
2/22/2010

1

CSE 113 A

February 22-26, 2010

Announcements

Lab 2 due Friday, March 5th.

Exam 2 – Friday, February 26th; in-

lecture review Wednesday, February

24th.

Software installation help in Baldy 21

Tuesday 2/23 7pm-8pm

Monday 3/1 4pm-5pm

2/22/2010

2

Exercise (from Friday’s
Lecture)

 Make the ambulance add 5 flowers to the screen

when the ambulance is at y = 36.

3

Exercise

 When inside the method, we brainstormed what types
of actions the method would need to do.

 We decided that we needed an if-statement

 We did not need an else – why?

 Because there was no “other” alternative. If a condition
was met, we performed an action. If it was not, we simply
did nothing. If there was another action to perform, then
we would have needed an else.

 Then, we decided what our condition for the if should
look like (if our y-coordinate was 36)

4

2/22/2010

3

Exercise

 Then we decided what should happen if the condition

was met (add 5 flowers to the world)

 We then began to code both the condition and the

insertion of the flowers into the world.

 Creating 5 flowers at a time was as simple as copying

and pasting the code to create one flower, five times.

To create 50, paste 50 times, 500, paste 500 times.

But there must be a way we can get the computer to

do all this repetition…

5

Loops

 Mechanism that allows our programs to repeat

 There are many different types of loops, we focused

today on one called the for-loop

 The for-loop is good for counting (doing things a

specific number of times).

6

2/22/2010

4

For-loop (Basic Syntax)

for (/* initialization, condition, increment */)

{

//code to be repeated

}

7

For-loop (initialization)

 The initialization part of a for-loop (typically) creates

and initializes a loop counter. The loop counter is

simply a variable whose value we can check (in the

condition part) and change (in the increment part).

 A sample initialization step looks like this:

int count = 0;

 You can name your variable whatever you’d like and

initialize it to whatever value is appropriate to your

task.

8

2/22/2010

5

For-loop (condition)

 The condition part of a for-loop tells the loop when to

stop. While the condition is true, the code will keep

getting repeated, when it is false, the repetition will

stop. Typically, the condition involves the loop

counter variable’s value.

 A sample condition looks like this:

count < 100;

 The condition must evaluate to true or false (must be

a boolean expression) and typically gives a clue to the

number of times the loop will execute.

9

For-loop (increment)

 In increment part of a for-loop indicates how the loop

counter will be incremented. In many cases, the

counter is incremented by one each time (so it keeps

count of how many times the loop has executed).

 A sample increment step looks like this:

count = count + 1

 Note that there is a (syntactic) shortcut for the above

that is typically used:

count++

10

2/22/2010

6

For-loop (repeated code)

 This is the code that is to be repeated. There is no

restriction on what is placed in the {}. Any valid Java

code can be repeated.

11

For-loops (A note about
these guidelines)

 The usage of the for-loop described here corresponds with its
most common usage. However, the only thing that the Java
language specifies is that within the parentheses there be three
statements separated by commas and that the statements in
between the {} are the code that is repeated.

 So, that means

for(;;)

{

}

 Is a perfectly syntactically correct for-loop. That loop will run
forever (it will never stop), but perform no actions. This is not
pointed out to panic anyone, but rather to indicate that there
may be other uses of the for loop that you can see that do not
conform to the usage we’ve discussed here.

12

