

;
Chapter 7
Collections and Control Structures
;

Pedagogic Motivations
• Introduce the notion of a collection of objects.
• Distinguish between a composite from a collection.
• Demonstrate how to perform an operation on every member of a collection
• Demonstrate how to traverse a collection
• Motivate the decoupling of structure and traversal logic in the Iterator pattern

7.1 Introduction
Up to this point we have been dealing with individual objects. It is, however, quite

common to have to deal with many objects at once. We saw, in one of our projects, that

having a composite object was quite useful. A composite object allows us to group together

several objects as if they were one object. But sometimes we want to group together objects

for a different purpose: we want to treat the group as a collection of objects, not an individual

of the same type, and we want to be able to access each member of the collection as an

individual object.

In this chapter we introduce the notion of a collection, and see how Java’s collection

classes work. We do not worry about how these collections are implemented, only about

what they can do for us.

© 2006 Carl Alphonce & Adrienne Decker 1

7.2 Collections and Mappings
It turns out that it is very common in the software realm to deal with not just one object at

a time, but many objects at a time. In fact, much work in computer science is focused on

discovering efficient ways to store and process large amounts of data.

A collection is an object whose responsibility it is to store an arbitrary number of object

references. A collection is, in this sense, a container for object references, and behaves a little

bit like a shopping cart at the grocery store. You can add things into the cart, as well as

remove them. With this image of a collection as a shopping cart it is easy to see the

difference between a collection and a composite: if a shopping cart were a composite of

grocery items, then it would also be a grocery item. But a shopping cart is not a grocery item.

Instead, it is a container for grocery items.

Java provides two main ways to group objects: collections and mappings. Collections are

simple containers, as we just discussed. Mappings are containers which provide a

correspondence between something called a key and a corresponding value. This is not as

confusing as it sounds. A phone book provides a mapping between names a telephone

numbers. The keys in a telephone book are the names, and the values associated with names

are the corresponding telephone numbers. Similarly, a dictionary provides a mapping

between words and their definitions. A dictionary which was simply a collection of

definitions would not be very useful, would it?

In this chapter we will discuss mostly collections, in the Java sense, but we will touch on

one mapping in particular towards the end of the chapter.

7.3 Generics
A collection holds objects of some type. Thus, a collection of groceries holds grocery

items, while a collection of books holds books.

2 © 2006 Carl Alphonce & Adrienne Decker

In Java, the type of the elements of a collection is specified using a special bit of syntax.

Let us model a shopping cart as an object which has, as its contents, a collection of Grocery

items, we write:

public class ShoppingCart { private java.util.Collection<Grocery> _contents;

 public ShoppingCart() {
 _contents = ...
 }
}

The type given inside the angled brackets is the type of the elements of the collection.1 We do

not yet initialize the _contents variable in the constructor because we do not yet know

about any particular collection implementations.

7.4 java.util.Collection
The main interface for collections in the Java libraries is java.util.Collection.

As mentioned above, it is a parameterized (generic) interface. We refer to it generically as

java.util.Collection<E>, where E is the element type.

There are quite a few methods that are available on a java.util.Collection<E>

object. We will start by considering just one, a method to add an item to a collection. This

method’s name is add, and it has a single parameter, the item to be added. The method header

for this method is therefore specified as follows:

public boolean add(E item)

1 Any class can be defined to be parameterized, in which case we call it generic. In this text we will not show
you how to define generic classes, only how to use them.

© 2006 Carl Alphonce & Adrienne Decker 3

There are two things we need to explain in detail about this method header. The first is that

the element type is specified generically as E. For a specific collection, E will be replaced by

whatever the element type really is. Thus, if we have a collection of Grocery items, the

effective method header for the add method will be:

public boolean add(Grocery item)

Of course, you will not see the code written this way, but the add method of any collection

instance whose elements are of type Grocery will behave as if it were defined this way: it

will only accept Grocery items as an actual parameter.

The second thing we need to explain is the return type of this method. The return type is

written as boolean. But what is boolean? Is it a type? Is it a class? Is it an interface?

It turns out that boolean is indeed a type, but it is neither a class nor an interface.

Instead, it is what is called a primitive type. Unlike class and interface types, the set of

primitive types in Java is fixed: you as a programmer cannot define new primitive types.

Moreover, the set of elements of each primitive type is fixed too: you cannot instantiate

primitive types to create new elements. Thus, the only boolean values are true and

false.

Why are primitive types called primitive? They are called primitive because their values

are “simple”, or “atomic”, or “lacking internal structure”. An object can have both properties

and capabilities. An primitive value can have neither – it just is.

So why does the add method on a Collection object return a value of type

boolean? It turns out that some collections allow duplicates and some do not. If the add

method returns true, that means that the new element was added to the collection. If the

add method return false, that means that the new element was not added to the collection

because it was already there.

4 © 2006 Carl Alphonce & Adrienne Decker

7.5 An implementation of java.util.Collection
The java.util.Collection interface tells us what capabilities every collection

class in Java must, at a minimum, provide. There are many concrete implementations of this

interface in the Java library. Let us pick one implementation, the

java.util.LinkedList. How can initialize our variable named _contents, of type

java.util.Collection<Grocery>, so that it refers to an instance of

java.util.LinkedList<Grocery>?

_contents = new java.util.LinkedList<Grocery>();

Suppose now that Milk, Bread, Butter, Jam, Egg, and Coffee are classes, all

subtypes of Grocery. How do we add one instance of each to the _shoppingCart? We

need to define a method on the ShoppingCart that adds an item to the cart’s _contents:

 public boolean addItemToCart(Grocery grocery) {
 return _contents.add(grocery);
 }

With this method in place, we can add items to the shopping cart as follows:

_shoppingCart.add(new Milk());
_shoppingCart.add(new Bread());
_shoppingCart.add(new Butter());
_shoppingCart.add(new Jam());
_shoppingCart.add(new Egg());
_shoppingCart.add(new Coffee());

The collection _contents now holds a reference to each of these objects. Exactly how this

works (i.e. how the collection _contents holds these references) we will not explore here –

that is a topic for a later course.

© 2006 Carl Alphonce & Adrienne Decker 5

7.6 Iterators
Now that we have a collection of objects, we might well wonder how we go about doing

things with those objects. One way to gain access to the elements of a collection is to iterate

through the collection. To iterate through a collection means to visit each member of the

collection, one element at a time, until each member has been visited exactly once.

Java’s collection framework supports iteration through collections by way of iterators.

An iterator is an object which can iterate through a collection. Where does an iterator come

from? From the collection itself. The java.util.Collection interface requires that

every implementation provide a method named iterator which, when called, will return a

new iterator object which can iterate over the collection.

An iterator must implement the java.util.Iterator interface. Of the methods in

this interface, we are interested in two: hasNext() and next(). The hasNext()

method returns true if there are items in the collection which have not yet been visited, and

false otherwise (i.e. if all members of the collection have been visited). The next()

method returns a reference to the next unvisited object from the collection, if there is one.2 If

the iterator is iterating over a collection of elements of type E, then next() returns a

reference to an object of type E.

7.7 A conditional statement
We just said that a safe way to work with an iterator is to check the value of the

hasNext() method, and perform different actions depending on whether the method

returned true or false. But how can we do this? The only decision-making mechanism

2 More precisely, if calling hasNext() would return true, then calling next() returns a reference to the next
object in the iteration of this iterator. If calling hasNext() would return false, then calling next() does not
return a value; instead, a NoSuchElementException is thrown. These notes have not discussed exceptions, so
for our purposes it is best to always check the return value of hasNext(), and only call next() if hasNext()
does in fact return true.

6 © 2006 Carl Alphonce & Adrienne Decker

we have seen to this point is polymorphism, which allows us to select a particular method

implementation to execute based on the type of object which the method is invoked on. Since

true and false are not objects, we cannot attach methods to them and we cannot use

polymorphism to select. Because Java has primitive types which fall outside its object model,

Java has some special bits of syntax to allow for decision-making based on values (rather than

types).

The basic conditional statement is the if-else statement. Syntactically the if-else

statement has the following form:

if (<expression>) <statement1> else <statement2>

Let us first deal with the syntax of the if-else statement. ‘if’ is a reserved word, as is

‘else’. The parentheses around <expression> are required. The first statement,

<statement >1 , is called the then-clause, while the second statement, <statement >2 , is

called the else-clause.

Next we must talk about the semantics of the if-else statement: how is it executed? The

whole point of the if-else statement is to selectively execute exactly one of the statements,

either the then-clause or the else-clause, depending on whether the value of <expression>

is true or false. If true the then-clause is executed, whereas if it is false the else-

clause is executed.

Graphically, we can use a flow chart to convey how control flows through an if-else

statement:

© 2006 Carl Alphonce & Adrienne Decker 7

true false <statement1> <expression> <statement2>

The lines with arrowheads in the diagram indicate the flow of control of the program

through the flow chart. The diamond-shaped box denotes a decision – in the if-else statement

this is the (boolean) expression. If the value of the expression is true, control flows through

the left branch, whereas if its value is false control flows through the right branch. In either

case, the flow of control continues with the next statement in the program.

How can we use this to help control our iterator? We can use it to “protect” a call to

next() as follows:3

3 This code example shows that the <statement> in both the then-clause and the else-clause can be a

compound statement, surrounded by ‘{’ and ‘}’. It is always a good idea to use a compound statement in an if-

else statement, even if one of the clauses of the statement only contains one statement: it makes the code clearer,

because each clause is clearly delimited by the curly braces, and it makes it less error-prone to add more

statement to one of the clauses, because the statements will automagically be grouped together correctly inside

the curly braces.

8 © 2006 Carl Alphonce & Adrienne Decker

java.util.Iterator<Grocery> iterator = _myShoppingCart.iterator();
if (iterator.hasNext()) {

 // Here we know that there are more unvisited items, so call to
 // iterator.next() is safe:

 Grocery grocery = iterator.next();

 // Do something with grocery.

}
else {

 // No more unvisited items in the grocery cart.
 // Do something different.

}

7.8 A repetition statement
We will discuss one last statement type – a repetition statement which repeats a statement

until some (boolean) condition is satisfied.

while loop

Let us start with a while-loop. A while-loop has the following syntactic form:

while (<expression>) <statement>

The corresponding flow-chart is:

© 2006 Carl Alphonce & Adrienne Decker 9

true <statement> <expression>

false

What are the semantics of the while-loop? At first <expression> is evaluated. If

<expression> evaluates to false, then execution continues on with the next statement

after the for-statement. If <expression> evaluates to true, then <statement> is

executed, after which <expression> is evaluted again, and the cycle either repeats (if

<expression> evaluates to true) or not (if <expression> evaluates to false).

What can we do with the while-loop? One thing we can do is iterate through a collection.

Why might we want to do that? Consider the problem of calculating the total cost of all the

items in our shopping cart. To compute the total cost, we need to add up the cost of each item

in the cart. Here’s one way to do that (assuming that a Grocery item has a getPrice()

method that returns a Money object):

 public Money totalCost() {
 Money cost = new Money(0,0);
 java.util.Iterator<Grocery> iter = _contents.iterator();
 while (iter.hasNext()) {
 cost = cost.add(iter.next().getPrice());
 }
 return cost;
 }

10 © 2006 Carl Alphonce & Adrienne Decker

Notice that prior to the while loop the _contents collection is asked for an iterator.

The status of the iterator is checked as a condition for continuing the while-loop: as long as

the iterator has more items to visit (i.e. iter.hasNext() returns true), the body of the

loop is executed. Once iter.hasNext() returns false, indicating that there are no

more unvisited items in the collection, the while loop exits, and the next statement to be

executed in the code above is:

 return cost;

for loop

Another common sort of loop is the for-loop. A for-loop has the following syntactic

form:

for (<statement1> ; <expression> ; <statement2>) <statement3>

This is syntactically a little bit more complex than the while-loop syntax, so we will

explain each part in turn. To help explain how the for-loop works, it helps to have the

corresponding flow-chart handy:

© 2006 Carl Alphonce & Adrienne Decker 11

<statement3>

true <statement2> <expression>

false

<statement1>

What are the semantics of the for-loop? At first <statement >1 is executed.

<statement >1 is referred to as an initialization statement, because it is typically used to set

up the initial conditions for the loop.

After <statement >1 is executed, <expression> is evaluated. If <expression>

evaluates to false, then the for-loop exits and execution continues on with the next

statement after the for-statement. If <expression> evaluates to true, then

<statement >2 is executed, followed by <statement >3 . After this “loop”,

<expression> is evaluted again, and the cycle either repeats (if <expression>

evaluates to true) or not (if <expression> evaluates to false).

<statement2> is the main body of the loop, while <statement3> is an “update”

statement. This sort of loop is often used to loop a fixed the number of times, in which case

the “update” consists of incrementing a counter variable.

12 © 2006 Carl Alphonce & Adrienne Decker

Here’s a silly example of how to use the for-loop, to add 30 loaves of Bread to the

shopping cart:

for (int i=0; i<30; i = i+1) {
 _cart.addItemToCart(new Bread());
}

What is int? Like boolean it is a primitive type, whose values are integers like 0, 1, -3,

and 5732894. The set of int values is finite. It is not important for us right now to know

what the limits are (you can check in a Java reference book if you’re curious). What sorts of

things can we do with integer values? We can create new integer values by adding them

together (i.e. i+1 is the integer value that is one more than i), and we can compare them (i.e.

i<30 is true if and only if the value of i is less than 30).

foreach loop

There is one more loop construct that is convenient to know about, the so-called foreach-

loop. The foreach-loop implicitly uses an iterator to loop through a collection; the syntax is a

little nicer than the while-loop, because it is not necessary to manage the iterator explicitly

yourself. For example, the totalCost method, which used a while-loop, could be written

using the foreach-loop syntax as follows:

 public Money totalCost() {
 Money cost = new Money(0,0);
 for (Grocery item : _contents) {
 cost = cost.add(item.getPrice());
 }
 return cost;
 }

© 2006 Carl Alphonce & Adrienne Decker 13

The variable item is declared to be of the same type as is contained in the _contents

collection. It is assigned to each object in _contents in turn. Remember that there is in

fact an iterator implicitly in the code – Java implicitly does the following:

 java.util.Iterator<Grocery> iter = _contents.iterator();
 while (iter.hasNext()) {

 Grocery item = iter.next();
 cost = cost.add(item.getPrice());
 }

7.9 Mappings
This section will be a brief discussions of mappings in general (e.g. what they are and

how they are used, not how they are implemented), and Java’s java.util.HashMap in

particular. Stay tuned!

Chapter Wrap-Up

14 © 2006 Carl Alphonce & Adrienne Decker

	Introduction
	Collections and Mappings
	Generics
	java.util.Collection
	An implementation of java.util.Collection
	Iterators
	A conditional statement
	A repetition statement
	while loop
	for loop
	foreach loop

	Mappings
	Chapter Wrap-Up

