
3/2/2010

1

CSE 115/503

February 22-26, 2010

Announcements

• Lab 4 in recitation this week – due 

next week.

• Lab 5 started next week in recitation.

• Exam 3 after spring break.



3/2/2010

2

New Relationship: 

Composition

• Whole-part relationship

• The “source” is responsible for 

creating the “target”

• The lifetime of the target is 

linked to the lifetime of the 

source

Composition

• In Java code:

public class Source {

private Target _target;

public Source() {

_target = new Target();

}

}



3/2/2010

3

User Interactive 

Components

• javax.swing.Jbutton

• Create one and place it on a 

graphical container

• Note that its default functionality 

is none

• We need to tell the button how 

to react when clicked upon

Events

• All things that a user does to 

interact with the system can be 

considered events

• These events are noticed by the 

computer and reacted to by 

various programs that are 

running on the system 



3/2/2010

4

Events

• If we want the components of 

our program to react to user 

events, we need to create event 

handlers 

• These event handlers know 

what to do when an event has 

been observed

Events

• Clicks on a button are 

ActionEvents

• We create a listener 

(ActionListener) to react to those 

events

• Use method addActionListener

on a JButton to indicate which 

listener(s) are to be notified 

when an event is observed



3/2/2010

5

Observer

• The way Java handles events 

conforms to the Observer design 

pattern
• http://www.research.ibm.com/designpatterns/example.htm

• Design Patterns are formal ways to 

describe general solutions to 

common problems

ActionListener

• All objects that will react to 

events and want to be 

registered observers need to be 

ActionListeners

• However, as we saw, there is no 

way to create an ActionListener

object because ActionListener is 

not a class, it is an interface



3/2/2010

6

Interfaces

• Another type that a user can 

define in Java

• Interfaces give the declarations 

of capabilities without giving 

implementations of those 

capabilities

Implementing an 

Interface

• Classes that a programmer 

defines can implement an 

interface

• In order to do this, the class 

must provide definitions for all 

the capabilities the interface has 

left undefined



3/2/2010

7

Realization 

Relationship

• Implementing an interface is an 

example of the Realization 

Relationship from our UML 

relationships

Realization

• In Java code:

public class Source implements Target {

}



3/2/2010

8

Notes about UML

• Note that a box that represents 

an interface in UML only has 

two sections, a section for the 

name and a section for the 

capabilities

• Interfaces do not have 

properties, so no section 

needed

Code Example

• GraphicsExample3 in Lecture 

Code repository

• Note that there is a UML 

diagram in the project that 

shows the realization 

relationship



3/2/2010

9

GraphicsExample3

• Creates JFrames when the user 

clicks the button

• Let’s create a button that does 

something else

– Suggestions?

Exam 2 Stats

• Min: 37 (1 total F)

• Median: 90

• Average: 87.76

• Max: 100 (26; 73 total A’s)



3/2/2010

10

To Work on now…

• Write out a plan (in English) as 

to how to create the program 

suggested last lecture:

• A shape on the screen whose 

movement is controlled by a 

button.

How do I do this?

• Read the description

• Get ready to do your work

• THINK before you code

– Doodle,sketch,brainstorm

– Organize your thoughts



3/2/2010

11

What do we need to 

do? (Brainstorming)

• Make a package

• Make a Jframe

• Make DrawingCanvas

• Make shape

• Create a button

• Need an ActionListener

• What does the button do?

The example

• Code is in GraphicsExample4 in 

the Lecture Code repository


