
4/1/2011

1

March 28 – April 1, 2011

CSE 113 B

ANNOUNCEMENTS - GRADES

 UBLearns grades just updated Monday,
March 28th (11:00am). Please check
grades.

 If an EXAM grade is incorrect, you need to
bring the exam to me – preferably in office
hours.

 If you have a question about the grading of
a lab, you should come to talk to me so
that we can look at your submission and
the grading.

 If a grade is incorrectly recorded on
UBLearns from Web-CAT, an email is fine.

4/1/2011

2

ANNOUNCEMENTS - LAB

 Lab 7 started in lab this week.

 Labs 6 & 7 will be graded by Web-CAT, but
the grading is not functional at this time.

 Practice Assignment 6 has been posted and
grading is functional.

 Practice Assignment 7 will be posted at
some point soon.

ANNOUNCEMENTS – PRACTICAL EXAM 3

 May 5, 6, 9, 10

 Schedule will be posted after resign date
(Friday, April 1st) on the Practical Exam 3
information page (which will be linked off
of the Schedule page).

 Information about what material will be on
the exam is also posted there.

4/1/2011

3

ANNOUNCEMENTS – EXAMS

 Pick up Exam 1 & 2 if you have not already
done so.

 Exam 3 Monday, April 11th in lecture
(covers Chapters 6-8).

 Review for Exam 3 on Friday, April 8th.

 Review sheet will be posted on or around
April 1st.

GREENFOOTIMAGE

 Class that represents an image.

 You can load an image that has been pre-
drawn (like we’ve been doing).

 OR

 You can draw an image yourself.

4/1/2011

4

GREENFOOTIMAGE

 setColor method allows us to set the current
drawing color

 setColor takes as a parameter, a
java.awt.Color

7

JAVA.AWT.COLOR

 There are several pre-defined colors in Java that you
can use

 java.awt.Color.PINK, java.awt.Color.RED,
java.awt.Color.ORANGE, java.awt.Color.YELLOW,
java.awt.Color.GREEN, java.awt.Color.CYAN,
java.awt.Color.BLUE, java.awt.Color.MAGENTA,
java.awt.Color.LIGHT_GRAY, java.awt.Color.GRAY,
java.awt.Color.DARK_GRAY, java.awt.Color.BLACK,
java.awt.Color.WHITE

8

4/1/2011

5

JAVA.AWT.COLOR

 You can also create a color using

new java.awt.Color(red, green, blue)

 where you substitute a number within the range
0-255 for each of red, green, and blue

9

GREENFOOTIMAGE

 Once we have set the color for drawing, we can do
many things (see list of methods from
GreenfootImage)

 fill

 fill/draw oval

 fill/draw rectangle

 draw line

 draw text

10

4/1/2011

6

FOR-LOOP (BASIC SYNTAX)

for (/* initialization, condition, increment */)

{

//code to be repeated

}

11

FOR-LOOP (INITIALIZATION)

 The initialization part of a for-loop (typically)
creates and initializes a loop counter. The loop
counter is simply a variable whose value we can
check (in the condition part) and change (in the
increment part).

 A sample initialization step looks like this:

int count = 0;

 You can name your variable whatever you’d like
and initialize it to whatever value is appropriate
to your task.

12

4/1/2011

7

FOR-LOOP (CONDITION)

 The condition part of a for-loop tells the loop when to stop.
While the condition is true, the code will keep getting
repeated, when it is false, the repetition will stop. Typically,
the condition involves the loop counter variable’s value.

 A sample condition looks like this:

count < 100;

 The condition must evaluate to true or false (must be a
boolean expression) and typically gives a clue to the
number of times the loop will execute.

13

FOR-LOOP (INCREMENT)

 In increment part of a for-loop indicates how the loop
counter will be incremented. In many cases, the counter is
incremented by one each time (so it keeps count of how
many times the loop has executed).

 A sample increment step looks like this:

count = count + 1

 Note that there is a (syntactic) shortcut for the above that is
typically used:

count++

14

4/1/2011

8

FOR-LOOP (REPEATED CODE)

 This is the code that is to be repeated. There is
no restriction on what is placed in the {}. Any
valid Java code can be repeated.

15

FOR-LOOPS

(A NOTE ABOUT THESE GUIDELINES)

 The usage of the for-loop described here corresponds with its
most common usage. However, the only thing that the Java
language specifies is that within the parentheses there be three
statements separated by commas and that the statements in
between the {} are the code that is repeated.

 So, that means

for(;;)

{

}

 Is a perfectly syntactically correct for-loop. That loop will run
forever (it will never stop), but perform no actions. This is not
pointed out to panic anyone, but rather to indicate that there may
be other uses of the for loop that you can see that do not conform
to the usage we’ve discussed here.

16

