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Homework #3 due Wednesday November 3 

 

 

1. Construction of a granulometry function: submit an m-file GranFn.m with  

first line  

 

 function G_psi = GranFn(InIm,B)  

 

where  

 

InIm: A type uint8 logical binary image whose foreground pixels are 1 

 

B :   Structuring element for the granulometry, an nx2 type uint8 logical binary 

 matrix whose foreground pixels are 1 and in which B(i,1) is the 

 x-coord and B(i,2) is the y-coord of the ith pixel in B. The  

 first opening uses B1=B. The second opening uses B2 defined as all  

 foreground pixels in B1 plus all pixels that are 4-connected to  

 foreground pixels in B1. For each n, Bn+1 consists of all foreground  

 pixels in B plus all pixels 4-connected to foreground pixels in Bn.  

 

G_psi: The resulting granulometry function, a unit8 output image where  

 each object pixel Gpsi(i,j) takes as its value the index n such that (i,j)  

 survives the opening with Bn but not with Bn+1. Each background pixel in 

 InIm should be given the value 0 in G_psi.  

 

 

 

 

2. This problem explores how you might fuse foreground objects in a color image 

together. Submit an m-file RGBConn.m whose first line is  

 

 function OutIm = RGBConn(InIm,c_type)  

 

where  

 

 InIm: An input type double normalized RGB image  

 c_type: A number which must be either 4 or 8  

 OutIm: The output type double normalized RGB image  

 

 

For each pixel in InIm, define Br=sqrt(R2+G2+B2) where R, G and B are the red,  

green and blue color values of that pixel, and Br is its brightness. Assume  

that your input image InIm consists of object pixels with Br>=0.50 and 

background pixels with Br<0.50. What RGBConn.m should do is repeatedly close the 

image until one of two things happens: either all foreground pixels are linked 

together into a single connected object, or no further changes occur with 

additional closing operations. You may use any of the Matlab image processing 

toolbox functions you like, such as imclose, bwmorph, bwlabel, etc. But note 

that none of these functions operate on RGB images. You will have to decide how 

to extend the functions that you use to RGB. Note: there is no unique way to 

extend the morphological operations from gray level to color images. Use your 

imagination in deciding how you want to define the closing of a color image.  

 

 



 

3. The chord distribution (see p 239 ed 2, p 338 ed 3) of a blob can have very 

high computationally complex, i.e. take a lot of computing power to compute. A 

useful “Monte Carlo” approximation can be computed more efficiently, here is 

how. Pick two points on the boundary of the blob at random with all points 

having equal probability of being selected. Compute the chord (Euclidean 

distance between these two boundary points). Repeat many times. The distribution 

of the corresponding chord values will accurately approximate the true chord 

distribution. With that in mind, here is what you are asked to do: 

 

Submit a m-file MCCD.m whose first line is 

 

 Function CD=MCCD(CC,n) 

 

where  

 

  CC: the 8-connected Freeman chain code (see p. 236 ed 2, p 335 ed 3) for the 

blob’s boundary 

 

   n: the number of bins in the chord distribution.  

 

For instance, if n=20 and the largest chord you found was 65.6 pixels long, then 

CD should be a row vector of 20 components where the first component is the 

fracton of random chords you found which were between length 0 and length 

65.6/20, the second is the fraction with Euclidean lengths between 65.6/20 and 

(2*65.6)/20, etc. Note: 1. If there are n bins and m pixels in CC, you should 

use n*m randomly selected pairs of points to estimate the chord distribution. 
 

 

 

4. Write a Matlab script Moment_script.m that will: 

 

   1. Prompt for the name of a bitmap (.bmp) file. This file may be assumed to 

 be a .bmp intensity image which contains a single 8-connected object 

 against background pixels all equal to zero.  

   2. Then prompt for the maximum desired moment indices (M,N). 

   3. Compute and display an MxN type double matrix µµµµ whose (i,j)th element is 

 the (i,j)th central moment of the object. 

 

To help you test your code, recall that the central moments are shift-invariant. 

So if you generate µµµµ for any image test.bmp of the type described above, and 

then shift the object to a different location in the image creating a second 

image test_shifted.bmp, the µµµµ for these two images should be identical (up to 

small round-off differences). You should not submit these test images, just 

submit Moment_script.m. 

 


