
2/19/2010

1

February 15-19, 2010

CSE 113 A

ANNOUNCEMENTS

 Lab 2 will begin this week in recitation.

 Lab 2 due Friday, March 5th.

 Exam 2 – Friday, February 26th; in-
lecture review Wednesday, February
24th.

 Review Sheet for exam posted on
Schedule page of course website.

2/19/2010

2

MONDAY LECTURE CODE

 Some things to note:

 In checkEdges method: We needed to get the
width of the world, so we first needed to get the
world and then needed to ask the world for its
width.

getWorld().getWidth()

3

MONDAY LECTURE CODE

 In move method: I do not expect you to be able
to derive formulas to create movement taking
into account rotation. You can simply reuse this
code as needed to move based on degree of
rotation.

 What is important is that you can move
something simply by taking its current location
and changing that slightly. Doing this repeatedly
moves the actor.

4

2/19/2010

3

MONDAY LECTURE CODE

 When checking edges, we can avoid them by
turning or wrap – see example in code

5

MONDAY LECTURE CODE

 Detecting intersecting objects can be done using
getOneIntersectingObject method.

 This method can take as an argument a class that
represents the type of object we are looking for (like
canSee in Crab example).

 This method returns an Actor object that represents
what the current actor is intersecting with. If there is
no intersecting actor, the method returns null. Null is
a keyword in Java that represents the value of a null
reference (can be thought of as “no object”).

6

2/19/2010

4

MONDAY LECTURE CODE

 Change the image of an actor using setImage.
Takes as an argument a GreenfootImage which is
created with a string that represents the name of
the file where the image is stored. Can simply
use any of the built-in images, or can add your
own to images folder of the scenario and it is
accessible within the scenario.

7

IF-STATEMENTS

 We have been working a lot with if-statements to
determine choices in our programs. If we look at our
program execution with if-statements, it would look
something like this:

8

2/19/2010

5

MORE WAYS TO CHOOSE

 We could create choice in programs that looks
like this:

9

MORE WAYS TO CHOOSE

 That would be the notion of a choice when there
is a definitive path when a condition is true and
another path when the condition is false.

 In order to do this type of choice in code, we
would need to use if-else statements instead of
just if-statements.

10

2/19/2010

6

IF-ELSE SYNTAX

if(/*boolean expression*/)

{

//code to be executed if boolean expression is true

}

else

{

//code to be executed if boolean expression is false

}

11

WEDNESDAY LECTURE CODE

 Create a method named checkForCars in the
ambulance class that checks to see if the
Ambulance intersects with a car.

 If the Ambulance does intersect with a car, then
check to see if that car has hit more than 5
barrels. If the car has hit more than 5 barrels,
then the car should be removed from the
scenario. Otherwise the car should be turned
into a flower.

12

2/19/2010

7

WEDNESDAY LECTURE CODE

 So, in the checkForCars method, we first wrote
the code to getOneIntersectingObject of type Car
and stop the scenario when it happens. This
code is a copy/edit of the code we used to
determine if the ambulance was intersecting
with a barrel.

 Then, we removed the line that stopped the
scenario to replace it with the code we want to
happen when an ambulance and a car collide.

13

WEDNESDAY LECTURE CODE

if(/*car has hit more than 5 barrels*/)

{

//remove car from world

}

else

{

//turn car into flower

}

14

2/19/2010

8

WEDNESDAY LECTURE CODE

 We can use the code we had before for turning a
barrel into a flower to turn a car into a flower
(copy/paste).

 We know about a method to add an object to the
world. There is a similar method to remove an
object. We need to make sure that we get the
world first and then remove the object:

getWorld().removeObject(car);

15

WEDNESDAY LECTURE CODE

 Now we need to figure out how many barrels the car
has hit.

 We need to create a method inside the Car class that
will report on how many barrels a car has hit. Recall
that cars are already keeping track of how many
barrels they hit in an instance variable. The method
we write simply reports the value of that variable.

 So, in the if-statement we can call that method after
we write it:

if(car.getBarrelsHit() > 5)

16

2/19/2010

9

WEDNESDAY LECTURE CODE

 In order to call the new method on the car, we needed to
make one change to the way we treat the “actor” that is
returned from the call to
getOneIntersectingObject(Car.class).

 Originally the code looked like this:

Actor car = getOneIntersectingObject(Car.class)

 Now it looks like this:

Car car = (Car)getOneIntersectingObject(Car.class)

17

WEDNESDAY LECTURE CODE

 The (Car) is a typecast. We are taking the Actor
that is returned and telling Java to treat it as
though it were a Car (which it is – we asked for
intersecting objects of type Car after all).

18

2/19/2010

10

IF-ELSE IF STATEMENTS

 We have to make a change to the checkForEdges
code from last time.

 We are going to create an if-else if structure in
the top/bottom and left/right edge checks.

if(/*actor at right*/) { /* do something */}

else if(/*actor at left*/) { /* do something */
}

19

WEDNESDAY CODE

 Originally, we had all the edges as if’s. This
created a picture like this:

20

2/19/2010

11

WEDNESDAY CODE

 When we put the if-else ifs in, we have this
picture:

21

FRIDAY LECTURE CODE

 Write a method so that when the ambulance
reaches a certain point on the screen (let’s say
137), all of the barrels are removed from the
world.

 How would we write the code for this?

 First, we can notice that there is a condition that
must be met, so we need an if-statement

22

2/19/2010

12

FRIDAY LECTURE CODE

if()

{

}

 We need to determine what goes into the () and
what goes into the { }

 Tip: Write them out in English first and then
translate into Java code.

23

FRIDAY LECTURE CODE

 The condition is looking for when our
ambulance’s x-coordinate is 137.

 The code we execute removes all barrels from
the world.

 Tip: Be sure to refer to the documentation for
the World and Actor classes when we are trying
to do something new – there may be methods
defined that can help us. (This was the case with
removing the barrels from the world).

24

2/19/2010

13

EXERCISE (WILL BE

ANSWERED ON MONDAY)

 Make the ambulance add 5 flowers to the screen
when the ambulance is at y = 36.

25

