Error Correcting Codes: Combinatorics, Algorithms and App lications (Fall 2007)

Lecture 12: Reed-Solomon Codes
September 28, 2007

Lecturer: Atri Rudra Scribe: Michel Kulhandjian

Last lecture we saw the proof of the Singleton bound whicmrdahat for any(n, &, d),, code,
k < n —d+ 1. In today’'s lecture we will study Reed-Solomon codes. Thas#es meet the
Singleton bound, i.e. satisfy = n — d + 1 (but have the unfortunate property tlhat- n). Note
that this implies that the Singleton bound is tight, at Iéast; > n.

1 Reed-Solomon Codes

We begin with the definition of Reed-Solomon codes.

Definition 1.1 (Reed-Solomon code) et F, be a finite field andF,[x] denote theF,-space of
univariate polynomials where all the coefficientszore fromF,. Pick {ay, as, ..o, } distinct
elements (also calledvaluation pointsof F, and choose: and k such thatt < n < ¢. We
define an encoding function for Reed-Solomon cod& s F’; — [ as follows. A message
m = (mg, my, ..., mg—1) Withm; € I, is mapped to a degrele— 1 polynomial.

m — fm(z),

where -
fm(x) = Z m; . Q)
i=0

Note thatf,,(z) € F,[z] is a polynomial of degreg k& — 1. The encoding afn is the evaluation
of fm(z) at all theq;’s :

RS(m) = (fm(), fm(a2), -, fm(an))

We call this image Reed-Solomon code/t$ code after two inventortrving Reedand Gus
Solomonof this codel[1]. A common special casenis= ¢ — 1 with the set of evaluation points
beingF* = F \ {0}.

Notice that by definition, the entries {ay, ..., a,,} are distinct and thus, must haxe< q.
We now turn to some properties of Reed-Solomon codes.

Claim 1.2. RS codes are linear codes.



Proof. The proof follows from the fact that ii € F, and f(z), g(z) € F,[z] are polynomials of
degree< k — 1, thenaf(z) andf(z) 4+ g(x) are also polynomials of degreek — 1. In particular,
let messages; andm, be mapped tofy,, (z) and fm, (z) where fu,, (), fm,(x) € F,[z] are
polynomials of degreel k& — 1 and because of the mapping defineddn (1), it is easy to véréi t

fooy (%) + frno (%) = iy, (),

and
@ fm, () = fam, (7).
Therefore,
RS(m;) + RS(my) = RS(m; + my)
aRS(m;) = RS(amy,)
ThereforeRS is a[n, k|, linear code. O

The second and more interesting claim is the following:
Claim 1.3. RSisaln, k,n — k + 1], code. That is, it matches the Singleton bound.

The claim on the distance follows from the fact that everyypomial of degree: — 1 over
F,[z] has at mosk — 1 (not necessarily distinct) roots, and that if two polynolsi@gree on more
thank — 1 places then they must be the same polynomial.

Proposition 1.4(“Degree Mantra”) A nonzero polynomiaf (x) of degreet over a fieldF, has at
mostt roots inF,

Proof. We will prove the theorem by induction @nlf t = 0, we are done. Now, considé¢(x) of
adegree > 0. Leta € [F, be a root such thaf(a) = 0. If no such rootx exists, we are done. If
there is a rooty, then we can write

f(x) = (z = a)g()

wheredeg(g) = deg(f) — 1 (i.e. z — o divides f(x)). This is because by the fundamental rule of
division of polynomials:

f(x) = (z — a)g(x) + R(x)
wheredeg(R) < 0 (as the degree cannot be negative this in turn impliesdbgtk) = 0) and
sincef(a) =0,
fla) =0+ R(«a),
which implies that?(z) = 0. By induction,g(z) has at most — 1 roots, which implies thaf (z)
has at most roots. O



We are now ready to prove Claim1L.3
Proof of Claim .3 We start by proving the claim on the distance. Fix arbitrary # m, €
F%. Note thatfm, (), fm,(x) € F,4[z] are distinct polynomials of degree & — 1 sincem,; #
m, € F:. Then fu, (2) — fm,(z) # 0 also has degreg k& — 1. Note thatw(RS(m,) —
RS(m;)) = A(RS(m;), RS(m,)). The weight ofRS(my) — RS(m,) is n minus the number of
0's in RS(my) — RS(m;) which is equal ta: minus the number of roots thdt,, (z) — fm, ()
has amonday, ..., o, }. That s,

A(RS(my), RS(my)) = n — [{a | fm, (@) = fm,(a)}]

By Propositiol LWl fm, (x) — fm,(z) has at most — 1 roots. Thus, the weight oRS(m,) —
RS(m,) is at leasto — (k — 1) = n — k + 1. Therefored > n — k + 1, and since the Singleton
bound implies thatl < n — k + 1, we haved = n — k + 18 The argument above also shows
that distinct polynomialgy,, (z), fm,(x) € F,[z] are mapped to distinct codewords. Therefore,
the code containg]* codewords and has dimensibnThe claim in linearity of the code follows
from Claim[1.2. O

Definition 1.5 (MDS codes) An (n, k, d), code is calledMaximum Distance Separable (MDB)
d=n—k+1.

Thus, Reed-Solomon codes are MDS codes.

Let us now find a generator matrix faS codes (which exists by Claifi—1.2). By Defi-
nition [L.1, any basiy,, ..., fm, Of polynomial of degree at mogt — 1 gives rise to a basis
RS(m,), ..., RS(my) of the code. A particularly nice polynomial basis is the detnonomials
1,z,..,2% ..., 2*"1. The corresponding generator matrix, whaterow (numbering rows from
tok—1)is

(af, Ay, oy @, oy )

and this generator matrix is called thienDerMondemnatrix with & x n size

1 1 1 1 1 1

al a2 PR a] PR an
0! a - af 2
o ab ol o
k—1 k—1 k—1 k—1
o Qy a; o,

RS codes are used in storage of information in CD’s because dheyobust against burst-
errors that come in contiguous manner, unlike the randoor enethod studied by Shanon. The
drawback of Reed-Solomon codes is the condition ghatn. The problem is that we need each
coordinate of a codeword to correspond to a distinct eleroeki

LAlternatively, consider the distance between the all zexeword and the codeword corresponding to the poly-
. k—1
nomial[[;—; (= — ay).



Remark 1.6. One might ask doeghave to vary as a function afto satisfy the Singleton bound?
The answer is yes. We can show this by the Plotkin bound, wyecill prove in a couple of
lectures.

2 Hamming versus Shannon

Let us compare Hamming and Shannon theories in terms of {mepstic bounds we have seen
so far (recall rate? = £ and relative distancé = £).

e Hamming theory: Can correc< g fraction of worse case errors for codes of distafice

By the Singleton bound,
)<1-—R,

which implies thap fraction of errors can be corrected, where

1-R

< "
P="

The above can be achieved via efficient decoding algorittamB§ codes.

e Shannon theory: In ¢SCp, we can have reliable communication with< 1 — H,(p). It
can be shown that

1.1-Hy(p)<1l-p
2. 1—H,(p) >1—p—e¢,iff ¢=2%0/% for largeq.

Thus we can have reliable communication with- 1 — R on¢SC,, for large enougly.

Remark 2.1. There is a gap between Shannon and Hamming world: one caeadwice as
many errors as in the Shannon world. One natural questionstoia whether we can somehow
“bridge” this gap.

We will now re-visit the the bad example for unique decodind eonsider an extension of the
bad example as shown in Figie 1.

Recall thaty and the codewords; andc, form the bad example for unique decoding that we
have already seen before. Recall that for this particulzived word we can not do error recovery
by unique decoding since there are two codewardand c, having the same distanc‘—gefrom
vectory. On the other hand, the received wartias an unique codeword with distancep > g
However, unique decoding does not allow for error recoverynfz. This is because by definition
of unique decoding, the decoded codeword cannot have Hagndistence larger thafy/2 from
the received word. In this example, there is no codewordiwittamming distancé/2 of z and
thus, it can not correct the received wardn this example is because of the received wprd

Let us consider the example in Figlile 1 for the binary casmartbe shown that the number of
vectors in dotted lines is insignificant compared to volurhehaded area (for large enough block



bad examples

bad examples

Figure 1: In this example vectors are embedded into Eudlidgemce such that the Euclidean
distance between two mapped points is the same as the Handistagce between vectors. The
c1,Ca,C3,Cyq are codewords. The dotted lines contain the “bad examplesat’is, the received
words for which unique decoding is not possible.

length of the code). The volume of all Hamming balls radiu% afround all the codewords is
roughly equal to:

which implies that the volume of the shaded area (withoutithtéed lines) is approximately equal
to:

In other words, the volume when expressed as a fraction ofdhene of the ambient space is
roughly:

1— 2—n(1—H(%)—R)7 (2)
wherek = RnandR < 1 — H(Z). If R < 1 — H(Z) then second term oEX2) is very small.
Therefore the number of vectors in shaded area (without diieexamples) is almost all of the
ambient space. Note that by the stringent condition on wnigcoding none of these received
words can be decoded (even though for such received wordsigha unique closest codeword).
Thus, in order to be able to decode such received vectorsee to relax the notion of unique
decoding. We will consider such a relaxation calistidecodingn the next lecture.
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