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Abstract

Since the broad application of Magnetic Resonance Imaging (MRI) in the clinic, faster data

acquisition against the physical and physiological constraints has been the subject of intense

experimental research and theoretical work. Among these efforts, parallel imaging uses mul-

tiple receiver elements to exploit the explicit redundancy of the MR data, which can achieve

an aggressive under-sampling rate and hence reduced acquisition time. Unwillingly, it leads

to the time-consuming post-processing procedure of image reconstruction instead. In this

thesis, we propose to leverage the benefit of cloud computing to address the speeding issue.

Based on a pay-per-use manner, a clinic with low computational power can easily outsource

the computational-intensive tasks of image reconstruction to Cloud Service Providers (CSPs).

However, the privacy concerns with outsourcing patients’ private data to public cloud servers

are ignited and hinder those practitioners from enjoying the benefits of cloud computing.

Specifically, we explore the problem of privacy-preserving outsourcing the image recon-

struction process in a calibration-less parallel imaging reconstruction method, termed simulta-

neous auto-calibrating and k-space estimation (SAKE). SAKE is one of the state-of-art algo-

rithms in clinical implementation, which structure an under-sampled, multi-channel data-set

in the k-space domain into a single data matrix. The reconstruction can then be formulated

as a structured low-rank matrix completion problem. This thesis is seeking to enable a clinic

to outsource the most computationally-intensive tasks in SAKE of the resource-abundant

cloud servers, taking consideration of both the factors of security and efficiency. In particu-

lar, two different protocols are put forward in SecSAKE, with extra emphasis on privacy and

efficiency, respectively.

The first protocol we propose can enforce a low-complexity matrix transformation over the

data in the k-space domain on the clinic end. The clinic can then outsource the transformed

data to the cloud and then harness the cloud server to perform iterative computation tasks.

The corresponding security analysis shows that the outsourced MRI data are computationally

indistinguishable under Chosen Plaintext Attack (CPA) under our assumption.

The second protocol provides an alternative model that pursues efficiency by leveraging

the architectures of multiple non-colluding cloud servers instead. This protocol can primarily
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reduce the computational complexity on the clinic side since it only needs to perform a one-

round data transformation to retrieve the reconstructed MRI data. During the entire func-

tional computation part, the clinic can stay offline with more flexibility. We conduct thorough

privacy and efficiency analysis and extensive experiments over real-world image benchmark

to evaluate the performance of the proposed designs. Compared with the original SAKE,

the experimental results demonstrate that the proposed privacy-preserving mechanism can

provide significant reconstruction time savings while achieving comparative performance on

the quality of reconstructed images.

In conclusion, we close with a brief discussion of future research directions and then specu-

late about further approaches to preserving the data privacy in related medical applications,

along with the potential obstacles on the road on achieving such objectives that we may

encounter.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is known as a medical imaging technology that uses

magnetic fields and radio waves to create detailed images of internal organs and tissues. MRI

has been frequently utilized in hospitals and clinics for medical diagnosis, staging of disease

and follow-up due to its superiority over other medical imaging techniques such as CT, since

the patient can avoid exposing himself to dangerous ionizing radiation. Not until the late

1990s, the data acquisition phase of MRI usually lasts so long that the patient’s restlessness

and then leads to non-diagnostic images [LKV13]. Instead of deriving at the patient’s image

directly, MRI initially collects data as an array of numbers representing spatial frequencies of

the image, called k-space data. Simply under-sampling the k-space data may cause massive

electrical power cost, peripheral nerve stimulation of patients, spatial aliasing of the image,

or poor image resolution [DGGS12]. Therefore, the very initial question that motivated

researchers to think about was:

How to shorten the lengthy acquisition time of MRI data?

Such a procedure has already been accelerated by a well-established under-sampling tech-

nique, called parallel imaging. Multiple receiver coils are concurrently applied in the scanning

phase, each collecting under-sampled data in the spatial frequency domain, i.e., k-space do-

main. This shortens the data acquisition time, which enables the clinic to recover the desired

image based on the acquired data and a particular reconstruction algorithm after the pa-

tient leaves the scanners. However, the following image reconstruction procedure usually

takes quite a long period, which may still impact the prompt medical treatment. A recently

proposed reconstruction approach, called SAKE [SLO+14], retains the superiority of remov-

ing aliasing artifacts in dynamic MRI over other mainstream approaches, such as SENSE

[PWSB99] and SPIRiT [LP10]. Nonetheless, its time cost for reconstruction can still be over-

due in the urgent diagnostic case, mainly owing to the 1) expensive computation complexity,
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CHAPTER 1. INTRODUCTION 2

2) large-scale imaging data, and 3) constrained clinical computing capability. This brought

out the following question:

Are there any approaches that can further accelerate the MRI reconstruction time?

In the past decade, cloud computing has been widely recognized as an economical and

practical solution for the resource-limited data owner to compute computational-intensive

tasks. The clinic can take advantage of the available computational power on a pay-per-

use basis. However, merely outsourcing the original data to the cloud server will bring

about many data privacy challenges. Specifically, exposing the images produced by an MRI

scan may reveal the patient’s identity and physical condition. Besides, the cloud server

may also fail to return a correct solution because of its misbehaviors (to save computational

resources) or internal/external attacks, both of which will seriously compromise the diagnostic

timeliness. Accordingly, a fine-grained outsourcing protocol addressing all the above security

challenges while preserving the computational functionalities is highly demanded in practice.

Additionally, the protocol should not impose massive computational overhead to the data

owner, or else it is contrary to the original intention of outsourcing.

This topic directly pertains to the primary question we want to solve:

How should we design a privacy-preserving MRI reconstruction so that the clinic can

efficiently obtain the reconstructed image?

In recent literature, many secure computation outsourcing schemes have been proposed.

Some of the schemes apply cryptographic primitives to encrypt the data to achieve homo-

morphic computations. However, a general approach of secure computation outsourcing is

currently far from practical for engineering applications, even for moderate-scale compu-

tations. Meanwhile, another branch of research proposes to targeting specific engineering

computations. As a common feature of these schemes, they can achieve practical efficiency

in specific engineering computations. Local transformation-based masking over original data

will be first done before outsourcing. The parallel imaging reconstruction algorithm we

study, unlike other common optimization problems, such as linear programming, involves the

problem-specific computation, which cannot be learned from previous solutions in the litera-

ture. In this thesis, we propose a secure outsourcing scheme enabling the clinic to efficiently

recover the missing entries in the under-sampled k-space based on the specific existing image

reconstruction algorithm in the literature. In this chapter, we will go through the background

of the proposed problem by first introducing the principle of the parallel imaging and then

the commonly used image reconstruction components.
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Figure 1.1: (a) Collecting data along closely spaced lines spanning large areas of k-space can

result in high-resolution images covering the entire FOV (upper). (b) Reducing the frequency

collected in k-space while keeping the spacing between adjacent samples may result in poor

image resolution (middle). (c) Increasing the spacing between adjacent samples while keeping

the frequency collected in k-space may result in poor image resolution (lower).

1.1 Parallel MR Imaging

Accelerating the data acquisition in MRI is more than a simple under-sampling operation.

Parallel Imaging (PI), whose theoretical basis was in the late 1980s, has attracted many

researchers from different expertises to explore the conceptual improvement in order to solve

the major slow acquisition problem [LN07].

The basic concept of PI is introduced along with how it is implemented in clinical MRI

scanner, which also serves as the basis of our following discussions.

1.1.1 K-space

In MRI, the imaging information is collected in the frequency domain, called k-space, instead

of in the image domain. Obtained by spatially varying magnetic field gradients, this spatial

frequency information is usually converted into the image by using Fourier Transform (FT).

PI typically works by leveraging a receiver coil array to obtain a reduced amount of k-space

data, which can still end up in successful imaging with acceptable quality.
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The visual quality of the MR image is determined by two major terms, the resolution and

the field of view (FOV). In the usual case of Cartesian sampling, the k-space data is sampled

line-by-line in either 2D or 3D space. The resolution of the transformed image depends on

the highest spatial frequency sampled in the frequency encode direction, while the FOV is

correlated with the spacing between the samples in the phase encoding direction, as shown

in Figure 1.1. Aiming to reduce the acquisition time, either the k-space data must be collected

more quickly, i.e., reducing the highest spatial frequency sampled or the amount of k-space

data collected must be decreased, i.e., increasing the spacing between the samples.

In the frequency encode direction, the sampling rate is determined by the analog-to-digital

converter (ADC) used on the receiver boards of the scanner. In order to lower this sampling

rate, the magnetic field gradients have to be significantly faster. This may incur at least three

significant drawbacks as a consequence: 1) massive electrical power for adjusting the magnetic

field, 2) harmful electrical currents in the patient’s body leading to nerve stimulation, 3)

unwilling image contrast of the final image.

On the other hand, the sampling rate in the phase encoding direction is determined by

the magnitude of the k-space shift applied by the phase encoding gradient lobe. This is a

much-preferred method to reduce the data acquisition time compared with less sampling in

the frequency encoding direction. However, if one takes as large a step in k-space as possible,

the FOV can be so small that the object to be scanned in not fully contained in the final

image when it violates the Nyquist criteria [Sha49] and it results in spatial aliasing artifacts

in the corresponding image, as shown in Figure 1.1.

The emergence of PI comes in under this scenario. PI technique involves multiple receiver

coins, each with distinct sensitivity to the specific tissue, and hence they can provide a

partial source of the imaging information in the spatial domain. Besides, a specific image

reconstruction algorithm is required to remove the aliasing caused by the missing k-space

data.

1.1.2 Image Reconstruction Algorithms

Different reconstruction algorithms may operate the coil data, target data in either image

domain or k-space domain. There is also divergence on outputting the exact or approximate

solutions [LN07].

Sensitive Encoding (SENSE) method [PWSB99] assigns different weights to each of the

signal components according to the coil sensitivities at the locations of the two aliased pixels

and builds up the system of equations. The assumption is that if the sensitivities of all the

coils are previously known, the intrinsic signal components are solvable. In this method, the

coil reference data and the target date to be operated are both in the k-space domain.
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The approach of simultaneous acquisition of spatial harmonics (SMASH) [SM97] performs

with the target data in the k-space domain, while the coil sensitivities are kept in image space

this time instead. In SMASH, a prior estimation of the individual coil sensitivities is required,

and the linear combinations of these sensitivities are used to generate k-space shifts like the

magnetic field gradients in phase-encoding. With appropriate linear weights, it can generate

composite sensitivity profiles fitting the appropriate spatial harmonic with certain accuracy.

Similar methods such as Generalized-SMASH (g-SMASH) [BLH02], where the coil sensitivity

profiles are represented directly in the k-space domain to provide a general description of the

spatial properties of the coils. This enables a more flexible choice and position of the receiver

coils.

Like g-SMASH, generalized auto-calibrating partially parallel acquisition (GRAPPA)

[GJH+02] is also a pure k-space method but refers to a very different group of informa-

tion. Instead of determining coil sensitivities to the relevant spatial harmonic, it leverages

the full-sampled auto-calibration signal (ACS) as a kernel to solve the reconstruction weights

approximately from a least-squares optimized fit to spatial harmonics.

1.1.3 Brief Discussion

The various parallel imaging methods developed to date have differed in using sensitivity

information to eliminate aliasing artifacts due to under-sampling, but there are still potential

issues regarding efficiency and accuracy. Reconstruction techniques such as SMASH and

SENSE require that the user knows the reception profile of each coil element in advance.

However, precise coil sensitivity measurements often require a separate calibration scan, which

increases the total acquisition time. Besides, any inconsistencies due to small errors in motion

or sensitivity estimates will show up as visible visual artifacts in the reconstructed image

[SLO+14]. Auto-calibrating methods such as GRAPPA can mitigate the obstacles caused

by explicit estimations of sensitivity information from the ACS, but taking the fix-sized

ACS from a series of small images may still occupy a considerable portion of the total data

reconstruction time.

1.2 Secure Computation Outsourcing: Overview

The exponential growth in the quantity of data generated nowadays has been drawing in-

creasing attention. It is estimated that the amount of usable data created will be over 15

zettabytes by 2020, compared to 0.9 zettabytes in 2013 [Ads14]. This has led to an unavoid-

able challenge, as data owners and analysts have to figure out a way to properly store and

effectively analyze the large-scale data. The storage capacity and computational capabil-
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ity of processing large-scale data is still limited by the hardware and available memory of

computer systems. Thanks to the advent of the technique of cloud computing, clients like

individuals or companies can easily upload their data to a powerful cloud server which can

then expedite the time of executing tasks on large-scale data and return the results to the

clients or companies. Hence, the clients can take advantage of the available computational

power on a pay-per-use basis, even if they cannot get direct access to supercomputers. A

server with large computational abilities can share its spare computation resources out of a

financial incentive.

Despite the significant benefits offered by the computation outsourcing paradigm, the

primary obstacle to its wide adoption is the security issue. Essentially, the data involved

in large-scale computation may contain valuable or sensitive information. Because of the

physical isolation between the clients and CSPs, the clients are unable to judge whether

a given cloud server is trusted or not before outsourcing their computation tasks, which

could lead to critical concerns. A curious cloud server may inspect the data and deduce

behavioral information of the residents. If the information is captured by a malicious party,

it can give rise to many illegitimate consequences, including theft and possibly even terrorism.

Therefore, in many cases, clients are unwilling to share the data with others including CSPs,

even though the latter claim that their servers are completely secure and can be fully trusted.

Besides, a trusted cloud can also suffer from external threats. An external attacker can

exploit technical vulnerabilities of a cloud service to gain further access to the data residing

in the cloud. The outsourced data is intrinsically not secure from the point of view of cloud

clients, and thus it is highly desired that the servers should not obtain any information about

the data used in the computation. Practical privacy and security protection measures should

be in place to ensure that cloud computing is appealing to a large range of clients.

Other than the challenges of data confidentiality, another crucial challenge is to ensure

computation integrity. In the context of computation outsourcing, this is also called result

verifiability (or checkability). In fact, clients should have the ability to check correctness of

the results of outsourced computation. The cloud server assigned to a task may not honestly

conduct the computation and may simply return an invalid result due to financial or timing

reasons. For example, a cloud server can randomly generate the output based on the size

and characteristics of the computational task. The computational cost of doing so is often

very minor compared to the cost of running the computation itself. Moreover, an honest

cloud server may undergo a software or hardware failure during its computation or data

transmission. Many articles in the literature have addressed this challenge and carefully

designed the verification procedure. It is required that the procedure should be substantially

more efficient than the time of executing the original task. Otherwise, it will conflict with the
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motivation for computation outsourcing. To achieve efficient verification, certain properties

of the function used in the computation are often exploited to verify the returned solution.

Recent research has made steady advances in addressing these concerns, focusing on

large-scale engineering and scientific computing problems and computationally intensive ap-

plications. One line of research originated from [GGP10] provides a general mechanism

for secure computation outsourcing. The solution combined fully homomorphic encryption

(FHE) [Gen09b] with the evaluation of Yao’s garbled circuits [Yao86], achieving both data

confidentiality and result verifiability. However, applying this general mechanism to large-

scale computations is currently far from practical.

In contrast, another line of research aims to design solutions of immediate applicability

to computation outsourcing. Such publications can be broadly classified into two groups: se-

cure outsourcing of fundamental functions and secure outsourcing of computational tasks for

specific applications. Constructions from the first group focus on commonly used mathemat-

ical operations or functions such as matrix operations, linear equations, and mathematical

optimization problems. They typically exploit properties of the underlying mathematical

functions to design specific protocols that can be utilized as building blocks in more complex

computations. On the other hand, publications from the second group usually start from

an individual application scenario and design an outsourcing solution for the entire task at

hand.

1.3 Contributions of This Thesis

We advance our first protocol, named SecSAKE I, to address this challenge. Inspired by the

Cadzow’s algorithm [Cad88, Gil10], we can alternatively outsource some of the expensive

sub-tasks, which are decomposed from the steps of solving this optimization problem. The

primary sub-task that we focus on is singular value decomposition (SVD) over the complex

field. In particular, the imaging data is masked by random unitary matrices by the data owner

before it can securely harness the cloud server to run the iterative computation. Additionally,

we consider data consistency projection as another resource-intensive sub-task in the case

of non-Cartesian Sampling. Computing this sub-task requires the information of sampling

mechanism, which the data owner may not want to reveal in some cases. SecSAKE I enables

the data owner to conceal the sampling mechanism according to his preference. By a low-cost

transformation, this sub-task can also be securely outsourced to the cloud server. In total,

the required operations that the data owner performs in each iteration are of quadratic time

complexity. Meanwhile, the data protected by SecSAKE I is computational indistinguishable

under chosen plaintext attack under our assumption and verifiable against malicious cloud

servers.



CHAPTER 1. INTRODUCTION 8

A noticeable issue of SecSAKE I is that the clinic has to keep online and participate in

each iteration. Aiming to minimize its adverse effect, we propose another protocol SecSAKE

II. In particular, we adopt the system architecture of multiple cloud servers. The data owner

only needs to execute one round of data transformation in SecSAKE I at first. Then it can

allocate the transformed data, key matrices, and different shares of imaging data to different

servers. The servers can jointly process the iterations without the intervention of the data

owner. Finally, the data owner can transform the obtained data from the cloud server to

finalize the reconstruction, while none of the cloud servers can reveal the real imaging data.

Altogether, the contributions in this thesis can be summarized as follows:

• For the first time in the literature, we formalize the problem of outsourcing the un-

dersampled in MRI reconstruction, i.e. low-rank matrix completion, to the cloud.

Accordingly, we develop two secure and efficient solutions, SecSAKE I and SecSAKE II,

addressing the issue of security and efficiency, respectively.

• In our first protocol, both imaging data and sampling mechanism are well protected as

column-wise computational indistinguishable under chosen plaintext attack. The data

owner can detect the misbehaviors of the malicious cloud server while only perform-

ing computations with quadratic time complexity in total, which is much lower than

performing the original computations locally.

• In our second protocol, the data owner only needs to communicate with all the cloud

servers by once and then it can receive the reconstructed k-space data. We also prove

that the imaging data can be well protected when none of the semi-honest cloud servers

can collude with each other.

• We implement and evaluate our design through the experiments over real-world image

benchmark. It is shown that both of the protocols can be practically efficient and be

well applied to clinical diagnose.

1.4 Thesis Outline

In Chapter 2, we first present the basic knowledges of the secure computation outsourcing

according to a number of publications in the literature. In Chapter 3, we briefly review

a specific parallel imaging reconstruction method is introduced, called Simultaneous Auto-

calibrating and K-space Estimation (SAKE). In Chapter 4, a system architecture and threat

model of SecSAKE, along with the design goals of our system SecSAKE, is introduced. In

Chapter 5 and Chapter 6, we propose the system design of our single-server and multi-

server protocols, respectively. We analyze the privacy and computational complexity of both
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protocols additionally. In Chapter 7, we demonstrate the conducted extensive experiments

to assess the performance of our proposed protocols. In Chapter 8 we close with a brief

discussion of future research directions.



Chapter 2

Secure Computation Outsourcing

In this chapter, we first describe the system architecture of outsourcing computation appli-

cable to most of the related work. Then, we demonstrate typical security threats and some

corresponding requirements. Following that, we briefly discuss the balance between security

and efficiency. Lastly, we identify schemes similar but not identical to those using the secure

computation outsourcing model at the end of the chapter.

2.1 System Architectures for Secure Computation Outsourc-

ing

A common secure computation outsourcing architecture is illustrated in Figure 2.1. A typical

asymmetric system involves two main different entities: a client C (or customer, data user,

etc.) and a cloud server CS (or server). Due to the inability to carrying out the desired

computation, a client C would like to outsource an expensive computational task Φ to a

cloud server CS, who possesses massive computational power and significant storage capacity.

Because the cloud server CS may not be fully trusted, the client C can locally apply a secret

Figure 2.1: A system architecture with sequences of data/message flows.

10
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key K to transform Φ into an encrypted problem Φ′ to protect data privacy. Then the client

C outsources the problem Φ′, in place of Φ, to the cloud server CS and wants to receive the

solution of Φ′. The cloud server CS operates on a pay-per-use basis and applies its resources

to solve Φ′; it consequently returns the solution of Φ′ to the client C together with a proof

Γ. Note that the proof Γ is optional and is generated to allow the client to verify that the

solution supplied by the CS is correct. After obtaining the returned solution from the cloud

server CS, the client C recovers the answer of Φ using the secret key K. Moreover, the client

C validates the correctness of solution by checking the solution itself or verifying the proof

Γ. Based on the verification result, the client can choose to accept or reject the solution.

Also, the cloud server CS may store an encrypted database related to the task uploaded by

the client beforehand. The client C and the cloud server CS may engage in several rounds of

interaction to solve the computation completely.

Note that some proposed system models may contain another independent party for a

specific design objective: a party which may be responsible for results verification, data

aggregation, or another function (e.g., see [HL05, QYR+14]). Two or more servers can

work independently, e.g., for result verification. The servers can also work collaboratively.

However, in either case they are generally assumed to be non-colluding. In some application

scenarios, the client’s role in the system can be decoupled into two distinct parties—the data

owner and data user—to fit the actual situation. This case is mostly present in collaborative

outsourced data mining, such as [YLX13]. To be more specific, we briefly introduce three

specific variations, which are: 1) a system with three entities including a data owner, a

service provider and a data user; 2) a system with two or more cloud servers executing a

computation task outsourced by a client with no interaction between the two servers; and 3)

a system with two or more cloud servers that collaboratively compute a task outsourced by

a client. The cloud servers in 2) and 3) are usually assumed to be non-colluding. Although

slightly different, the architectures still align well with the secure computation outsourcing

model.

Schemes of the first type are usually presented in publications on outsourcing machine

learning or bioinformatics tasks. The interaction often follows the data as a service (DaaS)

model, where a data user requests the result of a certain computational task over a certain

data set. The data owner is an entity who has complete control over the data and can

authorize or deny access to portions of it. The data should be protected from both external

service providers and in part from data users. In this system model type, the verification phase

sometimes is not even applicable. Although data owner and data user should be considered

separately when considering privacy protection in some schemes, these two entities can be

viewed as a single entity, or client, in certain outsourcing scenarios such as [LC10].
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Solutions of the second type, with two (or more) non-interacting cloud servers are usually

found in publications on outsourcing cryptographic tasks. For example, earlier studies on

outsourcing modular exponentiations assumed two non-colluding cloud servers to which a

client outsources tasks on two correlated inputs without letting each of the servers know the

original input. The outputs of the servers are used to verify each other’s computation. These

schemes are still in the scope of computation outsourcing because a heavy computation task

is alleviated on the client side, which is the main difference between secure computation

outsourcing and secure multi-party computation.

The third variant of the system model also involves two or more cloud servers which are

now required to interact in the protocols. This model is widely used in studies of outsourcing

multimedia-related tasks such as image feature extraction and also in outsourcing graph-

based computations. A common strategy to outsourcing a task in this case is to split the

original data into random matrices locally and distribute them to separate servers. The

servers then compute the function on their own private input and interact to communicate

their outputs. Additional processing in the form of comparison, aggregation or integration is

securely conducted by an additional server or the client.

2.2 Security Threats in Computation Outsourcing

On a positive side, the use of computation outsourcing lowers some of the currently existing

security risks for clients. For instance, clients who upload their data to a cloud and no longer

store everything locally face a reduced risk of having sensitive information leaked in case their

laptop is lost or stolen [Sen13]. However, new challenges and threats to information assets

residing in the cloud are introduced because the data stored remotely is out of users’ control.

In the context of cloud computation, these security threats can be categorized as concerning

data confidentiality (which refers both to the data used in the computation, i.e., computation

input, and to the solution or output of the computation) and computation integrity.

From the client’s perspective, threats to data confidentiality potentially come from the

cloud service provider itself. Thus, it is often required that the cloud server should not

gain any knowledge of the possibly sensitive client’s data. To model the server’s behavior,

two types of adversarial models are usually considered: The first one is called the “honest-

but-curious,” or semi-honest, model [GMW87]. In this model, the server is assumed to

faithfully follow the protocol’s steps and thus correctly execute the computation and return

the correct result to the client. Meanwhile, the server still tries to learn sensitive information

about the client’s data or the computed results in order to profit from it based on the

nature of the computational tasks. The other, stronger security model treats the server as a

fully malicious entity that can arbitrarily deviate from the prescribed computation. Then a
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malicious server can deviate from the computation in the attempt to learn more information

about the client’s data than what an honest-but-curious server could or it may want to save its

own computational resources (such as energy and time) and intentionally return an incorrect

result (such a randomly chosen output) to the client. By returning a seemingly valid but

wrong result, the cloud server hopes that the client will not be able to detect the cheating. A

server who skips a portion of its computation is also sometimes referred to as a “lazy” server

in the literature. Some publications also define a lazy server as one who attempts to lower

its work and assumed to not intentionally disrupt the computation by investing more time

that what is necessary to complete its computational task.

In addition to internal problems, a cloud server might suffer from external attacks. Ex-

ternal threats include remote software or hardware attacks against the cloud infrastructure

or application and social engineering. Successful break-ins into the cloud infrastructure both

expose the data its servers handle to external parties and can compromise correctness of the

returned result if the computation becomes corrupt. From the client’s view, any detected

problems (such as, e.g., incorrect output returned by the server) will be attributed to the

server’s misbehavior, regardless of whether they were triggered internally or externally.

Threats in the other direction—originated at the client and intended to harm the cloud

server—are not typically discussed in the secure outsourcing literature. Publications that

address threats of malicious clients corrupting workloads or attempting to steal information

from tasks of other clients sharing the cloud’s infrastructure are present in the literature.

2.3 Tradeoffs between Efficiency and Generality

2.3.1 Encryption Techniques for Outsourcing General Functions

When outsourcing computation to a public cloud, it is necessary to ensure confidentiality

of the data used in the computation while maintaining relative efficiency of the computa-

tion. Data protection can be implemented via different mechanisms, and transformation or

encryption techniques adopted in different schemes in the literature reflect the tradeoffs be-

tween efficiency and generality. Early homomorphic cryptosystems such as RSA [RSA78],

El Gamal [ElG85] and Paillier [Pai99] can only support a single operation on ciphertexts

such as addition, multiplication, or XOR and are called partially homomorphic. New cryp-

tographic solutions for computation outsourcing became possible after Gentry’s discovery of

the first viable fully HE (FHE) which solved a long-standing major problem in cryptography

and theoretical computer science [Gen09a, Gen09b]. FHE allows for an unlimited number

of additions and multiplications to be performed directly on encrypted data, and hence it

allows for evaluation of an arbitrary functionality on encrypted data, represented as an arith-
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metic circuit. Notwithstanding, the overhead associated with the currently available FHE

techniques makes their use for non-trivial computations infeasible. Aiming to address this

performance issue, the area has experienced new research advances.

Yao’s garbled circuit (GC) evaluation [Yao82, Yao86], proposed in the 1980s, provides

a general approach for secure two-party computation. It is a constant-round protocol for

securely evaluating an arbitrary function represented as a Boolean circuit. To preserve data

privacy, a circuit has to be garbled anew for each evaluation and the approach is secure

in the presence of a semi-honest garbler and malicious evaluator. Capitalizing on the fact

that the evaluator is unable to predict (garbled) output without evaluating the function,

Gennaro et al. [GGP10] combined the technique with FHE to enable secure and verifiable

outsourcing of arbitrary functions. In this solution, the client supplies a garbled circuit once

and it can be evaluated by a cloud server in encrypted form on multiple inputs in such

a way that cloud’s misbehavior is detected by the client. While providing a conceptually

elegant and general secure outsourcing solution, the construction suffers from the significant

computational burden brought by FHE and the need to decrypt ciphertexts inside FHE.

Thus, performance of secure outsourcing of Boolean circuit evaluation would greatly benefit

from optimized garbling schemes or improved FHE constructions, which are popular lines of

research.

In particular, early research on developing efficient GC protocols focused on making im-

plementions of MPC practical MPC, starting from the work of [MNPS04]. In 2012, Bellare

et al. [BHR12] for the first time treated GC as an actual primitive, called garbling scheme,

and provided a scheme based on a dual-key cipher (DKC). In this scheme circuit evaluation

required one or two calls to a fixed-key blockcipher per gate, which was subsequently im-

proved in [BHKR13] to use a single permutation call per gate and be compatible with other

efficiency improvements such as “free” XOR gates and garbled row reduction. Recently, a

sequential construction of GC has been proposed in [SHS+15] to achieve compactness and

scalability.

The design of different FHE constructions can be divided into three different families based

on the underlying mathematics [CCK+13]: (i) schemes based on ideal lattices [Gen09b], (ii)

schemes over the integers [CCK+13] that rely on the hardness of finding an approximate

greatest common divisor (GCD) of large integers, and (iii) schemes based on the Learning

with Errors (LWE) and Ring Learning with Errors (RLWE) assumptions [BV11]. We review

recent advances in each category.

The FHE scheme based on ideal lattices proposed by Gentry in [Gen09b] requires that

the user first sets up a scheme that supports only a finite number of multiplications. This

scheme is referred to as Somewhat Homomorphic Encryption (SwHE). To reduce the noise
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accumulated through successive homomorphic multiplications, the encrypted message is to

be re-encrypted. This is done by “squashing” the decryption circuit so that it can be han-

dled within the capacity of the SwHE scheme. This operation allows us to obtain a new

ciphertext with a reduced amount of noise that encrypts the same plaintext, and this process

is called bootstrapping. As a result, the construction can support an unbounded number

of homomorphic operations with bootstrapping applied as needed. To improve performance

of this scheme, Gentry and Halevi [GH11b] significantly reduce the asymptotic complexity

of key generation for the underlying SwHE and introduce a batching technique for encryp-

tion. They follow the work of Smart and Vercauteren [SV10] who also built an FHE from a

SwHE scheme with small ciphertext and key sizes using a specific type of lattices that can

be represented by integers. Meanwhile, a new method for building FHE is given in [GH11a].

The authors propose a hybrid scheme of SwHE and a multiplicatively HE scheme to elim-

inate the need for the squashing step. Early FHE constructions following Gentry’s work

were lattice-based. The challenges of schemes in this category are large key and ciphertext

sizes. Lattice-based cryptography also contributed to advances in other cryptographic areas,

including a new framework for constructing an attribute-based encryption scheme [BGG+14]

and a homomorphic signature scheme [GVW15].

The schemes over the integers also follow the construction framework of the initial pro-

posal by Gentry to achieve conceptual simplicity. The first scheme of this kind was proposed

by van Dijk et al. [VDGHV10], to which we refer as DGHV. The security of the construction

is based on the difficulty of finding an approximate integer GCD and their SwHE scheme uses

only integer arithmetics for homomorphic addition and multiplication. A follow-up optimiza-

tion work by Coron et al. [CMN11] stores key elements in a new form which allows the size of

the public key to be reduced, while ensuring semantic security under a stronger approximate

GCD assumption. The key size is further reduced in [CNT12] by using a compression tech-

nique and a technique called modulus switching is introduced which allows bootstrapping to

be eliminated. These two schemes exhibit performance similar to those of existing lattice-

based schemes. Lastly, the work of Cheon et al. [CCK+13] extends the DGHV scheme with

the capability of using several plaintext bits in a single ciphertext while providing semantic

security relying on the hardness of the approximate GCD.

The logic for constructing LWE-based FHE schemes was proposed in [BV11]. After

building a SwHE scheme from LWE, one can apply a key-switching technique to control

the dimension expansion of a ciphertext that results from homomorphic multiplication of

other ciphertexts as well as a modulus-switching technique to manage the noise. The it-

erations of these two techniques result in an FHE scheme. Construction of RLWE-based

FHE schemes follows a similar process. Batched RLWE-based schemes were introduced in
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[GHS12b] and [BGV12] to reduce the cost of homomorphic evaluation to be polylogarithmic

(in the security parameter). The latter is known as the BGV cryptosystem and is more ef-

ficient than the Gentry’s initial proposal because of the absence of bootstrapping technique,

which is replaced by a technique called modulus switching. However, we note that all of the

constructions in this category can only provide evaluations of circuits of a polynomial (in the

security parameter) depth, also known as leveled FHE.

As of time of this publication, LWE- and RLWE-based FHE has still been primarily of

theoretical interest. Because modulus switching operations in BGV are still not within the

reach practicality, Brakerski [Bra12] presented a scale-invariant scheme without switching

the modulus. Consequently, Gentry et al. [GW13] proposed a relatively simple FHE scheme

based on LWE—known as the GSW cryptosystem—where matrix addition and multiplication

are used to represent homomorphism. It was later shown in [BV14] and [ASP14] that GSW

achieves polynomial-factor growth in the error rate, which is significantly lower than the

quasi-polynomial growth rate in concurrent work [ASP13]. In addition, a variant of multi-

key FHE based on a variant of the NTRU computational problem was proposed in [LATV12],

called the LTV scheme. This scheme enables computation on values encrypted under multiple

and unrelated keys. Lastly, Bos et al. [BLLN13] showed how Brakerki’s noise-management

technique [Bra12] could be applied to the multi-key LTV FHE scheme [LATV12]. Note that

most of the advances in FHE cryptosystems based on LWE and RLWE can be ported to

FHE constructions over the integers. For example, instead of using modulus switching for

controlling noise in schemes over the integers, Coron et al.[CLT14] apply the technique of

[Bra12] to reduce the growth of noise to linear in the multiplicative depth of the evaluation

circuit.

Another line of work on improving efficiency of FHE schemes focuses on optimizing SwHE

constructions. Naehrig et al. [NLV11] implemented a SwHE scheme based on RLWE which

enjoys relative efficiency. By converting between different message encodings in a ciphertext,

they were able to further optimize application-specific realizations. In addition, a parallel

computing technique called Single Instruction Multiple Data (SIMD) was used in [GHS12a]

to improve the speed of FHE operations. It was targeted at the main bottleneck in boot-

strapping which requires homomorphically reducing one integer modulo another. Another

work [SV14] designed a SwHE scheme which supports SIMD as well as computation in fi-

nite fields. It used SIMD operations for parallel re-encryption, which led to a considerable

performance improvement. Furthermore, the work [PV15] focused on minimizing the num-

ber of bootstrapping operations so as to improve computation time using FHE. A number of

software [GHS12c, HS15, HF17] and hardware [PG13, WHC+12, KGV16] implementations of

SwHE/FHE schemes have emerged, aiming to achieve a significant performance improvement
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Table 2.1: Performance of AES encryption using FHE on the same platform (Source:

[DDS14]).

Technique Time per Block Technique Time per Block

GHS (SIMD) [GHS12c] 2400 s Accelerating NTRU [DDS14] 7.3 s

NTRU [DHS14] 55 s HElib [HS14] 2 s

of the available constructions.

Using FHE for evaluation of client’s outsourced tasks results in representing computation

as a circuit, and the approach supports any desired functionality. As seen from Figure 2.2,

this type of outsourcing resides at the bottom of the computational hierarchy. Even though

a number of breakthroughs have been recently made to improve performance of FHE, secure

computation outsourcing based on FHE and Boolean circuits remains to be impractical for

most applications (such as those specified at higher levels of the computational hierarchy),

especially when input datasets are large.

Note that comprehensive benchmarks for comparing performance of software implemen-

tations of FHE schemes are currently not available [BFG+17]. A number of publications,

however, report on performance of evaluating AES-128 using FHE. For example, Gentry et

al. [GHS12c] was the first to provide a software implementation of FHE based on a modified

HE scheme of [BGV12] using the techniques in [SV14], [GHS12b], and new optimizations.

A customized implementation of the LTV scheme is available in [LATV12]. Another work

[DDS14] builds a library that uses discrete Fourier transform to support FHE evaluation of

AES. This implementation brings the evaluation time down to slightly over 7 seconds per

block. Shortly after, HElib [HS15]—a software library that implements homomorphic eval-

uation of AES encryption—brings the amortized per-block time down to about 2 seconds.

Table 2.1 gives a brief comparison of performance of different FHE implementations evaluat-

ing AES encryption. Note that in the secure outsourcing scheme of [GGP10], homomorphic

decryption of an AES circuit (or a similar operation) will need to be performed for each gate

of the Boolean circuit representing the outsourced task, effectively multiplying the times in

the table by the number of circuit gates.

These general solutions, such as those employing FHE, aim to support any computable

function, which can be represented as an arithmetic or Boolean circuit. In such schemes

the server will be able to evaluate the circuit in encrypted form and achieve proper data

protection. The main conclusion that we can make is that this general approach of secure

computation outsourcing is currently far from practical for engineering applications, even for

moderate-scale computations.
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2.3.2 Encryption Techniques for Outsourcing Specific Functions

The above observation motivates scholars to seek efficient solutions for securely outsourc-

ing specific types of computation, operating at higher levels of the computational hierarchy.

Thus, schemes on the other side of spectrum aim to provide an efficient outsourcing strategy

for computing a specific task over large-scale data, but the developed solution may not gener-

alize to any other type of computation. Atallah et al. [APRS02] for the first time investigate

the random transformation techniques tailored to several specific scientific or engineering

computation tasks. Despite the wide scope of discussion over multiple applications, the

protocol would lead to privacy leakage. Afterwards, many studies have been focusing on de-

signing schemes on privacy-preserving outsourcing fundamental mathematical functions, such

as matrix multiplications [ZB14][LLHH14], matrix inversion [LLH+13], matrix factorization

[DZL16] [ZL16], linear equations [WRWW13][CHL+15] [SLCL15][SLC+17], etc. However,

these schemes are mainly on the computation over real field, which is not applicable to the

MRI settings.

Regarding the secure outsourcing of the large-scale mathematical optimization problem,

an initial work was done by Wang et al. [WRW11]. In their work, a practically efficient so-

lution of secure outsourcing linear programming is designed while allowing result verification

on different conditions. Later on, Nie et al. [NCL+14] apply the sparse matrices to hide

the sensitive data in linear programming for faster local preprocessing. Chen et al. [CXY14]

leverage the pseudorandom generator to reduce the key size when outsourcing a reformulated

form of linear programming. Liao et al. [LDSL16] propose a solution for secure outsourcing

convex separable programming. Salinas et al. [SLLL16] provide a secure outsourcing scheme

of the quadratic program by solving its Lagrange dual problem. A work with similar objective

is [WZRR13], which offers a linear-programming based image recovery service.

We propose to categorize the available solutions in the literature based on the generality

of the technique. We organize operations, from elementary to more complex, in a hierarchy of

computational levels (first introduced in [WRWW13]) as shown in Figure 2.2 to systematically

classify and organize these solutions. This is motivated by the fact that many constructions

achieve similar levels of security and cannot be easily categorized based on the security

properties they achieve, while using a hierarchy of computational levels allows us to arrive

at a well-organized structure for presenting these solutions.

The general classification methodology is based on the following observation: any com-

putational problem can be represented as computations at different computational levels,

which can be organized in a hierarchy. A complex task at a top level of the hierarchy can

be decomposed into simpler operations at lower levels of the hierarchy. Thus, secure out-

sourcing solutions for computations at lower levels can be used as building blocks for securely
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Figure 2.2: A hierarchy of computational levels.
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outsourcing a computation at a higher level, potentially resulting in multiple solutions to the

task at hand. We demonstrate this on the example of linear programming.

If there exist proper secure outsourcing protocols, the client can decompose its task Φ

into a number of sub-tasks at lower levels of the hierarchy, transform each of them into the

corresponding protected form, and re-assemble the result from the outputs of the sub-tasks

that it receives. For example, instead of directly outsourcing its linear programming task,

the client can separately outsource matrix operations or vector operations to a cloud server.

This can often increase the client’s work due to function decomposition and result assembly

or it may also increase the number of interaction rounds.

As an observation related to function decomposition at the client side, we note that in

some cases this will allow the client to hide the specifics of the function being outsourced.

While throughout this article the task being outsourced is assumed to be known to the cloud

and outsourcing of private function evaluation, there is potential for this type of function

decomposition to provide a limited form of function privacy. For example, in the case of

decomposing a linear programming task into small components, the cloud server might not

be aware what exactly the client’s task is.

2.4 Requirements for Secure Computation Outsourcing

The original computational problem Φ is to be locally transformed into Φ′ by the client. As

a result, only Φ′ is accessible to the cloud server as the input. Then one of the major security

requirements is that the cloud server cannot derive any sensitive or meaningful knowledge

about client’s data from Φ′, which is known as input privacy. Furthermore, after evaluating

problem Φ′ and determining the corresponding output of the function, the cloud server should

be unable to learn any information about the result of executing Φ itself, including any inter-

mediate and final results. This is called output privacy. In the majority of the constructions

that comply with the previously described architecture, input and output privacy is achieved

by either data transformation or data encryption. Then to guarantee that the server learns

not information about the client’s data, the server’s view of the outsourced data (in a trans-

formed or encrypted form) should be computationally or statistically indistinguishable from

randomly sampled values. Because of slight differences in the system architecture employed

by some schemes, the privacy requirement might be formulated differently.

Verifying correctness of the result returned by the cloud server and ensuring that a true

answer is obtained has been widely acknowledged as another crucial security requirement of

computation outsourcing. This property refers to computation integrity and is called checka-

bility [HL05] or verifiability [GGP10] in the literature. It requires that an incorrect output to

problem Φ′ returned by a malicious (or lazy) cloud server should pass the verification process
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on the client side with a very small or negligible probability. Note that the checkability is

occasionally not a necessary requirement in some publications due to the particularity of the

functions or a weaker threat model.

As another major requirement for secure computation outsourcing, efficiency commonly

refers to the client’s ability to reduce its local computation, which serves as the main motiva-

tion for utilizing computation outsourcing. The savings are based on the difference between

the effort required for executing the computational task Φ locally and the effort involved in

using computation outsourcing, typically measured theoretically or in some cases empirically.

Computation associated with computation outsourcing involves preparation of Φ′ including

data encryption, result recovery including decryption, and output verification. The cost of

input and output transformation or encryption/decryption depends on the data size and the

employed encryption techniques, which are often symmetric.

Lastly, if the server conducts the computation faithfully and sends the correct results

to the client, the client should be able to successfully verify and recover the result of the

computation. This property is known as correctness [Sio08].

2.4.1 Input and Output Privacy Protection

A fundamental security property sought of secure computation outsourcing schemes is that of

privacy protection of the data handled by cloud servers. This was formulated as input privacy,

i.e., inability of a cloud server to derive information about the input data that it receives

(in a protected form) and uses in the computation and also output privacy that specifically

refers to the server’s inability to learn information about the result of the computation. To

meet this security objective, ideally the server should be unable to learn any information

about the data it receives or computes. This is formally modeled as the server’s inability to

distinguish outsourced data from randomly generated data of the same size using statistical

or computational notion of indistinguishability. This general formulation is applicable to

constructions with a single server or multiple servers, including the setting where the servers

communicate.

Many constructions in the literature meet this definition of data privacy. Examples include

[Moh11] and [ZB14]. There are, however, other publications that relax this definition of data

privacy and allow some data leakage about private data in order to improve performance of

their constructions. We outline common formulations of data privacy and attacks on data

privacy in the context of computation outsourcing.

Local data transformation or encryption prior to outsourcing is a necessary step for achiev-

ing input/output privacy. Because constructions based on cryptographic techniques and those

based on custom transformations to fit the needs of specific problems often have significantly
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Table 2.2: Comparison of two different outsourcing strategies.

Technique
Representative

work
Advantages Disadvantages

Transformation-based
[WRW11]

[CXLC14]
More efficient

Problem-specific, less se-

curity

Transformation-based +

partially HE

[WRWW13]

[ZB14]
More secure and general Inefficient

different characteristics, in what follows, we analyze these two categories of techniques sepa-

rately. Furthermore, because FHE can be used for general computational tasks with strong

privacy guarantees, we will only discuss approaches that utilize partially HE.

We start with a rough classification of the publications based on the techniques they

employ which is given in Table 2.2. Transformation-based techniques usually use a key in the

form of random invertible matrices or random numbers to hide the original dataset. Early

publications such as [APRS02] deems it impractical to provide a systematic analysis of data

privacy of transformation-based techniques because data disguises are problem-dependent.

Furthermore, early attacks against privacy of outsourced data, such as the statistical attack of

[APRS02] which traverses the output of specific random generators to analyze the transformed

data, are considered weak and can be defeated using complex probability distributions or by

refreshing the key.

More recently, it became common to see the data privacy property formulated as se-

curity under a ciphertext-only attack with certain constraints. Note that because of the

non-interactive nature of computation outsourcing, it is meaningful to formulate data pri-

vacy using encryption terminology. This property requires that, given encrypted input, it

is infeasible for the server to obtain or deduce any information about the original data. In

works that adopt this definition, it is either shown that the distribution of the transformed

data is statistically close to that of a data sampled uniformly at randomly, or the server’s

advantage in distinguishing the transformed data from random values is negligible. An ex-

ample of constraints that may come with this formulation of security can be found in the

work of [WRWW13]. Its focus is on iterative linear equation outsourcing, and input privacy

can be achieved if the number of iterations is limited by a certain value.

Taking the transformation technique of [WRW11] as an example of constructions secure

against a ciphertext-only attack, we can see that construction adds randomly chosen vector

r to input x as a masking layer. This renders different forms of analysis attacks ineffective

when only a ciphertext is available to the attacker. It has been later shown in [WRW16]
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that if the entries of r are uniformly chosen from interval I = [−2κ, 2κ], where κ is a security

parameter, the statistical distance between x + r and a vector r̂ randomly and uniformly

sampled from I is a negligible function. In other words, the server’s views x + r and r̂ are

statistically indistinguishable. Hence, protection of individual sensitive matrix and vector

values (e.g., b and b′ = Q(b + xr)) is achieved.

The above analysis is based on the assumption of that a random transformation is used

only once. Later it has been observed that using the same random transformation multi-

ple times may allow the attacker to accumulate specific plaintext/ciphertext pairs until the

original matrix could be recovered by solving a linear equation or certain information about

original matrices can be learned. For example, several schemes lead to data leakage if users

use a single matrix M to hide their data vectors x as Mx. If a client applies the same

transformation matrix M as the secret key to hide another data vector y, the server can

recover information about the vector in the form of y−1x by multiplying (My)−1 with Mx.

Therefore, under the assumption that the same transformation key can be used to transform

different inputs, it becomes meaningful to consider security under a known-plaintext attack.

Given knowledge of the plaintext, the objective of the attacker then becomes to recover the

secret key. It can be easily shown that many schemes from the literature become vulnerable

in this security model. This is often because they apply addition and/or multiplication of

random matrices to protect the original data matrix and these operations are distributive.

The above definitions of ciphertext-only and known-plaintext attacks capture the notion

of no information about the input being revealed to the server. A number of publications

relax these definitions and allow the server to learn certain information about the data. For

example, transformations that multiply input by random matrices can reveal the number of

zero elements in the original data or even the location of zero elements in the input matrix,

which is proposed in [YLW+16]. There are also solutions that preserve certain properties of

the input matrix after the transformation, such as retaining the matrix sign or rank, which

also amounts to information leakage. Note that the property of rank-preserving is often

necessary when encrypting the coefficient matrices in linear systems and linear programming.

These constructions would not satisfy the requirements of security of indistinguishability but

is still secure against ciphertext-only attack.

To better preserve input privacy, several studies apply encryption schemes with limited

homomorphic properties. For example, [Moh11] design computation over ciphertexts en-

crypted using different HE techniques to outsource matrix multiplication. Because the server

receives multiple transmissions from the client, data privacy is defined with respect to all

the messages the server sees during the protocol, as we originally define using the notion of

indistinguishability. Other publications such as privacy-preserving sequence comparisons in
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[AL05] and ridge regression in [NWI+13] utilize multiple servers and would fall under the

same formulation of data privacy as above. Similar levels of privacy protection can be found

in [ZB14], and many others. The properties of constructions for outsourcing fundamental

functions and their detailed comparison can be found in Table 2.3. Table 2.5 explains some

abbreviations and notation used in Table 2.3.

Most of the outsourcing schemes we have discussed also aim to protect output privacy.

Because the transformation process is often symmetric, output privacy in these schemes is

usually achieved at the same security strength as that of input privacy. In contrast, there are

also a number of existing schemes that only protect input privacy or provide a limited form

of output protection. For example, information about output may be exposed to a cloud

server in the form of revealing records that matched the client’s query. This is present in

outsourcing biometric-related and data mining related tasks, such as searching a set of iris

codes for a match [BA12] and searching the k-nearest neighbors over the outsourced database

[ESJ14].

As a brief summary, we observe the following trends: 1) For transformation-based schemes

to achieve the security guarantees put forward in the respective publications, the masking

material in the form of vectors and matrices should be randomly chosen anew for each input.

2) As encryption aids privacy protection, it is easier to achieve input privacy if semantically

secure encryption is used. 3) When multiple servers are utilized, input privacy cannot be

guaranteed if they collude.

2.4.2 Ensuring Correctness through Verification

Checkability, or verifiability, is one of the key requirements of secure computation outsourcing.

As previously described, it refers to the user’s ability to detect server misbehavior. Current

designs can be divided into two cases: the ones with deterministic verification and with

non-deterministic verification.

The designs with deterministic verification can always provide deterministic checkability.

One example can be found in [WRW11] which deals with linear programming computation.

Compared to many outsourced tasks that correspond to fundamental functions whose output

falls in a single case, the LP problem may not have an optimal solution. This raises the

challenge of designing the verification procedure. Besides verifying the returned optimal

solution, the user has to ensure that the ‘infeasible’ or ‘unbounded’ output is honestly reported

by the cloud server. Hence, the server is instructed to return a proof Γ that includes different

options for different cases. In the case of feasible LP, a dual optimal solution should be

included in the proof. Then the user can validate correctness of the solution if both the

primary and dual objective values are equal. In the case that the server wants to show
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Table 2.3: Protocol design choices in outsourcing of fundamental functions.

Task Scheme
Threat

model
Technique Interaction

Verification

dependence

Security

strength

Matrix

multiplication

[BA08] Malicious TF + HE Once p COA(NS)

[AF10] Malicious SS Vrf t IND

[LLHH14] Malicious TF No l COA(NS)

[Moh11] Malicious TF + HE No Deterministic IND

[ZB14]
Malicious

TF +

PRF +

HE

No Deterministic IND

Semi-

honest

TF +

PRF +

HE

No Deterministic IND

[FG12] Malicious PRFC No Deterministic IND

Matrix inversion [LLH+13] Malicious TRF No l COA(NS)

Nonnegative ma-

trix factorization
[DZL16] Malicious TF Vrf Deterministic COA(NS)

Matrix eigen-

decomposition
[ZL16] Malicious TF No l COA(NS)

Matrix determi-

nant
[LLHL15] Malicious TF No l COA(NS)

System of

Linear

Equations

[WRWW13]

Semi-

honest
TF + HE Solv, Vrf Deterministic COA

Malicious TF + HE Solv l COA

[CXY14] Malicious TF No Deterministic COA(NS)

[CHL+15] Malicious TF No Deterministic COA(NS)

Linear

programming

[WRW11] Malicious TF No Deterministic COA

[NCL+14] Malicious TF No Deterministic COA(NS)

Quadratic

programming

[SLLL16] Malicious TF Yes Deterministic IND

[ZL15] Malicious TF No Deterministic COA(NS)
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infeasibility of the original task, it has to solve the auxiliary LP problem. Then both the

optimal solution of the auxiliary problem and its proof of optimality should be included in

the proof Γ. The unbounded case is treated similarly.

The design with non-deterministic verification can guarantee correctness with certain

probability. The probability of a client accepting a wrong result can be adjusted using

security parameters to balance performance and the probability of error. One typical non-

deterministic verification example is the design of [WRWW13], where computation of the

solution to a linear equation proceeds in iterations until the convergence criterion is satisfied.

In its verification phase, to check correctness of L iterations in a batch, the client randomly

selects L l-bit numbers to be used as the coefficients in a linear combination. Correctness

of the received answer in L iterations can then be tested by checking whether the linear

combination of the returned vectors with the specified random coefficients equals to the

value that the client expects. The equality always holds when the output in each iteration is

correctly computed. It can also be proved that a wrong result even with only one incorrect

value in the received vector will be undetected with probability less than 2−l.

The design of a verification process is highly related to efficiency. A poor verification

mechanism can be costly to the client and result in computation comparable to executing

the task itself. Hence, a careful design of verification is quite needed and was developed in

many outsourcing schemes as we discussed. Although non-deterministic verification shows its

weakness on the accuracy of misbehavior detection compared to deterministic approaches, it

can be more flexible in practice when efficiency is the most important metric. Furthermore,

non-deterministic verification often provides sufficient guarantees in the long run when the

dataset is large enough.

2.5 Performance Evaluation

For a given computational task, client’s performance can be evaluated by comparing the

encryption/decryption or transformation overhead as well as task verification cost to compu-

tation overhead of performing the original task. Because of the original motivation of out-

sourcing large-scale computation, performance speed-up is a necessary requirement for out-

sourcing schemes. Thus, Table 2.4 summarizes performance speed-up for different schemes,

except those that use FHE, whose encryption overhead can be very high (notation can be

found in Table 2.5). For example, in [LLH+13] and related schemes, the transformation uses

a random matrix for hiding the original data. Client’s computation is dominated by several

matrix additions and matrix-vector multiplications, which take O(n2) time. HE is another

common data protection technique used in secure computation outsourcing constructions.

For example, it can be found in the design of [WRWW13], where a client performs a matrix-
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Table 2.4: Efficiency comparison of schemes for outsourcing fundamental functions.

Task Scheme Enc/Dec time Task time Verification time

Matrix

multiplication

[BA08] O(n2) O(nρ) O(n2)

[AF10] O(t2n2) O(tnρ) O(n2)

[LLHH14] O(mn+ ns+ms) O(msn) O(msl)

[Moh11] O(n2) O(nρ) O(n2)

[ZB14]
O(mn+ ns+ms) O(msn) O(ms)

O(mn+ ns+ms) O(msn) O(1)

[FG12] O(max(m,n)s) O(mns) O(max(m,n)s)

Matrix inversion [LLH+13] O(n2) O(nρ) O(ln2)

Nonnegative matrix

factorization
[DZL16] O(max(m,n)2) O(imnr) O(mnr)

Matrix eigen-

decomposition
[ZL16] O(n2) O(ln2) Ω(n3)

Matrix determinant [LLHL15] O(n2) O(nρ) O(ln2)

System of linear

equations

[WRWW13]
O(in+ n2)

O(nρ)

O(n2)

O(in+ n2) O(ln2)

[CXY14] O(n2) O(n2)

[CHL+15] O(λn2) O(n2)

Linear

programming

[WRW11] O(nρ)
Ω(n3)

O(n2)

[NCL+14] O(λn2) O(n2)

Quadratic

programming

[SLLL16] O(max(mn,n2))
Ω(n3)

O(max(mn,n2))

[ZL15] O(n2) O(n2)

vector multiplication before encrypting the elements of the original matrix. If the number of

computation iterations is less than the data size, the client’s work is O(n2) including O(n2)

encryptions.

To make a fair comparison, another issue that should be taken into consideration is the

external memory I/O operations when the data is large and cannot reside in local memory,

which was first discussed in [SLCL15]. In [LLH+13] and similar schemes, the cost of encryp-

tion is 4n2 I/O memory operations, decryption requires another 2n2 memory I/O operations,

while the verification procedure needs another n2 memory I/O operations. Hence, the mem-

ory I/O usage of this design is around 7n2 in total. In the scheme of [WRWW13], if all

interactive operations occur within memory, the memory I/O usage is also around 7n2. For

comparison, the scheme in [SLCL15] for outsourcing the same task uses vector operations on

the client side instead of matrix-vector operations, and as a result achieves better memory

I/O usage requiring 4n2 memory I/O operations, without considering verification.
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Table 2.5: Abbreviations and notation used in Tables 2.3 and 2.4.

Abbreviations Notation

CPA chosen-plaintext attack
n

dimensions of a square input matrix or

COA ciphertext-only attack the number of columns in the first non-square matrix

IND computationally m the number of rows in the first non-square matrix

indistinguishable s the number of rows in the second non-square matrix

Vrf verification t secret sharing threshold

TF transformation-based ρ the power in the asymptotic complexity of matrix

multiplication

HE homomorphic encryp-

tion

l the number of iterations in the verification process

PRF pseudorandom function p modulus size used in homomorphic encryption

PRFC PRF with closed form ef-

ficiency

r dimension parameter for matrix factorization

SS Shamir’s secret sharing i the number of iterations needed in the computation

Solv solving computational

task

λ the upper bound on the number of non-zero elements

in each matrix row

NS not provably secure p the number of rows in the constraint matrix for opti-

mization problems

2.6 Overview of Related Topics

According to the system architecture and requirements described in this chapter, two classes

of related work are identified, on which we comment below.

Secure multi-party computation (MPC) allows for cooperative evaluation of an arbitrary

function by multiple parties, taking each party’s private data as the input and preserving

data confidentiality throughout the computation. The result of the computation is returned

to an agreed-upon set of participants according to the specified functionality. The earliest

general solutions for secure function evaluation were given by Yao for the two-party setting

secure in the presence of semi-honest participants [Yao82] and by [GMW87] for the multi-

party setting secure against malicious participants. The general architecture of secure MPC

typically assigns symmetric workloads to the computational parties, and the data contributed

by every party resides in the system in a protected form. This setup is typically not suitable

for achieving the goals of outsourcing large-scale computations, where a client wishes to

improve the speed of running computational tasks.

Delegating computation with cheating detection assumes a network composed of several

computational devices of different computational capabilities that interact with each other.

It allows weak devices to delegate their computational tasks to more powerful devices, which

is similar to the architecture of securely outsourcing large-scale computations. Several early
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results include provisions for detecting server’s misbehavior. However, they permit the server

to have access to the data used in the delegated tasks in the clear, which violates one of the

main security requirements of secure computation outsourcing. These publications include

[GKR08, GM01, DMJ10], and others. In addition to these early studies, several more recent

results on delegating specific computations such as those in [CLM+14, XAG17] treat both

computation verification and data privacy so that they can be classified as secure outsourcing

schemes. For more detailed readings, please refer to [SRBW18].

2.7 Summary

In this chapter, we give a systematic overview of existing solutions for securely outsourcing

large-scale computations. Efficiency of client’s computation and proper data confidential-

ity protection from the cloud server conducting the task are the two most important goals

that prominent schemes from the literature aim to achieve. Additionally, verifiability of the

computed result becomes an essential property for state-of-the-art secure computation out-

sourcing solutions in the presence of servers who are not fully trusted. We also identified

tradeoffs between security and efficiency among different application domains.



Chapter 3

Simultaneous Auto-calibrating and

K-space Estimation

In this chapter, a specific parallel imaging reconstruction method is introduced, called Si-

multaneous Auto-calibrating and K-space Estimation (SAKE) [SLO+14]. According to the

introduction we present in Chapter 1, the traditional image reconstruction method suffers

from several drawbacks. SAKE essentially works on pure k-space data without leveraging

the information of the coil sensitivities, which can reduce the data acquisition time from the

separated scans and hence avoid the significant imaging alias caused by the inconsistency due

to motion or small errors in the sensitivity estimation. Furthermore, SAKE, as a calibration-

less method, also shows its superiority over other pure k-space data methods using sufficient

ACSs for accurate calibration, such as GRAPPA [GJH+02], SPIRiT [LP10], ESPIRiT (an

eigenvalue approach to autocalibrating parallel MRI) [ULM+14].

3.1 Theory in SAKE

In general, SAKE jointly considers the data of the multiple channels by arranging the acquired

data into a single, structured matrix, called data matrix. This structured matrix also is known

as a low rank matrix due to the linear dependency of data. The image reconstruction problem

is then transformed into a structured low-rank matrix completion problem and formulated

as a constraint optimization problem. Below we present the brief summary of the projection-

onto-sets type algorithm the paper [SLO+14] adopted to iteratively solve the problem.

3.1.1 Generating Data Matrix

In this phase, the data acquired from the multiple coils is integrated into the single data

matrix A. Initially, all the vacant entries in coils are filled with zeros. After that, a square

30
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sliding window with the chosen size of w × w moves across the data within an Nx × Ny

coil. Each value in the window is then projected to a row vector, which is later attached to

the data matrix. The above operations are repeated over each of the Nc coil. Hence, the

constructed data matrix will contain w2Nc × (Nx −w + 1)(Ny −w + 1) entries. Specifically,

the linear operator to generate the data matrix A is defined as Hw:

Hw : CNx×Ny ·Nc → C(Nx−w+1)(Ny−w+1)×w2Nc (3.1)

As shown in Figure 3.1., the generated data matrix contains many duplicate entries, i.e.

the same entry in k-space dataset is anti-diagonally projected to a set of indexes in A. In

particular, the data matrix is structured as a Hankel structure block by block. It has been

shown in [SLO+14] that the data matrix, created with an appropriate window size, should

have the property of low rankness if generated from a fully sampled k-space dataset. This

is because, under the reasonable assumption that coil sensitivities have compact k-space

support, a data matrix in block Hankel form can be structured to become a rank-deficient

matrix for an appropriately chosen window size.

3.1.2 Low-rankness Projection

The objective in this stage is to separate the desired data and noise by projecting the data

matrix onto a more compact subspace. The Cadzow’s algorithm [Cad88] adopted in SAKE

proposes to apply the technique based on Singular Value Decomposition (SVD) in order

to enforce the low-rankness of data matrix. The data originated from the k-space can be

separated into the signal and noise subspaces. As observed in [SLO+14], the rank of the

data matrix A is highly dependent on the type of scanned object and coil configuration.

This indirectly implies that the rank(A) can be approximately estimated before the image

reconstruction. In this thesis, we all suppose Nc, w � Nx, Ny. Denote p = (Nx−w+1)(Ny−
w + 1), q = w2Nc and ∗ as the conjugate transpose. First, the data matrix can be uniquely

decomposed as

A =
n∑
i=1

Ai =
n∑
i=1

σiuiv
∗
i (3.2)

where ui ∈ Cp×1 and vi ∈ Cq×1 are left and right singular vectors of A which correspond to

the singular value σi. If the singular values are given in a descending order, the least squares

estimate of the desired signal with rank r̂ is given in a truncated version:

Â =

r̂∑
i=1

Ai =
r̂∑
i=1

σiuiv
∗
i (3.3)
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Figure 3.1: The procedure of generating data matrix and enforcing structural consistency

projection in [SLO+14]. The white dots represent non-sampled points.

3.1.3 Structural Consistency Projection

Correspondingly, a reverse operator of Hw which projects the data matrix back to multi-coil

k-space data is also defined as H†w:

H†w : C(Nx−w+1)(Ny−w+1)×w2Nc → CNx×Ny ·Nc (3.4)

This process is shown in Figure 1. Note that the inputting data matrix, like Â, may not be

structured as a block-wise Hankel matrix. Alternatively, H†w obtains the values of the entries

on the anti-diagonal direction and then projects their average values onto a particular entry

of the k-space dataset.

3.1.4 Data Consistency Projection

Let xn be the current estimate of the k-space data given by xn = H†w(Â). The entries at the

sampled locations now contain different values from the original ones. More precisely, denote

y as the chained raw k-space data that is acquired from the multiple coils, with the size of

Nx×Ny ·Nc. Given the linear operator D which only selects the sampled locations, the data

consistency can be achieved by a least square solution to Dxn = y:

xn+1 = (I−DD†)xn + D†y (3.5)

where the pseudo-inverse of D, represented as D†, serves for vectorizing the chained data

and filling vacant entries with zeros.

According to the above definitions and notations, the low-rank matrix completion problem

formulated in SAKE [SLO+14] can be expressed as follows:

argminx ‖Dx− y‖2

subject to rank(A) = r̂, x = H†(A)

where y and x are the k-space data acquired from coils and to be reconstruction, respectively.
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Figure 3.2: The procedure of enforcing all the projections to solve the low-rank completion

problem in [SLO+14].

3.1.5 Iterations

It is noted that each of the above projections is defined to satisfy the constraints given in

this optimization problem. To solve this problem, an initial estimate on k-space data is first

given to the problem solver, which is usually selected as D†y. In the iterative process, the

data matrix generated from the current estimate is successively enforced by low-rankness

projection, structural consistency projection, and data consistency projection. The iteration

ends when the consecutive estimates are within a predefined bound. Finally, the image can

be recovered by computing the 2D inverse Fourier transform over the reconstructed k-space

data. The diagram of iterative reconstruction in SAKE is illustrated in Figure 3.2.

3.2 Cartesian and Non-Cartesian Sampling

In modern MRI, there roughly exist two categories of traversal strategies for k-space data

sampling, known as Cartesian Sampling and non-Cartesian Sampling. In the Cartesian Sam-

pling case, the data is sampled with regular intervals in the k-space, which enables convenient

implementation. The non-Cartesian Sampling approaches, including spiral, zig-zag, radial,

etc, are more popular in recent years [WHG+14]. These approaches acquire data in a non-

uniform manner, which cause fewer motion artifacts and then can reconstruct high-resolution
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images.

The sampling operator D in Equation (3.5) has different implementations given the sam-

pling strategy. In Cartesian Sampling, the DO only needs to substitute the k-space data x̂n

at the sampled locations with the original data acquired from the multiple coils. In this way,

the estimate of the k-space data is easily updated to xn+1. Differently, the operator D in

non-Cartesian Sampling refers to an interpolation operator which transforms the Cartesian

reconstructed data to non-Cartesian locations and remains fixed according to the sampling

approach. This step can be approximately implemented by Equation (3.5) and requires to be

repeated by a few times before getting good results. Despite the various sampling approaches,

the MRI scanning machine usually holds only one piece of sampling code in clinical settings.

In the following chapters, we will follow the definitions provided in this chapter and

introduce our proposed models.



Chapter 4

Problem Statement

In this chapter, we will briefly take a glance of two of our proposed models. Our assumptions

are introduced, including how the user and server are set in the system architecture, what

are the possible attacks that the adversaries can execute, and the designing goals under these

assumptions.

4.1 System Architecture

In this thesis, we focus on securely outsourcing the computations of solving low-rank matrix

completion problem to the cloud server. In SecSAKE, two system architectures are considered

corresponding to two of our different designs, both of which are composed of two group of

entities, the Data Owner DO and Cloud Servers CS. Under the circumstance of performing

MRI in the clinic, the collected data from scanning patient’s body is supposed to be securely

kept by the clinic. As the DO in our system, however, the clinic may not be able to recon-

struct the diagnosable image by itself efficiently, due to the large-scale data samples and its

limited computation resources. Then the DO is inclined to outsource the most computational

expensive parts to the CS, while presercing both the data confidentiality and computation

functionality. Based on the capability of the computation and the security requirement of

the DO, the settings within the CS of two designs are differentiated as shown in Figure 4.1.

In our first design, only one server is included in the CS. In each iteration, the DO
will locally generate the data matrix from the acquired data. By carefully encrypting the

data matrix, the DO can outsource the computation task of SVD to the CS in a privacy-

preserving manner. The solution is then returned and decrypted by the DO before it performs

the structural consistency projection. To enforce the data consistency projection, the DO
pre-stores an encrypted form of the matrix related to the sampling mechanism on the CS.

Then the DO can securely outsource the current estimate to the CS for updating. Finally,

35
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Figure 4.1: Left: System Architecture of SecSAKE I. The DO keeps online to communicate

with the CS in each iteration;

Right: System Architecture of SecSAKE II. The data owner keeps offline while the servers

communicate with each other.

the DO can stop the iteration when the requirement of the convergence is met.

In our second design, four independent cloud servers are included: one encryptor and

three shareholders. At first, the scanned imaging data is randomly split into three shares. In

the initialization phase, the DO distributes the first-round key matrices along with the shares

to the shareholders. Besides, the data owner encrypts the imaging data and outsources it to

the executor. The executor computes SVD, applies an additional mask to hide the temporary

results and then securely passes different units of results to different shareholders. With the

encrypted results, the shareholders can jointly compute their own share of the estimate but

none of them can reveal the imaging data individually. These shares along with the stored

imaging data shares will then be securely aggregated and sent to the executor, as the input

of the next iteration. At last, the DO can reveal the results by transformation of imaging

data after it manually stops the iteration.

4.2 Threat Model

In reality, the exposure of imaging data, including both the intermediate and the final recon-

struction estimate in the k-space domain, may incurs an increased risk of patient’s identity

and physical condition. Meanwhile, we observe that the clinics seldom updates their sam-

pling method. The adversary may take advantage of the fixed sampling operator to track a

specific patient. Hence, in this thesis, we address that two parts of the data involved in the

computation may potentially lead to privacy leakage: the imaging data y (and x) and the

sampling operator D.

In addition, in our first design, we assume the CS to be malicious. The CS tries to

extract information from the patient’s data and from the results of its own computations.

Also, CS can intentionally deviate from the proposed protocols or undermine the integrity of
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the computation results, in the hope of not being detected. Also, CS may also suffer from

external attacks that could change or leak the data used in the process of computation, which

may cause erroneous results or potential data privacy issues.

In the second design, we assume all the servers are semi-honest. They will follow the

algorithm to execute the communication and computation and may also attempt to derive

meaningful information from the data. A semi-trusted cloud is consistent with the users

trying to maintain the security of a sufficient portion of cloud resources, but some parts of

the cloud may be under the control of untrusted parties. To undermine the confidentiality or

integrity of data or calculations, the undermined party appears to be the major source of the

threat, the purpose of which is to gather more information by combining the observations

of malicious adversaries. We also assume any two of the servers are non-colluding. More

specifically, none of the servers included in the system can share the part of the data that

is not scheduled in the protocol to other servers. Such model is reasonable and can be

guaranteed by the co-statement between cloud service providers in practice [CAF13].

To enable the user to securely outsource computing tasks to the CS, the data that the user

shares with the CS should appear random. This notion of privacy is known as computational

indistinguishability. To define computational indistinguishable with a random matrix, we

follow the definition and method used in [SLCL15]:

Definition 4.1. Given any polynomial time distinguisher D, there exists a negligible function

µ(·) such that

|Pr[D(ri,j) = 1]− Pr[D(si,j) = 1]| < µ (4.1)

where the distinguisher D outputs 1 when its input is identified as from a uniform distribution.

Formally, we use the definition of column-wise Computational Indistinguishability as fol-

lows:

Definition 4.2. A matrix transformation is column-wise computational indistinguishable

under a chosen-plaintext attack (CPA) if: For any adversary A modeled by a probabilistic

polynomial time Turing machine, the advantage of distinguishing from two matrix transforma-

tions at the same column can be bounded by a negligible function in a CPA indistinguishability

experiment.

4.3 Design Goals

We aim to provide a secure and efficient outsourcing scheme for the MRI reconstruction.

Several key design objectives are listed as follows:
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Imaging Data Privacy: None of the entities in the CS should get access to the exact value

of the imaging data, including the both the sampled value and the the estimates during the

iteration, or can reconstruct the final diagnose image based on its accessible data. Besides, in

our first design, the locations where the data are sampled should also be protected according

to the DO’s preference.

Efficiency Gain: In SecSAKE, the time cost for computation on the DO side should

be lower than solving the computational problem by himself. Moreover, any entity in the

CS should be able to compute the problem within the comparable time complexity with an

existing efficient algorithm.

Verifiablity: In our first design, the DO should be capable to validate the correctness of

the returned results from the CS in each loop of the iteration.

4.4 Summary

In this chapter, we briefly review the core algorithm used to solve the low-rank matrix com-

pletion problem. Within each iteration of the algorithm, we identified the most computation

expensive parts, where the clinic can outsource the only these parts to the server as a com-

pact design mode. In the next two chapters, we illustrate the detailed design of these two

protocols.



Chapter 5

SecSAKE I

In this chapter, we focus on our first design of SecSAKE. We follow the sequence of operations

within one iteration in SAKE. Among all the related computation tasks in SAKE, we identify

two of them are computational intensive – SVD in the low rankness projection and matrix

multiplication in the data consistency projection. Then the approach to verify both of the

results is given afterwards.

5.1 Secure Singular Value Decomposition

At the beginning of one iteration of SAKE, the DO aims to securely outsource the compu-

tation of SVD over the complex field to the CS. Before proceeding to this step, the DO has

either 1) just initialized the first estimate as x0 = D†y, where y is the acquired data or 2)

received the estimate of k-space data xn from the previous iteration in the (n − 1)th loop.

With no loss of generality, we only consider the second case throughout this chapter.

Firstly, the k-space data xn can be trivially mapped into a data matrix An with block-

wise Hankel structure by enforcing Hw. The DO then aims to encrypt the data matrix

An ∈ Cp×q before outsourcing the computation of SVD to the cloud. In order to to preserve

the value privacy and the structure of data matrix, two random diagonal unitary matrices

and random permutations are applied in this step, respectively. Suppose the diagonal unitary

matrices we use are named Λ1 ∈ Cp×p and Λ2 ∈ Cq×q, respectively. To construct Λ1 =

diag(λ1, λ2, ..., λp) and Λ2 = diag(γ1, γ2, ..., γq), on input the security parameter κ, the DO
applies a pseudorandom function Fκ to generate the ratio of real to the imaginary part of

each non-zero entry.

More precisely, taking Λ1 as an example, if Fκ is defined over {0, 1}κ×{0, 1}κ → {0, 1}κ,

39
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the sequence of numbers are given as follows:

R(λl) =
√

1/(1 + η2l ), I(λl) = ηl

√
1/(1 + η2l ), ∀l ∈ [1, p]

ηl = Fκ(rl, c), ∀l ∈ [0, p]
(5.1)

where rl is a random string and c is the constant. Suppose Λ2 has the same construction

and denote the outputs of the pseudorandom function as η′k,∀k ∈ [0, q]. After that, the DO
can hide the data matrix An by

Ãn = η0η
′
0Λ1AnΛ2 (5.2)

Here we provide a sketch of proof before reaching the conclusion that the transformation

given by Equation (5.2) is computational indistinguishable. Firstly and trivially, according

to property of diagonal matrix, given any two matrices A1
n and A2

n over complex field with

same structure, i.e. have same positions for non-zero entries, the Ã1
n and Ã2

n have the

same structures. Take a more in-depth observation, each data entry in Ãn is given by

ãni,j = η0η
′
0λia

n
i,jγj , where the real part is given by:

R(ãni,j) = η0η
′
0[R(λi)R(γj)− I(λi)I(γj)]R(ani,j)+

[R(γj)I(λi) + R(λi)I(γj)]I(ani,j)

= θ[(1− ηiη′j)R(ani,j) + (ηi + η′j)I(ani,j)]

(5.3)

Similarly, the imaginary part is given by:

I(ãni,j) = θ[(1− ηiη′j)R(ani,j)− (ηi + η′j)I(ani,j)] (5.4)

where θ = η0η
′
0

√
1/(1 + η2i )(1 + η

′2
j ). The best strategy for the adversary A to deduce the

real part of ani,j is to compute

R(ãni,j) + I(ãni,j) = η0η
′
0

√
1 + (ηi + ηj)2/(1 + η2i )(1 + η

′2
j )R(ani,j) (5.5)

Due to the pseudo-randomness of ηl, it can be easily concluded that any value derived

from both the real part and the imaginary part cannot reveal more information than η0η
′
0a
n
i,j .

According to the CPA indistinguishability experiment and corresponding conclusion proposed

in [SLCL15], the transformation in Equation (5.2) can achieve column-wise computational

indistinguishability under a CPA for non-zero elements under the Definition 4.1.

Besides the matrices Λ1 and Λ2, the DO needs to apply two random permutation matrices

to hide the locations zero elements. In brief, two pseudorandom permutations, π1 and π2 are

applied to Ãn through multiplications of the matrices P ∈ Rp×p,Q ∈ Rq×q, i.e.

Ã′n = PÃnQ = η0η
′
0PΛ1AnΛ2Q (5.6)
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where all the non-zero entries in P = (pi,j) and Q = (qi,j) are filled with 1’s, whose positions

can be denoted by:

pπ1(i),j , ∀i ∈ [1, p], i = j

qπ2(i),j ,∀i ∈ [1, q], i = j
(5.7)

Algorithm 1: Secure SVD and Low-rankness Projection

Input: A block-wise Hankel structured data matrix An

Output: The best rank-r̂ approximation of An

1: Generate η0, η
′
0, Λ1 and Λ2 by Equation (5.1)

2: Generate P and Q by Equation (5.7)

3: Compute Ã′n = η0η
′
0PΛ1AnΛ2Q and send Ã′n to the CS

4: Receive U′, Σ′, V′

5: Compute U′′ = (PΛ1)
∗U′, Σ′′ = (1/|η0η

′
0|)Σ′, V′′ = Λ2QV′

6: Retain the first r̂ columns of U′′, Σ′′ and V′′

7: Compute Ân via Equation (5.11)

Theorem 5.1. The transformation of matrix over complex field given in Equation (5.6) is

computational indistinguishable transformations under a chosen-plaintext attack.

Next, we show that both the matrices P1 = PΛ1 and Q1 = (Λ2Q)∗ = QTΛ∗2 are unitary

matrices. Recall the construction of Λ1, the complex conjugate of the lth diagonal element

is given by λl =
√

1/1 + η2l − ηj
√

1/(1 + η2l )i. Hence, Λ1Λ
∗
1 = I. According to the definition

of P, each column is mutually perpendicular and normalized. Thus P1P
∗
1 = PΛ1(PΛ1)

∗ =

PΛ1Λ
∗
1P

T = I. In this way, we can also find Q1 unitary.

The property of the unitary enabls the DO to recover the correct solution of SVD by

reversing the matrix transformation. More precisely, the DO outsources the transformed

matrix Ã′n to the CS, who later finds the eigenvalues and eigenvectors of Ã′nÃ
′∗
n denoted

as σ′ and u′, respectively. With the descending order of eigenvalues found on the diagonal

entries of diagonal matrix Σ′, the eigenvectors uniquely form the columns of the left-singular

matrix U′. This procedure can be represented by

Ã′nÃ
′∗
nU′ = η20η

′2
0 (P1AnQ

∗
1)(Q1A

∗
nP
∗
1)U

′ = Σ′2U′ (5.8)

Then the equation can be rewritten as

AnA
∗
nP
∗
1U
′ = (1/η20η

′2
0 )Σ′2P∗1U

′ (5.9)

Let U′′ = P∗1U
′ and Σ′′ = (1/|η0η

′
0|)Σ′. It is obvious that U′′ and Σ′′ are the left-

singular matrix and diagonal matrix containing the non-increasing singular values of An.
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Symmetrically, the right-singular matrix can be computed by the CS as follows:

A∗nAnQ
∗
1V
′ = (1/η20η

′2
0 )Σ′2Q∗1V

′ (5.10)

let V′′ = Q∗1V
′. Then V′′ becomes the right singular matrix of An. The CS, however, has

access to neither P1 nor Q1. Hence, the CS will send the U′, V′ and Σ′ to the DO. The

DO can apply the reverse transformation to these matrices to get the singular vectors and

values of An.

Algorithm 2: Privacy-preserving Data Consistency Projection (Non-Cartesian sam-

pling & Sampling Operator Hiding)

Input: The current estimate of k-space data x̂n, the sampling matrix D, its pseudo-inverse

D† and precomputed DD†.

Output: xn+1: Projection onto the solution set for Dx = y.

If n = 0:

1: Generate random matrices R1 = u1vT
1 and R2 = u2v

∗
2 via Equation (5.15).

2: Compute N̂ = (I−DD†) + R1 and send N̂ to the CS.

3: Compute s0 = (Nu2)v
∗
2 + u1vT

1 u2v
∗
2 − x0 and store s0 locally.

4: Compute x̂′n = x̂n + R2 and send x̂′n to the CS.

5: Compute s1 = u1(vT
1 x̂′n)

6: Receive N̂x̂′n from the CS.

7: Compute xn+1 = N̂x̂′n − s0 − s1.

5.2 Low-rankness and Structural Consistency Projection

After computing the SVD, the DO needs to enforce the low-rankness to U′′, V′′ and Σ′′.

Suppose the pre-estimated rank value is r̂. Then the projection is simply done by deleting

columns r̂+ 1, r̂+ 2, ..., p of U′′, and the columns r̂+ 1, r̂+ 2, ..., q of V′′ and Σ′′. Let Tr̂ be

the operator to retain the first r̂ columns of the matrix. Denote U′′|| = Tr̂(U
′′), V′′|| = Tr̂(V

′′)

and Σ′′r̂ = Tr̂(Σ
′′). Then above low-rankness projection isformulated as a hard-thresholding

procedure and can be formed as

Ân = U′′||Σ
′′
r̂V
′′∗
|| (5.11)

By doing so, Ân ceases to be a block-wise Hankel matrix but becomes one with the rank r̂. As

we assumed, the estimated rank r̂ is small and satisfies r̂ � q < p. In this way, the matrices

U′′|| and V
′′

|| can be sparse and the procedure of computing Ân by matrix multiplication can

be cheap. A summary of the operations on enforcing low-rankness projection is presented in
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Algorithm 1. Then the values of matrix Ân on the anti-diagonal direction will be averaged

and mapped back to the k-space data x̂n by the DO, i.e.,

H†w(Ân) = x̂n (5.12)

5.3 Privacy-preserving Data Consistency Projection

Taking the x̂n from the previous step as the input, the DO enforces the data consistency

by projecting the k-space data onto the solution set of Dx = y. Then the operations in

Equation (3.5) can be simplified into the following form:

xn+1 = (I−DD†)x̂n + D†y = Nx̂n + x0 (5.13)

In case of Cartesian Sampling, the DO only needs to replace the updated entries in the sam-

pled locations with their original values, which involves very little computational overhead.

Algorithm 3: Results Verification of SVD for each loop

Input: U′, Σ′, V′ and Ã′n.

Output: ”Accept” or ”Reject”.

For all j = 1 to l

1: Uniformly generate a random vector rj ∈ {0, 1}q

2: Test U′Σ′(V′rj)
?
= Ã′nrj

If False:

3. Return ”Reject”

4: Return ”Accept”.

Regarding the non-Cartesian Sampling, we suppose the operators related to this step

are defined in a finite-dimensional space. Besides the initial estimate x0, we also assume

the sampling-related matrices have been re-computed by the DO, such as D, D† and DD†

[LP10]. Conducting the update can still be very computational expensive due to the matrix

multiplication Nx̂n. To efficiently compute the Nx̂n, the DO can either choose to 1) only

protect the imaging data x̂n or 2) protect both the imaging data x̂n and sampling operator

N. Without loss of generality, we focus on the second case, which is more general. Inspired

by the idea of proof given in [SLCL15], we supplement a matrix transformation scheme for

the field of complex numbers as follows:

Suppose the matrix to be transformed is denoted as M, where M ∈ Cn×l. Assuming the

values of M can be represented by a combination of the real part R and the imaginary part

I, i.e M = R(M) + I(M)i. A closest range of the values is given by R(M) ∈ [−Ka,Ka] and

I(M) = [−Kb,Kb], where Ka = 2α and Kb = 2β. To hide the values in M, a random matrix

R can be applied as follows:

M̂ = (m̂i,j)n×l = M + R (5.14)
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In order to minimize the overhead for further usage of M̂ (e.g. matrix multiplication), the

matrix Z can be constructed by the outer product of two vectors u, v ∈ Rn×1 and Cl×1,
respectively i.e:

R = (ri,j)n×l = u⊗ v (5.15)

Since M is in its complex field, we let the entries of u be randomly selected from [-c, c], where

c = 2d and d is a positive integer. Correspondingly, the values in the vector v are construction

separately for the real part and imaginary part, whose range are both in [2max{n,l}, 2max{n,l}+ι],

where ι > 0.

The DO can firstly generate two random matrices R1 ∈ Rs×s and R2 ∈ Cs×t according to

the construction of Equation (5.15), where s = Nx and t = NyNc. Then the DO can mask the

matrix N by N̂ = N + R1 = N + u1vT
1 and pre-store the N̂ on the CS. Similarly, once there

comes an estimate x̂n, the DO can mask it as x̂′n = x̂n + R2 = x̂n + u2v
∗
2 and outsources x̂′n

to the CS. The CS will execute the computation of N̂x̂′n. Meanwhile, the DO can compute

s0 = (Nu2)v
∗
2 +u1(vT

1 u2)v
∗
2−x0 and s1 = u1(vT

1 x̂′n). The most expensive operation in both

of the term is matrix-vector multiplication, which saves much local computational overhead.

Furthermore, the matrix s0 can be precomputed if the R1 and R2 is acquired before the

iteration.

After receiving Mn = N̂x̂′n from the CS, the DO can compute:

xn+1 = Mn − s0 − s1 (5.16)

Algorithm 4: Batched Validation of Data Consistency Projection

Input: τ, τ0; Mk, N̂ and x̂′k, ∀k.

Output: ”Accept” or ”Reject”.

1: τ = min(τ0, τ)

2: Generate a vector with random numbers: t = (tk)k=1,2,...τ

3: Compute ψ =
∑τ

k=1 tkx̂
′
k, ζ =

∑τ
k=1 tkMk

4: Test N̂ψ
?
= ζ

If False

5. Return ”Reject”

6: Return ”Accept”.

The DO is in control of the current estimate xn+1 and previous estimate xn, it can decide

whether to stop the iterations by checking whether they are close enough. Note that the

matrix multiplication of D†y can be done in the same way at very beginning, i.e. additively

transform D† and y and outsource it to the CS. A summary of this method is given in

Algorithm 2.
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5.4 Correctness Verification

According to the threat model, we consider the case that the CS can maliciously deviate

from the protocol. During several consecutive rounds, the CS should return a set of matrices

which may contain fake ones. This may prevent the computation from convergence in τ

times of iterations, where τ is the parameter indicating the maximum allowable number of

iterations. Accordingly, the DO needs to verify the correctness of the results in each round

of the iteration. In 5.1, the intuitive method is to compute the U′′Σ′′V
′′∗ and compare

the results with An. However, the matrix multiplication could incur undesirable time cost.

Alternatively, the DO can use the well-known Freivalds’ algorithm [Fre77, MR10] by running

l rounds of tests in each iteration (See Algorithm 3). Meanwhile, we notice that the matrix

multiplication in 5.3 always involve the same matrix N if the masking matrix R2 is fixed. The

DO can alternatively validate the results in 5.3 by batch tests (See Algorithm 4). We assume

that main iteration may converge in τ0 rounds or exceed τ before entering Algorithm 4. In

Theorem 5.2, we gives the effectiveness of Algorithm 3 and Algorithm 4.

Theorem 5.2. If the CS returns a false result, the probabilities that the result passes the

Algorithm 3 and 4 are 1
2l

and 1
2τ , respectively.

Theorem 5.3. If the CS returns a false result, the probability that the result passes the

Algorithm 4 is 1
2l′

.

The detailed proof can be found in the next chapter.

5.5 Privacy Analysis

We prove the matrix transformation scheme proposed in 5.1 (i.e. Equation (5.2)) and 5.3 (i.e.

Equation (5.14)) can achieve column-wise computationally indistinguishable under CPA.

Firstly, we provide a sketch of proof before reaching the conclusion that the transforma-

tion given by Equation (5.2) is computationally indistinguishable. According to property of

diagonal matrix, given any two matrices A1
n and A2

n over complex field with same structure,

i.e. have same positions for non-zero entries, the Ã1
n and Ã2

n have the same structures. Take

a more in-depth observation, each data entry in Ãn is given by ãni,j = η0η
′
0λia

n
i,jγj , where the

real part is given by:

R(ãni,j) = η0η
′
0[R(λi)R(γj)− I(λi)I(γj)]R(ani,j)+

[R(γj)I(λi) + R(λi)I(γj)]I(ani,j)

= θ[(1− ηiη′j)R(ani,j) + (ηi + η′j)I(ani,j)]

(5.17)
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Similarly, the imaginary part is given by:

I(ãni,j) = θ[(1− ηiη′j)R(ani,j)− (ηi + η′j)I(ani,j)] (5.18)

where θ = η0η
′
0

√
1/(1 + η2i )(1 + η

′2
j ). The best strategy for the adversary A to deduce the

real part of ani,j is to compute

R(ãni,j) + I(ãni,j) = η0η
′
0

√
1 + (ηi + ηj)2/(1 + η2i )(1 + η

′2
j )R(ani,j) (5.19)

Due to the pseudo-randomness of ηl, it can be easily concluded that any value derived from

both the real part and the imaginary part cannot reveal more information than η0η
′
0a
n
i,j . Ac-

cording to the CPA indistinguishability experiment and corresponding conclusion proposed

in [SLLL16], the transformation in Equation (5.2) can achieve computational indistinguisha-

bility under the column-wise CPA for non-zero elements. More discussion on the details can

be found in the next chapter.

Accordingly, the following theorem can be derived:

Theorem 5.4. The transformation of matrix over complex field given in Equation (5.6) is

computationally indistinguishable transformations under a chosen-plaintext attack.

Next, to show the matrix transformation in Equation (5.14) is computational indistin-

guishable with a random matrix, we follow the definition and method used in Equation (4.1).

Suppose there exists a random matrix R′ = (ri,j)n×l with its real part of entries ranging from

[−cR(vj), cR(vj)], ∀j ∈ [1, l]. Given the security parameter κ = ι+ max{n, l}+ d+ 1, it can

be seen that both R(ri,j) and R(m̂i,j) fall within [−2κ, 2κ]. Then for the values in real field,

|Pr[D(R(m̂i,j)) = 1]− Pr[D(R(ri,j)) = 1]| ≤ Ka/2cR(vj) (5.20)

Similarly, for the values in imaginary field, we can derive:

|Pr[D(I(m̂i,j)) = 1]− Pr[D(I(ri,j)) = 1]| ≤ Kb/2cI(vj) (5.21)

Thus, the chance that a distinguisher can determine whether m̂i,j is randomly originated

from a uniform distribution is at most at:

µ(κ) ≤ 2κ−max{n,l}−q+1 (5.22)

For more details on the Equations 5.20 and 5.22, please refer to the next chapter.

Theorem 5.5. The matrix M̂ in Equation (5.14) is computationally indistinguishable with

the random matrix R′, the entries of whose jth columns are uniformly sampled from [−cvj , cvj ].
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In SecSAKE I, the CS can only get access to three matrices in each iteration, the encrypted

data matrix Ân, the stored encrypted sampling operator N̂ and the encrypted estimate in k-

space x̂n. Note that the keys for masking Ân and x̂n are generated loop by loop. Theorem 5.4

indicates that the Ân is computationally indistinguishable with a random matrix over com-

plex field. Meanwhile, Theorem 5.5 ensures that the x̂n is also column-wise computationally

indistinguishable under CPA. Hence, the CS cannot reveal any sensitive information of the

imaging data during the computation process in one loop, even if it may want to construct

a data matrix from x̂n in order to correlate it with Ân. The CS is not capable to determine

the value of N̂ if R1 is kept secret according to Theorem 5.5.

SecSAKE II involves four independent parties in the CS, we analyze the privacy issues by

inspecting the accessible matrices in each party. The executor in this protocol is assigned

the same computation task but different input. The encrypted data matrix is provided by

three shareholders in three shares. Since the executor does not have the updated key pair

in the new round, each share of the data matrix can be protected the same as SecSAKE I.

The shareholders I & II are supposed to conduct the matrix transformation given the re-

encrypted results of SVD. Even though they know the round key, they cannot determine the

results which have been masked by Z1 and Z2. In addition, the shares of initial imaging data

are well protected by the randomly splitting. As long as none of the shareholders can collude

with another party, there is no chance for any of the shareholders to learn any information

of the image.

5.6 Efficiency Analysis

We theoretically deduce the time complexity of the proposed protocols by looking into

the dominated steps within the proposed Algorithms. We follow the notations in previ-

ous chapters, i.e. the size of data matrix is p × q and the size of k-space dataset is s × t.
A quick relationship between these values is s < t < q < p according to our previous

assumption. By inspecting one loop in SAKE, we find that the SVD computation occu-

pies the most of the computation time in image reconstruction with the time complexity

as O(min{pq2, p2q}) = O(pq2)[HGI07]. Another computational intensive task in SAKE

is the matrix multiplication during data consistency projection when non-Cartesian sam-

pling is adopted. If the matrix N = I−DD† has been pre-computed as we assume, the

computation complexity during this process is dominated by Nx̂n as O(s2t). Hence, the

total time complexity to perform one loop of SAKE by the DO can be represented by

O(max{pq2, s2t}) = O(pq2). To show that our protocols can achieve the efficiency gains,

we mainly analyze the time complexity on the DO side in SecSAKE I.

The main computational overhead of the DO is related to the procedures of encryption,
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decryption (Algorithm 1, 2) and verification (Algorithm 3, 4) for outsourcing the two com-

putation tasks above. In Algorithm 1 Line 3, the DO multiplies the data matrix by two

diagonal matrices and then permutes its rows and columns. These operations take O(pq)

time. The Line 5 corresponds to the reverse operations, which also take O(pq) time. As

discussed in Chapter 5.2, the computation in Line 7 will only cost O(r̂pq) time, where r̂ can

be seen as a small constant compared with p.

Regarding the Algorithm 3, the equality test on Line 2 essentially involves 4 matrix-

vector multiplications and is repeated by l times. The required time for each verification is

of the complexity of O(lpq). Thus, in Cartesian sampling case, the total time cost on the DO
side is O(max{r̂, l}pq).

As for non-Cartesian sampling scheme, the dominant computation occurs in Algorithm 2

Line 3 and Line 5. In Line 3, the DO needs to conduct one multiplication between matrix

and vector and then several multiplications between vectors. Besides, Line 5 requires the

DO to conduct one multiplication between matrix and vector and one multiplication between

vectors. Note that all of the terms in Line 3 can be precomputed. Hence, the total runtime

for Algorithm 2 should be O(max{s2, st}). Additionally, the batch test in Algorithm 4 takes

O(τst) time due to the τ vector-matrix multiplications in Line 4. The total time cost in this

case is O(max{τst, s2}).
According to Theorem 5.2, the l and τ are both parameters controlling the efficiency-

security tradeoff. A small value of τ or l can already guarantee negligible chance of missing

the misbehaviors of the CS. This fact can imply that l� min{p, q} and τ � min{s, t}. Thus,

SecSAKE I can achieve a quadratic time complexity in each iteration on the DO side instead

of the cubic time complexity of running SAKE, which implies large amount of efficiency gains.

5.7 Summary

In this chapter, we talk about the first protocol of our design and show its strength of security

protection along with the efficiency gain. SecSAKE I only requires one single server to achieve

the goals of security, its efficiency is highly dependent on the number of iterations. The DO
has to keep online, while managing to encrypt, decrypt and interact with the CS in each

iteration until the convergence is reached. In the next chapter, we will introduce our second

protocol.
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SecSAKE II

In SecSAKE II, we propose to involve several more independent cloud servers, called executor

and shareholders, who can communicate with each other and separately fulfill the computa-

tion tasks without leaking the information of imaging data. The DO only participates in the

first iteration and distributes the imaging data in a privacy-preserving manner, which can

save much computational overhead. A concise system overview has been given previously. In

this chapter, we directly describe the protocol at each party’s view and show the correctness

of protocol afterwards.

6.1 Data Owner: Preparation

In this step, the DO generates and allocates all the required input to the CS. We assume

the sampling operator D, the sliding window size w and the estimated rank r̂ have all been

determined before processing the computation. The first estimate of data in the k-space

domain from the acquired data is still set as x0 = D†y. An illustration of the required

operations is given in Figure 3.

Early Encryption: After projecting the data onto the block-wise Hankel matrix A0 =

Hw(x0), the DO will manage to encrypt the A0 in exactly the same way as in Chapter 5 to

obtain Ã′0. Then Ã′0 is sent to the executor.

Key Distribution: Denote the collection of involved key value and matrices as K1 =

(P1,Q1). Both the first round key K1, the sampling matrix D and the estimated rank r̂ are

sent to every shareholders. Note that the factors η0 and η′0 are kept secret by the DO.

Image Splitting: Similar with the splitting procedure, the DO also additively splits the

x0 in k-space domain into three shares of matrices. Specifically, given the construction of

Equation (5.15), two random matrices G1 and G2 can be efficiently generated to hide x0.

To create the convenience of the protocol design, the factor δ = |η0η′0| will be multiplied
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Figure 6.1: SecSAKE II: Preparation Procedures on the Data Owner Side

to the shares. Finally, the three shares of matrices x0 can be represented by C1 = δG1,

C2 = δG2 and C3 = δ(x0 −G1 −G2), which are then distributed to the three shareholders,

respectively.

6.2 Executor: SVD Computation and Results Distribution

As shown in Figure 4, the executor can be considered as a hub among all the cloud servers

and it is supposed to shoulder the following responsibilities:

Singular Value Decomposition: After obtaining the encrypted data matrix Ã′n from the

DO, the executor will compute the SVD by any method and get U′, Σ′ and V′. Without

the access to any part of K1, the executor cannot gain any advantages over what it has in

the protocol proposed in Chapter 5 so far. It is suggestive that the executor cannot proceed

to further computation tasks.

Re-encryption: The executor then needs to seek help from the shareholders, named

shareholdes I, shareholder II and shareholder III, respectively. In light of the fact that each

of them possesses K1, it is necessary to transform results of SVD before distributing them.

Particularly, the executor initializes the random matrices Z1 ∈ Cs×s and Z2 ∈ Cs×t and

hides the left-singular matrix U′ and right-singular matrix V′, respectively. More precisely,

we denote:

U′1 = U′ + Z1,U
′
2 = U′ − Z1

V′1 = V′ + Z2,V
′
2 = V′ − Z2

(6.1)

Results Distribution: The tuple (U′1, V′1, Σ′) is sent to shareholder I and another tuple

(U′2, V′2, Σ′) is sent to shareholder II. Since the random matrices Z1 and Z2 are not correlated

with K1, this step cannot disclose any information of U′′ and V′′ to either shareholder I or

shareholder II according to Equation (5.15). Meanwhile, the executor sends the matrices Z1

and Z2 to shareholder III.
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Figure 6.2: SecSAKE II: The Procedures of Computation in the CS within One Iteration

6.2.1 Shareholders: Parallel Processing and Cooperative Encryption

Upon receiving the input from the executor and DO, the three independent shareholders

will securely conduct the rest computation tasks in a loop. In addition, they should bear

the encryption of the data before releasing it to the executor. According to the involved

operations, this stage can be organized into three consecutive steps in a sequence. All the

involved operations can be operated in a parallel manner among the three shareholders.

We firstly describe these operations and leave the correctness of the algorithm behind. An

illustration to this step is also presented in Figure 4.

K-space data Generation: In this step, both shareholder I and shareholder II are sup-

posed to securely execute the low-rankness projection for left and right singular matrices at

first. Note that the U′1 and V′1 can be represented by P1U
′′ − Z1 and Q1V

′′ + Z2. Given

the estimated rank r̂, we denote the operator of hard-thresholding as Tr̂. Obviously, Tr̂ is a

linear operator. After receiving K1 and the tuple (U′1, V′1, Σ′), the shareholder I performs

the hard-thresholding step as follows:

U′′1|| = Tr̂(P
∗
1U
′
1) = Tr̂(U

′′ −P∗1Z1) = U′′|| − Tr̂(P
∗
1Z1)

V′′1|| = Tr̂(Q
∗
1V
′
1) = Tr̂(V

′′ + Q∗1Z2) = V′′|| + Tr̂(Q
∗
1Z2)

(6.2)

In this way, the non-zero values in the truncated matrix U′′1|| and V′′1|| can be protected by

Tr̂(P
∗
1Z1) and Tr̂(Q

∗
1Z2) against the shareholders I, respectively. After retaining the r̂ non-

zero values in Σ′, denoted as Σ′r̂, the shareholder I reunites these derived matrices can be

performed by matrix multiplication in the first iteration:

Â1
0 =

1

2
U′′1||Σ

′
r̂V
′′∗
1|| (6.3)
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In the same way, the shareholder II can obtain the truncated matrices U′′2|| = U′′||+Tr̂(P
∗
1Z1),

V′′2|| = V′′|| − Tr̂(Q
∗
1Z2) and then will compute:

Â2
0 =

1

2
U′′2||Σ

′
r̂V
′′∗
2|| (6.4)

Correspondingly, the shareholders III is responsible for computing a different task:

Â3
0 = Tr̂(P

∗
1Z1)[Tr̂(Q

∗
1Z2)]

∗ (6.5)

With the uniform window size w, each of the shareholder locally enforces the structural

consistency projection to generate the k-space data by averaging the values on the anti-

diagonal direction, i.e. x̂l0 = H†w(Âl
0) for l = 1, 2, 3.

Data Matrix Regeneration: Suppose the matrix N has been pre-computed by each share-

holder, where N = I−DD†. Before entering into the stage of data consistency projection,

the l-th shareholder also possesses a share of the split image Cl and the k-space data x̂l0

obtained from the previous step. To gain the share of the current estimation of k-space data,

the l-th shareholder still performs the matrix-matrix operations as follows:

x̂l1 = Nx̂l0 + Cl (6.6)

To enforce the block-wise Hankel matrix for the next loop, the l-th shareholder projects its

own share x̂l1 onto the data matrix A
l
1 by Hw, i.e. A

l
1 = Hw(x̂l1).

Cooperative Encryption: By bringing A
l
1 into the second iteration, the shareholders needs

to pass their shares to the executor. Before doing so, one of the shareholders is required to

generate a new pair of keys K2 = (P2,Q2) (with the same generating process with K0) and

share the it with other shareholders. Then, each of them individually encrypts their own

share of A1 as:

Ã
′l
1 = P2A

l
1Q2 (6.7)

Finally, they all send their own share of Ã
′l
1 to the executor.

Correctness: We aim to briefly show the current shares can be used in further loops.

Here we show the addition of the above shares multiplied by the constant factor δ is equivalent

with encrypted data matrix originated from the current estimate in the k-space domain, i.e.

Ã
′
1 =

3∑
l=1

Ã
′l
1 = δP2A1Q2 (6.8)

Proof. We firstly show that the aggregated shares after the low-rankness projection is δ times
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the reconstructed data matrix, i.e. Â0 = (1/δ)
∑3

l=1 Âl
0. Simply,

3∑
l=1

Âl
0 =

1

2
[U′′|| − Tr̂(P

∗
1Z1)]Σ

′
r̂[V

′′
|| + Tr̂(Q

∗
1Z2)]

∗

+
1

2
[U′′|| + Tr̂(P

∗
1Z1)]Σ

′
r̂[V

′′
|| − Tr̂(Q

∗
1Z2)]

∗ + Tr̂(P
∗
1Z1)[Tr̂(Q

∗
1Z2)]

∗

= U′′||Σ
′
r̂V
′′∗
|| = δU′′||Σ

′′
r̂V
′′∗
|| = δÂ0

(6.9)

According to the definition of the H†, the projection onto the k-space domain relates to the

average values on the anti-diagonal directions. Hence, H† is an linear operator and it also

satisfies that x̂′0 = (1/δ)
∑3

l=1 x̂l0. Thus,

x1 = Nx̂0 + D†y = (1/δ)N

3∑
l=1

x̂l0 +

3∑
l=1

Cl =

3∑
l=1

x̂l1 (6.10)

The linear operator Hw ensures
∑3

l=1 A
l
1 = δA1 and the associative principle of matrix

multiplication then guarantees that Ã
′
1 =

∑3
l=1 Ã

′l
1 .

The Equation (6.8) allows the executor to get through the SVD computation and proceed

to the rest of the second loop.

6.3 Data Owner: Finalization

One challenging issue of this protocol is that none of the cloud servers can determine when to

stop the iterations. The DO can stop the iteration after a preset number of rounds. The DO
can also alternatively download, transform and compare any two shares of estimates from

one of the shareholders in two consecutive iterations. Afterwards, the DO can request all the

shares of estimates from all the shareholders and locally aggregate the transformed shares.

6.4 Privacy Analysis

SecSAKE II involves four independent parties in the CS, we analyze the privacy issues by

inspecting the accessible matrices in each party. The executor in this protocol is assigned

the same computation task but different input. The encrypted data matrix is provided by

three shareholders in three shares. Since the executor does not have the updated key pair

in the new round, each share of the data matrix can be protected the same as SecSAKE I.

The shareholders I & II are supposed to conduct the matrix transformation given the re-

encrypted results of SVD. Even though they know the round key, they cannot determine the

results which have been masked by Z1 and Z2. In addition, the shares of initial imaging data
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are well protected by the randomly splitting. As long as none of the shareholders can collude

with another party, there is no chance for any of the shareholder to learn any information of

the image.

6.4.1 Proof of Theorem 5.2

Proof. We separately show the probability of getting a false positive error and a false negative

error in the cheating detection phase.

1) Consider the case that U′Σ′V′ = Ã′n:

U′Σ′(V′rj)− Ã′nrj =

(U′Σ′V′ − Ã′n)rj = 0
(6.11)

Hence, the probability of returning ’false’ for a correct Ã′ is always 0.

2) Consider the other case, i.e. U′Σ′V′ 6= Ã′n:

Let Z = U′Σ′V′ − Ã′n and D = Zrj . Then there exist at least one non-zero entry zvw in Z.

Note that the vth element of D can be represented by:

dv = zv1r1 + zv2r2 + ...+ zvwrw + ...+ zvprp (6.12)

Let m = dv − zvwrw, then the chance the corresponding entry is zero can be described as:

P (dv = 0) = P (dv = 0|m = 0)P (m = 0) + P (dv = 0|m 6= 0)P (m 6= 0)

= P (rw = 0)P (m = 0) + P (rw = 1, zvwrw = −m)P (m 6= 0)

≤ 1

2
P (m = 0) +

1

2
(1− P (m = 0)) =

1

2

(6.13)

Hence, P (D = 0) ≤ 1
2 . After repeating the above process by l times, the probability that a

false result passes the Algorithm 3 is less than 1
2l

.

6.4.2 Proof of Theorem 5.3

Proof. Similarly, we show the probability of getting a false positive error and a false negative

error in the cheating detection phase, respectively.

1) Consider the case that N̂x̂′k = Mk:

N̂ψ − ζ = N̂
τ∑
k=1

tkx̂
′
k −

τ∑
k=1

tkMk

=

τ∑
k=1

tk(N̂x̂′k −Mk)

(6.14)

Hence, the probability of returning ’false’ is always 0, if every included M is correct.
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2) Consider the other case, i.e. N̂x̂′k 6= Mk:

Without the loss of generality, we assume that the very first entry of N̂ψ and ζ is different.

Suppose zk = N̂x̂′k[1][1]−Mk[1][1]. If it still holds that N̂ψ = ζ, this equation can be

represented by the followings:

N̂ψ11 − ζ11 = 0 =
τ∑
k=1

tkzk = t1z1 +
τ∑
k=2

tkzk (6.15)

Hence,

t1 = −z−11 (
τ∑
k=2

tkzk) (6.16)

If every tk has been fixed except for t1, the chance that N̂ψ11− ζ11 would be equivalent with

a random selection over the field {0, 1}l′ , i.e. 1
2l′

. Note that if there are less than τ − 1 of tk

are fixed, the probability of N̂ψ11 − ζ11 holds will be less than 1
2l′

.

6.4.3 Proof of Theorem 5.4

Proof. Note that the encryption represented by Equation (5.2) can be translated into ãij =

η0η
′
0λiaijγj .

Suppose the probabilistic polynomial-time adversary A holds a pair of arbitrary numbers

with the same length n, denoted as a0ij and a1ij . Then A outputs these two numbers to the

oracle, who later choses a random bit b from {0, 1} and computes η0η
′
0λia

b
ijγj . A then guesses

the chosen bit as b′ by obtaining the result from oracle. The experiment outputs 1 if b′ = b,

or 0 otherwise.

Let the possibility that A can output 1 in the above experiment to be 1
2 + p(n). If the

encryption function is truly random, the probability A outputs 1 is at most 1
2 + q(n)

2 , where

q(n) is the number of oracle queries made by A. There exists a Distinguisher D who has the

access to the oracle. D makes guesses on whether the encryption function is pseudorandom

or truly random based on the output of the previous experiment. Then D’s distinguishing

probability can be described as:

|1
2

+
q(n)

2
− (

1

2
+ p(n))| = q(n)

2
− p(n) (6.17)

which is known as negligible. Hence, p(n) is negligible and the advantage that A can make a

correct guess is negligible over 1
2 .
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6.4.4 More details on Equation (5.20) and (5.22)

|Pr[D(R(m̂i,j)) = 1]− Pr[D(R(ri,j)) = 1]|

= |Pr[R(m̂i,j) > cR(vj)]

+ Pr[R(m̂i,j) < −R(vj)]− Pr[D(R(ri,j)) = 1]|

= |Pr[R(zi,j) > R(cvj −mi,j)]

+ Pr[R(zi,j) < −R(cvj +mi,j)]−
1

2
]|

≤ Ka/2cR(vj)

(6.18)

µ(κ) = 1− (1−Ka/2cR(vj))(1−Kb/2cI(vj))

≤ 1− (1− 2n/2d+max{n,l})(1− 2l/2d+max{n,l})

≤ 21−d + 2−2d ≤ 22−d ≤ 2κ−max{n,l}−q+1

(6.19)

6.5 Summary

We propose our second protocol of privacy-preserving SAKE. As analyzed, this protocol can

achieve obvious better efficiency gain compared with our first protocol and we will show more

experimental details in the next chapter. But as a tradeoff, it has to assume the non-colluding

property within a group of servers. This gives the clinic more flexible choice for adopting an

approach with more efficiency than the privacy guarantee.



Chapter 7

Experimental Evaluation

In this chapter, we demonstrate the conducted extensive experiments to assess the perfor-

mance of our proposed protocols. The computation tasks for the DO is implemented by

Matlab 2014b and the procedures are executed on a laptop with 2.7 GHz CPU, 8GB RAM

memory and a 256GB solid drive. Our primary focus is on the evaluating the efficiency gain

on the DO side. We test two of the real-world image benchmarks (undersampled knee and

abdomens scans), which is originated from the public web page [Lus17]. We compare our

protocol with original SAKE based on the the library offered by [Lus16]. To provide a more

thorough study, we implement both the Cartesian and non-Cartesian sampling schemes, along

with different choices on the imaging data size and sliding window size. Throughout the ex-

periment, we take the fixed threshold of window-normalized number as 1.4 for the knee data,

i.e. r̂ = b1.4×w2c and 1.6 for the abdomens data. The k-space data is all 3× undersampled

by eight coils in parallel. Since the computation process occupies most of the time cost, we

ignore the communication cost between the DO and CS as suggested in [WRWW13].

s× t w × w ts tl1 θ1 tl2 θ2

200 × 200 4 × 4 383.26 100.62 3.81 5.83 65.74

200 × 200 5 × 5 419.34 105.39 3.98 6.91 60.69

288 × 288 5 × 5 538.10 130.42 4.13 8.44 63.74

288 × 288 6 × 6 736.75 160.90 4.58 10.03 73.45

320 × 288 5 × 5 892.43 180.74 4.94 11.08 80.54

320 × 288 6 × 6 990.14 204.55 4.84 11.98 82.64

320 × 320 6 × 6 1112.32 218.39 5.09 12.33 90.21

320 × 320 8 × 8 1384.39 250.23 5.53 11.31 122.40

Table 7.1: The Local Processing Time in Cartesian Image Reconstruction. The measured

data (ts, tl1 & tl2) are in seconds.
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Figure 7.1: The ratio of time cost on the DO side between SAKE and SecSAKE I in the case

of Cartesian Sampling.

7.1 Cartesian Sampling

In the Cartesian Sampling, our primary focus is on the time cost of outsourcing algorithm at

the DO side. Some representative results are given in Table 1. The benchmark is the time

cost for the iterations in SAKE only run by the DO and is denoted as ts. Meanwhile, we

evaluate the time spent for the local processing (encryption, decryption and verification) plus

the time for performing other local operations, which is denoted as tl1 and tl2 for SecSAKE

I and SecSAKE II, respectively. We assume that the tl1 terminate the iterations in SecSAKE

II following the number of rounds in SAKE. Various size of imaging data in k-space domain

(s× t) with 8 slices and size of square window (w×w) are tested. Two pairs of comparisons

between tl1, tl2 and ts have been made by exploring the ratios θ1 = ts/tl1 and θ2 = ts/tl2.

For instance, the local computation for reconstructing the MRI image with the k-space size

(320 × 320) × 8 and sliding window size 6 × 6 in total costs the DO around 218.39 seconds

to encrypt, decrypt the data matrix and perform the other operations, e.g. structural and

data consistency projection, etc. Note that the size of constructed data matrix in each

iteration is correspondingly as large as 288 × 97969. The DO enjoys a high efficiency gain

when outsourcing the task of SVD to the CS. As shown in Figure 5, the efficiency gain can

be better achieved when the size of imaging data or sliding window goes larger. Moreover,

most of the computations in SecSAKE II on the DO side in within one loop of SecSAKE

I. The speedup depends on the extra time on randomly splitting the k-space data and the

stopping criteria (e.g. the fixed iteration times herein). As shown in Figure 6,the SecSAKE

II can realize a speedup of more than 100× compared with the original SAKE. The image
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Figure 7.2: The ratio of time cost on the DO side between SAKE and SecSAKE II in the

case of Cartesian Sampling.

reconstructed from the experiment is shown in Figure 7 (after the inverse Fourier Transform

from k-space domain).

7.2 Non-Cartesian Sampling

We also conduct the experiment on dataset characterized as non-Cartesian sampling. The

DO is expected to execute an extra matrix multiplication for data consistency projection in

SAKE. One primary issue that we care about is whether the protocol offers the comparative

speedup with the case of Cartesian Sampling. We also consider the practical case that the data

consistency projection is conducted twice to achieve a better reconstruction result in spiral

non-Cartesian sampling. Considering the size of sliding window doesn’t directly affect the

speed of data consistency projection, we fix the size of sliding window as 6. In the experiment,

we compare the local processing time t′l1 with the time cost for performing SAKE only when

altering the size of imaging data in k-space, and calculate the ratio θ3 = t′s/t
′
l1 to represent the

speed-up. As shown in Figure 8, the SecSAKE II can unsurprisingly achieve higher speedup on

the DO side because the DO doesn’t have to participate in the data consistency projection. In

contrast, the speedup of SecSAKE I falls down, which may mainly due to the lower efficiency

gain in Data Consistency Projection compared with Secure Singular Value Decomposition.

7.2.1 Effectiveness

Our experiment also shows the effectiveness of the protocols, i.e. the DO can reconstruct

clear diagnostic images by running SecSAKE. We select SecSAKE I and pick up the sagittal
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Figure 7.3: The ratio of time cost on theDO side between SAKE and SecSAKE I (Blue Lines),

& between SAKE and SecSAKE II (Red Lines) in the case of Non-Cartesian Sampling.

Figure 7.4: A 320 × 320 sagittal image on of knee (lateral side). Unreconstructed image

(Left); Reconstructed image after 15 iterations (Middle) and 30 iterations (Right) of SecSAKE

I.
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image on the lateral side of the knee as the example to illustrate. As can be seen in Figure 7,

the scanned object is visually unrecognizable in the unreconstructed image on the left. Some

of the aliasing artifacts have been eliminated during the iteration and the anterior cruciate

ligament comes into view in the middle image (marked by red circle). However, it still remains

difficult to observe the articular cartilage in the gray area around the bone (marked by the

yellow circle) until more iterations are done. As presented in the last image, the details of

the key area are clear enough for further clinical diagnosis.

7.3 Summary

In this chapter, we show both the efficiency gain and the effectiveness of both of the proposed

protocols by showing the results of comprehensive experiments. Note that the environment

and power of computing in the clinic may depend on many factors, the actual speed-up ratio

may vary in the practical case.



Chapter 8

Conclusion and Future Research

In this thesis, we for the first time explore the problem of privacy-preserving outsourcing the

image reconstruction process in SAKE, which is one of the state-of-art algorithms in clinical

implementation. Addressing its most expensive computation task, we propose SecSAKE,

which includes two protocols with extra emphasis on security and efficiency, respectively.

Our first protocol can achieve column-wise computationally indistinguishable under CPA for

both the imaging data and sampling operator. In each round, the computation overhead of

the clinic can be reduced to quadratic complexity. Our second protocol further reduce the

computation time on the clinic side by utilizing multi-server architecture of the cloud. The

privacy of imaging data can also be well protected if none of the cloud servers colludes with

the other. A theoretical analysis is then illustrated to prove that both of the protocols are

secure and efficient. We also conduct extensive experiments to demonstrate the practical

efficiency and effectiveness of SecSAKE. Here are some possible future research problems:

1) Can SecSAKE be further accelerated while maintaining the security?

In our protocol, we actually decompose the computation of SAKE into several sub-

problems. If there would be a chance to transform the computation of the optimization

problem entirely, we believe that SAKE can be processed more securely and efficiently.

2) Is there any other chance that MRI reconstruction can be securely accelerated?

Yes. As we illustrated in the previous chapters, there are many other parallel imaging

techniques that leverage different form of the imaging data. Other than the paral-

lel imaging methods, there are many signal processing-based methods. They focuse

on the prior information of magnetic resonance images, and use them as canonical

items to constrain the reconstruction process, which have the advantage of being un-

restricted by physical, physiological and hardware conditions. Finally, the magnetic

resonance images are reconstructed from the under-sampled k-space data through a
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series of optimization algorithms. At present, there are many researches on the use of

signal processing in magnetic resonance image reconstruction. The most representative

research results are embodied in Compressed Sensing (CS) [D+06], which uses non-

coherent under-sampling and image sparsity for fast magnetic Resonance imaging, such

as wavelet [CPBBC11], total variation [BUF07], joint total variation [CLH13], non-

local total variation [LWCY11], and dictionary learning [Wel16] are used to improve

the sparseness of the magnetic resonance image to be reconstructed, thus achieving a

higher acceleration factor.

3) What will be the main obstacles when designing the secure outsourcing solutions?

Adaptive and flexible encryption design . Currently available outsourcing solu-

tions mostly focus on one or two encryption (or transformation) approaches for a given

computational task. The security parameter is often not explicitly given and the level

of security is not tunable, but rather design choices were made to provide a tradeoff

between efficiency and security. Engineering tasks, however, may have diverse require-

ments with some of them emphasizing fast computation over security, while others

favoring stronger security guarantees. Thus, designs that allow for adaptive selection of

security parameters and models with formalized analysis may be an interesting direction

to explore.

Parallel computations In some of the existing schemes, encryption of different por-

tions of the original data is not correlated. Hence, the encryption can be carried out in

parallel to reduce client’s computation time. This topic is rarely discussed in existing

literature. Additionally, designing a parallel computing algorithm may open new inter-

esting optimization possibilities and computational savings on the cloud side. Future

solutions should take this design factor into consideration, with the goal of achieving

larger time savings for the client.

Secure computation outsourcing with dynamic data Dynamic data analysis

is becoming more and more popular in modern data mining research. Besides trans-

forming or encrypting a computational task in its entirety, there is a need to be able

to handle streaming or quickly changing data, where the speed of the response may

be prioritized over its precision. Outsourcing schemes are often necessary when a fast

real-time response is required, such as for traffic monitoring or route planning. Security

and efficiency properties may need to be revisited for such dynamic environments.
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[CPBBC11] Lotfi Chaâri, Jean-Christophe Pesquet, Amel Benazza-Benyahia, and Philippe

Ciuciu. A wavelet-based regularized reconstruction algorithm for sense parallel

mri with applications to neuroimaging. Medical image analysis, 15(2):185–201,

2011.

[CXLC14] F. Chen, T. Xiang, X. Lei, and J. Chen. Highly efficient linear regression

outsourcing to a cloud. IEEE Transactions on Cloud Computing, 2(4):499–508,

2014.



BIBLIOGRAPHY 67

[CXY14] F. Chen, T. Xiang, and Y. Yang. Privacy-preserving and verifiable protocols

for scientific computation outsourcing to the cloud. Journal of Parallel and

Distributed Computing, 74(3):2141–2151, 2014.

[D+06] David L Donoho et al. Compressed sensing. IEEE Transactions on information

theory, 52(4):1289–1306, 2006.

[DDS14] W. Dai, Y. Doröz, and B. Sunar. Accelerating ntru based homomorphic encryp-

tion using gpus. In HPEC. IEEE, 2014.

[DGGS12] Anagha Deshmane, Vikas Gulani, Mark A Griswold, and Nicole Seiberlich. Par-

allel mr imaging. Journal of Magnetic Resonance Imaging, 36(1):55–72, 2012.
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