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In the last lecture, we proved the positive part of Shannon’scapacity theorem for the BSC. We
showed that by the probabilistic method, there exists an encoding functionE and a decoding
functionD such that
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[D(E(m) + e) 6= m] ≤ 2−δ′n. (1)

In other words, theaveragedecoding error probability is small. However, we need to show that
themaximumdecoding error probability over all messages is small. In the last lecture, we quickly
went over how (1) implies the latter. We will start today’s lecture by going over this argument
again.

1 Shannon’s Capacity Theorem (Cont.)

As was mentioned in the last lecture, the trick is to throw away all the messages that have high
error probability. In particular, we only keep the messageswith probability error at most the
median error probability.

Claim 1.1. Let the messages be ordered bym1,m2, . . . ,m2k and define
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[D(E(mi) + e) 6= mi] .

Assume thatP1 ≤ P2 ≤ . . . ≤ P2k and (1) holds, thenP2k−1 ≤ 2 · 2−δ′n

Proof. By the definition ofPi,
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≤ 2−δ′n, (2)

where (2) follows from (1). For the sake of contradiction assume that

P2k−1 > 2 · 2−δ′n. (3)

So,
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> 2−δ′n, (6)

where (4) follows by dropping half the summands from the sum.(5) follows (3) and the assump-
tion on the sortedness ofPi. The proof is now complete by noting that (6) contradictions(2).

Thus, our final code will have as its messagesm1, . . . ,m2k−1 and thus, has dimensionk′ =
k − 1. Defineδ = δ′ + 1

n
. In the new code, maximum error probability is at most2−δn. Also if we

pickedk ≤ ⌊(1 − H(p + ε))n⌋ + 1, thenk′ ≤ ⌊(1 − H(p + ε))n⌋, as required.

Remark 1.2. One can also show that for the q-SCp, the capacity is1−Hq(p) and for theBECα,
the capacity is1 − α.

Remark 1.3. We have shown that a random code can achieve capacity. However, we do not know
of even an succinct representation of general codes. A natural question to ask is if random linear
codes can achieve the capacity ofBSCp. The answer is yes and the proof is left as an exercise.

For linear code, representation and encoding are efficient.But the proof does not give an
explicit construction. Further, Shannon’s proof uses MLD for which only exponential time im-
plementations are known. Thus, the biggest question left unsolved by Shannon’s work is the
following.

Question 1.4. Can we come up with an explicit construction of a code of rate1 − H(p + ε) with
efficient decoding and encoding algorithms that achieve reliable communication overBSCp?

As a baby step towards the resolution of the above question, one can ask the following question:

Question 1.5. Can we come up with an explicit construction withR > 0 andp > 0?

Note that the question above is similar to theR > 0 and δ > 0 question in Hamming’s
world. Elias, answered the above question in the affirmative[1]. His code construction uses a
clever combination of Hadamard codes. Unfortunately, we donot have the time to go through the
construction.

2 Hamming vs. Shannon

As a brief interlude, let us compare the salient features of the works of Hamming and Shannon,

HAMMING SHANNON

Focus on codewords itself Directly deals with encoding and decoding functions
Looked at explicit codes Not explicit at all

Fundamental trade off: rate vs. distance Fundamental trade off: rate vs. error
(easier to get a handle on this)

Worst case errors Stochastic errors

We note the connection between finding codes of high distanceand achieving reliable commu-
nication overBSCp in the following proposition
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Proposition 2.1. Let 0 ≤ p < 1
2

and0 < ε ≤ 1
2
− p. If an algorithmA can handlep + ε fraction

of worst case errors, then it can be used for reliable communication overBSCp

Proof. By the Chernoff bound, with probability≤ 1−2
−ε2n

3 , fraction of errors inBSCp is≤ p+ε.
Then by assumption onA, it can be used to recover the transmitted message.

Note that the above result implies that one can have reliabletransmission overBSCp with any
code of relative distance2p + ε (for anyε > 0).

Remark 2.2. The converse of Proposition 2.1 is also true. More precisely, if the decoding error
probability is exponentially small for the BSC, then the corresponding code must have constant
relative distance. The proof of this claim is left as an exercise.

3 Singleton Bound

Recall that in the Hamming world we are interested in the trade-off between the rate and the
distance of a code. We will approach this trade-off in the following way: If we fix the relative
distance of the code to beδ, what is the best rateR? We will first look at some upper bounds.

We begin by considering the trade-off betweenR andδ given by the Hamming bound. Recall
that we proved the following:
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By the following lower bound on the volume of a Hamming ball (which we have seen in the proof
of the converse of the Shannon theorem):
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we obtain the following asymptotic version of the Hamming bound:

R ≤ 1 − Hq

(

δ

2

)

+ o(1).

We will now prove another upper bound called the Singleton bound.

Theorem 3.1 (Singleton Bound). For every(n, k, d)q code,k ≤ n − d + 1.

Proof. Let c1, c2, . . . , cM be the codewords of an(n, k, d)q codeC. Note that we need to show
M ≤ qn−d+1. To this end, we definec′i to be the prefix of the codewordci of lengthn− d + 1. See
Figure 1 for a pictorial description.

We now claim that for everyi 6= j, c′i 6= c′j. For the sake of contradiction, assume that there
exits ani 6= j such thatc′i = c′j . Note that this implies that∆(ci, cj) ≤ d − 1, which contradicts
the fact thatC has distanced. Thus,M is the number of prefixes of codewords inC of length
n − d + 1, which implies thatM ≤ qn−d+1 as desired.

3



Figure 1: Construction of a new code in the proof of the Singleton bound.

Remark 3.2. The asymptotic version of the Singleton bound states thatR ≤ 1 − δ + o(1). It is
worth noting that the bound isindependentof the alphabet size. It turns out that the upper bound is
worse than the Hamming bound for binary codes. However, thisbound is better for larger alphabet
sizes. In fact, we will look at a family of codes called Reed-Solomon codes (which are defined over
large alphabets) that meet the Singleton bound.
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