11/1/2010

Lab Practical 1 this week and next week
Lab 7 week of November 15t

Exam 3 November 8t in lecture




Turning randomly by changing rotation of graphic

Review movement with vectors

and changing the direction in the vector

Note that there are two constructors in some of
the classes (like SmoothMover).

Normally, you would not be allowed to create
two methods with the same name, but in this
case it is allowed and is called method
overloading.

Method overloading (having two methods with
the same name in the same class) is only allowed
when the methods differ in the number and/or

type of parameters.

11/1/2010



Detecting intersecting objects can be done using
getOnelntersectingObject method.

This method can take as an argument a class that
represents the type of object we are looking for (like
canSee in Crab example).

This method returns an Actor object that represents
what the current actor is intersecting with. If there is
no intersecting actor, the method returns null. null is a
keyword in Java that represents the value of a null
reference (can be thought of as “no object”).

Recall from earlier examples the following code:

Actor a = getOnelntersectingObject(X.class);

Remember that X is the class we are interested in looking for
collisions with — it can be anything (Flower, Ball, Brick,
Barrel).

getOnelntersectingObject returns the object we are
interesting with or null if not intersecting an object of the
passed-in type. The object that is passed back is of type
Actor.

11/1/2010



11/1/2010

Therefore, the type of the variable a is Actor.

If we try to do this:
X a = getOnelntersectingObject(X.class);

o The code will not compile because
getOnelntersectingObject returns an Actor, not an X.

o But we know that the Actor that is really being
returned is an X.

However, sometimes we may want to do things
with a (the variable) that only X’s can do.

However, a is an Actor and can only do things
Actors can do.

If we want to treat the object that is returned by
getOnelntersectingObject as an X, we can
explicitly cast it as an X.




X a = (X) getOnelntersectingObject(X.class);

© The (X) is the cast.

getWorld().getObjects(Barrel.class)

® Returns a list that we need to store
java.util.List<Barrel> barrels;

® Creates a variable that holds onto a list of Barrel
objects

barrels = getWorld().getObjects(Barrel.class);

©® Assigns the list of barrels to the variable we’ve

just created

11/1/2010



11/1/2010

So, we have a list of barrels, but now we need to
cycle through the list and move each of them
down on the screen.

We can use a for-each loop to cycle though (or
iterate over) the list of barrels.

for(TypeOfElementIinCollection variableName: nameOfCollection)

{

//what to do with each element




for(Barrel b: barrels)

{

setLocation(getX() + 10, getY());

Note that there is a method for removing all
objects of a specific type from a world (see
World’s documentation).

11/1/2010



