
2/11/2011

1

February 7-11, 2011

CSE 113 B

ANNOUNCEMENTS

 Exam 1 Review in lecture 2/11

 Exam 1 in lecture 2/14

 Lab 1 due 2/18

 Practical Exam 1 in recitation week of 2/21

 This week in recitation: Lab 3 & Practice
Assignment 3

2/11/2011

2

RECAP SLIDES (LAST WEEK’S

MATERIAL)

 Greenfoot Environment

 Class diagram panel

 Execution Controls

 World

 Creating an object in the world

 Right clicking brought up method menu

3

PARAMETERS

 When we describe a method to someone, like
what is listed in the right-click menu in
Greenfoot, we give the parameter’s type

 When we execute that method, we need to an
actual value to that parameter

 Example from lecture – set direction method –
we needed to say which direction 0,1,2, or 3

4

2/11/2011

3

INHERITANCE

 World and Actor are part of every Greenfoot
scenario

 As programmers, we need to create our own
world and our own actors

 Each of those things will share a bond with World
and Actor – they will inherit from them

5

INHERITANCE

 When one class inherits from another, the
subclass inherits methods (actions) from the
superclass.

 Notice that when we click on Wombat, we see a
pull out menu “Inherited from Actor” at the top.
This menu shows us all the methods that
Wombat inherits from Actor.

6

2/11/2011

4

RECAP OF PROGRAMMING TERMS

(WITH INFORMAL DEFINTIONS)

 Class – definition of something in our program

 Object – an actual part of the program when it is
run

 Method – things objects can do. Must be
defined in the class

 Invoke a method – cause the action of the
method to execute (when we run our program)

7

RECAP OF PROGRAMMING TERMS

(WITH INFORMAL DEFINTIONS)

 Method signature is made of three main parts
that will describe a method to others

 Return type

 Methods can either give the type that will be
returned from the method, or void if nothing is
returned

 Method name

 Parameter list

 Can be empty or describe using type and name
what the parameters for the method are

8

2/11/2011

5

MORE IDEAS

 “Running” a scenario in Greenfoot causes the act
methods of all the actors in the scenario to be
invoked repeatedly

 All Greenfoot scenarios use inheritance. World
and Actor are superclasses of the specific type of
world and specific type of actors the programmer
creates for the scenarios. The specific types
(subclasses) inherit the methods from the more
general types (superclasses)

9

10

2/11/2011

6

11

RANDOM BEHAVIOR

 Get a random number

 If the number is one of the values we are looking
for, perform an action. Otherwise, do nothing

12

2/11/2011

7

GETTING A RANDOM NUMBER

 Greenfoot provides a special method for getting
random numbers. To call it, we need to use the
following:

 Greenfoot.getRandomNumber(x);

13

GREENFOOT. ?

 The name of this method is getRandomNumber, but
there is a Greenfoot. in front of that method name.

 getRandomNumber is a method that is defined inside
of a class named Greenfoot, so we need to tell Java
where to find this method – hence the Greenfoot.

 Without the Greenfoot. in front, Java looks inside the
current class and inside the superclasses for a
definition for that method. Since there isn’t one, it
would cause a compiler error if we left off the
Greenfoot. In this example.

14

2/11/2011

8

CALLING METHODS

 If the method is defined in the class we are
editing or any of that class’ superclasses, then we
simply need to use the name of the method and
pass the appropriate values in the parameters.

 If the method is defined in any other class than
the ones we previously mentioned, we need to
tell Java where to look for the definition, so we
need a something. In front of the method name
where the something is where to look for the
method.

15

WHY (100)?

 The parameter for getRandomNumber is the
limit on the range of the random numbers.
When we put in 100, we get a value in the range
of 0-99. (A random number out of 100 possible
values.)

16

2/11/2011

9

TESTING RANGES

 We then need to determine if the number is the
range of numbers we are interested in.

 So, for 20%, we want to know if the number is
between 0-19 (or less than 20).

17

OPERATORS

 Symbols that tell Java to perform a certain operation.

 Operators can produce results (answers).

 Some operators produce boolean results
(comparison operators)

18

Operator Meaning Operator Meaning Operator Meaning

< Less than <= Less than or
equal to

== equals

> Greater than >= Greater than
or equal to

!= not equal

