
CSE 331: Introduction to Algorithm Analysis and Design Fall 2014

ANALYZING THE WORST-CASE RUN TIME OF AN ALGORITHM
Supplemental notes for the lecture on September 15, 2014

Let A be the algorithm we are trying to analyze. Then we will define T (N) to be the worst-case run-
time of A over all inputs of size N . Slightly more formally, let tA (x) be the number of steps taken by the
algorithm A on input x. Then

T (N) = max
x:x is of size N

tA (x). (1)

In this note, we present two useful strategies to prove statements like T (N) is O(g (N)) or T (N) is
Ω(h(N)). Then we will analyze the run time of a very simple algorithm.

1 Preliminaries

We now collect two properties of asymptotic notation that we will need in this note (we saw these in class
today).

Lemma 1. If f and g are both O(h) (Ω(h) resp.) then f + g is O(h) (Ω(h) resp.).

Lemma 2. If f is O(h1) (Ω(h1) resp.) and g is O(h2) (Ω(h2) resp.) then f · g is O(h1 ·h2) (Ω(h1 ·h2) resp.).

2 Proving T (N) is O(f (N))

We start off with an analogy. Say you wanted prove that given m numbers a1, . . . , am , maxi ai ≤U . Then
how would you go about doing so? One way is to argue that the maximum value is attained at i∗ and
then show that ai∗ ≤U . Now this is a perfectly valid way to prove the inequality we are after but note that
you will also have to prove that the maximum value is attained at i∗. Generally, this is a non-trivial task.
However, consider the following strategy:

Show that for every 1 ≤ i ≤ m, ai ≤U . Then conclude that maxi ai ≤U .

Let us consider an example to illustrate the two strategies above. Let us say for whatever reason we
are interested in showing that the age of the oldest person in 331 lectures is at most 100. Since there are
118 students registered and I am always present in class, there are at most m = 119 folks in the class.
Let us order them somehow and let Ai denote the age of the i ’th person. Then we want to show that
max{a1, . . . , a119} ≤ 100 (i.e. U = 100). The first strategy above would be to first figure out who is the
oldest person in room: say that is the i∗’th person (where 1 ≤ i∗ ≤ 119) and then check if ai∗ ≤ 100.
However, this strategy is somewhat invasive: e.g. the oldest person might not want to reveal that they are
the oldest person in the room. This is where the second strategy works better: we ask every person in the
room if their age is ≤ 100: i.e. we check if for every 1 ≤ i ≤ 119, ai ≤ 100. If everyone says yes, then we
have proved that maxi ai ≤ 100 (without revealing the identity of the oldest person).

Mathematically the above two strategies are the same. However, in "practice," using the second strat-
egy turns out to be much easier. (E.g. this was true in the age example above.) Thus, here is the strategy
to prove that T (N) is O(f (N)):

For every large enough N , show that for every input x of size N , tA (x) is O(f (N)). Then
conclude that T (N) is O(f (N)).

1

3 Proving T (N) isΩ(f (N))

We start off with the same analogy as in the previous section. Say you wanted prove that given m num-
bers a1, . . . , am , maxi ai ≥ L. Then how would you go about doing so? Again, one way is to argue that the
maximum value is attained at i∗ and then show that ai∗ ≥ L. Now this is a perfectly valid way to prove
the inequality we are after but note that you will also have to prove that the maximum value is attained
at i∗. Generally, this is a non-trivial task. However, consider the following strategy:

Show that there exists an 1 ≤ i ≤ m, such that ai ≥ L. Then conclude that maxi ai ≥ L.

Let us go back to the class roam example. Now let us say we are interesting in proving that the oldest
person in the room is at least 25 years old. (So a1, . . . , am is as in Section 2 but now L = 25.) Again, the first
strategy would be to first figure out the oldest person, say i∗ and check if ai∗ ≥ 25. However, as we saw in
Section 2, this strategy is somewhat invasive. However, consider the the following implementation of the
second strategy above. Say for the sake of mathematics, I come forward and volunteer the information
that my age is at least 25. Since the oldest person’s age has to be at least mine, this proves that maxi ai ≥
25, as desired.

Mathematically the above two strategies are the same. However, in "practice," using the strategy
second turns out to be much easier. (E.g., this was true in the age example above.) Thus, here is the
strategy to prove that T (N) isΩ(f (N)):

For every large enough N , show that there exists an input x of size N , tA (x) isΩ(f (N)). Then
conclude that T (N) isΩ(f (N)).

4 An Example

Now let us use all the strategies from Section 2 and Section 3 to asymptotically bound the run-time of a
simple algorithm. Consider the following simple problem: given n +1 numbers a1, . . . , an ; v , we should
output 1 ≤ i ≤ n if ai = v (if there are multiple such i ’s then output any one of them) else output −1.
Below is a simple algorithm to solve this problem.

Algorithm 1 Simple Search
INPUT: a1, . . . , an ; v
OUTPUT: i if ai = v ; −1 otherwise

1: FOR every 1 ≤ i ≤ n DO

2: IF ai = v THEN RETURN i

3: RETURN −1

We will show the following:

Theorem 1. The Simple Search algorithm 1 has a run time ofΘ(n).

We will prove Theorem 1 by proving1 Lemmas 3 and 4.

Lemma 3. T (n) for Algorithm 1 is O(n).

1Note that I am not presenting separated out proof ideas so these are not "ideal" solutions for the HWs.

2

Proof. We will use the strategy outlined in Section 2. Let a1, . . . , an ; v be an arbitrary input. Then first
note that there are at most n iterations of the for loop in Step 1. Further, each iteration of the for loop
(i.e. Step 2) can be implemented in O(1) time (since it involves one comparison and a potential return of
the output value). Thus, by Lemma 2, the total times taken overall in Steps 1 and 2 is given by

T12 ≤O(n ·1) =O(n).

Further, since Step 3 is a simple return statement, it takes time T3 =O(1) time. Thus, we have that

tAlgorithm 1(a1, . . . , an ; v) = T12 +T3 ≤O(n)+O(1) ≤O(n),

where the last inequality follows from Lemma 1 and the fact that O(1) is also O(n). Since the choice of
a1, . . . , an ; v was arbitrary, the proof is complete.

Lemma 4. T (n) for Algorithm 1 isΩ(n).

Proof. We will follow the strategy laid out in Section 3. For every n ≥ 1, consider the specific input a′
i =

n+1− i (for every 1 ≤ i ≤ n) and v ′ = 1. For this specific input, it can be easily checked that the condition
in Step 2 is only satisfied when i = n. In other words, the for loop runs at least (actually exactly) n times.
Further, each iteration of this loop (i.e. Step 2) has to perform at least one comparison, which means that
this step takes Ω(1) time. Since n is Ω(n), by Lemma 2 (using notation from the proof of Lemma 3), we
have

T12 ≥Ω(n ·1) =Ω(n).

Thus, we have
tAlgorithm 1(a′

1, . . . , a′
n ; v ′) ≥ T12 ≥Ω(n).

Since we have shown the existence of one input for each n ≥ 1 for which the run-time is Ω(n), the proof
is complete.

A quick remark on the proof of Lemma 4. Since by Section 3, we only need to exhibit only one input
with runtime Ω(n), the input instance in the proof of Lemma 4 is only one possibility. One can choose
other instances: e.g. we can choose an instance where the output has to be −1 (as a specific instance
consider ai = i and v = 0). For this instance one can make a similar argument as in the proof of Lemma 4
to show that T (n) ≥Ω(n).

Exercise. If you think you need more examples to work through to make yourself comfortable with
analyzing T (n) for different algorithms, show that the binary search algorithm on n sorted numbers
takesΘ(logn) time.

5 The Best-Case Input “Trap"

We now briefly talk about a common mistake that is made when one starts trying to proveΩ(·) on T (N).
Note that in Section 3, it says that one can prove that T (N) to beΩ(f (N)) for every large enough N , one
only needs to pick one input of size N for which the algorithm takesΩ(f (N)) steps.

The confusing part about the strategy in Section 3 is how does one get a hand on that special input
that will prove theΩ(f (N)) bound. There is no mechanical way of finding this input. Generally, speaking

3

you have to look at the algorithm and get a feel for what input might force the algorithm to spend a lot of
time. Sometimes, the analysis of the O(·) bound itself gives gives us a clue.

However, one way of picking the “special" input that almost always never works in practice is to
consider (for every large enough N), the “best-case input," i.e. an input of size N on which the algorithm
runs very fast. Now such an input will give you a valid lower bound but it would almost never give you a
tight lower bound.

So for example, let us try to prove Lemma 4 using the best case input. Here is one best case input:
ai = i for every i ∈ [n] and v = 1. Note that in this case the algorithm finds a match in the first iteration
and this terminates in constant many steps. Thus, this will prove an Ω(1) lower bound but that is not
tight/good enough.

Another common mistake is to make an argument for a fixed value of N (say N = 1). However, note
that in this case one can never prove a bound better thanΩ(1) and again, this trick never works in proving
any meaningful lower bound.

4

	Preliminaries
	Proving T(N) is O(f(N))
	Proving T(N) is (f(N))
	An Example
	The Best-Case Input ``Trap"

