
11/1/2010

1

CSE 113 B

ANNOUNCEMENTS

 Lab Practical 1 this week and next week

 Lab 7 week of November 1st

 Exam 3 November 8th in lecture

11/1/2010

2

MOVEMENT WITH VECTORS

 Review movement with vectors

 Turning randomly by changing rotation of graphic
and changing the direction in the vector

3

OVERLOADING

 Note that there are two constructors in some of
the classes (like SmoothMover).

 Normally, you would not be allowed to create
two methods with the same name, but in this
case it is allowed and is called method
overloading.

 Method overloading (having two methods with
the same name in the same class) is only allowed
when the methods differ in the number and/or
type of parameters.

4

11/1/2010

3

COLLIDING OBJECTS

 Detecting intersecting objects can be done using
getOneIntersectingObject method.

 This method can take as an argument a class that
represents the type of object we are looking for (like
canSee in Crab example).

 This method returns an Actor object that represents
what the current actor is intersecting with. If there is
no intersecting actor, the method returns null. null is a
keyword in Java that represents the value of a null
reference (can be thought of as “no object”).

5

CASTING

 Recall from earlier examples the following code:

Actor a = getOneIntersectingObject(X.class);

 Remember that X is the class we are interested in looking for
collisions with – it can be anything (Flower, Ball, Brick,
Barrel).

 getOneIntersectingObject returns the object we are
interesting with or null if not intersecting an object of the
passed-in type. The object that is passed back is of type
Actor.

6

11/1/2010

4

CASTING

 Therefore, the type of the variable a is Actor.

 If we try to do this:

X a = getOneIntersectingObject(X.class);

o The code will not compile because
getOneIntersectingObject returns an Actor, not an X.

o But we know that the Actor that is really being
returned is an X.

7

CASTING

 However, sometimes we may want to do things
with a (the variable) that only X’s can do.

 However, a is an Actor and can only do things
Actors can do.

 If we want to treat the object that is returned by
getOneIntersectingObject as an X, we can
explicitly cast it as an X.

8

11/1/2010

5

CASTING

X a = (X) getOneIntersectingObject(X.class);

 The (X) is the cast.

9

GETTING ALL THE BARRELS

 getWorld().getObjects(Barrel.class)

 Returns a list that we need to store

 java.util.List<Barrel> barrels;

 Creates a variable that holds onto a list of Barrel
objects

 barrels = getWorld().getObjects(Barrel.class);

 Assigns the list of barrels to the variable we’ve
just created

10

11/1/2010

6

NOW WHAT?

 So, we have a list of barrels, but now we need to
cycle through the list and move each of them
down on the screen.

 We can use a for-each loop to cycle though (or
iterate over) the list of barrels.

11

FOR-EACH LOOP (SYNTAX)

for(TypeOfElementInCollection variableName: nameOfCollection)

{

//what to do with each element

}

12

11/1/2010

7

FOR THE BARRELS

for(Barrel b: barrels)

{

setLocation(getX() + 10, getY());

}

13

REMOVE FROM WORLD

 Note that there is a method for removing all
objects of a specific type from a world (see
World’s documentation).

14

