CSE 113 B

August 31 - September 4, 2009

Announcements

© If you have not picked up a syllabus, please do so
© Assignment \#1 - sign and return form on last page of syllabus - must be turned in by end of class Monday, September $14^{\text {th }}$ to receive full credit.
© Note course website on syllabus - UBlearns will only be used for posting grades (until October $9^{\text {th }}$), so please make sure to check the website for course schedule and other information (including these slides which will be linked from the course schedule page at the end of each week).

What does a computer UNDERSTAND?

(0) 0's and 1's (zeros and ones)

Bits and Bit Strings

(0) The 0 or 1 is called a binary digit (bit).
(0) A sequence of bits is called a bit string.
© 0100101 is a bit string

- What does it mean/represent?

$$
\begin{aligned}
& \rightarrow 37 \\
& \rightarrow 91 \\
& \rightarrow \%
\end{aligned}
$$

Interpreting Bit Patterns

- Binary (ron-regative numbers)
- Two's complement (positive or negative integers)
- IEEE 754 (approximate real numbers)
- ASCII/EBCDIC/Unicode
(characters)

CONVERSION FROM DECIMAL TO BINARY

111

$$
\begin{aligned}
& 1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{\circ} \\
& 1 \times 4+(\times 2+\mid \times 1 \\
& y+2+1 \\
& \text { "seven" }
\end{aligned}
$$

$$
\begin{array}{r}
111 \\
\frac{101}{166} \\
+49 \\
\hline 111 \\
1100
\end{array} \begin{aligned}
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10 \\
& 1+1+1=11
\end{aligned}
$$

How do we decode this?

© 001010101010101010000001011111101010101 010001101001001001001001000111111001011 101001100111010001010010011100110010101 111101000101001010101010101110011100011 100100111100000111110101010111101001010 010100100100111010010010010100101001100 010110010001111010010111010100101001010 010101010111001010100101010101111010011 010010011110100100100100100100010101101 010101010110101101010101010101010101010 101111100001101011101001010010010100101 001011100111001010101010111010110010101

QUESTION
© How many distinct 8-bit wide bit strings are there?

256 different characters

ENCODING MACHINE INSTRUCTIONS

© Use bits to encode those as well
(0) When we want the machine to follow those instructions:

- Fetch
- Decode
- Execute

AsSembly Language

(0) ADD r1 r2
© STOR r2 r1
© SUBr r1

High-level languages

© Step closer to natural language from machine language.

Tools

- Editor-place totype our program's
- Compiler-translate program to a lang the machine will understand
(0) Execution Environment

Lo run the program

Our Language: Java

© High level programming language
© Object-oriented

