Logical Connectives (Binary)

I – Conjunction Informally: "and" Symbols: ∧ • &&

A ∧ B

These are called conjuncts.

The meaning of conjunction is expressed by this truth table:

Α	B	$\mathbf{A} \wedge \mathbf{B}$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

A conjunction is true if and only if both conjuncts are true.

```
II – Disjunction
Informally: "or"
Symbols: v
```

These are called disjuncts.

The meaning of disjunction is expressed by this truth table:

Α	B	$\mathbf{A} \lor \mathbf{B}$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

A disjunction is true if either (or both) disjunct(s) are true.

An implication is false only if the antecedent is true and the consequence is false.

IV - Equivalence (Biconditional) Informally: "if and only if" "iff" $Symbol \leftrightarrow$

This connective is actually short hand for: $(A \rightarrow B) \land (B \rightarrow A)$

Α	B	$\mathbf{A}\leftrightarrow\mathbf{B}$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

_

Equivalence is true only if both sides are true or both sides are false.

Logical Connectives (Unary)

– Negation		~A
Informally: "not"	Т	F
Symbol: ¬ ~ ' !	F	Т