

Announcements

- Lab 3 due this week (week of October $18^{\text {th }}$)
-Labs this week - exam review
- In-lecture activity - Wednesday Oct $20^{\text {th }}$
- Exam 2 - Friday, October $22^{\text {nd }}$ in lecture
-Lab 4 begins week of October $25^{\text {th }}$

Security in Operating Systems

- Administrators
- Login for users
- Auditing software
-software that is alwayprunning \& looking for strange behavior

SECURITY IN Operating Systems

- Priviledge mode
-run priviledged instructions -small amount of time
- Mon-priviledge mode
- what the computer rums most of the tire

Fed areal
SECURITY ON A NETWORK - Malware is biggest threat
-Virus

- Worm -self-papogating
- Trojan have
- Spyware
- Phishing
- Denial of Service Athene

How can Computers (and Users)
PROTECT THEMSELVES?
Firewalls - Gateway to network or
Proxy server - Intermediary between client server

Antionimes software

Practice Problems For Exam 2

- Questions at the end of Chapter 2 (pages 113-117)
- 4
- 13
- 20
- 5
- 14
- 21
- 7
- 15
- 22
- 9
- 16
- 23
- 11
- 17
- 26
- 12
- 18
- 27

Practice Problems For Exam 2

- Questions at the end of Chapter 3 (pgs 146-149)
- 1
- 10
- 31
- 3
- 11
- 32
- 5
- 18
- 45
- 7
- 19
- 49
- 8
- 29
- 50

Practice Problems For Exam 2

- Questions at the end of Chapter 4 (pgs 197-199)
- 1
- 17
- 25
- 2
- 18
- 34
- 3
- 19
- 35
- 4
- 20
- 37
- 5
- 21
- 11
- 24

Volunteers (Need 6)

-Volunteers 1-5: Pick a number with 1 or 2 digits and write it on the piece of paper. (Will also need to do some addition in a moment.)
-Volunteer 6: Pick a 3-digit number and write it on the piece of paper.

Volunteers 1-5

- When you receive the pad of paper, add the number you picked to the number on the pad.
- Write the answer on the next page in the pad.
-Rip off the top page (it's yours to keep as a souvenir).

Compute the Average

- Pad of paper comes back to Adrienne

$$
292 \text { comes back }
$$

Did we Compute the correct Average?

- Figure it out

SEnding "SEcret" Information

-Tell someone the "secret number"
-To send "secret message", take the message and add the "secret number" to it
-To decode, subtract the "secret number" from the message you receive

Another "public secret" Example

- Volunteer 1:
- Pick a number >50 and <1000
- Now pick 10 other numbers that will add up to our secret number

OUR RECEIVER WILL DECODE USING...

Why Do we only need Three?

More Complex Example

PRIVATE GRAPH

So What is the message we are SENDING?

PRoblem

- No matter how complex the graph, we still could break it.
- So, the key to public key cryptosystems is to create keys that are hard to "crack"

Public Key Encryption (RSA)

- My children want to send a message to me
- Step1: They write out the message
- Step 2: Break message into chunks of 4 characters
- Step 3: Convert the chunks to numbers
- Step 4: Use Mom's public key to encrypt message
- Step 5: Send message to Mom

Encryption

- Mom gets message and uses private key to decrypt message and read it.
- To respond, Mom does same steps, but uses the kid's public key to encrypt. The kids use their private key to decrypt.
- Neither party knows the other's private key, only their public keys.

More Details - The Math

- Choose two prime numbers p \& q
- p \& q have at least 150 digits each
- Compute $\mathrm{n}=\mathrm{pq}$
- Compute k $=(\mathrm{p}-1) *(\mathrm{q}-1)$
- Find e: e is a prime number between $1 \& k$ and is relatively prime to k .
- Relatively prime means that the greatest common divisor between e \& k is 1

More Details - The Math

oThen, we solve the following equation for $\mathrm{d} \& \mathrm{v}$

- $\left(d^{*} e\right)-\left(v^{*} k\right)=1$
- We keep d, e, and n
- Public key: e \& n
- Private key: d \& n

Converting Message

-To encrypt message:

- (Message as number) ${ }^{\mathrm{e}} \bmod \mathrm{n}$
- Send result
-When receiver gets message, decrypt using:
- (Received message) ${ }^{\text {d }} \bmod n$

How is it Secure?

- Leaving some of the math details out, in order to get the private key (d), we would need to be able to factor n into $\mathrm{p} \& \mathrm{q}$.
on is a 300-digit number

Can we Do it?

-Latest data I could find:

- We can factor a 232-digit number into its prime factors
- But
oIt took 2 years
-And hundreds of machines

