since the photographing process starts at a static stage,

this vector VV can be easily calculated using the calibrated accelerometer read-

ings. 3) Calculates correlation (VN, VV) and correlation (VF, VV) and compares

their absolute values with a predefined threshold ωC. The burst series will be

identified as forged if either of them is lower than ωC.

4.6 Attack Detection

In this section, we first introduce our experimental methodology. We then dis-

cuss the security of the proposed protocol through examining its resistance

against the replay attack, the fingerprint forgery attacks described in Section

4.3, and advanced adversaries who know the detailed setting of our detection

mechanism.

4.6.1 Experimental Methodology

Camera Fingerprinting: The analysis of camera fingerprints is conducted using

Matlab on a Windows system. All of the images evaluated in this section are

captured in the indoor environment because an authentication is seldom car-

ried out in an outdoor environment. For fingerprint extraction and matching,

we use the code published by the digital data embedding laboratory (Goljan,

Fridrich and Filler, 2009). Specifically, we use the wavelet-based denoising filter
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described in (Fridrich, 2009b) to extract the noise residue of an image. The noise

residue is then processed by a zero-mean filter to remove linear pattern and a

Wiener Filter in Fourier domain to remove periodical patterns. These proce-

dures reduce the impact of the artifacts common to same-model cameras and

the artifacts caused by JPEG compression. For fingerprint forgery attacks, all

forged images in this paper are saved in the JPEG format with a quality factor

of 95. This quality factor controls the compression ratio of the JPEG compres-

sion process. In matlab, it is a scalar in the range 0 to 100, where 0 indicates

the highest compression and 100 indicates highest quality. Intuitively, the ad-

versary may want to use a quality factor of 100 to preserve the quality of the in-

jected fingerprint. However, according to our experimental results, both kinds

of fingerprint forgery attack can significantly increase the file size of the forged

image. A forged image stored with a quality factor of 100 is normally at least

twice the file size of a legitimate image, and thus can easily be detected. There-

fore, the quality factor is set to 95 in our experiment. Under this setting, the

forged images have a similar file size as a legitimate one and will preserve most

of the injected camera fingerprint.

Devices: We employ 22 smartphones of 5 different models for evaluation: i)

10 iPhone 6; ii) 3 Samsung Galaxy S8; iii) 3 LG G5; iv) 3 Samsung J3; v) 3 Moto

G4. The technical specifications of the smartphones are shown in Table 4.1.

Metrics: False Acceptance Rate (FAR) and True Acceptance Rate (TAR) measure

the likelihood that a illegitimate/legitimate burst series is wrongly/correctly ac-

cepted by the verifier. FAR and TAR vary depending on the chosen thresholds.

In practice, the thresholds are often determined by setting an upper bound for

the FAR, which is set to 0% in this paper. Peak to Correlation Energy (PCE) mea-

sures the similarity degree between two noise residues. In this paper, it is used
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not only to measure the correlation between a query image’s noise residue and

the reference fingerprint, but also to indicate the fingerprint quality of a burst

series. Box plot is a graphical plot that displays the distribution of the obtained

PCE values based on five values: minimum value, first quartile, median, third

quartile, and maximum. It is used to compare the PCE distribution of different

experimental settings.

4.6.2 Replay Attacks

Under replay attacks, our system can achieve 100% detection rate. This is in-

tuitive because the verifier generates fresh QR codes for each authentication

request and never reuse them. Because even the lowest version of QR code can

support up to 5.7× 1045 different images (QR code Model 2, Version 1, ECC L

(Information capacity and versions of the QR Code, N.d.)), it is hardly possible for

the attacker to bypass the liveness detection mechanism within limited trials.

4.6.3 Fingerprint Forgery attacks

The fingerprint forgery attack is the most challenging attack which enables the

adversary to fabricate arbitrary images carrying the victim’s camera fingerprint.

As introduced in section 4.3.4, there are two strategies to fabricate forged im-

ages: 1) Quick Injection, the adversary directly injects a victim’s camera finger-

print into an image captured by an adversarial device. 2) Fingerprint Replace-

ment, the adversary removes the inherent fingerprint of the target image before

injecting the victim’s camera fingerprint.

To evaluate the performance of the proposed detectors in detecting these

forgery attacks, we construct three kinds of burst series for comparison: 1) Le-
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gitimate burst series: a series of unmodified burst images. This is the burst se-

ries submitted by legitimate users. 2) Injection burst series: a forged burst se-

ries fabricated through the quick injection strategy. Specifically, to fabricate a

forged image, we first extract a reference fingerprint K̂V through averaging the

noise residues of five burst images captured by the victim smartphone. We then

embed K̂V into the target image J using J′ =
(
1 + αK̂V

)
J. The reference fin-

gerprints injected into different images are always extracted from different and

non-overlapping image sets. 3) Replacement burst series: a forged burst series

fabricated through the fingerprint replacement strategy. In this attack, we first

extract the noise residue W of the target image J using the denoising filter im-

plemented in (Goljan, Fridrich and Filler, 2009). We then remove W from J using

J′0 = (1− βWA) J. Finally, we embed a victim fingerprint into the sanitized im-

age J′0 using the same approach as the quick injection attack. The strength fac-

tors (α and β) for each smartphone model are empirically derived. The length

of the burst series is set to be 20 images since the attenuation pattern and the

correlation coefficient requires long burst series to achieve robust detection rate.

The impact of the burst series length will be evaluated in section 4.6.4.

We construct 60 burst series of each type for the smartphones listed in Table

4.1. For each smartphone model, we calculate the proposed features from each

burst-series and examine the distributions of the obtained values. The obtained

distributions are very similar across all tested smartphones, except for the range

of PCE values. To illustrate the performance of each feature, Fig. 4.12 shows a

plot of the distributions obtained from iPhone 6. It can be observed that, for

most features, there is no overlap between the distributions of legitimate burst

series and that of forged burst series. The mean of the correlation matrix and the

minimum noise PAE are particularly effective. For the correlation coefficient,
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(a) Mean (b) Standard deviation (c) Matching Ratio

(d) Maximum (e) Minimum (f) Correlation

Figure 4.12. The distributions of each feature

Figure 4.13. Detection of forgery attacks: the TAR of each feature at a FAR of 0%. The
combined result is obtained through a bagged decision tree.

there is a small overlap between the distributions of different burst series. This

is because the accelerometers on smartphones are very noisy. The performance

of this feature could be improved if advanced denoising methods are adopted.

Several possible calibration approaches are discussed in Section 4.8. Fig. 4.13

summarizes the TAR of each feature at a FAR of 0%. The proposed forgery

detectors achieve 100% TAR in detecting forgery attacks.
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4.6.4 Impact of Burst Series Length

We now investigate the impact of the burst series length on the proposed sys-

tem. Here we consider the scenario where the verifier still follows the challenge-

response process in Section 4.5.1, except that it only requires the user to submit

part of the captured burst series for authentication.

We conduct the evaluation with burst series of five different lengths: 16, 12,

8, 4, and 1. To construct a burst series of length n, we first capture a burst series

of length 20 following the photographing route in Fig. 4.10(a). We then select

n consecutive images from the captured burst series and use them to construct

the shorter burst series. In particular, if n is greater than 10, we select the first

n images from the captured burst series. The constructed burst series contains

images captured at the static stage as well as at the moving stage. If n is less than

10, we select the n images around the middle of the burst series. This ensures

that the constructed burst series will always contain images captured at the high

movement speed. For each burst series length, we construct 60 legitimate burst

series, 60 injection burst series and 60 replacement burst series and evaluate the

proposed forgery detectors. Table 4.2 shows the TAR of each feature at 0% FAR.

For the movement-based forgery detector, the maximum and the minimum

of the noise PAE can always achieve 100% TAR at 0% FAR. This is because all

tested burst series contain images captured at the high movement speed. Due to

the noise-movement correlation, the minimum noise PAE is fairly stable across

burst series of different lengths. For the burst series of length 1, the minimum

noise PAE is just the noise PAE of the single image. For the correlation coeffi-

cient, the TAR drops rapidly when the burst series length drops below 10. This

is because, under the short and simple movement pattern, the correlation coef-
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Table 4.2. The TAR of each feature at a FAR of 0%
Length 16 12 8 4 1
Correlation 95% 90% 0% 10% n/a
Maximum 100% 100% 100% 100% n/a
Minimum 100% 100% 100% 100% 100%
Mean 100% 100% 100% 100% n/a
Std 95% 85% 100% 100% n/a
Matching ratio 80% 30% 0% 0% n/a
Overall result 100% 100% 100% 100% 100%

(a) Correlation (b) Standard deviation (c) Attenuation pattern

Figure 4.14. ROC curves. When calculating the matching ratio, if the length is set to 8
and 4, each slop is calculated from 3 and 2 neighbors respectively.

ficient calculated from forged burst series can also be very high. However, if the

upper bound of the FAR is raised, this feature can also provide the verifier with

valuable information (as shown in Fig 4.14(a)).

For the noisechain-based forgery detector, the mean value of the correlation

matrices can always achieve 100% TAR at 0% FAR. For the standard deviation,

the TAR approaches 100% when the burst series length drops below 10. This is

because the burst series with a length of less than 10 images will only contain

images captured in the moving stage. Due to the noisechain-movement correla-

tion (introduced in Section 4.4), a legitimate burst series containing only moving

stage images will always have a fairly low standard deviation, which makes it

easy to differentiate forged burst series and legitimate ones. For the attenuation

pattern, the TAR drops quickly with the decreasing of the burst series length.
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But once again, through raising the upper bound of the FAR, the attenuation

pattern can also provide valuable information (as shown in Fig. 4.14(c)).

4.6.5 Detection of Advanced Adversary

We now discuss advanced adversaries who are capable of collecting large num-

ber of images captured by the victim smartphone and knowing the detailed

setting of our defending mechanism. In order to bypass the forgery detectors

of CIM, the burst series fabricated by the adversary should meet following re-

quirements:

Proper inter-frame similarity: the similarity value between the noise

residues of continuously captured images should lie in the normal range. Con-

ventionally, this is achieved through removing the inherent fingerprint of the

target images. Since normal images share only the camera fingerprint of the

photographing device, the fingerprint removal process can easily reduce their

correlation to a negligible level and thereby balance out the similarity gain

caused by the subsequent fingerprint injection process. In our setting, due to the

use of burst images, the fingerprint removal process will also affect the short-

term noise shared between adjacent images. The adversary needs to find a re-

moving approach that can balance out the similarity gain caused by the finger-

print injection process and can retain the attenuation pattern of the noisechain.

Specifically, the adversary needs to remove the adversarial device’s camera fingerprint

without distorting the relative strength of the short-term noises.

We first evaluate the classical fingerprint removal approach. As shown in

Fig. 4.15(a), due to the existence of the short-term noise, the classical fingerprint

removal method can no longer reduce the inter-frame similarity to a negligible
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(a) One round removal (b) Two round removal

Figure 4.15. The impact of fingerprint removal. The fingerprint quality is estimated us-
ing a reference fingerprint extracted from five burst images. In the two round removal,
the removal factor for the first round is set to be 0.12 in order to minimize the noise PAE
of the sanitized images.

level. The sanitized images will still have considerable similarity even when

the adversarial device’s fingerprint is completely removed (β = 0.02). This

is because a new common component is introduced into the sanitized images

due to over-removing, which refers to the situation that the applied removal

factor is higher than the strength of the short-term noise carried in the target

images. Denote the target image’s short-term noise as Ws and its strength as βs.

Conducting fingerprint removal with a β of 0.02 is similar to introducing a new

noise component (−Ws) with a strength of (0.02− βs).

Since the ineffectiveness of the classical fingerprint removal approach is

caused by over-removing the short-term noise, we further test an iterative fin-

gerprint removal approach. In this approach, the target images go through mul-

tiple rounds of classical fingerprint removal with small strength factors. Fig.

4.15(b) plots the results obtained from a two-round removal. It can be observed

that the iterative removal approach can reduce the inter-frame similarity to a

very low degree, making it possible for the adversary to balance out the simi-

larity gain caused by fingerprint injection. However, the iterative removal ap-
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proach will weaken and even distort the attenuation pattern of the noisechain,

which makes it harder for the adversary to preserve the attenuation pattern in

the forged burst series. Moreover, as will be shown later, the iterative finger-

print removal approach will also make the noise PAE of the target images far

exceeds the normal range.

Proper noise PAE: the noise PAE of all forged images should lie in the nor-

mal range. To meet this requirement, the adversary needs to find the proper

removal strength that could balance out the extra noise introduced by the subse-

quent fingerprint injection process. Fig. 4.16 shows the relationship between the

removal strength and the noise PAE. We make following observations: 1) The

fingerprint removal process can reduce the noise PAE of the target image, but

only when the removal strength is sufficiently small (lower than 0.012). 2) The

removal strength that achieves the lowest noise PAE can not reduce the inter-

frame similarity to the required degree. 3) Regardless of the removal method

or the removal factor, the reduction of the noise PAE can hardly balance out the

extra noise introduced by the subsequent fingerprint injection process. So far,

the best strategy to reduce the PAE gain caused by fingerprint injection is to use

high victim quality fingerprints and low injection factors.

Attenuation pattern: the forged burst series should have the attenuation

pattern introduced in Section 4.4.4. Generally, there are two ways to imple-

ment this requirement: 1) Preserve the attenuation pattern of the captured burst

series: due to the fact that the attenuation pattern is mainly distorted by the

non-uniform fingerprints injected into the burst series, the adversary could try

to preserve the attenuation pattern by carefully selecting the injection strength

for each image of the burst series. However, it could take a large number of

iterations for the adversary to find the proper factors, which makes this strategy
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(a) The first round of removal (b) The second round of removal

Figure 4.16. The impact of iterative removal on the noise PAE of two images. In (b), the
removal strength for round 1 is set to 0.012.

extremely time-consuming. 2) Falsify a fake attenuation pattern through inject-

ing a forged noisechain. The injected noisechain should be strong enough to

overwhelm the non-uniformity introduced by the fingerprint injection process.

Although this strategy is more efficient than the previous one, it will inevitably

increase the inter-frame similarity and the noise PAE of the fabricated burst se-

ries.

Correlations with movement: the forged burst series should preserve the

fingerprint-movement correlation and the noise-movement correlation. Imple-

menting this requirement also requires the adversary to carefully select the in-

jection strength for each image of the captured burst series. It is particularly dif-

ficult and time-consuming to find the proper injection factors that can preserve

the attenuation pattern, the fingerprint-movement correlation, and the noise-

movement correlation at the same time.

In conclusion, the best strategy for fingerprint injection is to embed the cap-

tured images with high quality victim fingerprints using carefully selected in-

jection factors. The best strategy for fingerprint removal is to conduct multiple

rounds of denoising using low removal factors. To understand the performance
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of these strategies, we conducted a quick injection attack and a fingerprint re-

placement attack using 600 victim images captured by a Samsung S8. During

the photographing of these images, we target the smartphone camera at the

same background with minor angle change. In this experiment, we first esti-

mate 20 victim fingerprints from these images (each from 30 images). We then

construct a 20-image burst series using another Samsung S8 and conduct the

quick injection attack and the fingerprint replacement attack. We use carefully

selected injection factors for fingerprint injection and employ three-round fin-

gerprint removal.

Table 4.3 lists the value of each feature before and after each kind of attack.

For the fingerprint injection attack, due to the application of high quality finger-

prints and low injection factor, the PAE gain caused by fingerprint injection is

relatively low, though still detectable. The correlation with movement and the

attenuation pattern were partially preserved due to the carefully selected injec-

tion factors. However, because of the existence of the adversarial device’s cam-

era fingerprint, the mean of the injection burst series is significantly higher than

that in the legitimate burst-series. For the fingerprint replacement attack, the

mean is significantly decreased due to the removal of the adversarial device’s

fingerprint. However, the fingerprint removal process increased the Noise PAE

of the forged images and further distorted the attenuation pattern as well as the

correlation with movement. Therefore, it is difficult for the adversary to gener-

ate forged burst series satisfying all above requirements. The noisechain-based

forgery detector and the movement-based forgery detector significantly raise

the bar for fingerprint forgery attacks.
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Table 4.3. Advanced adversary with 600 images
Feature Legitimate Injection Replacement
Correlation 0.81 0.68 0.61
Maximum 3.5× 106 3.6× 106 3.8× 106

Minimum 2.8× 106 3.0× 106 3.2× 106

Mean 1383 4034 2405
Std 992 1232 1627
Matching ratio 73.3% 63.3% 56.7%

Figure 4.17. PCE distribution of burst images. For matching image pairs, the PCE value
is mainly determined by the strength of the camera fingerprint.

4.7 Performance Evaluation

In this section, We present results validating the usability of our camera-based

smartphone authentication system.

4.7.1 Smartphone Identification via Burst Images

We first demonstrate the feasibility of using burst images in camera identifica-

tion. For each smartphone model, we construct 800 matching image pairs and

800 non-matching image pairs. Recall that a matching image pair contains two

burst images captured by the same smartphone. The two images of an image

pair are always selected from different burst series in order to eliminate the in-

terference from noisechains. A non-matching image pair contains two burst
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(a) QR set (b) NonQR set

Figure 4.18. The impact of QR code on fingerprint quality

images captured by different smartphones of the same model. Each of the test

image is randomly selected from a burst series.

Fig. 4.17 shows the PCE distributions obtained from each smartphone

model. It can be observed that, the PCE values obtained from matching image

pairs are significantly higher than the PCE values obtained from non-matching

image pairs. This indicates that the fingerprints carried in burst images are

strong enough to differentiate off-the-shelf smartphones (with 100% TAR at 0%

FAR). Another worthy observation is that, for iPhone 6, the PCE values obtained

from burst images are ten times higher than the PCE values obtained from nor-

mal images that are not captured in burst mode (Fig. 4.2). This is likely because

shooting in burst mode will lead to considerable computational cost. iPhone 6

may disable some post-processing in order to allow a faster burst rate. Most

post-processing operations suppress the camera fingerprint of the target image.

The take away message is that burst images are at least as good as normal im-

ages in differentiating smartphones.

4.7.2 The Impact of QR code on Smartphone Identification

Because the texture of an image can significantly affect the quality of the finger-

print extracted from that image, we now evaluate the impact of QR code on the

camera fingerprint. We construct two image sets for comparison. 1) QR set: 200
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burst images constructed through photographing two QR codes shown on an

iPad Pro. We use the version 2 QR codes with data correction level M. The first

QR code contains 35 alphanumeric characters and the second QR code contains

60 numeric values. 2) NonQR set: 200 burst images captured in the same room

without the presence of the verifier’s interface (i.e., the iPad Pro). We calculate

the PCE between the images in each set with a reference fingerprint extracted

from a burst image. The reference image is captured without the presence of

the QR codes. Fig. 4.18 plots the distribution of the PCE values obtained from

each set. The results are counter-intuitive because the PCE value obtained from

the QR set is even higher than that from the Non-QR set. We found that this is

because the intensity of the ambient light is increased due to the presence of the

iPad Pro. The take away message is that it is feasible to use QR code images for

camera identification.

4.7.3 Time Overhead

The overhead of a camera-based smartphone authentication system comes from

two aspects: transmitting the images to the verifier and verifying the camera fin-

gerprint. With LTE, the time overhead of the transmission stage is acceptable in

most application scenarios. For instance, four images captured by Samsung J3

are around 1.5 MB in total. Using T-Mobile LTE (16 Mbps (Cassavoy, 2018)), the

user is able to upload the images to the verifier within one second. Fig. 4.19

shows the computation overhead of CIM under different settings. The verifi-

cation is conducted on a laptop with an 8-core CPU running at 2.8 GHz. Each

overhead value is an average of computation time for 20 times of authentication.

It can be observed that the computation overhead of CIM is relatively large and
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Figure 4.19. (a) The time overhead of different smartphones. (b) The impact of image
resolution. (c) The impact of burst series length. The verifier uses the parallel pool of
Matlab with four workers. For (a) and (b), the burst series length is four. For (c), the
images are captured by a Samsung J3.

Table 4.4. Usability Study
Fingerprint Liveness Forgery
Matching Detection Detection

TAR 100 % 96.7 % 100 %

increases quickly with the burst series length and the image resolution. The

reason is twofold. First, although different images are processed in parallel,

there are only four workers in the parallel pool of Matlab. Second, the code for

fingerprint extraction and matching has not been optimized for efficiency. Uti-

lizing GPU computing and parallel computing, the efficiency of the system can

be greatly improved. Another promising direction to reduce the computation

overhead is to use downscaled images. On the one hand, because of the strong

fingerprint of smartphone cameras, downscaled images can also provide reli-

able identification results. On the other hand, because the downscaling process

has an uniform impact (proportional to the scaling ratio) on the noise compo-

nents of all target images (Ba et al., 2018), the downscaled images will preserve

the noisechain and the correlations with movement.
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4.7.4 Usability Study

To evaluate the usability of the proposed system, we set up an iPad Pro as the

verifier and involve ten male participants and ten female participants to use

the proposed scheme with their preferred angle and speed normally. Accord-

ing to (Nielsen, 2012), testing 20 users is sufficient to get statistically significant

results. During each test, we first provide an introduction to the system and

conduct an authentication for the demonstration purpose. Each participant is

then required to carry out three rounds of authentication using an iPhone 6. We

then upload the captured images to a laptop and conduct liveness detection (QR

code matching), fingerprint matching and forgery detection. Table 4.4 lists the

TAR of each detection process. For fingerprint matching and forgery detection,

our system employed 20 images for each authentication attempt and achieved

100% TAR. For liveness detection, the system failed to detect the QR codes in

several images of two burst captured by a user. However, this is because one

of the position markers in those images is blocked by the reflection of a lamp.

After adjusting the angle of the iPad Pro, the images captured by that user also

succeeds in passing the liveness detection process. Therefore, the individual

differences among users do not affect the accuracy of the system.

4.8 Points of Discussion

Accelerometer calibration. Accelerometers on smartphones are known to be

noisy and unreliable. In CIM, the accelerometer readings are calibrated through

removing the gain and offset errors incurred by manufacturing imperfection

(Das, Borisov and Caesar, 2016). Because these two errors are unique to the
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user’s smartphone, the accelerometer readings submitted by an adversary may

not be calibrated correctly, which further reduces the chance for the adversary

to bypass the forgery detector. In practice, there are many other calibration ap-

proaches that can be used to improve the accelerometer readings. For instance,

verifiers can remove the noise from accelerometer readings using various de-

noising filters. They can also crosscheck the accelerometer readings with the

measurements of the smartphone’s built-in gyroscope. Another promising di-

rection is to reuse the built-in speaker in the verifier’s interface as a Doppler

radar (Zhang, Tan and Yang, 2017). The verifier emits acoustic signals and col-

lects reflections using its microphones. It then uses the Doppler shifts of the

collected reflections to obtain the movement speed.

Man in the Middle Attacks. In practice, the adversary may try to position

himself/herself between the user and verifier, and performs various MITM at-

tacks. For instance, an adversary may intercept the user’s request (transaction)

and sends out a malicious one to the verifier. To address this attack, the verifier

could embed an abstract of the user’s request into the QR codes shown on its

interface. In this way, the user is able to verify the information of the transaction

before taking pictures. The user can terminate the authentication process if the

information is different from what he/she requested.

Selection of thresholds. CIM uses one threshold for fingerprint matching

and six thresholds for forgery detection. For fingerprint matching, because im-

ages captured in burst mode have high quality fingerprint, we use the same

threshold for all smartphone models. For forgery detection, four of the applied

features are influenced by smartphone models: mean, standard deviation, max-

imum PAE, and minimum PAE. However, because of the large gap between

legitimate burst series and forged burst series, the thresholds for these features
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can be set during the registration process in three steps: 1) Extract camera finger-

prints from the images uploaded by the user and use them to construct several

forged burst series. 2) Extract the four features from each forged burst series

and find the the minimum of each feature. 3) For each feature, set the thresh-

old to the average of the obtained minimum and the feature extracted from the

legitimate burst series. These thresholds can be further optimized when more

images are collected from the same smartphone model.

4.9 Conclusion

In this paper, we first present two novel observations of smartphones taking

pictures: 1) There exists a noisechain embedded in continuously captured burst

images. 2) The camera fingerprint and noise components of an image are corre-

lated with the movement of the photographing device. We explore these two ob-

servations, design two reliable forgery detectors for the detection of forgery at-

tacks against PRNU-based camera fingerprinting, and propose CIM, a camera-

based smartphone authentication system. CIM is practical since it leverages

universal sensors (camera and accelerometer) in a smartphone and a user just

needs to take pictures in burst mode while moving the smartphone along a sim-

ple route. Extensive experiments are conducted to validate the effectiveness of

CIM against fingerprint forgery attacks. A user can submit either multiple or

one image for authentication. In both cases, CIM achieves 100% TAR at 0% FAR

in both fingerprint matching and forgery detection.



Chapter 5
Preventing Camera Fingerprint

Leakage via Obfuscation-based

Fingerprint Concealment

5.1 Introduction

With the prevalence of high-quality smartphone cameras and the fast grow-

ing of social networks, a large number of digital images are being captured

and shared on social platforms exponentially. For example, 350 Million pho-

tos are uploaded to Facebook every day (Omnicore, 2018a). 50 billion photos

have been shared on Instagram until September 2018 (Omnicore, 2018b). Mean-

while, the increasing concerns on image privacy is along with the data explosion

(De Choudhury et al., 2009; Yeung et al., 2009; Pesce et al., 2012; Zerr et al., 2012;

Christin et al., 2013). In a recent survey (Handley, 2018), 40% of survey respon-

dents said that they have deleted at least one social account in the past year due

to privacy concerns. In the literature, an enormous amount of research has been
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carried out in an attempt to identify and address the privacy issues incurred

by the contents and tags of shared images (Yu et al., 2017; Wang et al., 2013;

Nov, Naaman and Ye, 2009; Squicciarini, Xu and Zhang, 2011; Wang, Xu and

Grossklags, 2011). However, the noise components of an image could also lead

to security and privacy issues.

As reported in (Lukas, Fridrich and Goljan, 2006; Fridrich, 2009a; Khanna,

Mikkilineni and Delp, 2009), all images captured by digital cameras contain

a device-specific noise component originated from the Photo Response Non-

Uniformity of image sensors. This noise is particularly effective for image-to-

camera matching and has been recognized as the most reliable hardware finger-

print of digital cameras. Because of the stability of the camera fingerprint, an

adversary with a handful of the images collected from a user’s social network

can easily extract the fingerprint of her photographing device.

In this paper, we highlight and evaluate two critical attacks caused by cam-

era fingerprint leakage: 1) Identity Linking: the adversary tries to find the as-

sociation among anonymous social accounts through matching the camera fin-

gerprints extracted from their posted images. 2) Identity Forgery: the adversary

extracts the victim’s camera fingerprint from her social accounts and embed

the obtained fingerprint into foreign images captured by other devices. The

forged image can be applied to frame the innocent victim (Goljan, Fridrich and

Chen, 2011) or to bypass camera-based smartphone authentication system (Ba

et al., 2018). The effectiveness of these two attacks are evaluated on four social

platforms. Our results show that, with around 5 images from each social ac-

count, the identity linking attack can achieve a True Positive Rate (TPR) over

90% at negligible False Positive Rate (FPR), regardless of whether the accounts

are within the same social platform. For identity forgery attacks, the probability
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of a forged image being identified as a legitimate one is higher than 95%.

In order to counter the above attacks, we propose CFP, an intermediary be-

tween smartphone cameras and social medias. It enables the beneficial appli-

cations of camera fingerprints while concealing the camera fingerprint of the

image of interest before uploading the image to the Internet. In the litera-

ture, the concealing of the camera fingerprint can be achieved through reducing

the image quality (Rosenfeld and Sencar, 2009), flat-fielding (Gloe et al., 2007;

Böhme and Kirchner, 2013), seam curving(Bayram, Sencar and Memon, 2013;

Dirik, Sencar and Memon, 2014), adaptive fingerprint subtraction (Li, Chang

and Li, 2009), and adaptive denoising (Dirik and Karaküçük, 2014; Karaküçük

and Dirik, 2015). However, these approaches either remove only a small por-

tion of the fingerprint or are extremely time-consuming. Moreover, removing

the fingerprint also disables beneficial forensic tasks such as copyright protec-

tion and integrity verification.

To prevent malicious applications of the camera fingerprint without hinder-

ing the beneficial ones, we explore obfuscation-based fingerprint concealment.

The idea is to alter the composition of the image’s noise components through

embedding an obfuscating noise. This noise is designed to be irremovable and

remains constant for all photographing devices. In identity linking attacks, this

noise serves as an obfuscator that confuses the adversary’s fingerprint match-

ing mechanism. Because all the images obfuscated by our system will carry a

similar obfuscating noise, the similarity value obtained from the matching al-

gorithm is always high, whether or not the images are captured by the same

device. In identity forgery attacks, the obfuscating noise serves as a reliable

probe for detecting forged images. Because the adversary can only access to

obfuscated images, fingerprints extracted by the adversary will always carry
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a significant amount of the obfuscating noise, thereby exposing the adversary.

Meaning while, because our system does not remove the camera fingerprint, the

smartphone owner would still be able to prove her ownership or the integrity

of an obfuscated image. The beneficial applications of camera fingerprint are

preserved.

Our major contributions are summarized as follows:

1. We highlight two critical identity attacks caused by camera fingerprint

leakage and demonstrate their effectiveness on current image sharing

practices. The impact of a comprehensive set of image post-processing

techniques are also evaluated.

2. We propose a real-time fingerprint concealment system. It explores

obfuscation-based fingerprint concealment and is able to prevent ma-

licious applications of camera fingerprints without hindering beneficial

ones.

3. We conduct extensive experiments to confirm the effectiveness of the pro-

posed CFP system. The results show that the proposed design reduces the

TPR of identity linking by 86% on average and enabled a forgery detection

mechanism that could achieve 100% detection rate.

The rest of this paper is organized as follows. We introduce the background

knowledge in Section 5.2. Section 5.3 highlights two specific attacks and evalu-

ates their effectiveness on current image sharing practices. Section 5.4 discusses

the failure of fingerprint removal and gives the design of CFP in detail. Sec-

tion 5.5 evaluates the proposed system with extensive experiments. Section 5.6

concludes this paper.
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5.2 Background

5.2.1 Photo Response Non-Uniformity

Photo Response Non-Uniformity (PRNU) (Lukas, Fridrich and Goljan, 2006;

Fridrich, 2009a; Khanna, Mikkilineni and Delp, 2009) is a hardware finger-

print of digital cameras that originates from the non-uniform light-sensitivity

(Janesick et al., 2001) of millions of pixels. It works as a multiplicative factor to

the actual optical view during the image acquisition process (Nakamura, 2016).

Denoting the fingerprint of a camera as K, an image captured by that camera

can be represented as:

I = (1 + K)I0 + Θ,

where I0 and Θ respectively represents the actual optical view and other noise

components. The following describes the extraction and matching of camera

fingerprints.

5.2.1.1 Fingerprint Extraction

Because the camera fingerprint behaves like a white Gaussian noise (Lukas,

Fridrich and Goljan, 2006; Chen, Fridrich and Goljan, 2007), the fingerprint of an

image is normally extracted using a denoising filter (Caldell et al., 2010; Lukas,

Fridrich and Goljan, 2006; Chen et al., 2008). The extracted noise residue is an

estimate of the camera fingerprint and can be represented as

W = I0K + Ξ,
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where Ξ is a combination of other Gaussian noise (Chen et al., 2008). A fin-

gerprint estimated in this way is particularly noisy because Ξ is much higher

in energy than the camera fingerprint. In the case where a high quality cam-

era fingerprint is required, we can extract the noise residues of multiple images

and use maximum likelihood estimation to get a better estimate of the camera

fingerprint (Cain, Hayat and Armstrong, 2001).

5.2.1.2 Fingerprint Matching

To determine if two estimated fingerprints belong to the same camera, the most

common method is to calculate their Peak to Correlation Energy (PCE) (Goljan,

2008). The PCE value between two estimated fingerprints increases with the

energy of their common noise components. Because the noise component Ξ is

different for different images, a high PCE value normally means that the two

estimated fingerprints are carrying the same K. In practice, the verifier use pre-

trained threshold to differentiate matching and non-matching fingerprints.

5.2.2 Beneficial Applications of PRNU

In the literature, the PRNU of digital cameras has been demonstrated to be ef-

fective in various digital forensics tasks. The following illustrates two primary

applications of PRNU:

5.2.2.1 Copyright Protection

Leveraging PRNU’s superior performance in image-to-camera matching, a user

can easily demonstrate the copyright of an image through presenting the pho-

tographing device (Pathways, 2010). In particular, given an image with disputes
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over ownership, the verifier can extract the camera fingerprint of each candidate

camera and conduct fingerprint matching to determine the origin of the target

image.

5.2.2.2 Integrity Verification

Given a digital image and the camera that captured it, a verifier can identify cer-

tain types of tampering operations through checking the integrity of the PRNU

(Chen et al., 2008). In particular, the verifier first estimates a high quality ref-

erence fingerprint of the photographing device. She then divides the image of

interest into multiple disjoint blocks and calculate the PCE value between each

obtained block and the reference fingerprint. A low PCE indicates the lacking

of PRNU in the corresponding block, which implies that the image content of

that block has been modified. With this approach, the camera owner was able to

demonstrate if an image containing her camera fingerprint has been maliciously

tampered (e.g., copy-move (Bravo-Solorio and Nandi, 2011) and splicing (Farid,

2009)).

5.3 Security & Privacy Risks

Large number of images are posted on Internet due to the popularity of im-

age sharing, exposing the camera fingerprints of their photographing device

directly to the public. These fingerprints, however, can be used not only for

benevolent purposes, but also for malicious ones. In this section, we highlight

the offensive potential of PRNU, demonstrate the effectiveness of PRNU-based

attacks on current practices, and present the impact of post-processing tech-

niques.
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5.3.1 Identity Linking Attacks

The first malicious application of PRNU is identity linking on social networks.

Users are prone to create multiple social accounts within the same social net-

work and across different ones. Some of the accounts created are public ones

and may contain the user’s identity information, while some are private ones

(normally under an assumed name) reserved for specific readers. Identity link-

ing enables the adversary to find the association among all these accounts cre-

ated by the same user, which poses serious threat to user privacy.

The basic idea behind this attack is to analyze the images posted on social ac-

counts and utilize their camera fingerprints to determine which accounts belong

to the same user. Specifically, given several social accounts, the adversary first

estimates a camera fingerprint for each social account using a number of images

posted on it. She then calculates the PCE values between every two estimated

fingerprints and compares the obtained values with a predefined threshold. If

the PCE value between two fingerprints is higher than a threshold, it will be

considered that the two corresponding social accounts are belong to the same

user.

We now demonstrate the feasibility of this attack on four representative so-

cial networks: Facebook, Wechat, Weibo and Flickr. These platforms are cho-

sen because of their different image processing strategies. Flickr, Facebook and

Wechat convert each user image to JPEG format with low, medium, and high

compression, respectively. Weibo embed each received image with a constant

noise component. We employ 6 smartphones of 3 different models to represent

six users, including 2 Samsung S8, 2 HUAWEI P10, and 2 HUAWEI P20 Pro. For

each user, we create 10 social accounts on each platform and upload 10 images
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to each account. We use the built-in camera APP to capture images for Samsung

S8 and HUAWEI P10 and use a third-party APP (B612) to capture images for

HUAWEI P20 Pro. Overall we have 240 accounts across four platforms.

Two kinds of identity linking are conducted on these social accounts: (i)

Intra-platform identity linking. This attack tries to find the association among

different social accounts within the same platform. We divide the 240 accounts

into four groups based on platforms and conduct identity linking on each group.

The threshold applied for Facebook, Flickr and Wechat are respectively 48, 19,

and 14. For Weibo, because its image compression process introduced a simi-

lar noise component into all images, the PCE value between all estimated fin-

gerprints are increased and the threshold of this platform increases with the

number of images applied to estimate the fingerprint of an account. In this ex-

periment, the threshold is 1100 when 3 images are applied and is 2330 when

5 images are applied. Table 5.1 summarizes the True Positive Rate (TPR) and

False Positive Rate (FPR) for each smartphone model under different settings.

(ii) Inter-platform identity linking: This attack tries to establish links between so-

cial accounts across different platforms. Images from different platforms are

down-sampled to the same resolution in order to conduct this attack. The re-

sults of this attack are summarized in Table 5.2.

It can be observed that, for all platforms under investigation, the adversary

can determine with a high degree of accuracy whether two anonymous accounts

are created by the same user, regardless of whether the two accounts are within

the same platform. The performance of both attacks improve with the number

of images applied to estimate the fingerprint of an account. Another observa-

tion is that Wechat and Weibo requires more images to achieve a better TPR.

For Wechat, this is because the images posted on this platform suffer more in-
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Table 5.1. Intra-Platform Identity Linking [%]: N is the number of images applied to
estimate the fingerprint of an account

Platform/N S8 P10 P20 Pro
FPR TPR FPR TPR FPR TPR

Facebook/1 0 83 4 74 0 94
Facebook/3 0 100 0 100 1 100

Flick/1 0 100 0 100 4 91
Flick/3 0 100 0 100 0 100

Weibo/3 0 100 0 77 7 100
Weibo/5 0 100 0 92 2 100
Wechat/3 2 100 1 62 4 94
Wechat/5 0 100 1 89 0 100

Table 5.2. Inter-Platform Identity Linking [%]: 3/3/3/5 means the number of images
applied in Facebook, Flickr, Weibo and Wechat are respectively 3,3,3, and 5. ω is the
threshold

Setting ω S8 P10 P20b
FPR TPR FPR TPR FPR TPR

3/3/3/5 15 0 85 0 100 1 92
5/5/5/7 25 0 94 0 100 0 99

formation loss during the image compression process. It requires more images

to estimate a high quality fingerprint for each account. For Weibo, it requires

more images because the camera fingerprint is affected by the additional noise

component introduced during the image compression process The take away

message is that, although uploading an image to social networks could weaken

its camera fingerprint, the remaining fingerprint in the posted image can still en-

able the adversary to find the association among different accounts that belong

to the same user.

5.3.2 Identity Forgery Attacks

The second malicious application of PRNU is identity forgery (Goljan, Fridrich

and Chen, 2011; Caldelli, Amerini and Novi, 2011; Rao et al., 2013). Given a
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number of images captured by a victim smartphone, an adversary can generate

an estimation (K̂v) of the victim’s camera fingerprint and embed it into an image

(J) come from another device using:

J′ = J(1 + αK̂v), (5.1)

where α is the strength factor, J′ is a forged image that carries the victim’s cam-

era fingerprint. With this approach, the adversary can fabricate arbitrary images

that carry the victim’s camera fingerprint and fool a third party into believing

that the forged images are captured by the victim. Although a number of meth-

ods have been proposed to detect forged images (Ba et al., 2018; Goljan, Fridrich

and Chen, 2011; Valsesia et al., 2017; Quiring and Kirchner, 2015), most of the

detection mechanisms are either impractical or have security flaws.

We now demonstrate the feasibility of fabricating forged images using vic-

tim images downloaded from social networks. To do so, we first implemented

a camera-based smartphone authentication system (Ba et al., 2018), in which a

verifier uses the camera fingerprint to authenticate smartphones. During the

authentication process, the verifier first challenges the user to provide a freshly

captured image. She then estimates a camera fingerprint from the received im-

age and calculates the PCE value between the estimated fingerprint and the

reference fingerprint of the legitimate device. The authentication is successful

if the PCE value is higher than a threshold. In this implementation, we use

ten images to extract the reference fingerprint of a legitimate device and use

device-specific thresholds to authenticate different devices. The thresholds for

Samsung S8, Huawei P10 and Huawei P20 Pro are 9.32, 13.35 and 28.98 respec-

tively. Under this setting, the authentication system achieved 100% TPR at 0%
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Table 5.3. Success Rate of identity forgery attacks [%]:
Platform S8 P10 P20pb

α/N SR α/N SR α/N SR
Facebook 10/5 95 5/3 100 10/1 100

Flickr 3/1 100 3/1 100 3/1 100
Weibo 10/1 100 3/1 100 3/1 100
Wechat 10/3 100 5/5 100 5/3 100

FPR in identifying smartphones.

We then conduct identity forgery attacks on this system using images down-

loaded from the social accounts created in section 5.3.1. We extract the camera

fingerprint of a victim device from her online images and embed the obtained

fingerprint into an image captured by another device. The objective of this at-

tack is to fool the verifier into believing that the image from the foreign camera is

captured by the victim device. Table 5.3 lists the Success Rate (SR) of this attack

under different settings. N is the number of images applied to estimate the vic-

tim’s camera fingerprint and α is the embedding strength in equation 5.1. These

two parameters are determined by the image compression strategy of the social

platform as well as the fingerprint strength of the smartphone model. It can be

observed that, using images downloaded from social platforms, the adversary

can easily fabricate forged images and bypass the camera-based authentication

system with high success rate.

5.3.3 The Impact of Post-processing

In practice, most users would prefer to post-process their images before up-

loading them to the social networks. We now evaluate the robustness of camera

fingerprint against three major groups of post-processing approaches:

• Filter: this operation alters the shades and colors of an image at the pixel



139

Table 5.4. The impact of Filter: remaining camera fingerprint [%]
Filter S8 P10 P20 Pro
Daily 69.34-84.84 49.38-69.68 35.87-60.22
Aqua 58.36-77.04 43.95-65.26 29.44-69.17
Jelly 82.46-93.01 58.33-71.42 34.24-62.10
Milk 63.76-76.61 52.01-67.76 31.48-59.35
Nature 1 49.61-65.72 40.82-52.57 28.22-49.77
Nature 2 47.11-69.61 37.60-54.44 21.64-43.95
Nature 3 49.14-69.36 37.18-53.00 23.34-53.49
Analog 1 39.96-67.93 40.02-53.08 26.34-51.86
Analog 2 52.60-77.90 40.35-51.67 26.86-55.63
Analog 3 41.89-63.18 42.33-52.24 23.86-48.13
Analog 4 63.88-78.58 49.99-68.08 28.38-57.19
Loveletter 42.91-64.82 31.63-45.94 18.73-55.65
Alight 62.25-80.04 48.95-64.55 26.92-55.30
Gleam 60.38-77.51 46.03-60.56 29.25-58.31
Pure 50.03-67.49 42.03-55.90 25.47-61.00

level in some manner (He, Sun and Tang, 2013; Gastal and Oliveira, 2011;

Xu et al., 2011). It is normally being used to adjust the brightness and

contrast of an image as well as to add a wide variety of tones and special

effects to an image.

• Beautify: this operation is specially designed for portrait processing

(Mawale and Chaugule, 2016; Batool and Chellappa, 2014; Ohchi, Sumi

and Arakawa, 2010; Arakawa, 2004). It covers a rich set of tools for color

correcting and shape fitting. Makeup editing is also allowed to beauty the

appearance and physique of portrait photos.

• Add-on: this operation covers an image with user-defined stickers (e.g.,

emotion, graffiti and watermark). It is used to enrich and explain the im-

ages adequately.

We selected 15 filters, 15 beautifying operations and 9 add-ons from a phe-
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nomenal camera APP named B612. The reason for choosing this APP is because

it has a large group of users and allows a comprehensive set of post-processing

techniques. Please note that, although the post-processing operations could be

different across different APPs, their impact on camera fingerprint are very sim-

ilar.

To evaluate the impact of a specific operation, we first capture an image us-

ing a specific smartphone. We then calculate the PCE value between the finger-

print of that image and a reference fingerprint of the device. The obtained PCE

value indicates the relative fingerprint strength of that image. Next, we con-

duct the post-processing operation on that image and calculate the PCE value

between the camera fingerprint of the post-processed image and the reference

fingerprint. Finally, we divide the later PCE value by the former one. The

obtained value indicates the percentage of camera fingerprint remained in the

post-processed image.

For each operation under investigation, we repeat the above process with

five different images. The range of the percentage value obtained from filter,

beautify and add-ons operations are respectively listed in Table 5.4, 5.5 and 5.6.

We make following observations: 1) Although most post-processing operations

have reduced the camera fingerprint of the target image, none of these oper-

ations have completely eliminated the camera fingerprint of an image. This

means that post-processed images can still be applied to conduct identity link-

ing and identity forgery attacks. 2) The impact of post-processing operations

varies slightly among different smartphone models. This is because different

smartphone models normally have different fingerprint strength. According to

our experimental results, the stronger the camera fingerprint is, the higher the

percentage will be. 3) Beautify operations have the least impact on the camera
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Table 5.5. The impact of Beautify: remaining camera fingerprint [%]
Beautify S8 P10 P20 Pro
Skin 88.52-98.84 66.44-73.62 53.13-70.52
Brighten 69.02-88.16 53.70-67.84 37.85-63.07
Lift 79.53-94.84 61.44-72.94 41.71-70.81
Slim 83.45-97.71 64.47-76.55 49.27-72.76
Length 84.10-96.55 60.55-75.79 48.07-72.65
Chin 85.45-95.53 64.85-72.47 55.13-70.06
Wrinkles 88.24-99.07 67.78-78.74 51.66-75.09
Brow 87.20-98.76 67.85-79.10 54.49-77.68
Clarity 88.27-99.11 67.71-78.60 51.74-75.52
Enlarge 88.44-98.52 66.69-79.66 51.56-75.42
Narrow 88.11-98.61 65.01-78.20 48.65-76.47
Mouth 88.14-98.52 66.70-77.61 48.75-73.82
Contour 88.21-99.03 67.71-79.08 51.78-74.27
Blush 88.56-98.89 66.69-79.27 54.70-74.43
Lip color 88.24-98.99 67.59-79.01 51.61-74.96

Table 5.6. The impact of Add-ons: remaining camera fingerprint [%]
Add-ons S8 P10 P20
Brush 39.11-53.33 29.22-46.51 16.85-42.49
Graffiti 42.42-60.61 36.12-54.79 21.21-52.05
Stickers 42.59-60.91 35.97-55.65 21.67-50.74
Mask 74.20-93.32 58.04-73.88 35.65-65.85
Glasses 35.92-61.13 35.49-48.66 18.31-52.94
Headwear 78.45-93.55 60.26-74.13 44.94-67.50
Cap 73.23-93.14 57.10-68.98 39.80-69.24
Background 70.29-86.93 53.49-72.08 42.82-65.25

fingerprint of the target image. This is because most Beautify operations only

modify a small area of the image.

5.4 Camera Fingerprint Concealment

In this section, we present the detailed design of our fingerprint concealment

system. It defeats PRNU-based identity linking and identity forgery attacks

without hindering the beneficial applications of PRNU.
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Figure 5.1. System Architecture.

5.4.1 Privacy-Preserving Architecture for Image Sharing

In order to protect users’ camera fingerprints from being leaked, we propose

to introduce an intermediary between smartphone cameras and social medias

(as shown in Fig. 5.1). It can either be a plug-in for the camera or a separate

app locally deployed on the smartphone. During the image-sharing process,

the user first captures an image using the camera app or selects one from her

photo album. She then conceals her camera fingerprint using our CFP system

and uploads the anonymized image to the social network.

With the full consideration of practicability, we envision three design goals

for the fingerprint concealment system:

• Prevent malicious uses of PRNU: adversaries who can only access to

anonymized images should not be able to successfully conduct PRNU-

based identity linking or identity forgery attacks.

• Preserve beneficial uses of PRNU: concealing the camera fingerprint of an

image should not hinder the beneficial uses of PRNU. Specifically, a user

in possession of a smartphone should be able to demonstrate whether an

anonymized image is captured by this smartphone. Given an anonymized

image and the smartphone that captured it, one should be able to demon-

strate whether the image has been tampered.
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• Enable real-time fingerprint concealment: the system should be able to

conceal the camera fingerprint of an image in real-time.

5.4.2 Failure of Fingerprint Removal

In the literature, image source anonymization is normally achieved through re-

moving the camera fingerprint of the target image. If the removal approach can

perfectly eliminate the camera fingerprint, an adversary with sanitized images

will no longer be able to conduct identity linking or fabricate forged images.

Therefore, before presenting our full-fledged system, we first discuss the feasi-

bility of two state-of-the-art fingerprint removal approaches. The first approach

can defeat identity forgery attacks but cannot address identity linking. The sec-

ond approach can prevent all malicious uses of PRNU. However, both of the

approaches are time-consuming and hinder the beneficial uses of PRNU due to

the elimination of the camera fingerprint.

5.4.2.1 Adaptive Subtraction

This approach considers the camera fingerprint as a constant matrix added to

the actual optical view. Given an input image I, it first estimates a reference fin-

gerprint K̂1 from several images captured by the same device. Next, it calculates

a sanitized image using

I0(β) = I− βK̂1,

where β is a strength factor for magnitude adjustment. In this round, the ap-

plied β is normally an empirical value and may not completely eliminate the

fingerprint of the target image. Therefore, this approach then measures the
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(a) Fingerprint strength (b) PCE between sanitized im-
ages

Figure 5.2. The performance of Adaptive Subtraction: (a) The strength of the camera
fingerprint on sanitized images decreases with the increasing β. The value of ∆(β)
becomes negative when β is too large. (b) The similarity between the two sanitized
images increases with β

strength of the remaining fingerprint in I0(β) through

∆(β) = PCE(W0(β), K̂2),

where, W0(β) is the noise residue of I0(β), K̂2 is another reference fingerprint

of the photographing device. Please note that K̂1 and K̂2 should be estimated

from non-overlapping image sets. This is to ensure that W0(β) and K̂2 only

share the fingerprint of the photographing device. Finally, Adaptive Subtrac-

tion adjusts the value of β based on ∆(β) and repeats the above process until

∆(β) approaches 0. The fingerprint-free image is the I0(β) obtained in the last

iteration.

To illustrate the performance of Adaptive Subtraction in removing the camera

fingerprint, we captured two images using Samsung Galaxy S8 and conducted

Adaptive Subtraction. Fig. 5.2(a) shows the value of ∆(β) obtained at different β.

It can be seen that, with an appropriate β, it is possible to suppress the camera

fingerprint of both images to a negligible amount. An adversary using such
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sanitized images will not be able to extract the user’s camera fingerprint and

thus can not conduct identity forgery attacks.

In this approach, it is important to ensure that the applied β can fully elimi-

nate the camera fingerprint of the target image. Otherwise, the adversary might

be able to estimate the user’s fingerprint through analyzing multiple sanitized

images. However, because the strength of camera fingerprint varies from one

image to another, it normally requires multiple iterations to find the β for an

image, which makes this approach time-consuming.

Another main issue with Adaptive Subtraction is that it can not prevent iden-

tity linking. The PCE values between sanitized images are actually increased af-

ter subtracting K̂1. This is because K̂1 is a combination of the camera fingerprint

K and other noise components Ξ. Subtracting K̂1 from an image is equivalent

to introducing −K̂1 into it. As a result, every image sanitized with the same

K̂1 will carry a significant amount of −Ξ, resulting in high PCE values between

their noise residues. As shown in Fig. 5.2(b), the PCE value between image #1

and image #2 increases rapidly with increasing β. The increase of PCE actually

makes it even easier for the adversary to conduct identity linking.

One obvious way to optimize Adaptive Subtraction is to generate new K̂1

for each image to be anonymized. However, the generation of a new K̂1 al-

ways requires the user to provide fresh reference images captured by the smart-

phone – that is, the user needs to take several new images whenever she tries to

anonymize an image, which is not user-friendly.

5.4.2.2 Adaptive Denoising

This approach considers the camera fingerprint as a noise component and re-

moves it using denoising filters. Given an image I, Adaptive Denoising first ex-
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(a) Fingerprint strength (b) PCE between sanitized im-
ages

Figure 5.3. The performance of Adaptive Denoising: (a) The strength of the camera
fingerprint on sanitized images. (b) The similarity between the sanitized image #1 and
the sanitized image #2

tracts its noise components using a denoising filter F (e.g., Wiener filter). It then

removes the extracted noise residue W from the image using:

I0(β) = I− βW

Here W is multiplied by a strength factor β because the denoising filter can

hardly extract all the fingerprint components of the image. In practice, the

value of β is always greater than one. After obtaining the sanitized image I0(β),

as with the Adaptive Subtraction method, Adaptive Denoising measures the re-

maining camera fingerprint in I0(β) and adjusts the β accordingly until ∆(β)

approaches 0.

The Adaptive Denoising approach has two major advantages over Adaptive

Subtraction. First, it does not increase the PCE value between sanitized images.

In Adaptive Denoising, an image I is anonymized through subtracting its own

noise residue W = K + Ξ, meaning that the random noise component Ξ is dif-

ferent for different images. Therefore, although removing W = K + Ξ from I
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will still introduce−Ξ into the sanitized image, such−Ξ will not affect the PCE

value between different sanitized images. To illustrate, Fig. 5.3 plots the perfor-

mance of Adaptive Denoising on two images captured by Samsung Galaxy S8. It

can be observed that the similarity between sanitized images can be decreased

to a very low level. Second, Adaptive Denoising normally requires less iterations

to find the appropriate β for an image. This is because W is a noise residue

extracted from the target image I. The amount of camera fingerprint in W is

roughly proportional to that in I, which narrows the search for the appropriate

β.

Unfortunately, although Adaptive Denoising is able to prevent malicious uses

of PRNU, it has the following drawbacks: 1) It cannot guarantee real-time fin-

gerprint concealment. Although Adaptive Denoising is a bit more time-efficient

than Adaptive Subtraction, it still requires more than three iterations on average

to find the appropriate β. As will be shown in section 5.5.4, it takes the tested

computer tens of seconds to finish three iterations of adaptive denoising. 2) It

cannot preserve beneficial uses of PRNU. Due to the removal of the camera fin-

gerprint, a user can no longer use the camera fingerprint to prove the copyright

or determine the integrity of an image.

5.4.3 Obfuscation-based Fingerprint Concealment

Since removing the camera fingerprint of an image is time-consuming and can-

not preserve beneficial uses of PRNU, we propose to conceal the camera finger-

print of an image through fingerprint obfuscation. Specifically, our system tries

to “cover up” the camera fingerprint of the target image through embedding it

with an obfuscating noise O. Given an image I, the anonymized image I′ can be
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generated as:

I′ = I + αO,

The noise O remains constant for all photographing devices, while the strength

factor α varies from one image to another. In this way, all obfuscated images will

have a common noise component regardless of whether the images are captured

by the same photographing device. This common component not only renders

the identity linking attack ineffective but also serves as a probe signal that de-

feats the identity forgery attack. We now explain the rational behind and how

the design goals are achieved.

In identity linking attacks, the adversary estimates a camera fingerprint for

each social account and checks the PCE values between the estimated finger-

prints. Because the PCE value between two matching fingerprints is almost

always higher than that between two non-matching fingerprints, the adversary

can use thresholding to determine if two fingerprints belong to the same pho-

tographing device. In obfuscation-based fingerprint concealment system, all

images uploaded to social accounts are embedded with the same obfuscating

noise with varying strength. The PCE value between two estimated fingerprints

is not only affected by the camera fingerprint, but also by the obfuscating noise.

To illustrate the impact of the obfuscating noise, Fig. 5.4 shows the PCE distribu-

tions of 200 matching fingerprint pairs and 200 non-matching fingerprint pairs

before and after the obfuscation process. It can be seen that, after the obfusca-

tion process, the PCE distributions of matching and non-matching fingerprint

pairs have become remarkably similar. This is because the obfuscating noise is

much higher in energy than the camera fingerprint, thus becoming the domi-

nant factor affecting the PCE value between two fingerprints. As a result, the
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Figure 5.4. The impact of an obfuscating noise on the PCE distributions of 200 matching
fingerprint pairs and 200 non-matching fingerprint pairs. The obfuscating noise is a
Gaussian noise with mean 0 and variance 1. The strength factor α for each image is a
randomly selected floating point number between 1 and 2.

adversary can no longer use thresholding to determine if two estimated finger-

prints belong to the same device.

In identity forgery attacks, the adversary extracts a victim’s camera finger-

print from her online images and injects the obtained fingerprint into an image

captured by another device, in the hope of fooling a third party into believing

that the forged image is captured by the victim’s camera. However, in the case

that any of the images collected by the adversary are obfuscated ones, the ex-

tracted fingerprint will carry a significant amount of the obfuscating noise, and

the third party can easily detect forged images through checking the existence

of the obfuscating noise.

For beneficial uses of PRNU, a user in possession of the photographing de-

vice can still demonstrate whether an obfuscated image is captured by her de-

vice or whether the image has been tampered. This is because obfuscation-

based fingerprint concealment does not remove the camera fingerprint of the

target image, and the device owner can provide “clean” images that do not con-

tain the obfuscating noise. Because the PCE value between an obfuscated image

and a clean one will only be affected by the camera fingerprint, this PCE value
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can still be used to conduct image-to-camera matching and integrity verifica-

tion. More details will be presented in section 5.5.3.

5.4.4 Defeating De-Obfuscation Attacks

Since the obfuscating noise remains constant for all photographing devices, it

is likely that an adversary could obtain this noise and try to remove it from an

obfuscated image to recover the original one. In particular, because the obfus-

cating noise is of the same type as a camera fingerprint (i.e., Gaussian noise),

the recovery of the original image can be achieved using the Adaptive Sub-

traction approach introduced in section 5.4.2. We refer to this attack as the De-

Obfuscation Attack.

Given an obfuscated image I′ and the obfuscating noise O, the adversary

first calculates an estimation IE(β) of the original image through

IE(β) = I′ − βO,

where β is an estimation of the embedding strength α. She then measures the

remaining O in IE(β) through

∆(β) = PCE(WE(β), O),

where WE(β) is the noise residue of IE(β). Finally, the adversary adjusts the

value of β based on ∆(β) and repeats the above process until ∆(β) approaches

0. The original image is the IE(β) obtained in the last iteration.

Fig. 5.5 illustrates the performance of Adaptive Subtraction on two obfuscated

images I′1 and I′2. For both images, the obfuscating noise is a Gaussian noise with
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(a) The strength of the obfusca-
tion noise in recovered images

(b) PCE between recovered im-
ages

Figure 5.5. The performance of Adaptive Subtraction on images obfuscated through
the basic obfuscation function: I′ = I + αO

mean 0 and variance 0.25, and the strength factor α is set to 1.5. It can be seen

that, when β is equal to α, the obfuscating noise O in the estimated image be-

comes negligible (Fig. 5.5(a)), and the PCE value between the recovered images

is very similar to the PCE value between the original images (Fig. 5.5(b)). The

original images was successfully recovered.

The reason why this attack is possible is because the basic obfuscating func-

tion I′ = I + αO is invertible and the search space of α is small. To address this

issue, we propose the robust obfuscation function

I′ = I + A ◦O,

where A is a onetime matrix with the same resolution as O and A ◦O is the

Hadamard product of the two matrices. With this design, the obfuscating noise

will be distorted by the onetime matrix A and the following integer conversion

process. The noise O′ embedded in I′ is similar but different from the original

obfuscating noise O. Because A is a onetime matrix consisting of millions of

elements (for most images), the adversary will not be able to obtain O′ and can
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only use O to conduct adaptive subtraction. However, as has been shown in

section 5.4.2, the adaptive subtraction approach fails if the subtracted matrix

contains noise components that are not present in the target image. Denoting

the common components between O′ and O as Oc, the components that only

present in O as Oδ, the noise residue of a recovered image can be rewrite as:

WE(β) = γOc − β(Oc + Oδ) + Θ,

= (γ− β)Oc + β(−Oδ) + Θ,
(5.2)

where γ represents the strength of Oc in I′, Θ represents other noise compo-

nents (such as random noise components, camera fingerprint, etc.). Although

Oc and Oδ could be different for different images, these noise components will

still affect the PCE value between recovered images significantly. To illustrate,

Fig. 5.6 shows the performance of Adaptive Subtraction on two images con-

structed using the robust obfuscating function. The matrix A for each image is

a Gaussian noise with mean 1.5 and variance 0.25. It can be seen that, although

∆(β) is close to zero when β equals to the mean of A, the PCE value between the

recovered images are always significantly higher than the PCE value between

original images. The noise component (α− β)Oc + β(−Oδ) is always the dom-

inant factor that affects the PCE value between two fingerprints, which renders

the adversary unable to recover the original images that only share the camera

fingerprint of the photographing device. Please note that the Adaptive Denois-

ing approach also does not work because it will eliminate the camera fingerprint

of the target image. The recovered images cannot be used for identity linking or

identity forgery.
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(a) PCE between the recovered
image and the obfuscating noise

(b) PCE between recovered im-
ages

Figure 5.6. The performance of Adaptive Subtraction on images obfuscated through
the robust obfuscation function: I′ = I + A ◦O

5.4.5 System Design

Using the above mechanisms as building blocks, we now present the full

fledged fingerprint concealment system. The system is installed on a smart-

phone with a Gaussian noise that remains constant for all photographing de-

vices. This noise has a high resolution and is used to generate obfuscating noises

of different resolutions. Upon receiving an image that needs to be anonymized,

the system conceals its fingerprint using following steps:

1) Noise Generation. The system generates two matrices with the same res-

olution as the target image. The first matrix O is an obfuscating noise generated

through resampling the Gaussian noise stored in the system. The second matrix

A is a onetime Gaussian noise generated using the mean and variance randomly

selected within a particular range. The mean value determines the strength of

the embedded noise.

2) Noise Embedment. The system calculates the Hadamard product of A

and O and inject the obtained matrix into the target image using:

I′ = I + A ◦O.
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Table 5.7. Intra-Platform Identity Linking using obfuscated images: N is the number
of images applied to estimate the fingerprint of an account. ω is the threshold. TPR is
calculated at 5% FPR.

Platform/N ω [104] TPR [%]
S8 P10 P20 S8 P10 P20

Facebook/3 4 6 18 11.32 5.79 7.37
Facebook/5 9 10 30 10.00 7.63 7.89

Flickr/3 71 74 79 7.89 6.32 3.42
Flickr/5 108 114 107 11.05 7.89 6.84
Weibo/3 76 56 76 10.79 6.05 5.53
Weibo/5 115 74 108 14.47 5.26 8.95
Wechat/3 4 1 5 11.32 5.53 5.97
Wechat/5 9 3 9 10.00 7.63 6.32

Table 5.8. Inter-Platform Identity Linking using obfuscated images: N is the number
of images applied to estimate the fingerprint of an account. ω is the threshold. TPR is
calculated at 5% FPR.

N ω [104] TPR [%]
S8 P10 P20 S8 P10 P20

3 8.29 2.84 9.06 11.19 11.47 10.19
5 14.78 5.24 15.42 13.66 12.28 12.07

The obtained I’ is a matrix of type double, and its elements are not necessarily

in the range 0 to 255.

3) Integer Conversion. The system converts all the elements of I’ to 1-byte

unsigned integers. Elements within the range of 0 to 255 are rounded to the

nearest integer and elements outside are mapped to the nearest endpoint.

4) Image Export. The system exports the obtained matrix I’ to a user-desired

format such as JPEG and PNG. Please note that, for image formats that employ

lossy compression, the exported image will contain less fingerprint than I’ but

will be more robust against de-obfuscation attacks.
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5.5 Performance Evaluation

5.5.1 Experimental Methodology

Configuration: The evaluation is conducted using Matlab on a laptop with an

8-core CPU running at 2.8 GHz. The algorithm for camera fingerprinting is

based on the code published by the digital data embedding laboratory (Goljan,

Fridrich and Filler, 2009). The obfuscating noise O is a constant Gaussian noise

with mean 0 and variance 0.25. For the onetime matrix A, its mean is a randomly

selected floating number between 2 and 5 and its variance is 1.

Devices and Platforms: we employ 6 smartphones of 3 different models: i) 2

Samsung S8; ii) 2 HUAWEI P10; iii) 2 HUAWEI P20 Pro. We evaluate images

downloaded from four social platforms: Facebook, Wechat, Weibo, and Flickr.

Metric: True Positive Rate (TPR) and False Positive Rate (FPR) measures the

likelihood that a positive/negative sample is correctly/wrongly detected as a

positive sample.

5.5.2 Preventing Malicious Applications of PRNU

We now demonstrate the effectiveness of obfuscation-based fingerprint conceal-

ment in defeating identity linking and identity forgery attacks.

5.5.2.1 Identity Linking Attacks

We repeat the identity linking experiment in section 5.3.1 with obfuscated im-

ages. For each user (smartphone), we created 20 social accounts on each plat-

form and uploaded 5 obfuscated images to each account. We then download

images from these accounts and conduct Intra-platform identity linking and
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Inter-platform identity linking. Unlike the previous experiments in section 5.3.1,

this experiment considered the worst case scenario where the adversary already

knew the smartphone model of each account. In this case, the adversary can use

model-specific thresholds to differentiate individual smartphones and achieve

better matching results.

Table 5.7 and 5.8 list the TPR under different settings at 5% FPR. It can be

observed that, because of the existence of the obfuscating noise, the adversary

can hardly determine whether two anonymous accounts belong to the same

users. The threshold varies significantly across different settings because the

strength of the obfuscating noise in an estimated fingerprint is affected by the

many different factors, such as the number of applied images, the compression

algorithm, and the image resolution. If the adversary does not know in advance

the smartphone model of each account, the identity linking results could be

even worse. Moreover, there was no significant increase in the TPR when the

number of images increases. This is because increasing the number of images

will increase not only the strength of the camera fingerprint but also the strength

of the obfuscating noise.

5.5.2.2 Identity Forgery Attacks

Due to the preservation of the camera fingerprint, obfuscated images can still

be applied to conduct identity forgery attacks. However, the forged images will

inevitably carry a significant amount of obfuscating noise, and thus can be eas-

ily detected. In particular, upon receiving an image, the verifier could extract its

camera fingerprint and calculate the PCE value between the estimated finger-

print and the obfuscating noise O. If the PCE value is higher than a threshold,

the image must carries the obfuscating noise and thus can be determined as
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(a) Forged image set (b) Genuine image set

Figure 5.7. Forgery detection: the PCE values obtained from forged images are signifi-
cantly higher than the PCE value obtained from genuine images

forged.

To evaluate the effectiveness of the forgery detection mechanism, we inte-

grated it into the authentication system implemented in section 5.3.1 and tested

the system with two sets of images: 1) genuine set: 50 images captured by the

victim’s smartphone (a Huawei P10); 2) forged set: 50 foreign images embedded

with the victim’s camera fingerprint. Each victim fingerprint is estimated from

10 obfuscated images downloaded from the victim’s Flickr account. Fig. 5.7

shows the distributions of the PCE values obtained from the forgery detection

mechanism. It can be observed that, because of the existence of the obfuscating

noise, the PCE values obtained from forged images are significantly higher. By

setting the threshold at 50, the authentication system was able to detect forged

images with 100% TPR at 0% FPR.

5.5.3 Preservation of Beneficial Applications of PRNU

Because obfuscated images still carry the camera fingerprint, the beneficial ap-

plications of PRNU are preserved. The following illustrates how to conduct

Copyright Protection and Integrity Validation on obfuscated images.
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(a) The user’s images (b) Foreign images

Figure 5.8. Copyright Protection: the PCE values obtained from the user’s images are
significantly higher than that obtained from foreign images

5.5.3.1 Copyright Protection

To demonstrate the copyright of an obfuscated image, the user first captures

several unobfuscated images using her smartphone. She then estimates a ref-

erence fingerprint from the captured images and calculate the PCE value be-

tween the reference fingerprint and the obfuscated image. Because the refer-

ence fingerprint does not contain the obfuscation noise, a high PCE means the

obfuscated image carries the camera fingerprint of the user’s smartphone. To

demonstrate the feasibility of this approach, we assume a user with a Samsung

S8 and construct 200 obfuscated images, of which 50 are captured by the user’s

smartphone, the resting are captured by five other devices. We then calculate

the PCE value between the noise residue of each image and a reference finger-

print estimated from 5 unobfuscated images. Fig.5.8 plots the PCE distributions

of different images. It can be observed that the obtained PCE values are not af-

fected by the obfuscating noise. Using thresholding, the user can demonstrate

her copyright of the images with 100% TPR at 0% FPR.

5.5.3.2 Integrity Verification

To validate the integrity of an obfuscated image, the user first estimates a high

quality reference fingerprint from multiple unobfuscated images captured by
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(a) Unmodified blocks (b) Modified blocks

Figure 5.9. Integrity Verification: the PCE values obtained from modified blocks are
significantly lower than that obtained from unmodified blocks

her smartphone. She then divides the target image and the reference finger-

print into N blocks and calculates the PCE value between corresponding blocks

of the target image and the reference fingerprint. After that, she use threshold-

ing to determine if a block has been modified. To demonstrate the feasibility of

this approach, we constructed 50 obfuscated images, divided each image into 16

blocks, and modified randomly selected blocks. We then conduct integrity ver-

ification using a reference fingerprint estimated from 20 images. Fig.5.9 shows

the PCE distribution of modified and unmodified blocks. We chose 50 as the

threshold and achieved a 98% TPR at 0% FPR in detecting modified blocks.

5.5.4 Time Overhead

We now demonstrate the efficiency of the obfuscation-based approach. Fig.

5.10(a) compares the time overhead of Adaptive Subtraction, Adaptive Denoising,

and Obfuscation-based Fingerprint Concealment under three common image res-

olutions. Each overhead value is an average of 20 times of anonymization. It

can be observed that, the obfuscation-based approach is much more time ef-

ficient compared with other approaches. For Adaptive Subtraction and Adap-

tive Denoising, the latency is mainly caused by the fingerprint extraction and

matching operations involved in their iterative procedure. The time overhead
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(a) Time overhead of different
anonymization approaches

(b) Time overhead of individual
procedures in image obfuscation

Figure 5.10. Time overhead. N is the number of times the iterative procedure is exe-
cuted during the anonymization process. Anonymized images are exported to the PNG
format.

increases rapidly with the image resolution and the number of times the iter-

ative procedure is executed. The reason why Adaptive Denoising is more time-

consuming than Adaptive Subtraction under the same setting is because it needs

to extract the noise residue of the target image before the iterative process. For

the obfuscation-based approach, the latency is mainly caused by the image ex-

port process (as shown in Fig. 5.10(b)). The generation and embedment of the

obfuscation noise can always be finished within 250 millisecond for all images

under investigation. It is easy for modern smartphones to obfuscate images in

real-time.

5.6 Conclusion

Posting images on social platforms has become an important part of modern

life. Most people, however, don’t realize that every image posted on the Inter-

net could expose the unique hardware fingerprint of their photographing de-

vice to the public. In this paper, we highlight the security and privacy issues
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caused by this fingerprint leakage and propose a practical fingerprint conceal-

ment system to address them. As demonstrated in this paper, with a handful

of images downloaded from current image sharing platforms, an adversary can

easily conduct identity linking and identity forgery attacks with high success

rate. Our system, CFP, seeks to address these attacks through embedding the

target image with an obfuscating noise. By carefully designing this noise com-

ponent, we demonstrate that such noise can significantly reduce the success rate

of identity linking attacks and can serve as a reliable probe for the detection of

identity forgery attacks. Moreover, because our obfuscation-based mechanism

does not remove the camera fingerprint of the target image, obfuscated images

can still be utilized for beneficial forensic tasks (e.g., copyright protection and

integrity verification). The proposed system enables smartphone users to enjoy

image sharing without risking privacy.



Chapter 6
Conclusion and Future Work

6.1 Conclusion

In this dissertation, we investigated hardware-rooted device authentication and

carried out an in-depth study on a powerful hardware fingerprint named Photo

Response Non-Uniformity. We summarize our results as follows:

In chapter 2, we study the feasibility of hardware-rooted device authenti-

cation through analyzing a variety of hardware fingerprinting approaches. We

first describe the architecture of hardware-rooted authentication systems, fo-

cusing on the players involved and the communication channels. Two kinds

of challenge-response schemes are presented to collect the output signals of

different transducers. We then analyze the security threats underlying these

schemes and list several desirable properties for a usable hardware fingerprint-

ing method. After that, we study several existing fingerprinting methods and

discuss their performance under replay attacks and fingerprint forgery attacks.

In chapter 3, we study a specific hardware fingerprint named Photo Re-

sponse Non-Uniformity (PRNU) and explore the feasibility of utilizing the
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PRNU as a smartphone’s unique fingerprint to implement physical-layer de-

vice authentication. We find that smartphone cameras demonstrate very

strong PRNU. Based on this fact, we design ABC, an attack-resilient, real-time,

and user-friendly smartphone authentication protocol that differentiates smart-

phones through the PRNU of their built-in cameras. The registration of a smart-

phone’s PRNU requires only one image. We implement a prototype of ABC and

test it with 16,000 images collected from Amazon Mechanical Turk and our own

devices. The results show that ABC can efficiently authenticate users’ devices

with an error rate less than 0.5% and detect fingerprint forgery attacks with an

error rate less than 0.47%. Our user study suggests that the PRNU-based au-

thentication is a promising approach for enhancing smartphone security.

In chapter 4, we discuss a limitation of the ABC system’s forgery detection

mechanism and present new premitives for the forgery detection of PRNU. We

present two novel observations of smartphones taking pictures: 1) There exists

a noisechain embedded in continuously captured burst images. 2) The camera

fingerprint and noise components of an image are correlated with the move-

ment of the photographing device. We explore these two observations, design

two reliable forgery detectors for the detection of forgery attacks against PRNU-

based camera fingerprinting, and propose CIM, a camera-based smartphone au-

thentication system. CIM is practical since it leverages universal sensors (cam-

era and accelerometer) in a smartphone and a user just needs to take pictures in

burst mode while moving the smartphone along a simple route. Extensive ex-

periments are conducted to validate the effectiveness of CIM against fingerprint

forgery attacks. A user can submit either multiple or one image for authenti-

cation. In both cases, CIM achieves 100% TAR at 0% FAR in both fingerprint

matching and forgery detection.
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In chapter 5, we report the problem of camera fingerprint leakage in cur-

rent image sharing systems and propose a privacy-preserving architecture to

address it. As demonstrated in this paper, with a handful of images down-

loaded from current image sharing platforms, an adversary can easily conduct

identity linking and identity forgery attacks with high success rate. Our sys-

tem, CFP, seeks to address these attacks through embedding the target image

with an obfuscating noise. By carefully designing this noise component, we

demonstrate that such noise can significantly reduce the success rate of identity

linking attacks and can serve as a reliable probe for the detection of identity

forgery attacks. Moreover, because our obfuscation-based mechanism does not

remove the camera fingerprint of the target image, obfuscated images can still

be utilized for beneficial forensic tasks (e.g., copyright protection and integrity

verification). The proposed system enables smartphone users to enjoy image

sharing without risking privacy.

6.2 Future Work

As IoT systems involve a wide variety of devices, networks, gateways, applica-

tions, and services, there is a wide range of potential vulnerabilities with mul-

tiple attack surfaces, making IoT security a rich topic with diverse possible av-

enues of investigation. We identify following issues for future work:

Smartphone-Centric IoT Attacks and Defenses: In the context of IoT secu-

rity, the smartphone plays a very intriguing dual role. On the one hand, it could

be used as a low-cost attacking device. Modern smartphones are equipped with

rich on-board sensors and are able to access various side channels of IoT de-

vices. An adversary using a smartphone can inconspicuously launch his attack
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because of the portability and pervasiveness of smartphones. My research in

this direction will focus on revealing the vulnerability of current IoT devices

against smartphone-based side channel attacks and on developing countermea-

sures. On the other hand, due to its sufficient computational power, various

device connection capabilities, and convenient user interface, the smartphone

could also be used as a security hub to provide the first line of defense for IoT

devices. Using the smartphone as the security hub not only empowers the users

to enforce security policy across devices, but also eases the way users manage

their personal information. I will investigate techniques under diverse hard-

ware and cryptographic limitations to support the device management tasks

with rigorous security and privacy guarantees.

Artificial Intelligence Enabled IoT Security: The battle filed of IoT security

is rapidly shifting due to the accelerated development of Artificial Intelligence

(AI). On the one hand, AI techniques offer new tools to help organizations se-

cure IoT systems from malicious incursions. It has been exploited to analyze and

recognize patterns of security vulnerabilities and are expected to react more ef-

fectively to new threats than traditional approaches. On the other hand, AI

techniques magnify existing IoT vulnerabilities and bring in new ones. Hack-

ers may employ AI techniques themselves to develop increasingly sophisticated

attacks. For instance, adversarial machine learning use intentionally designed

adversarial samples to cause an AI model to make a mistake, resulting in a mis-

match between the physical and cyber world. In safety-critical applications like

medical devices and automobiles, such mismatch could bring great danger to

human lives. My research in this direction will focus on exploring the implica-

tion of Artificial Intelligence on physical-layer IoT security. In particular, I will

explore the novel ideas and techniques to strengthen robustness and reliance
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for hardware-rooted device identification, detect and recover forged/modified

sensor measurements fabricated through AI technqiues (e.g., Generative Ad-

versarial Network), and identify and mitigate AI enabled cyber physical attacks

against IoT systems.
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Bayram, Sevinç, Husrev T Sencar and Nasir D Memon. 2013. Seam-carving
based anonymization against image & video source attribution. In Multime-
dia Signal Processing (MMSP), 2013 IEEE 15th International Workshop on. IEEE
pp. 272–277.
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