Lecture 8

CSE 331 Sep 12, 2014

HW 1 due today

Place Q1, Q2 and Q3 in separate piles

I will not accept HWs after 1:15pm

Other HW related stuff

HW 2 has been posted online: see piazza

Solutions to HW 1 at the END of the lecture

Clarification on collaboration

You can collaborate with up to 2 other folks in each HW

You can change your group from one HW to another HW but not on the same HW

Collaboration is interpreted as **any** discussion on the HW problems beyond the problem definition even if you ignore the discussion in your final writeup

Main Steps in Algorithm Design

HW 1 due today

Place Q1, Q2 and Q3 in separate piles

I will not accept HWs after 1:15pm

Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

Implemented where?

Definition-II

Analytically better than brute force

How much better? By a factor of 2?

Definition-III

Should scale with input size

If N increases by a constant factor, so should the measure

Polynomial running time

At most c·N^d steps (c>0, d>0 absolute constants)

Step: "primitive computational step"

More on polynomial time

Problem centric tractability

Can talk about problems that are not efficient!

Reading Assignments

Sections 1.2, 2.1, 2.2 and 2.4 in [KT]

Asymptotic Analysis

Travelling Salesman Problem

(http://xkcd.com/399/)

Which one is better?

The actual run times

Asymptotic Notation

 \leq is O with glasses \geq is Ω with glasses = is Θ with glasses

Another view

Silly way to remember Asymptotic notation... Stick figure: D Big D Big D Big D Big D Floor of functor feet

© Aleksandra Patrzalek, 2012