
10/5/2010

1

CSE 113 B

ANNOUNCEMENTS

 Exams Returned Monday 9/27

 Lab 4 posted

10/5/2010

2

EXAM 1 STATS

Grade Breakdown

A 21%

A- 5%

B+ 22%

B 22%

B- 12%

C+ 8%

C 4%

C- 3%

D 3%

F 0%

3

Exam Statistics

Min 52

Median 79

Average 78.84

Max 100

Std Dev 10.49

LAST YEAR’S STATS

Exam 1 Grades
SP 2010

Overall Letter
Grades - SP 2010

A 22% A 14%

A- 14% A- 14%

B+ 14% B+ 10%

B 15% B 12%

B- 10% B- 9%

C+ 6% C+ 7%

C 6% C 6%

C- 3% C- 2%

D 4% D 3%

F 6% F 11%

R 12%

4

10/5/2010

3

CONSTRUCTORS

 Constructors are special methods that are called
every time an object is created – they set up the
initial state of our objects.

 Explicit constructors (ones that you can see in the
source code) look like this:

public NameOfClass()

{

}

5

CONSTRUCTORS

 A constructor has the same name as the name of
the class.

 It does not have a return type.

 If there is no explicit constructor in the source
code for a class, Java provides an implicit one
that you do not see in the source code, but is
inserted at compile time.

6

10/5/2010

4

CARWORLD CLASS

 Looking at the constructor of CarWorld, we can
see a method call that looks like this:

super(x, y, z)

 Here, we are not calling a method called super,
but rather super is a keyword that indicates the
superclass. In this case, we are calling the
superclass’ constructor.

7

ADDING OBJECTS AT STARTUP

 We can add objects to the world when it is created by
calling the addObject method from the world.

 Example

addObject(new Car(), 34, 56);

 Note that we need to create a new Car object to add by
using the expression new Car(). This expression creates
an object and calls the constructor of that object.

 The numbers that follow are the x and y coordinates of
where we would like the object to be in the world.

8

10/5/2010

5

9

CHANGES TO PROGRAM

 Scenario should stop after we hit a certain
number of obstacles.

10

10/5/2010

6

QUESTION

 What do we need to do?

11

ANSWER

 First, recognize that we’ve hit something:

if(hit barrel)

{

//Q: What do we do?

}

12

10/5/2010

7

if(hit barrel)

{

turn away

note that we hit another barrel

if(we’ve hit too many)

{

stop scenario

}

}

13

CODE THAT WILL RUN (BUT

NOT PERFECTLY)

if(true) //hit barrel

{

turn(45);

//note that we hit another barrel

if(false) //we’ve hit too many

{

//stop scenario

}

}

14

10/5/2010

8

NEXT STEPS

 Fill in code to recognize the collision of the car
with the barrel.

 Fill in the code to stop the scenario.

15

QUESTION

 How do we figure out if we’ve hit too many?

16

10/5/2010

9

VARIABLES

 Variables are used to store information.

 Instance variables store information important to
the entire class.

17

INSTANCE VARIABLE SYNTAX18

10/5/2010

10

VARIABLES

 After we declare the instance variables, it is good practice
to give it an initial value.

 We would give an instance variable and initial value in the
constructor of the class.

 Example

_barrelsHit = 0;

 Note that this expression uses the assignment operator
(=) and takes the values on the right hand side and assigns
them to the variable on the left hand side.

19

IF-STATEMENTS

 We have been working a lot with if-statements to
determine choices in our programs. If we look at our
program execution with if-statements, it would look
something like this:

20

10/5/2010

11

MORE WAYS TO CHOOSE

 We could create choice in programs that looks
like this:

21

MORE WAYS TO CHOOSE

 That would be the notion of a choice when there
is a definitive path when a condition is true and
another path when the condition is false.

 In order to do this type of choice in code, we
would need to use if-else statements instead of
just if-statements.

22

10/5/2010

12

IF-ELSE SYNTAX

if(/*boolean expression*/)

{

//code to be executed if boolean expression is true

}

else

{

//code to be executed if boolean expression is false

}

23

