
9/22/2009

1

September 7 – 11, 2009

CSE 113 B

ANNOUNCEMENTS

 No classes Monday 9/7

 First labs meet this week

 Lab 1 posted on course website – due 10/2

 If you are having trouble logging into the
computers in the lab or the Web-CAT website
that we will be using for submission, please email
me.

 Turn in signed last page of syllabus by 9/14.

2

GREENFOOT ENVIRONMENT

 Main parts

 World

 The world that the actors will interact within

 Execution Controls

 Controls the execution start/stop and speed of the
simulation

 Class Diagram

 Shows us the component parts of the scenario

3

9/22/2009

2

CLASS DIAGRAM PANEL

 Each box represents a class.

 These classes make up the building blocks of
what is going on in our simulations.

 Classes are definitions of the things that will be
in our scenario when it is running.

4

OBJECTS

 If we want something interesting to happen
when we run our scenario, we need to make
actual objects (instances of our classes).

 How do you add an object to a scenario in
Greenfoot?

5

INTERACTING WITH OBJECTS

 Once the object is in the scenario, if we right
click, we get a listing of all of the actions it can
perform.

 These actions are formally called methods inside
our programs – they are specified in every detail
inside the class definitions (Java source code).

 If we click on one of the menu items, the
associated action will happen inside the world.
This process is called “calling” or “invoking” a
method.

6

9/22/2009

3

METHOD LISTING

 Each method that is listed has three parts
(“words” if you’d like)

 The first word represents the method’s return
type – the type of information that will be
returned after the method is executed

 The second word is the name of the method

 The third word the () is called the parameter list
and tells us what type of information we need to
pass in to have the method perform its action

7

RETURN TYPE

 The type of information that is returned when
the method is finished executing.

 If we see the word void, that means that nothing
is being returned from that method.

 If we see the word int, that means an int is being
returned. An int is a whole number.

 If we see the word boolean, that means a
boolean is being returned. A boolean is a
true/false value.

8

METHOD NAMES

 Method names are chosen by the programmer
when he/she is defining the class in their source
code.

 It is a good idea to give methods names that
describe their functionality.

9

9/22/2009

4

PARAMETER LIST

 Enclosed in () always.

 If () are empty, then there are no parameters (no inputs) to the
method.

 If there is something in the (), then it is telling us what type of
information we need to pass into the method in order for the
method to function properly. We could pass in an int (whole
number), boolean (true/false value) and other types of things
that we will learn about this semester.

 Notice that void is never a parameter type – it is only used as a
return type.

10

CALLING A METHOD WITH

PARAMETERS

 When we call a method that needs parameters
(input), we need to provide the actual value of
the input in the method call. We would put that
value in the dialog box that Greenfoot gives us
when we select to invoke that method.

11

INHERITANCE

 Looking back at the class diagram panel, we notice
that in between some of the class boxes, there are
arrows.

 These arrows indicate a relationship between the
classes.

 A special relationship called inheritance.

 All classes in our Greenfoot scenarios use inheritance.

 Note that many of the classes have arrows back to
Actor, and at least one class has an arrow back to
World

12

9/22/2009

5

INHERITANCE

 When we see these arrows, the class at the top of the
arrow is called the superclass, and the clas on the
bottom is called the subclass.

 Inheritance is a very powerful feature of Java and
several other languages, but for now, we need to
focus on the following facts:

 All classes in our scenarios will inherit from either
Actor (most of our classes) or World (maximum 1
class)

 When we use inheritance, the subclass inherits and
gets to use all of the methods from the superclass

13

