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Abstract 

In this paper we introduce a new approach for recov- 
ering shape-fi-om-shading (SFS) from synthetic aperture 
radar (SAR) images of the terrain. Three contributions are 
proposed. Firstly, we show how the direction of su$ace nor- 
mals is constrained by the geometry of the radar reflectiv- 
ity cone. Second, we show how topographic features can 
be used as boundary constraints on the recovered surface 
normals. Finally, the resulting field of surjface normals is 
smoothed using robust statistics. 

1 Introduction 
Radar shape-from-shading has proved to be an alluring, 

yet somewhat elusive tool for probing the three dimensional 
structure of the terrain. Shape-from-shading has been used 
in computer vision to extract surface height and orientation 
information from Lambertian objects by solving image irra- 
diance equation [ 11. The problem is invariably couched in 
a variational framework, where data-closeness and smooth- 
ness penalties are minimized subject to constraints imposed 
by boundary conditions. One of the criticisms of this clas- 
sical approach is the poor data-closeness with the image ir- 
radiance equation and the resultant over smoothing of the 
recovered surface information. This deficiency has recently 
been addressed by Worthington and Hancock [2] who pro- 
vide a simple geometric method which precisely satisfies 
the image irradiance equation as a hard constraint. 

The aim in this paper is to investigate whether this 
method can be extended to the radar domain, where Lam- 
bertian reflectance models no longer apply. There have been 
several attempts at using SFS for recovering terrain topog- 
raphy from synthetic aperture radar imagery [3,4]. In SAR 
images, the simple and convenient Lambertian reflectance 
model is no longer applicable [3]. To extend the geometric 
framework from [ 2 ] ,  we therefore commence by modeling 
the SAR reflectance function using ground truth informa- 
tion provided by a digital elevation map. Using the empiri- 
cal reflectance function we develop a geometric method fox 

solving the SAR reflectivity equation. This allows us to esti- 
mate the terrain surface orientation provided that boundary 
constraints and smoothness constraints are available. The 
boundary constraints are provided by the estimated loca- 
tions of salient terrain features such as ridges and ravines. 
The surface smoothness constraints are fumished by me- 
dian statistics. The new radar shape-from-shading method 
is validated on SAR terrain images. 

2 SAR reflectivity function 
In the case of SAR images, the Lambertian assumption 

does not hold [3, 41 and it is necessary to provide a more 
complex model for the reflectance function. In such images, 
the illumination is directed along the tilt axis, so the radar 
irradiance function is : 

COSCY -psincu 
I ( r , a )  = R 

where a is the angle between the illumination direction and 
the z axis, while p ,  q are the partial derivatives of the height 
with respect to the range and azimuth denoted as r and a. 

We can estimate the reflectivity model if we have access 
to a digital elevation map (DEM) for a given SAR image. 
An example of a SAR image for a mountainous region in 
Wales is shown in Figure la. This image corresponds to 
a nominal antenna depression angle CY = 20 degrees. The 
features of terrain are not visible in this image due to the 
nonlinear characteristics of the reflectance function. Its cor- 
responding DEM is shown in Figure 1 b. Empirically, using 
the association between the images from Figures l a  and l b  
we have found that the inverse of the reflectivity function 
can be approximated by the following function : 

(2)  
q r ,  a)  - 55 

N ~ L  = COS = ~ - l  ( I ( T ,  a)) = 0.81(r, U )  

where y is the angle between the illumination direction L 
and the surface normal N. In Figure 2a, the proposed model 
from (2) is represented with continuous line, while the ex- 
perimental data is shown with a dotted line. Figure IC shows 
the result of applying the inverse reflectivity function dis- 
played in Figure 2a to the radar image shown in Figure la. 
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We can clearly observe in this image a much better con- 
trast, while terrain structures become identifiable. We have 
investigated alternative empirical models for the reflectance 
function, including piecewise polynomials. The fitting of a 
piecewise polynomial function to the inverse of the reflec- 
tivity function is displayed in Figure 2b, while the recovery 
of the radar image from Figure la, using a piecewise poly- 
nomial approximation, is shown in Figure Id. Due to its 
property of being continuous on the entire interval of inter- 
est, we choose to use the formula (2) for approximating the 

(a) Original SAR image 

(c) SAR image recovery 
using (2) 

(d) SAR image recovery 
using a polynomial approx. 

Figure 1. SAR image recovery. 

(a) Using (2) (b) Using a polynomi- 
al approximation 

Figure 2. Modeling the reflectance function. 

The shape-from-shading process requires boundary con- 
straints for surface normal orientation at certain key image 
locations [l, 21. In the case of terrain images we can use 
the ridges and ravines as boundary constraints. Such fea- 
tures generally correspond to edges in SAR images. We 
can show that a SAR image is characterized by the follow- 
ing probability density function [5] : 

p ( z )  = 3 exp [ - w] exp [ 3 cos e] de 

( 3 )  

where 10 (zp/a2)  is a modified Bessel function. This dis- 
tribution function is a product of two terms : one models 
the uncorrelated noise component while the other one mod- 
els the correlation of the complex radar signal due to in- 
terference. After estimating its parameters we can derive a 
maximum log-likelihood estimator. We classify the terrain 
features by comparing the value of the image amplitude in 
the range direction on the either side of an edge. The ridge 
side facing the illumination source is more intensely illumi- 
nated than the other side, while ravines are characterized by 
the opposite behavior. 

3 Shape from Shading in SAR images 
In [ 11 a variational framework for shape-from-shading 

was proposed. There is a data-closeness term which mod- 
els compliance with the image irradiance equation and 
a smoothing term which regularises the recovered needle 
map. Both concave and convex surfaces produce the same 
variation in the shading. For solving this ambiguity we con- 
sider edge constraints in the energy expression from [l]. 
Ravines are used as attractors, while ridges are difractors 
for the surface normals. The expression of the energy func- 
tion in the new context is given by : 

where 72-' is the inverse of the reflectance function, de- 
rived in (2), N.,a is the surface normal at location ( T ,  a), 
L is the light source direction, Ek,l is the orientation of 
the nearest edge, M x P is the image size and X ~ , Z  are 
weighting factors for the energy components. The second 
part of this expression corresponds to smoothing the vector 
field on a 3 x 3 neighborhood. The third part of the energy 
function corresponds to boundary constraints. Minimizing 
this energy results in vectors which are perpendicular on the 
closest edge; the normal vector points towards a ravine and 
points in the opposite direction of a ridge. Shadow regions 
as well as water correspond to a very low reflectivity, and 
they are not well modeled by the reflectance function. Wa- 
ter is characterized by the lowest range of values for the 
interference parameter p from (3). Since the surface of wa- 
ter is horizontal, the associated surface normals are parallel 
with z axis. Shadow regions correspond to back slopes and 
they are characterized by intermediate values of p. Such 
regions correspond to orientation angles of y > 5. 

In [2], the Horn and Brooks approach has been rendered 
more robust by considering the irradiance equation as a hard 
constraint. According to that approach, the surface normals 
must always lie on the surface of a cone. In the case of SAR 
images there is an uncertainty in the estimation of the angle 
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y due to the SAR signal variance, u2. We use the standard 
deviation to define the following interval for the apex angle 
of the cone : 

The range of possible values for the surface normal is shown 
in Figure 3. 

Range of cones where 
surface normals are defined 

Figure 3. Surface normal orientation. 

We have shown how to estimate the opening angle of 
the radar reflectance cone y and the direction of the surface 
normal 4. We can use these angles to estimate the direc- 
tion of the surface normal. In the case of SAR images, the 
azimuthal angle of the radar beam is x / 2 ,  while the inclina- 
tion angle with the (2, a )  plane is denoted by cy. The surface 
normal is given in rectangular coordinates by : 

N, 

Nh = - s i n y s i n 4 s i n a + c o s y c o s a  

= sin y sin 4 cos cy + cosy sin a 
N ,  = s inycos4  (6) 

4 Normal vector field smoothing 
In this Section we show how we minimize the second en- 

ergy component from (4). One way to minimize the energy 
is to apply adaptive local averaging as in [l]. At iteration 
t + 1, the updated surface normals are given by : 

[ =I n 2 - 1  N""1 (7) 
N j ( t  + 1) = Nj(t) - E  N j ( t )  - 

where E E (0 , l )  is the updating rate and (i,j) are sites 
from the neighborhood of ( T ,  a ) ,  (i, j )  E N(T ,  a ) ,  which is 
considered to be of size n x n. 

By using this smoothing rule, the borders between var- 
ious objects are smeared [2]. We consider two altemative 
updating rules based on robust statistics. The first of these, 
employs the marginal median : 

(8) Nj(t + 1) = med{Nl(t),l E Nj} 

where the median estimator is applied on each component 
of the surface normal, separately. The second robust esti- 
mator is the vector median [6]. This estimator chooses the 
vector which has the smallest distance to all the other vec- 
tors from the given neighborhood : 

Nj(t + 1) = Nl(t), I = argmin l l N k  - Nil1 (9) 
k 

icNj 

where k E Nj. 
After updating the surface normals, we backproject them 

onto one of the radar reflectance cones as defined in Fig- 
ure 3. We constrain the vector normals to lie into the interval 
defined in (5) at any time in the iterative smoothing process. 
The shape-from-shading algorithm iterates to minimize the 
energy function (4) while maintaining the constraints from 
(5 ) .  

5 Experimental results 

We have used the proposed algorithm to SAR images of 
mountainous terrain. After applying the inverse reflectiv- 
ity function which has been derived in Section 2, we split 
the image in blocks of 20 x 20 pixels and we estimate the 
parameters of the Rayleigh-Bessel distribution (3) in each 
of them. We estimate the edges using the maximum log- 
likelihood estimator for the Rayleigh-Bessel distribution. 
We use the edge map as constraints for the vector field. 
We employ the iterative approach described in Section 4 
for smoothing the vector field. In the first stage the surface 
normals are smoothed. In the second stage, the consistency 
of the vector normals with the image statistics is verified 
according to (5). If the normal vector corresponds to a pa- 
rameter range which is outside the range provided by the 
S A R  image local statistics, as given by (3, their values are 
corrected accordingly. 

The vector field smoothed by marginal median is shown 
in Figure 4, while the vector field smoothed by the vector 
median and by the surface consistency using the shape in- 
dex described in [2] are displayed in Figures 5 and 6, re- 
spectively. The neighborhood used in all these experiments 
is 3 x 3 vectors. We can observe in these images that the 
vector field is quite well smoothed, We consider the surface 
normal vector field of the digital elevation map from Fig- 
ure l b  as a reference vector field. The mean square error 
(MSE) and the mean cosine error (MCE) for the angle be- 
tween the reference and the smoothed surface normal vector 
field, when smoothing is performed by using averaging (7), 
marginal median (8), vector median (9) and surface consis- 
tency is provided in Table 1. If the reference and smoothed 
normal vectors would have the same orientation, then the 
cosine of their angle would be 1. From Table 1 we see that 
robust estimators provide better shape modeling capabili- 
ties, and smoothing is achieved in fewer iterations then by 
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using local averaging. 

Table 1. Smoothing algorithms evaluation 

6 Conclusions 
We have proposed a new approach for shape from shad- 

ing in SAR images. The SAR amplitude is considered to 
be distributed according to the Rayleigh-Bessel distribution. 
We detect main terrain features in the SAR image and we 
classify them according to the image statistics. We derive 
a SFS model to be applied for SAR images representing 
terrain. The 3-D shape is represented as a vector field of 
local normals. We employ local smoothing of the normal 
vector field. The results obtained show that main terrain 
components as mountains, valleys and lakes are quite well 
defined. The proposed algorithms are suitable for terrain 
modeling and topographical feature identification. 

Figure 4. Surface normals smoothed by the 
marginal median. 
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