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Abstract—In the computer vision community, the
Condensation algorithm has received considerable attention.
Recently, it has been proven that the algorithm is one variant of
particle filter (also known as sequential Monte Carlo filter,
sequential importance sampling etc.). In sampling stage of
Condensation, particles are drawn from the prior probability
distribution of the state evolution transition, without making use
of the most current observations, therefore, the algorithm
demands a large number of particles and is computationally
expensive. In this paper, a Kalman particle filter and an
Unscented particle filter are presented to try to overcome the
problem.  These filters adopt sub-optimal proposal distributions,
and use the Kalman filter or Unscented Kalman filter to
incorporate the newest observation. This kind of sampling
strategy can effectively steer the set of particles towards the region
with high likelihood, and therefore, can considerably reduce the
number of particles needed. Experiments with real image
sequence are made to compare the performance of the three
algorithms: Condensation, Kalman particle filter, and Unscented
particle filter.

Index Terms—Contour tracking, Kalman filter, Particle filter,
Unscented Kalman filter, image sequences.

I.   INTRODUCTION

ROBABILISTIC  visual contour tracking has been an
active research area in the computer vision community in

the last ten or more years. It has many potential applications in
intelligent robots, in monitoring and surveillance, in biomedical
image analysis, in human-computer interfaces, etc. [1]. For
these tracking tasks, a common approach is the use of the
Kalman filter or extended Kalman filter. While some
researchers employ physical snakes as system models in the
(extended) Kalman filter [2,3,4], others use constant velocity
motion models or learned motion models from training image
sequences [5,6].

 All the research mentioned above assumed that the
probability distributions of the states are Gaussian, and
therefore, the means and covariances, computed recursively
with a set of (extended) Kalman filter equations, can fully
characterise the behaviour of the tracked targets. They thus
preclude the possibility of capturing a non-Gaussian
distribution of states.  In visual contour tracking, many factors
exist which lead to the problems of non-Gaussianity and non-
linearity, including complex motion models and state

representations, and most important of all, a non- linear
observation process due to visual clutter [7,9].

Recently, the Condensation algorithm, as an extension of
factored sampling [8], has been introduced to solve non-
Gaussian, nonlinear contour tracking problems in image
sequences [9].  Simultaneously and independently, particle
filters, such as the sequential Monte Carlo filter, sequential
importance sampling, etc., have been developed to address
non-Gaussianity and nonlinearity in science and engineering
[17,18,14,24]. It has been proven that they all belong to the
same theoretical framework, and that Condensation is also a
variant of the theory [10]. Hereafter, we shall adopt the term
particle filter to include all of these variants.

The basic idea of the particle filter is that the posterior
density is approximated by a set of discrete samples (called
particles) with associated weights. The algorithm generally
involves three steps. The first step is the sampling step, in
which particles are drawn from a proposal distribution and are
re-weighted by their likelihood according to Bayesian rules.
The second step outputs the estimates of the state, such as mean
and covariance. In the last step, particles are resampled to
ensure a uniform weight distributions.

In the first step of Condensation, the proposal distribution
from which particles are drawn is the transition prior, i.e., the
probabilistic model of the state evolution. Since no use is made
of the newest measurement, a large number of particles may be
required to represent the posterior distribution, especially in
situations where the new measurements appear in the tail of the
prior, or if the likelihood is strongly peaked. Much effort has
been made to address the problem. Isard et al [11] proposed an
importance sampling method, in which an auxiliary blob
tracker is combined into Condensation; but in many cases an
auxiliary tracker may not be obtained.  MacCormick et al [12]
developed partitioned sampling, which, however, requires that
the state-space can be sliced.  Sullivan et al [13] proposed
layered sampling using multi-scale processing of images.

In the field of Neural Network tracking [16] and filtering
theory [19] outside computer vision, the Kalman particle and
Unscented particle filters have been developed to improve the
sampling mechanism. They adopt sub-optimal proposal
distributions, using the Kalman filter or unscented Kalman
filter to integrate the most current observations. The strategy is
able to steer particles towards a region with high likelihood and
therefore reduces the number of particles needed in the
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algorithm. In this paper, we describe the implementation of the
two algorithms for visual contour tracking.

The structure of the paper is as follows. Section II briefly
introduces the general particle filter algorithm. In Section III,
after describing the motion model and measurement model, we
present the Kalman particle and Unscented particle filters in the
framework of visual curve tracking. Section IV explains the
concept of “critical” size and compares the performance of the
three algorithms. Section V contains concluding remarks.

II.   STANDARD PARTICLE FILTER

A. The General Target Tracking Problem

Target tracking can be characterised as the problem of
estimating the state of a system as a set of observations become
available on-line.  In the Bayesian filtering framework, we
define the densities

)|( 1−kk XXp ,  )( 0Xp    for    1≥k                                     (1)

)|( kk XYp      for  1≥k                                                    (2)

where the form of the transition prior )|( 1−kk XXp  indicates

that the evolution of the state is a Markov process, and
)|( kk XYp  denotes the observation density (likelihood) in the

dynamical system, which is conditionally independent given
the states.

Our aim is to estimate recursively in time the filtering density
)|( :1 kk YXp , where { }kk YYY ,,1:1 L= , and the associated

expectation of some integral function )( kk Xf . The filtering

density (also called posterior density) is estimated in two stages:
prediction and update. In the prediction step, the filtering
density )|( 1:11 −− kk YXp  is propagated into the future via the

transition density )|( 1−kk XXp  as follows:

∫ −−−−− = 11:1111:1 )|()|()|( kkkkkkk dXYXpXXpYXp        (3)

The update stage involves the application of Bayes’ rule when
new data are observed:
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Then the associated expectation can be computed as
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The prediction and update strategy (3) and (4) provides an
optimal solution to the inference, which, unfortunately,
involves high-dimensional integration. In most general cases
involving non-Gaussianity and nonlinearity, analytical
solutions are impossible, so we resort to Monte Carlo methods.

In the particle filter paradigm, drawing samples directly from
the posterior density at the current time-step is impossible in
most cases. Therefore, a proposal density )|( :1 kk YXπ  is used,

from which particles can be easily drawn, and which is similar
to the posterior density.  To facilitate sequential estimation of
the system state [14, 18], the proposal density must satisfy the
following equation:

)|(),|()|( 1:11:11:1 −−−= kkkkkkk YXYXXYX πππ                 (6)

It can be seen that the proposal density integrates the most
recent observation.

It is convenient to introduce the weight function

kkX ωω =)(  that can be computed sequentially as
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The posterior distribution can be represented by the weight
function up to a proportionality constant, and the estimates can
be computed  as
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How to choose efficient proposal distribution is an active
research topic in particle filtering.  Doucet et al proposed the
optimal proposal distribution (OPD) which minimises the
variance of the weights kω  [20].  However, the design of OPD

is a non-trivial task.  The rejection method [14] and the method
utilising the auxiliary variable[15] can approximate the OPD,
but they are computationally inefficient, as discussed in the
literature. The method of local linearization of OPD is often
used. The Kalman particle filter or Unscented particle filter are
also local linearisation methods, where the proposal
distribution is Gaussian. More specifically, for each discrete

particle )(i
kX , a separate Kalman filter or Unscented Kalman

filter is used to generate and propagate the Gaussian proposal
distribution:
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where )ˆ,ˆ( )()( i
k

i
k PXN  denotes Gaussian with mean )(ˆ i

kX  and

covariance )(ˆ i
kP . Detailed information on the proposal

distribution is given in a later section.

B. The General Particle Filter

The basic idea of particle filtering is Monte Carlo simulation,
in which the posterior density is approximated by a set of
particles with associated weights
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sample from the proposal distribution ),|( :1
)(
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i
k YXX −π  to

achieve new particles and compute new weights according to
the particle likelihoods.  After normalisation of weights, the
posterior density can be represented by

{ NiX i
k

i
k ,,1),( )()( L=ω }.

The standard particle filter is as follows:
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III.  VISUAL CONTOUR TRACKING BASED ON PARTICLE FILTER

The dynamical model in this paper follows that described in
[6], [9].  The motion model transition prior is a temporal
Markov Chain

1
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where A and Q  are learned from training image sequences

and X  is a constant vector, indicating the mean shape of  the
object.  Equation (10) can also be equivalently represented as
the AR(2) process

kkk wXXAXX +−=− − )( 1                                            (11)

where kw  is Gaussian and independent of the state, and

satisfies QkkwwEwE T
kkk )21(][,0][

21
−== δ .

The measurement proceeds as follows: for each sampled
point ),1)(( mlsr l L=  on the curve, search along the

normal  to the curve.  In general, more than one feature
)(l

jz ),,1( lnj L=   will be detected, due to clutter: the

feature  lz~   with maximum contrast is selected as the “true”

feature. Provided that the detected features )(l
jz  follow a

spatial Poisson distribution, the 1-D measurement density
along the line normal to )( lsr  can be modeled as
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where ln  is the number of features detected along the normal,

01q  is the probability that no feature is detected,

λ,1 0111 qq −=  is the Poisson constant, and )(lu is the

search scale on each side of )( lsr . Assuming that feature

outputs on distinct normal lines are statistically independent,
the overall measurement density becomes
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Full details about the measurement model can be found in
[9,21]. Each detected feature lz~ is a point in the image, with

coordinates lx and ly . For implementation, we rearrange the

measurements into a vector:

[ ]Tmm yxyxyxY L2211=                         (14)

The measurement noise can be reasonably described as

)( 22 σσ LdiagR n =                                                (15)

The Standard Particle Filter
1.  Initialisation

     Draw a set of particles from the prior      )( 0Xp  to obtain { ),( )(
0
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2.  Sampling step
     a)  For Ni ,,1 L=
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     c)  Normalise the weights
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3. Output  step

    Output a set of particles { ),( )()( i
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kX ω , Ni ,,1 L= }  that can be used to approximate the posterior
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4. Selection (resampling) step

    Resample particles )(i
kX  with probability )(i

kω  to obtain  N  i.i.d random particles )( j
kX , approximately distributed

    according to )|( :1 kk YXp .

     Set Ni
k /1)( =ω , Ni ,,1 L= .

 5. 1+= kk , go to step 2.
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A. Condensation Algorithm for Contour Tracking

The pioneering work on Condensation has had considerable
success for curve tracking in dense clutter[7,9]. The algorithm
is essentially a variant of particle filter, in which the proposal
distribution is the transition prior, i.e.,
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Hence, the weight becomes
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The Condensation algorithm is briefly described as follows, in
which differences from the standard particle filter are
emphasized.

B.  Kalman Particle Filter for Curve Tracking

 In this algorithm, for each discrete )(
1

i
kX − , a separate

Kalman filter is used to generate the Gaussian proposal
distribution (integrating the most current observation) from

which the new particle )(i
kX  is drawn.  The Kalman filter

includes linear state-transition and measurement equations.
Instead of linearizing the nonlinear measurement equation (13),
which is unrealistic, we adopt a linear model as follows:

kkklk vXXH +−= )ˆ(,υ     ml ,,1 L=                      (18)

where H  is measurement matrix, lk ,υ  is lth observation

innovation in the current time-step k, kv  is scalar

measurement noise with
2
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In practice, the measurement process is similar to that in the
nonlinear measurement model (13). Full details about
measurement equation (18) and measurement process can be
found in  [6].

The Kalman particle algorithm is as follows, where
differences from the standard particle filter are emphasised.

Condensation Algorithm
    1. Initialisation
    2.  Sampling step
        a) For  Ni ,,1 L=

                Sample )(i
kX  from the transition prior )|( )(

1
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k XXp −  (10)

        b) Evaluate the new weights  according to (13)
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        c) Normalise the weights
    3.  Output  step
    4.  Selection (resampling) step
    5.  1+= kk , go to step 2.

The Kalman Particle Algorithm
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In stage a) of sampling step 2, for each

particle ),,( )(
1

)(
1

)(
1

i
k

i
k

i
k PX −−− ω , predicted mean and

covariance are computed, according to motion model (11);
then  measurements are made to obtain m observations about
the predicted mean state, and  Kalman updates are made

recursively for the m innovations )(
,
i
klυ , ml ,,1 L= . Finally,

the updated mean and covariance determine the Gaussian

proposal distribution, from which the new particle )(i
kX  is

drawn. The most current observation is naturally integrated
into the sampling step, which can effectively steer the newly
drawn particle .

C.  Unscented Particle for Curve Tracking

The Unscented Kalman filter was first proposed by Julier et
al to address nonlinear state estimation in the context of control
theory [22]. The algorithm uses a set of carefully chosen sigma
vectors to capture mean and covariance of the system. The
vectors are propagated through the true nonlinear equations,
without linearization.  The method can capture the states up to
2nd order, and has the same computational complexity as the
Extended Kalman filter.  It is superior to EKF both in theory
and in many practical situations [22,23].

In the Unscented particle algorithm, the Unscented Kalman
filter is used to produce the proposal distribution. The
algorithm is as follows, where differences from the standard
particle filter are emphasised.

      b) Evaluate the new weights
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          Normalise the weights
 3. Output  step

     Output a set of particles{ ),,( )()()( i
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i
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i
k PX ω  , Ni ,,1 L= }, and compute the mean )()|( :1 kYp XE

k• .

 4.  Selection (resampling) step
 5. 1+= kk , go to step 2.
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     Draw the particles from the prior )( 0Xp  to obtain      { ),,( )(
0

)(
0

)(
0

iii PX ω , Ni ,,1 L= }

2.  Sampling step
     a)  For Ni ,,1 L= ,

             Let  )(
1)1|1(ˆ i

kXkkX −=−− , )(
1)1|1(ˆ i

kPkkP −=−−

            •  Deterministically compute 12 +n sigma vectors and the weights { ),1|1( −− kkX j
)()( , m

j
c

j WW },

           nj 2,,1,0 L= , n is the dimension of the state.

               )1|1(ˆ)1|1(0 −−=−− kkXkkX

              jj kkPnkkXkkX ))1|1(ˆ)(()1|1(ˆ)1|1( −−++−−=−− λ   ,         nj ,,2,1 L=

              njj kkPnkkXkkX −−−+−−−=−− ))1|1(ˆ)(()1|1(ˆ)1|1( λ ,        nnnj 2,,2,1 L++=

              )()(
0 λλ += nW m    )1( 2)(

0
)(

0 βα +−+= mc WW         
)(2

1)()(

λ+
==

n
WW c

j
m

j ,    nj 2,,1 L=

              where nn −+= )(2 καλ  is a scaling parameter. The constant α determines the spread of the sample

               points  around )1|1(ˆ −− kkX . The constant κ  is a secondary scaling parameter that is usually set to

              n−3 , and β is used to incorporate prior knowledge of the distribution of state and is usually set to 2.

              jkkPn ))1|1(ˆ)(( −−+ λ   is the jth column of the matrix square root.

            •   Prediction
                 Propagate the vectors in terms of the state equation (11)
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In stage (a) of the sampling step, for each particle in the
sample set, a small number of sigma vectors with
associated weights are deterministically computed. They
capture the distribution of the random particle up to second
order and can also deal with a heavy-tailed distribution of
the particle [19].  These vectors propagate in time in the
same way as the Kalman Filter, but without computation of
Jacobians of the state and measurement equations.  The
Gaussian proposal distribution is determined by the
updated mean and covariance, from which the new particle
is drawn.

In the Kalman particle and Unscented Kalman particle
algorithms, each independent particle evolves as a
Gaussian process with its own mean and covariance. The

Gaussian proposal density characterises the peak of the
random particle and its second-order moment. The newly
drawn particle is distributed approximately as its parent
particle.  It of course inherits the covariance of its parent.

In the two algorithms, each particle together with its
configuration and its covariance may be regarded as a
component Gaussian of the posterior density, whose
distribution evolves according to the Kalman filter or
Unscented Kalman filter.  Therefore, the two algorithms
may be interpreted as a dynamical adaptive mixture of
Kalman filters or Unscented Kalman filters.

In contrast to Condensation, these methods require
Kalman or Unscented updates for each sample, which
introduces more computation. However, the new methods
make use of new measurements and consequently, the
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        c)  Normalise the weights           

   3.  Output  step

Output a set of particles { ),,( )()()( i
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   4.  Selection (resampling) step
   5.  1+= kk . Go to step 2.



                             67

sampling is more efficient and can reduce the number of
particles considerably.  We should note that as the number
of particle decreases, the capability of these algorithms to
represent multimodal distributions becomes weaker, so that
it is generally impossible for the algorithms to use too few
particles, whatever the sampling mechanism.

VI.  DISCUSSION AND EXPERIMENTS

From a theoretical point of view, we can conclude that,
in general, the performance of particle filter algorithms
improves as the number of particles increases, which is also
justified in real curve tracking experiments [9]. However,
as the number of particles grows, the computational load
becomes heavy. In real-time visual curve tracking
applications it is important to strike an appropriate balance
between performance and efficiency.

There is no analytic result concerning the problem of
how many particles suffice for a given tracking task.  In our
experiments, we introduce the concept of critical size to
compare the three algorithms, below which the tracker fails
to follow the object throughout the image sequence.  More
specifically, the critical is the minimal number of particles
required for successful tracking through the whole image
sequence, independently of the seeds in the random number
generator.  Generally speaking, if the critical size is smaller,
then the tracker is potentially faster.

The most time-consuming procedure in curve tracking is
the measurement, which involves computing normal lines,
discretising these lines, extracting grey-level values from
images, and most important of all the convolutions.   In our
algorithms, the measurement procedure was optimized for
speed.  The programs run under Visual C++ 5.0 on a
Pentium II 400 MHz computer.  For fairness of comparison,
we employ the same parameters of the measurement
process: 61 =σ  pixel, 30=M  curve normals, in all three

algorithms.
In the image sequence used for training,, a hand in a

pointing gesture moves slowly in clutter-free background.
A fine-tuned default Kalman filter is used to track
movement and the results are used to train the motion
model.  The template of the hand is 2-D affine and is
obtained from the first frame.

In the test sequence, a hand in the same pointing gesture
moves randomly and swiftly in 3-D space, in front of a
computer screen. The contents on the screen constitute
considerable clutter.

With a number 500=N  of particles, all three
algorithms obtain accurate tracking results.  For each
tracker, we decrease N  gradually until we obtain an
estimate of the critical size.  Tracking is performed 20
times for each tracker, with different seeds in the random
number generator.

The critical sizes estimated in this way are: 165=N  for
Condensation, 50=N  for the Kalman particle filter,
and 20=N  for the Unscented particle filter.

The computation times for each frame (averaged over
the 20 estimates) are shown in Figure 1.

We adopt the curves )(~ srk obtained with Condensation

using 500=N as the true configurations  of the object,
then we compute the RMSE as the mean square root of the
sum of squared deviations from the true configurations.
More specifically,

∑ =
−=

M

i ikkk srsr
M

RMSE
1 , )()(~1

            
21 ,
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−=

M

i ikkM
χχ       Ki L,1=         (19)

where 
2

•  indicates Euclidean 2-norm, 20=M  is  the

number of  experiments each with a different random seed,
190=K denotes the total number of frames, )(, sr ik  is

outline of the tracked object in the kth frame  in the ith
experiment, kχ

~  and ik ,χ  are shape vectors corresponding

to curves )(~ srk  and  )(, sr ik  respectively. The contour

representation and the shape vector, together with  the
norm •  will be introduced in the appendix.  Figure 2

illustrates the RMSE  for each frame.
Some typical tracking results are demonstrated in Figure

3 for Condensation, Figure 4 for the Kalman particle filter,
and Figure 5 for the Unscented Kalman particle filter.

The experiments show that the number of particles
needed can be decreased considerably by using the Kalman
particle or Unscented particle filters. Computation
efficiency is increased by the use of the Kalman particle
filter, but a much larger computational time is required by
the Unscented particle filter.  This is not surprising,
because most time is spent on the measurement process, so
that the total time is approximately equal to the total
measurement time, including the times in the sampling
stage and in the updating stage.

V.  CONCLUSIONS

In the unified framework of particle filtering, we
presented two visual curve tracking algorithms based on
the Kalman particle and Unscented particle filters.  Both
algorithms employ Gaussian proposal distributions, which
integrate the newest measurements. What is striking in this
sampling strategy is that the particles are steered towards
high likelihood region. However, in the contour tracking
framework, fewer particles does not necessarily mean
higher computational efficiency, as seen in the experiments
on the Unscented particle filter. From the experiments, we
can see that Kalman particle filter is superior to the other
two in visual curve tracking, and that the Unscented
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particle is unsatisfactory.
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APPENDIX    CONTOUR REPRESENTATION AND SHAPE SPACE

The tracked object at time t  is modelled as B-spline
curve
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is the ith B-spline basis function, xQ and yQ are vectors of

B-spline control point co-ordinates and  L  is the number of
spans. The configuration of the spline is often restricted to
a shape-space of vectors χ defined by( t is omitted)
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where W  is a shape matrix whose rank is less than q2 ,

0Q is the template curve. In visual contour tracking

paradigm, the augmented vector
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follows a temporal  Markov chain (10), which is fully
described in section III. Typically the shape-space may
allow affine deformation of the template shape 0Q .

To measure the difference between curves, 2L  norm for

the curve )(sr  is used, and accordingly, norms • for

control point vector Q and shape vector χ  can be defined

as
)(srQ == χ
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Details about the definitions of the norms can be found in
[1]. In many situations,  the shape space is chosen as planar
affine space where shape space  can be described  as
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The first two columns of W  represent horizontal and
vertical translation, the last four columns represent rotation,
scaling and shearing. In  practice, we choose 0Q  to have its

centroid at the origin to make the last four columns free of
translation.; and we also orthonormalize W such that
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, , where iW  is the ith

column vector of W , >< ji WW , indicates the inner

product of the two vectors. Then we can easily obtain (19)

because the shape matrix satisfies IUWW T = , where I  is
identity matrix.
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Fig. 1. Tracking time of the three algorithms.
Mean computation time for one frame is approximately 55ms for

Kalman particle, 67ms for Condensation, and 460ms for Unscented
Kalman particle.

Fig. 2. RMSE of the three algorithms.
Mean RMSE for one frame is approximately 3.66 for Kalman particle,

4.93 for Condensation, and 3.98 for Unscented Kalman particle.

Fig. 3.  Tracking results with Condensation
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Fig. 4.  Tracking results with Kalman particle filter

Fig. 5.  Tracking results with Unscented Kalman particle filter


