
10/5/2010

1

CSE 113 B

ANNOUNCEMENTS

 Exams Returned Monday 9/27

 Lab 4 posted

10/5/2010

2

EXAM 1 STATS

Grade Breakdown

A 21%

A- 5%

B+ 22%

B 22%

B- 12%

C+ 8%

C 4%

C- 3%

D 3%

F 0%

3

Exam Statistics

Min 52

Median 79

Average 78.84

Max 100

Std Dev 10.49

LAST YEAR’S STATS

Exam 1 Grades
SP 2010

Overall Letter
Grades - SP 2010

A 22% A 14%

A- 14% A- 14%

B+ 14% B+ 10%

B 15% B 12%

B- 10% B- 9%

C+ 6% C+ 7%

C 6% C 6%

C- 3% C- 2%

D 4% D 3%

F 6% F 11%

R 12%

4

10/5/2010

3

CONSTRUCTORS

 Constructors are special methods that are called
every time an object is created – they set up the
initial state of our objects.

 Explicit constructors (ones that you can see in the
source code) look like this:

public NameOfClass()

{

}

5

CONSTRUCTORS

 A constructor has the same name as the name of
the class.

 It does not have a return type.

 If there is no explicit constructor in the source
code for a class, Java provides an implicit one
that you do not see in the source code, but is
inserted at compile time.

6

10/5/2010

4

CARWORLD CLASS

 Looking at the constructor of CarWorld, we can
see a method call that looks like this:

super(x, y, z)

 Here, we are not calling a method called super,
but rather super is a keyword that indicates the
superclass. In this case, we are calling the
superclass’ constructor.

7

ADDING OBJECTS AT STARTUP

 We can add objects to the world when it is created by
calling the addObject method from the world.

 Example

addObject(new Car(), 34, 56);

 Note that we need to create a new Car object to add by
using the expression new Car(). This expression creates
an object and calls the constructor of that object.

 The numbers that follow are the x and y coordinates of
where we would like the object to be in the world.

8

10/5/2010

5

9

CHANGES TO PROGRAM

 Scenario should stop after we hit a certain
number of obstacles.

10

10/5/2010

6

QUESTION

 What do we need to do?

11

ANSWER

 First, recognize that we’ve hit something:

if(hit barrel)

{

//Q: What do we do?

}

12

10/5/2010

7

if(hit barrel)

{

turn away

note that we hit another barrel

if(we’ve hit too many)

{

stop scenario

}

}

13

CODE THAT WILL RUN (BUT

NOT PERFECTLY)

if(true) //hit barrel

{

turn(45);

//note that we hit another barrel

if(false) //we’ve hit too many

{

//stop scenario

}

}

14

10/5/2010

8

NEXT STEPS

 Fill in code to recognize the collision of the car
with the barrel.

 Fill in the code to stop the scenario.

15

QUESTION

 How do we figure out if we’ve hit too many?

16

10/5/2010

9

VARIABLES

 Variables are used to store information.

 Instance variables store information important to
the entire class.

17

INSTANCE VARIABLE SYNTAX18

10/5/2010

10

VARIABLES

 After we declare the instance variables, it is good practice
to give it an initial value.

 We would give an instance variable and initial value in the
constructor of the class.

 Example

_barrelsHit = 0;

 Note that this expression uses the assignment operator
(=) and takes the values on the right hand side and assigns
them to the variable on the left hand side.

19

IF-STATEMENTS

 We have been working a lot with if-statements to
determine choices in our programs. If we look at our
program execution with if-statements, it would look
something like this:

20

10/5/2010

11

MORE WAYS TO CHOOSE

 We could create choice in programs that looks
like this:

21

MORE WAYS TO CHOOSE

 That would be the notion of a choice when there
is a definitive path when a condition is true and
another path when the condition is false.

 In order to do this type of choice in code, we
would need to use if-else statements instead of
just if-statements.

22

10/5/2010

12

IF-ELSE SYNTAX

if(/*boolean expression*/)

{

//code to be executed if boolean expression is true

}

else

{

//code to be executed if boolean expression is false

}

23

