Midterm Exam

1. In the $8 x 8$ image X shown below, all pixels shown with an asterisk * have gray level 41 , all the other pixels have gray level 14 .

(a) Suppose we linearly smooth X using a 1-row by 3-column averaging mask whose origin is the center of the mask. How many of the 64 pixels in X will change value? What is the largest increase in brightness any pixel in the given image X will have?
(b) Suppose instead we smooth X using a median filter with the same mask size and origin as in (a). How many of the 64 pixels in X will change value? What is the largest increase in brightness any pixel in the given image X will have due to this filtering?
2. Consider a binary 16×16 image Y which contains two foreground blobs, one is of size 2×2 pixels and the other of size 1 pixel. Assume that the pair of foreground blobs are not connected to each other (the blobs are neither 4-connected nor 8 -connected to each other).
(a) How many nodes will there be in the T-pyramid for Y ?
(b) What is the maximum, and the minimum, number of nodes in the quadtree for Y? For best part credit, show where you would place the blobs in Y and explain your reasoning.
3.

(a) Y above is a binary image with foreground pixels shown in black. Find $\mathrm{Z}=\mathrm{Y}(-) \mathrm{B}_{1}$, the erosion of Y by the stucturing element $\mathrm{B}_{1}=\{(1,0),(0,1),(1,1)\}$. Give your answer graphically, with foreground pixels shown in black and the origin marked with an ex as above.
(b) Find B_{2} so that Y shown above is the dilation of the binary image X shown below using structuring element B_{2}. Give your answer graphically, with foreground pixels in B_{2} shown in black and the origin marked with an ex.

