Homework 4 due November 17

1. This problem demonstrates that definitions of connectivity beyond the usual 4- and 8-connectivity can be applied when computing the Euler Number of a scene.

Submit an m-file EN12.m which determines the Euler number of a binary image using 12-connectivity. Two pixels p1 and p2 are defined to be 12-adjacent if the city-block distance between pl and p 2 is less than or equal to two. The first line of EN12.m should be

$$
\text { function en }=\text { EN12(InIm) }
$$

where InIm is a uint8 binary image with foreground pixels $=0$ and background pixels $=1$, and en is the Euler number of the entire image using 12-connectivity. So for instance if there are two 12connected blobs in InIm, and one of them has three 12-connected holes, then en $=2-3=-1$. Note that the blobs $B 1=\{(1,1),(1,2)\}$ and $B 2=\{(3,2),(3,3)\}$ are actually a single 12 -connected blob with 4 pixels even though there is white space between them.

Problem 1 is to be submitted electronically, the remaining three problems are to be handed in as hardcopy at the beginning of lecture on Wednesday Nov 17.
2. Let all 3 classes in a $2-$ D recognition problem be Gaussian with mean vectors

$$
\text { class } 1:\left[\begin{array}{l}
2 \\
2
\end{array}\right], \text { class } 2:\left[\begin{array}{c}
4 \\
-4
\end{array}\right], \text { class } 3:\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]
$$

and have equal prior probabilities.
(a) Assume the three classes have the same covariance matrix, which is the $2 x 2$ identity matrix. Find the minimum error classifier. Sketch, and give formulas for each decision boundary.
(b) Repeat if the covariance matrix for class 3 is changed to

$$
\text { Class } 3:\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

while the other two remain the same (identity matrices).
3. Problem 2 concerns minimum error classification. For this problem, find the minimum loss classifier for this same 3-class problem if there is no loss for correct classification, ie $\lambda(\omega r \mid \omega s)=0$ if $\omega r=\omega s, \lambda(\omega r \mid \omega s)=1$ for misclassifying data which is truly from class 1 , ie for $\omega r=2$ or 3 when $\omega s=1$, and the loss is otherwise $\lambda(\omega r \mid \omega s)=2$. In other words, your loss if you misclassify class 1 data is only half as big as your loss with all other errors. For this problem assume all three covariance matrices are 2×2 identity matrices as in $2(a)$ above, and all three classes have equal prior probabilities. Sketch, and give formulas for each decision boundary.
4. Define a nibble as a binary string 4 bits long. Let L be the set of all binary strings 3 nibbles long that have the property that at least 2 of the 3 nibbles have even parity. So for instance if nibbles 1 has odd parity (an odd number of $1^{\prime} s$), then nibbles 2 and 3 must have even parity for this string to be in L. Specific examples: 011000011111 is in L, since the first and third nibbles have even parity, while 010010111001 is not in L, since only one nibble has even parity.
(a) Sketch a finite state automaton which will produce L. Identify the start state and the terminal state, and show what symbol is written as each edge is traversed.
(b) Specify a grammar G which produces L. In other words, specify the 4-tuple $\left(V_{n}, V_{t}, P, S\right)$.

