

ANNOUNCEMENTS Iab 2 Part 1 assigned for lab sessions this week Turn it in via UBLearns Iab 2 Part 2 next week Exam 1 – Monday, October 4th in lecture

STORING IMAGE INFORMATION

- Images are made up of pixels.
- The dimensions of an image are also given in pixels.

Cramer II or						17.
	Name Tree The opt SAO PM Ben m Sea Turtle Autumn Leeven Creek Humpback Whale Humpback Whale Winte Leaves Forest Flowen Forest Flowen Freegiper: Flowen	Date taken 9/3/2005 39:40 PM 4/25/2005 300 AM 4/9/2004 11:37 AM 5/10/2005 1:45 PM 6/22/2005 11:17 PM 4/22/2005 11:17 PM 4/22/2005 11:15 AM 11:4/2005 9:32 PM 4/30/2005 2:20 PM 11:40/2005 5:20 PM 2/12/2005 5:20 PM 4/26/2005 5:20 PM 6/24/2005 5:22 PM 6/24/2005 5:41 PM	Togs	Site: 752 K8 549 K8 505 K8 370 K8 201 K8 201 K8 201 K8 270 K8 229 K8 224 K8 224 K8 227 K8 125 K8 113 K8 105 K8	Rating Autom A & A & A & A & A & A & A & A & A & A &	
Public Music Public Pictures Sample Pictures						

QUESTION

• If we use 1 byte for each red, green, and blue value, and the size of the image is 1024x768 pixels, how many bits does it take to store the information about the picture?

• 1 byte = 8 bits

- Each pixel needs 8 bits x 3 values = 24 bits
- Picture is 1024 x 768 pixels = 768432 total bits
- 768432 x 24 = 18874368 bits

- 18874368 bits is how many bytes?
- o 18874368 / 8 =
- o 2359296 bytes
- How many kilobytes?
- o 2359296 / 1024 =
- o 2304 kilobytes
- How many megabytes?
- o 2304 / 1024 =
- 2.25 megabytes

<section-header> JPEG COMPRESSION Step 3: Use Run-length encoding Variable-length encoding Relative encoding Total compression of at least a factor of 10, sometimes as much as 30

OTHER COMPRESSION TECHNIQUES • Run-length encoding Find repeating elements & store information about the repeats En 4-1's, 20's, 51's, 10's, 21's,

RELATIVE ENCODING Records the differences between segments of the code

COMPRESSING MOVIES

- Movies/videos are shot in frames
 - 24, 25, 50, 60, 120 frames per second
- From frame to frame in a film, how much does the image change?
- When we want to compress movies, we store the entirety of certain frames, and then store the changes between the completely stored frames.
 - 1 frame completely stored for every 15 not completely stored

COMPRESSING SOUND

• Takes advantage of the limitations of the human ear to hear certain sounds along with the other compression techniques we have discussed previously.

EXTRA PROBLEMS

- The following are decimal numbers, convert them to octal numbers and hexidecimal numbers.
 - 1254
 - 347
 - 24
 - 6739

ERROR CORRECTION

- Data transfers are not always perfect.
- Can we build into our encodings a way to tell if there was an error while the information was being transferred?

PARITY BITS • If we add a parity bit to our encoding, we can use it to help us check for errors. Parity bit: Extra bit added to our encoding. The value of the bit will be set so that the entire encoding will have an even or odd number of 1's

ISEN-13 CHECK DIGIT• Take each digit left to right and alternate multiplying by 1 & 3. Sum the products and then do mod 10 on that sum. Subtract that answer from 10 and that is the check digit.

BINARY ADDITION 101101 + 11001 \0001\0

