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Lecture 11: Shannon vs. Hamming
September 21,2007
Lecturer: Atri Rudra Scribe: Kanke Gao & Atri Rudna

In the last lecture, we proved the positive part of Shannoajgacity theorem for the BSC. We
showed that by the probabilistic method, there exists amding function £ and a decoding
function D such that

Em Pr [D(E(m)+e)#m] <27 (1)

of BSC,

In other words, thaveragedecoding error probability is small. However, we need tovsktivat
themaximumdecoding error probability over all messages is small. éldst lecture, we quickly
went over howl((ll) implies the latter. We will start today’stiere by going over this argument

again.

1 Shannon’s Capacity Theorem (cont.)

As was mentioned in the last lecture, the trick is to throw yath the messages that have high
error probability. In particular, we only keep the messagéb probability error at most the
median error probability.

Claim 1.1. Let the messages be orderedihy, ms, . . ., m,: and define

P, = nofi’sree [D(E(m;) +e) # m,].

of BSCy
Assume thaP, < P, < ... < Py and [1) holds, thedPy—1 < 2-2797
Proof. By the definition ofP;,
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where [2) follows from[{lL). For the sake of contradictionuams that
Pyo1 > 2279, (3)
So,
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> 270, (6)

where [4) follows by dropping half the summands from the s@hfollows (3) and the assump-
tion on the sortedness &f. The proof is now complete by noting that (6) contradicti@@s [

Thus, our final code will have as its messages . .., my.—1 and thus, has dimensidi =
k — 1. Defined = o' + % In the new code, maximum error probability is at mdst”. Also if we
pickedk < [(1 — H(p+¢))n] + 1,thenk’ < |(1 — H(p+¢))n], as required.
Remark 1.2. One can also show that for the$’,, the capacity id — H,(p) and for theBEC,,
the capacity isl — a.

Remark 1.3. We have shown that a random code can achieve capacity. Howado not know
of even an succinct representation of general codes. A abfuestion to ask is if random linear
codes can achieve the capacity®6C,,. The answer is yes and the proof is left as an exercise.

For linear code, representation and encoding are effici@ott the proof does not give an
explicit construction. Further, Shannon’s proof uses MldD ivhich only exponential time im-
plementations are known. Thus, the biggest question lefblied by Shannon’s work is the
following.

Question 1.4. Can we come up with an explicit construction of a code of tate H (p + <) with
efficient decoding and encoding algorithms that achievialséd communication oveBSC,,?

As a baby step towards the resolution of the above questi@gan ask the following question:
Question 1.5. Can we come up with an explicit construction with> 0 andp > 0?

Note that the question above is similar to tRe> 0 andé > 0 question in Hamming’s
world. Elias, answered the above question in the affirmdfi}e His code construction uses a
clever combination of Hadamard codes. Unfortunately, waatchave the time to go through the
construction.

2 Hammingvs. Shannon

As a brief interlude, let us compare the salient featureb@fnorks of Hamming and Shannon,

HAMMING SHANNON
Focus on codewords itself Directly deals with encoding and decoding functigns
Looked at explicit codes Not explicit at all
Fundamental trade off: rate vs. distarjce Fundamental trade off: rate vs. error
(easier to get a handle on this)
Worst case errors Stochastic errors

We note the connection between finding codes of high distandeachieving reliable commu-
nication overBSC, in the following proposition
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Proposition 2.1. Let0 < p < 1 and0 < ¢ < 1 — p. If an algorithm A can handlep + ¢ fraction
of worst case errors, then it can be used for reliable comwwation overBSC,

Proof. By the Chernoff bound, with probabilitg 1— 2772” fraction of errors iNBSC, is < p+-e.
Then by assumption oA, it can be used to recover the transmitted message. O

Note that the above result implies that one can have relisdtsmission oveB SC), with any
code of relative distanc® + ¢ (for anye > 0).

Remark 2.2. The converse of Propositign2.1 is also true. More precjséihe decoding error
probability is exponentially small for the BSC, then theresponding code must have constant
relative distance. The proof of this claim is left as an eis&rc

3 Singleton Bound

Recall that in the Hamming world we are interested in thedraff between the rate and the
distance of a code. We will approach this trade-off in thdofeing way: If we fix the relative
distance of the code to e what is the best rat8? We will first look at some upper bounds.

We begin by considering the trade-off betweemndé given by the Hamming bound. Recall
that we proved the following:

log, Vol,(0, Ld;Qlj)

n

<1-

k
n

By the following lower bound on the volume of a Hamming balh{eh we have seen in the proof
of the converse of the Shannon theorem):
d—1

Vol, (0, L7 |) > gHa(8)n—otm)

we obtain the following asymptotic version of the Hammingibo:

wet () o

We will now prove another upper bound called the Singletaumnioo
Theorem 3.1 (Singleton Bound) For every(n, k, d), code,k <n —d + 1.

Proof. Let ¢y, ¢y, ..., c)r be the codewords of afn, k., d), codeC. Note that we need to show
M < ¢"4*1, To this end, we definé to be the prefix of the codeword of lengthn — d + 1. See
Figurell for a pictorial description.

We now claim that for every # j, ¢; # c;. For the sake of contradiction, assume that there
exits ani # j such that; = ¢}. Note that this implies that\(c;, ¢;) < d — 1, which contradicts
the fact thatC' has distancé. Thus, M is the number of prefixes of codewordsdhof length
n — d + 1, which implies that\/ < ¢"~+! as desired. O
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Figure 1: Construction of a new code in the proof of the Sitoyidoound.

Remark 3.2. The asymptotic version of the Singleton bound stateskhat1 — § + o(1). Itis
worth noting that the bound isdependenof the alphabet size. It turns out that the upper bound is
worse than the Hamming bound for binary codes. Howeverpihisd is better for larger alphabet
sizes. In fact, we will look at a family of codes called Reetb#®on codes (which are defined over
large alphabets) that meet the Singleton bound.
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