
11/1/2010

1

CSE 113 B

ANNOUNCEMENTS

 Lab Practical 1 this week and next week

 Lab 7 week of November 1st

 Exam 3 November 8th in lecture

11/1/2010

2

MOVEMENT WITH VECTORS

 Review movement with vectors

 Turning randomly by changing rotation of graphic
and changing the direction in the vector

3

OVERLOADING

 Note that there are two constructors in some of
the classes (like SmoothMover).

 Normally, you would not be allowed to create
two methods with the same name, but in this
case it is allowed and is called method
overloading.

 Method overloading (having two methods with
the same name in the same class) is only allowed
when the methods differ in the number and/or
type of parameters.

4

11/1/2010

3

COLLIDING OBJECTS

 Detecting intersecting objects can be done using
getOneIntersectingObject method.

 This method can take as an argument a class that
represents the type of object we are looking for (like
canSee in Crab example).

 This method returns an Actor object that represents
what the current actor is intersecting with. If there is
no intersecting actor, the method returns null. null is a
keyword in Java that represents the value of a null
reference (can be thought of as “no object”).

5

CASTING

 Recall from earlier examples the following code:

Actor a = getOneIntersectingObject(X.class);

 Remember that X is the class we are interested in looking for
collisions with – it can be anything (Flower, Ball, Brick,
Barrel).

 getOneIntersectingObject returns the object we are
interesting with or null if not intersecting an object of the
passed-in type. The object that is passed back is of type
Actor.

6

11/1/2010

4

CASTING

 Therefore, the type of the variable a is Actor.

 If we try to do this:

X a = getOneIntersectingObject(X.class);

o The code will not compile because
getOneIntersectingObject returns an Actor, not an X.

o But we know that the Actor that is really being
returned is an X.

7

CASTING

 However, sometimes we may want to do things
with a (the variable) that only X’s can do.

 However, a is an Actor and can only do things
Actors can do.

 If we want to treat the object that is returned by
getOneIntersectingObject as an X, we can
explicitly cast it as an X.

8

11/1/2010

5

CASTING

X a = (X) getOneIntersectingObject(X.class);

 The (X) is the cast.

9

GETTING ALL THE BARRELS

 getWorld().getObjects(Barrel.class)

 Returns a list that we need to store

 java.util.List<Barrel> barrels;

 Creates a variable that holds onto a list of Barrel
objects

 barrels = getWorld().getObjects(Barrel.class);

 Assigns the list of barrels to the variable we’ve
just created

10

11/1/2010

6

NOW WHAT?

 So, we have a list of barrels, but now we need to
cycle through the list and move each of them
down on the screen.

 We can use a for-each loop to cycle though (or
iterate over) the list of barrels.

11

FOR-EACH LOOP (SYNTAX)

for(TypeOfElementInCollection variableName: nameOfCollection)

{

//what to do with each element

}

12

11/1/2010

7

FOR THE BARRELS

for(Barrel b: barrels)

{

setLocation(getX() + 10, getY());

}

13

REMOVE FROM WORLD

 Note that there is a method for removing all
objects of a specific type from a world (see
World’s documentation).

14

