
4/7/2010

1

CSE 115/503

April 5-9, 2010

Announcements

• Lab 7 due next week

• Exam 4 handed back Wednesday

Friday

• Exam 5 Review Wednesday 4/14

• Exam 5 Friday 4/16

• Lab 8 due Monday 4/26

• Final exam review session: TBA

• Final exam Thursday 4/29

4/7/2010

2

Lab 7 tips

• Get all ships to appear on

screen when game starts

• Then, work on the buttons

– Button clicked sets the ship in the

holder

– Clicking on board places ship

(doesn’t matter location)

– Clicking on board places ship

(where you clicked)

Lab 7 Tips

• Then, work on whether ships fall

off the edges

• Then, work on ships that overlap

each other

4/7/2010

3

Lab 7 tips

• Remember, that when a user

clicks on the screen with the

mouse, the location that was

clicked is carried in a MouseEvent

object that is used as the

parameter to the mouseClicked

method. You can ask this object

for its getPoint() to find out where

exactly the user clicked.

4/7/2010

4

4/7/2010

5

Types

• Declare a variable whose type is

java.util.Collection and then

assign it an instance of a

java.util.LinkedList

• Why is this allowed?

– Collection is a supertype of

LinkedList

– LinkedList is a subtype of

Collection

Types – Another

Example

• graphics.IGraphic circle = new

graphics.Ellipse();

• What are the implications of

doing this?

– circle has a declared type of

IGraphic and an actual type of

Ellipse

4/7/2010

6

Previous Slide

• Important concept

• Backbone of subtype

polymorphism

• Polymorphism is an extremely

powerful form of selection that

can be used inside object-

oriented programs

4/7/2010

7

Interfaces

• Purely abstract entities

• No implementation at all

• Can not create an instance of

one

• Contain method headers

followed by ;

• Can contain constants, but not

instance variables or private

methods

4/7/2010

8

Interfaces

• Classes can implement an

interface or more than one

interface

Inheritance

• Superclass/subclass relationship

• Subclass inherits all public

members, but never private ones.

• Subclasses also inherit protected

members.

– Protected is an additional access

control modifier that specifies access

within the classes and within the

class’ subclasses.

4/7/2010

9

Inheritance

• A class can extend exactly one

other class.

• All classes in Java use

inheritance.

• If no superclass explicitly given,

the class extends

java.lang.Object

Inheritance

• Interfaces can use inheritance

as well.

• Interfaces can extend one or

more other interfaces.

4/7/2010

10

Abstract classes

• Straddle the middle between

interfaces (no implementation) and

concrete classes (fully

implemented).

• Can not create an instance of an

abstract class.

• Abstract classes can implement

one or more interfaces.

• Abstract classes can extend exactly

one other class.

Why would we use

abstract classes or

interfaces?

• It allows us to group classes into

groups of related entities.

• It allows us to specify certain

functionality classes need to

have and ensure its

implementation via compiler

enforcement.

4/7/2010

11

For abstract classes…

• It allows us to share some

implementation amongst

subclasses and yet still require

additional implementation

through use of declared abstract

methods.

Abstract classes

• Have keyword abstract in their

class header.

• Abstract methods have keyword

abstract in their method header

and have no method body, but

rather a ; where the body should

be.

4/7/2010

12

Constructor chaining

• No problem if there is a superclass

constructor that takes no

parameters. Java will call the

constructor automatically in this

case.

• If all the constructors of the

superclass need parameters, then

the subclass must explicitly call

one of the superclass’

constructors using super.

4/7/2010

13

Example from Lab 7

public class State extends AShipPlacementState {

public State() {

//need to call super with appropriate

//arguments an IGameEngine

}

}

Example from Lab 7

public class State extends AShipPlacementState {

public State() {

needs arguments

}

}

4/7/2010

14

Example from Lab 7

public class State extends AShipPlacementState {

public State() {

super(new GameEngine());

//will work, but not for Lab 7

}

}

Example from Lab 7

public class State extends AShipPlacementState {

public State(IGameEngine engine) {

super(engine);

//will work, good idea for Lab 7

}

}

4/7/2010

15

Example from Lab 7

public class State extends AShipPlacementState {

public State() {

GameEngine e = new GameEngine();

super(e);

super must be first line in

//constructor

}

}

Overriding

• When you use inheritance and

inherit methods from the

superclass, you can choose to

override (change) the method in

the subclass.

4/7/2010

16

Accessors & Mutators

• Get & Set methods

• Accessor = get method

• Mutator = set method

Accessors

• Get in name (usually)

• Returns a value

• Therefore, return type that is not

void

• Do not take parameters

• Body contains:

return value;

Where value is the value being

returned.

4/7/2010

17

Mutators

• Set in name (usually)

• Change values

• Therefore, parameters needed

to specify what new value is

• Return type is void

• Body contains:

_instanceVar = paramName;

