Lecture 11

CSE 331
Sep 19, 2014

HW 2 due today

Place Q1, Q2 and Q3 in separate piles

I will not accept HWs after 1:15pm

Other HW related stuff

HW 3 has been posted online: see piazza

Solutions to HW 2 at the END of the lecture

Graded HW 1 available from Monday onwards

Out of town next week

Andrew Hughes will cover the lecture for me

Next Week

I will be out of town at of neat week, (in case you're curious, III be hero.)
I have arranged for a senior PhD student, Andew Hughes (who wil be teaching 395 next semester) so oover the lechares for me. The HWs will be handed out and colected as per the usual schedule. I will be checking piagra at heast once per day when I'm out of town. The main thing that will change wil be that I will not be hosting ary office hours (online or otherwise). Frank and Zulkar will beel up their plazza participation for next wenk, so Fm confident al your questions will be answered in a timely mannec.

If you have any questions and/or concerns, please let me know.
\square a conerobs

Graphs

Graph $G=(V, E)$

Directed vs Undirected (default)

No "self loops"

Paths

Connectivity

u and w are connected iff there is a path between them

A graph is connected iff all pairs of vertices are connected

Connected Graphs

Every pair of vertices has a path between them

Cycles

Sequence of k vertices connected by edges, first $k-1$ are distinct

Formally define everything

Rest of Today's agenda

Formal definitions of paths, cycles, connectivity and trees

Prove n vertex tree has n -1 edges

Algorithms for checking connectivity

HW 2 due today

Place Q1, Q2 and Q3 in separate piles

I will not accept HWs after 1:15pm

Tree

Connected undirected graph with no cycles

Rooted Tree

A rooted tree

Pick any vertex as root

Let the rest of the tree hang under "gravity"

Rest of Today's agenda

Prove n vertex tree has n -1 edges

Algorithms for checking connectivity

Checking by inspection

What about large graphs?

Are s and t connected?

Brute-force algorithm?

List all possible vertex sequences between s and t

Algorithm motivation

Distance between u and v

Length of the shortest length path between u and v

Distance between RM and BO?

Questions?

Breadth First Search (BFS)

Is s connected to t?

Build layers of vertices connected to s
$\mathrm{L}_{0}=\{\mathrm{s}\}$

Assume $\mathrm{L}_{0}, . ., \mathrm{L}_{\mathrm{j}}$ have been constructed
$\mathrm{L}_{\mathrm{j}+1}$ set of vertices not chosen yet but are connected to L_{j}

Stop when new layer is empty

Exercise for you

Prove that L_{j} has all nodes at distance j from s

BFS Tree

BFS naturally defines a tree rooted at s

L_{j} forms the jth "level" in the tree
u in L_{j+1} is child of v in L_{j} from which it was "discovered'

